Teoría Geométrica de la Medida

Primer cuatrimestre de 2015

Práctica 1 Medida abstracta

1. Sea μ una medida definida sobre Ω y $\{E_k\}_k$ una sucesión de conjuntos medibles disjuntos. Entonces, para todo conjunto arbitrario $A\subseteq \Omega$, se tiene:

$$\mu(A) = \sum_{k=1}^{\infty} \mu(A \cap E_k) + \mu \Big(A \setminus \bigcup_{k=1}^{\infty} E_k \Big).$$

2. Sea $\{\mu_{\alpha}\}_{{\alpha}\in I}$ una familia de medidas en Ω . Para cada $A\subseteq \Omega$, definimos $\nu(A)$ como

$$\nu(A) = \sup_{\alpha \in I} \mu_{\alpha}(A).$$

Probar que ν es una medida definida en Ω .

- 3. Sea μ una medida en Ω y $A\subseteq \Omega$ un conjunto arbitario. Probar:
 - (a) Si $E_1 \subseteq E_2 \subseteq ... \subseteq E_n \subseteq ...$, son todos conjuntos medibles, entonces

$$\mu\left(A\cap\bigcup_{n=1}^{\infty}E_{n}\right)=\lim_{n\to\infty}\mu(A\cap E_{n}).$$

(b) Si $E_1 \supseteq E_2 \supseteq \ldots \supseteq E_n \supseteq \ldots$, son todos conjuntos medibles y además $\mu(A \cap E_k) < \infty$ para algún $k \in \mathbb{N}$, entonces

$$\mu(A \cap \bigcap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(A \cap E_n).$$

- 4. Sea μ una medida regular en Ω . Probar:
 - (a) Si $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \subseteq \ldots$ son subconjuntos arbitarios de Ω , entonces

$$\mu\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \mu(A_n).$$

(b) El resultado anterior es falso para intersecciones, aún si se tiene que $\mu(A_n) < \infty \quad \forall n \in \mathbb{N}$.

1

- 5. Sea μ una medida en Ω . Probar que si se construye la medida λ por el método I, a partir de la premedida (Γ, \mathcal{C}) , donde $\Gamma = \mu$ y $\mathcal{C} = \mathbb{P}(\Omega)$, entonces $\lambda = \mu$.
- 6. Sea μ una medida en Ω , $B \subseteq \Omega$ un conjunto arbitario y $\{A_n\}_{n \in \mathbb{N}}$ una sucesión de subconjuntos medibles de Ω . Entonces:
 - (a) $\mu(B \cap A_*) \leq \liminf_{n \to \infty} \mu(B \cap A_n)$.
 - (b) Si $\mu(B \cap \bigcup_{k \ge n} A_k) < \infty$ para algún $n \in \mathbb{N}$, entonces

$$\limsup_{n\to\infty}\mu(B\cap A_n)\leq\mu(B\cap A^*).$$

Recordar que

$$A^* = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k$$
 y $A_* = \bigcup_{n=1}^{\infty} \bigcap_{k \ge n} A_k$.

7. Dada una medida μ en Ω y un conjunto $A \subseteq \Omega$, se define μ_A como

$$\mu_A(B) = \mu(A \cap B) \quad \forall B \subseteq \Omega.$$

Probar que μ_A es una medida en Ω .

- 8. Sean μ una medida en Ω y $A \subseteq \Omega$. Probar que si E es un subconjunto μ -medible de Ω , entonces E es μ_A -medible. Es decir, $M_{\mu} \subseteq M_{\mu_A}$.
- 9. Sea (X,d) un espacio métrico y μ una medida boreliana en X. Dados $B \in \beta(X)$ y $\varepsilon > 0$, se tiene:
 - (a) Si $\mu(B) < \infty$, entonces existe un conjunto F cerrado contenido en B, tal que $\mu(B \setminus F) < \varepsilon$.
 - (b) Si $B \subseteq \bigcup_{n=1}^{\infty} G_n$, con G_n abierto y de medida finita para todo $n \in \mathbb{N}$, entonces existe G abierto, tal que $G \supseteq B$ y $\mu(G \setminus B) < \varepsilon$.
 - (c) Si μ es borel regular, entonces los items (a) y (b) valen para B conjunto μ -medible.
- 10. Dados $a, b \in \mathbb{R}^n$, $\mathcal{R}(a, b)$ denota el rectángulo definido como

$$\mathcal{R}(a,b) = \{(x_1, \dots, x_n) \in \mathbb{R}^n : a_i < x_i < b_i, \text{ para } i = 1 \dots n\}$$

Sea \mathfrak{R} , la clase de todos los rectángulos definidos anteriormente y Γ la premedida sobre la clase \mathfrak{R} que verifica $\Gamma(\mathcal{R}(a,b)) = \prod_{i=1}^{n} (b_i - a_i)$.

