1	2	3	4

Cai	LIF.

Optimización

Parcial - 01/07/2016

APELLIDO Y NOMBRE:

<u>DNI</u>:

Justifique apropiadamente todas sus respuestas.

* Colocar nombre, apellido y D.N.I en cada hoja entregada.

■ Ejercicio 1

Consideremos el método tipo gradiente dado por

$$x^{k+1} = x^k - \alpha \nabla f_k(x^k),$$

donde f_0, f_1, \ldots son funciones cuadráticas, digamos que $f_k(x) = (1/2)x^T Q_k x$ con Q_k simétrica, definida positiva, donde los autovalores de Q_k yacen en un intervalo $[\gamma, \Gamma]$, con $\gamma > 0$ para todo k.

Supongamos que para cierto $\epsilon > 0$ fijo, existe un x^* tal que

$$\|\nabla f_k(x^*)\| \le \epsilon$$
, para todo k .

Sea α tal que $0 < \alpha < 2/(\gamma + \Gamma)$.

1. Mostrar que para todo k,

$$x^{k+1} - x^* = (I - \alpha Q_k)(x^k - x^*) - \alpha \nabla f_k(x^*).$$

- 2. Usando el item anterior, probar que si $||x^k x^*|| \le (2\epsilon)/\gamma$ entonces $||x^{k+1} x^*|| \le (2\epsilon)/\gamma$, mientras que si $||x^k x^*|| > (2\epsilon)/\gamma$ entonces $||x^{k+1} x^*|| < (1 (\alpha\gamma)/2)||x^k x^*||$.
- 3. Concluir que se tiene que

$$\limsup_{k \to \infty} \|x^k - x^*\| \le \frac{2\epsilon}{\gamma}.$$

■ Ejercicio 2

Sean $f: \mathbb{R}^n \to \mathbb{R}$ convexa, $\phi: \mathbb{R} \to \mathbb{R}$ convexa y estrictamente creciente. Sea $g(x) = \phi(f(x))$. Notar que los problemas de hallar el mínimo de f y el de g son equivalentes. Supongamos que f, ϕ y g son suaves.

- 1. Escribir las iteraciones del método de descenso más rápido con paso fijo de f y de g. ¿En qué caso coinciden?
- 2. Escribir las iteraciones del método de Newton de f y de g. ¿En qué caso coinciden? Sugerencia: Usar que si M es una matriz de $n \times n$ invertible y a es un vector de n coordenadas

$$(M + aa^{T})^{-1} = M^{-1} - \frac{1}{1 + a^{T}M^{-1}a}M^{-1}aa^{T}M^{-1}$$

siempre que $1 + a^T M^{-1} a \neq 0$.

■ Ejercicio 3

1. Resolver utilizando las condiciones KKT el siguiente problema de maximización con restricciones:

$$\begin{cases} \text{máx} & -(x-2)^2 - 2(y-1)^2 \\ x + 4y \le 0 \\ x \ge y \end{cases}$$

Hacer un gráfico aproximado que represente el planteo, graficando la región de factibilidad y las curvas de nivel de la función objetivo.

2. Mostrar que el punto $x^* = (0,0)$ satisface las condiciones KKT de primer orden del problema

$$\begin{cases} \min & -x + y \\ \sin(x) - y \le 0 \\ 0 \le x \le \pi \end{cases}$$

¿Satisface las condiciones suficientes de segundo orden?

■ Ejercicio 4

Sea x^* una solución factible del problema

$$\begin{cases} \min_{x} & c^{T}x + \frac{1}{2}x^{T}Qx \\ & Ax \ge b \end{cases}$$

donde $x, c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ y $Q \in \mathbb{R}^{n \times n}$ es simétrica con k autovalores negativos. Llamemos a_1, \ldots, a_m a las filas de A.

Asumamos que p de las restricciones lineales están activas en el punto x^* y que las restricciones activas son l.i. Supongamos además que p < k.

Notar que como Q es simétrica, $Q = \sum_{i=1}^{n} \lambda_i u_i u_i^T$ donde λ_i son los autovalores de Q y $\{u_1, \ldots, u_n\}$ forman una base de \mathbb{R}^n .

- 1. Mostrar que existe un $d \neq 0$ tal que:

 - $u_i^T d = 0$ para todo i tal que $\lambda_i \ge 0$, $a_i^T d = 0$ para todo i tal que la restricción asociada a a_i está activa.
- 2. Concluir que x^* no satisface las condiciones KKT necesarias de segundo orden.