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ABSTRACT. This is the second paper in a series presenting case stodiesdern large-scale constrained
optimization [9], the purpose of which is to illustrate hogcent advances in algorithms and modeling lan-
guages have made it easy to solve difficult problems usingemmogiptimization software. In this paper, we
consider the shape of a hanging chain, which, in equilibriomimimizes the potential energy of the chain.
In addition to the tutorial aspects of this paper, we alsolesjze the importance of certain modeling issues
such as convex vs. nonconvex formulations of given probl&mwill present several models of the problem
and demonstrate differences in the number of iterationsahdion time.

1. INTRODUCTION

The hanging chain or catenary problem (the world “catenanrhes from the Latin word “catena”
meaning chain) was first posed in the Acta Eruditorium in M&9@ by Jacob Bernoulli as follows: "To
find the curve assumed by a loose string hung freely from twexifpoints”. Earlier, Galileo mistakenly
conjectured that the curve was a parabola. Later Joachigmpghaved that the curve cannot be a parabola
but without presenting any solution of the real curve. IneJtf91 there were three solutions published,
from Leibniz, Huygens and Johann Bernoulli brother of JacBien though these mathematicians ap-
proached this problem in three different ways they conduthat the curve was the hyperbolic cosine,
which then came to be known as the catenary.

In more recent times, the catenary curve has come to play portamt role in civil engineering. The
solution of the catenary problem provides the starting {doinconsideration of the effects on a suspended
cable of extraneous applied forces such as arising fromwbdodads on a practical suspension bridge.

However, in the real world, the problem of finding an optimahstruction shape is more complicated
than the original catenary problem. Jacob Bernoulli assuthat the string is flexible and of uniform
cross-section, which implies that every segment of equagtlehas equal mass. This assumption is too
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restrictive for modern engineering. Moreover, in many pcat suspension bridges the total weight of
the bridge, instead of being uniformly distributed along table, is actually more uniformly distributed
across the bridge span. In this case, the shape of the caldbesés to a parabola than a catenary.

The purpose of this paper is to demonstrate how a generat phablem can be modeled as an opti-
mization problem and solved by widely available optimiaattiools. Throughout the paper we present
several optimization models and demonstrate how to sokm tising optimization software. We express
these models in theampPL modeling language [5]. This language is used as a commonanesgh for
conveying optimization problems. We selecteno [6, 7, 8] as a nonlinear optimization solver, which
implements an interior point method (IPM) for general noadr optimization and adequately serves our
needs.

This paper is intended to be a tutorial on optimization. Weleasize the importance of proper model-
ing.

The main point we wish to illustrate is that any given physpablem can have multiple equivalent
mathematical formulations some of which are numericaligtable while others are not. More specifi-
cally, we focus on convex vs. nonconvex formulations of &pam. An optimization problem is convex
if it can be expressed as:

min f(x),

subject to

a/]<x):07 j:17"'7p7

where f(z), ¢;(z), 7 = 1,...,m are convex and,(x), j = 1,...,p are affine functions. Convex opti-
mization problems are much more numerically tractable ti@rconvex ones.

The paper is organized as follows. In the next section, wsiden the catenary problem with the mass
uniformly distributed along its length. We consider two rebidg approaches. The first one leads to
the solution of the nonconvex formulation of the catenagbgem in the direct formy(z), = € [x,, ).
The second model leads to the solution of the convex fornauaif the problem in a parametric form
(x(1),y(1)). t € [0, 1].

Section 3 considers the case when the mass of a chain ismiyfdistributed along the horizon. Again,
as in the previous section, two modeling approaches aredwresl leading ta/(x) and (x(t),y(t)) re-
spectively.

2. CHAIN PROBLEM, DISCRETIZATION ALONG THE HORIZON

The common formulation of the variational problem for finglithe shape of a heavy chain of length
[ with uniformly distributed mass along the chain is to find adtiony(x) that minimizes the potential
energy

Tp
(2) min/ y\/ 1+ y"dx,
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FIGURE 1. Catenary

wherey is height andy/1 + y'>dx is proportional to mass, subject to constraints:

Tp
) / 1+ y2de =1,

and

(3) y(xa) = Ya, y(l’b) = Yb-
The solution to this problem is

(4) y(x) = Ccoshx+c1 + Cy,

where the values of’, C; and C, are determined by conditions (2)-(3) ([1, 2]). Figure 1 shaWwe
graphical representation gfx).

