PRÁCTICA 5: TEOREMA DE CAMBIO DE VARIABLES

Ejercicio 1.

(a) Probar que para cualquier función medible no negativa f(x,y) definida sobre \mathbb{R}^2 se cumple

$$\int_{\mathbb{R}^2} f(x,y) dx dy = \int_G f(r cos\theta, r sen\theta) r dr d\theta.$$

(b) Probar que $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$.

Ejercicio 2. Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica y sea $Q : \mathbb{R}^n \to \mathbb{R}$ la forma cuadrática definida por $Q(x) = xAx^t$. Probar que la función $f(x) = e^{-Q(x)}$ es integrable sobre \mathbb{R}^n si y sólo si todos los autovalores de A son positivos. Probar, además, que en tal caso

$$\int f = \frac{\pi^{\frac{n}{2}}}{\sqrt{\det(A)}}.$$

Ejercicio 3. Decimos que $f: \mathbb{R}^n \to \mathbb{R}$ es una función radial si existe $g: \mathbb{R}_{\geq 0} \to \mathbb{R}$ tal que $f(x) = g(\|x\|)$. Probar que existe una constante C_n tal que para toda función radial f vale que

$$\int f(x)dx = C_n \int_0^{+\infty} r^{n-1}g(r)dr.$$

Ejercicio 4. ¿Para qué valores de p es $||x||^p$ integrable sobre la bola unitaria $\{||x|| \le 1\}$?

Ejercicio 5. Calcular

$$\int_{\mathbb{R}^n} \frac{1}{(1+\|x\|^2)^{\frac{n+1}{2}}} dx.$$

Ejercicio 6. Demostrar que la integral biparamétrica

$$\int_0^1 x^{p-1} |\log x|^{q-1} dx.$$

es finita si p>0 y q>0 y expresar su valor en términos de la función Γ . Sugerencia: Considere el cambio de variables $x=e^{-t}$.

Ejercicio 7. Sea A un subconjunto boreliano de \mathbb{R}^n con la siguiente propiedad: "Para cada $v \in \mathbb{R}^n$ con ||v|| = 1, el conjunto $A_v = \{t \in \mathbb{R}/\ tv \in A\}$ tiene medida nula". Probar que A tiene medida nula.

Ejercicio 8. Sea M un conjunto convexo de \mathbb{R}^n . Probar que la frontera de M tiene medida nula y que M es medible.

Ejercicio 9.

(a) Usando el ejercicio 1), probar que

$$\int_{\mathbb{R}^n} e^{-\|x\|^2} dx = \pi^{n/2}.$$

(b) Usando cambio de coordenadas polares, probar que

$$\int_{\mathbb{R}^n} e^{-\|x\|^2} dx = \frac{C_n}{2} \Gamma(n/2),$$

donde C_n es una constante que depende sólo de n y $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$.

(c) Deducir que $|B_1^n(0)| = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}$, donde $B_1^n(0) = \{x \in \mathbb{R}^n \colon ||x|| \le 1\}$. Observar que $\lim_{n \to \infty} |B_1^n(0)| = 0$.

Ejercicio 10. Probar que

$$\int_{\partial B_r^n(0)} f(x) \, dS = r^{n-1} \int_{\partial B_1^n(0)} f(r.x) \, dS.$$