GEOMETRÍA DIFERENCIAL – 1ER CUATRIMESTRE 2017

PRÁCTICA 6: FORMAS DIFERENCIABLES Y ORIENTABILIDAD

Formas diferenciales

Una k-forma sobre una variedad M es una asignación $p \mapsto \omega_p$ donde $\omega_p \in \Lambda^k(T_pM^*)$ es una forma multilineal alternada $\omega_p : T_pM \times \cdots \times T_pM \to \mathbb{R}$. Diremos que una k-forma es diferenciable si para todos campos $X^1, \cdots, X^k \in \mathfrak{X}(M)$ la función $p \mapsto \omega_p(X_p^1, \cdots, X_p^k)$ es diferenciable. Notaremos por $\Omega^k(M)$ al conjunto de k-formas diferenciables en M.

- Sea M una variedad diferenciable y $f: M \to \mathbb{R}$ una función suave. La diferencial en p define un elemento $d_p f \in T_p M^*$. Probar que la asignación $p \mapsto d_p f$ define una 1-forma diferenciable en M, que llamaremos df.
- Sea M una variedad diferenciable y (U, ϕ) una carta de M. Probar que $\{d_p \phi^1, \cdots d_p \phi^n\}$ es la base de $T_p M^*$ dual a la base de los ganchos $\{\frac{\partial}{\partial \phi_1}\Big|_p, \cdots, \frac{\partial}{\partial \phi_n}\Big|_p\}$ de $T_p M$. Probar que en estas coordenadas podemos escribir

$$d_p f = \sum_{i=1}^n \frac{\partial f}{\partial \phi_i} \bigg|_p d_p \phi^i,$$

y en particular, tenemos la expresión local

$$\mathrm{d}f = \sum_{i=1}^n \frac{\partial f}{\partial \phi_i} \, \mathrm{d}\phi^i.$$

- 3 Sea *M* una variedad de dimensión *n*. Probar que son equivalentes:
 - 1. ω es una k-forma diferenciable en M.
 - 2. Para toda carta (U, ϕ) de M, en la expresión

$$\omega_p = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1 \dots i_n}(p) \, \mathrm{d}_p \phi_{i_1} \wedge \dots \wedge \mathrm{d}_p \phi_{i_n}$$

las funciones $a_{i_1 \cdots i_n}$ son diferenciables en U.

3. Para toda carta (U, ϕ) de M y $X^1, \ldots, X^k \in \mathfrak{X}(U)$ tenemos que la función

$$p\mapsto\omega_p(X_p^1,\cdots,X_p^k)$$

es diferenciable en *U*.

- 4. ω es una sección diferenciable de $\Lambda^k(TM^*) \to M$ la k-ésima potencia exterior del fibrado cotangente.
- 4 Sea ω ∈ Ω^k(M) y X¹,...,X^{k+1} ∈ 𝒳(M). Probar la fórmula

$$d\omega(X^{1}, \dots, X^{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} X^{i} \omega(X^{1}, \dots, \widehat{X^{i}}, \dots, X^{k+1})$$

$$+ \sum_{i < j} (-1)^{i+j} \omega\left([X^{i}, X^{j}], X^{1}, \dots, \widehat{X^{i}}, \dots, \widehat{X^{j}}, \dots, X^{k+1}\right).$$

- Sean $\omega \in \Omega^k(M)$ y $\eta \in \Omega^l(M)$. Se define su *producto exterior* a través de la asignación $p \mapsto (\omega \wedge \eta)_p = \omega_p \wedge \eta_p \in \Lambda^{k+l}(T_pM^*)$. Probar que $\omega \wedge \eta$ es una k+l-forma diferenciable. Hallar la expresión de $\omega \wedge \eta$ en las coordenadas de una carta en términos de las expresiones de ω y η .
- 6 Si ω es una k-forma, ¿es cierto que ω ∧ ω = 0? ¿Y si dim M = 3?
- 7 Sean $\omega_1, \ldots, \omega_r \in \Omega^1(M)$ y $X^1, \ldots, X^r \in \mathfrak{X}(M)$. Probar que $\omega_1 \wedge \cdots \wedge \omega_r(X^1, \cdots, X^r) = \det(\omega_i(X^j))$.
- 8 Sea M una variedad diferenciable y (U, ϕ) , (V, ψ) dos cartas. Probar que

$$d\psi^1 \wedge \cdots \wedge d\psi^n = \det(D(\psi \circ \phi^{-1})) d\phi^1 \wedge \cdots \wedge d\phi^n.$$

9 Sea $f:M\to N$ una función diferenciable. Se define el pullback $f^*:\Omega^k(N)\to\Omega^k(M)$ por la fórmula

$$(f^*\omega)_p(v_1,\cdots,v_k)=\omega_{f(p)}(\mathsf{d}_pf(v_1),\cdots,\mathsf{d}_pf(v_k))$$

para cada $p \in M$.