2.1. Discretization. In [9], we considered two simple methods for discretizingcehus of variations

problems: the trapezoidal discretization and the midpdisdretization. We showed that the trapezoidal

method, which seems to be the most widely used method, is likehg to exhibit non uniqueness of the
solution when there are extra degrees of freedom over winehoptimizing. In this paper, we shall use
the midpoint discretization in all of the examples.

If 2, = 29 < x1 < -+ < xy_1 < xny = 1 IS the uniform discretization of segment,, x;], the
midpoint method approximates integrals as follows

f(z; 4 ,
/f flrig) . where xilzw,

i=0 (xl+1 .T)



4 IGOR A. GRIVA AND ROBERT J. VANDERBEI

param N := 200; s.t. egn {j in 1..N}%

param d = 5; ylil = y[i-1] + dx*ydot[j];

param ax := O0; param ay = O0; s.t. length:

param bx := d; param by := O; sum {j in 1..N} sqrt(1+ydot[j]"2)*dx = I;

param dx := (bx - ax)/N; s.t. leftfixed: y[0] = ay;

param x {j in 0..N} := s.t. rightfixed: y[N] = by;

ax*(1-j/N) + bx*j/N;

param | := 2*d; param g := 9.8; let {j in 0..N}

param m {0..N}, default 1; ylil := (i/N)*by + (1-j//N)*ay;
let {j in 1..N}

var y {0..N}; ydot[j] = (y[il-yl-1])/dx;

var ydot {j in 1..N}; solve;

minimize energy:

sum {j in 1..N}

dx*m[j]*g*sqrt(1+ydot[j]"2)*

(YII+yl-11)/2;

FIGURE 2. TheAmMPL modelmid.mod

Also, the method approximates the derivatives as follows

/ _ Y Y
Y (%‘%) =
Tj+1 —

, j=0,1,.,N—-1
We avoid creating extra variableﬁxﬂ%) in the middle of discretization intervals by approximating
y(@;41) = 0.5(y(z;41)+y(z;)). The function used to approximate integral (1{s;; 1) = 0.5[y(xj41)+
y(x)], /1 + y’(:(;j+%)2. The midpoint discretization of problem (1)-(3) in taePL modeling language is
shown in Figure 2.

We solved this problem witboQo for various values of discretization paramedérTable 1 shows the
behavior of the solver.

N =100 N =200 N =400 N =800
time 1.41 14.68 248.02
pr. val = | -223.2416282 -223.2449622 -223.2457957
dual val =| -223.2416282 -223.2449622 -223.2457957

pr. inf = 6.1le-12 1.6e-11 1.8e-12
dual inf = 2.3e-11 4.9e-11 1.0e-11
steps 50 90 199 >500

TABLE 1. Chain model, discretized along the horizon

2.2. Catenary problem — discretization along the chain. The discretized constraint (2) can be a source
of numerical problems for an interior point algorithm. Weufal that parameterization of the chain along
itself can lead to a model that is simpler to attack both nratitecally and numerically.
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FIGURE 3. Catenary

Let’s consider again a chain with uniformly distributed matong the cable. We look far:(t), y(t)),
t € [0,1], which minimizes the potential energy

l
5) mln/0 m(t)y(t)dt,
such that
(6) Pt =1,
and
(7) 2(0) =24, Y(0) =y, () =1, y()=uw

wherem(t) = m = const,& = dz/dt, y = dy/dt. The following proposition shows that the solution of
problem (5)-(7) coincides with that of (1)-(3).

Proposition 1. Let (z(t),y(t)), t € [0,1] be the solution of problems (5)-(7). The functian) is strictly
monotone and hence invertible. Furthermore,

.T—Cl

y (t7'(z)) = Ccosh + Cs,

where the values df', C'; and (5 are determined by conditions (6)-(7).

