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Introduction

Modern interior-point methods for nonlinear programming have their roots
in linear programming and most of this algorithmic work comes from the opera-
tions research community which is largely associated with solving the complex
problems that arise in the business world. However, engineers and scientists
also need to solve nonlinear optimization problems. While it is true that many
engineers are well aware of the activities of SIAM and therefore are at least
somewhat familiar with the advances that have taken place in optimization in
the past two decades, there are many engineers and scientists who think that
the only tool for solving an optimization problem is to code up something for
MATLAB to solve using a genetic algorithm. Often the results are extraordi-
narily slow in coming and sometimes not even the results that one was looking
for.

Having been immersed for more than a decade in the development of algo-
rithms, and software, for solving nonlinear optimization problems, I eventually
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developed a desire to see the other side, the user’s side. I became quite interested
in applications not just as little toys to illustrate the power of my pet algorithms
but rather as important problems that require solution and for which some of
my tools might be useful. In this chapter I will chronicle some of these appli-
cations and illustrate how modern interior-point methods can be very useful to
scientists and engineers.

The next section provides a brief description of an interior-point algorithms
for nonlinear programming. Then, in subsequent sections we will discuss the
following four application areas:

Finite Impulse Response (FIR) filter design

Telescope design—optics

Telescope design—truss structure

Stable orbits for then-body problem

1. LOQO: An Interior-Point Code for NLP

Operations Research, our field of study, got its start more than 50 years ago
roughly when George Dantzig invented the simplex method for solving linear
programming problems. The simplex method together with the development
of the computer provided a new extremely powerful tool for solving complex
decision making problems. Even today, the simplex method is an indispensable
tool to the operations researcher.

Of course, it was fairly soon after the invention that people began to real-
ize that the linear programming problem was too restrictive for most of the
real-world problems that needed to be solved. Many problems have the extra
constraint that some or all of the variables need to be integer valued. Thus was
born the field of integer programming. Even more problems involve nonlin-
ear functions in the objective function and/or in the constraints and so there
also arose the subject of nonlinear programming. The simplex method has
played a critical role in both of these directions of generalization. For integer
programming, the simplex method is used as a core engine in cutting-plane,
branch-and-bound, and branch-and-cut algorithms. Some of these algorithms
have proved to be very effective at solving some amazingly difficult integer pro-
gramming problems. For nonlinear programming, the ideas behind the simplex
method, namely the idea of active and inactive variables, were extended to this
broader class of problems. For many years, the software package calledmi-
nos, which implemented these ideas, was the best and most-used software for
solving constrained nonlinear optimization problems. Its descendent,snopt,
remains a very important tool even today.

In the mid 1980’s, N. Karmarkar NKK invented a new algorithm for linear
programming. It was totally unlike the simplex method. He proved that this
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algorithm has polynomial time worst-case complexity—something that has not
yet been established for any variant of the simplex method. Furthermore, he
claimed that the algorithm would also be very good in its average-case per-
formance and that it would compete with, perhaps even replace, the simplex
method as the method of choice for linear programming. True enough, this
new class of algorithms, which we now callinterior-point methods, did prove
to be competitive. But, the new algorithm did not uniformly dominate the old
simplex method and even today the simplex method, as embodied by the com-
mercial software package calledcplex, remains the most-used method for
solving linear programming problems. Furthermore, interior-point methods
have not proved to be effective for solving integer programming problems. The
tricks that allow one to use the simplex method to solve integer programming
problems depends critically on being able to solve large numbers of similar
linear programming problems very quickly. The simplex method has the nice
feature that solving a second instance of a problem starting from the solution
to a first instance is often orders of magnitude faster than simply solving the
second instance from scratch. There is no analogous property for interior-point
methods and so today the simplex method remains the best method for solving
integer programming problems.

So, do interior-point methods have a natural extension to nonlinear program-
ming and, if so, how do they compare to the natural extension of the simplex
method to such problem? Here, the answers are much more satisfactory. The
answer is: yes, there is a very natural extension and, yes, the methods per-
form very well in this context. In fact, interior-point methods are really best
understood as methods for constrained convex nonlinear optimization.

I have for many years been one of the principle developers of a particular
piece of software, calledloqo, which implements an interior-point algorithm
for nonlinear programming. In the remainder of this section, I will give a brief
review of the algorithm as implemented in this piece of software. The basic
family of problems that we wish to solve are given by

minimize f(x)
subject tob ≤ h(x) ≤ b + r,

l ≤ x ≤ u,

whereb, h, andr take values inRm and l, x, andu take values inRm. We
assume that the functionsf(x) andh(x) must be twice differentiable (at least
at points of evaluation) but not necessarily convex or concave.

The standardinterior-point paradigmcan be described as follows:

Add slacks thereby replacing all inequalities with nonnegativities.
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Replace nonnegativities with logarithmic barrier terms in objective; that
is, terms of the form−µ log(s) whereµ is a positivebarrier parameter
ands is a slack variable.

Write first-order optimality conditions for the (equality constrained) bar-
rier problem.

Rewrite the optimality conditions in primal-dual symmetric form (this is
the only step that requires linear programming for its intuition).

Use Newton’s method to derive search directions. Here is the resulting
linear system of equations:[

−H(x, y)−D AT (x)
A(x) E

] [
∆x
∆y

]
=

[
∇f(x)−AT (x)y
−h(x) + µY −1e

]
.

MatricesD andE are diagonal matrices involving slack variables,

H(x, y) = ∇2f(x)−
m∑

i=1

yi∇2hi(x) + λI, andA(x) = ∇h(x),

whereλ is chosen to ensure appropriate descent properties.

Compute a step length that ensures positivity of slack variables.

Shorten steps further to ensure a reduction in either infeasibility or in the
barrier function.

Step to new point and repeat.

Further details about the algorithm can be found in LMS94; Van97d.

2. Digital Audio Filters

A digital audio signal is a stream of integers, which represents a discretization
both in time and in amplitude of an analog signal. For CD-quality sound, there
are 44,100 samples per second each sample being a short integer (i.e., an integer
between−32, 768 and+32, 767). Of course, for stereo there are two such
streams of integers. Figure 7.1 shows an example of a very short stretch of
music.

A digital audio signal is read off from a CD-ROM device, converted back to
analog, amplified, and then sent to a speaker where the induced displacement
creates a sound wave that is a replication of the original signal. A speaker
that accurately reproduces low frequency signals generally does a bad job at
high frequencies and vice versa. Therefore, modern audio equipment generally
splits a signal into two, or more often three, frequency ranges and sends them to
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0 -32768
1 -32768
2 -32768
3 -30753
4 -28865
5 -29105
6 -29201
7 -26513

8 -23681
9 -18449

10 -11025
11 -6913
12 -4337
13 -1329
14 1743
15 6223

16 12111
17 17311
18 21311
19 23055
20 23519
21 25247
22 27535
23 29471

24 31919
25 32767
26 32767
27 32767
28 32767
29 32031
30 29759
31 28399

32 28095
33 28399
34 28751
35 28751
36 26911
37 24063
38 21247
39 18415

Figure 7.1. A stereo audio signal digitized.

different speakers. Speakers designed for low frequencies are calledwoofers,
those for a middle range of frequencies are calledmidranges, and those for high
frequencies are calledtweeters.

