Práctica 8: Medidas abstractas

Ejercicio 1. Probar que las siguientes ternas (X, \mathcal{A}, μ) constituyen espacios de medida. En cada caso encontrar los conjuntos de medida nula y caracterizar $\int_X f(x)d\mu(x)$.

(a) Medida de contar. Dado un conjunto X tomamos $\mathcal{A} = \mathcal{P}(X)$, y para cada $E \in \mathcal{A}$ definimos

 $\mu(E) = \begin{cases} \#E, & \text{si } E \text{ es finito,} \\ +\infty, & \text{si } E \text{ es infinito.} \end{cases}$

(b) **Medida de contar pesada.** Dada $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales no negativos (denominados pesos), tomamos $X=\mathbb{N}$ con $\mathcal{A}=\mathcal{P}(\mathbb{N})$ y definimos para cada $E\in\mathcal{A}$

 $\mu(E) := \sum_{n \in E} a_n.$

(c) Medida de Dirac concentrada en x_0 . Dado un conjunto X no vacío y $x_0 \in X$ tomamos $\mathcal{A} = \mathcal{P}(X)$ y para cada $E \in \mathcal{A}$ definimos

$$\mu(E) = \begin{cases} 1, & \text{si } x_0 \in E, \\ 0, & \text{si } x_0 \notin E. \end{cases}$$

La medida μ se denomina la medida delta de Dirac concentrada en x_0 y se nota δ_{x_0} .

(d) Medida de Lebesgue pesada. Tomamos $X=\mathbb{R}^n$ con \mathcal{A} la sigma-álgebra de los conjuntos medibles Lebesgue y dada una función medible $\omega:\mathbb{R}^n\to[0,+\infty)$ (denominada peso) definimos para cada $E\in\mathcal{A}$

$$\mu(E) := \int_{E} \omega(x) dx.$$

Ejercicio 2. Probar que toda medida μ definida sobre $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ es una medida de contar pesada para alguna elección adecuada de pesos $(a_n)_{n\in\mathbb{N}}$.

Ejercicio 3. Un espacio (X, Σ, μ) se dice de medida completa si dado $Z \in \Sigma$ tal que $\mu(Z) = 0$, para cada $Y \subseteq Z$ resulta $Y \in \Sigma$ y $\mu(Y) = 0$. En este caso, probar que:

- (a) Si $Z_1 \in \Sigma$, $Z_1 \Delta Z_2 \in \Sigma$ y $\mu(Z_1 \Delta Z_2) = 0$, entonces $Z_2 \in \Sigma$.
- (b) Si f es medible y f=g a.e., entonces g es medible.

Ejercicio 4. Sea (X, \mathcal{A}) un espacio medible y $\mu : \mathcal{A} \to \mathbb{R}_{\geq 0}$ una aplicación tal que:

- (i) Si $A, B \in \mathcal{A}$ son disjuntos, entonces $\mu(A \cup B) = \mu(A) + \mu(B)$,
- (ii) Si $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$ y $A_n\setminus\emptyset$, entonces $\lim_n\mu(A_n)=0$.

Probar que μ es una medida.

Ejercicio 5. (Pushforward de una medida). Sea (X, \mathcal{A}) un espacio medible y μ una medida (no negativa) y finita sobre X. Sea $F: X \to \mathbb{R}^n$ una función medible. Probar que la fórmula,

$$\mu_F(E) := \mu(F^{-1}(E)),$$

define una medida sobre la sigma-álgebra de Borel de \mathbb{R}^n tal que para toda función Borel medible $f: \mathbb{R}^n \to \mathbb{R}$ no negativa vale que

$$\int_{\mathbb{R}^n} f d\mu_F = \int_X f \circ F d\mu.$$

Concluir que una función Borel medible $f: \mathbb{R}^n \to \mathbb{R}$ es integrable para μ_F si y sólo si $f \circ F$ es integrable para μ y que, en este caso, $\int_{\mathbb{R}^n} f d\mu_F = \int_X f \circ F d\mu$.

Ejercicio 6. Sea (X, \mathcal{A}, μ) un espacio medible con μ una medida positiva y finita. Sean $f \in L^1(X, \mu)$ y $S \subseteq \mathbb{C}$ cerrado tal que $\frac{1}{\mu(E)} \int_E f d\mu \in S$ para todo $E \in \mathcal{A}$ con $\mu(E) > 0$. Probar que $f(x) \in S$, para casi todo x (respecto de μ).

