
 Mumford and ShahModel
and its Applications to
Image Segmentation and
Image Restoration
Leah Bar ⋅Tony F. Chan ⋅Ginmo Chung ⋅Miyoun Jung ⋅
Nahum Kiryati ⋅Rami Mohieddine ⋅Nir Sochen ⋅
Luminita A. Vese

. Introduction: Description of theMumford and Shah Model. . . . . . . . . . . . . . . . .

. Background:The First Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. Minimizing in u with K Fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. Minimizing in K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Mathematical Modeling and Analysis: TheWeak Formulation
of the Mumford and Shah Functional.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Numerical Methods: Approximations to the Mumford
and Shah Functional.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.. Ambrosio and Tortorelli Phase-Field Elliptic Approximations. . . . . . . . . . . . . . . . . .
... Approximations of the Perimeter by Elliptic Functionals. . . . . . . . . . . . . . . . . . . . . . . .
... Ambrosio-Tortorelli Approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. Level Set Formulations of the Mumford and Shah Functional. . . . . . . . . . . . . . . . . .
... Piecewise-Constant Mumford and Shah Segmentation Using Level Sets. . . . . . 
... Piecewise-Smooth Mumford and Shah Segmentation Using Level Sets. . . . . . . .
... Extension to Level Set Based Mumford–Shah Segmentation

with Open Edge Set K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Case Examples: Variational Image Restoration with Segmentation-Based
Regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.. Non-blind Restoration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. Semi-Blind Restoration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. Image Restoration with Impulsive Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. Color Image Restoration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. Space-Variant Restoration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Otmar Scherzer (ed.), Handbook of Mathematical Methods in Imaging, DOI ./---_,
© Springer Science+Business Media LLC 



  Mumford and Shah Model and its Applications to Image Segmentation and Image Restoration

.. Level Set Formulations for Joint Restoration
and Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.. Image Restoration by Nonlocal Mumford–Shah Regularizers. . . . . . . . . . . . . . . . . . .

. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Recommended Reading.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l . . . . . . . . . . . . . . . . . . . . .



Mumford and Shah Model and its Applications to Image Segmentation and Image Restoration  

Abstract: We present in this chapter an overview of the Mumford and Shah model for
image segmentation. We discuss its various formulations, some of its properties, the math-
ematical framework, and several approximations. We also present numerical algorithms
and segmentation results using the Ambrosio–Tortorelli phase-field approximations on
one hand, and using the level set formulations on the other hand. Several applications of
the Mumford–Shah problem to image restoration are also presented.

. Introduction: Description of theMumford and Shah
Model

An important problem in image analysis and computer vision is the segmentation one, that
aims to partition a given image into its constituent objects, or to find boundaries of such
objects. This chapter is devoted to the description, analysis, approximations, and appli-
cations of the classical Mumford and Shah functional proposed for image segmentation.
In [–], David Mumford and Jayant Shah have formulated an energy minimization
problem that allows to compute optimal piecewise-smooth or piecewise-constant approx-
imations u of a given initial image g. Since then, their model has been analyzed and
considered in depth by many authors, by studying properties of minimizers, approxima-
tions, and applications to image segmentation, image partition, image restoration, and
more generally to image analysis and computer vision.

We denote by Ω ⊂ R
d the image domain (an interval if d = , or a rectangle in the

plane if d = ). More generally, we assume that Ω is open, bounded, and connected. Let
g : Ω → R be a given gray-scale image (a signal in one dimension, a planar image in two
dimensions, or a volumetric image in three dimensions). It is natural and without losing
any generality to assume that g is a bounded function in Ω, g ∈ L∞(Ω).

As formulated byMumford and Shah [], the segmentation problem in image analysis
and computer vision consists in computing a decomposition

Ω = Ω ∪Ω ∪ . . . ∪ Ωn ∪ K

of the domain of the image g such that

(a) The image g varies smoothly and/or slowly within each Ω i .
(b) The image g varies discontinuously and/or rapidly across most of the boundary K

between different Ω i .

From the point of view of approximation theory, the segmentation problem may be
restated as seeking ways to define and compute optimal approximations of a general func-
tion g(x) by piecewise-smooth functions u(x), i.e., functions u whose restrictions ui to
the pieces Ω i of a decomposition of the domain Ω are continuous or differentiable.
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In what follows, Ω i will be disjoint connected open subsets of a domain Ω, each one
with a piecewise-smooth boundary, and K will be a closed set, as the union of boundaries
of Ω i inside Ω, thus

Ω = Ω ∪Ω ∪ . . . ∪ Ωn ∪ K, K = Ω ∩ (∂Ω ∪ . . . ∪ ∂Ωn).

The functional E to be minimized for image segmentation is defined by [–],

E(u,K) = μ
∫

Ω
(u − g)dx +

∫

Ω/K
∣∇u∣dx + ∣K∣, (.)

where u : Ω → R is continuous or even differentiable inside each Ω i (or u ∈ H
(Ω i)) and

may be discontinuous across K. Here, ∣K∣ stands for the total surface measure of the hyper-
surface K (the counting measure if d = , the length measure if d = , the area measure
if d = ). Later, we will define ∣K∣ byHd−

(K), the d −  dimensional Hausdorff measure
in R

d .
As explained by Mumford and Shah, dropping any of these three terms in (> .),

inf E = : without the first, take u = , K = /; without the second, take u = g, K = /;
without the third, take for example, in the discrete case K to be the boundary of all pixels
of the image g, each Ω i be a pixel and u to be the average (value) of g over each pixel. The
presence of all three terms leads to nontrivial solutions u, and an optimal pair (u,K) can
be seen as a cartoon of the actual image g, providing a simplification of g.

An important particular case is obtained when we restrict E to piecewise-constant
functions u, i.e., u = constant ci on each open set Ω i . Multiplying E by μ−, we have

μ−E(u,K) = ∑
i
∫

Ω i

(g − ci)dx + ∣K∣,

where  = /μ. It is easy to verify that this is minimized in the variables ci by setting

ci = meanΩ i (g) =
∫Ω i

g(x)dx
∣Ω i ∣

,

where ∣Ω i ∣ denotes here the Lebesgue measure of Ω i (e.g., area if d = , volume if d = ),
so it is sufficient to minimize

E(K) = ∑
i
∫

Ω i

(g −meanΩ i g)
dx + ∣K∣.

It is possible to interpret E as the limit functional of E as μ →  [].
Finally, the Mumford and Shah model can also be seen as a deterministic refinement

of Geman and Geman’s image restoration model [].

. Background: The First Variation

In order to better understand, analyze, and use the minimization problem (> .), it is
useful to compute its first variation with respect to each of the unknowns.
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We first recall the definition of Sobolev functions u ∈ W ,
(U) [], necessary to

properly define a minimizer u when K is fixed.

Definition  LetU ⊂ R
d be an open set. We denote byW ,

(U) (or by H
(U)) the set of

functions u ∈ L
(Ω), whose first-order distributional partial derivatives belong to L

(U).
This means that there are functions u, . . . ,ud ∈ L

(U) such that

∫

U
u(x)

∂φ
∂xi

(x)dx = −
∫

U
ui(x)φ(x)dx

for  ≤ i ≤ d and for all functions φ ∈ C∞c (U).

We may denote by ∂u
∂xi

the distributional derivative ui of u and by∇u = (
∂u
∂x

, . . . , ∂u
∂xd

)

its distributional gradient. In what follows, we denote by ∣∇u∣(x) the Euclidean norm of
the gradient vector at x. H

(U) = W ,
(U) becomes a Banach space endowed with the

norm

∥u∥W ,
(U) = [∫

U
udx +

d

∑

i=
∫

U
(

∂u
∂xi

)



dx]
/

.

.. Minimizing in uwith K Fixed

Let us assume first that K is fixed, as a closed subset of the open and bounded set Ω ⊂ R
d ,

and denote by

E(u) = μ
∫

Ω/K
(u − g)dx +

∫

Ω/K
∣∇u∣dx,

for u ∈ W ,
(Ω/K), where Ω/K is open and bounded, and g ∈ L

(Ω/K). We have the
following classical results obtained as a consequence of the standard method of calculus of
variations.

Proposition  There is a unique minimizer of the problem

inf
u∈W ,

(Ω/K)
E(u). (.)

Proof [] First, we note that  ≤ inf E < +∞, since we can choose u ≡  and
E(u) = μ

∫Ω/K g(x)dx < +∞. Thus, we can denote by m = inf u E(u) and let
{uj} j≥ ∈ W ,

(Ω/K) be a minimizing sequence such that lim j→∞ E(uj) = m.
Recall that for u, v ∈ L,

∥

u + v


∥




+ ∥

u − v


∥




=



∥u∥




+



∥v∥




,

and so

∥

u + v


∥




=



∥u∥




+



∥v∥




− ∥

u − v


∥




. (.)
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Let u, v ∈ W ,
(Ω/K), thus E(u), E(v) < ∞, and apply (> .) to u − g and v − g, and

then to∇u and ∇v; we obtain

E (
u + v


) =



E(u) +



E(v) −

μ

 ∫

Ω/K
∣u − v∣dx −


 ∫Ω/K

∣∇(u − v)∣dx

=



E(u) +



E(v) −

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

μ


∥u − v∥W ,

(Ω/K) + ( −
μ


)∥∇(u − v)∥ if



≥

μ





∥u − v∥W ,

(Ω/K) + (
μ


− )∥u − v∥ if



≤

μ



. (.)

If we choose u, v ∈W ,
(Ω/K), such that E(u), E(v) ≤ m + є, then

m ≤ E (
u + v


) ≤ m + є −

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

μ


∥u − v∥W ,

(Ω/K) + ( −
μ


)∥∇(u − v)∥ if



≥

μ





∥u − v∥W ,

(Ω/K) + (
μ


− )∥u − v∥ if



≤

μ



thus,

∥u − v∥W ,
(Ω/K) ≤

⎧
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎩

є
μ

if


≥

μ



є if


≤

μ



. (.)

We letwj = uj −u. From (> .), {wj} is a Cauchy sequence inW ,
(Ω/K); let w denote

its limit and set u = u +w. Then

E(u) = μ∥u − g∥ + ∥∇u∥

 = μ∥(u − g) +w∥ + ∥∇u +∇w∥
= lim

j→+∞
[μ∥(u − g) +wj∥


 + ∥∇u + ∇wj∥


]

= lim
j→+∞

E(uj) = m,

by the continuity of L-norms. This shows the existence of minimizers. The uniqueness
follows from (> .) by taking є = . ∎

Proposition  The unique solution u of (> .) is solution of the elliptic problem

∫

Ω/K
∇u(x) ⋅ ∇v(x)dx = −μ

∫

Ω/K
[u(x) − g(x)]v(x)dx, ∀v ∈ W ,

(Ω/K), (.)

or of
△u = μ(u − g)
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in the sense of distributions inΩ/K, with associated boundary condition ∂u
∂N⃗

=  on ∂(Ω/K),
where ⃗N is the exterior unit normal to the boundary.

Proof Indeed, let є ↦ A(є) = E(u + єv) for є ∈ R and arbitrary v ∈ W ,
(Ω/K). Then A

is a quadratic function of є, given by

A(є) = μ
∫

Ω/K
(u − g)dx + єμ

∫

Ω/K
vdx + єμ

∫

Ω/K
(u − g)vdx

+
∫

Ω/K
∣∇u∣dx + є

∫

Ω/K
∣∇v∣dx + є

∫

Ω/K
∇u ⋅ ∇vdx,

and we have

A′(є) = єμ
∫

Ω/K
vdx + μ

∫

Ω/K
(u − g)vdx + є

∫

Ω/K
∣∇v∣dx

+ 
∫

Ω/K
∇u ⋅ ∇vdx,

and
A′() = μ

∫

Ω/K
(u − g)vdx + 

∫

Ω/K
∇u ⋅ ∇vdx.

Since we must have E(u) = A() ≤ A(є) = E(u + єv) for all є ∈ R and all v ∈ W ,
(Ω/K),

we impose A′() =  for all such v, which yields the weak formulation (> .).
If in addition u would be a strong classical solution of the problem, or if it would belong

toW ,
(Ω/K), then integrating by parts in the last relation we obtain

A′() = μ
∫

Ω/K
(u − g)vdx − 

∫

Ω/K
(△u)vdx + 

∫

∂(Ω/K)
∇u ⋅ ⃗Nvds = .

Taking now v ∈ C
(Ω/K) ⊂W ,

(Ω/K), we obtain

△u = μ(u − g) in Ω/K.

Using this and taking now v ∈ C
(Ω/K), we deduce the associated implicit boundary

condition ∇u ⋅
⃗N =

∂u
∂N⃗

=  on the boundary of Ω/K (in other words, on the boundary
of Ω and of each Ω i). ∎

Assume now that g ∈ L∞(Ω/K), which is not a restrictive assumption when g repre-
sents an image. We can deduce that the unique minimizer u of (> .) satisfies ∥u∥∞ ≤

∥g∥∞ (as expected, due to the smoothing properties of the energy). To prove this, we first
state the following classical lemma (see e.g., ref.[], Chapter A).

Lemma  If Ω/K is open, and if u ∈ W ,
(Ω/K), then u+ = max(u, ) also lies in

W ,
(Ω/K) and ∣∇u+(x)∣ ≤ ∣∇u(x)∣ almost everywhere.

Now let u∗(x) = max{−∥g∥∞,min(∥g∥∞,u(x))} be the obvious truncation of u.
Lemma  implies thatu∗ ∈W ,

(Ω/K) and that
∫Ω/K ∣∇u

∗
(x)∣dx ≤

∫Ω/K ∣∇u(x)∣
dx.We

also obviously have
∫Ω/K(u

∗
−g)dx ≤

∫Ω/K(u−g)
dx, andwe deduce that E(u∗) ≤ E(u).

