Análisis Funcional - 1° cuatrimestre 2016

Topologías débiles

El último minuto también tiene 60 segundos- Fernando Marcos

- 1. Sean E un espacio de Banach, $x_n, x \in E$, $\varphi_n, \varphi \in E'$. Si $x_n \xrightarrow{w} x$ y $\varphi_n \to \varphi$ entonces $\varphi_n(x_n) \to \varphi(x)$.
- 2. Sean E un espacio de Banach, $x_n, x \in E$. Si $x_n \to x$ entonces $x_n \xrightarrow{w} x$.
- 3. Sean E un espacio de Banach, $x_n, x \in E$. Si $x_n \xrightarrow{w} x$, entonces existe una sucesión de combinaciones convexas de $\{x_n\}_n$ que tiende fuertemente a x.
- 4. Sean E un espacio de Banach, $x_n \in E$. $\{x_n\}_n$ converge en E si y sólo si $\{x_n\}_n$ converge débil y uniformemente en $\{\varphi \in E' : ||\varphi|| \le 1\}$.
- 5. Sea E un espacio de Banach de dimensión infinita. Sea $S:=\{x\in E:\|x\|<1\}$. Probar que en (E,w) S tiene interior vacío.
- 6. Sean E un espacio de Banach, $\varphi_n, \varphi \in E'$, tales que $\varphi_n \xrightarrow{w^*} \varphi$. Probar que $\|\varphi_n\|$ está acotada y que $\|\varphi\| \le \liminf \|\varphi_n\|$.
- 7. Sean E un espacio de Banach, $x_n, x \in E$, $\varphi_n, \varphi \in E'$. Si $\varphi_n \xrightarrow{w^*} \varphi$ y $x_n \to x$ entonces $\varphi_n(x_n) \to \varphi(x)$.
- 8. Sean E un espacio de Banach, $\varphi_n, \varphi \in E'$.
 - (a) $\varphi_n \to \varphi \Rightarrow \varphi_n \xrightarrow{w} \varphi \Rightarrow \varphi_n \xrightarrow{w^*} \varphi$.
 - (b) Si dim $E < \infty$, las tres convergencias son equivalentes.
- 9. Definamos $\varphi_n : E \to \mathbb{C}$ por $\varphi_n(x_1, x_2, \ldots) = x_n$.
 - (a) Si $E = \ell^2$ probar que $\varphi_n \stackrel{w^*}{\to} 0$. ¿Es cierto que $\varphi_n \to 0$ fuertemente?
 - (b) Si $E = \ell^{\infty}$ probar que $\varphi_n \in B_{E'}, \forall n \in \mathbb{N}$ pero que $(\varphi_n)_{n \in \mathbb{N}}$ no tiene ninguna subsucesión w^* -convergente. ¿Contradice esto el hecho de que $(B_{E'}, w^*)$ es compacta?
- 10. Sean $\varphi_n: C([-1,1]) \to \mathbb{C}$ definidas por

$$\varphi_n(f) = f\left(-\frac{1}{n}\right) - f\left(\frac{1}{n}\right).$$

Probar que $\varphi_n \stackrel{w^*}{\to} 0$ pero $\varphi_n \not\to 0$.

- 11. Si $1 \leq p < \infty,$ en $\ell^p,$ sea e^n dado por $(e^n)_k = \delta^n_k.$ Probar que:
 - (a) Si $1 , <math>e^n \xrightarrow{w} 0$, $e^n \not\to 0$
 - (b) Si p = 1, $e^n \stackrel{w^*}{\rightarrow} 0$, $e^n \stackrel{\psi}{\rightarrow} 0$, $e^n \rightarrow 0$
- 12. Sean $1 , <math>x^n, x \in \ell^p$. Entonces,

$$x^n \xrightarrow{w} x \Longleftrightarrow \sup \|x^n\|_p < \infty \land \lim_{n \to \infty} x_k^n = x_k \ \forall k$$

13. Sean $\varphi_n, \varphi \in L^{\infty}[0,1], M_{\varphi_n}, M_{\varphi} \in \mathcal{B}(L^2[0,1])$ los operadores de multiplicación. Probar que

$$\varphi_n \xrightarrow{w^*} \varphi \Longleftrightarrow M_{\varphi_n}(f) \xrightarrow{w} M_{\varphi}(f) \ \forall f \in L^2[0,1].$$

- 14. C[0,1] es cerrado en $L^{\infty}[0,1]$ en $\|\cdot\|_{\infty}$ pero no en la topología w^* .
- 15. Sean $\varphi_n: c_0 \to \mathbb{C}$ definidas por $\varphi_n(x) = \frac{x_1 + \ldots + x_n}{n}$.
 - (a) Probar que $\varphi_n \in c_0'$ y calcular sus normas.
 - (b) Probar que $\varphi_n \xrightarrow{w^*} 0$ y que $\varphi_n \xrightarrow{\psi} 0$.
 - (c) Probar que $c_0 \supset {}^{\perp}\langle \varphi_1 \rangle \supset {}^{\perp}\langle \varphi_1, \varphi_2 \rangle \supset \dots \supset {}^{\perp}\langle \varphi_1, \dots, \varphi_n \rangle \supset \dots$, y son todos isométricamente isomorfos entre sí. ¿Ocurre lo mismo con ${}^{\perp}\langle \varphi_i : i \in \mathbb{N} \rangle$?
- 16. Sean E un espacio de Banach y $J:E\to E''$ la inclusión canónica.
 - (a) $J(B_E)$ es fuertemente cerrado, donde B_E es la bola unidad cerrada de E.
 - (b) Dar un ejemplo en el que J no sea survectiva.
- 17. Sean E y F espacios de Banach, $(A_n)_n \in \mathcal{B}(E,F)$. Si para cada $x \in E$ y para cada $\varphi \in F'$ la sucesión $\{\varphi(A_nx)\}_n$ está acotada, entonces $\{\|A_n\|\}_n$ está acotada.
- 18. Sean E un espacio de Banach reflexivo, $\varphi \in E'$.
 - (a) Probar que existe $x \in E, x \neq 0$ tal que $\varphi(x) = ||\varphi|| ||x||$.
 - (b) Si M es un subespacio cerrado propio de E', existe $x \in {}^{\perp}M$, ||x|| = 1 tal que $\varphi(x) = d(\varphi, M)$.
- 19. Si E es un espacio de Banach separable y $\{\varphi_n\}_n$ es una sucesión acotada en E' entonces existe una subsucesión $\{\varphi_{n_k}\}_k$ w^* -convergente.
- 20. Sea E un espacio de Banach reflexivo.
 - (a) Si $\{x_n\}_n$ está acotada en E, entonces tiene una subsucesión w-convergente. (Sug: tomar S el subespacio cerrado generado por $\{x_n\}_n$, ver que S' es separable, usar ejercicio anterior e inclusión canónica en el bidual)
 - (b) Si $\{\varphi_n\}_n$ está acotada en E', entonces tiene una subsucesión w^* -convergente.
- 21. Si E es un espacio de Banach de dimensión infinita separable o reflexivo, existe $\{\varphi_n\} \in E'$, $\|\varphi_n\| = 1$ tal que $\varphi_n \stackrel{w^*}{\to} 0$.