
A CASE STUDY IN TRAJECTORY OPTIMIZATION:
PUTTING ON AN UNEVEN GREEN

ROBERT J. VANDERBEI

Operations Research and Financial Engineering
Princeton University

ORFE-00-4

Revised September 19, 2000

ABSTRACT. We study in this paper the problem of how to
putt a golf ball on an uneven green so that it will arrive at
the hole with minimal final speed. This problem serves as
a good case study for trajectory optimization as it illustrates
many of the issues that arise in trajectory optimization prob-
lems. This putting example is just one of a collection of case
studies that is submitted toOptimization and Engineeringun-
der the title “Case Studies in Trajectory Optimization: Trains,
Planes, and Other Pastimes”. The purpose of these studies is
to illustrate how recent advances in algorithms and modeling
languages have made it easy to solve difficult optimization
problems using off-the-shelf software.

1. INTRODUCTION

The problem of how to putt provides a simple framework for a
discussion of trajectory optimization. The discussion in this paper
is taken from a longer paper [9] on case studies in trajectory opti-
mization. The purpose of these studies is to illustrate how recent
advances in algorithms and modeling languages now make it easy
to solve once difficult optimization problems using off-the-shelve
software. A secondary goal is to show that it is nonetheless still
possible to make subtle errors in a model which will render it (a)
more difficult than it needs to be or (b) infeasible or, worse, (c)

Date: September 19, 2000.
1991Mathematics Subject Classification.Primary 65L10 Secondary 34B15.
Key words and phrases.trajectory optimization, optimal control, constrained

optimization.
Research supported by NSF grant DMS-9870317, ONR grant N00014-98-1-

0036.

feasible but giving the wrong answer. In the past, trajectory opti-
mization problems were thought to be difficult to solve and when
failures occured it was unclear whether they were due to bad al-
gorithms or bad models. Today, one can say that failures are most
likely due simply to bad models.

We express our optimization models in theAMPL modeling lan-
guage [4]. This language provides a common mechanism for con-
veying problems to codes to solve them. When solving problems
we generally use two different solvers: (a)LOQO [7, 8, 10, 2],
which implements an interior-point method for general nonlinear
optimization and (b)SNOPT [5], which implements an active set
strategy with a quasi-Newton method for the QP subproblem.

One of the lessons to be learned with the putting example is how
easy it is to make a wrong model. With this in mind, we advise the
interested golfer to read beyond the next section because the first
model, right as it may appear, is wrong.

2. THE ALESSANDRINI MODEL

We begin with a discussion of the problem essentially as it ap-
pears in [1].

Given a golf ball sitting at rest on a putting green, the problem
is to figure out how to hit the ball so that it will go into the cup. To
make sure that it does not just skim over the cup and stop at some
point far beyond, we try to have the ball arrive at the cup with the
smallest speed possible.

The Normal Vector.We assume that the elevation of the green
is given as(x, y, z(x, y)) and that its shape is given by(x/a)2 +
(y/b)2 ≤ 1. Two tangent vectors to the surface are provided by
(1, 0, ∂z/∂x) and (0, 1, ∂z/∂y). By taking the cross product of
these two vectors, we obtain an upward pointing normal vector to
the surface:

(−∂z/∂x,−∂z/∂y, 1).

The normal forceN exerted by the surface of the green on the golf
ball must point in this direction and its magnitude must be such that
the total force in this direction vanishes (to keep the ball rolling on
the surface).

The Normal Force.Since the only forces that are not tangential
to the green are the force of gravity and the normal force itself,
we must have the projection of the force of gravity on the normal
direction be exactly opposite to the magnitude of the normal force:

−mg(ez ·N)/‖N‖ = −‖N‖,

wherem is mass of the ball,g is acceleration due to gravity,ez is
the unit vector pointing in the vertical direction, and of courseN is
proportional to the normal vector given above. From this relation,
we get that

Nz =
mg

(∂z/∂x)2 + (∂z/∂y)2 + 1
1

2 VANDERBEI

and that

Nx = −∂z/∂xNz Ny = −∂z/∂yNz.

Friction. There is friction between the ball and the green. It is
assumed to be proportional to the normal force and to point in a
direction opposite to the velocity:

F = −µ‖N‖ v

‖v‖
.