Proof. We can assume that = 1. Also, we can assume that# 0, ¢t € [0,!]. Otherwise it would
contradict the laws of physics: the horizontal componehtsmsionsT; andT applied to any portion of
the chain SR should be equilibrated (see Figure 3). Thexéffor(t), y(¢)) is the solution of problem (5)-
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(7) there exists a multipliex = A(¢), ¢ € [0,1] such thatz(t), y(t)) is an extremal without side condition
for the functional (see [1])

l
(8) min/ (y + A@*+9° — 1)) dt
0
The Euler equations for problem (8) are
Lok = 0,
L2y = 1.

Integrating the first equation we obtdini: = C. Keeping in mind that: # 0, ¢t € [0, ] we can express
A = C/(21) and substitute into the second equation, which becomes

9 C—==1.
© dt &
Since we look for a solution of the forg(z), we have
dy d
1 Rl ) — " -
(10) dr - Cqy = v

(Note: we use “dot” to denote differentiation with respext tind “prime” to denote differentiation with
respect tac). Also (6) turns to
ng +y2 — {i‘Q + (y/l‘)Q — 1’
which is equivalent to
1

under the assumption that> 0, ¢ € [0, []. Therefore combining (9), (10), and (11) we obtain the follogv
ODE

(11) i =

C 1
Yy
v 1+ y’2
which can be rewritten as Y
C 4 dx.

V1+y? B
After integrating this ODE we have
r=Csinh 'y + Cy,

. x—Ch
" = sinh )
Y sin ( c )

Finally after another integration we obtain

which is equivalent to

ZC—Cl

y(z) = C cosh + Cs.

This proves the proposition.
Figure 4 presents the discretized problem (5)-(7). Thisxpation problem has N constraints:
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param N := 200; s.t. link {j in 1..N}:
param d:=5; (XO1-x0-11)"2+(y[lil-yli-11)2
param ax := 0; param ay := O0; = (IIN)"2;
param bx := d; param by := 0; s.t. xleftfixed: x[0] = ax;
param | :=2*d; param g := 9.8; s.t. yleftfixed: y[0] = ay;
param m {1..N-1}, default 1; s.t. xrightfixed: x[N] = bx;
s.t. yrightfixed: y[N] = by;
var x {0..N};
var y {0..N}; let {j in 0.N} x[j] :=
(i/N)*b_x + (1-j/N)*a_x;
minimize energy: let {j in 0.N} y[j] =
(I/N)*sum {j in 1..N-1} m[j]*g*y[j]; (i/NY*b_y + (1-j/N)*a_y;
solve;
FIGURE 4. TheAMPL modelchain.mod
s.t. link {j in 1.N}: (X[]-x[-1)"2+(y[l-yi-1)"2 = ( I/N)"2;

which are a potential source of numerical problems. Indee@o fails to solve this problem even with
N = 100.

However, the formulation can be simplified drastically biaxéng the equality in the “link” constraints
into inequalities:

st link §f in 1N} (X[]-X[-1])"2+(y[l-y[i-1])2 <= (INY"2;

It can be shown by contradiction that an optimal solutiom&groblem in Figure 4 with the relaxed “link”
constraints satisfies the constraints as equalities. thdegpose that one or more “link” constraints are
strict inequalities for an optimal solution. Then by rotgtisub chains around fixed points A and B (see
Figure 1) or by lowering the sub chain between multiple iradify links we can decrease the potential
energy of the whole chain, which contradicts optimality.

At the same time, the relaxed problem is convex with a linégeaive function and easily solvable by
any nonlinear optimization code in particulanQo. Table 2 displays solution statistics.

