Análisis Complejo - Primer Cuatrimestre de 2017

Práctica N°1: Números Complejos

1. Expresar los siguientes números complejos en la forma a+ib, con $a,b \in \mathbb{R}$:

(a) (i+1)(i-1)(i+3), (d) $\frac{1+i}{i}$,

(g) $(1+i)^{65} + (1-i)^{65}$.

(b) $(3-2i)^2$,

(e) 2 + i2 - i, (f) $(1 + i)^{100}$

(c) $\frac{1}{-1+3i}$,

2. Sean z y w dos números complejos. Demostrar que:

(a) $\overline{z} = z$ si y solo si $z \in \mathbb{R}$,

(d) $\operatorname{Re}(z) = \frac{z+\overline{z}}{2}$,

(b) $\overline{z+w} = \overline{z} + \overline{w}$,

(e) $\operatorname{Im}(z) = \frac{z-\overline{z}}{2i}$.

(c) $\overline{zw} = \overline{z} \overline{w}$,

- 3. Probar que si $z_0 \in \mathbb{C}$ es raíz de $a_n X^n + a_{n-1} X^{n-1} + \cdots + a_0 = 0$, entonces $\overline{z}_0 \in \mathbb{C}$ es raíz de $\overline{a}_n X^n + \overline{a}_{n-1} X^{n-1} + \cdots + \overline{a}_0 = 0$. Deducir que si P(X) es un polinomio con coeficientes reales y $z_0 \in \mathbb{C}$ es raíz de P(X), entonces $\overline{z}_0 \in \mathbb{C}$ también lo es.
- 4. Hallar todas las soluciones en \mathbb{C} de la ecuación $iz^2 + (3-i)z (1+2i) = 0$.
- 5. Para $z \in \mathbb{C}$, se define $|z| = \sqrt{z\overline{z}}$. Probar que:

(a) Si z = a + bi, $|z| = \sqrt{a^2 + b^2}$,

(b) $|zw| = |z| |w| \text{ y si } w \neq 0, \left| \frac{z}{w} \right| = \frac{|z|}{|w|},$

(c) $-|z| \le \text{Re}(z) \le |z| \text{ y } -|z| \le \text{Im}(z) \le |z|,$

(d) $|z+w|^2 = |z|^2 + |w|^2 + 2\operatorname{Re}(z \cdot \overline{w}) \text{ y } |z-w|^2 = |z|^2 + |w|^2 - 2\operatorname{Re}(z \cdot \overline{w}),$

(e) $|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2)$,

(f) |z+w| < |z| + |w| y |z-w| > |z| - |w|.

Interpretar geométricamente la propiedad (e), también conocida como "Ley del paralelogramo".

- 6. Probar que $d: \mathbb{C} \times \mathbb{C} \to \mathbb{R}$ definida por d(z, w) = |z w| es una métrica.
- 7. Sea $\alpha = a + bi \in \mathbb{C}$ y c > 0. Para z = x + iy, transformar la condición $|z \alpha| = c$ en una ecuación que involucre solo a x, y, a, b y c; describir qué figura geométrica representa esta ecuación.
- 8. Describir geométricamente los siguientes subconjuntos de C:

(a) |z - i + 3| = 5,

(c) $Re(2z+3) \ge 0$,

(b) |z - i + 3| < 5,

(d) $Re((1+2i)z) \ge 0$.

9. Representación Matricial de los Números Complejos

- (a) Dado un número complejo $\alpha = a + bi$ consideramos la función $T_{\alpha} : \mathbb{C} \to \mathbb{C}$ dada por $T_{\alpha}(z) = \alpha \cdot z$. Pensando a \mathbb{C} como un \mathbb{R} -espacio vectorial de dimensión 2, encontrar la matriz M_{α} de la transformación lineal T_{α} en la base $\{1, i\}$.
- (b) Mostrar que la aplicación $\Phi(\alpha): \mathbb{C} \to \mathcal{M}$ dada por $\Phi(\alpha) = M_{\alpha}$ es un isomorfismo de cuerpos entre \mathbb{C} y el siguiente conjunto de matrices

$$\mathcal{M} = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathbb{R}^{2 \times 2} : \quad a, b \in \mathbb{R} \right\}$$

Exponencial y Funciones Trigonométricas con argumentos complejos. Forma polar

10. **Definición**: Para $z \in \mathbb{C}$, z = a + bi, se define $e^z = e^a \cdot (\cos b + i \sin b)$.

- (a) Demostrar que para todo $z, w \in \mathbb{C}, e^{w+z} = e^w e^z$.
- (b) Describir los z tales que $e^z = 1$.
- (c) Demostrar que si $e^z = e^w$, entonces existe $k \in \mathbb{Z}$ tal que $z = w + 2k\pi i$.
- (d) Probar que para todo $z \in \mathbb{C}$, $e^{\overline{z}} = \overline{e^z}$.
- 11. (a) Mostrar que si $\alpha = re^{i\theta}$ $(r \in \mathbb{R}_+, \theta \in \mathbb{R})$ es la forma polar del complejo α , entonces la transformación lineal T_{α} del ejercicio anterior se factoriza como una rotación en el plano complejo en el ángulo θ , seguida de una dilatación en el factor r. Deducir que T_{α} preserva los ángulos entre los vectores.
 - (b) Hallar todas las transformaciones \mathbb{R} -lineales $T:\mathbb{C}\to\mathbb{C}$ que preservan los ángulos entre los vectores. ¿Son todas de la forma T_α para algún $\alpha\in\mathbb{C}$?
- 12. (a) Pasar de la forma a+ib a la forma polar:

i. 1 + i,

ii. -5i,

iii. -3.