Equations of Motion. If we denote the trajectory byu(t) =
(x(t), y(t), z(t)), then the equations of motion are

v = u̇

a = v̇

ma = N + F −mgez.(1)

Boundary Conditions.The initial and final positions are known,

u(0) = u0 and u(T) = uf ,

but the timeT at which the final position is reached is a variable.
This problem can be cast as a (nonconvex) nonlinear optimiza-

tion problem by discretizing the time interval[0, T] into N small
time segments and writing discrete approximations for the deriva-
tives that appear in the model. There are many ways to do this.
In this paper, we discuss two popular discretizations: midpoint
discretization and trapezoidal discretization. We begin with the
midpoint method. Lettingx[j] , y[j] , and z[j] denote the
positional coordinates at timejT/N , j=0,1,...,N , we define
discrete approximations to the three components of velocity at the
midpoint of each time interval as follows:

vx[j+0.5]=(x[j+1]-x[j])/(T/N),
vy[j+0.5]=(y[j+1]-y[j])/(T/N),
vz[j+0.5]=(z[j+1]-z[j])/(T/N),

j=0,1,...,N-1 . Discrete approximations for acceleration are
defined similarly:

ax[j] = (vx[j+0.5]-vx[j-0.5])/(T/N),
ay[j] = (vy[j+0.5]-vy[j-0.5])/(T/N),
az[j] = (vz[j+0.5]-vz[j-0.5])/(T/N),

j=1,...,N-1 . The equations of motion given by (1), together
with the boundary conditions, complete the constraints defining the
model:

ax[j] = (Nx[j] + Fr_x[j])/m,
ay[j] = (Ny[j] + Fr_y[j])/m,
az[j] = (Nz[j] + Fr_z[j])/m - g.

Here,Nx[j] , Ny[j] , andNz[j] are shorthand for

Nz[j] = m*g/(dzdx[j]ˆ2 + dzdy[j]ˆ2 + 1),
Nx[j] = -dzdx[j]*Nz[j],
Ny[j] = -dzdy[j]*Nz[j]

andFr x[j] , Fr y[j] , andFr x[j] are shorthand for the three
components of friction along the trajectory. Our first ampl model
for this problem is shown in Figure 1. In this particular instance
the shape of the green involves two rather flat, but slightly sloped,
sections with a smooth ramp between them. The ball is initially on
the lower section and the cup is on the higher section, a difficult
putt similar to the one Tiger Woods faced on the 18th hole in the
final round of the 2000 PGA Championship. The functionz(x, y)
we use to define this ramp is

z(x, y) = −0.3 arctan(y) + 0.05(x + y).

Neither LOQO nor SNOPT was able to solve the model shown in
Figure 1. When this happens, it is natural to suspect that the prob-
lem is infeasible. Why should the model in Figure 1 be infeasible?
Alessandrini was able to solve supposedly the same model (using a
different elevation function for the green). We tried several differ-
ent surfaces and they all fail with all codesexceptwhen the surface
is planar (including, of course, tilted planar surfaces). Every opti-
mizer we tried is able to solve such planar problems easily. This
proved to be a good hint that something is wrong with the model.

After much pondering, it occured to us thatz is being specified
in two ways—once as an explicit function ofx andy and a second
time as the solution to a differential equation. Since the differential
equation is computed by a somewhat crude discretization, it is en-
tirely possible that the two specifications are enough different from
each other to render the model infeasible. So, we tried two things:

(1) Removing from the model the explicit statement of howz
depends onx andy . That is, we changed

var z{i in 0..n} = -0.3*atan(y[i])
+ 0.05*(x[i]+y[i]);

to just

var z{i in 0..n};

(This, we later learned, is how Alessandrini formulated the
problem.)

(2) Removing from the model the part of the differential equa-
tion that relates to thez component of the trajectory. That
is, we removed the constraintsnewt z , zinit , andzfi-
nal .

The first of these changes produces a model that solves easily while
the second one appears still to be infeasible. Hence, we seem to be
on to something but more errors may be lurking. The trajectory
found with the elevation constraint removed is shown in Figure
2. This trajectory looks almost right except that it seems to go
airborne in the early part of the trajectory and then tunnel into the
grass in the final stages. The ball is clearly not staying on the green
but instead is flying through the air to the cup. This indicates that
our differential equation forz is wrong. And, if it is wrong, then
the equations forx andy ought to be wrong as well.