But u is the unique minimizer of E, thus u(x) = u∗(x) almost everywhere and we deduce
∥u∥∞ ≤ ∥g∥∞.
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Remark  Several classical regularity results for a weak solution u of (> .) can be
stated:

● If g ∈ L∞(Ω/K), then u ∈ C
l oc(Ω/K) (see e.g., ref.[], Chapter A).

● If g ∈ L
(Ω/K), then u ∈ W ,

l oc (Ω/K) = H
l oc(Ω/K), which implies that u solves the

PDE (see e.g., ref.[], Chapter .).

△u = μ(u − g) a.e. in Ω/K.

.. Minimizing in K

We wish to formally compute here the first variation of E(u,K) with respect to K. Let us
assume that (u,K) is a minimizer of E from (> .), and we vary K. Let us assume that
locally, K ∩U is the graph of a regular function ϕ, whereU is a small neighborhood near a
regular, simple point P of K. Without loss of generality, we can assume thatU = D×I where
I is an interval in R and K ∩U = {(x, x, . . . , xd) ∈ U = D × I : xd = ϕ(x, . . . , xd−)}. Let
u+ denote the restriction of u to

U+ = {(x, x, . . . , xd) : xd > ϕ(x, . . . , xd−)} ∩U ,

and u− the restriction of u to

U− = {(x, x, . . . , xd) : xd < ϕ(x, . . . , xd−)} ∩U ,

and chooseH extensions of u+ fromU+ toU , and of u− fromU− toU . For small є, define
a deformation Kє of K inside U as the graph of

xd = ϕ(x, . . . , xd−) + єψ(x, . . . , xd−),

such that ψ is regular and zero outside D, and Kє = K outside U . Define

uє(x) =
⎧
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎩

u(x) if x ∉ U ,
(extension of u+)(x) if x ∈ U , x above Kє ∩U
(extension of u−)(x) if x ∈ U , x below Kє ∩U .

Now, using z = (x, . . . , xd−),

E(uє ,Kє) − E(u,K) = μ
∫

U
[(uє − g)dx − (u − g)] dx

+
∫

U/Kє

∣∇uє ∣dx − ∫
U/K

∣∇u∣dx + [∣Kє ∩U ∣ − ∣K ∩U ∣]

= μ
∫

D
(
∫

ϕ(z)+єψ(z)

ϕ(z)
[(u− − g) − (u+ − g)] dxd)dz

+
∫

D
(
∫

ϕ(z)+єψ(z)

ϕ(z)
[∣∇u−∣ − ∣∇u+∣] dxd) dz

+
∫

D
[

√

 + ∣∇(ϕ + єψ)∣ −
√

 + ∣∇ϕ∣]dz.
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Thus,

lim
є→

E(uє ,Kє) − E(u,K)
є

= μ
∫

D
[(u− − g) − (u+ − g)] ∣

xd=ϕ(z)
ψ(z)dz

+
∫

D
[∣∇u−∣ − ∣∇u+∣] ∣

xd=ϕ(z)
ψ(z)dz +

∫

D

∇ϕ ⋅ ∇ψ
√

 + ∣∇ϕ∣
dz = 

for all such ψ, since (u,K) is a minimizer. Integrating by parts, we formally obtain for
all ψ:

∫

D

⎧
⎪
⎪

⎨

⎪
⎪
⎩

[(μ(u− − g) + ∣∇u−∣) − (μ(u+ − g) + ∣∇u+∣)] ∣
xd=ϕ(z)

− div
⎛

⎝

∇ϕ
√

 + ∣∇ϕ∣
⎞

⎠

⎫
⎪
⎪

⎬

⎪
⎪
⎭

ψ(z)dz = ,

and we obtain the first variation with respect to K,

[μ(u− − g) + ∣∇u−∣] − [μ(u+ − g) + ∣∇u+∣] − div
⎛

⎝

∇ϕ
√

 + ∣∇ϕ∣
⎞

⎠

=  (.)

on K ∩U . Noticing that the last term represents the curvature of K ∩U , and if we write the
energy density as

e(u; x) = μ(u(x) − g(x)) + ∣∇u(x)∣,

we finally obtain

e(u+) − e(u−) + curv(K) =  on K

(at regular points of K, provided that the traces of u and of ∣∇u∣ on each side of K are taken
in the sense of Sobolev traces).

We conclude this section by stating another important result from [] regarding the
type of singular points of K, when (u,K) is a minimizer of E from (> .), in two
dimensions, d = . For the rather technical proof of this result, we refer the reader to the
instructive and inspiring constructions from [].

Theorem  Let d = . If (u,K) is a minimizer of E(u,K) such that K is a union of simple
C,-curves Ki meeting ∂Ω and meeting each other only at their endpoints, then the only
vertices of K are:

() Points P on the boundary ∂Ω where one Ki meets ∂Ω perpendicularly
() Triple points P where three Ki meet with angles π/
() Crack-tips where a Ki ends and meets nothing.



  Mumford and ShahModel and its Applications to Image Segmentation and Image Restoration

In the later sections we will discuss cases when theminimizer u is restricted to a specific
class of piecewise-constant or piecewise-smooth functions.

. Mathematical Modeling and Analysis: TheWeak
Formulation of the Mumford and Shah Functional

To better study the mathematical properties of the Mumford and Shah functional (> .),
it is necessary to define the measure of K as its d − -dimensional Hausdorff measure
H

d−
(K), which is the most natural way to extend the notion of length to nonsmooth

sets. We recall the definition of the Hausdorff measure [, , ].

Definition  For K ⊂ R
d and n > , set

H
n
(K) = sup

є>
H

n
є (K),

called the n-dimensional Hausdorff measure of the set K, where

H
n
є (K) = cn inf {

∞

∑

i=
(diamAi)

n
} ,

where the infimum is taken over all countable families {Ai}
∞

i= of open sets Ai such that

K ⊂

∞

⋃

i=
Ai and diam Ai ≤ є for all i.

Here, the constant cn is chosen so that Hn coincides with the Lebesgue measure on
n-planes.

Remark  When n is an integer and K is contained in a C-surface of dimension n,
H

n
(K) coincides with its n-dimensional surface measure.

We consider a first variant of the functional,

E(u,K) = μ
∫

Ω/K
(u − g)dx +

∫

Ω/K
∣∇u∣dx + H

d−
(K). (.)

In order to apply the direct method of calculus of variations for proving existence of
minimizers, it is necessary to find a topology for which the functional is lower semi-
continuous, while ensuring compactness of minimizing sequences. Unfortunately, the
last functional K ↦ H

d−
(K) is not lower semi-continuous with respect to any compact

topology [, , ].
To overcome this difficulty, the set K is substituted by the jump set Su of u, thus K is

eliminated, and the problem, called the weak formulation, becomes, in its second variant,

inf
u
{F(u) = μ

∫

Ω/Su
(u − g)dx +

∫

Ω/Su
∣∇u∣dx + H

d−
(Su)} . (.)
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For illustration, we also give the weak formulation in one dimension, for signals. The
problem of reconstructing and segmenting a signal u from a degraded input g deriving
from a distorted transmission, can be modeled as finding the minimum

inf
u
{μ

∫

b

a
(u − g)dt +

∫

(a,b)/Su
∣u′∣dt + #(Su)} ,

where Ω = (a, b), Su denotes the set of discontinuity points of u in the interval (a, b), and
#(Su) = H

(Su) denotes the counting measure of Su or its cardinal.
In order to show that (> .) has a solution, the following notion of special func-

tions of bounded variation and the following important lemma due to Ambrosio [, ] are
necessary.

Definition  A function u ∈ L
(Ω) is a special function of bounded variation on Ω if its

distributional derivative can be written as

Du = ∇udx + (u+ − u−) ⃗NuH
d−

∣Su

such that ∇u ∈ L
(Ω), Su is of finite Hausdorff measure, (u+ − u−) ⃗Nu χSu ∈

L
(Ω,Hd−

∣Su ,Rd
), where u+ and u− are the traces of u on each side of the jump part

Su , and ⃗Nu is the unit normal to Su . The space of special functions of bounded variation is
denoted by SBV(Ω).

Lemma  Let un ∈ SBV(Ω) be a sequence of functions such that there exists a constant
C > with ∣un(x)∣ ≤ C < ∞ a.e. x ∈ Ω and

∫Ω ∣∇un ∣
dx+Hd−

(Sun) ≤ C.Then there exists
a subsequence unk converging a.e. to a function u ∈ SBV(Ω). Moreover, ∇unk converges
weakly in L

(Ω)d to ∇u, and

H
d−

(Su) ≤ lim inf
nk→∞

H
d−

(Sunk
).

Theorem  Let g ∈ L∞(Ω), with Ω ⊂ R
d open, bounded, and connected. There is a

minimizer u ∈ SBV(Ω) ∩ L∞(Ω) of

F(u) = μ
∫

Ω/Su
(u − g)dx +

∫

Ω/Su
∣∇u∣dx + H

d−
(Su).

Proof We notice that  ≤ inf SBV(Ω)∩L∞(Ω) F < ∞, because we can take u =  ∈

SBV(Ω) ∩ L∞(Ω) and using the fact that g ∈ L∞(Ω) ⊂ L
(Ω), F(u) < ∞. Thus, there

is a minimizing sequence un ∈ SBV(Ω) ∩ L∞(Ω) satisfying limn→∞ F(un) = inf F . We
also notice that, by the truncation argument from before, we can assume that ∥un∥∞ ≤

∥g∥∞ < ∞. Since F(un) ≤ C < ∞ for all n ≥ , and using g ∈ L∞(Ω) ⊂ L
(Ω), we deduce

that ∥un∥ ≤ C and
∫Ω/Sun

∣∇un ∣
dx + H

d−
(Sun) < C for some positive real constant C.

Using these and Ambrosio’s compactness result, we deduce that there is a subsequence unk

of un , and u ∈ SBV(Ω), such that unk ⇀ u in L
(Ω), ∇unk ⇀ ∇u in L

(Ω)d . Therefore,
F(u) ≤ lim inf nk→∞ F(unk) = inf F , and we can also deduce that ∥u∥∞ ≤ ∥g∥∞. ∎
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For additional existence, regularity results and fine properties of minimizers, and for
the connections between problems (> .) and (> .), we refer the reader to Dal Maso
et al. [, ], the important monographs by Morel and Solimini [], Chambolle [],
by Ambrosio et al. [], by David [], and by Braides []. Existence and regularity of
minimizers for the piecewise-constant case can be found in [], Congedo and Tamanini
[, , , ], Larsen [], among other works.

. Numerical Methods: Approximations to the
Mumford and Shah Functional

Since the originalMumford and Shah functional (> .) (or itsweak formulation (> .))
is non-convex, it has an unknown set K of lower dimension, and it is not the lower-
semicontinuous envelope of a more amenable functional, it is difficult to find smooth
approximations and to solve the minimization in practice. Several approximations have
been proposed, including: the weak membrane model and the graduate non-convexity of
Blake andZisserman [] (which can be seen as a discrete version of theMumford and Shah
segmentation problem); discrete finite differences approximations startingwith thework of
Chambolle [–] (also proving the Γ-convergence of Blake-Zisserman approximations
to the weak Mumford–Shah functional in one dimension); finite element approximations
by Chambolle and Dal Maso [] and by Chambolle and Bourdin [, ]; phase-field
elliptic approximations due to Ambrosio and Tortorelli [, ] (with generalizations pre-
sented by [] and extensions by Shah [], and Alicandro et al. []); region growing and
merging methods proposed by Koepfler et al. [], by Morel and Solimini [], by Dal
Maso et al. [, ] and level set approximations proposed by Chan and Vese [–, ],
by Samson et al. [], and by Tsai et al. []; approximations by nonlocal functionals by
Braides and Dal Maso [], among other approximations. We present in this section in
many more details the phase-field elliptic approximations and the level set approximations
together with their applications.

For proving the convergence of someof these approximations to theMumford and Shah
functional, the notion of Γ-convergence is used, which is briefly recalled below. We refer
the interested reader to Dal Maso [] for a comprehensive introduction to Γ-convergence.

We would like to refer the reader to the monographs and textbooks by Braides [],
by Morel and Solimini [], and by Ambrosio et al. [] on detailed presentations of
approximations to the Mumford and Shah functional.

Definition  Let X = (X,D) be a metric space. We say that a sequence Fj : X →

[−∞,+∞] Γ-converges to F : X → [−∞,+∞] (as j →∞) if for all u ∈ X we have
() (liminf inequality) for every sequence (uj) ⊂ X converging to u,

F(u) ≤ lim inf
j

F j(uj) (.)
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() (existence of a recovery sequence) there exists a sequence (uj) ⊂ X converging to
u such that

F(u) ≥ lim sup
j

F j(uj),

or, equivalently by (> .),
F(u) = lim

j
F j(uj).

The function F is called the Γ-limit of (Fj) (with respect to D), and we write F = Γ- lim j F j.

The following fundamental theorem is essential in the convergence of some of the
approximations.

Theorem  (Fundamental Theorem of Γ-convergence) Let us suppose that F = Γ- lim j F j,
and let a compact set C ⊂ X exist such that inf X Fj = infC Fj for all j.Then there is minimum
of F over X such that

min
X

F = lim
j
inf
X
Fj,

and if (uj) ⊂ X is a converging sequence such that lim j F j(uj) = lim j inf X Fj, then its limit
is a minimum point of F.