N =100 N =200 N =400 N =800
time 0.12 0.24 0.53 1.10

pr. val = | -223.2381141 -223.2440837 -223.2455761 -223.2459492

dual val =| -223.2381140 -223.2440837 -223.2455761 -223.2459492

pr. inf = 1l.4e-11 3.0e-12 2.6e-13 2.6e-13
dual inf = 2.7e-12 9.4e-13 1.5e-14 1.2e-14
steps 22 24 27 28

TABLE 2. Parameterized chain

If the mass function is not a constant along the chain butggead any general known functiom(t)
then it is still easy to obtain a solution of a hanging chaiipem. For example, let the mass of each node
equal 1 except for three special nodes: the center node artdithnodes one quarter of the length away
from both end points. This specification is modeled by makiegfollowing addition to thesmPL code
in Figure 4:
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FIGURE 5. Not uniformly distributed mass function

let {j in 1..3} mfint((N-1)*/4)] := 0.3*N:

The resulting shape of the chain is shown in Figure 5 whildél8lpresents the statistics of the solver’s

behavior.
N =100 N = 200 N =400 N =800
time 0.21 0.35 0.80 1.80
pr. val = | -474.7789365 -479.2553063 -481.4659418 -482.5641514
dual val =| -474.7789365 -479.2553063 -481.4659417 -482.5641513
pr. inf = 8.0e-12 3.4e-12 7.5e-12 4.0e-12
dual inf = 1l.1le-11 7.8e-12 3.0e-11 2.4e-11
steps 36 36 42 46

TABLE 3. Not uniformly distributed mass function

2.3. Lessons.Hanging chain problems are convex and therefore easy te gahe model representation
is also convex. It is apparently not possible to make a convesel when parameterizing along But

it is easy to do so when

parameterizing along the chain. bhdée convexity is created when constraint

(5) is relaxed to the inequality without changing the oplis@ution. However, if the model is discretized
along the horizon, the relaxation of constraint (2) to ireddy gives a model that is not equivalent and
results in an incorrect solution (see Figure 6). The lend@#mncextremal chain turns out to be less tlian
and thus we cannot employ this trick for problem (1)-(3). elerthe parameterized model (5)-(7) is more
suitable for the computational analysis.
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FIGURE 6. Relaxed model, discretized along the horizon

3. BRIDGE PROBLEM

The hanging chain model can be the starting point for stuglgiher problems of structural design in
civil engineering. For example, let’s consider the probtendentifying the shape of the cable that carries
a suspension bridge. In this case, the total weight of thegbkriinstead of being uniformly distributed
along the cable, is actually more uniformly distributedaasrthe bridge span. This weight distribution
makes the bridge model more difficult to analyze.

In this section, we consider the bridge model and show hoantsolved usingoqQo.

3.1. Bridge problem, discretization along the horizon. Let us first try to build a bridge model dis-
cretized along the horizontal axis, which implies that treesmfunction is constantz(x) = m for anyz.
The variational problem that reflects this situation cowdddrmulated as follows:

(12) min /mb y(x)dz,
such that a

(13) /xb 1+ y2de =1,
with “

(14) Y(Ta) = Yoy Y(T0) = Y-

Surprisingly, the solutiop(z) to this problem is an arc segment of a circle:
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Proposition 2. If 0 < I; < [ < l,, for some constants and !, then the solutiony(z), x € [x,, 23] of
problem (12)-(14) satisfies

(x = c)* + (y(z) —d)* =17,
wherec, d andr are determined by conditions (13)-(14).

Proof. If y(z) is the solution to problem (12)-(14) then there exists a s, such thaty(x) is an
ordinary extremal of the following functional [1]:

(15) /:b(y + 7/ 1 +y'?)d.

The solutiony(z), = € [x,, 23] satisfies the Euler equation

/

d ry _1
dx /1+y/2 =

/

ry

V1+y? B
wherec is a constant of integration.
After squaring the last expression we obtain
(ry')’ = (= )’ (1 +¢7).
Since we are looking for a minimum of (12) theign(y’) = sign(x — ¢). Therefore we can rewrite the
last expression as

which after the integration becomes

T —c,

J = r—c
7’2—(33—0)2’

which after integration becomes
y_d: TQ_('T_C)Qv
and therefore
(x —c)* + (y(z) —d)? = r’.
The proof of the proposition is complete.