TRAINS, PLANES, AND OTHER PASTIMES 3

param g := 9.8; # acc due to gravity
param m := 0.01; # mass of a golf ball
param x0 := 1; # coords of start pt
param y0 := 2;
param xn := 1; # coords of ending pt
param yn := -2;
param n := 50; # num of time points
param mu;

var T >= 0; # total time for the putt
var x{0..n}; # coords of the traj
var y{0..n};

var z {i in 0..n}
= -0.3*atan(y[i])+0.05*(x[i]+y[i]);

var dzdx{i in 0..n}
= 0.05;

var dzdy{i in 0..n}
= -0.3/(1+y[i]ˆ2) + 0.05;

v[i] denotes the deriv at midpt of
the interval i(T/n) to (i+1)(T/n).
var vx{i in 0..n-1} = (x[i+1]-x[i])*n/T;
var vy{i in 0..n-1} = (y[i+1]-y[i])*n/T;
var vz{i in 0..n-1} = (z[i+1]-z[i])*n/T;

a[i] denotes the accel at midpt of
the interval (i-0.5)(T/n)
to (i+0.5)(T/n), i.e. at i(T/n).
var ax{i in 1..n-1} = (vx[i]-vx[i-1])*n/T;
var ay{i in 1..n-1} = (vy[i]-vy[i-1])*n/T;
var az{i in 1..n-1} = (vz[i]-vz[i-1])*n/T;

var Nz{i in 1..n-1}
= m*g/(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var Nx{i in 1..n-1} = -dzdx[i]*Nz[i];
var Ny{i in 1..n-1} = -dzdy[i]*Nz[i];
var Nmag{i in 1..n-1}

= m*g/sqrt(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var vx_avg{i in 1..n-1}
= (vx[i]+vx[i-1])/2;

var vy_avg{i in 1..n-1}
= (vy[i]+vy[i-1])/2;

var vz_avg{i in 1..n-1}
= (vz[i]+vz[i-1])/2;

var speed{i in 1..n-1}
= sqrt(vx_avg[i]ˆ2 + vy_avg[i]ˆ2

+ vz_avg[i]ˆ2);

var Frx{i in 1..n-1}
= -mu*Nmag[i]*vx_avg[i]/speed[i];

var Fry{i in 1..n-1}
= -mu*Nmag[i]*vy_avg[i]/speed[i];

var Frz{i in 1..n-1}
= -mu*Nmag[i]*vz_avg[i]/speed[i];

minimize finalspeed:
vx[n-1]ˆ2 + vy[n-1]ˆ2;

s.t. newt_x {i in 1..n-1}:
ax[i] = (Nx[i] + Frx[i])/m;

s.t. newt_y {i in 1..n-1}:
ay[i] = (Ny[i] + Fry[i])/m;

s.t. newt_z {i in 1..n-1}:
az[i] = (Nz[i] + Frz[i] - m*g)/m;

s.t. xinit: x[0] = x0;
s.t. yinit: y[0] = y0;
s.t. zinit: z[0]

= -0.3*atan(y[0])+0.05*(x[0]+y[0]);

s.t. xfinal: x[n] = xn;
s.t. yfinal: y[n] = yn;
s.t. zfinal: z[n]

= -0.3*atan(y[n])+0.05*(x[n]+y[n]);

s.t. onthegreen {i in 0..n}:
x[i]ˆ2 + y[i]ˆ2 <= 16;

let T := 1.5;

let mu := 0.07;
let {i in 0..n}

y[i] := (i/n)*yn + (1-i/n)*y0;
let {i in 0..n}

x[i] := y[i]ˆ2/2;

solve;

FIGURE 1. A first AMPL model for the putting problem. Note that the variablev[i] in the model is the same as
v[i+0.5] in the text.

But what is wrong? The derivation was straightforward—how
could it possibly be wrong?