(b) Pasar de la forma polar a la forma a+ib:

i. $3e^{i\frac{\pi}{4}}$,

ii. $e^{-i\pi}$,

iii. $\pi e^{-i\frac{\pi}{3}}$.

- 13. (a) Para n = 2, 3, 4, 5, dibujar todos los números complejos z tales que $z^n = 1$.
 - (b) Sea $n \in \mathbb{N}$ y $\alpha \in \mathbb{C} \setminus \{0\}$. Mostrar que hay n números complejos distintos tales que $z^n = \alpha$.
- 14. Sea $f: \mathbb{C} \to \mathbb{C}$, $f(z) = e^z$.
 - (a) Hallar la imagen por f del conjunto $\{z \in \mathbb{C} \mid 0 \leq \text{Im}(z) < 2\pi\}$.
 - (b) Hallar la imagen por f del primer cuadrante.

- (c) Mostrar que la imagen de la recta $\{t+it \mid t \in \mathbb{R}\}$ es una espiral.
- 15. (a) Sea $\theta \in \mathbb{R}$. Mostrar que $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ y $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$.
 - (b) Generalizando las igualdades del ítem anterior, se define para $z \in \mathbb{C}$,

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 y $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$.

Comprobar que para todo $z \in \mathbb{C}$,

$$\cos^2(z) + \sin^2(z) = 1$$
 y $e^{iz} = \cos z + i \sin z$.

- (c) Mostrar que sen z y cos z tienen período 2π .
- (d) Mostrar que los únicos valores de z para los cuales $\cos z = 0$ y sen z = 0 son los valores reales usuales.
- (e) Probar que para todo $z \in \mathbb{C}$, $\cos(\overline{z}) = \overline{\cos(z)}$ y $\sin(\overline{z}) = \overline{\sin(z)}$
- 16. Hallar todos los $z \in \mathbb{C}$ tales que $\cos z \in \mathbb{R}$ y los $z \in \mathbb{C}$ tales que sen $z \in \mathbb{R}$.
- 17. (a) Probar que $\cos z$ y sen z son funciones survectivas de $\mathbb C$ en $\mathbb C$.
 - (b) Hallar todas las soluciones de la ecuación $\cos z = \frac{5}{4}$.
- 18. Sean $a, b, b' \in \mathbb{R}$. Probar que si |b| < |b'|, entonces $|\cos(a+bi)| < |\cos(a+b'i)|$ y $|\sin(a+bi)| < |\sin(a+bi)|$.
- 19. Sea $z \neq 1$. Probar que $1 + z + \cdots + z^n = \frac{z^{n+1}-1}{z-1}$. Para $0 < \theta < 2\pi$, dar una fórmula para la suma $1 + \cos \theta + \cdots + \cos n\theta$.

Sucesiones de Números Complejos

- 20. (a) Probar que si $\lim_{n\to\infty} z_n = z$ entonces $\lim_{n\to\infty} |z_n| = |z|$.
 - (b) Dar un ejemplo donde no valga la recíproca.
- 21. (a) Sea $\alpha \in \mathbb{C}$, $|\alpha| < 1$. ¿Cuánto vale $\lim_{n \to \infty} \alpha^n$? Repetir para $|\alpha| > 1$.
 - (b) Si $|\alpha| < 1$, probar que $\lim_{n \to \infty} (1 + \alpha + \dots + \alpha^n) = \frac{1}{1 \alpha}$.
- 22. Calcular, en caso de que existan, los límites de las siguientes sucesiones:
 - (a) $\frac{1}{n} \left(\frac{1+i}{2}\right)^n$,

- (c) $\cos(n\pi) + i\frac{\sin(\frac{n}{2})}{n^2}$,
- (e) ni^{2n+1} .

(b) $n\left(\frac{1+i}{2}\right)^n$,

- (d) $\left(\frac{(-1)^n+1}{3}\right)^n$,
- 23. Se define el conjunto de Mandelbrot como el conjunto \mathcal{M} de los números complejos c tales que la sucesión definida de manera recursiva del siguiente modo:

$$z_0 = c$$
, $z_{n+1} = z_n^2 + c$,

resulta acotada. Demostrar que $\mathcal{M} \subset \{|z| \leq 2\}$.