Let us find a solution of (12)-(14) numerically. Figure 7 sisaive correspondingmPL model. Note

that constraint (13) is relaxed to an inequality to make tfodlem convex:

s.t. length: sum {j in 1..N} sqrt(1+ydot[j]"2)*dx <= I,
Again, it can be shown by contradiction that the optimal 8oluof problem in Figure 7 with the relaxed
“length” constraints satisfies these constraints as diipgliThe solution of this problem is the semicircle
(see Figure 8). Table 4 presents the statistics of the selvehavior.

Remark 3.2 For values of within a certain rangé, < [ < I,, the solution of problem (12)-(14) is
an arc of a circle. However, if the length of a cable is big agfoit is no longer possible to find a circle
satisfying conditions (13)-(14). Then the solution of gesh (12)-(14) may be found from a class of
nonsmooth functions. Theoretical analysis corresponttirigis case is complicated. It is simpler to find
solutions numerically. For example, let us double the lemgia chain:

param | := 2*d*2*atan(1).
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param N := 200;

param d := 5;

param ax := 0; param ay :=
param bx := d; param by :=
param dx := (bx - ax)/N;

param x {j in 0..N} :=
ax*(1-j/N) + bx*j/N;

param | := d*2*atan(1); param
param m {0..N}, default 1;

var y {0..N};
var ydot {j in 1..N};

minimize energy:
sum {j in 1..N}
dx*m({il*g*(ylil+yli-11)/2;

s.t. egn {j in 1..N}%

ylil = yli-1] + dx*ydot[j];

s.t. length:

sum {j in 1..N} sqrt(1+ydot[j]"2)*dx <= 1I;
s.t. leftfixed: y[0] = ay;

s.t. rightfixed: y[N] = by;

let {j in 0..N}

yliil = (/N)*by + (1-j/N)*ay;
let {j in 1..N}

ydot[j] = (Y[i]-y[i-1])/dx;
solve;

FIGURE 7. TheamMPL modelfixedmass.mod

FIGURE 8. Circle

11

The graph of the solution is shown in Figure 9 and the solyslsavior is shown in Table 5. Our pre-
sumption is that the curveMmNB in Figure 9 consists of circle segmewntl and two vertical segmenisv

andNB.

Remark 3.3, The solution to problem (12)-(14) does not lead to a regbansion bridge model with
uniformly distributed mass along the horizon. Actually,kimg an assumption of a mass distributioifx)
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N =100 N =200 N =400 N =800
time 0.22 0.98 6.43 57.79
pr. val = | -96.16397810 -96.19471719 -96.20546126 -96.2092295
dual val =| -96.16397809 -96.19471719 -96.20546125 -96.2092295
pr. inf = 1.7e-11 9.1le-12 2.7e-11 1.9e-11
dual inf = 2.6e-11 4.4e-12 2.1e-11 l.le-11
steps 20 19 20 21

TABLE 4. Fixed uniformly distributed mass function along the hontal axis

N =100 N =200 N =400 N =800
time 0.26 1.30 8.07 70.39
pr. val = | -286.7872655 -287.7015964 -288.1639555 -288.3974098
dual val =| -286.7872655 -287.7015964 -288.1639555 -288.3974098
pr. inf = 1.3e-12 1l.1le-12 4.6e-12 2.5e-12
dual inf = 5.1e-12 1.5e-11 9.0e-12 5.8e-12
steps 23 25 25 26
TABLE 5. Long chain
A B

FIGURE 9. Long circle
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in criteria (12) results in the appearance of horizontagewdl forces, which prevent redistribution of the
chain mass along the horizon.

To clarify, let us consider the situation in Figure 10. Sugpwe have fixed vertical rods with sliding
frictionless rings of given mass and a weightless stringctvigoes through all the rings. This is exactly
the case when the distribution of mass along the horizones!fiK the system rests in the state of minimal
potential energy there will be normal horizontal forces aayfrom the rods. However the shape of the
hanging chain is the result of just the gravity and tensioods.

3.2. Lessons.Problem (12)-(14) cannot handle the case when we want tolimghape of the a chain
with a given distribution along the horizon(z) due to the following difficulty: we cannot use function
m(z) in the criteria (12) because it leads to the appearance &fdraal external forces and brings us to a
wrong solution. The next subsection resolves this paradwwvthe chain is parameterized along itself.

