1. Sea $(X_n)_{n\in\mathbb{N}}$ una sucesión de variables aleatorias tales que

$$p_{X_n}(x) = \begin{cases} \frac{1}{n} & \forall x = 0, \frac{1}{n}, ..., \frac{n-1}{n} \\ 0 & \text{sino} \end{cases}$$

Mostrar que $X_n \xrightarrow{\mathcal{D}} X$, con $X \sim U_{[0,1]}$.

- 2. Sean $X_1, ..., X_n$ v.a. i.i.d. Sea $Z_n = \frac{1}{n} \sum_{i=1}^n X_i^2$.
 - (a) Calcular el límite en probabilidad de Z_n
 - i. si sabemos que $\mathbb{E}(X_i) = 2, V(X_i) = 1, \mathbb{E}(X_i^4) = 32;$
 - ii. si sabemos que $X_i \sim \mathcal{E}(3)$.
 - (b) Sea l el límite hallado en (a)
ii. Sabiendo que $X_i \sim \mathcal{E}(3)$, calcular n tal que

$$P(|Z_n - l| > 0,01) < 0,05.$$

- 3. El horario de entrada al trabajo de un empleado es a las 8:30 hs. El empleado llega diariamente con distribución uniforme en el intervalo 8:30-8:50. Si cada día le descuentan 10t centavos, donde t es la tardanza de ese día en minutos,
 - (a) Calcular aproximadamente la probabilidad de que en 30 días le descuenten más de \$25.
 - (b) Calcular aproximadamente la probabilidad de que en 30 días el descuento promedio diario se encuentre entre \$0,80 y \$1,10.
 - (c) ¿Cuántos días deberán pasar para que el descuento total supere los \$50 con probablidad aproximada de al menos 0.95?