
Micromagnetics: Basic Principles

A small class of materials exhibit the important
property of long range magnetic order. Funda-
mentally, this arises because of the so-called ‘‘exchange
energy’’whichcan,undercertaincircumstances, leadto
parallel alignment of neighboring atomic spins. Given
the link between the atomic spin and magnetic
moment, the spin order gives rise to the observed long
range magnetic order. The origin of the long range
magnetic order is a fundamental scientific problem
which has been studied extensively, both theoretically
and experimentally and is now understood in some
depth. However, within magnetism there is a major
problem when relating fundamental atomic properties
to magnetization structures and magnetization
reversal mechanisms in bulk materials.

The problem was described vividly by Aharoni
(1996) in his discussion of magnetostatic effects. The
essential idea is that the material properties are
determined by the exchange energy, which in principle
is effective on a length scale of subnanometers, and the
magnetostatic energy, which has contribution from
the boundaries of the material itself and which
introduce a different length scale entirely. The chal-
lenge of micromagnetics is to develop a formalism in
which the macroscopic properties of a material can be
simulated including the best approximations to the
fundamental atomic behavior of the material.

In brief, the classical approach to micromagnetics
replaces the spin by classical vector field which initially
allows the determination ofmagnetostatic fieldswithin
the system. In addition to this a different approach to
the exchange interaction much be formulated which
can replace the quantum mechanical exchange in-
teraction with a formalism appropriate for the limit of
continuous material. This, coupled with an energy
minimization approach, forms the basis of classical
micromagnetics which will be outlined in a later
section.

The history of micromagnetics starts with a 1935
paper of Landau and Lifshitz on the structure of a wall
between two antiparallel domains, and several papers
by Brown around 1940. A detailed treatment of
micromagnetism is given by Brown in his 1963 book
(Brown 1963).

For many years micromagnetics was limited to the
use of standard energy minimization approaches to
determine domain structures and classical nucleation
theory to determine magnetization reversal mechan-
isms in systems with ideal geometry. Arguably, the
current interest in micromagnetics arises from the
availability, from about the mid-1980s onward, of
large-scale computing power which enabled the study
of more realistic problems which were more amenable
to comparison with experimental data.

One important realization during this period was
the fact that energy minimization approaches in

principle only determine nucleation fields for the
system, and do not predict necessarily correctly the
state of the system after magnetization reversal.
Consequently, a lot of work has gone into the
development of dynamic approaches which use simu-
lations based on the Landau–Lifshitz equation of
motion. This is probably the technique in most
common use today.

The other area in which considerable development
has taken place during the 1990s is that of the
calculation of magnetostatic fields, which because of
its complexity forms the largest part of most micro-
magnetic calculations. A number of techniques are
available and it is the intention in this review to outline
each technique and give consideration to the cir-
cumstances under which each one is most applicable.

1. Energy Terms

1.1 Exchange Energy

Exchange energy forms an important part of the
covalent bond of many solids and is also responsible
for ferromagnetic coupling. The exchange energy is
given by

E
exch

¯®2JS
"
[S

#
(1)

where J is referred to as the exchange integral. S
"
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are the atomic spins. Clearly for ferromagnetic
ordering J must be positive. This so-called direct
exchange coupling is somewhat idealized and ap-
plicable to only a few materials rigorously.

A number of other models exist, including itinerant
electron ferromagnetism and indirect exchange
interaction or Ruderman–Kittel–Kasuya–Yoshida
(RKKY) interaction. Generally speaking, however,
Eqn. (1) is the form usually taken for the exchange
interaction with the value of J dependent on the
detailed atomic properties of the material.

1.2 Anisotropy

The term anisotropy refers to the fact that the
properties of a magnetic material are dependent on the
directions in which they are measured. Anisotropy
makes an important contribution to hysteresis in
magnetic materials and is therefore of considerable
practical importance. The anisotropy has a number of
possible origins.

