ÁLGEBRA II Primer Cuatrimestre — 2017

Práctica 4: Anillos

Definiciones y ejemplos

- **1.1.** Probar que si *A* es un anillo en el que cada elemento no nulo tiene un inverso a izquierda, entonces *A* es un anillo de división.
- **1.2.** Sean *A* un anillo y $a \in A$. Probar que si existe $n \in \mathbb{N}$ tal que a^n es inversible, entonces a es inversible.
- **1.3.** *Anillo opuesto.* Sea *A* un anillo. Sea $*: A \times A \rightarrow A$ la operación definida por

$$a * b = ba$$
, $\forall a, b \in A$.

Probar que (A, +, *) es un anillo. Se trata del *anillo opuesto de A*, que denotamos por A^{op} .

- **1.4.** Sea A un grupo abeliano. Probar que $\operatorname{End} A$ —el conjunto de endomorfismos de grupo de A—es un anillo con la suma habitual de funciones y la composición como producto.
- **1.5.** *Anillos de matrices.* Sean *A* un anillo y $n \in \mathbb{N}$. Definimos:

$$M_n(A) = \{a = (a_{ij}) \in A^{n \times n}\}$$

 $M_{\infty}(A) = \{a = (a_{ij}) \in A^{n \times n} : \text{toda fila de } a \text{ tiene finitos coeficientes no nulos}\}$

Probar que $M_n(A)$ y $M_{\infty}(A)$ son anillos con la suma y el producto usuales de matrices. Probar que si n > 1, entonces $M_n(A)$ es no conmutativo.

- **1.6.** Anillos de funciones.
- (a) Sean A un anillo y X un conjunto no vacío. Sea A^X el conjunto de todas las funciones $X \to A$. Probar que A^X es un anillo con las operaciones definidas por:

$$(f+g)(x) = f(x) + g(x)$$
$$(f \cdot g)(x) = f(x)g(x)$$

¿Cuándo es conmutativo?

- (b) Sean $n, k \in \mathbb{N}$, $U \subseteq \mathbb{R}^n$ un abierto y sea $C^k(U) \subseteq \mathbb{R}^U$ el conjunto de todas las funciones k veces derivables con continuidad. Probar que $C^k(U)$ es un subanillo de \mathbb{R}^U .
- 1.7. Anillos de polinomios. Sea A un anillo, y sea

$$S = \{f : \mathbb{N}_0 \to A \mid \text{ existe un conjunto finito } T \subset \mathbb{N}_0 \text{ tal que } f|_{T^c} \equiv 0\}.$$

Definimos operaciones de suma y producto $+, \cdot : S \times S \to S$ de la siguiente manera: para cada $f, g \in S$ y cada $n \in \mathbb{N}_0$,

$$(f+g)(n) = f(n) + g(n)$$

у

$$(f \cdot g)(n) = \sum_{\substack{k,l \ge 0 \\ k+l=n}} f(k)g(l).$$

Mostrar que estas operaciones están bien definidas y que $(S, +, \cdot)$ es un anillo.

Sea X una variable formal. Si $f \in S$ y $T \subset \mathbb{N}$ es tal que $f|_{T^c} \equiv 0$, podemos representar a f por la suma finita formal

$$\sum_{n\in T} f(n)X^n.$$

Con esta notación, las operaciones de S imitan formalmente las correspondientes operaciones entre polinomios. Llamamos a S el *anillo de polinomios con coeficientes en A* y lo notamos A[X].

- **1.8.** Sea *A* un anillo. Probar que $Z(M_n(A)) = Z(A) \cdot id$.
- **1.9.** Sean G un grupo y A un anillo. Calcular Z(A[G]).

 $Sugerencia. \ \ \text{Mostrar que si} \ \sum_g a_g \cdot g \ \text{es central, entonces} \ a_g \in \mathsf{Z}(A) \ \text{para todo} \ g \in G \ \text{y} \ a_{ghg^{-1}} = a_h \ \text{para todos} \ g, h \in G.$

1.10. Sea *A* un anillo. El *grupo de unidades de A* es el conjunto

$$\mathcal{U}(A) = \{ a \in A \mid a \text{ es inversible} \}$$

con la multiplicación de A.

- (a) Probar que $\mathcal{U}(A)$ es un grupo.
- (b) Hallar las unidades de \mathbb{Z} y $\mathbb{Z}[\sqrt{2}]$.
- (c) Sea G un grupo. Probar que $1 \cdot G \subseteq \mathcal{U}(\mathbb{Z}[G])$ pero que no vale la igualdad.
- **1.11.** *Idempotentes.* Sea *A* un anillo. Un elemento $e \in A$ es *idempotente* si $e^2 = e$. Probar las siguientes afirmaciones.
- (a) Si $e \in A$ es idempotente, el subconjunto eAe con las operaciones de A restringidas es un anillo. Se trata de un subanillo de A si y solo si e = 1.
- (*b*) Si e ∈ A es idempotente, entonces 1 e también lo es.
- (c) Sea G un grupo finito y sea k un cuerpo en el que $|G| \neq 0$. Probar que

$$e = \frac{1}{|G|} \sum_{g \in G} g$$

es un idempotente en k[G].