- 1. Probar que f^* está bien definido (es decir, probar que $f^*\omega$ es una k-forma diferenciable).
- 2. Probar que si $f: M \to N$, $g: N \to S$ son funciones diferenciables y $\omega \in \Omega^k(S)$ entonces $(g \circ f)^*\omega = f^*(g^*\omega)$.
- 3. Probar que $f^*(\omega \wedge \eta) = f^*\omega \wedge f^*\eta$.
- 4. Probar que si (U, ϕ) es una carta, entonces $\phi^*(dx_i) = d\phi^i$.
- 5. Probar que si (U, ϕ) , (V, ψ) son dos cartas, entonces

$$(\phi \circ \psi^{-1})^*(\mathrm{d}x_1 \wedge \cdots \wedge \mathrm{d}x_n) = \det(D(\phi \circ \psi^{-1}))\,\mathrm{d}x_1 \wedge \cdots \wedge \mathrm{d}x_n.$$

- 10 Sea M una variedad diferenciable y sea $\omega \in \Omega^k(M)$. Diremos que ω es una k-forma $\operatorname{cerrada}$ si $\mathrm{d}\omega = 0$ y que es una k-forma exacta si existe $\eta \in \Omega^{k-1}(M)$ tal que $\omega = \mathrm{d}\eta$. Probar que:
 - 1. Toda forma exacta es cerrada.
 - 2. Si ω , ω' son formas cerradas y ω'' es exacta, entonces $\omega \wedge \omega'$ es cerrada y $\omega \wedge \omega''$ es exacta.
 - 3. Si $f:M\to N$ es diferenciable, entonces f^* transforma formas cerradas en cerradas y exactas en exactas.
- 11 Sea $F : \mathbb{R}^3 \to \mathbb{R}^3$ un campo diferenciable (en el sentido clásico).
 - 1. Demostrar que $\omega_F^1(x)(v) := \langle F(x), v \rangle$ define una 1-forma en \mathbb{R}^3 . Encontrar las coordenadas de ω_F^1 en la base $\{dx, dy, dz\}$. Recíprocamente, si ω es una 1-forma en \mathbb{R}^3 , probar que ω determina un único campo G en \mathbb{R}^3 tal que $\omega_G^1 = \omega$.
 - 2. Demostrar ahora que $\omega_F^2(x)(u,v) := \langle F(x), u \times v \rangle$ define una 2-forma en \mathbb{R}^3 . Calcular sus coordenadas en la base $\{dx \wedge dy, dz \wedge dx, dy \wedge dz\}$. Recíprocamente, probar que toda 2-forma ω define un único campo G en \mathbb{R}^3 tal que $\omega_G^2 = \omega$.
 - 3. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ una función suave. Hallar la relación entre df y ∇f , entre $\mathrm{rot}(F)$ y d ω_F^1 , entre $\mathrm{div}(F)$ y d ω_F^2 y concluir, usando la relación d \circ d = 0, las fórmulas clásicas $\mathrm{rot}(\nabla f) = 0$ y $\mathrm{div}(\mathrm{rot}(F)) = 0$.

Orientabilidad

- Sea M una variedad diferenciable de dimensión n. Diremos que dos bases $\{v_1, \ldots, v_n\}$ y $\{w_1, \ldots, w_n\}$ de un \mathbb{R} -espacio vectorial V son equivalentes si la matriz de cambio de base tiene determinante positivo. Una *orientación* de V es una clase de equivalencia de bases ordenadas de V. Probar que las siguientes afirmaciones son equivalentes:
 - 1. Para cada $p \in M$ existe una orientación o(p) del espacio tangente T_pM que varía suavemente, o más precisamente, para cada punto $p \in M$ existe un entorno U de p y campos $X^1, \ldots, X^n \in \mathfrak{X}(U)$ tal que $o(q) = [X_q^1, \cdots, X_q^n]$ para todo $q \in U$.
 - 2. Existe un atlas orientado de M, es decir, un atlas $\mathcal{A} = \{(U_{\alpha}, \phi_{\alpha})\}_{\alpha}$ de modo tal que $\det(D(\phi_{\beta} \circ \phi_{\alpha}^{-1})) > 0$ para todos α, β .
 - 3. Existe una *n*-forma ω nunca nula en M, es decir, $\omega_p \neq 0$ para cada $p \in M$.
- 13 Sea M una variedad. Probar que su fibrado tangente TM y su fibrado cotangente T^*M son variedades orientables.
- 14 Probar que si M tiene un atlas de la forma $\{(U,\phi),(V,\psi)\}$ donde $U\cap V$ es conexo, entonces M es orientable. Concluir por ejemplo que S^2 es orientable.
- 15 Probar que toda variedad paralelizable es orientable. Concluir en particular que todo grupo de Lie es orientable.
- 16 Probar que

