OPTIMIZACIÓN

Primer Cuatrimestre 2015

Práctica N° 3: Optimización con restricciones.

Consideraremos dos tipos de problemas:

$$(P_h) \begin{cases} \min f(x) \\ h(x) = 0 \end{cases} \qquad (P_g) \begin{cases} \min f(x) \\ h(x) = 0 \\ g(x) \le 0 \end{cases}$$

Además, notaremos: $M = \{y : \nabla h(x) \cdot y = 0\}$, que depende de x y de las restricciones.

Ejercicio 1 Dado el problema:

$$\min_{x,a: Ax = b.} f(x)$$
(1)

con $A \in \mathbb{R}^{m \times n}$, y sea \bar{x} tal que $A\bar{x} = b$. Probar que (1) es equivalente a:

$$\min f(\bar{x} + Bz),\tag{2}$$

para cierta $B \in \mathbb{R}^{n \times (n-m)}$. ¿Quién es B?

Ejercicio 2 Escribir las iteraciones de los métodos del gradiente y de Newton para (2) en función de las derivadas de f y de B.

Ejercicio 3 Probar que si h(x) = Ax + b, la regularidad no es necesaria para la validez del teorema de los multiplicadores de Lagrange para (P_h) .

Ejercicio 4 Probar el teorema de los multiplicadores de Lagrange para (P_h) utilizando el Teorema de la Función Implícita.

Ejercicio 5 Probar que si x^* es minimizador local (no necesariamente regular) del problema (P_h) , entonces existen $\lambda_0, \lambda_1, ..., \lambda_m \in \mathbb{R}$, tales que

$$\lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla h_i(x^*) = 0.$$

Ejercicio 6 Dar un ejemplo en el que x^* sea minimizador de (P_h) pero sea un máximo de f en el subespacio tangente afin.

Ejercicio 7 En \mathbb{R}^2 considere las restricciones

$$\begin{cases} x_1 \ge 0 \\ x_2 \ge 0 \\ x_2 - (x_1 - 1)^2 \le 0 \end{cases}$$

Muestre que el punto (1,0) es factible pero no es un punto regular.

Ejercicio 8 Considerar el siguiente problema de programación no lineal:

$$\begin{cases} \min 3x_1^2 + x_2^2 + 2x_3^2 - 6x_1 - 10x_2 - 4x_3 + 800 \\ x_1 + x_2 + x_3 = 20 \\ 2x_1 + 4x_3 = 24 \end{cases}$$

- a) Formular el problema de multiplicadores de Lagrange asociado.
- b) Calcular (x^*, λ^*) .
- c) Verificar que $y^t \nabla^2 \mathcal{L}(x^*, \lambda^*) y > 0, \ \forall y \in M, y \neq 0.$
- d) Concluir que x^* aproxima a un minimizador local estricto del problema original.
- e) Resolver el problema original utilizando el método de Newton o del gradiente modificado según el Ejercicio 1.
- f) Resolver usando alguna función de Penalidad Conveniente.

Ejercicio 9 Considerar el siguiente problema de programación no lineal:

$$\begin{cases} \min 2e^{3x_1} + 3x_2^2 + 5x_3^4 + 4 \\ \|x\| = 4 \\ \sum_{i=1}^3 x_i = 3 \end{cases}$$

- a) Resolver el problema parametrizando las restricciones.
- b) Calcular el lagrangiano y aplicarle el algoritmo de Newton con los siguientes valores iniciales: a) (1, 2, 3, 4, 5) y b) (-10, 20, -3, 1, 1).
- c) Resolver usando funciones de Barrera.

Ejercicio 10 Consideremos el análogo unidimensional del problema de superficies mínimas: dada $g:[0,1] \to \mathbb{R}$, buscamos una función $f:[0,1] \to \mathbb{R}$ que minimice:

$$J(f) = \int_0^1 \sqrt{1 + f'(x)^2} dx,$$

sujeta a las restricciones: $f(x) \ge g(x), \forall x \in [0,1], f(0) = a, f(1) = b.$

- a) Realizar una discretización del problema.
- b) Implementar un algoritmo de Gradiente Proyectado que lo resuelva.

Ejercicio 11 Considerar el problema perturbado $MRI(\varepsilon)$:

$$\begin{cases} \min f(x) \\ h(x) = \varepsilon \end{cases}$$

Sea x^* una solución regular de MRI(0). Denotando $x^* = x(0)$ y usándo las condiciones de optimalidad para $MRI(\varepsilon)$ y el teorema de la función implícita para definir $x(\varepsilon)$, pruebe que

$$\frac{\partial f}{\partial \varepsilon_i}(x(0)) = -\lambda_i \qquad i = 1, ...m$$

Ejercicio 12 Dada $f(x) = x_1^2 + x_2^2$ con $x \in \Omega$. Donde $\Omega = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 = 10 \text{ y } x_1^2 + x_2^2 \leq 225\}$

- a) Plantear las condicions de K-K-T y el problema asociado de minimización sin restriciones.
- b) Busque un mínimo utilizando una función de Barrera conveniente.

Ejercicio 13 (Entropía) Considere una función de probabilidad discreta que corresponde a que un valor tome uno de n valores $x_1, ... x_n$ con probabilidad p_i . Los p_i satisfacen $p_i \ge 0$ y $\sum_i p_i = 1$. La entropía de dicha densidad es:

$$\epsilon = -\sum p_i \log(p_i)$$

Si la media de la densidad es conocida $(m = \sum_i x_i p_i)$, hallar mediante un planteo de programación no lineal el valor de máxima entropía.

Ejercicio 14 Buscar N puntos y un radio tal que las áreas de los círculos formados maximicen la superficie dentro de un cuadrado de lado a.

- a) Plantee el problema (funcional a maximizar y reestricciones),
- b) Plantear el problema asociado usando las condiciones KKT
- c) Proponer una función de Penalidad y otra de Barrera para intentar aproximar las solciones.

Ejercicio 15 Implementar un algoritmo de minimización para el problema anterior y graficar los círculos encontrados. Trabajar en un cuadrado a = b y con N chico, N = 2, 3.

Sugerencias: Plantear funciones de Penalidad y/o Barrera convenientes. Considerar también que en el algoritmo haya algunos pasos de búsqueda local para tener un mejor candidato a dato inicial.

Ejercicio 16 Implementar un algoritmo que generalice el ejercicio anterior para cualquier número de círculos y en un rectángulo de lado a y altura b.