(a) Crystal or magnetocrystalline anisotropy. This
is the only contribution intrinsic to the material. It
has its origins at the atomic level. First, in materials
with a large anisotropy there is a strong coupling
between the spin and orbital angular momenta
within an atom. In addition, the atomic orbitals are
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Figure 1
Sample with an anisotropic shape with a magnetic field applied in two perpendicular directions: (a) parallel to the short
axis; here the ‘‘free poles’’ are separated by a relatively short distance, leading to a large H

d
, (b) parallel to the long axis;

poles separated by a smaller distance, which leads to a small value of H
d
.

generally nonspherical.
Because of their shape the orbits prefer to lie in

certain crystallographic directions. The spin–orbit
coupling then assures a preferred direction for the
magnetization—called the easy direction. To rotate
the magnetization away from the easy direction costs
energy— and anisotropy energy. As might be expected
the anisotropy energy depends on the lattice structure.

(i) Uniaxial anisotropy occurs in hexagonal crystals
such as cobalt.

E¯KVsin#θ­higher terms (2)

Here θ is the angle between the easy direction and the
magnetization, K is the anisotropy constant, and V the
volume of the sample. The higher order terms are
small and usually neglected. This has one ‘‘easy axis’’
with two energy minima, separated by energy maxima.
This energy barrier leads to hysteresis.

(ii) Cubic anisotropy; for example, iron, nickel
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Here α gives the direction cosine, i.e., the cosine of the
angle between the magnetization direction and the
crystal axis.

(b) Shape anisotropy. Consider a uniformly mag-
netized body. By analogy with dielectric materials we
can refer to the magnetization (magnetic polariz-
ation) creating fictitious ‘‘free poles’’ at the surface.

These lead to a ‘‘demagnetizing field’’ H
d
which acts

in opposition to H. Figure 1 shows a sample with an
anisotropic shape with a magnetic field applied in two
perpendicular directions. The energy increases as H

d

increases. For an ellipsoid of revolution it can be
shown that

E¯®K
eff

Vsin#θ (4)

i.e., the same form as for uniaxial anisotropy. θ is the
angle between the long axis of the sample and the
magnetization direction. Also,
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where M is the magnetization and N
b

and N
a

are
‘‘demagnetizing factors’’ in the short axis and long
axis directions. N

b
and N

a
depend on the geometry so

that K
eff

¯ 0 for a sphere and K
eff

¯M #}2 for a
needle-like sample.

(c) Stress anisotropy. This arises from the change
in atomic structures as a material is deformed. It is
related to the phenomenon of ‘‘magnetostriction’
which is important for sensor applications.

(d) Magnetostatic effects and domain formation.
Magnetostatic fields are a natural consequence aris-
ing from any magnetization distribution. The magnet-
ostatic fields are fundamental to the micromagnetic
problem and, importantly, introduce another length
scale. Magnetostatic effects give rise to magnetization
structures on a length scale orders of magnitude
greater than atomic spacings. Consequently it is
impossible to deal with both magnetostatic and
exchange effects rigorously in micromagnetic calcu-
lations at least with the current computer facilities.
The formulation of the magnetostatic interaction
field problem will be given in detail later but for the
moment it is simply necessary to introduce the fact
that because of magnetostatic fields a magnetized
body has a magnetostatic self energy given by

E
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where N
d

is a factor depending on the shape of the
sample.

This is, of course, related to the statement (Aharoni
1996) that the energy of a system depends on the
boundary of the material. Clearly the energy given by
Eqn. (6) can be reduced if the magnetization M is
reduced. As a result of this the material has a tendency
to break into domains in which the magnetization
remains at the spontaneousmagnetization appropriate
for a given material at a given temperature with the
domains oriented in such a way as to minimize the
overall magnetization and hence the magnetostatic
self energy.
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However, creating a boundary between two do-
mains also requires energy and the actual domain
structure depends on a minimization of the total
exchange and magnetostatic self-energy. This in a
sense was the first application of micromagnetics.