.. Ambrosio and Tortorelli Phase-Field Elliptic
Approximations

A specific strategy, closer to the initial formulation of theMumford–Shah problem in terms
of pairs (u,K = Su), is based on the approximation by functionals depending on two
variables (u, v), the second one related to the set K = Su .

... Approximations of the Perimeter by Elliptic Functionals

The Modica–Mortola theorem [, ] enables the variational approximation of the
perimeter functional E ↦ P(E, Ω) =

∫Ω ∣DχE ∣ < ∞ of an open subset E of Ω by the
quadratic, elliptic functionals

MMє(v) = ∫
Ω
(є∣∇v∣ +

W(v)
є

)dx, v ∈W ,
(Ω),

where W(t) is a “double-well” potential. For instance, choosing W(t) = t( − t),
assuming that Ω is bounded with Lipschitz boundary and setting MMє(v) = ∞ if v ∈

L
(Ω)/W ,

(Ω), the functionals MMє(v) Γ-converge in L
(Ω) to

F(v) = {

P(E, Ω) if v = χE for some E ∈ B(Ω),

∞ otherwise,

where B(Ω) denotes the σ-algebra of Borel subsets of Ω.
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Minimizing the functional MMє(v) with respect to v yields the associated Euler–
Lagrange equation and boundary condition,

W ′
(v) = є △ v in Ω,

∂v
∂ ⃗N

=  on ∂Ω,

which can be easily solved in practice by finite differences.

... Ambrosio-Tortorelli Approximations

In the Mumford and Shah functional the set K = Su is not necessarily the boundary of
an open and bounded domain, but a construction similar to MMє(v) can still be used,
with the potentialW(t) = 

 (− t)
 instead. Ambrosio and Tortorelli proposed two elliptic

approximations [, ] to the weak formulation of the Mumford and Shah problem. We
present the second one [], being simpler than the first one [], and commonly used in
practice.

Let X = L
(Ω) and let us define

ATє(u, v) = ∫
Ω
(u − g)dx + β

∫

Ω
v∣∇u∣dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx (.)

if (u, v) ∈W ,
(Ω),  ≤ v ≤ , and ATє(u, v) = +∞ otherwise.

We also define the limiting Mumford–Shah functional,

F(u, v) = {∫Ω(u − g)dx + β
∫Ω ∣∇u∣


+ αHd−

(Su) if u ∈ SBV(Ω), v ≡ ,
+∞ otherwise.

Theorem  ATє Γ-converges to F as є ↘  in L
(Ω). Moreover, ATє admits a minimizer

(uє , vє) such that up to subsequences, uє converges to some u ∈ SBV(Ω) a minimizer of
F(u, ) and inf ATє(uє , vє) → F(u, ).

Interesting generalizations of this result are given and proved by Braides in [].
In practice, the Euler–Lagrange equations associated with the alternating minimization

of ATє with respect to u = uє and v = vє are used and discretized by finite differences.These
are

∂ATє(u, v)
∂u

= (u − g) − βdiv(v∇u) = 

∂ATє(u, v)
∂v

= βv∣∇u∣ − αє△ v +
α
є
(v − ) = .

One of the finite differences approximations to compute u and v in two dimensions x =
(x, x) is as follows. We use a time-dependent scheme in u = u(x, x, t) and a stationary
semi-implicit fixed-point scheme in v = v(x, x). Let△x = △x = h be the step space,△t
be the time step, and gi , j , un

i , j , v
n
i , j be the discrete versions of g, and of u and v at iteration

n ≥ , for  ≤ i ≤ M,  ≤ j ≤ N . Initialize u
= g and v = .
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For n ≥ , compute and repeat to steady state, for i = , . . . ,M −  and j = , . . . ,N − 
(combined with Neumann boundary conditions on ∂Ω):

∣∇un
∣

i , j = (

un
i+, j − un

i , j

h
)



+ (

un
i , j+ − un

i , j

h
)



,

 = βvn+i , j ∣∇u
n
∣

i , j − 

αє
h

(vni+, j + vni−, j + vni , j+ + vni , j−

−vn+i , j ) +
α
є

(vn+i , j − ) ,

un+
i , j − un

i , j

△t
= −(un

i , j − gi , j) +
β
h

[(vn+i , j )

(un

i+, j − un
i , j) + (v

n+
i , j )


(un

i , j+ − un
i , j)

− (vn+i−, j)

(un

i , j − un
i−, j) − (v

n+
i , j−)


(un

i , j − un
i , j−)]

which is equivalent with

∣∇un
∣

i , j = (

un
i+, j − un

i , j

h
)



+ (

un
i , j+ − un

i , j

h
)



,

vn+i , j =

α
є +

αє
h (vni+, j + vni−, j + vni , j+ + vni , j−)

α
є + β∣∇un

∣

i , j +

αє
h

,

un+
i , j = un

i , j +△t {−(un
i , j − gi , j) +

β
h

[(vn+i , j )

(un

i+, j − un
i , j)

+ (vn+i , j )

(un

i , j+ − un
i , j) − (v

n+
i−, j)


(un

i , j − un
i−, j)

− (vn+i , j−)

(un

i , j − un
i , j−)] } .

Wepresent experimental results obtained using the aboveAmbrosio–Tortorelli approx-
imations applied to the well-known Barbara image shown in > Fig. - left. Segmented
images u are shown in > Fig. - and the corresponding edge sets v are shown in
> Fig. - for varying coefficients α, β ∈ {, , }. We notice that less regularization
(decreasing both α and β) gives more edges in v, as expected, thus u is closer to g. Fixed α
and increasing β gives smoother image u and fewer edges in v. Keeping fixed β but varying
α does not produce much variation in the results. We also show in > Fig. - right the
numerical energy versus iterations for the case α = β = , є = ..

Applications of the Ambrosio–Tortorelli approximations to image restoration will be
presented in details in > Sect. ..

.. Level Set Formulations of theMumford and Shah
Functional

We review in this section the level set formulations for minimizing the Mumford and
Shah functional, as proposed initially by Chan and Vese [–, ], and by Tsai et al. []
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⊡ Fig. -

Left: original image g. Right: numerical energy versus iterations for the Ambrosio–Tortorelli

approximations (α = β = , є = .)

(see also the related work by Samson et al. [] and Cohen et al. [, ]). These make the
link between curve evolution, active contours, and Mumford–Shah segmentation. These
models have been proposed by restricting the set ofminimizers u to specific classes of func-
tions: piecewise constant, piecewise smooth, with the edge set K represented by a union
of curves or surfaces that are boundaries of open subsets of Ω. For example, if K is the
boundary of an open-bounded subset of Ω, then it can be represented implicitly, as the
zero-level line of a Lipschitz-continuous level set function. Thus the set K as an unknown
is substituted by an unknown function, that defines it implicitly, and the Euler–Lagrange
equations with respect to the unknowns can be easily computed and discretized.

Following the level set approach [, , , ], let ϕ : Ω → R be a Lipschitz continuous
function. We recall the variational level set terminology that will be useful to rewrite the
Mumford and Shah functional in terms of (u, ϕ), instead of (u,K). We are inspired by the
work of Zhao et al. [] for a variational level set approach for motion of triple junctions
in the plane.

We will use the one-dimensional (D) Heaviside function H, defined by

H(z) = {
 if z ≥ 
 if z < 

,

and its distributional derivative δ = H′ (in the weak sense). In practice, we may need to
work with smooth approximations of the Heaviside and δ functions. Here, we will use the
following C∞ approximations as є →  given by [, ],

Hє(z) =


[ +


π
arctan (

z
є
)] , δє = H′є .
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(1,1) (1,5) (1,10)

(5,1) (5,5) (5,10)

(10,10)(10,5)(10,1)

⊡ Fig. -

Piecewise-smooth images u as minimizers of the Ambrosio–Tortorelli approximations for

є = . and various values of (α, β)

The area (or the volume) of the region {x ∈ Ω : ϕ(x) > } is

A{x ∈ Ω : ϕ(x) > } =
∫

Ω
H(ϕ(x))dx,

and for a level parameter l ∈ R, the area (or volume) of the region {x ∈ Ω : ϕ(x) > l} is

A{x ∈ Ω : ϕ(x) > l} =
∫

Ω
H(ϕ(x) − l)dx.
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(1,1) (1,5)

(5,5)

(1,10)

(5,10)(5,1)

(10,1) (10,5) (10,10)

⊡ Fig. -

Corresponding edge sets v as minimizers of the Ambrosio–Tortorelli approximations for

є = . and various values of (α, β)

The perimeter (or more generally the surface area) of the region {x ∈ Ω : ϕ(x) > } is
given by

L{x ∈ Ω : ϕ(x) > } =
∫

Ω
∣DH(ϕ)∣,

which is the total variation of H(ϕ) in Ω, and the perimeter (or surface area) of {x ∈ Ω :
ϕ(x) > l} is

L{x ∈ Ω : ϕ(x) > l} =
∫

Ω
∣DH(ϕ − l)∣.

Given the image data g ∈ L∞(Ω) ⊂ L
(Ω) to be segmented, the averages of g over the

(nonempty) regions {x ∈ Ω : ϕ(x) > } and {x ∈ Ω : ϕ(x) < } respectively, are
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∫Ω g(x)H(ϕ(x))dx

∫Ω H(ϕ(x))dx
and ∫Ω g(x)(−H(ϕ(x)))dx

∫Ω( −H(ϕ(x)))dx
=

∫Ω g(x)H(−ϕ(x))dx

∫Ω H(−ϕ(x))dx
.

More generally, for a given level parameter l ∈ R, the averages of g over the corre-
sponding (nonempty) regions {x ∈ Ω : ϕ(x) > l} and {x ∈ Ω : ϕ(x) < l} respectively,
are

∫Ω g(x)H(ϕ(x) − l)dx

∫Ω H(ϕ(x) − l)dx
and ∫Ω g(x)H(l − ϕ(x))dx

∫Ω H(l − ϕ(x))dx
.

We prove next that if H and δ are substituted by the above C∞ approximations Hє,
δє as є → , we obtain approximations of the area and length (perimeter) measures. We
obviously have that Hє(z) → H(z) for all z ∈ R, as є → , and that the approximating area
term Aє(ϕ) = ∫Ω Hє(ϕ(x))dx converges to A(ϕ) =

∫Ω H(ϕ(x))dx.
Generalizing a result of Samson et al. [], we can show [] that our approximating

functional Lє(ϕ) = ∫Ω ∣DHє(ϕ)∣dx =
∫Ω δε(ϕ)∣∇ϕ∣dx converges to the length ∣K∣ of the

zero-level line K = {x ∈ Ω : ϕ(x) = }, under the assumption that ϕ : Ω → R is Lipschitz.
The same result holds for the case of any l-level curve of ϕ and not only for the -level
curve.

Theorem  Let us define

Lє(ϕ) = ∫
Ω
∣∇Hє(ϕ)∣dx = ∫

Ω
δє(ϕ)∣∇ϕ∣dx.

Then we have
lim
є→

Lє(ϕ) = ∫
{ϕ=}

ds = ∣K∣,

where K = {x ∈ Ω : ϕ(x) = }.

Proof Using co-area formula [], we have:

Lє(ϕ) = ∫
R

[
∫

ϕ=ρ
δє(ϕ(x))ds]dρ = ∫

R

[δє(ρ)∫
ϕ=ρ

ds]dρ.

By setting h(ρ) =
∫ϕ=ρ ds, we obtain

Lє(ϕ) = ∫
R

δє(ρ)h(ρ)dρ = ∫
R


π

є
є + ρ

h(ρ)dρ.

By the change of variable θ = ρ
є , we obtain

lim
є→

Lє(ϕ) = lim
є→∫R


π

є

є + єθ
h(θє)dθ = lim

є→∫R


π


 + θ

h(θє)dθ

= h()
∫

R


π


 + θ

dθ = h()

π
arctan θ∣+∞

−∞
= h() =

∫

ϕ=
ds = ∣K∣,

which concludes the proof. ∎
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In general, this convergence result is valid for any approximations Hє , δє, under the
assumptions

lim
є→

Hє(z) = H(z) in R/{},

δє = H′є , Hє ∈ C
(R),

∫

+∞

−∞
δ(x)dx = .

... Piecewise-Constant Mumford and Shah Segmentation
Using Level Sets

Our first formulation is for the case when the unknown set of edges K can be represented
by K = {x ∈ Ω : ϕ(x) = } for some (unknown) Lipschitz function ϕ : Ω → R. In this case
we restrict the unknown minimizers u to functions taking two unknown values c, c, and
the corresponding Mumford–Shah minimization problem can be expressed as [, ]

inf
c ,c ,ϕ

E(c, c, ϕ) = ∫
Ω
(g(x) − c)H(ϕ)dx + ∫

Ω
(g(x) − c)H(−ϕ)dx

+  ∫
Ω
∣DH(ϕ)∣. (.)

The unknown minimizer u is expressed as

u(x) = cH(ϕ(x)) + c( −H(ϕ(x))) = cH(ϕ(x)) + cH(−ϕ(x)).

We substitute H by its C∞ approximation Hє and we minimize instead

Eє(c, c, ϕ) = ∫
Ω
(g(x) − c)Hє(ϕ)dx + ∫

Ω
(g(x) − c)Hє(−ϕ)dx

+  ∫
Ω
∣∇Hє(ϕ)∣dx. (.)