Traditionally, the three speakers—woofer, midrange, and tweeter—were
housed in the same physical box and the amplified signal was split into three
parts using analog filtering components built into the speaker. However, there
are limitations to this design. First of all, it is easy to determine the direction
of a high frequency signal but not a low frequency one. Hence, the placement
of the tweeters is important but the woofer can be put anywhere within hearing
range. Furthermore, for stereo systems it is not even necessary to have two
woofers—the low frequency signal can be combined into one. Also, woofers
are physically large whereas tweeters can be made very small. Hence in a home
theater system, one puts small tweeters in appropriate locations on either side
of a video screen but puts a single woofer somewhere out of the way, such as
under a coffee table.

Once the notion of physically separating the components of a speaker system
is introduced, it is natural to consider also using separate amplifiers for each
component. The amplifiers can then be designed to work optimally in a narrower
range of frequencies. For example, it takes a lot of power to amplify a low
frequency signal and much less power to do the same for high frequencies.
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Hence, using a hefty amplifier on the high frequency component of a signal is
wasteful.

Finally, given that the signal is to be split before being amplified it is now
possible to consider splitting it even before converting it from digital to analog.
At the digital level one has much more control over how the split is accomplished
than can be achieved with an analog signal. The most common type of digital
filter is a finite impulse response filter, which we describe next.

Finite Impulse Response (FIR) Filters

A finite impulse response (FIR) filteris given by a finite sequence of real (or
complex) numbersh−n, . . . , h−1, h0, h1, . . . , hn. This sequence transforms an
input signal,xk, k ∈ Z, into an output signal,yk, k ∈ Z, according to the
following convolution formula:

yk =
n∑

i=−n

hixk−i, k ∈ Z.

Since the sequence of filter coefficients is finite, the sum is finite too. Typically
n is a small number (less than 100) and so the output signal at any given point
in time depends on the values of the input signal in a very narrow temporal
range symmetric around this time. With 44,100 samples per second,n = 100
corresponds to a time interval that is only a small fraction of a second long. To
implement the filter there must be at least this much delay between the input
and output signals. Since this delay is small, it is generally unnoticeable.

Of course the filter coefficientshi must be determined when the system is
designed, which is long before any specific input signal is decided upon. Hence,
one treats the input signal as a random process which will only be realized in
the future but whose statistical properties can be used to design the filter. To
this end, we assume thatxk is a stationary second-order random process. This
means that eachxk is random, has mean zero, finite variance, and a covariance
structure that is temporally homogeneous. This last property means that the
following covariances depend on the difference between the sample times but
not on the time itself:

sk = Exix̄i+k.

(The bar on thexi+k denotes complex conjugate—most of our processes are
real-valued in which case conjugation will plays no role.) The sequencesk

characterizes the input signal and its Fourier transform

S(ν) =
∑

k

ske
2πjkν

(j =
√
−1) characterizes it in the frequency domain. The functionS() is called

thespectral density. It is periodic inν with period1 and so its domain is usually
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taken to be[−1/2, 1/2). Valuesν ∈ [−1/2, 1/2) are calledfrequencies. They
can be converted to the usual scale of cycles-per-second (Hz) using the sample
rate but for our purposes we will take them as numbers in[−1/2, 1/2).

An Example. Consider the simplest input process—a complex signal which
is a pure wave with known frequencyν0 and an unknown phase shift:

xk = e2πj(k+θ)ν0 .

Here,θ is a random variable uniformly distributed on[−1/2, 1/2). For this
process, the autocorrelation function is easy to compute:

sk = Exix̄i+k = Ee2πj(i+θ)ν0e−2πj(i+k+θ)ν0 = e−2πjkν0 .

The spectral density is given by

S(ν) =
{
∞ ν = ν0

0 else.

The Transfer Function. We are interested in the spectral properties of the
output process. Hence, we introduce the autocorrelation function foryk

rk = Eyiȳi+k

and its associated spectral density function

R(ν) =
∑

k

rke
2πjkν .

Substituting the definition of the output processyi into the formula for the
autocorrelation function, it is easy to check that

rk =
∑

l

glsk−l,

where
gk =

∑
i

hihi+k.

Similarly, it is easy to relate the output spectral densityR(ν) to the input spectral
densityS(ν):

R(ν) = G(ν)S(ν), (7.1)

where
G(ν) =

∑
k

gke
2πjkν .

Equation (7.1) is called thetransfer equationandG() is thetransfer function.
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Linear Phase Filters. For simplicity, we assume that the filter coefficients
are real and symmetric about zero:h−i = hi. Such a filter is said to belinear
phase. From these properties it follows that the functionH() defined by

H(ν) =
n∑

k=−n

hke
2πjkν

is real-valued and symmetric about zero:H(−ν) = H(ν). Indeed,

H(ν) = h0 + 2
n∑

k=1

hk cos(2πkν).

We then see that

G(ν) =
∑

k

gke
2πjkν =

∑
i,k

hihi+ke
2πjkν

=
∑
i,k

h−ie
−2πjiνhi+ke

2πj(i+k)ν = H(ν)2

and the transfer equation can be written in terms ofH():

R(ν) = H(ν)2S(ν).

Power. For stationary signals, the power is defined as the expected value of
the square of the signal at any moment in time. So, the input power is

Pin = E|u0|2 = s0 =
∫ 1/2

−1/2
S(ν)dν

and the output power is

Pout = E|y0|2 = r0 =
∫ 1/2

−1/2
R(ν)dν =

∫ 1/2

−1/2
H(ν)2S(ν)dν.

A signal that is uniformly distributed over low frequencies, say from−a to
a has a spectral density given by

S(ν) = 1[−a,a](ν).

For such a signal, the input and output powers are given by

Pin = 2a

Pout =
∫ a

−a
H(ν)2dν (7.2)

=
∑
k,k′

hkhk′

∫ a

−a
e2πj(k−k′)νdν

=
∑
k,k′

2ahkhk′sinc(2π(k − k′)a), (7.3)
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where

sinc(x) =
{ sinx

x x 6= 0
1 else.

Passbands. In some cases, it is desirable to have the output be as similar
as possible to the input. That is, we wish the difference process,

zk = yk − xk,

to have as little energy as possible. Letqk denote the autocorrelation function
of the difference process:

qk = Eziz̄i+k

and letQ() denote the corresponding spectral density function. It is then easy
to check from the definitions that

Q(ν) = (H(ν)− 1)2S(ν).