Ejercicio 7. Sean (X, \mathcal{A}, ν) un espacio de medida con signo y $A, B \in \mathcal{A}$ respectivamente un conjunto positivo y negativo para ν tales que: $X = A \cup B$ y $A \cap B = \emptyset$. Dado $E \in \mathcal{A}$ demostrar las siguientes afirmaciones:

(a)
$$\nu^+(E) = \nu(E \cap A) = \sup{\{\nu(H) : H \subseteq E, H \in A\}},$$

(b)
$$-\nu^{-}(E) = \nu(E \cap B) = \inf\{\nu(H) : H \subseteq E, H \in A\}.$$

Ejercicio 8. Sean (X, Σ, μ) un espacio de medida, f una función μ -integrable y ν la medida sobre (X, \mathcal{A}) definida para cada $E \in \mathcal{A}$ por la fórmula

$$\nu(E) = \int_{E} f(x)d\mu(x).$$

Dado $E \in \mathcal{A}$ demostrar las siguientes afirmaciones:

- (a) $\nu^{+}(E) = \int_{E} f^{+}(x) d\mu(x),$
- (b) $\nu^{-}(E) = \int_{E} f^{-}(x) d\mu(x)$.

Ejercicio 9. Sean λ y μ medidas sobre (X, Σ) con $\lambda(X) < +\infty$.

(a) Probar que si $\lambda \ll \mu$ entonces dado $\varepsilon > 0$ existe $\delta > 0$ tal que para todo $E \in \mathcal{A}$

$$\mu(E) < \delta \implies \lambda(E) < \varepsilon.$$

(b) Mostrar que sin la hipótesis $\lambda(X) < +\infty$ la afirmación en (a) puede ser falsa.

Ejercicio 10. Sean (X, \mathcal{A}, μ) un espacio de medida finita, $f \in L^1(X, \mathcal{A}, \mu)$ y $\mathcal{F} \subseteq \mathcal{A}$ una σ -álgebra de subconjuntos de X.

(a) Probar que si definimos la aplicación $\mu_f \colon \mathcal{F} \to \mathbb{R}$ para cada $B \in \mathcal{F}$ por la fórmula

$$\mu_f(B) = \int_B f(x)d\mu(x)$$

entonces μ_f es una medida con signo sobre el espacio (X, \mathcal{F}) que satisface $\mu_f \ll \mu$. Deducir que existe una función $g \in L^1(X, \mathcal{F}, \mu)$ tal que para todo $B \in \mathcal{F}$

$$\int_{B} f(x)d\mu(x) = \int_{B} g(x)d\mu(x).$$

(b) Determinar la función g del inciso anterior si $\mathcal{F} = \{\emptyset, B, B^c, X\}$ para algún $B \in \mathcal{A}$.

Ejercicio 11. Decidir si $\lambda \ll \mu$ en cada uno de los siguientes casos y hallar la derivada de Radon-Nikodym $\frac{d\lambda}{d\mu}$ cuando corresponda.

- (a) $X = \mathbb{R}^n$, A = sigma-'algebra de Lebesgue, $\mu = \text{medida}$ de Lebesgue y $\lambda = \delta$.
- (b) $X = \mathbb{R}^n$, $\mathcal{A} = \text{sigma-\'algebra}$ de Lebesgue, $\lambda = \text{medida}$ de Lebesgue y $\mu = \text{medida}$ de contar. ¿Contradicen sus conclusiones el Teorema de Radon Nikodym?
- (c) $X = \mathbb{N}, A = \mathcal{P}(\mathbb{N}), \lambda = \text{medida de contar}, \mu = \text{medida de contar con pesos } a_n = 2^{-n}.$

Ejercicio 12. Sean (X, \mathcal{A}, μ) un espacio de medida finita y ν una medida con signo sobre (X, \mathcal{A}) tal que $\nu \ll \mu$.

(a) Probar que existe una función $g \in L^1(X, \mathcal{A}, \mu)$ tal que para toda $f \in L^1(X, \mathcal{A}, \nu)$

$$\int_{Y} f(x)d\nu(x) = \int_{Y} f(x)g(x)d\mu(x).$$

(b) Probar que $\{x \in X : g(x) \ge 0\}$ y $\{x \in X : g(x) < 0\}$ son respectivamente un conjunto positivo y uno negativo para ν .

Ejercicio 13. Dada μ una medida de Borel finita sobre \mathbb{R} definimos $F_{\mu} \colon \mathbb{R} \to [0, +\infty)$ por la fórmula

$$F(x) = \mu((-\infty, x]).$$

- (a) Probar que F es monótona creciente, continua a derecha, $\lim_{x\to +\infty} F(x) = \mu(\mathbb{R})$ y $\lim_{x\to -\infty} F(x) = 0$.
- (b) Probar que μ es absolutamente continua respecto de \mathcal{L} : la medida de Lebesgue unidimensional si y sólo si F es una función absolutamente continua. Mostrar además que en tal caso se tiene

$$\frac{d\mu}{df} = F'.$$

(c) Probar que μ es singular respecto \mathcal{L} si y sólo si F'=0 c.t.p. con respecto a \mathcal{L} . Sugerencia: Considerar un argumento similar al usado para probar que las funciones monótonas son derivables en casi todo punto.