It is interesting to note that as the size of a system
reduces the magnetostatic self energy reduces and at
some point it becomes energetically unfavorable to
form a domain structure since the lowering of the
magnetostatic energy is not sufficient to compensate
for the energy necessary to create the domain wall.
Below this size a sample is referred to as single domain
and here the magnetization processes are dominated
by the rotation of the magnetic moment against the
anisotropy energy barrier.

2. Foundations of Micromagnetics

It is not possible to neglect any of the three major
energy terms, exchange, anisotropy, and magneto-
static. The detailed magnetic behavior of a given
material depends on the detailed balance between
these energy terms. It is not even possible to add the
magnetostatic and anisotropy terms as a perturbation
to the exchange energy term and use a quantum
mechanical solution of this problem. Currently the
only realistic approach is to ignore the atomic nature
of matter, to neglect quantum effects, and to use
classical physics in a continuum description of a
magnetic material. Essentially, we assume the mag-
netization to be a continuous vector field M(r), with r
the position vector. Thus we write

M(r)¯M
s
m(r); m [m¯ 1 (7)

where M
s

is the saturation magnetization of the
material. The basic micromagnetic approach is to
formulate the energy in terms of the continuous
magnetization vector field and to minimize this energy
in order to determine static magnetization structures.
Classical nucleation theory can be used to study modes
of magnetization reversal and nucleation fields. The
energy terms are formulated as follows.

2.1 Anisotropy Energy

This remains a local calculation and is straightforward
to carry out using the expressions for either cubic or
uniaxial symmetry given earlier.

2.2 Exchange Energy

The exchange energy is essentially short ranged and
involves a summation over the nearest neighbors.
Assuming a slowly spatially varying magnetization the
exchange energy can be written

E
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the summation being carried out over nearest neigh-
bors only. The φ

ij
represents the angle between two

neighboring spins i and j. It should be noted that in
Eqn. (8) the energy of the state in which all spins are
aligned has been subtracted and used as a reference
state. This is legitimate as long as it is done con-
sistently. For small angles, rφ
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where s is a position vector joining lattice points i and
j.

Substituting, Eqn. (9) into Eqn. (10) gives
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where the second summation is over nearest neighbors.
Changing the first summation to an integral over the
whole body, the result is that for cubic crystals
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The material constant A¯ JS #}a for a simple cubic
lattice with lattice constant a. This represents a major
step in the formulation of micromagnetism: we have
related the fundamental atomic properties to the
spatial derivatives of the magnetization in the con-
tinuum approximation. The atomic properties are
included via the exchange integral J which in micro-
magnetic terms is essentially a phenomenological
constant which can be determined from experimental
data.

2.3 Magnetostatic Fields

Here we consider only the magnetostatic field arising
from the magnetization distribution itself and not any
externally applied field which is trivial to add to the
overall energy. The magnetostatic or demagnetizing
field H

d
is governed by Eqns. (13) and (14)

~¬H
d
¯ 0 (13)

~(H
d
­4πM)¯ 0 (14)

Eqns. (13) and (14) are written in cgs units, i.e., B¯
H­4πM. Since the curl of H

d
is 0, the demagnetizing

field can be derived from a scalar potential,

H
d
¯®~φ (15)

Substitution of Eqn. (15) into Eqn. (14) yields

~#φ¯®4π~[M (16)
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which because of its analogy with Poisson’s equation
in electrostatics leads to the definition of a volume
magnetic charge density given by

ρ¯® 4π~[M (17)

Thus we can solve for the magnetostatic field by
solving for the potential using Eqn. (16) subject to
boundary conditions which determine the continuity
of the normal component of B and of the tangential
component of H

d
.

n [ (B
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where n is a unit vector pointing outward from the
surface.