3. THE CORRECTPUTTING MODEL

The key to understanding what is wrong with our implementa-
tion of the Alessandrini model is contained in the observation that

4 VANDERBEI

FIGURE 2. Two views of the trajectory obtained from the model in Figure 1 with the elevation constraint removed.
Note: For the online version of this paper, you can click on the figure to start a 3-D animation. In the animation, click
on the flag to start the ball rolling.

the model in Figure 1 is solvable when and only when the sur-
face of the green is planar. This suggests that the derivation is only
valid for that case. What is different when the surface is not planar?
Well, if you drive a car over the crest of a hill you feel lighter than
normal (pun intended), whereas if you speed through a valley you
feel heavier. The weight that one feels is the magnitude of the nor-
mal force. Hence, the magnitude of the normal force is not constant
when the surface has hills and valleys. As you go through a valley,
the magnitude of the normal force must be greater than nominal in
order to accelerate you along the arc defining the upward bending
curve.

From this discussion, it is easy now to see that the magnitude of
the normal force must be such that it compensates both for the pull
of gravity and for the out-of-tangent-plane acceleration along the
path:

‖N‖ = mg
ez ·N
‖N‖

+ m
a(t) ·N
‖N‖

.

From this relation we can deduce that

Nz = m
g − ax(t) ∂z

∂x − ay(t) ∂z
∂y + az(t)

(∂z/∂x)2 + (∂z/∂y)2 + 1
.

Everything else in the previous derivation remains the same.
The complete correct model is shown in Figure 3. As shown

in Figure 4, this trajectory does indeed follow the surface correctly
(as it must given the model).

4. TRAPEZOIDAL DISCRETIZATION

The second common discretization technique is called thetrape-
zoidal method. With this method, values for velocity and accelera-
tion are defined at the same discrete times as for position; that is, at
jT/N , j=0,1,...,N . Instead of giving a formula defining each
component of velocity in terms of a difference of the corresponding
component of position, we give constraints that say that the average
value at two adjacent times is equal to the appropriate difference:

(vx[i]+vx[i-1])/2 = (x[i]-x[i-1])/(T/n);
(vy[i]+vy[i-1])/2 = (y[i]-y[i-1])/(T/n);
(vz[i]+vz[i-1])/2 = (z[i]-z[i-1])/(T/n);

Constraints that must be satisfied by the components of accelera-
tion are similar:

(ax[i]+ax[i-1])/2 = (vx[i]-vx[i-1])/(T/n);
(ay[i]+ay[i-1])/2 = (vy[i]-vy[i-1])/(T/n);
(az[i]+az[i-1])/2 = (vz[i]-vz[i-1])/(T/n);

TheAMPL model for the trapezoidal discretization using the correct
formulation of the putting problem is shown in its entirety in Figure
5. BothSNOPTandLOQO solve this formulation of the problem but
each takes about twice as long as when solving the corresponding
midpoint discretization formulation. Furthermore,LOQO requires a
slight relaxation in the stopping criteria (the infeasibility tolerance
needs to be increased from its default of10−6 to 2× 10−5).

The fact thatLOQO requires a relaxation in the stopping rule
suggests that something might be wrong with the model. John Betts
[3] seems to have identified the issue. He points out that the speed
of the ball as it arrives at the cup is zero and hence there is a sin-
gularity in the differential equation at the final time. Of course,

http://www.princeton.edu/~rvdb/tex/trajopt/putt/puttwrong.wrl

TRAINS, PLANES, AND OTHER PASTIMES 5

param g := 9.8; # acc due to gravity
param m := 0.01; # mass of a golf ball
param x0 := 1; # coords of start pt
param y0 := 2;
param xn := 1; # coords of ending pt
param yn := -2;
param n := 50; # num of time points
param mu;

var T >= 0; # total time for the putt
var x{0..n}; # coords of the traj
var y{0..n};

var z {i in 0..n}
= -0.3*atan(y[i])+0.05*(x[i]+y[i]);

var dzdx{i in 0..n}
= 0.05;

var dzdy{i in 0..n}
= -0.3/(1+y[i]ˆ2) + 0.05;

v[i] denotes the deriv at midpt of
the interval i(T/n) to (i+1)(T/n).
var vx{i in 0..n-1} = (x[i+1]-x[i])*n/T;
var vy{i in 0..n-1} = (y[i+1]-y[i])*n/T;
var vz{i in 0..n-1} = (z[i+1]-z[i])*n/T;

a[i] denotes the accel at the midpt of
the interval (i-0.5)(T/n)
to (i+0.5)(T/n), i.e. at i(T/n).
var ax{i in 1..n-1} = (vx[i]-vx[i-1])*n/T;
var ay{i in 1..n-1} = (vy[i]-vy[i-1])*n/T;
var az{i in 1..n-1} = (vz[i]-vz[i-1])*n/T;

var Nz{i in 1..n-1}
= m*

(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])
/(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var Nx{i in 1..n-1} = -dzdx[i]*Nz[i];
var Ny{i in 1..n-1} = -dzdy[i]*Nz[i];
var Nmag{i in 1..n-1}