- **1.12.** Anillos booleanos. Un anillo A es booleano si todos sus elementos son idempotentes.
- (a) Probar que si X es un conjunto, entonces $(\mathcal{P}(X), \Delta, \cap)$ es un anillo booleano —aquí, Δ es la operación diferencia simétrica.
- (b) Probar que un anillo booleano es conmutativo.

Morfismos, ideales y cocientes

En toda esta sección, A y B son anillos.

- **2.1.** (a) Mostrar que hay exactamente un morfismo de anillos $\mathbb{Z} \to A$.
- (b) Mostrar que hay a lo sumo un morfismo de anillos $\mathbb{Q} \to A$ y que puede no haber ninguno.
- **2.2.** Sea $f: \mathbb{R} \to \mathbb{R}$ un morfismo de anillos. Probar las siguientes afirmaciones.
- (a) $f(\mathbb{Q}) \subseteq \mathbb{Q}$, y de hecho $f|_{\mathbb{Q}} = id_{\mathbb{Q}}$.
- (b) La aplicación f es estrictamente creciente.

Concluir que $f = id_{\mathbb{R}}$.

2.3. Sea k un cuerpo. Decidir en cada caso si existe un morfismo de anillos $f: A \rightarrow B$:

(a) $A = \mathbb{Z}[i]$ y $B = \mathbb{R}$;

- (c) $A = k y B = M_n(k);$
- (b) $A = \mathbb{Z}[\sqrt{-5}]$ y $B = \mathbb{Z}[\sqrt{3}]$;
- (d) $A = M_n(k)$ y B = k.
- **2.4.** Probar que si *G* es un grupo, la siguiente aplicación es una biyección:

$$\operatorname{Hom}_{\operatorname{Anillos}}(\mathbb{Z}[G],A) \to \operatorname{Hom}_{\operatorname{Grp}}(G,\mathscr{U}(A))$$

 $f \mapsto f|_{G}$

- **2.5.** Sea \mathcal{I} una familia de ideales a izquierda (a derecha, biláteros) de A.
- (a) Mostrar que $\bigcap_{I \in \mathscr{I}} I$ es un ideal a izquierda (a derecha, bilatéro) de A. Se trata del ideal más grande contenido en todos los ideales de \mathscr{I} .
- (b) Mostrar que $\sum_{I \in \mathscr{I}} I$ es un ideal a izquierda (a derecha, bilátero) de A. Se trata del ideal más chico que contiene a todos los ideales de \mathscr{I} .
- 2.6. Probar que:
- (a) $A[X]/\langle X-1\rangle \cong A$;
- (b) $\mathbb{Z}[D_n]/\langle R^m 1 \rangle \cong \mathbb{Z}[D_m]$, si $m \mid n$;
- (c) $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$ si m y n son coprimos (Teorema chino del resto).
- **2.7.** Sean $I \subseteq A$ un ideal bilátero y J el ideal generado por I en A[X]. Probar que $A[X]/J \cong (A/I)[X]$.
- **2.8.** Sea k un cuerpo. Sean G un grupo y $H \triangleleft G$ un subgrupo normal, y consideremos la proyección canónica $\pi: G \to G/H$. Mostrar que π determina un morfismo sobreyectivo de anillos $k[\pi]: k[G] \to k[G/H]$. Describir el núcleo de $k[\pi]$.
- **2.9.** Ideales biláteros de $M_n(A)$.
- (a) Sean $I \subseteq A$ un ideal bilátero y $n \in \mathbb{N}$. Sea $M_n(I) \subseteq M_n(A)$ el subconjunto de las matrices de $M_n(A)$ que tienen todos sus coeficientes en I. Mostrar que $M_n(I)$ es un ideal bilátero de $M_n(A)$ y que $M_n(A)/M_n(I) \cong M_n(A/I)$.
- (b) Probar que si $J \subseteq M_n(A)$ es un ideal bilátero, entonces existe un ideal bilátero $I \subseteq A$ tal que $J = M_n(I)$.
 - Sugerencia. Tomar $I = \{a \in A \mid a = M_{1,1} \text{ para alguna matriz } M \in J\}.$
- (c) Probar que si k es un cuerpo, entonces $M_n(k)$ es simple —es decir que los únicos ideales biláteros de $M_n(k)$ son 0 y $M_n(k)$.
- **2.10.** Ideales a izquierda de $M_n(k)$. Sea k un cuerpo.
- (a) Sean $V \subseteq k^n$ un subespacio vectorial e I_V el subconjunto de $M_n(k)$ formado por todas las matrices cuyas filas pertenecen a V. Probar que I_V es un ideal a izquierda de $M_n(k)$.
- (b) Probar que todo ideal a izquierda de $M_n(k)$ es de la forma I_V para algún subespacio $V \subseteq k^n$. Sugerencia. Llamar V al conjunto formado por las todas filas de todas las matrices del ideal y probar que es un subespacio.