Ecuaciones Diferenciales

Primer Cuatrimestre 2016 Práctica 1

Ecuaciones ordinarias

1. Encontrar la solución general de las siguientes ecuaciones

(a)
$$\frac{du}{dt} = \frac{1+t}{1-u}$$

(b)
$$\frac{du}{dt} = t \exp u$$

(c)
$$\frac{du}{dt} = \frac{u}{t}$$

(d)
$$\frac{du}{dt} = \frac{u}{t} + \left(\frac{u}{t}\right)^2$$

(e)
$$\frac{du}{dt} = t^2 \sin u$$

(f)
$$\frac{du}{dt} = \sqrt{t+u} - 1$$

$$(g) \quad \frac{du}{dt} = -\frac{u}{t} + u^{1/2}$$

$$(h) \quad \frac{du}{dt} = \frac{t^2}{u}$$

(i)
$$\begin{cases} \frac{du_1}{dt} = u_1 + 2u_2 \\ \frac{du_2}{dt} = 3u_1 + 2u_2 \end{cases}$$

(j)
$$\begin{cases} \frac{du_1}{dt} = u_1 - u_2 \\ \frac{du_2}{dt} = u_1 + u_2 \end{cases}$$

(k)
$$\begin{cases} \frac{du_1}{dt} = 2u_1 - u_2 \\ \frac{du_2}{dt} = 4u_1 + 2u_2 \end{cases}$$

(1)
$$\begin{cases} \frac{du_1}{dt} = 2u_1 + u_2 \\ \frac{du_2}{dt} = 2u_2 \end{cases}$$

(m)
$$\begin{cases} \frac{du_1}{dt} = -u_2 + 2\\ \frac{du_2}{dt} = 2u_1 + 3u_2 + t \end{cases}$$

(n)
$$\begin{cases} \frac{du_1}{dt} = 2u_1 - u_2 + e^{2t} \\ \frac{du_2}{dt} = 4u_1 + 2u_2 + 4 \end{cases}$$

2. Encontrar un sistema fundamental de soluciones reales de las siguientes ecuaciones:

(a)
$$x'' - 8x' + 16x = 0$$

(b)
$$x'' - 2x' + 10x = 0$$

(c)
$$x'' - x' - 2x = 0$$

En cada uno de los casos anteriores, encontrar una solución exacta de la ecuación no homogénea con término independiente $t, e^t, 1$ y e^{-t} .

3. Lema de Gronwall. Sean u y v funciones continuas no negativas en [a,b] tales que, para $\alpha \geq 0$, satisfacen

$$u(t) \le \alpha + \int_{a}^{t} u(\tau) v(\tau) d\tau$$
 , $t \in [a, b]$

Probar que

$$u(t) \le \alpha \exp \int_{a}^{t} v(\tau) d\tau$$

En particular si $\alpha = 0$ entonces $u \equiv 0$.

4. (a) Probar que el problema de valores iniciales

$$\begin{cases} \frac{du}{dt} = f(t, u), & t_0 < t < t_1 \\ u(t_0) = u_0 \end{cases}$$

donde f es continua y $u \in C[t_0, t_1] \cap C^1(t_0, t_1)$, es equivalente a la ecuación integral

$$u(t) = u_0 + \int_{t_0}^{t} f(\tau, u(\tau)) d\tau$$

- (b) Mostrar que si f es Lipschitz en la segunda variable y $t_1 t_0$ es suficientemente pequeño, la ecuación integral de (i) tiene un único punto fijo.
- (c) Si f es Lipschitz en la segunda variable, probar que la solución del problame de valores iniciales del item (a) depende continuamente del dato inicial u_0 .
- 5. (a) Probar que el problema

$$\begin{cases} \frac{du}{dt} = 1 + u \\ u(0) = 0 \end{cases}$$

tiene solución en el intervalo maximal $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(b) Estudiar la unicidad del problema