= m*
(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])
/sqrt(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var vx_avg{i in 1..n-1} = (vx[i]+vx[i-1])/2;
var vy_avg{i in 1..n-1} = (vy[i]+vy[i-1])/2;
var vz_avg{i in 1..n-1} = (vz[i]+vz[i-1])/2;

var speed{i in 1..n-1}
= sqrt(vx_avg[i]ˆ2 + vy_avg[i]ˆ2

+ vz_avg[i]ˆ2);

var Frx{i in 1..n-1}
= -mu*Nmag[i]*vx_avg[i]/speed[i];

var Fry{i in 1..n-1}
= -mu*Nmag[i]*vy_avg[i]/speed[i];

var Frz{i in 1..n-1}
= -mu*Nmag[i]*vz_avg[i]/speed[i];

minimize finalspeed:
vx[n-1]ˆ2 + vy[n-1]ˆ2;

s.t. newt_x {i in 1..n-1}:
ax[i] = (Nx[i] + Frx[i])/m;

s.t. newt_y {i in 1..n-1}:
ay[i] = (Ny[i] + Fry[i])/m;

s.t. xinit: x[0] = x0;
s.t. yinit: y[0] = y0;

s.t. xfinal: x[n] = xn;
s.t. yfinal: y[n] = yn;

s.t. onthegreen {i in 0..n}:
x[i]ˆ2 + y[i]ˆ2 <= 16;

let T := 1.5;

let mu := 0.07;
let {i in 0..n} y[i] := (i/n)*yn + (1-i/n)*y0;
let {i in 0..n} x[i] := y[i]ˆ2/2;

solve;

FIGURE 3. A second, and this time correct,AMPL model for the putting problem. This version is very similar to
before—the main difference is in the definitions ofNz andNmag.

a numerical approximation might never experience the singularity
exactly but it still can feel the effect. For the problem at hand, at the
optimal solutionLOQO hasspeed[n] = 2.6e-6 and SNOPT

hasspeed[n] = 1.7e-6 . These values are not zero but they
are getting close and one could imagine that numerical issues re-
lated to the singularity of the differential equation are beginning

to enter in here. To test this, we changed the optimization objec-
tive from minimizing the final speed to minimizing the deviation
of the final speed from some small prescribed value. In particular,
we tried(vx[n]ˆ2 + vy[n]ˆ2 - 0.25)ˆ2 . With this ob-
jective function, both solvers are able to find a solution in a much
more robust fashion (i.e., using fewer iterations and being success-
ful over a wider range of choice of some of the other parameters

6 VANDERBEI

FIGURE 4. Two views of the trajectory from the correct model shown in Figure 3. Note how the trajectory follows
the contour of the green.

in the problem). Our local golf expert (aka John Mulvey) indicates
that this is the objective function used by real golfers anyway. He
says that a real golfer does not want the ball to arrive at the cup
with too little speed because then small imperfections in the green
can have rather large unpredictable effects in those last few inches
near the cup.

It is interesting to note that the midpoint rule is “less” bothered
by the singularity issue. The reason is that the final speed in that
model is the average final speed over the last time interval. This
number is small but not as small as the final speed in the trape-
zoidal rule. For example,LOQO gets a final speed of7e-3 with
this discretization, which is a few orders of magnitude larger than
it got with the trapezoidal rule.