The output power for the difference process is then given by

Pdiff out =
∫ 1/2

−1/2
(H(ν)− 1)2S(ν)dν.

As before, if the input spectral densityS() is a piecewise constant even function,
then this output power can be expressed in terms of the sinc function.

Coordinated Woofer–Midrange–Tweeter Filtering

Having covered the basics of FIR filters, we return now to the problem of
designing an audio system based on three filters: woofer, midrange, and tweeter.
There are four power measurements that we want to be small: for each filter
we want the output to be small if the input is uniformly distributed over a
range of frequenciesoutsideof the desired frequency range and finally when
added together the difference between the summed signal and the original signal
should be small over the entire input spectrum. Let

T = (−1/2,−bt) ∪ (bt, 1/2),
M = (−bm,−am) ∪ (am, bm),
W = (−aw, aw)

denote the design frequency ranges for the tweeter, midrange, and woofer, re-
spectively. Of course, we assume that the three ranges cover the entire available
spectrum:

T ∪M∪W = (−1/2, 1/2)



7-10

(or, in other words, thatam < aw andbt < bm). Each speaker has its own filter
which is defined by its filter coefficients

h
(j)
k , k = −n,−n + 1, . . . , n− 1, n, j ∈ {t, m,w}

and associated spectral density functionHj(ν), j ∈ {t, m,w}. The three con-
straints which say that for each filter the output power per unit of input power
is smaller than some thresholdρ can now be written as

1
|T c|

∫
T c

H2
t (ν)dν ≤ ρ,

1
|Mc|

∫
Mc

H2
m(ν)dν ≤ ρ,

1
|Wc|

∫
Wc

H2
w(ν)dν ≤ ρ.

It is interesting to note that according to (7.3) the above integrals can all be
efficiently expressed in terms of sums of products of pairs of filter coefficients
in which the constants involve sinc functions. Such expressions are nonlinear.
The fact that these functions are convex is only revealed by noting their equality
with the expression in (7.2). Finally, the constraint that the reconstructed sum
of the three signals deviates as little as possible from the a uniform response
can be written as∫ 1

2

− 1
2

(Ht(ν) + Hm(ν) + Hw(ν)− 1)2dν ≤ ε.

At this juncture, there are several ways to formulate an optimization problem.
We could fixε to some small positive value and then minimizeρ, or we could
fix ρ to some small positive value and minimizeε, or we could specify to
proportional relation, such as equality, betweenρ and ε and minimize both
simultaneously. To be specific, for this tutorial, we choose the third approach.

In this paper (and in life), we formulate our optimization problems inampl,
which is a small programming language designed for the efficient expression
of optimization problems FGK93. Theampl model for this problem is shown
in Figure 7.2. The three filters and their spectral response curves are shown in
Figure 7.3.

For more information on FIR filter design, see for example WBV97; CS99;
LVBL98; Col98.

3. Shape Optimization (Telescope Design)

Until recently the search for extraterrestrial life has been the subject of science
fiction stories—science itself was incapable of providing much help. Of course,
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function sinc;

param n := 23;
param pi := 4*atan(1);

param aw := 0.05;
param am := 0.04;
param bm := 0.25;
param bt := 0.2;

var rho >= 0;
var hw {0..n};
var hm {0..n};
var ht {0..n};

minimize power_bnd: rho;

subject to passband:
((hw[0]+hm[0]+ht[0]-1)^2 + 2*sum {k in 1..n} (hw[k]+hm[k]+ht[k])^2)
<= rho;

subject to wooferband:
sum {k in -n..n} hw[abs(k)]^2
-
sum {k in -n..n, kk in -n..n} 2*aw*hw[abs(k)]*hw[abs(kk)] * sinc(2*pi*(k-kk)*aw)
<= (1-2*aw)*rho;

subject to midrangeband:
sum {k in -n..n} hm[abs(k)]^2
-
sum {k in -n..n, kk in -n..n} 2*bm*hm[abs(k)]*hm[abs(kk)] * sinc(2*pi*(k-kk)*bm)
+
sum {k in -n..n, kk in -n..n}
2*am*hm[abs(k)]*hm[abs(kk)] * sinc(2*pi*(k-kk)*am)
<= (1-2*(bm-am))*rho;

subject to tweeterband:
sum {k in -n..n, kk in -n..n} 2*bt*ht[abs(k)]*ht[abs(kk)] * sinc(2*pi*(k-kk)*bt)
<= 2*bt*rho;

solve;

printf {k in 0..n}: "%10.6f \n", hw[k] > hw;
printf {k in 0..n}: "%10.6f \n", hm[k] > hm;
printf {k in 0..n}: "%10.6f \n", ht[k] > ht;

printf {nu in 0..0.5 by 1/1000}: "%7.4f %10.3e \n",
nu, 10*log10((hw[0] + 2* sum {k in 1..n} (hw[k]*cos(-2*pi*k*nu)))^2) > w.out;

printf {nu in 0..0.5 by 1/1000}: "%7.4f %10.3e \n",
nu, 10*log10((hm[0] + 2* sum {k in 1..n} (hm[k]*cos(-2*pi*k*nu)))^2) > m.out;

printf {nu in 0..0.5 by 1/1000}: "%7.4f %10.3e \n",
nu, 10*log10((ht[0] + 2* sum {k in 1..n} (ht[k]*cos(-2*pi*k*nu)))^2) > t.out;

Figure 7.2. A sampleampl program for FIR filter design of coordinated woofer, midrange,
and tweeter system.
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Figure 7.3. Top.The optimal filter coefficients.Bottom.The corresponding spectral response
curves. In the top graph, the◦’s correspond to the tweeter filter, the×’s correspond to the
midrange filter, and the+’s correspond to the woofer filter. The spectral response curve is a plot
of ten times log base ten of power as a function of frequency.
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there is so far one exception—the SETI project (SETI stands forsearch for
extraterrestrial intelligence), which has been operating for several years now.
The idea here is to use radio telescopes to listen for radio transmissions from
advanced civilizations. This project was started with the support of Carl Sagan
and his bookContactwas made into a Hollywood movie starring Jodie Foster.
But, the universe is big and the odds that there is an advanced civilization in our
neck of the woods is small so this project seems like a long shot. And, every year
that goes by without hearing anything proves more and more what a long shot it
is. Even if advanced civilizations are rare, there is every expectation that most
stars have planets around them and even Earth-like planets are probably fairly
common. It would be interesting if we could search for, catalog, and survey
such planets. In fact, astrophysicists, with the support of NASA and JPL, are
now embarking on this goal—imaging Earth-like planets around nearby Sun-
like stars. We have already detected indirectly more than 100 Jupiter-sized
planets around other stars and we will soon be able to take pictures of some of
these planets. Once we can take pictures, we can start answering questions like:
is there water? is there chlorophyl? is there carbon dioxide in the atmosphere?
etc. But Jupiter-sized planets are not very Earth-like. They are mostly gas
and very massive. There’s not much place for an ET to get a foothold and if
one could the gravity would be crushing. A more interesting but much more
difficult problem is to survey Earth-like planets. NASA has made such a search
and survey one of its key science projects for the coming decades. The idea is
to build a large space telescope, called theTerrestrial Planet Finder (TPF)that
is capable of imaging these planets. But just making it large and putting it into
space is not enough. The planet, which will appear very close to its star, will
still be invisible in the glare of its much brighter star.