Ejercicio 14. Sea $E \subseteq \mathbb{R}^n$. Notamos con \mathcal{H}^{α} la medida de Hausdorff α -dimensional.

(a) Probar que $\mathcal{H}^{\alpha}(E+x) = \mathcal{H}^{\alpha}(E) \ \forall E \text{ medible}, \ \forall x \in \mathbb{R}^n$.

- (b) Probar que $\mathcal{H}^{\alpha}(cE) = c^{\alpha}\mathcal{H}^{\alpha}(E) \ \forall E \text{ medible}, \ \forall c > 0.$
- (c) Probar que si $\mathcal{H}^{\alpha}(E) < \infty$, entonces $\mathcal{H}^{\beta}(E) = 0 \ \forall \beta > \alpha$.
- (d) Probar que si $0 < \mathcal{H}^{\alpha}(E) \leq \infty$, entonces $\mathcal{H}^{\beta}(E) = \infty \ \forall \beta < \alpha$.

Ejercicio 15. Sea $E \subseteq \mathbb{R}^n$. Definimos la dimensión de E como

$$\dim(E) = \sup\{\alpha \colon \mathcal{H}^{\alpha}(E) = \infty\} = \inf\{\alpha \colon \mathcal{H}^{\alpha}(E) = 0\}.$$

- (a) Probar que $\mathcal{H}^{\alpha}(E) = 0 \ \forall \alpha > \dim(E)$.
- (b) Sea $(E_n)_{n\in\mathbb{N}}\subset\mathbb{R}^n$. Probar que si dim $(E_n)=d$ para todo $n\in\mathbb{N}$, entonces dim $(\sup_{n\in\mathbb{N}}E_n)=d$. Concluir que si E es numerable, entonces dim(E)=0.
- (c) Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ una aplicación bi-Lipschitz, es decir, existen $C_1, C_2 > 0$ tales que

$$C_1||x-y|| \le |||f(x)-f(y)|| \le C_2||x-y|| \quad \forall x, y \in \mathbb{R}^n.$$

Probar que $\dim(E) = \dim(f(E))$.

Ejercicio 16. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y sea $X = \sum_{n=1}^k a_n A_n$ una variable aleatoria simple, donde los números reales a_n son todos distintos, los conjuntos A_n son disjuntos dos a dos y $\Omega = \bigcup_{n=1}^k A_n$. Sea $\mathcal{U}(X) = \{X^{-1}(B) : B \text{ boleriano }\}$ la σ -álgebra generada por X.

- (a) Describir precisamente los conjuntos que componen $\mathcal{U}(X)$.
- (b) Probar que si una variable aleatoria Y es $\mathcal{U}(X)$ —medible, entonces Y es constante en cada uno de los conjuntos A_n .
- (c) Mostrar que entonces Y puede ser escrita en función de X.

Ejercicio 17.

(a) Sea $(\Omega, \mathcal{A}, \mu)$ un espacio de medida y sea $X : \Omega \to \mathbb{R}$ una función \mathcal{A} -medible. Consideramos la medida μ_X en los borelianos de \mathbb{R} definida por $\mu_X(A) = \mu(X^{-1}(A))$. Probar que para toda función $f : \mathbb{R} \to \mathbb{R}$ μ_X -integrable, vale que

$$\int_{\mathbb{R}} f d\mu_X = \int_{\Omega} f(X) d\mu.$$

(b) Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y sea $X : \Omega \to \mathbb{R}_{>0}$ una función \mathcal{A} -medible con $\int_{\Omega} f dP = 1$. Definimos una medida ν sobre (Ω, \mathcal{A}) por

$$\nu(A) = \int_{A} f dP.$$

Probar que $(\Omega, \mathcal{A}, \nu)$ es una espacio de probabilidad y que para toda $g: \Omega \to \mathbb{R}$ ν -integrable vale que

$$\int_{\Omega} g d\nu = \int_{\Omega} g f dP.$$

(c) En particular, sea $X : \Omega \to \mathbb{R}$ una variable aleatoria y sea f la función densidad de X. Sea $g : \mathbb{R} \to \mathbb{R}$ y supongamos que Y = g(X) es integrable. Probar que

$$E(Y) = \int_{\mathbb{R}} gf.$$