5. LESSONS

(1) It is deceptively easy to formulate a problem incorrectly.
(2) Incorrect formulations are surprisingly likely to be infea-

sible.
(3) Infeasibility is especially hard for nonlinear solvers to de-

tect reliably.
(4) In the early days of optimization, a nonconvex problem

with 10 or more variables was considered exceedingly hard
to solve. In its most compact form, the problem here only
really has 2 decision variables: thex andy components
of the initial velocity vector that the putter imparts to the
golf ball. After giving the ball its initial kick, the rest is
determined by physics. One could formulate the prob-
lem this way. There would be just two decision variables
and there would be a fairly complicated integrator func-
tion that would determine if the trajectory actually arrives

at the hole and, if it does, the speed at which it arrives
there. Using this integrator function as a “black box”, one
could make an optimization problem with just two vari-
ables. However, with modern optimization technology it is
easy to incorporate the physics into the optimization model
as we have done here and get a much larger model but one
that is not any more difficult to solve. In fact, by express-
ing both the optimization part of the model and the physics
in the same place and using the same “language” provides
a level of model control that was totally lacking before.
For example, if the physics is wrong, as it was in our first
attempt, then the optimization problem is likely to be in-
feasible. If the physics and the optimization are separated
from each other it is especially hard to identify what (or
who!) is at fault. By having them together, it is easy to
print out variables, trajectories, dual variables, etc. and all
of this information can be useful in figuring out what is
wrong with a model.

(5) It wasn’t mentioned in the discussion above, but one of the
lessons in this example is how important it is to give an
initial solution that is close to the optimal solution. For ex-
ample, the optimal value ofT is close to2 in the examples
above. We initializedT to be1.5. Both LOQO andSNOPT

find the right solution for any value ofT between1 and3
but outside this range the solvers start to get into trouble.
For example, neither of the solvers was able to solve the
problem when initialized withT = 5.

http://www.princeton.edu/~rvdb/tex/trajopt/putt/putt.wrl

TRAINS, PLANES, AND OTHER PASTIMES 7

param g := 9.8; # acc due to gravity
param m := 0.01; # mass of a golf ball
param x0 := 1; # coords of start pt
param y0 := 2;
param xn := 1; # coords of ending pt
param yn := -2;
param n := 50; # num of time points
param mu;

var T >= 0; # total time for the putt
var x{0..n}; # coords of the traj
var y{0..n};

var z {i in 0..n}
= -0.3*atan(y[i])+0.05*(x[i]+y[i]);

var dzdx{i in 0..n}
= 0.05;

var dzdy{i in 0..n}
= -0.3/(1+y[i]ˆ2) + 0.05;

var vx{i in 0..n};
var vy{i in 0..n};
var vz{i in 0..n};

var ax{i in 0..n};
var ay{i in 0..n};
var az{i in 0..n};

var Nz{i in 0..n}
= m*

(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])
/(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var Nx{i in 0..n} = -dzdx[i]*Nz[i];
var Ny{i in 0..n} = -dzdy[i]*Nz[i];
var Nmag{i in 0..n}

= m*
(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])
/sqrt(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var speed{i in 0..n}
= sqrt(vx[i]ˆ2 + vy[i]ˆ2 + vz[i]ˆ2);

var Frx{i in 0..n}
= -mu*Nmag[i]*vx[i]/speed[i];

var Fry{i in 0..n}
= -mu*Nmag[i]*vy[i]/speed[i];

var Frz{i in 0..n}
= -mu*Nmag[i]*vz[i]/speed[i];

minimize finalspeed: vx[n]ˆ2 + vy[n]ˆ2;

s.t. vx_def {i in 1..n}:
(vx[i]+vx[i-1])/2=(x[i]-x[i-1])/(T/n);

s.t. vy_def {i in 1..n}:
(vy[i]+vy[i-1])/2=(y[i]-y[i-1])/(T/n);

s.t. vz_def {i in 1..n}:
(vz[i]+vz[i-1])/2=(z[i]-z[i-1])/(T/n);

s.t. ax_def {i in 1..n}:
(ax[i]+ax[i-1])/2=(vx[i]-vx[i-1])/(T/n);

s.t. ay_def {i in 1..n}:
(ay[i]+ay[i-1])/2=(vy[i]-vy[i-1])/(T/n);

s.t. az_def {i in 1..n}:
(az[i]+az[i-1])/2=(vz[i]-vz[i-1])/(T/n);

s.t. newt_x {i in 0..n}: ax[i] = (Nx[i] + Frx[i])/m;
s.t. newt_y {i in 0..n}: ay[i] = (Ny[i] + Fry[i])/m;

s.t. xinit: x[0] = x0;
s.t. yinit: y[0] = y0;
s.t. xfinal: x[n] = xn;
s.t. yfinal: y[n] = yn;

s.t. onthegreen {i in 0..n}:
x[i]ˆ2 + y[i]ˆ2 <= 16;

let T := 1.5;

let {i in 0..n} x[i] := (i/n)*xn + (1-i/n)*x0;
let {i in 0..n} y[i] := (i/n)*yn + (1-i/n)*y0;
let {i in 0..n} vx[i] := (xn-x0)/T;
let {i in 0..n} vy[i] := (yn-y0)/T;

let mu := 0.07;

solve;