Plano Complejo ampliado - Esfera de Riemann

- 24. Sean $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ y $S = S^2$ (la esfera en \mathbb{R}^3 de radio 1 y centro en (0,0,0)). Sea $N = (0,0,1) \in S$, definimos la proyección estereográfica $\theta : S \to \widehat{\mathbb{C}}$ haciendo $\theta(N) = \infty$ y dado $P \in S \setminus \{N\}, \ \theta(P) = a + ib$ sii (a,b,0) es el punto de intersección de la recta $\overline{NP} \subset \mathbb{R}^3$ con el plano $x_3 = 0$.
 - (a) Probar que $\theta(x_1, x_2, x_3) = \frac{x_1 + ix_2}{1 x_3}$ si $(x_1, x_2, x_3) \neq N$.
 - (b) Probar que θ es una biyección y su inversa φ está dada por

$$\varphi(z) = \left(\frac{2\operatorname{Re}(z)}{1+|z|^2}, \frac{2\operatorname{Im}(z)}{1+|z|^2}, \frac{|z|^2-1}{1+|z|^2}\right).$$

- (c) Calcular $\varphi(\operatorname{Re}(z) = 0)$ y $\varphi(\operatorname{Im}(z) = 0)$.
- 25. Sea \overline{d} la distancia en $\widehat{\mathbb{C}}$ inducida por la distancia de \mathbb{R}^3 vía θ , es decir, si $z, z' \in \widehat{\mathbb{C}}$, definimos $\overline{d}(z,z') = d(\varphi(z),\varphi(z'))$ donde d es la distancia euclídea.
 - (a) Verificar que \overline{d} es una métrica en $\widehat{\mathbb{C}}$. Probar que, restringida a \mathbb{C} , \overline{d} resulta equivalente a la métrica usual (probando, por ejemplo, que $(\mathbb{C}, \overline{d})$ y (\mathbb{C}, d_{usual}) tienen las mismas sucesiones convergentes).
 - (b) Para $z, w \in \mathbb{C}$, verificar que $\overline{d}(z, w) = \frac{2|w-z|}{(1+|z|^2)^{\frac{1}{2}}(1+|w|^2)^{\frac{1}{2}}}$ y $\overline{d}(z, \infty) = \frac{2}{(1+|z|^2)^{\frac{1}{2}}}$.
 - (c) Probar que $(\widehat{\mathbb{C}}, \overline{d})$ es un espacio métrico compacto (y por lo tanto completo).
- 26. Sea C una circunferencia contenida en S y sea π el único plano en \mathbb{R}^3 tal que $\pi \cap S = C$. Mostrar que si C pasa por N entonces su proyección en \mathbb{C} es una recta y, en caso contrario, una circunferencia.

Homografías

Definición: Una homografía es una función $T: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ del tipo $T(z) = \frac{az+b}{cz+d}$ donde $ad-bc \neq 0$.

- 27. Probar que el conjunto $\mathcal H$ de las homografías es un grupo bajo la composición..
- 28. Sean z_2, z_3, z_4 puntos distintos de $\widehat{\mathbb{C}}$. Probar que existe una única homografía T tal que $T(z_2) = 0$, $T(z_3) = 1$ y $T(z_4) = \infty$. Deducir que dados puntos distintos w_2, w_3, w_4 de $\widehat{\mathbb{C}}$ hay una única homografía que aplica z_2 en w_2 , z_3 en w_3 y z_4 en w_4 .
- 29. (a) Hallar homografías que transformen
 - i. los puntos 0, i, -i en $0, 1, \infty$.
 - ii. los puntos 0, i, -i en 1, -1, 0.
 - (b) Probar que la imagen de la circunferencia de centro 0 y radio 1 por la primera homografía del ítem anterior es la recta $\{\text{Re}(z) = 1\}$.
- 30. Para $\alpha \in \mathbb{C}$ tal que $|\alpha| \neq 1$, demostrar que la homografía

$$T(z) = \frac{z - \alpha}{-\overline{\alpha}z + 1}$$

4

transforma a la circunferencia $\{|z|=1\}$ en si misma y a α en 0 $(|\alpha|\neq 1)$.

31. Dada una matriz no singular

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^{2 \times 2} \quad \text{donde } \det(A) = ad - bc \neq 0$$

le asignamos la homografía

$$T_A(z) = \frac{az+b}{cz+d}$$

Diremos que la matriz A representa a la homografía T_A .

Sean $A,B\in\mathbb{C}^{2\times 2}$ no singulares que respresentan las homografías T_A y T_B respectivamente.

- (a) ¿Qué homografía representa la matriz AB?
- (b) ¿Qué homografía representa la matriz A^{-1} ?
- (c) ¿Qué homografías representan las matrices diagonales?
- (d) ¿Cuando dos matrices distintas representan la misma homografía?
- 32. Demostrar que una homografía $T(z) = \frac{az+b}{cz+d}$ aplica $\widehat{\mathbb{R}}$ en $\widehat{\mathbb{R}}$ si y solo si se puede escribir con coeficientes reales.
- 33. Hallar homografías que transformen
 - (a) la circunferencia |z| = 2 en |z + 1| = 1 y además -2 en 0 y 0 en i;
 - (b) el semiplano superior Im(z) > 0 en |z| < 1 y α en 0 (donde $\text{Im}(\alpha) > 0$).