Análisis Funcional - 1° cuatrimestre 2015. Práctica 4

OPERADORES ACOTADOS, ADJUNTO, PRINCIPIO DE ACOTACIÓN UNIFORME

1. Sea X un espacio de Banach y sea $A \in \mathcal{L}(X)$, ||A|| < 1. Probar que (I + A) es inversible, $(I + A)^{-1} \in \mathcal{L}(X)$ y que su inversa viene dada por

$$(I+A)^{-1} = \sum_{n=0}^{\infty} (-1)^n A^n,$$

donde la serie es absolutamente convergente en $\mathcal{L}(X)$. Probar también que

$$||(I+A)^{-1}|| \le \frac{1}{1-||A||}.$$

2. Sea X un espacio de Banach y sea T, $T^{-1} \in \mathcal{L}(X)$. Probar que si $S \in \mathcal{L}(X)$ y $||S - T|| < 1/||T^{-1}||$, entonces S es inversible, $S^{-1} \in \mathcal{L}(X)$, y

$$||S^{-1} - T^{-1}|| < \frac{||T^{-1}||}{1 - ||S - T|| ||T^{-1}||}.$$

- 3. Sean E y F espacios de Banach y sean $x_n, x \in E, A_n, A \in \mathcal{L}(E, F) \ \forall n \in \mathbb{N}$. Si $x_n \to x$ y $A_n \to A$ entonces $A_n x_n \to Ax$
- 4. Sea E un espacio de Banach, sean $A_n, A, B_n, B \in \mathcal{L}(E)$.
 - (i) $||AB|| \le ||A|| \, ||B||$
 - (ii) Si $A_n \to A$ y $B_n \to B$ entonces $A_n B_n \to AB$
- 5. Sean E un espacio de Banach, $A_n \in \mathcal{L}(E)$ inversibles, $A \in \mathcal{L}(E)$ no inversible tales que $A_n \to A$, entonces $||A_n^{-1}|| \to \infty$.
- 6. Sea E el espacio de Banach real L¹((1,+∞)), sea T : E → E dado por Tf(t) = ½ f(t). Probar que T es acotado pero no abierto.
 (Sugerencia: 0 ∈ T(B(0,1)) no es punto interior)
- 7. (i) Si $1 \leq p < \infty$, S y T son los shifts, calcular S^* y T^* . (ii) Si $J: \ell^2 \to c_0$, J(x) = x, probar que $J \in \mathcal{L}(\ell^2, c_0)$ y calcular J^* .
- 8. Operadores de Multiplicación:

Para X = C[0,1] ó $L_p[0,1]$ y $\varphi \in L^{\infty}[0,1]$, sea $M_{\varphi}: X \to X$ definida por

$$M_{\varphi}(f) = \varphi f$$

Caracteriza
r M_{φ}^{*} (Tener en cuenta las caracterizaciones del dual de
 C([0,1]) y $L^{p})$

- 9. Sea E un espacio vectorial normado, sean $A, B \in \mathcal{L}(E)$ entonces $(AB)^* = B^*A^*$.
- 10. Sean E, F espacios de Banach, $A \in \mathcal{L}(E, F)$.
 - (a) $||A|| = ||A^*||$
 - (b) Si A es inversible entonces A^* es inversible y $(A^*)^{-1} = (A^{-1})^*$

- (c) La aplicación $\Phi: \mathcal{L}(E,F) \to \mathcal{L}(F^*,E^*)$ dada por $\Phi(A) = A^*$ es continua.
- 11. Sean $\Omega \subset \tilde{\Omega}$ dos conjuntos medibles de \mathbb{R}^n . Se definen los operadores

$$\rho: L^p(\tilde{\Omega}) \to L^p(\Omega), \qquad e: L^p(\Omega) \to L^p(\tilde{\Omega}),$$

dados por $\rho(u) = u \mid_{\Omega} y \ e(u)(t) = u(t)$ si $t \in \Omega$ y 0 en otro caso. Probar que ρ y e son acotados, calcular sus normas y calcular ρ^* , e^* .

