Geometría Diferencial 2017

Segundo Parcial -29/06/17

Nombre y Apellido	1	2	3	4	5	Nota

Justificar todas las respuestas y escribir prolijo. Duración 5 horas.

1. Consideremos la forma de contacto

$$\omega = \mathrm{d}z - \sum_{i=1}^{n} y_i \mathrm{d}x_i$$

en \mathbb{R}^{2n+1} con coordenadas $(x_1, \dots, x_n, y_1, \dots, y_n, z)$. Hallar todos los campos tangentes $R \in \mathfrak{X}(\mathbb{R}^{2n+1})$ tales que

$$\begin{cases} \mathrm{d}\omega(R,-) & \equiv 0 \\ \omega(R) & \equiv 1. \end{cases}$$

Un tal campo R se denomina un campo de Reeb.

- 2. Sea M una variedad compacta y conexa de dimensión n y $\omega \in \Omega^n(M)$ una forma de volumen. Si $X \in \mathfrak{X}(M)$ es un campo tangente, entonces existe una función $f: M \to \mathbb{R}$ tal que $L_X \omega = f \omega$ llamada la divergencia div X de X. Probar que para todo campo X existe algún punto $p \in M$ tal que div X(p) = 0.
- 3. Se
a $B=\{x\in\mathbb{R}^{n+1}:||x||\leq 1\}$ la bola unitaria y sea $f:B\to B$ una función su
ave.
 - a) Probar que

$$\int_{B} \det(Df(x_1, \cdots, x_{n+1})) dx_1 \cdots dx_{n+1}$$

depende solamente del valor de f en S^n .

- b) Probar que no existe una retracción suave $r: B \to \partial B = S^n$.
- c) Concluir que toda función $f: B \to B$ suave tiene un punto fijo.
- 4. Calcular la cohomología de de Rham de $S^1\times S^2$ y dar generadores de cada grupo de cohomología.
- 5. Probar que la distribución en \mathbb{R}^4 generada por

$$X = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \ Y = \frac{\partial}{\partial x} + y \frac{\partial}{\partial w},$$

donde (x, y, z, w) son las coordenadas estándar de \mathbb{R}^4 , no admite variedades integrales de dimensión 2.