To put the problem into perspective, here are a few numbers. Consider a star
that is say30 light years from our solar system. A planet that is as far from
this star as we are from our Sun will appear to us here on Earth at an angular
separation of about0.1 arcseconds from its star. And the star will be1010

times brighter than the planet. There will be an enormous amount of starlight
that will “spill” onto that part of the image where the planet is supposed to be.
This spillage is not one of engineering/construction imprecisions. Rather, it is
a consequence of fundamental physics. Light is a wave, an electro-magnetic
wave, and because of this it is impossible to focus the light from a point source
(such as a star) to a perfect point in the image. Instead, for a telescope with a
circular opening letting in the light, you get a small blob of light called anAiry
disk surrounded bydiffraction rings—see Figure 7.4. The planet is about as
bright as the light in the100th diffraction ring. Earlier rings are much brighter.
The spacing of the rings is inversely proportional to the size of the telescope.
To make it so that the rings are tight enough that we can image a planet like
the one just described would require a telescope with a mirror having a250
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Figure 7.4. The top left shows a circular opening at the front of a telescope. The top right
shows the corresponding Airy disk and a few diffraction rings. The plot on the bottom shows the
cross-sectional intensity on alog scale. The desired level of10−10 corresponds to an intensity
level of−100 on this log plot. It is way off to the side. It occurs out somewhere around the
100th diffraction ring.
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meter diameter. That is more than 10 times the diameter of the mirror in the
Hubble space telescope. There are not any rockets in existence, or on the
drawing boards, that will be capable of lifting such a large monolithic object
into space at any time in the foreseeable future. For this reason some clever
ideas are required. A few have been proposed. Perhaps the most promising
one exploits the idea that the ring pattern is a consequence of the circular shape
of the telescope. Different shapes provide different patterns—perhaps some of
them provide a very dark zone very close to the Airy disk. An even broader
generalization is to consider a telescope that has a filter over its opening that
has light transmission properties that vary over the surface of the filter. If the
transmission is everywhere either zero or one then the filter acts to create a
different shaped opening. Such filters are calledapodizations. The problem is
to find an apodization that provides a very dark area very close to the Airy disk.

Okay, enough with the words already—we need to give a mathematical
formulation of the problem. The diffraction pattern produced by the star in the
image is the square of the electric field at the image plane and the electric field
at the image plane turns out to be just the Fourier transform of the apodization
functionA defining the transmissivity of the apodized pupil:

E(ξ, ζ) =
∫∫

S
e−2πi(xξ+yζ)A (x, y) dxdy,

where

S = {(x, y) : 0 ≤ r(x, y) ≤ 1/2, θ(x, y) ∈ [0, 2π]} ,

andr(x, y)andθ(x, y)denote the polar coordinates associated with point(x, y).
Here, and throughout this section,x and y denote coordinates on the filter
measured in units of the mirror diameterD andξ andζ denote angular (radian)
deviation from on-axis measured in units of wavelengthλ over mirror-diameter
(λ/D) or, equivalently, physical distance in the image plane measured in units
of focal-length times wavelength over mirror-diameter (fλ/D).

For circularly-symmetric apodizations, it is convenient to work in polar co-
ordinates. To this end, letr andθ denote polar coordinates in the filter plane
and letρ andφ denote the image plane coordinates:

x = r cos θ ξ = ρ cos φ
y = r sin θ ζ = ρ sinφ.

Hence,

xξ + yζ = rρ(cos θ cos φ + sin θ sinφ)
= rρ cos(θ − φ).
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The electric field in polar coordinates depends only onρ and is given by

E(ρ) =
∫ 1/2

0

∫ 2π

0
e−2πirρ cos(θ−φ)A(r)rdθdr, (7.4)

= 2π

∫ 1/2

0
J0(2πrρ)A(r)rdr, (7.5)

whereJ0 denotes the0-th order Bessel function of the first kind. Note that the
mapping from apodization functionA to electric fieldE is linear. Furthermore,
the electric field in the image plane is real-valued (because of symmetry) and
its value atρ = 0 is thethroughputof the apodization:

E(0) = 2π

∫ 1/2

0
A(r)rdr.

As mentioned already, the diffraction pattern, which is called thepoint spread
function(psf), is the square of the electric field. The contrast requirement is that
the psf in the dark region be10−10 of what it is at the center of the Airy disk.
Because the electric field is real-valued, it is convenient to express the contrast
requirement in terms of it rather than the psf, resulting in a field requirement of
±10−5.

The apodization that maximizes throughput subject to contrast constraints
can be formulated as an infinite dimensional linear programming problem:

maximize E(0)
subject to −10−5E(0)≤ E(ρ) ≤ 10−5E(0), ρiwa ≤ ρ ≤ ρowa,

0≤ A(r) ≤ 1, 0 ≤ r ≤ 1/2,

whereρiwa denotes a fixedinner working angleandρowa a fixedouter working
angle. Discretizing the sets ofr’s andρ’s and replacing the integrals with their
Riemann sums, the problem is approximated by a finite dimensional linear
programming problem that can be solved to a high level of precision.

The solution obtained forρiwa = 4 andρowa = 40 is shown in Figure 7.5.
Note that the solution is of a bang-bang type. That is, the apodization function
is mostly0 or1 valued. This suggests looking for a mask that is about as good as
this apodization. Such a mask can be found by solving the following nonlinear
optimization problem. A mask consists of a set of concentric opaque rings,
formulated in terms of the inner and outer radii of the openings between the



Applications of NLP 7-17

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 7.5. The optimal apodization function turns out to be of bang-bang type.

rings:

[r0, r1] first opening

[r2, r3] second opening

[r4, r5] third opening
...