The associated Euler–Lagrange equations with respect to c, c, and ϕ are

c(ϕ) =
∫Ω g(x)Hє(ϕ(x))dx

∫Ω Hє(ϕ(x))dx
, c(ϕ) =

∫Ω g(x)Hє(−ϕ(x))dx

∫Ω Hє(−ϕ(x))dx
,

and, after simplifications,

δє(ϕ) [(g(x) − c) − (g(x) − c) − div(
∇ϕ
∣∇ϕ∣

)] =  in Ω, (.)

with boundary conditions ∇ϕ ⋅
⃗N =  on ∂Ω. Since δє >  as defined, the factor δє(ϕ)

can be removed from (> .), or substituted by ∣∇ϕ∣ to obtain a more geometric motion
extended to all level lines of ϕ, as in the standard level set approach.

This approach has been generalized by Chung and Vese in [, ], where more
than one level line of the same level set function ϕ can be used to represent the edge set K.
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Using m distinct real levels {l < l < . . . < lm}, the function ϕ partitions the domain Ω
into the followingm+ disjoint open regions,making upΩ, togetherwith their boundaries:

Ω = {x ∈ Ω : −∞ < ϕ(x) < l},

Ω j = {x ∈ Ω : l j < ϕ(x) < l j+},  ≤ j ≤ m − 

Ωm = {x ∈ Ω : lm < ϕ(x) < +∞}.

The energy to minimize in this case, depending on c, c, . . . , cm , ϕ, will be

E(c, c, . . . , cm , ϕ) = ∫
Ω
∣g(x) − c∣H(l − ϕ(x))dx +

m−

∑

j=
∫

Ω
∣g(x)

− c j∣H(ϕ(x) − l j)H(l j+ − ϕ(x))dx +
∫

Ω
∣g(x)

− cm ∣H(ϕ(x) − lm)dx + 

m

∑

j=
∫

Ω
∣DH(ϕ − l j)∣. (.)

The segmented image will be given by

u(x) = cH(l − ϕ(x)) +
m−

∑

j=
c jH(ϕ(x) − l j)H(l j+ − ϕ(x)) + cmH(ϕ(x) − lm).

As before, to minimize the above energy, we approximate and substitute the Heavi-
side function H by Hє , as є → . The Euler–Lagrange equations associated with the
corresponding minimization

inf
c ,c ,... ,cm ,ϕ

Eє(c, c, . . . , cm , ϕ), (.)

can be expressed as

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

c(ϕ) =
∫Ω g(x)Hє (l−ϕ(t ,x))dx
∫Ω Hє(l−ϕ(t ,x))dx

,

c j(ϕ) =
∫Ω g(x)Hє (ϕ(t ,x)−l j)Hє(l j+−ϕ(t ,x))dx
∫Ω Hє(ϕ(t ,x)−l j)Hє(l j+−ϕ(t ,x))dx

,

cm(ϕ) = ∫Ω
g(x)Hє (ϕ(t ,x)−lm)dx
∫Ω Hє(ϕ(t ,x)−lm)dx

,

and

 = ∣g − c∣δє(l − ϕ) +
m−

∑

j=
∣g − c j∣ [δє(l j+ − ϕ)Hє(ϕ − l j) − δє(ϕ − l j)Hє(l j+ − ϕ)]

− ∣g − cm ∣δє(ϕ − lm) + 

m

∑

j=
[δє(ϕ − l j)div(

∇ϕ
∣∇ϕ∣

)] ,

∂ϕ
∂n⃗

∣

∂Ω
= , (.)

where ⃗N is the exterior unit normal to the boundary ∂Ω.
We give here the details of the numerical algorithm for solving (> .) in two dimen-

sions (x, y), using gradient descent, in the case of one function ϕ with two levels l = ,
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l = l > . Let h = △x = △y be the space steps,△t be the time step, and є = h. Let (xi , y j)
be the discrete points, for  ≤ i, j ≤ M, and gi , j ≈ g(xi , y j), ϕn

i , j ≈ ϕ(n △ t, xi , y j), with
n ≥ . Recall the usual finite differences formulas

△
x
+
ϕi , j = ϕi+, j − ϕi , j , △

x
−
ϕi , j = ϕi , j − ϕi−, j ,

△

y
+
ϕi , j = ϕi , j+ − ϕi , j , △

y
−
ϕi , j = ϕi , j − ϕi , j−.

Set n = , and start with ϕ
i , j given (defining the initial set of curves). Then, for each n > 

until steady state:

() compute averages c(ϕn
), c(ϕn

), and c(ϕn
).

() compute ϕn+
i , j , derived from the finite differences scheme:

ϕn+
i , j − ϕn

i , j

△t
= δє (ϕn

i , j)

⎡

⎢

⎢

⎢

⎢

⎢

⎣



h
⎛

⎜

⎝

△
x
−

⎛

⎜

⎝

ϕn
i+, j − ϕn+

i , j

∣∇ϕn
i , j ∣

⎞

⎟

⎠

+△

y
−

⎛

⎜

⎝

ϕn
i , j+ − ϕn+

i , j

∣∇ϕn
i , j ∣

⎞

⎟

⎠

⎞

⎟

⎠

+ ∣gi , j − c∣

− ∣gi , j − c∣Hє (l − ϕn
i , j)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ δє (ϕn
i , j − l)

⎡

⎢

⎢

⎢

⎢

⎢

⎣



h
⎛

⎜

⎝

△
x
−

⎛

⎜

⎝

ϕn
i+, j − ϕn+

i , j

∣∇ϕn
i , j ∣

⎞

⎟

⎠

+△

y
−

⎛

⎜

⎝

ϕn
i , j+ − ϕn+

i , j

∣∇ϕn
i , j ∣

⎞

⎟

⎠

⎞

⎟

⎠

−∣gi , j − c∣ + ∣gi , j − c∣Hє (ϕn
i , j)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where ∣∇ϕn
i , j ∣ =

√

(

ϕn
i+, j−ϕ

n
i , j

h )


+ (

ϕn
i , j+−ϕ

n
i , j

h )


. Let

C =


√

(

ϕn
i+, j−ϕ

n
i , j

h )


+ (

ϕn
i , j+−ϕ

n
i , j

h )


,

C =


√

(

ϕn
i , j−ϕ

n
i−, j

h )


+ (

ϕn
i−, j+−ϕ

n
i−, j

h )


,

C =


√

(

ϕn
i+, j−ϕ

n
i , j

h )


+ (

ϕn
i , j+−ϕ

n
i , j

h )


,

C =


√

(

ϕn
i+, j−−ϕ

n
i , j−

h )


+ (

ϕn
i , j−ϕ

n
i , j−

h )


.
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Letm =
△t
h (δє (ϕn

i , j) + δє (ϕn
i , j − l)) , C = +m(C+C+C+C).Themain

update equation for ϕ becomes

ϕn+
i , j =


C
[ϕn

i , j +m (Cϕn
i+, j + Cϕn

i−, j + Cϕn
i , j+ + Cϕn

i , j−)

+△tδє (ϕn
i , j) (−(gi , j − c) ( −Hє (ϕn

i , j − l))

+ (gi , j − c)) +△tδє (ϕn
i , j − l)(−(gi , j − c) + (gi , j − c)Hє (ϕn

i , j))] ,

and repeat, until steady state is reached.

We conclude this section with several experimental results obtained using the models
presented here, that act as denoising, segmentation, and active contours. In > Fig. -
we show an experimental result taken from [] obtained using the binary piecewise-
constant model (> .); we notice how interior contours can be automatically detected.
In > Fig. -, we show an experimental result using the multilayer model (> .), with
m =  and two levels l, l, applied to the segmentation of a brain image.

The work in [, ] also shows how the previous Mumford–Shah level set approaches
can be extended to piecewise-constant segmentation of images with triple junctions, sev-
eral non-nested regions, or with other complex topologies, by using two or more level set
functions that form a perfect partition of the domain Ω.

⊡ Fig. -

Detection of different objects in a noisy image, with various convexities and with an interior

contour which is automatically detected, using only one initial curve. After a short time, an

interior contour appears inside the torus, and then it expands. Top: g and the evolving

contours. Bottom: the piecewise-constant approximations u of g over time, given by

u = cH(ϕ) + c( − H(ϕ))
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⊡ Fig. -

Segmentation of a brain image using one level set function with two levels. Parameters:

l = , l = ,△t = .,  = . ⋅ , , iterations
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... Piecewise-Smooth Mumford and Shah Segmentation
Using Level Sets

We first consider the corresponding two-dimensional case under the assumption that the
edges denoted by K in the image can be represented by one level set function ϕ, i.e., K =

{x ∈ Ω∣ϕ(x) = }, and we follow the approaches developed in parallel by Chan and Vese
[, ] and by Tsai et al. [], in order to minimize the general Mumford and Shah model.
As in [], the link between the unknowns u and ϕ can be expressed by introducing two
functions u+ and u− (see > Fig. -) such that

u(x) = {
u+(x) if ϕ(x) ≥ ,
u−(x) if ϕ(x) ≤ .

We assume that u+ and u− are H functions on ϕ ≥  and on ϕ ≤ , respectively (with
Sobolev traces up to all boundary points, i.e., up to the boundary {ϕ = }). We can write
the following minimization problem

inf
u+ ,u− ,ϕ

E(u+,u−, ϕ),

where

E(u+,u−, ϕ) = μ
∫

Ω
∣u+ − g∣H(ϕ)dx + μ

∫

Ω
∣u− − g∣( −H(ϕ))dx

+
∫

Ω
∣∇u+∣H(ϕ))dx +

∫

Ω
∣∇u−∣( −H(ϕ))dx +

∫

Ω
∣DH(ϕ)∣

is the Mumford–Shah functional restricted to u(x) = u+(x)H(ϕ(x)) + u−(x)( −
H(ϕ(x)).

Minimizing E(u+,u−, ϕ) with respect to u+, u−, and ϕ, we obtain the following
Euler–Lagrange equations (embedded in a time-dependent dynamical scheme for ϕ):

u = u–

u = u–u = u+

u = u+

u  = u +

φ > 0

u = u–

φ < 0 u  = u –

φ < 0

φ > 0
φ < 0

φ > 0

⊡ Fig. -

The functions u+, u− and the zero level lines of the level set function ϕ for piecewise-smooth

image partition
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μ(u+ − g) = △u+ in {x : ϕ(t, x) > },
∂u+

∂n⃗
=  on {x : ϕ(t, x) = } ∪ ∂Ω, (.)

μ(u− − g) = △u− in {x : ϕ(t, x) < },
∂u−

∂n⃗
=  on {x : ϕ(t, x) = } ∪ ∂Ω, (.)

∂ϕ
∂t

= δε(ϕ) [ ∇(

∇ϕ
∣∇ϕ∣

) − μ∣u+ − g∣ − ∣∇u+∣ + μ∣u− − g∣ + ∣∇u−∣] , (.)

where ∂/∂n⃗ denotes the partial derivative in the normal direction n⃗ at the corresponding
boundary. We also associate the boundary condition ∂ϕ

∂n⃗ =  on ∂Ω to > Eq. (.).
We show in > Figs. - and > - experimental results taken from [] obtained

with the piecewise-smooth two-phase model.

⊡ Fig. -

Results on a noisy image, using the level set algorithm for the piecewise-smooth

Mumford–Shahmodel with one level set function. The algorithm performs as active

contours, denoising, and edge detection

⊡ Fig. -

Numerical result using the piecewise-smooth Mumford–Shah level set algorithmwith one

level set function, on a piecewise-smooth real galaxy image
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There are cases when the boundaries K of regions forming a partition of the image
could not be represented by the boundary of an open domain. To overcome this, several
solutions have been proposed in this framework and we mention two of them: () in the
work by Tsai et al. [], the minimization of E(u+,u−, ϕ) is repeated inside each of the two
regions previously computed and () in the work of Chan and Vese [], two or more level
set functions are used. For example, in two dimensions, the problem can be solved using
only two level set functions, and we do not have to know a priori howmany gray levels the
image has (or how many segments). The idea is based on the Four-Color Theorem. Based
on this observation, we can “color” all the regions in a partition using only four “colors,”
such that any two adjacent regions have different “colors.” Therefore, using two level set
functions, we can identify the four “colors” by the following (disjoint) sets: {ϕ > , ϕ > },
{ϕ < , ϕ < }, {ϕ < , ϕ > }, {ϕ < , ϕ < }.The boundaries of the regions forming
the partition will be given by {ϕ = } ∪ {ϕ = }, and this will be the set of curves K.
Note that, in this particular multiphase formulation of the problem, we do not have the
problems of “overlapping” or “vacuum” (i.e., the phases are disjoint, and their union is the
entire domain Ω, by definition).

As before, the link between the function u and the four regions can be made by intro-
ducing four functions u++,u+−,u−+,u−−, which are in fact the restrictions of u to each of
the four phases, as follows (see > Fig. -):

u(x) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

u++(x), if ϕ(x) >  and ϕ(x) > ,
u+−(x), if ϕ(x) >  and ϕ(x) < ,
u−+(x), if ϕ(x) <  and ϕ(x) > ,
u−−(x), if ϕ(x) <  and ϕ(x) < .

u = u++

u = u+–

u = –+

u = u++

u = u+–

u = u+–

u = u+–

f1 > 0

f2 > 0

f1 > 0

f2 < 0

f1 < 0

f2 > 0

f1 > 0

f2 > 0

f1 > 0

f2 < 0

⊡ Fig. -

The functions u++, u+−, u−+, u−−, and the zero level lines of the level set functions ϕ , ϕ for

piecewise-smooth image partition
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Again, using the Heaviside function, the relation between u, the four functions u++,
u+−, u−+, u−−, and the level set functions ϕ and ϕ can be expressed by:

u = u++H(ϕ)H(ϕ) + u+−H(ϕ)( − H(ϕ)) + u−+( −H(ϕ))H(ϕ) + u−−

( − H(ϕ))( −H(ϕ)).