$$\omega = \sum_{i=1}^{n+1} (-1)^{i-1} x_i dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_{n+1}$$

es una n-forma en \mathbb{R}^{n+1} y que si $i:S^n\hookrightarrow\mathbb{R}^{n+1}$ es la inclusión entonces $i^*\omega$ es una n-forma nunca nula en S^n . Concluir que S^n es orientable.

17 Sea *M* una variedad conexa. Definimos

$$O(M) = \{(p, o(p)) : p \in M, o(p) \text{ orientación de } T_pM\}$$

con la proyección canónica $\pi:O(M)\to M$ en la primera coordenada. Para cada carta (U,ϕ) de M tomamos el abierto

$$\widetilde{U} = \left\{ \left(p, \left[\frac{\partial}{\partial \phi_1}, \cdots, \frac{\partial}{\partial \phi_n} \right] \right) : p \in U \right\}$$

donde $\left[\frac{\partial}{\partial \phi_1}, \cdots, \frac{\partial}{\partial \phi_n}\right]$ es la orientación dada por la base de los ganchos. Probar que el conjunto $\left\{\widetilde{U}: (U,\phi) \text{ carta}\right\}$ nos permite dotar a O(M) de una estructura de variedad diferenciable y que la proyección $\pi: O(M) \to M$ resulta ser un revestimiento de dos hojas diferenciable. Probar que M es orientable si y sólo si O(M) tiene dos componentes conexas. Deducir que si $\pi_1(M,*)$ no tiene subgrupos de índice 2, M es orientable.

- 18 Sean M y N variedades orientadas y $f: M \to N$ una función diferenciable. Diremos que f preserva la orientación en $p \in M$ si $d_p f: T_p M \to T_{f(p)} N$ es un isomorfismo de espacios vectoriales orientados.
 - 1. Probar que si (U, ϕ) , (V, ψ) son cartas orientadas de M y N respectivamente, f preserva la orientación en p si y sólo si $\det(D(\psi \circ f \circ \phi^{-1}))(\phi(p)) > 0$.
 - 2. Probar que si ω_M y ω_N son n-formas que definen la orientación en M y N respectivamente y $f^*(\omega_N)_p = \phi(p)(\omega_M)_p$ entonces f preserva la orientación en p si y sólo si $\phi(p) > 0$.

- 19 Sea M una variedad diferenciable conexa y orientada y G un grupo discreto actuando en M de forma propiamente discontinua por difeomorfismos. Probar que M/G es orientable si y sólo si para cada $g \in G$ el difeomorfismo $p \mapsto g \cdot p$ preserva la orientación en todos los puntos. Probar que $\mathbb{P}^n(\mathbb{R})$ es orientable si y sólo si n es impar.
- 20 Sea M una variedad diferenciable de dimensión n y T^*M su fibrado cotangente. Sea (U,ϕ) una carta de M y $\psi=(\phi^1,\cdots,\phi^n,\mathrm{d}\phi^1,\cdots,\mathrm{d}\phi^n)$ la carta $\psi:T^*U\to\phi(U)\times\mathbb{R}^n$ asociada a (U,ϕ) en T^*U . Tomamos la 2-forma en T^*U dada por

$$\sum_{i=1}^n \mathrm{d}\psi_i \wedge \mathrm{d}\psi_{n+i}.$$

Probar que esta forma no depende de la carta (U, ϕ) . Deducir que esto define una 2-forma global en T^*M que es no degenerada y exacta.

- 21 Una variedad simpléctica (M, ω) es una variedad M de dimensión 2n provista de una 2-forma ω no degenerada y cerrada. Probar que toda variedad simpléctica (M, ω) es orientable.
- 22 Sea *M* una variedad holomorfa de dimensión compleja *n*. Entonces *M* vista como variedad diferenciable de dimensión 2*n* resulta orientable.