[r2m−2, r2m−1] m-th opening

With this notation, the formula forE(ρ) given in (7.5) can be rewritten as a
sum of integrals over these openings:

E(ρ) = 2π
m−1∑
k=0

∫ r2k+1

r2k

J0(2πrρ)rdr,

=
1
ρ

m−1∑
k=0

(r2k+1J1(2πr2k+1ρ)− r2kJ1(2πr2kρ))
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Treating therk’s as variables and using this new expression for the electric field,
the mask design problem becomes:

maximize π

m−1∑
k=0

(
r2
2k+1 − r2

2k

)
subject to −10−5E(0) ≤ E(ρ) ≤ 10−5E(0), ρiwa ≤ ρ ≤ ρowa,

0 ≤ r0 ≤ r1 ≤ · · · ≤ r2m−1 ≤ 1/2.

This problem is a nonconvex nonlinear optimization problem and hence the
best hope for solving it in a reasonable amount of cpu time is to use a “local-
search” method starting the search from a solution that is already close to
optimal. The bang-bang solution from the linear programming problem can be
used to generate a starting solution. Indeed, the discrete solution to the linear
programming problem can be used to find the inflection points ofA which can
be used as initial guesses for therk’s. loqo was used to perform this local
optimization. Figure 7.6 shows an optimal concentric-ring mask computed
using an inner working angle of4 and an outer working angle of60. Using this
mask over a10 meter primary mirror makes it possible to image the Earth-like
planet30 light-years away from us. Even a telescope with a10 meter primary
mirror is larger than anything we have launched into space to date but it is a
size that fits into the realm of possibility. And, if a10 circular mirror is too
large, we could fall back on elliptical designs say using a4× 10 mirror. Such
a mirror could be put into space using currently available Delta rockets. The
mask designs presented here and many others can be found in the following
references: ref:Spergel; ref:kasdin; KVSL02; VSK02; VSK03.

4. Minimum weight truss design

As we saw in the previous section, designing a space telescope with an
apodization, or mask, over the mirror makes it possible to image Earth-like
planets around nearby stars. However, it is still just on the edge of tractability.
The desire remains to launch a much larger telescope. But, given constraints on
mirror manufacture and launch capabilities, the prospect of using a huge tele-
scope remains well out of reach for the foreseeable future. A compromise idea
it to launch several, say four, individual telescopes, attach them to a common
structure so that they are configured along a straight line, and then combine
the light from the four telescopes to make one image. In some sense, this is
equivalent to making a huge circular-mirror telescope and masking out every-
thing except for four circular areas spread out along the mirror. As explained
in the previous section, this masking changes the diffraction pattern but a basic
principle holds which says that the further apart you can get the telescopes,
the tighter the diffraction pattern will be. One of the main challenges with this
design concept is to design and build a truss-like structure that is light enough to
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Figure 7.6. At the top is shown the concentric ring apodization. The second row shows the psf
as a 2-D image and in cross-section. Note that it achieves the required10−10 level of darkness
at a distance of only4 from the center of the Airy disk.
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Figure 7.7. A design space showing5 nodes and8 arcs. Also shown are three externally applied
forces and the tensile forces they induce in node2.

be launchable into space yet stiff enough that it can hold four massive telescopes
in position with a precision that is small relative to the wavelength of light.

Such truss optimization problems have a long history starting, I believe,
with Jim Ho’s Ph.D. thesis at Stanford which was published in Ho75. In more
recent times, Ronnie Ben-Tal has collaborated with Bendsøe and Zowe on
just this family of problems. They wrote many papers including the seminal
paper BBZ94. Anyway, in the following subsection, I will outline the basic
optimization problem and its reduction to a linear programming problem. Then
in the following subsection, I will describe how it is being applied to the truss-
design problem mentioned above.

Mathematical Formulation

We assume we are given a design space, which consists of a setN of nodes
(aka joints) at fixed locations and a setA of undirected arcs (aka members)
connecting various pairs of nodes—see Figure 7.7. The unknowns in the prob-
lem are the tensionsxij in each member. We assume that there are many more
members than are needed to make a rigid truss, so it follows that the system
is underdetermined and there is lots of freedom as to how the forces “flow”
through the structure. The tensionsxij are allowed to go negative. Negative
tensions are simply compressions. The constraints in our optimization problem
are that force be balanced at each node. For example, if we look at node2, the
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force balance equations are:

x12

[
−1

0

]
+ x23

[
−0.6

0.8

]
+ x24

[
0
1

]
= −

[
b1
2

b2
2

]
.

To write down the equations in more generality, we need to introduce some
notation:

pi = position vector for jointi

uij =
pj − pi

‖pj − pi‖

Note thatuji = −uij . With these notations, the general force balance con-
straints can be written as∑

j:
{i,j}∈A

uijxij = −bi, i = 1, . . . ,m

It is instructive to write these equations in matrix form asAx = −b, where

xT =
[

x12 x13 x14 x23 x24 x34 x35 x45

]

A =

1

2

3

4

5



[
1
0

] [
0
1

] [
.6
.8

]
[
−1

0

] [
−.6

.8

] [
0
1

]
[

0
−1

] [
.6

−.8

] [
1
0

] [
.6
.8

]
[
−.6
−.8

] [
0

−1

] [
−1

0

] [
−.6

.8

]
[
−.6
−.8

] [
.6

−.8

]


, b =



b1
1

b2
1

b1
2

b2
2

b1
3

b2
3

b1
4

b2
4

b1
5

b2
5


.

Note that‖uij‖ = ‖uji‖ = 1 anduij = −uji. Also, each column contains
a uij , a uji, and the rest are zero. If the problem were one dimensional, this
would be exactly a node-arc incidence matrix. In fact, much of the theory that
has been developed for minimum-cost network flow problems has an immediate
analogue in these truss design problems. These connections are described at
length in Van01.

So far we have only written down the force balance constraints. The op-
timization problem is to minimize the weight of the final structure. We as-
sume that weight is related to tension/compression in the members by assum-
ing that the cross-sectional area of a member must be proportional to the ten-
sion/compression that must be carried by that member (the constants of propor-
tionality can be different for tension and for compression but in what follows
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we assume that they are equal). Hence, the minimum weight structural design
problem can be formulated like this:

minimize
∑

{i,j}∈A

lij |xij |

subject to
∑
j:

{i,j}∈A

uijxij = −bi i = 1, 2, . . . ,m.

This is not quite a linear programming problem. But it is easy to convert it into
one using a common trick of splitting every variable into the difference between
its positive and negative parts:

xij = x+
ij − x−ij , x+

ij , x
−
ij ≥ 0, x+

ijx
−
ij = 0

|xij | = x+
ij + x−ij

In terms of these new variables, the problem can be written as follows:

minimize
∑

{i,j}∈A

(lijx+
ij + lijx

−
ij)

subject to
∑
j:

{i,j}∈A

(uijx
+
ij − uijx

−
ij) = −bi i = 1, 2, . . . ,m

x+
ijx

−
ij = 0 {i, j} ∈ A,

x+
ij , x−ij ≥ 0 {i, j} ∈ A.