In terms of the scalar potential the equivalent
conditions are

φ
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Thus again the surface of a bulk magnetized body is
determining the overall response of a phenomenon
having its origins at the atomic level. Finally we can
write expressions for the potential and demagnetizing
field as follows:
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The integrals in Eqn. (23) can be interpreted as fields
arising from volume and surface change densities ρ¯
®4π~[M and σ¯ 4πM(r) [ n, respectively.

Although Eqns. (22) and (23) represent elegant
closed form solutions for the potential and de-
magnetizing field, they are not the best form for
numerical computation. Essentially, the total energy
of the system involves an integral over the volume as
follows:

E
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which because of Eqn. (23) involves a six-fold in-
tegration. In terms of the numerical problem this
involves a scaling with N#, where N is the number of
elements into which the body is discretized. This of
course leads to rapid degradation of computational
speed with system size and in practice an alternative
solution must be found for the calculation of H

d
. The

techniques involved will be described in detail later.

2.4 Brown’s Equations

The final step in the formulation of classical micro-
magnetics is to minimize the total energy which can be
written as follows
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where H
a
is the externally applied field. Here, E

anis
is

the anisotropy energy density.
The approach uses standard variational principles

but the derivation is somewhat protracted. Essentially,
setting the first variation of the total energy to zero
leads to two equations. The first is a surface equation
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since m [ ¦m}¦n¯ 0 by virtue of m [m¯ 1. The
second is a volume equation,
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where the anisotropy field H
K

is defined as
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Eqn. (27) can be written
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where the effective field H
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is
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Eqn. (27) states that the equilibrium solution is found
by making the magnetization lie parallel to the local
field. Eqns. (26)–(30) are referred to as Brown’s
equations and form the basis of the classical micro-
magnetic approach for the solution of stationary
problems.

3. Analytical Solutions

3.1 Stoner–Wohlfarth Theory

Stoner–Wohlfarth (SW) theory is the simplest micro-
magnetic model since it is assumed that all spins
remain collinear thus removing the exchange term.
Consider a particle with uniaxial anisotropy and easy
axis at some angle ψ to the applied field. The
magnetization of the particle has an angle θ to the easy
axis and θ®ψ to the applied field. The magnetic
moment of the particle is MV, where V is the particle
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Figure 2
Hysteresis loop for a SW particle with the field applied parallel to the easy axis.

volume. Assuming that the atomic magnetic moments
always remain parallel (coherent rotation) the energy
is the sum of the anisotropy and field energies, i.e.,

E¯KVsin#θ®MVHcos(θ®ψ) (31)

The orientation of the magnetic moment is de-
termined by minimizing the energy E, that is we set
dE}dθ¯ 0. This gives

dE

dθ
¯ 2KVsinθcosθ­MVHsin(θ®ψ)¯ 0 (32)

In general there are four solutions of Eqn. (32), two
minima and two maxima (which separate the minima).
We can illustrate the behavior using the special case of
ψ¯ 0, that is, the easy axis is aligned with the field,
Then Eqn. (32) becomes

2KVsinθcosθ­MVHsinθ¯ 0 (33)

Eqn. (33) has a solution at sinθ¯ 0, i.e., θ¯ 0 or π.
Further solutions occur at 2KVcosθ¯®MVH, so
that

cosθ¯®MH}2K (34)

which are maxima.
These results can be used to illustrate the reversal

process in the following way using Fig. 2. A large
positive field is first applied to the sample, taking it to
point (a) on the hysteresis loop. When the field is
reduced to zero the energy maximum stops the system
from becoming demagnetized. The magnetization still
lies along the easy direction, i.e., in this case parallel to
the applied field. This gives a remanent magnetization
(point b). In negative fields the magnetization would
prefer to reverse, in order to be parallel to the field
direction. In order to do this it would have to rotate

over the maximum energy, E
max

. Thus there is an
energy barrier to rotation, of value E

b
¯E

max
®E

min
. It

is straightforward to show that
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Therefore, the energy barrier becomes zero when
(MH}2K )¯ 1, that is, when H¯®2K}M¯®H

K
.