$$\begin{cases} \frac{du}{dt} = u^{1/3} \\ u(0) = 0 \end{cases}$$

6. Sea f(t, u) definida en el abierto $\Omega \subset \mathbf{R} \times \mathbf{R}^{\mathbf{n}}$ con valores en $\mathbf{R}^{\mathbf{n}}$ continua en (t, u) y lipschitziana en u. Se considera para $(t_0, u_0) \in \Omega$ el problema de valores iniciales

$$\begin{cases} \frac{du}{dt} = f(t, u) \\ u(t_0) = u_0 \end{cases}$$

- (a) Probar que existe un intervalo abierto maximal $I(t_0, u_0) \subset \mathbf{R}$, $t_0 \in I(t_0, u_0)$ donde la solución está definida.
- (b) Se define el flujo asociado al problema de valores iniciales de la forma $\phi(t, t_0, u_0) = u(t)$, para $t \in I(t_0, u_0)$. Probar que si $t_1, t_2 \in I(t_0, u_0)$, entonces $t_2 \in I(t_1, \phi(t_1, t_0, u_0))$ y vale

$$\phi(t_2, t_0, u_0) = \phi(t_2, t_1, \phi(t_1, t_0, u_0))$$

(c) Probar que si el sistema es autónomo (f no depende de t),

$$\phi(t, t_0, \cdot) = \phi(t - t_0, 0, \cdot).$$

- (d) Probar que si $(t_0, u_0) \in \Omega$ verifica que $\phi(\cdot, t_0, u_0)$ no está definido para todo tiempo, entonces la trayectoria se escapa de cualquier compacto $K \subset \Omega$.
- 7. Si $A(t) \in C^1(R, \mathbb{R}^{n \times n})$, entonces el sistema lineal

$$\begin{cases} \dot{x}(t) = A(t)x(t) \\ x(t_0) = x_0 \in R^n \end{cases}$$

tiene una única solución definida para todo $t \in R$.

8. Probar que dada $f:R\to R$ positiva y localmente Lipschitz, la solución del problema

$$\begin{cases} \dot{x} = f(x) \\ x(t_0) = x_0 \end{cases}$$

existen globalmente (para $t>t_0$) si y sólo si

$$\int_{}^{+\infty} \frac{1}{f} \, dx = +\infty.$$

9. Probar que la ecuación de orden n

$$\begin{cases} u^{(n)} = f(t, u, u', \dots, u^{(n-1)}) \\ u(t_0) = u_0, u'(t_0) = u_1, \dots, u^{(n-1)}(t_0) = u_{n-1} \end{cases}$$

es equivalente al sistema de primer orden

$$\begin{cases} \frac{dv_1}{dt} = v_2 \\ \frac{dv_2}{dt} = v_3 \\ \vdots \\ \frac{dv_n}{dt} = f(t, v_1, v_2, \dots, v_n) \\ v_1(t_0) = u_0, \dots, v_n(t_0) = u_{n-1} \end{cases}$$

10. Sea f(t, u) definida en el abierto $\Omega \subset \mathbf{R} \times \mathbf{R}^{\mathbf{n}}$ con valores en $\mathbf{R}^{\mathbf{n}}$ continua en (t, u) y lipschitziana en u con constante K,

$$\begin{cases} \frac{du}{dt} = f(t, u) \\ u(t_0) = u_j, j = 0, 1 \end{cases}$$

Probar que para $t \in I(t_0, u_0) \cap I(t_0, u_1)$ se cumple

$$|\phi_{t,t_0}(u_1) - \phi_{t,t_0}(u_0)| \le \exp(K|t - t_0|)|u_1 - u_0|$$

11. Sea f definida en $\Omega \subset \mathbf{R} \times \mathbf{R}$, tal que f y $\frac{\partial f}{\partial u}$ son continuas en Ω . Probar que el flujo $\phi_{t,t_0}(u_0)$ asociado al problema $\frac{du}{dt} = f(t,u)$ es C^1 en (t,u_0)