It is easy to argue that one can drop the complementarity type constraints,
x+

ijx
−
ij = 0, {i, j} ∈ A, since these constraints will automatically be satisfied

at optimality. With these constraints gone, the problem is a linear programming
problem that can be solved very efficiently.

It was shown in BBZ94 that this minimum weight structural design problem
is dual to a maximum stiffness structural design problem and therefore that the
structure found according to this linear programming methodology is in fact
maximally stiff.

Telescope Truss Design

As mentioned at the beginning of this section, it is a very real problem of
current interest to design a maximally stiff truss-like structure to support four
telescopes. In order to apply the ideas described in the previous subsection, we
need to add one extra twist to the model, which is that the design must be stiff
relative to a collection of different loading scenarios. In particular, we assume
that the structure must be stiff with respect to accelerations in each of the three
main coordinate directions and also that it is stiff relative to torques about the
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param m default 26; param n default 39;

set X := {0..n}; set Y := {0..m};

set NODES := X cross Y; # A lattice of Nodes

set ANCHORS within NODES
:= { x in X, y in Y : x == 0 && y >= floor(m/3) && y <= m-floor(m/3) };

param xload {(x,y) in NODES: (x,y) not in ANCHORS} default 0;
param yload {(x,y) in NODES: (x,y) not in ANCHORS} default 0;

param gcd {x in -n..n, y in -n..n} :=
(if x < 0 then gcd[-x,y] else
(if x == 0 then y else
(if y < x then gcd[y,x] else
(gcd[y mod x, x]) )));

set ARCS := { (xi,yi) in NODES, (xj,yj) in NODES:
abs(xj-xi) <= 3 && abs(yj-yi) <=3 &&
abs(gcd[ xj-xi, yj-yi ]) == 1 &&
( xi > xj || (xi == xj && yi > yj) ) };

param length {(xi,yi,xj,yj) in ARCS} := sqrt( (xj-xi)^2 + (yj-yi)^2 );

var comp {ARCS} >= 0;
var tens {ARCS} >= 0;
minimize volume:

sum {(xi,yi,xj,yj) in ARCS}
length[xi,yi,xj,yj] * (comp[xi,yi,xj,yj] + tens[xi,yi,xj,yj]);

subject to Xbalance {(xi,yi) in NODES: (xi,yi) not in ANCHORS}:
sum { (xi,yi,xj,yj) in ARCS }

((xj-xi)/length[xi,yi,xj,yj]) * (comp[xi,yi,xj,yj]-tens[xi,yi,xj,yj])
+
sum { (xk,yk,xi,yi) in ARCS }

((xi-xk)/length[xk,yk,xi,yi]) * (tens[xk,yk,xi,yi]-comp[xk,yk,xi,yi])
= xload[xi,yi];

subject to Ybalance {(xi,yi) in NODES: (xi,yi) not in ANCHORS}:
sum { (xi,yi,xj,yj) in ARCS }

((yj-yi)/length[xi,yi,xj,yj]) * (comp[xi,yi,xj,yj]-tens[xi,yi,xj,yj])
+
sum { (xk,yk,xi,yi) in ARCS }

((yi-yk)/length[xk,yk,xi,yi]) * (tens[xk,yk,xi,yi]-comp[xk,yk,xi,yi])
= yload[xi,yi];

let yload[n,m/2] := -1;

solve;

Figure 7.8. A sampleampl program for minimum weight truss-like structures designed to
accommodate a single loading scenario.



7-24

designSpace2.jpg

optDesign2.jpg

Figure 7.9. Top.The design space.Bottom.The optimal design.

three principle axes of rotation. Torques are modeled as pairs of forces that are
equal and opposite but applied at points that are not colinear with the direction of
the force. So, our basic model has six load scenarios. Forces must be balanced
in each scenario. Of course, the tensions/compressions are scenario dependent
but the beam cross-sections must be chosen independently of the scenario (since
one physical structure must be stiff under each scenario).

The underlying design space consists of 26 trusslike cells,1.6 m wide with
triangular cross-section2 m on a side. The middle two cells attach to the
satellite. Forces are applied by thrusters on the satellite. Of course, in the
real satellite, forces are applied to perform various motions but in our model
we don’t want, or need, to model moving objects. Instead we assume that
countervaling forces are applied exactly where the massive objects are—i.e., at
the point of attachment of the four telescopes. Figure 7.9 shows the underlying
design space together with the optimal design. The force vectors corresponding
to the six load scenarios are shown as elongated, shaded cones.
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5. New orbits for the n-body problem

Since the time of Lagrange and Euler precious few solutions to then-body
problem have been discovered. Lagrange proved that two bodies being mutually
attracted to the other by gravity will execute elliptical orbits where each of the
two ellipses has a focus at the center of mass of the two-body system. This can
be proved mathematically. Not only does this solution to Newton’s equations
of motion exist, but it is also stable. Euler pointed out that a third body can
be placed stationarily at the center of mass and this makes a solution to the
three-body problem. However, this3-body system is unstable—if the third
body is perturbed ever so slightly the whole system will fall apart. A few other
simple solutions have been known for hundreds of years. For example, you can
distributen equal-mass bodies uniformly around a circle and start each one off
with a velocity perpendicular to the line through the center and this system will
behave much like the2-body system. But, for three bodies or more, this system
is again unstable. So, it was a tremendous shock a few years ago when Cris
Moore at the Sante Fe Institute discovered a new, stable solution to the equal-
mass3-body problem. This discovery has created a tremendous level of interest
in the celestial mechanics community. Not only was the solution he discovered
both new and stable, it is also aesthetically beautiful because each of the three
bodies follow the exact same path. At any given moment they are at different
parts of this path. Such orbital systems have been calledchoreographies. Many
celestial mechanics have been working hard to discover new choreographies.
The interesting thing for us is that the main tool is to minimize the so-called
action functional.

In this section, we will describe how it is that minimizing the action functional
provides solutions to then-body problem and we will illustrate several new
solutions that we have found.

Least Action Principle

Given n bodies, letmj denote the mass andzj(t) denote the position in
R2 = C of body j at time t. The action functionalis a mapping from the
space of all trajectories,z1(t), z2(t), . . . , zn(t), 0 ≤ t ≤ 2π, into the reals. It is
defined as the integral over one period of the kinetic minus the potential energy:

A =
∫ 2π

0

∑
j

mj

2
‖żj‖2 +

∑
j,k:k<j

mjmk

‖zj − zk‖

 dt.