We then introduce an energy in level set formulation based on the Mumford–Shah
functional:

E(u, ϕ, ϕ) = μ
∫

Ω
∣u++ − g∣H(ϕ)H(ϕ)dx

+
∫

Ω
∣∇u++∣H(ϕ)H(ϕ)dx

+ μ
∫

Ω
∣u+− − g∣H(ϕ)( −H(ϕ))dx

+
∫

Ω
∣∇u+−∣H(ϕ)( − H(ϕ))dx

+ μ
∫

Ω
∣u−+ − g∣( − H(ϕ))H(ϕ)dx

+
∫

Ω
∣∇u−+∣( −H(ϕ))H(ϕ)dx

+ μ
∫

Ω
∣u−− − g∣( − H(ϕ))( − H(ϕ))dx

+
∫

Ω
∣∇u−−∣( −H(ϕ))( −H(ϕ))dx

+
∫

Ω
∣DH(ϕ)∣ + ∫

Ω
∣DH(ϕ)∣.

Note that the expression
∫Ω ∣DH(ϕ)∣ + ∫Ω ∣DH(ϕ)∣ is not exactly the length term of

K = {x ∈ Ω : ϕ(x) =  and ϕ(x) = }, it is just an approximation and simplification.
In practice, satisfactory results using the above formula are obtained, and the associated
Euler–Lagrange equations are simplified.

We obtain the associated Euler–Lagrange equations as in the previous cases, embedded
in a dynamic scheme, assuming (t, x, y) ↦ ϕi(t, x, y): minimizing the energy with respect
to the functions u++, u+−, u−+, u−−, we have, for each fixed t:

μ(u++ − g) = △u++ in {ϕ > , ϕ > },
∂u++

∂n⃗
=  on {ϕ = , ϕ ≥ },{ϕ ≥ , ϕ = };

μ(u+− − g) = △u+− in {ϕ > , ϕ < },
∂u+−

∂n⃗
=  on {ϕ = , ϕ ≤ },{ϕ ≥ , ϕ = };

μ(u−+ − g) = △u−+ in {ϕ < , ϕ > },
∂u−+

∂n⃗
=  on {ϕ = , ϕ ≥ },{ϕ ≤ , ϕ = };

μ(u−− − g) = △u−− in {ϕ < , ϕ < },
∂u−−

∂n⃗
=  on {ϕ = , ϕ ≤ },{ϕ ≤ , ϕ = }.
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The Euler–Lagrange equations evolving ϕ and ϕ, embedded in a dynamic scheme,
are formally:

∂ϕ

∂t
= δε(ϕ) [ ∇(

∇ϕ

∣∇ϕ ∣
) − μ

∣u++ − g∣H(ϕ) − ∣∇u++∣H(ϕ)

− μ
∣u+− − g∣( −H(ϕ)) − ∣∇u+−∣( −H(ϕ)) + μ

∣u−+

− g∣H(ϕ) + ∣∇u−+∣H(ϕ) + μ
∣u−− − g∣( −H(ϕ)) + ∣∇u−−∣( −H(ϕ))] = ,

∂ϕ

∂t
= δε(ϕ) [ ∇(

∇ϕ

∣∇ϕ∣
) − μ

∣u++ − g∣H(ϕ) − ∣∇u++∣H(ϕ)

+ μ
∣u+− − g∣H(ϕ) + ∣∇u+−∣H(ϕ) − μ

∣u−+ − g∣( −H(ϕ)) − ∣∇u−+∣( − H(ϕ))

+ μ
∣u−− − g∣( −H(ϕ)) + ∣∇u−−∣( −H(ϕ))] .

We can show, by standard techniques of the calculus of variations on the space SBV(Ω)
(special functions of bounded variations), and a compactness result due to Ambrosio [],
that the proposed minimization problems from this section, in the level set formulation,
have a minimizer. Finally, because there is no uniqueness of minimizers, and because the
problems are nonconvex, the numerical results may depend on the initial choice of the
curves, and we may compute a local minimum only. We think that, using the seed initial-
ization (see []) the algorithms have the tendency of computing a global minimum, most
of the times. Additional experimental results are shown in [].

... Extension to Level Set Based Mumford–Shah
Segmentation with Open Edge Set K

We have mentioned in > Sect. .., Theorem  that in two dimensions, the Mumford–
Shah functional E from (> .) allows for minimizers (u,K) such that the set K could
include open curves or crack tips where a curve Ki of K ends and meets nothing. On the
other hand, the level set formulations presented in the previous sections allow only for
closed curves as pieces of K, an inherent property due to the implicit representation of
boundaries. In this section, we show how we can modify the level set representation of the
Mumford–Shah functional, so that images with edges made of open curves could also be
segmented. For more details we refer the reader to Mohieddine–Vese [].

The main idea is to use the open curve representation using level sets due to Smereka
[]. In [], by adding a “dual” level set function, a level set formulation for open curves
extending the standard methods is proposed. Given a level set function ϕ : Ω → R and
a “dual” level set function ψ : Ω → R (as Lipschitz continuous functions), an open curve
K can be defined as K = {x ∈ Ω : ϕ(x) = ,ψ(x) > }. This is illustrated in > Fig. -.
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f > 0
y < 0

f > 0
y > 0

f < 0
y > 0

f < 0
y < 0

K

⊡ Fig. -

Representation of an open curve K = {ϕ = } ∩ {ψ > }

The method in [] was applied to a curvature equation which models the dynamics of
spiral crystal growth, with velocity

v(t) = ( − λκ)n, (.)

where κ is the curvature and n is the unit normal of the open spiral curve, and λ is a
constant. After reformulating the equations with open level sets yields []:

∂ϕ
∂t

+ si gn(ψ)[− λsign(ψ)κ(ϕ)]∣∇ϕ∣ = ,

∂ψ
∂t

+ si gn(ϕ)[− λsign(ϕ)κ(ψ)]∣∇ψ∣ = .

In general, this method will give a symmetric system of the form

∂ϕ
∂t

+ F(ϕ,ψ) = , (.)

∂ψ
∂t

+ F(ψ, ϕ) =  (.)

from where it is clear why these level set functions are called “dual” to each other. In the
general form, > Eqs. (.) and (> .) may or may not be derived from functional
minimization.

Here, we will use the idea of Smereka in the minimization of theMumford–Shahmodel
for segmentation with open edge curves. We first define the following characteristic func-
tions over Ω: χ = H(ϕ), χ = H(ψ)(−H(ϕ)), χ = H(ψ), and χ = (−H(ψ))(−H(ϕ)).
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Then we propose the following open curve formulation of Mumford–Shah, in a particular
case: minimize

E(u,u, ϕ,ψ) = ∫
Ω
[∣u − g∣ χ + ∣u − g∣ χ + ∣

u + u


− g∣


χ]dx

+ μ
∫

Ω
[∣∇u ∣


(χ +

χ

) + μ∣∇u ∣


(χ +

χ

) +

μ

∇u ⋅ ∇u χ]

dx + λ
∫

Ω
χ ∣∇χ∣.

The segmented image will be u = u χ + u χ + u+u
 χ, the set K = {ϕ = } ∩ {ψ > }

models the open jump set, and the length of K is ∣K∣ =
∫Ω ∣∇H(ϕ)∣H(ψ) =

∫Ω χ∣∇χ∣. In
the above energy, the first term corresponds to the data filelity, the second term corresponds
to the regularization in u, while the third term is the length penalty. Thus, the functional
imposes that u ≈ g over χ, χ, χ (thus over Ω), and that u is of class H over the regions
whose characteristic functions are χ + χ and χ + χ.

As in the previous sections, we first substitute the Heaviside function H by smooth
approximations Hє. Also, as in Theorem , it is possible to show that the approximating
term

∫Ω Hє(ψ)∣∇Hє(ϕ)∣ converges, as є → , to the length of the open set K = {x ∈ Ω :
ϕ(x) = ,ψ(x) > }.

The Euler–Lagrange equations associated with the minimization, expressed using the
L gradient descent, formally are

∂u

∂t
= μdiv [χ∇u +

χ

∇(u + u)] − (u − g)χ − (

u + u


− g) χ

[χ∇u +
χ

∇(u + u)] ⋅ n =  on ∂Ω

u(, x) = u−initial(x),

∂u

∂t
= μdiv [χ∇u +

χ

∇(u + u)] − (u − g)χ − (

u + u


− g) χ

[χ∇u +
χ

∇(u + u)] ⋅ n =  on ∂Ω

u(, x) = u−initial(x),

∂ϕ
∂t

= δ(ϕ) [λdiv(χ
∇ϕ
∣∇ϕ∣

) − ∣u − g∣ + χ∣u − g∣ + ( − χ)

∣

u + u


− g∣


− μ∣∇u ∣


(



+

χ

)

+ μ∣∇u ∣

(



+

χ

) +



μ∇u ⋅ ∇u( − χ)]

(χ
∇ϕ
∣∇ϕ∣

) ⋅ n =  on ∂Ω

ϕ(, x) = ϕinitial(x),
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dψ
dt

= −δ(ψ) [λ∣∇χ∣ + ( − χ)(∣u − g∣ − ∣
u + u


− g∣


−

μ

∣∇u ∣



+

μ

∣∇u ∣


−

μ

∇u ⋅ ∇u)]

ψ(, x) = ψinitial(x).

Since we have doubled the amount of functions used to define one curve, we have also
increased the computational cost. Moreover, from a theoretical point of view, the system of
equations derived from the standard L gradient decent may be ill posed. For illustration,
following Neuberger [] and Renka [], assume that we have the energy functional with a
potential F , i.e., E(ϕ) =

∫Ω F(Dϕ), to beminimized overH
(Ω), where hereD : H

(Ω) →
H

(Ω) × L
(Ω) is the operator Dϕ = (ϕ,∇ϕ)T . We assume that ϕ ∈ H

(Ω) and for any
h ∈ H

(Ω) we have the directional derivative:

(E′(ϕ), h) =
∫

Ω
F ′(Dϕ)Dh = ⟨∇F(Dϕ),Dh⟩L = ⟨D∗∇F(Dϕ), h⟩L ,

where D∗ is the adjoint of D. We will call the first variation the L gradient, ∇LE(ϕ) =
D∗∇F(Dϕ) and it defines the usual gradient descent method, ∂ϕ

∂t = −∇LE(ϕ). In the
semi-discrete case, we construct the sequence ϕn by ϕn+

= ϕn
− △t∇LE(ϕn

), with
ϕ

∈ H
(Ω),△t > , such that E(ϕn+

) < E(Φn
). In order to have ϕn+

∈ H
(Ω) ⊂ L

(Ω),
this would require that∇LE(ϕn

) ∈ H
(Ω) ⊂ L

(Ω), in other words we would assume too
strong regularity for the solution ϕ, which may not hold. This is one of the reasons for
the small time steps necessary for stability when using L gradient decent. Thus, the com-
bination of small time steps and increased amount of functions to represent open curves
can become problematic in practice. To avoid these issues, we derive an alternative decent
directionwhich is better posed.Thenext simplest direction to the L gradient is the Sobolev
H gradient direction. Denote the H gradient as ∇HE(ϕ) and as before we will look at
the directional derivative. Equating the directional derivative with the H inner product
yields the Sobolev gradient as follows:

(E′(ϕ), h) = ⟨∇LE(ϕ), h⟩L = ⟨∇HE(ϕ)), h⟩H .

So we have

⟨∇HE(ϕ), h⟩H = ⟨D(∇HE(ϕ)),Dh⟩L = ⟨D∗D(∇HE(ϕ)), h⟩L

and therefore ∇HE(ϕ) = (D∗D)−(∇LE(ϕ)) = (I − Δ)−(∇LE(ϕ)). One way to look
at this is applying gradient decent with respect to a different inner product. Numerically,
it can be viewed as a preconditioning of the regular gradient decent method [].This will
also have numerical benefits. For more details on the theory of Sobolev gradients, see [].
Here, the Sobolev H gradient is used for all four equations in u,u, ϕ,ψ.

We present a few experimental results for the segmentation of a simple synthetic image
with noise. In > Fig. -we show a synthetic noisy image, the evolution of the unknown
open curve K over iterations, and the denoised image u over iterations. > Figure -
shows the surface plot of the unknown u during the iterative procedure. The numerical
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⊡ Fig. -

Segmentation of a synthetic noisy image with open curve discontinuity. Top, from left to

right: evolution of the unknown open curve K with iterations, superimposed over the noisy

data g. Bottom, from left to right: the initial noisy image g and the restored image u over

iterations
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⊡ Fig. -

The surface plot of the image u in > Fig. - over iterations



  Mumford and ShahModel and its Applications to Image Segmentation and Image Restoration

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 106x 106

0 100 200 300 400 500 600 700 800

⊡ Fig. -

Numerical energy versus iterations (left, first  iterations; right, first  iterations)

energy versus iterations is presented in > Fig. -, showing that the proposed numer-
ical algorithm [] is stable in practice. The boundary conditions for u and u can be
simplified.

. Case Examples: Variational Image Restoration with
Segmentation-Based Regularization

This section focuses on the challenging task of edge-preserving variational image restora-
tion. In this context, restoration is referred to as image deblurring and denoising, where
we deal with Gaussian and impulsive noise models. Terms from the Mumford–Shah seg-
mentation functional are used as regularizers, reflecting the model of piecewise-constant
or piecewise-smooth images.