FIGURE 5. The correct putting model with a trapezoidal discretization. Note how positions, velocities, and accelera-
tions are all defined over the same index set.

6. FINAL REMARKS

We have considered just one trajectory optimization problem—
the putting problem. With this problem a number of issues came up
that needed to be resolved. It turns out that these same issues are

common in trajectory optimization problems. Hence, this example
serves as a good prototype for trajectory optimization in general.

Finally, note that in preparing this case study we contacted Stephen
Alessandrini to ask him about the fact that his model was incorrect.
It turns out that when he derived the equations for his model his
interest was in the planar case. It was only at the final stages of

8 VANDERBEI

writing that he added a nonplanar example and he didn’t realize
the equations didn’t apply. Interestingly, it was this last example
that caught the eye of others, see for example [3], and for a time
the incorrect model propogated unchecked.

This problem is not purely an academic exercise. See [6] for a
description of a system in which putting trajectories were used for
real-time animation during television coverage.

REFERENCES

[1] S.M. Alessandrini. A motivational example for the numerical solution of two-
point boundary-value problems.SIAM Review, 37(3):423–427, 1995. 1

[2] H.Y. Benson, D.F. Shanno, and R.J. Vanderbei. Interior-Point Methods for
Nonconvex Nonlinear Programming: Jamming and Comparative Numerical
Testing. Technical Report ORFE-00-2, Dept. of Operations Research and Fi-
nancial Engineering, Princeton University, Princeton NJ, 2000. 1

[3] J.T. Betts.Practical Methods for Optimal Control using Nonlinear Program-
ming. SIAM, Philadelphia, PA, 2000. 4, 8

[4] R. Fourer, D.M. Gay, and B.W. Kernighan.AMPL: A Modeling Language for
Mathematical Programming. Scientific Press, 1993. 1

[5] P.E. Gill, W. Murray, and M.A. Saunders. User’s guide for SNOPT 5.3: A
Fortran package for large-scale nonlinear programming. Technical report, Sys-
tems Optimization Laboratory, Stanford University, Stanford, CA, 1997. 1

[6] W.E. Lorensen and B. Yamrom. Golf green visualization.IEEE Computer
Graphics Appl., 12:35–44, 1992. 8

[7] R.J. Vanderbei. LOQO: An interior point code for quadratic programming.
Optimization Methods and Software, 12:451–484, 1999. 1

[8] R.J. Vanderbei. LOQO user’s manual—version 3.10.Optimization Methods
and Software, 12:485–514, 1999. 1

[9] R.J. Vanderbei. Interior-Point Methods for Nonconvex Nonlinear Program-
ming: Jamming and Comparative Numerical Testing. Technical Report ORFE-
00-3, Dept. of Operations Research and Financial Engineering, Princeton Uni-
versity, Princeton NJ, 2000. 1

[10] R.J. Vanderbei and D.F. Shanno. An interior-point algorithm for noncon-
vex nonlinear programming.Computational Optimization and Applications,
13:231–252, 1999. 1

ROBERT J. VANDERBEI, PRINCETON UNIVERSITY, PRINCETON, NJ

http://www.sor.princeton.edu/~rvdb/ps/loqo3_3.pdf
http://www.sor.princeton.edu/~rvdb/ps/loqo3_3.pdf
http://www.sor.princeton.edu/~rvdb/ps/loqo3_3.pdf
http://www.princeton.edu/~rvdb/tex/trajopt/trajopt.pdf
http://www.princeton.edu/~rvdb/tex/trajopt/trajopt.pdf

	1. Introduction
	2. The Alessandrini Model
	3. The Correct Putting Model
	4. Trapezoidal Discretization
	5. Lessons
	6. Final Remarks
	References