3.3. Bridge model, discretization along the chain’s length.In this section we consider the situation
where the mass of the bridge is distributed along the honxbite the chain is parameterized along its
length(z(t),y(t)), t € [0,1].

In the minimized integral criteria we cannot make assummgtion the mass distributions along the
horizon (see Remark 3.3). Therefore we assume that masbulistn depends only oh In the following,
we consider again model (5)-(7) with a general mass digtdbdunctionm(t)

I
(5) min/ m(t)y(t)dt,
0
such that
(6) &4yt =1,
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and

(7) l’(O) = g, y(O) = Ya, {L’(l) = Ty, y(l) = Yp-
For any distribution functiomn(¢) there is a solution to problem (5)-(7). However we are irgte in

the specific case where the mass is uniformly distributedgatbe horizon when the minimum is found.
The following proposition proves that only the parabola barsuch a solution.

Proposition 3. Let (z(t),y(t)), t € [0,l] be the solution to problem (5)-(7) whose mass is uniformly
distributed along the horizon, then

(16) y(z) = Ci2? + Cox + Cs,
where the values d@f;, > 0, C, andC; are determined by conditions (6)-(7).

Proof. We can assume that # 0, ¢t € [0,1], see (Proposition 3.1). Therefore if vector function
(x(t),y(t)) is the solution of problems (5)-(7) then there exists a rplidtt A = A\(¢), ¢ € [0,!] such that
(z(t),y(t)) is an extremal without side condition for the functional

l
(17) / (m(®)y() + AO)E + 7 — 1)) dt,
0
The Euler equations for problem (17) are
LoNi = 0,

Integrating the first equation we obtdini: = C. Keeping in mind that: > 0, ¢ € [0, ] we can express
A = C/(21¢) and substitute to the second equation, which becomes

dy
1 — = = :
(18) o =m(t)
Since we look for the solution with uniformly distributed ssaalong the horizon the following relation
betweenn(t) andm(x) holds

m(x)

Vity?

wherem = M/|z, — x| and M is the mass of whole chain. The second equality follows frad).(
Therefore taking into account (10) and (19) we can rewri8) &b follows

(19) m(t) =

m(x)t = mz,

Cy't = ma.
Sincez > 0 we have c
2m
" 1
=— (Ci=—>0
y 2 ) 1 C )

which after integrating two times becomes (16). This prdatesproposition.

Remark 3.5. If instead of (19) one considers(t) = m, t € [0,[] for ordinary differential equation
(18), one can verify thag(z) is a hyperbolic cosine (4). Therefore equations (18) ana46)be treated
as general necessary conditions for problem (5)-(7) forgiwsn mass functiom(t).



CASE STUDIES IN OPTIMIZATION: CATENARY PROBLEM 15

Although there is no explicit optimization criteria in (§)8), we still argue that the solution to this
system can be obtained easily by using the solver. Let ug iy problem numerically for the case when
the mass is distributed uniformly along the horizon

o
oY~

(20) T m(t),
(21) P4yt =1,
(22) 2(0) = x4, y(0)=ya, ()=, y(l) =1y

One possible way is to discretize (20), (21) without objexfunction subject to fixed end constraints
(22). This approach can lead to numerical problems, sirepithblem becomes nonlinear and nonconvex.
Instead we will try to "convexify” the problem to make it moneanageable. Again we relax constraint
(21) to inequality and introduce a linear objective funatiavhich guarantees that a solution will satisfy
constraint (21) as equality.

In order to simplify constraint (20) we integrate it

i )
(23) c2 = [ migyas B =21~ E.

where a new variablé/(t) = fjm(g)dg is a total mass of a chain segment when [0, 7].
Discretizing)M (t) leads to the following

t+1
(24) MH=M+/ m(€)d

If mass is distributed uniformly along the horizon then ditized (24) becomes
M[t+1] = M[t] + m*(x[t+1] - X[t]),
while discretized (23) yields
CHy[t-y[t-1]) + E*(x[t-x[t-1]) = M[(x[t]-x[t-1]);
where constants C and E will be treated as unknown variablgsre 11 shows the complete discretized
AMPL model and Table 6 presents the behavior of the solver.