In the standard model of degradation the underlying assumptions are the linearity and
shift invariance of the blur process and the additivity and normal distribution of the noise.
Formally, let Ω be an open-bounded subset of R

n . The observed image g : Ω → R
N
∈ L∞

is given by
g = h ∗ u + n, (.)

where g is normalized to the hypercube [, ]N , h is the blur kernel such that h(x) > 
and

∫
h(x)dx = , u : Ω → R

N is the (“ideal”) original image, n ∼ N(, σ 
) stands for a

white Gaussian noise, and ∗ denotes the convolution operator. The restoration problem is
the recovery of the original image u given > Eq. (.). Non-blind image restoration is
the problem whenever the blur kernel is known, while blind restoration refers to the case
of unknown kernel [, ]. The recovery process in the non-blind case is a typical inverse
problem where the image u is the minimizer of an objective functional of the form

F(u) = Φ(g − h ∗ u) + J (∇u). (.)
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The functional consists of fidelity term and a regularizer. The fidelity term Φ forces the
smoothed image h ∗ u to be close to the observed image g. The commonly used model of
a white Gaussian noise n ∼ N(, σ 

) leads by the maximum likelihood estimation to the
minimization of the L norm of the noise

ΦL = ∥g − h ∗ u∥L
(Ω). (.)

However, in the case of impulsive noise, some amount of pixels do not obey the Gaus-
sian noise model. Minimization of outlier effects can be accomplished by replacing the
quadratic form (> .) with a robust ρ-function [], e.g.,

ΦL = ∥g − h ∗ u∥L
(Ω). (.)

The minimization of (> .) or (> .) alone with respect to u is an inverse problem
which is known to be ill posed: small perturbations in the data g may produce unbounded
variations in the solution. To alleviate this problem, a regularization term can be added.
The Tikhonov L stabilizer []

JL =
∫

Ω
∣∇u∣dx,

leads to over smoothing and loss of important edge information. Abetter edge preservation
regularizer, the Total Variation (TV) term, was introduced by Rudin et al. [, ], where
the L norm was replaced by the L norm of the image gradients

JL =
∫

Ω
∣∇u∣dx.

Still, although the Total Variation regularization outperforms the L norm, the image
features – the edges, are not explicitly extracted. The edges are implicitly preserved only
by the image gradients.

An alternative regularizer is the one used in the Mumford–Shah functional [, ].
We recall that this is accomplished by searching for a pair (u,K)where K ⊂ Ω denotes the
set of discontinuities of u, the unknown image, such that u ∈ H

(Ω/K), K ⊂ Ω closed in
Ω, and

G(u,K) = β
∫

Ω/K
∣∇u∣ dx + αHn−

(K) < ∞. (.)

In our study, the regularizer to the restoration problem (> .) is given by

JMS = G(u,K),

its L variant [, ], and elliptic or level set approximations of these, as presented next.
This enables the explicit extraction and preservation of the image edges in the course of
the restoration process. We show the advantages of this regularizer in several applications
and noise models (Gaussian and impulsive).

As we have mentioned, Ambrosio and Tortorelli [] introduced an elliptic approxima-
tion Gє(u, v) to G(u,K), as є → +, that we recall here,

Gє(u, v) = β
∫

Ω
v∣∇u∣dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx. (.)
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Replacing the Mumford–Shah regularization term (> .) by Gє(u, v) yields the
proposed restoration model

Fє(u, v) = Φ(g − h ∗ u) + β
∫

Ω
v∣∇u∣dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx. (.)

The functional (> .) can also be understood from a generalized robust statistics
viewpoint. This is beyond the scope of this chapter and the interested reader can find the
details in [].

In the rest of the chapter we consider the non-blind restoration problem presented
in [] and its generalizations to several more realistic situations. We consider the problem
of (semi) blind deconvolution, the case of impulsive noise, the color restoration problem
and the case of space-variant blur.We also consider the problemof restoration of piecewise-
constant images from noisy-blurry data using the level set form of the Mumford–Shah
regularizer and image restoration using nonlocal Mumford–Shah–Ambrosio–Tortorelli
regularizers.

.. Non-blind Restoration

Wefirst address the restoration problemwith a known blur kernel h and additive Gaussian
noise [, ]. In this case the fidelity term is the L norm of the noise (> .), and the
regularizer JMS = Gє(u, v) (> .). The objective functional is therefore

Fє(u, v) =

 ∫Ω

(g − h ∗ u)dx + β
∫

Ω
v∣∇u∣dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx.

(.)

The functional (> .) is strictly convex, bounded from below and coercive with respect
to the functions u and v if the other one is fixed. Following [], the alternate minimization
(AM) approach is applied: in each step of the iterative procedure weminimize with respect
to one function and keep the other one fixed. The minimization is carried out using the
Euler–Lagrange (E-L) equations with Neumann boundary conditions where u is initialized
as the blurred image g and v is initialized to .

δFє

δv
=  β v ∣∇u∣ + α

v − 
є

−  є α △ v =  (.)

δFє

δu
= (h ∗ u − g) ∗ h(−x,−y) − β∇ ⋅ (v∇u) =  (.)

>Equation (.) is linearwith respect to v and can be easily solved after discretization
by theMinimal Residual algorithm [].The integro-differential equation (> .) can be
solved by the conjugate-gradients method []. The iterative process is stopped whenever
some convergence criterion is satisfied (e.g., ∥un+

−un
∥ < ε∥un

∥). > Figure - demon-
strates the outcome of the algorithm. The top-left image is the blurred image g. The kernel
corresponds to horizontal motion blur.The top-right image is the reconstruction obtained
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⊡ Fig. -

The case of a known (nine-pixel horizontal motion) blur kernel. Top-left: corrupted image.

Top-right: restoration using the TVmethod [, ]. Bottom-left: restoration using the MS

method. Bottom-right: Edge map produced by the MSmethod

using Total Variation (TV) regularization [, ]. The bottom-left image is the outcome
of the MS regularizer, with a known blur kernel. The bottom-right image shows the associ-
ated edgemap v determined by the algorithm. Acceptable restoration is obtained with both
methods. Nevertheless, theMSmethod yields a sharper result and is almost free of “ghosts”
(white replications of notes) that can be seen in the top-right image (e.g., between the C
notes in the right part of the top stave). The algorithm can be also applied to D images as
shown in > Fig. -. In this example the blur kernel was anisotropic DGaussian kernel.

.. Semi-Blind Restoration

Blind restoration refers to the case when the blur kernel h is not known in advance. In
addition to being ill posed with respect to the image, the blind restoration problem is ill
posed in the kernel as well. Blind image restoration with joint recovery of the image and
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⊡ Fig. -

D restoration of MRI image. Left: blurred (σx = ., σy = ., σz = .) image.Middle:

recovered image. Right: edgemap

the kernel, and regularization of both, was presented by You and Kaveh [], followed by
Chan and Wong []. Chan and Wong suggested to minimize a functional consisting of
a fidelity term and Total Variation (L norm) regularization for both the image and the
kernel:

F(u, h) =



∥h ∗ u − g∥L

(Ω) + α ∫
Ω
∣∇u∣dx + α ∫

Ω
∣∇h∣dx. (.)

By this approach the recovered kernel is highly dependent on the image characteristics. It
allows the distribution of edge directions in the image to have an influence on the shape of
the recovered kernel whichmay lead to inaccurate restoration []. Facing the ill-posedness
of blind restoration with a general kernel, two approaches can be taken. One is to add
relevant data; the other is to constrain the solution. In many practical situations, the blur-
ring kernel can be modeled by the physics/optics of the imaging device and the setup. The
blurring kernel can then be constrained and described as a member in a class of paramet-
ric functions. The blind restoration problem is then reduced to a semi-blind one. Let us
consider the case of isotropic Gaussian blur parameterized by the width σ ,

hσ(x) =


πσ  e
−

x

σ , x ∈ R
n .

The semi-blind objective functional then takes the form []

Fє(v,u, σ) =

 ∫Ω

(hσ ∗ u − g)dx + Gє(u, v) + γ
∫

Ω
∣∇hσ ∣dx. (.)

The last term in > Eq. (.) stands for the regularization of the kernel, necessary to
resolve the fundamental ambiguity in the division of the apparent blur between the recov-
ered image and the blur kernel. This means that we prefer to reject the hypothesis that the
blur originates from u, and assume that it is due to the convolution with the blur kernel.
From the range of possible kernels, we thus select a wide one.This preference is represented
by the kernel smoothness term: the width of the Gaussian corresponds to its smoothness,
measured by the L norm of its gradient.The optimization is carried out by using the alter-
nateminimization approach.The recovered image u is initialized with g, the edge indicator
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function v is initialized with , and σ with a small number ε which reflects a delta func-
tion kernel. The Euler–Lagrange equations with respect to v and u are given by (> .)
and (> .) respectively. The parameter σ is the solution of

∂Fє

∂σ
=
∫

Ω
[(hσ ∗ u − g)(

∂hσ
∂σ

∗ u) + γ
∂
∂σ

∣∇hσ ∣]dx = , (.)

which can be calculated by the bisection method. The functional (> .) is not gener-
ally convex. Nevertheless, in practical numerical simulations the algorithm converges to
visually appealing restoration results as can be seen in the second row of > Fig. -.

⊡ Fig. -

Semi-blind restoration. Top row: blurred images. Second row: restoration using

the semi-blind method. Third row: original images. Bottom row: edge maps produced by the

semi-blind method
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.. Image Restorationwith Impulsive Noise

Consider an image that has been blurred with a known blur kernel h and contaminated
by impulsive noise. Salt and pepper noise, for instance, is a common model for the effects
of bit errors in transmission, malfunctioning pixels, and faulty memory locations. Image
deblurring algorithms that were designed for Gaussian noise produce inadequate results
with impulsive noise.

The left image of > Fig. - is a blurred image contaminated by salt-and-pepper
noise, and the right image is the outcome of the Total Variation restoration method [].
A straight forward sequential approach is to first denoise the image, then to deblur it.
This two-stage method is however prone to failure, especially at high noise density. Image
denoising usingmedian-type filtering creates distortion that depends on the neighborhood
size, this error can be strongly amplified by the deblurring process. This is illustrated in
> Fig. -. The top-left and top-right images are the blurred and blurred-noisy images,
respectively. The outcome of  ×  median filtering followed by Total Variation deblur-
ring [] is shown bottom left. At this noise level, the × neighborhood size of the median
filter is insufficient, the noise is not entirely removed, and the residual noise is greatly ampli-
fied by the deblurring process. If the neighborhood size of the median filter increases to
× , the noise is fully removed, but the distortion leads to inadequate deblurring (bottom
right).

In a unified variational framework, the “ideal” image u can be approximated as the
minimizer of the objective functional [, ]

Fє(u, v) = ∫
Ω

√

(h ∗ u − g) + η dx + Gє(u, v). (.)

⊡ Fig. -

Current image deblurring algorithms fail in the presence of salt and pepper noise. Left:

blurred image with salt-and-pepper noise. Right: restoration using the TVmethod []
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⊡ Fig. -

The failure of the two-stage approach to salt-and-pepper noise removal and image

deblurring. Top-left: blurred image. Top-right: blurred image contaminated by

salt-and-pepper noise. Bottom-left: the outcome of  ×  median filtering, followed by

deblurring. Bottom-right: the outcome of  × median filtering, followed by deblurring

The quadratic data-fidelity term is now replaced by the modified L norm [] which is
robust to outliers, i.e., to impulse noise. The parameter η ≪  enforces the differentiabil-
ity of (> .) with respect to u. Optimization of the functional is carried out using the
Euler–Lagrange equations subject to Neumann boundary conditions:

δFє

δv
=  β v ∣∇u∣ + α (

v − 
є

) −  є α △ v = , (.)

δFє

δu
=

(h ∗ u − g)
√

(h ∗ u − g) + η
∗ h(−x,−y) − β∇ ⋅ (v∇u) = . (.)

The alternate minimization technique can be applied here as well since the func-
tional (> .) is convex, bounded from below and coercive with respect to either
function u or v if the other one is fixed. Equation (> .) is obviously linear with
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respect to v. In contrast, (> .) is a nonlinear integro-differential equation. Lineariza-
tion of this equation is carried out using the fixed point iteration scheme as in [, ].
In this method, additional iteration index l serves as intermediate stage calculating un+.
We set u = ul in the denominator, and u = ul+ elsewhere, where l is the current iteration
number. Equation (.) can thus be rewritten as

H(v,ul
)ul+

= G(ul
), l = , , . . . . (.)

whereH is the linear integro-differential operator

H(v,ul
)ul+

=

h ∗ ul+
√

(h ∗ ul
− g) + η

∗ h(−x,−y) − β∇ ⋅ (v∇ul+
)

and
G(ul

) =

g
√

(h ∗ ul
− g) + η

∗ h(−x,−y). (.)

Note that (> .) is now a linear integro-differential equation in ul+ .
The discretization of > Eqs. (.) and (> .) yields two systems of linear

algebraic equations. These systems are solved in alternation, leading to the following
iterative algorithm []:

Initialization: u
= g, v = .

. Solve for vn+

(β ∣∇un
∣

+

α
є

−  α є△) vn+ =
α
є
. (.)

. Set un+,
= un and solve for un+ (iterating on l)

H(vn+,un+,l
)un+,l+

= G(un+,l
). (.)

. If (∣∣un+
− un

∣∣L < ε∣∣un
∣∣L) stop.

The convergence of the algorithm was proved in []. > Figure - demonstrates the
performance of the algorithm. The top row shows the blurred images with increasing salt-
and-pepper noise level. The outcome of the restoration algorithm is shown in the bottom
row.

A variant of the Mumford–Shah functional in its Γ-convergence approximation was
suggested by Shah []. In this version the L norm of ∣∇u∣ in (> .) was replaced by
its L norm in the first term of Gє

JMSTV (u, v) = β
∫

Ω
v∣∇u∣dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx.