Stationary points of the action function are trajectories that satisfy the equa-
tions of motions, i.e., Newton’s law gravity. To see this, we compute the first
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variation of the action functional,

δA =
∫ 2π

0

∑
α

∑
j

mj ż
α
j δ̇z

α
j −

∑
j,k:k<j

mjmk

(zα
j − zα

k )(δzα
j − δzα

k )
‖zj − zk‖3

 dt

= −
∫ 2π

0

∑
j

∑
α

mj z̈
α
j +

∑
k:k 6=j

mjmk

zα
j − zα

k

‖zj − zk‖3

 δzα
j dt,

and set it to zero. We get that

mj z̈
α
j = −

∑
k:k 6=j

mjmk

zα
j − zα

k

‖zj − zk‖3
, j = 1, 2, . . . , n, α = 1, 2 (7.6)

Note that ifmj = 0 for somej, then the first order optimality condition
reduces to0 = 0, which is not the equation of motion for a massless body.
Hence, we must assume that all bodies have strictly positive mass.

Periodic Solutions

Our goal is to use numerical optimization to minimize the action functional
and thereby find periodic solutions to then-body problem. Since we are in-
terested only in periodic solutions, we express all trajectories in terms of their
Fourier series:

zj(t) =
∞∑

k=−∞
γke

ikt, γk ∈ C.

Abandoning the efficiency of complex-variable notation, we can write the tra-
jectories with componentszj(t) = (xj(t), yj(t)) andγk = (αk, βk). So doing,
we get

x(t) = a0 +
∞∑

k=1

(ac
k cos(kt) + as

k sin(kt))

y(t) = b0 +
∞∑

k=1

(bc
k cos(kt) + bs

k sin(kt))

where

a0 = α0, ac
k = αk + α−k, as

k = β−k − βk,

b0 = β0, bc
k = βk + β−k, bs

k = αk − α−k.

Since we plan to optimize over the space of trajectories, the parametersa0, ac
k,

as
k, b0, bc

k, andbs
k are the decision variables in our optimization model. The

objective is to minimize the action functional.
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param N := 3; # number of masses
param n := 15; # number of terms in Fourier series representation
param m := 100; # number of terms in numerical approx to integral

set Bodies := {0..N-1};
set Times := {0..m-1} circular; # "circular" means that next(m-1) = 0

param theta {t in Times} := t*2*pi/m;
param dt := 2*pi/m;

param a0 {i in Bodies} default 0; param b0 {i in Bodies} default 0;
var as {i in Bodies, k in 1..n} := 0; var bs {i in Bodies, k in 1..n} := 0;
var ac {i in Bodies, k in 1..n} := 0; var bc {i in Bodies, k in 1..n} := 0;

var x {i in Bodies, t in Times}
= a0[i]+sum {k in 1..n} ( as[i,k]*sin(k*theta[t]) + ac[i,k]*cos(k*theta[t]) );

var y {i in Bodies, t in Times}
= b0[i]+sum {k in 1..n} ( bs[i,k]*sin(k*theta[t]) + bc[i,k]*cos(k*theta[t]) );

var xdot {i in Bodies, t in Times} = (x[i,next(t)]-x[i,t])/dt;
var ydot {i in Bodies, t in Times} = (y[i,next(t)]-y[i,t])/dt;

var K {t in Times} = 0.5*sum {i in Bodies} (xdot[i,t]^2 + ydot[i,t]^2);

var P {t in Times}
= - sum {i in Bodies, ii in Bodies: ii>i}

1/sqrt((x[i,t]-x[ii,t])^2 + (y[i,t]-y[ii,t])^2);

minimize A: sum {t in Times} (K[t] - P[t])*dt;

let {i in Bodies, k in 1..n} as[i,k] := 1*(Uniform01()-0.5);
let {i in Bodies, k in 1..n} ac[i,k] := 1*(Uniform01()-0.5);
let {i in Bodies, k in n..n} bs[i,k] := 0.01*(Uniform01()-0.5);
let {i in Bodies, k in n..n} bc[i,k] := 0.01*(Uniform01()-0.5);

solve;

Figure 7.10. ampl program for finding trajectories that minimize the action functional.
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Figure 7.10 shows theampl program for minimizing the action functional.
Note that the action functional is a nonconvex nonlinear functional. Hence,

it is expected to have many local extrema and saddle points. We use the author’s
local optimization software calledloqo (see SOR9708, Van97d) to find local
minima in a neighborhood of an arbitrary given starting trajectory. One can
provide either specific initial trajectories or one can give random initial trajec-
tories. The four lines just before the call tosolve in Figure 7.10 show how to
specify a random initial trajectory. Of course,ampl provides capabilities of
printing answers in any format either on the standard output device or to a file.
For the sake of brevity and clarity, the print statements are not shown in Figure
7.10. ampl also provides the capability to loop over sections of code. This is
also not shown but the program we used has a loop around the four initialization
statements, the call to solve the problem, and the associated print statements.
In this way, the program can be run once to solve for a large number of periodic
solutions.

Choreographies. Recently, CM00 introduced a new family of solutions
to then-body problem called choreographies. Achoreographyis defined as
a solution to then-body problem in which all of the bodies share a common
orbit and are uniformly spread out around this orbit. Such trajectories are even
easier to find using the action principle. Rather than having a Fourier series for
each orbit, it is only necessary to have one master Fourier series and to write the
action functional in terms of it. Figure 7.11 shows theampl model for finding
choreographies.

Stable vs. Unstable Solutions

Figure 7.12 shows some simple choreographies found by minimizing the
action functional using theampl model in Figure 7.11. The famous3-body
figure eight, first discovered by Mor93 and later analyzed by CM00, is the first
one shown—labeled FigureEight3. It is easy to find choreographies of arbitrary
complexity. In fact, it is not hard to rediscover most of the choreographies given
in CGMS01, and more, simply by putting a loop in theampl model and finding
various local minima by using different starting points.

However, as we discuss in a later section, simulation makes it apparent that,
with the sole exception of FigureEight3, all of the choreographies we found
are unstable. And, the more intricate the choreography, the more unstable it
is. Since the only choreographies that have a chance to occur in the real world
are stable ones, many cpu hours were devoted to searching for other stable
choreographies. So far, none have been found. The choreographies shown in
Figure 7.12 represent the ones closest to being stable.