Probar que si $\lambda = MI(\Gamma, \mathfrak{R})$ y $\nu = MII(\Gamma, \mathfrak{R})$, entonces $\lambda = \nu$.

Sugerencia: Para probar que $\lambda \geq \nu$, suponer primero que $\lambda(E) < \infty$ y, dado $\varepsilon > 0$, tomar un cubrimiento de modo tal que se verifique $\sum_k \Gamma(\mathcal{R}_k) \leq \lambda(E) + \varepsilon$. Para armar un δ -cubrimiento, partir cada \mathcal{R}_k en rectangulitos de tamaño adecuado y agrandarlos en $\eta/2^k$ para que el nuevo cubrimiento contenga el borde.

- 11. Probar que toda función de conjuntos μ definida en Ω construida usando el Método I es una medida.
- 12. Sea μ una medida en Ω . Probar que la medida λ en Ω obtenida aplicando el Método I usando como pre-medida $\tau = \mu$ con dominio en todos los subconjuntos de Ω , coincide con μ .
- 13. Sea λ una medida en Ω . Suponer que λ es regular y $\lambda(\Omega) < +\infty$. Probar que $E \in M_{\lambda}$ si y sólo si $\lambda(\Omega) = \lambda(E) + \lambda(\Omega \setminus E)$.
- 14. Sea ν una medida σ -aditiva en la σ -álgebra \mathcal{A} . Decimos que \mathcal{A} es completa respecto de ν , si \mathcal{A} satisface que: Si $N \in \mathcal{A}$ y $\nu(N) = 0$, entonces $A \in \mathcal{A}$, para todo $A \subset N$.

Probar que cada medida σ -aditiva en la σ -álgebra $\overline{\mathcal{A}}$ puede ser extendida a una medida $\overline{\nu}$ en una σ -álgebra $\overline{\mathcal{A}}$ tal que $\overline{\mathcal{A}}$ es completa con respecto a $\overline{\nu}$.

Hint: Considerar la clase

$$\overline{\mathcal{A}} = \{ E \subset \Omega : \exists A, B \in \mathcal{A}, A \subset E \subset B, y \ \nu(B \setminus A) = 0 \}.$$

Probar que $\overline{\mathcal{A}}$ es una σ -álgebra que contiene \mathcal{A} , y definir para $E \in \tilde{\mathcal{A}}$, $\overline{\nu}(E) = \nu(B)$, donde $A \subset E \subset B$ y $\nu(B \setminus A) = 0$, $A, B \in \mathcal{A}$.

Notar que si μ es una medida en Ω , entonces \mathcal{M}_{μ} es completa respecto a ν (la restricción de μ a la σ -álgebra \mathcal{M}_{μ}).

- 15. Usando el Ejercicio 14, mostrar que $\mathcal{M}_{\mu} = \overline{\mathcal{M}}_{\mu}$.
- 16. Si μ es una medida en Ω que no es regular, entonces existe un conjunto $A\subset \Omega$ tal que

$$\mu(A) < +\infty$$
 y $\mu(A) < \inf\{\mu(E) : E \supset A, E \in \mathcal{M}_{\mu}\}.$

- 17. a) Construir un ejemplo de una familia de medidas en un conjunto Ω tal que el ínfimo de la familia no sea una medida.
 - b) Si $\{\mu_{\alpha}\}_{{\alpha}\in I}$ es una familia de medidas en Ω , entonces existe una medida μ en Ω tal que

1)
$$\mu(A) \le \inf_{\alpha} \mu_{\alpha}(A) \quad \forall \ A \subset \Omega.$$

2) If ν es una medida en Ω tal que

$$\nu(A) \leq \inf_{\alpha} \mu_{\alpha}(A) \quad \forall \ A \subset \Omega, \quad \text{entonces} \quad \nu \leq \mu.$$

- c) Concluir a partir de lo anterior que el conjunto de medidas en Ω es un reticulado completo con el orden parcial dado por $\mu \leq \nu$ if $\mu(A) \leq \nu(A) \ \forall A \subset \Omega$.
 - Recordad que un *reticulado completo* es un conjunto parcialmente ordenado donde cada subconjunto tiene un ínfimo y un supremo.