- 12. Sean E un espacio de Banach, F un subespacio de E, S un subespacio de E^* . Probar que:
 - (a) i. $F^{\perp} = \{ \gamma \in E^* : \gamma(x) = 0 \ \forall \ x \in F \}$ es un subespacio cerrado de E^* .

ii.
$$^{\perp}S = \{x \in E : \gamma(x) = 0 \ \forall \ \gamma \in S\}$$
 es un subespacio cerrado de E .

iii.
$$^{\perp}(F^{\perp}) = \overline{F}$$

iv.
$$(^{\perp}S)^{\perp} \supset \overline{S}$$

- (b) Sea c_{00} el subespacio de $\ell^{\infty} = (\ell^1)^*$ de sucesiones finitas. Probar que $({}^{\perp}c_{00})^{\perp}$ contiene estrictamente a $\overline{c_{00}}$
- 13. Sean E, F espacios de Banach, $A \in \mathcal{L}(E, F)$. Probar que:
 - (a) $R(A)^{\perp} = \ker(A^*)$
 - (b) ${}^{\perp}R(A^*) = \ker(A)$
 - (c) $\overline{R(A)} =^{\perp} \ker(A^*)$
 - (d) $R(A^*) \subseteq (\ker(A))^{\perp}$
- 14. Sean E, F espacios vectoriales normados, $T \in \mathcal{L}(E, F), x \in E$, entonces

$$\operatorname{dist}(x, \ker(T)) = \max\{|\varphi(x)| : \varphi \in (\ker(T))^{\perp}, \ \|\varphi\| \le 1\}$$

- 15. Sean E un espacio de Banach, $F \subset E$ un subespacio y $\Phi : E^* \to F^*$ dada por $\Phi(\varphi) = \varphi|_F$. Probar que $\Phi \in \mathcal{L}(E^*, F^*)$, Φ es survectiva y calcular $\ker(\Phi)$.
- 16. Si E y F son espacios de Banach, $T \in \mathcal{L}(E,F)$ entonces $\widehat{T} : E/\ker(T) \to F$, dado por $\widehat{T}([x]) = T(x)$, es lineal, continuo, inyectivo y $\|\widehat{T}\| = \|T\|$.
- 17. Sean E un espacio de Banach, $S\subset E$ un subespacio cerrado. Entonces se dan los siguientes isomorfismos isométricos:

$$(E/S)^* \cong S^{\perp}$$

$$E^*/S^{\perp} \cong S^*$$

DEFINICIÓN: Sea E un espacio de Banach, $T \in \mathcal{L}(E)$ se dice acotado inferiormente si y sólo si $\exists c > 0 / \|Tx\| \ge c \|x\| \ \forall x \in E$.

- 18. Sean E un espacio de Banach, $T \in \mathcal{L}(E)$. Probar que:
 - (a) Si T es acotado inferiormente entonces R(T) es cerrado.
 - (b) T acotado inferiormente y survectivo si y sólo si T inversible.

19. Sea $V: L^2[0,1] \to L^2[0,1]$ el operador de Volterra, dado por

$$Vf(x) = \int_0^x f(t) \ dt$$

- (a) Probar que V no es acotado inferiormente.
- (b) Caracterizar V^* .

DEFINICIÓN: Sea E, F dos espacios de Banach, $T_n, T \in \mathcal{L}(E, F)$. Decimos que T_n converge fuertemente a T si para cualquier $x \in E$ se tiene que $T_n(x) \to T(x)$.

- 20. Si T_n tiende fuertemente a T y x_n tiende a x entonces $T_n(x_n) \to T(x)$.
- 21. Si T_n tiende a T fuertemente y S_n tiende a S fuertemente, entonces T_nS_n tiende a TS fuertemente.
- 22. Sean E, F dos espacios de Banach. Sean $A_n \in \mathcal{L}(E, F)$ tales que $A_n(x)$ es de Cauchy para todo $x \in E$. Probar que existe un $A \in \mathcal{L}(E, F)$ tal que $A_n \to A$ fuertemente.
- 23. En el espacio ℓ^2 se definen las siguientes sucesiones operadores

$$A_n x = (x_1/n, \dots, x_k/n, \dots)$$

$$B_n x = (0, \dots, 0, x_{n+1}, x_{n+2}, \dots)$$

Decidir en cada caso si la sucesión tiende a cero en norma o fuertemente.

24. Sean Y un espacio de Banach, Z un espacio normado, $Y \stackrel{T_n}{\to} Z$ una sucesión de operadores lineales acotados. Suponiendo $B_n(y_n) \to 0$ para toda sucesión (y_n) en Y tal que $y_n \to 0$, probar que sup_n $||B_n|| < \infty$.

(Sugerencia: considerar el espacio $c_0(Y)$).