Alicandro et al. [] proved the Γ-convergence of this functional to

JMSTV (u) = β
∫

Ω/K
∣∇u∣ dx + α

∫

K

∣u+ − u−∣
 + ∣u+ − u−∣

dH
+ ∣Dcu∣(Ω),
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⊡ Fig. -

Top row: the Lena image blurredwith a pill-box kernel of radius  and contaminated by

salt-and-pepper noise. The noise density is (left to right) ., . and .. Bottom row: the

corresponding recovered images

where u+ and u− denote the image values on two sides of the edge set K, H is the
one-dimensional Hausdorff measure and Dcu is the Cantor part of the measure-valued
derivative Du. The Mumford–Shah and Shah regularizers are compared in > Fig. -.
The blurred and noisy images are shown in the left column. The results of the restora-
tion using the Mumford–Shah stabilizer (MS) are presented in the middle column and the
images recovered using the Shah regularizer (MSTV) are shown in the right column.

The recovery using bothmethods is satisfactory, but it can be clearly seen that while the
Mumford–Shah restoration performs better in the high-frequency image content (see the
shades for instance), the Shah restoration attracts the image toward the piecewise constant
or cartoon limit which yields images much closer to the “ideal.” This can be explained by
the fact that the Shah regularizer is more robust to image gradients and hence eliminates
high-frequency contributions.

The special case of pure impulse denoising (no blur) is demonstrated in > Fig. -.
The image on the left shows the outcome of the algorithm of [] with L norm for both
the fidelity and regularization, while the recovery using the L fidelity and MS regularizer
is shown on the right. It can be observed that the better robustness of the MS regularizer
leads to better performance in the presence of salt and pepper noise.
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⊡ Fig. -

Left column: theWindow image blurredwith a pill-box kernel of radius  and contaminated

by salt-and-pepper noise. The noise density is (top to bottom) ., and ..Middle column:

the corresponding recovered images with Mumford–Shah (MS) regularization.Right column:

the corresponding recovered images with Shah (MSTV) regularization

⊡ Fig. -

Pure impulse denoising. Left column: restoration using the L regularization []. Right

column: restoration using the MS regularizer

.. Color Image Restoration

We now extend the restoration problem to vector-valued images []. In the case of color
images, the image intensity is defined as u : Ω → [, ]. Here g denotes the observed
image at channel ∈ {r, g, b} such that g = h ∗u + n . The underlying assumption here
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is that the blur kernel h is common to all of the channels. If the noise is randomly located
in a random color channel, the fidelity term can be modeled as

ΦL =
∫

Ω
∑(h ∗ u − g )

dx

in the case of Gaussian noise, and

ΦL =
∫

Ω
∑

√

(h ∗ u − g )

+ η dx, η ≪ , (.)

in the case of impulsive noise. The TV regularization can be generalized to

JTV (u) = ∫
Ω
∥∇u∥ dx, (.)

where
∥∇u∥ =

√

∑

∈{r,g,b}
∣∇u ∣


+ μ, μ ≪ . (.)

The color MS regularizer thus takes the form

JMS(u, v) = β
∫

Ω
v∥∇u∥ dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx. (.)

Note that in this regularizer the edge map v is common for the three channels and provides
the necessary coupling between colors. In the same fashion the color MSTV regularizer is
given by

JMSTV (u, v) = β
∫

Ω
v∥∇u∥ dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx. (.)

Once again, the optimization technique is alternate minimization with respect to u and
v []. > Figure - demonstrates the outcome of the different regularizers for an image
blurred by Gaussian kernel and corrupted by both Gaussian and salt-and-pepper noise.
The fidelity term in all cases was selected as ΦL (> .).

The methods based on Mumford–Shah regularizer are superior to the TV stabilizers,
where MSTV provides a result slightly closer to the “ideal” with little loss of details.

.. Space-Variant Restoration

The assumption of space-invariant blur kernel is sometimes inaccurate in real photo-
graphic images. For example, when multiple objects move at different velocities and in
different directions in a scene, one gets space-variantmotion blur. Likewise, when a camera
lens is focused on one specific object, other objects nearer or farther away from the lens are
not as sharp. In such situations, different blur kernels degrade different areas of the image.
In some cases it can be assumed that the blur kernel is a piecewise space-variant function.
This means that every sub-domain in the image is blurred by a different kernel. In the full
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MS

Blurred and noisy TV

MSTV

a b

c d

⊡ Fig. -

Recovery of the Lena image blurred by  ×  out-of-focus kernel contaminated by mixture of

Gaussian and salt-and-pepper noise

blind restoration, several operations have to be simultaneously applied: () segmentation
of the subregions, () estimation of the blur kernels, and () recovery of the “ideal” image.
Here we present the simplest case where we assume that the subregions and blur kernels
are known in advance. The segmentation procedure in a semi-blind restoration problem
can be found in [].The non-blind space-variant restoration approach relies on the use of
a global regularizer, which eliminates the requirement of dealing with region boundaries.
As a result, the continuity of the gray levels in the recovered image is inherent.Thismethod
does not limit the number of subregions, their geometrical shape, and the kernel support
size.

Let the open nonoverlapping subsetswi ⊂ Ω denote regions that are blurred by kernels
hi , respectively. In addition, Ω/∪ wi , denotes the background region blurred by the back-
ground kernel hb , and wi stands for the closure of wi . The region boundaries are denoted
by ∂wi . The recovered image u is the minimizer of the objective functional

F(u, v) =


∑

i
ηi ∫

wi

(hi∗u−g)dx+
ηb
 ∫

Ω/(∪wi)
(hb∗u−g)dx+JMS(u, v), (.)

where ηi and ηb are positive scalars and JMS(u, v) is the Mumford–Shah regular-
izer (> .). Following the formulation of Chan and Vese [], the domains wi can be
replaced by the Heaviside function H(ϕi), where
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H(ϕi) =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

, ϕi > ,

, ϕi ≤ ,
(.)

and ϕi : Ω → R is a level set function such that

∂wi = {x ∈ Ω : ϕi(x) = }.

The functional then takes the form

F(u, v) =


 ∑i

ηi ∫
Ω
(hi ∗ u − g)H(ϕi)dx +

ηb
 ∫

Ω
(hb ∗ u − g) ( −∑

i
H(ϕi)) dx + JMS(u, v).

(.)

> Figure - demonstrates the performance of the suggested algorithm. The two
images in the left column were synthetically blurred by different blur kernels within
the marked shapes. The corresponding recovered images are shown in the right col-
umn. Special handling of the region boundaries was not necessary because the MS

⊡ Fig. -

Non-blind space-variant restoration. Left column: spatially variantmotion blurred images.

Right column: the corresponding recovered images using the suggestedmethod
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regularizer was applied globally to the whole image, enforcing the piecewise smoothness
constraint. This means that the boundaries of the blurred regions were smoothed within
the restoration process while edges were preserved.

.. Level Set Formulations for Joint Restoration
and Segmentation

We present here other joint formulations for denoising, deblurring, and piecewise-
constant segmentation introduced in [] that can be seen as applications and modifica-
tions of the piecewise-constant Mumford–Shah model in level set formulation presented
in > Sect. .... For related work we refer the reader to [–, , ]. We use a min-
imization approach and we consider the gradient descent method. Let g = h ∗ u + n
be a given blurred noisy image, where h is a known blurring kernel (such as the Gaus-
sian kernel) and n represents Gaussian additive noise of zero mean. We assume that the
contours or jumps in the image u can be represented by the m distinct levels {−∞ =

l < l < l < ⋯ < lm < lm+ = ∞} of the same implicit (Lipschitz continuous)
function ϕ : Ω → R partitioning Ω into m +  disjoint open regions Rj = {x ∈ Ω :
l j− < ϕ(x) < l j},  ≤ j ≤ m + . Thus, we can recover the denoised-deblurred image
u = cH(ϕ− lm)+∑m

j= c jH(ϕ − lm− j+)H(lm− j+ − ϕ)+ cm+H(l−ϕ) byminimizing the
following energy functional (  > ):

E(c, c, . . . , cm+, ϕ) = ∫
Ω

_
_
_
_
_
_
_
_
_
_
_

g − h ∗
⎛

⎝

cH(ϕ − lm) +
m
∑

j=
c jH(ϕ − lm− j+)H(lm− j+ − ϕ)

+cm+H(l − ϕ)
⎞

⎠

_
_
_
_
_
_
_
_
_
_
_
_



dx + 

m

∑

j=
∫

Ω
∣∇H(ϕ − l j)∣dx.

In the binary case (one level m = , l = ), we assume the degradation model
g = h ∗ (cH(ϕ) + c( −H(ϕ))) + n, and we wish to recover u = cH(ϕ) + c( −
H(ϕ)) in Ω together with a segmentation of g. The modified binary segmentation model
incorporating the blur becomes:

inf
c ,c ,ϕ

{E(c, c, ϕ) = ∫
Ω
∣g − h ∗ (cH(ϕ) + c( −H(ϕ)))∣ dx

+  ∫
Ω
∣∇H(ϕ)∣dx} . (.)

We compute the Euler–Lagrange equations minimizing this energy with respect to c,
c, and ϕ. Using alternating minimization, keeping first ϕ fixed and minimizing the energy
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with respect to the unknown constants c and c, we obtain the following linear system of
equations:

c ∫
Ω
h dx + c ∫

Ω
hhdx = ∫ ghdx,

c ∫
Ω
hhdx + c ∫

Ω
hdx = ∫ ghdx

with the notations h = h ∗H(ϕ) and h = h ∗ (−H(ϕ)). Note that the linear system has
a unique solution because the determinant of the coefficient matrix is not zero due to the
Cauchy–Schwartz inequality (

∫Ω hhdx)

≤
∫Ω h dx ∫Ω hdx, where the equality holds

if and only if h = h for a.e. x ∈ Ω. But clearly, h = h ∗ H(ϕ)) and h = h ∗ ( − H(ϕ))
are distinct, thus we have strict inequality.

Keeping now the constants c and c fixed andminimizing the energy with respect to ϕ,
we obtain the evolution equation by introducing an artificial time for the gradient descent
in ϕ(t, x), t > , x ∈ Ω

∂ϕ
∂t

(t, x) = δ(ϕ) [(h̃ ∗ g − c h̃ ∗ (h ∗H(ϕ)) − c h̃ ∗ (h ∗ ( −H(ϕ))))

(c − c) + div(
∇ϕ
∣∇ϕ∣

)] ,

where h̃(x) = h(−x).
We show in > Fig. - a numerical result for joint denoising, deblurring and

segmentation of a synthetic image, in a binary level set approach.
In the case of two distinct levels l < l of the level set function ϕ (m = ), we

wish to recover a piecewise-constant image of the form u = cH(ϕ − l) + cH(l − ϕ)
H(ϕ − l) + cH(l − ϕ) and a segmentation of g, assuming the degradation model
g = h ∗ (cH(ϕ − l) + cH(l − ϕ)H(ϕ − l) + cH(l − ϕ)) + n, by minimizing

inf
c ,c ,c ,ϕ

E(c, c, c, ϕ) = ∫
Ω
∣g − h ∗ (c H(ϕ − l) + cH(l − ϕ)H(ϕ − l)

+ cH(l − ϕ))∣ dx + 


∑

j=
∫

Ω
∣∇H(ϕ − l j)∣dx . (.)

Similar to the previous binary model with blur, for fixed ϕ, the unknown constants are
computed by solving the linear system of three equations:

c ∫ h dx + c ∫ hhdx + c ∫ hhdx = ∫ ghdx

c ∫ hhdx + c ∫ hdx + c ∫ hhdx = ∫ ghdx

c ∫ hhdx + c ∫ hhdx + c ∫ hdx = ∫ ghdx

where h = h ∗H(ϕ − l), h = h ∗ (H(l − ϕ)H(ϕ − l)), and h = h ∗ H(l − ϕ).
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⊡ Fig. -

Joint segmentation, denoising, and deblurring using the binary level set model. Top row:

(from left to right) degraded image g (blurred with motion blur kernel of length , oriented

at an angle θ = ○ w.r.t. the horizon and contaminated by Gaussian noise with σn = ),
original image. Rows –: initial curves, curve evolution using (> .) at iterations , ,

 with  =  ⋅ , and the restored image u (SNR = .). (c, c): original image

≈ (., .), restored u, (., .)

For fixed c, c, and c, by minimizing the functional E with respect to ϕ, we obtain the
gradient descent for ϕ(t, x), t > , x ∈ Ω:

∂ϕ
∂t

(t, x) = h̃ ∗ (g − h ∗ (cH(ϕ − l) + cH(l − ϕ)H(ϕ − l)

+ cH(l − ϕ))(cδ(ϕ − l)

+ cH(l − ϕ)δ(ϕ − l) − cH(ϕ − l)δ(l − ϕ) − cδ(l − ϕ)))

+ div(
∇ϕ
∣∇ϕ∣

) (δ(ϕ − l) + δ(ϕ − l)). (.)

We show in > Figs. - and > - a numerical result for joint denoising,
deblurring, and segmentation of the brain image in a multilayer level set approach.
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⊡ Fig. -

Original image (left) and its noisy, blurry version (right) blurredwith Gaussian kernel with

σb =  and contaminated by Gaussian noise σn = 

.. Image Restoration by Nonlocal Mumford–Shah
Regularizers

The traditional regularization terms discussed in the previous sections (depending on the
image gradient) are based on local image operators, which denoise and preserve edges
very well, but may induce loss of fine structures like texture during the restoration process.
Recently, Buades et al. [] introduced the nonlocal means filter, which produces excel-
lent denoising results. Gilboa and Osher [, ] formulated the variational framework
of NL-means by proposing nonlocal regularizing functionals and the nonlocal operators
such as the nonlocal gradient and divergence. Following Jung et al. [], we present here
nonlocal versions of the Mumford–Shah–Ambrosio–Tortorelli regularizing functionals,
called NL/MSH and NL/MSTV, by applying the nonlocal operators proposed by Gilboa–
Osher to MSH and MSTV respectively, for image restoration in the presence of blur and
Gaussian or impulse noise. In addition, for the impulse noise model, we propose to use
a preprocessed image to compute the weights w (the weights w defined in the NL-means
filter are more appropriate for the additive Gaussian noise case).