N =100 N =200 N =400 N = 800
time 0.30 0.68 1.63 3.4

pr. val = | -222.6832577 -222.6897622 -222.6913882 -222.6917948

dual val =| -222.6832577 -222.6897622 -222.6913882 -222.6917948

pr. inf = 1.2e-12 4.1e-13 6.3e-13 3.4e-13
dual inf = 4.1e-13 8.5e-14 5.0e-14 5.7e-15
steps 23 25 28 30

TABLE 6. Parabolic chain

Remark 3.6. To obtain the solution with any distribution function(¢) it is enough to change the
“mint” constraint. For example to obtain the catenary soltim(t) = m, ¢t € [0,!]) it is enough to
replace the “mint” constraint with the following:
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param N := 200;
param d:=
param ax 0; param ay :
param bx d; param by :
param | := 2*d; param g :=
param m {1..N}, default 1;

1
’

0
0;
8

M oo;

© i

var
var

x {0..N};
y
var C;
E;
M

{0..N}

var
var {0..N};

minimize energy:

(I/N)*sum {j in 1..N-1} m[j]*g*y[j];

s.t. link {j in 1..N}:
(XO1-x0-1D)"2+(y0l-yli-1)"2)<= (IN)2;

st eqlb {j in 1..N}: M[*(lx[-1])
= C*(ylil-yl-11) + E*(X[]-x0-11);

s.t. mint {j in 0..N-1}:
M[+1] = M[] + m{+1]*(x[j+1]-x[]);

s.t. mifixed: M[0] = O;
let {j in 0..N} x[j] =
(i/N)*b_x + (1-j/N)*a_x;
let {j in 0..N} y[j] =
(/N)*b_y + (1-)/N)*a_y;

solve;

s.t. xleftfixed: x[0] = ax;

s.t. yleftfixed: y[0] = ay;
s.t. xrightfixed: x[N] = bx;
s.t. yrightfixed: y[N] = by;

FIGURE 11. TheAmPL modelparab.mod

s.t. mint {j in 0..N-1}: M[j+1] = M[j] + m[j+1].
Table 7 shows the solver’s behavior while Figure 12 showpehaf the parabolic and catenary chains.

N =100 N =200 N =400 N = 800
time 0.34 1.10 3.74 13.18

pr. val = | -223.2381140 -223.2440837 -223.2455761 -223.2459492

dual val =| -223.2381140 -223.2440837 -223.2455760 -223.2459492

pr. inf = 2.2e-12 4.5e-13 1.5e-12 1.6e-13
dual inf = 2.9e-11 2.7e-12 1.9e-12 6.7e-12
steps 32 51 82 149

TABLE 7. Catenary chain

4. CONCLUSION.

Analyzing the hanging chain model we have come to severallgsions. First, discretizing the model
along the chain gives more flexibility in modeling variouses. In particular, we were able to model
the case when the mass function is uniformly distributed@lihe bridge span. Also, we explained the
difficulties that prevented the modeling of this situatidmem the problem is discretized along the horizon.

Second, when the model is discretized along the chain,igmsfecantly simpler to solve the correspond-
ing optimization problem using a nonlinear optimizer. Imtfgaular, the catenary problem with known mass
functionm(t) becomes a convex optimization problem. As a resultL. o, it takes seconds to find the
solution even for a large number of discretization points.
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— - catenary
—— bridge
1 1 1 1 1 1 1 1 1

0 0.5 1 15 2 25 3 35 4 4.5 5

FIGURE 12. Parabolic and catenary chains

Third, after solving a variety of models we are convincedmimportance of a proper modeling. Prob-
lems can often be reformulated to create a simpler optimizgiroblem and thereby reduce significantly
the solution time.

Finally, we have chosenoQo as a solver for this paper. Those who are interested in thavilmhof
different solvers for this class of problems can refer to4B,where one can find comparative studies
for different solvers, and also toEoswebsite http://www-neos.mcs.anl.gov/, where one canhuséést
optimization software for problems formulatedAmpL.
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