At this point, the coerci�e force, the magnetization
rotates into the other minimum, i.e., into the field
direction (points c to d). Thus H

K
is the maximum

coercive force for a particle. For a particle oriented at
some angle ψ the behavior consists of a mixture of
reversible and irreversible rotation.

The coercive force at some angle ψ is less than H
K
.

For a system of particles with randomly orientated
easy axes an average over all orientations gives a
hysteresis loop that has a remanence of half the
saturation magnetization and a coercivity of 0.479H

K
.

The SW model is still extensively used, especially in
materials where the long-range interaction effects are
more important than intrinsic grain properties. Gen-
erally, agreement with experiment is obtained for a
low ‘‘effective value’’ of H

K
which takes some account

of the nonuniform magnetization processes as is
discussed later in relation to thin film simulations.

3.2 The Nucleation Problem

Consider a ferromagnetic body in a magnetic field
large enough to cause saturation. The field is slowly
reduced to zero and then increased in a negative sense.
At some point the original state becomes unstable and
the magnetization makes a transition to a new energy
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minimum. The field at which the state becomes
unstable is the ‘‘nucleation field.’’ This can be de-
termined analytically for a few simple geometries. In a
sense, SW is the simplest nucleation theory. The
limitations of nucleation theory can be seen by
considering the final state after transition.

In a complex system there may be more than one
accessible minimum, rather than the one state of SW
theory. Consequently, nucleation theory cannot pre-
dict the magnetization curve of anything but the
simplest materials and in this sense its predictions are
more mathematically than physically interesting. Nu-
merical micromagnetics with its novel techniques for
determining the magnetic state at any point of the
hysteresis loop is where predictions become accessible
to experimental verification.

4. Numerical Micromagnetics

4.1 Calculation of Stationary States: Energy
Minimization Versus Dynamic Approach

The first numerical micromagnetic approaches fol-
lowing the resurgence of interest in micromagnetic
calculations in the mid-1980s were based essentially on
energy minimization. Della Torre (1985, 1986) uses
this approach in some calculations on the behavior of
elongated particles. The approach works reasonably
well but is prone to numerical instabilities.

A more sophisticated minimization technique was
developed by Hughes (1983) in studies of longitudinal
thin film media consisting of strongly coupled spheri-
cal grains (the strong coupling arising from exchange
interactions between grains). In these materials strong
cooperative reversal is important and a straightfor-
ward energy minimization technique was problem-
atical during the magnetization reversal process.

A number of sophisticated energy minimization
approaches are possible using standard numerical
techniques. For example a number of workers have
used conjugate gradient techniques. However, the
basic problem arises from the nature of the micro-
magnetic problem itself. Essentially, it is relatively
easy to track a well-defined energy minimum as it
evolves with the magnetic field. This is usually the
case, for example, in the decrease from magnetic
saturation towards the remanent state where no
irreversible behavior occurs. The energy minimum in
which the system resides is essentially a local energy
minimum on a very complex energy surface. The
magnetization reversal process can be seen as the
disappearance of the local energy minimum due to
the action of a sufficiently large field applied in a
sense opposite to the original ‘‘positive’’ saturation
direction.

The magnetization reversal process takes place
when the minimum in the positive field direction
vanishes and the system makes a transition into an
energy minimum closer to the negative field direction.

If the energy surface has a complex topology it may
contain a number of energy minima accessible during
the magnetization reversal process. Energy minimiz-
ation is a very poor technique for predicting the
correct minimum.

Magnetization reversal is intrinsically a dynamic
phenomenon and in order to predict magnetization
states correctly after reversal we should in principle
take account of the dynamic behavior of the system as
far as is possible. Victora (1987) first used a dynamic
approach in studies of longitudinal thin films. The
approach is based on the Landau–Lifshitz (L–L)
equation of motion of an individual spin, which has
the form

dM

dt
¯ γ

!
M¬H®

αγ
!