We first recall the Ambrosio–Tortorelli regularizer,

ΨMSH

є (u, v) = β
∫

Ω
v∣∇u∣dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx,

where  ≤ v(x) ≤  represents the edges: v(x) ≈  if x ∈ K and v(x) ≈  otherwise, є is a
small positive constant, α, β are positive weights.

Shah [] suggested a modified version of the approximation (> .) to the MS
functional by replacing the norm square of ∣∇u∣ by the norm in the first term:

ΨMSTV
є (u, v) = β

∫

Ω
v∣∇u∣dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
)dx.
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⊡ Fig. -

Curve evolution and restored u using (> .),  = . ⋅ , (c, c, c): original image

≈ (., ., .), restored u ≈ (., ., .)
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This functional Γ converges to the other ΨMSTV functional []:

ΨMSTV
(u) = β

∫

Ω/K
∣∇u∣dx + α

∫

K

∣u+ − u−∣
 + ∣u+ − u−∣

dH
+ ∣Dcu∣(Ω),

where u+ and u− denote the image values on two sides of the jump set K = Ju of u, and
Dcu is the Cantor part of the measure-valued derivative Du.

Nonlocal methods in image processing have been explored in many papers because
they are well adapted to texture denoising, while the standard denoising models working
with local image information seem to consider texture as noise, which results in losing
texture. Nonlocal methods are generalized from the neighborhood filters and patch-based
methods. The idea of neighborhood filter is to restore a pixel by averaging the values of
neighboring pixels with a similar gray level value.

Buades et al. [] generalized this idea by applying the patch-based methods, proposing
a famous neighborhood filter called nonlocal-means (or NL-means):

NLu(x) =


C(x) ∫Ω
e−

da(u(x),u(y))
h u(y)dy

da(u(x),u(y)) = ∫
R
Ga(t)∣u(x + t) − u(y + t)∣dt

where da is the patch distance, Ga is the Gaussian kernel with standard deviation a deter-
mining the patch size, C(x) =

∫Ω e−
da(u(x),u(y))

h dy is the normalization factor, and h is the
filtering parameter which corresponds to the noise level; usually we set it to be the standard
deviation of the noise.TheNL-means not only compares the gray level at a single point but
the geometrical configuration in a whole neighborhood (patch). Thus, to denoise a pixel,
it is better to average the nearby pixels with similar structures rather than just with similar
intensities.

In practice, we use the search window Ωw = {y ∈ Ω : ∣y − x∣ ≤ r} instead of Ω
(semi-local) and the weight function at (x, y) ∈ Ω×Ω depending on a function u : Ω → R

w(x, y) = exp(−
da(u(x),u(y))

h
) .

The weight function w(x, y) gives the similarity of image features between two pixels x
and y, which is normally computed based on the blurry noisy image g.

Based on the gradient and divergence definitions on graphs in the context of machine
learning, Gilboa and Osher [] derived the nonlocal operators. Let u : Ω → R be a
function, and w : Ω × Ω → R is a weight function assumed to be nonnegative and sym-
metric. The nonlocal gradient ∇wu : Ω × Ω → R is defined as the vector (∇wu)(x, y) :=
(u(y) − u(x))

√

w(x, y). Hence, the norm of the nonlocal gradient of u at x ∈ Ω is
defined as

∣∇wu∣(x) =
√

∫

Ω
(u(y) − u(x))w(x, y)dy.
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The nonlocal divergence divwa→v : Ω → R of the vector a→v : Ω × Ω → R is defined as the
adjoint of the nonlocal gradient

(divwa→v )(x) := ∫
Ω
(v(x, y) − v(y, x))

√

w(x, y)dy.

Based on these nonlocal operators, they introduced nonlocal regularizing functionals of
the general form

Ψ(u) =
∫

Ω
ϕ(∣∇wu∣)dx,

where ϕ(s) is a positive function, convex in
√

s with ϕ() = . Inspired by these ideas,
we present nonlocal versions of Ambrosio–Tortorelli and Shah approximations to the MS
regularizer for image denoising-deblurring. This is also continuation of work by Bar et al.
[–], as presented in the first part of this section.

We propose the following nonlocal approximated Mumford–Shah and Ambrosio–
Tortorelli regularizing functionals (NL/MS) by applying the nonlocal operators to the
approximations of the MS regularizer,

ΨNL/MS
(u, v) = β

∫

Ω
vϕ(∣∇wu∣)dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx,

where ϕ(s) = s and ϕ(s) =
√

s correspond to the nonlocal version of MSH and MSTV
regularizers, called here NL/MSH and NL/MSTV, respectively:

ΨNL/MSH
(u, v) = β

∫

Ω
v∣∇wu∣dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx

ΨNL/MSTV
(u, v) = β

∫

Ω
v∣∇wu∣dx + α

∫

Ω
(є∣∇v∣ +

(v − )

є
) dx.

In addition, we use these nonlocal regularizers to deblur images in the presence of Gaus-
sian or impulse noise. Thus, by incorporating the proper fidelity term depending on the
noise model, we design two types of total energies as

Gaussian noise model:

EG
(u, v) =

∫

Ω
(g − h ∗ u)dx +ΨNL/MS

(u, v),

Impulse noise model:

EIm
(u, v) =

∫

Ω
∣g − h ∗ u∣dx +ΨNL/MS

(u, v).

Minimizing these functionals in u and v, we obtain the Euler–Lagrange equations:

Gaussian noise model:

∂EG

∂v
= βvϕ(∣∇wu∣) − єα△ v + α (

v − 
є

) = ,

∂EG

∂u
= h∗ ∗ (h ∗ u − g) + LNL/MSu = .
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Impulse noise model:

∂EIm

∂v
= βvϕ(∣∇wu∣) − єα△ v + α (

v − 
є

) = ,

∂EIm

∂u
= h∗ ∗ sign(h ∗ u − g) + LNL/MSu = ,

where h∗(x) = h(−x) and

LNL/MSu = −
∫

Ω
(u(y) − u(x))w(x, y)

[(v(y)ϕ′(∣∇w(u)∣(y))

+ v(x)ϕ′(∣∇w(u)∣(x))] dy.

More specifically, the NL/MSH and NL/MSTV regularizers give

LNL/MSH
u = −∇w ⋅ (v(x)∇wu(x))

= −
∫

Ω
(u(y) − u(x))w(x, y)

[v(y) + v(x)] dy,

LNL/MSTV u = −∇w ⋅ (v(x)
∇wu(x)
∣∇wu(x)∣

)

= −
∫

Ω
(u(y) − u(x))w(x, y) [

v(y)
∣∇wu∣(y)

+

v(x)
∣∇wu∣(x)

]dy.

The energy functionals EG
(u, v) and EIm

(u, v) are convex in each variable and
bounded from below. Therefore, to solve two Euler–Lagrange equations simultaneously,
the alternate minimization (AM) approach is applied: in each step of the iterative proce-
dure, we minimize with respect to one function while keeping the other one fixed. Due to
its simplicity, we use the explicit scheme for u based on the gradient descent method and
the Gauss–Seidel scheme for v. Note that since both energy functionals are not convex in
the joint variable, wemay compute only a local minimizer. However, this is not a drawback
in practice, since the initial guess for u in our algorithm is the data g.

⊡ Fig. -

Original and noisy blurry images (noisy blurry image using the pill-box kernel of radius 

and Gaussian noise with σn = )
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Furthermore, to extend the nonlocal methods to the impulse noise case, we need a
preprocessing step for the weight function w(x, y) since we cannot directly use the data
g to compute w. In other words, in the presence of impulse noise, the noisy pixels tend to
have larger weights than the other neighboring points, so it is likely to keep the noise value
at such pixel. Thus, we propose a simple algorithm to obtain first a preprocessed image
f , which removes the impulse noise (outliers) as well as preserves the textures as much

⊡ Fig. -

Recovery of noisy blurry image from > Fig. -. Top row: recovered image u using MSTV

(SNR = .), MSH (SNR = .). Third row: recovered image u using NL/MSTV (SNR =

.), NL/MSH (SNR = .). Second, bottom rows: corresponding residuals g − h ∗ u.

β = . (MSTV), . (NL/MSTV), . (MSH), . (NL/MSH), α = .,
є = .
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as possible. Basically, we use the median filter, well known for removing impulse noise.
However, if we apply one step of the median filter, then the output may be too smoothed
out. In order to preserve the fine structures as well as to remove the noise properly, we use
the idea of Bregman iteration [, ], and we propose the following algorithm to obtain a
preprocessed image f that will be used only in the computation of the weight function:

Initialize : r = , f = .
do (iterate n = , , , . . .)

fn+ = median(g + rn , [a a])
rn+ = rn + g − h ∗ fn+

while ∥g − h ∗ fn∥ > ∥g − h ∗ fn+∥
[Optional] fm = median( fm, [b b])

⊡ Fig. -

Recovery of noisy blurry image with Gaussian kernel with σ =  and salt-and-pepper noise with d = ..

Top row: original image, blurry image, noisy-blurry image.Middle row: recovered images usingMSTV

(SNR = .), MSH (SNR = .). Bottom row: recovered images using NL/MSTV (SNR = .),

NL/MSH (SNR = .). Parameters: β = . (MSTV), . (NL/MSTV), α = ., є = .. Parameters:

β =  (MSH), . (NL/MSH), α = ., є = .
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where g is the given noisy blurry data, median(u, [a a]) is the median filter of size a × a
with input u; the optional step is needed in the case when the final fm still has some salt-
and-pepper-like noise. This algorithm is simple and requires a few iterations only, so it
takes less than  s for a × size image.The preprocessed image f will be used only in
the computation of the weights w, while keeping g in the data fidelity term, thus artifacts
are not introduced by the median filter.

We show in > Figs. - and > - an experimental result for image restoration of
a boat image degraded by the pill-box kernel blur of radius  and additive Gaussian noise.
The nonlocal methods give better reconstruction.

We show in > Figs. - and > - an experimental result for image restoration of a
woman image degraded byGaussian kernel blur and salt-and-pepper noise. > Figure -
shows the edge set v for the four results. The nonlocal methods give better reconstruction.

We show in > Fig. - an experimental result for restoration of the Einstein image
degraded bymotion kernel blur and random-valued impulse noise.The nonlocal methods
give better reconstruction.

⊡ Fig. -

Edgemap v using the MS regularizers in the recovery of the Lena image blurred with Gaussian blur

kernel with σb =  and contaminated by salt-and-pepper noise with density d = .. Top: (left) MSTV,

(right) NL/MSTV. Bottom: (left) MSH, (right) NL/MSH
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⊡ Fig. -

Comparison between MSH and NL/MSH with the image blurred and contaminated by high density

(d = .) of random-valued impulse noise. Top: noisy blurry image blurred with the motion blur in

recovered images usingMSH (left, SNR = .) and NL/MSH (right, SNR = .). Bottom: noisy

blurry image blurred with the Gaussian blur in recovered images using MSH (left, SNR = .) and

NL/MSH (right, SNR = .). Top: β = . (MSH), . (NL/MSH), α = ., є = .. Bottom: β = .

(MSH), . (NL/MSH), α = .,є = .

. Conclusion

We conclude this chapter by first summarizing its main results.TheMumford–Shah model
for image segmentation has been presented, together with its main properties. Several
approximations to the Mumford and Shah energy have been discussed, with an emphasis
on phase-field approximations and level set approximations. Several numerical results
for image segmentation by these methods have been presented. In the last section of
the chapter, several restoration problems were addressed in a variational framework. The
fidelity term was formulated according to the noise model (Gaussian, impulse, multi-
channel impulse). First, the a priori piecewise-smooth image model was mathematically
integrated into the functional as an approximation of the Mumford–Shah segmentation
elements by the Γ-convergence formulation. Comparative experimental results show the
superiority of this regularizer with respect to modern state-of-the-art restoration tech-
niques. Also, the piecewise-constant level set formulations of the Mumford–Shah energy
have been applied to image restoration (related to relevant work by Kim et al. []), joint
with segmentation. Finally, in the last section, the Ambrosio–Tortorelli approximations
and Bar et al. restoration models have been extended to nonlocal regularizers, inspired
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by the work of Gilboa et al. These models produce much improved restoration results for
images with texture and fine details.

. Recommended Reading

Manymore topics on theMumford–Shahmodel and its applications have been explored in
image processing, computer vision, and more generally in inverse problems. This chapter
contains only a small sample of results andmethods. Asmentioned before, we recommend
detailed monographs on the Mumford–Shah problem and related theoretical and applica-
tions topics by Blake and Zisserman [], by Morel and Solimini [], by Chambolle [],
by Ambrosio et al. [], by David [], and by Braides []. Also, the monographs by Aubert
and Kornprobst [] and by Chan and Shen [] contain chapters presenting the Mumford
and Shah problem and its main properties.

We would like to mention the work by Cohen et al. [, ] on using curve evolution
approach and the Mumford–Shah functional for detecting the boundary of a lake. The
work by Aubert et al. [] also proposes an interesting approximation of theMumford–Shah
energy by a family of discrete edge-preserving functionals, with Γ-convergence result.
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