Given the difficulty of finding stable choreographies, it seems interesting
to search for stable nonchoreographic solutions using, for example, theampl
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param N := 3; # number of masses
param n := 15; # number of terms in Fourier series representation
param m := 99; # terms in num approx to integral. must be a multiple of N

param lagTime := m/N;

set Bodies := {0..N-1};
set Times := {0..m-1} circular; # "circular" means that next(m-1) = 0

param theta {t in Times} := t*2*pi/m;
param dt := 2*pi/m;

param a0 default 0; param b0 default 0;
var as {k in 1..n} := 0; var bs {k in 1..n} := 0;
var ac {k in 1..n} := 0; var bc {k in 1..n} := 0;

var x {i in Bodies, t in Times}
= a0+sum {k in 1..n} ( as[k]*sin(k*theta[(t+i*lagTime) mod m])

+ ac[k]*cos(k*theta[(t+i*lagTime) mod m]) );
var y {i in Bodies, t in Times}

= b0+sum {k in 1..n} ( bs[k]*sin(k*theta[(t+i*lagTime) mod m])
+ bc[k]*cos(k*theta[(t+i*lagTime) mod m]) );

var xdot {i in Bodies, t in Times} = (x[i,next(t)]-x[i,t])/dt;
var ydot {i in Bodies, t in Times} = (y[i,next(t)]-y[i,t])/dt;

var K {t in Times} = 0.5*sum {i in Bodies} (xdot[i,t]^2 + ydot[i,t]^2);

var P {t in Times}
= - sum {i in Bodies, ii in Bodies: ii>i}

1/sqrt((x[i,t]-x[ii,t])^2 + (y[i,t]-y[ii,t])^2);

minimize A: sum {t in Times} (K[t] - P[t])*dt;

let {k in 1..n} as[k] := 1*(Uniform01()-0.5);
let {k in 1..n} ac[k] := 1*(Uniform01()-0.5);
let {k in n..n} bs[k] := 0.01*(Uniform01()-0.5);
let {k in n..n} bc[k] := 0.01*(Uniform01()-0.5);

solve;

Figure 7.11. ampl program for finding choreographies by minimizing the action functional.
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FigureEight3 Braid4 Trefoil4

FigureEight4 FoldedTriLoop4 Trefoil5

FigureEight5

Figure 7.12. Periodic Orbits—Choreographies.



Applications of NLP 7-31
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Figure 7.13. Periodic Orbits–Non-Choreographies.
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model from Figure 7.10. The most interesting such solutions are shown in
Figure 7.13. The one labeled Ducati3 is stable as are Hill315 and the three
DoubleDouble solutions. However, the more exotic solutions (OrthQuasiEl-
lipse4, Rosette4, PlateSaucer4, and BorderCollie4) are all unstable.

For the interested reader, ajava applet can be found at GravityApplet that
allows one to watch the dynamics of each of the systems presented in this paper
(and others). This applet actually integrates the equations of motion. If the orbit
is unstable it becomes very obvious as the bodies deviate from their predicted
paths.

Ducati3 and its Relatives

The Ducati3 orbit first appeared in Mor93 and has been independently redis-
covered by this author, Broucke Bro03, and perhaps others. Simulation reveals
it to be a stable system. Thejava applet at GravityApplet allows one to rotate
the reference frame as desired. By setting the rotation to counter the outer body
in Ducati3, one discovers that the other two bodies are orbiting each other in
nearly circular orbits. In other words, the first body in Ducati3 is executing
approximately a circular orbit,z1(t) = −eit, the second body is oscillating
back and forth roughly along thex-axis,z2(t) = cos(t), and the third body is
oscillating up and down they-axis,z3(t) = i sin(t). Rotating so as to fix the
first body means multiplying bye−it:

z̄1(t) = e−it(−eit) = −1
z̄2(t) = e−it cos(t) = (1 + e−2it)/2
z̄2(t) = e−iti sin(t) = (1− e−2it)/2.

Now it is clear that bodies 2 and 3 are orbiting each other at half the distance of
body 1. So, this system can be described as a Sun, Earth, Moon system in which
all three bodies have equal mass and in which one (sidereal) month equals one
year. The synodic month is shorter—half a year.

This analysis of Ducati3 suggests looking for other stable solutions of the
same type but with different resonances between the length of a month and a
year. Hill3 15 is one of many such examples we found. In Hill315, there are
15 sidereal months per year. Let Hill3n denote the system in which there are
n months in a year. All of these orbits are easy to calculate and they all appear
to be stable. This success suggests going in the other direction. Let Hill31

n

denote the system in which there aren years per month. We computed Hill312
and found it to be unstable. It is shown in Figure 7.14.

In the preceding discussion, we decomposed these Hill-type systems into
two 2-body problems: the Earth and Moon orbit each other while their center
of mass orbits the Sun. This suggests that we can find stable orbits for the
4-body problem by splitting the Sun into a binary star. This works. The orbits
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Hill3 2 Hill3 3 Hill3 0.5

Figure 7.14. Periodic Orbits—Hill-type with equal masses.

labeled DoubleDoublen are of this type. As already mentioned, these orbits
are stable.

Given the existence and stability of FigureEight3, one often is asked if there
is any chance to observe such a system among the stars. The answer is that
it is very unlikely since its existence depends crucially on the masses being
equal. The Ducati and Hill type orbits, however, are not constrained to have
their masses be equal. Figure 7.15 shows several Ducati-type orbits in which
the masses are not all equal. All of these orbits are stable. This suggests that
stability is common for Ducati and Hill type orbits. Perhaps such orbits can be
observed.

Limitations of the Model

The are certain limitations to the approach articulated above. First, the
Fourier series is an infinite sum that gets truncated to a finite sum in the computer
model. Hence, the trajectory space from which solutions are found is finite
dimensional.

Second, the integration is replaced with a Riemann sum. If the discretization
is too coarse, the solution found might not correspond to a real solution to the
n-body problem. The only way to be sure is to run a simulator.

Third, as mentioned before, all masses must be positive. If there is a zero
mass, then the stationary points for the action function, which satisfy (7.6),
don’t necessarily satisfy the equations of motion given by Newton’s law.

Lastly, the model, as given in Figure 7.10, can’t solve 2-body problems with
eccentricity. We address this issue in the next section.
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Ducati32 Ducati30.5 Ducati30.1

Ducati310 Ducati31.2 Ducati31.3

Ducati3alluneq Ducati3alluneq2

Figure 7.15. Periodic Orbits—Ducati’s with unequal masses.
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Elliptic Solutions

An ellipse with semimajor axisa, semiminor axisb, and having its left focus
at the origin of the coordinate system is given parametrically by:

x(t) = f + a cos t, y(t) = b sin t,

wheref =
√

a2 − b2 is the distance from the focus to the center of the ellipse.
However, this isnot the trajectory of a mass in the2-body problem. Such a

mass will travel faster around one focus than around the other. To accommodate
this, we need to introduce a time-change functionθ(t):

x(t) = f + a cos θ(t), y(t) = b sin θ(t).

This functionθ must be increasing and must satisfyθ(0) = 0 andθ(2π) = 2π.
The optimization model can be used to find (a discretization of)θ(t) auto-

matically by changingparam theta to var theta and adding appropriate
monotonicity and boundary constraints. In this manner, more realistic orbits
can be found that could be useful in real space missions.

In particular, using an eccentricitye = f/a = 0.0167 and appropriate Sun
and Earth masses, we can find a periodic Hill-Type satellite trajectory in which
the satellite orbits the Earth once per year.
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