M
s

M¬M¬H (36)

Here, γ
!
is the gyromagnetic ratio and α is the damping

constant. In Eqn. (36) the first term leads to gyro-
magnetic procession. In the absence of damping this
will be eternal and would not lead to the equilibrium
state in which the magnetization is parallel to the local
field.

The second term represents damping. This ensures
that the system eventually reaches the equilibrium
position. It should be noted that other forms of the
dynamic equation are possible, including the Gilbert
form. However, in the limit of small damping, these
forms are equivalent although the Gilbert equation is
probably more physically correct.

Also, in the limit of large damping, in which case the
second term of Eqn. (36) dominates, the Landau–
Lifshitz equation is equivalent to a steepest decent
energy minimization approach. The L–L equation is
the most widely used dynamic approach currently.

Eqn. (36) is easy to solve numerically for a single
spin. However, the micromagnetic problem is repre-
sented by a set of strongly coupled equations of
motions which is a somewhat more difficult numerical
problem. The types of system considered can for
convenience be considered as of two types.

(i) Weakly coupled systems. Typical examples here
might be a set of grains with uniform magnetization
coupled by magnetostatic and perhaps weak exchange
interactions. For this type of system a simple nu-
merical technique such as the Runge–Kutta approach
with adaptive step size will probably suffice.

(ii) Strongly coupled systems. These examples tend
to have strong exchange coupling, for example, in the
case of studies of nonuniform magnetization processes
in a single grain or a set of strongly exchange coupled
grains. In terms of the differential equations the system
in this case is referred to as ‘‘stiff.’’ Although Runga–
Kutta will still give a solution, the step size tends to
become very small and the computational times
involved, increasingly long. It is more usual under
these circumstances to use an alternative technique,
for example, predictor–corrector algorithms.
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The numerical technique essentially entails the
determination of the local field H at each point in the
system followed by a determination of the small
magnetization changes using Eqn. (36). The whole
system is updated simultaneously at each time step
after which the local field is recomputed and this
procedure is carried out until the system evolves into
an equilibrium state. Equilibrium can be determined
using a number of criteria:

(i) Magnetization changes at a given step below a
certain minimum value, and

(ii) Comparison of the direction of the local mag-
netization and the local field. Essentially the con-
vergence is determined dependent on the maximum
value of M¬H for the system.

The technique used depends to some extent on the
system studied. In a sense this is the easiest part of
numerical micromagnetics. A number of numerical
techniques are available for the solution of Eqn. (36)
and it is not too difficult to create algorithms based on
the dynamic approach which are robust in terms of
finding stationary states and also reliable in finding
new stationery states after the nucleation of a mag-
netization reversal event.

Two problems remain however. The first is the
determination of the local field H which is a rather
difficult and specific problem on which considerable
effort has been expended. However, a further problem
is in the microstructure of the material itself and the
approximations which need to be made in order to
make the problem amenable to a numerical solution
whilst retaining some physical realism. The following
section considers some aspects of the problem of
microstructure in micromagnetics.

4.2 Microstructural Simulations

Numerical micromagnetics involves a discretization of
space. The behavior of the spin associated with each
small volume element is described by Eqn. (36).
Because of the exchange and magnetostatic inter-
actions this leads to a finite set of coupled equations of
motion of the form of Eqn. (36) which have to be
solved numerically. The spatial discretization is an
important part of the problem.

(a) Particulate systems. Nanostructured particu-
late systems are essentially of two types. The first is
so-called granular magnetic solid, essentially a hetero-
genous alloy consisting of magnetic particles in a non-
magnetic matrix. This is often produced by sputter-
ing, evaporation, or laser ablation. These systems
have a microstructure consisting of relatively ran-
domly distributed grains and can be modeled by plac-
ing grains at random into the computational cell.
The spatial disorder in this system has been shown
(El Hilo et al. 1994) to be an important factor in deter-

mining the effects of exchange coupling in the
materials.

For example, standard micromagnetic calculations
with an ordered system lead to an enhancement of the
remanent magnetization due to intergranular ex-
change coupling but also predict a decreased coercive
force due to the effects of cooperative magnetization
reversal. In a system with a random microstructure,
however, the effects of the cooperative reversal are
decreased and although the exchange coupling leads
to an enhanced remanence the reduction in the scale of
the cooperative reversal can also lead to a small
enhancement of the coercive force. Consequently, it is
important to stress that the microstructure of a
material needs to be modeled as realistically as
possible.

In the case of particular materials produced by the
solidification of a fluid precursor, for example, by the
polymerization of a ferrofluid or the production of
particulate recording medium from a magnetic dis-
persion, it is known that magnetostatic interactions
are important because they give rise to flux closure and
consequent modifications to the microstructure.

Vos et al. (1993) have demonstrated the importance
of microstructure by comparing the chaining effects
which occur in standard particulate media with the
behavior of barium ferrite. In the latter case the
particles consist of small platelets which tend to form
long stacks under the influence of magnetostatic
interactions. The calculations of Vos et al. indicate
very different behavior for the two types of micro-
structure. However, the actual microstructures used
were created using an ad hoc procedure.

Chantrell et al. (1996) have demonstrated the
importance of the correct simulation of microstructure
in particulate systems, and have developed a soph-
isticated molecular dynamic approach Coverdale et al.
2001 to the prediction of microstructures.

(b) Granular thin metallic films. Although these
are similar to particulate materials in that they con-
sist of well-defined grains, these materials are gener-
ally considered as a separate case, essentially because
of their different applications and also because they
consist, to a first approximation at least, as a single
layer of grains.

In these systems, clearly magnetostatic interactions
between the metallic grains will be very strong and
there is also the possibility of some exchange coupling
across grain boundaries. Generally these materials are
alloys, for example, of chromium. The intention is that
the chromium segregates to grain boundaries giving
rise to good magnetic isolation.

The first models of these materials were produced
from the mid–1980s onwards and in many ways
remain largely unchanged. The models consist of
spherical grains which are assumed to rotate co-
herently and can therefore be treated as a single spin,
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situated on a regular hexagonal lattice. The reason for
this uniformity is that it simplifies the magnetostatic
field calculation because fast Fourier transform tech-
niques can be used (as described in the following
section).

Many simulations still use this rather idealized
model, even though it has been shown that it dras-
tically overestimates the cooperative reversal. Miles
and Middleton (1990) were the first to develop a
simulation based on an irregular grain structure with a
distribution of particle volumes. This and later work
(Walmsley et al. 1996) demonstrate conclusively that
the size of magnetic features in the materials is
critically affected by the microstructure and, as one
might expect, is significantly smaller in materials with
some disorder.

The other problem with the assumed microstructure
is the intrinsic assumption of coherent reversal, which
means that the intrinsic coercivity (assumed to be due
to coherent rotations) is probably overestimated.

The parameters h
int

and C* represent the magneto-
static and exchange coupling strengths with respect to
the intrinsic coercivity and are empirical parameters
which essentially hide the micromagnetic deficiencies
of the model. At attempt to produce a realistic
microstructure is described by Schrefl and Fidler
(1992). The microstructure is produced via a voronoi
construction. Essentially this entails, for a two-dimen-
sional system at least, distributing points at random in
space and bisecting the line between points to produce
grain boundaries. This produces an irregular grain
structure and has been used in granular three-
dimensional systems (Schrefl and Fidler 1992) and
longitudinal thin films (Tako et al. 1996).

These models represent the state of the art in terms
of microstructural simulations. It is desirable to carry
out a discretization of the systems at the subgrain
level, since this allows the correct simulation of
nonuniform magnetization processes. The uniform
mesh is no longer appropriate. Finite element methods
are necessary, and are outlined in Micromagnetics:
Finite Element Approach.

5. Magnetostatic Field Calculations

Herewe consider relatively common and easily applied
approaches. More sophisticated techniques are nece-
ssary for calculations using finite elements, and these
will be outlined in Micromagnetics: Finite Element
Approach.

5.1 Dipole Sum—the Bethe–Peierls–Weiss
Approximation

This is by far the easiest approach to adopt. We start
with the interaction field written as

H
i
¯ 3

j1 i

H
ij

(37)

where

H
ij
¯®

m
j

r$
­

3(m
j
[ r)r

r&

is the interaction field at element i due to element j. m
i

and m
j
are the magnetic moments of each element and

r is the spatial separation.
Clearly the determination of fields via Eqn. (37) is

an N# problem. In order to make the calculation
feasible for large systems the usual approximation is to
divide the problem into a direct summation over some
region V around a given site i and to use a continuum
approximation to the field outside this region. For a
spherical cut off the result is of the form (in cgs units)

H
i
¯ 3

j `V

H
ij
­

4M

3
®N

d
M (38)

The first term is a direct summation within a region V
surrounding i. Outside this region the material is
treated as a uniformlymagnetized continuous material
of magnetization M (in cgs units). The problem of
determining the field at the center of the spherical cut
out than reduces to solutions of

H
d
¯&

¦V

(r®r«) [M(r«)n#
r r®r« r$

dS (39)

over surfaces ¦V representing the inside surface of the
cut out region and the outside of the magnetized body.
Eqn. (39) follows directly from Eqn. (23) given the
assumption of a uniform magnetization, ~[M¯ 0.

The second and third terms in Eqn. (38) are the
‘‘Lorentz’’ and ‘‘demagnetizing’’ fields arising from
the internal and external surfaces respectively, with N

d

a shape-dependent demagnetizing factor. These fac-
tors arise directly from analytical solution of Eqn.
(39).

5.2 Hierarchical Calculation

The hierarchical approach is a more sophisticated
calculation which improves on the Bethe–Peierls–
Weiss approximation. Essentially, a dipole sum is
again carried out within a central area around the
point at which the field is to be calculated. In the
simplest case the remaining material is represented by
‘‘cells’’ of similar size, taken as having a total moment
obtained by adding all the moments in the cell. This is
then used to calculate the field due to the cell at the
central point and a summation of these contributions
is taken. This approach was used by Miles and
Middleton (1991). It is possible to improve the
accuracy by adding higher order (multipole) terms.
Such fast multipole methods are often used in elec-
trostatic calculations.
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The beauty of the hierarchical calculation is that it
can be applied to systems with disordered micro-
structures which is not easily the case for methods such
as the fast Fourier transform, a description of which
follows.

5.3 Fast Fourier Transform Techniques

This was developed by Mansuripur and Giles
(Mansuripur and Giles 1988, Giles et al. 1990) specifi-
cally for simulation of magneto-optic recording media
and has since become widely used. Its advantage is
that the use of FFTs give rise to a scaling with NlnN
rather than N#. The disadvantage is the need for a
lattice in order to carry out the discrete Fourier
transform. The problem can be formulated in a general
way using the following three-dimensional represen-
tation formulas:

M(x)¯3
pqr

m
pqr

ei(k
pqr

[ x) (40)

φ(x)¯3
pqr

ψ
pqr

ei(k
pqr

[ x) (41)

Here, k
pqr

¯ (k
p
, k

q
, k

r
) with k

p
¯ 2πp}L

z
, k

q
¯

2πq}L
y
, k

r
¯ 2πr}L

z
. By substitution into Eqn. (16)

and comparing coefficients it is straightforward to
show that

φ
pqr

¯®
4πi

rk
pqr

r#
m

pqr
[k

pqr
(42)

Determination of ®~φ then gives the field value.

See also: Micromagnetics : Finite Element Approach;
Magnetic Anisotropy; Coercivity Mechanisms; Mag-
netic Hysteresis
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