Matemática 2

Primer Cuatrimestre de 2014

Práctica 6

Forma de Jordan

(Versión actualizada)

Notación. Si $A \in K^{n \times n}$ entonces $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$.

Ejercicio 1. Considere la matriz $A \in \mathbb{C}^{9 \times 9}$.

- (i) ¿Cuál es el rango de A?
- (ii) Calcule el polinomio característico de A. ¿Es esta matriz nilpotente? ¿Puede responder esta pregunta solamente conociendo el polinomio característico?
- (iii) Sabiendo el rango de la matriz, ¿cuáles son las posibilidades de la forma de Jordan de A?
- (iv) Hallar una base en la que A este en forma de Jordan.

Ejercicio 2. Hallar la forma y una base de Jordan de la matriz $A=(a_{ij})\in\mathbb{C}^{5\times 5}$ donde

$$a_{ij} = \begin{cases} 0 & i \le j \\ 1 & i > j \end{cases}$$

Ejercicio 3.

- (i) Sea $A \in \mathbb{C}^{6 \times 6}$ nilpotente de grado de nilpotencia 3. Determinar las posibles formas de Jordan de A.
- (ii) Sea $B \in \mathbb{C}^{8 \times 8}$ tal que $\chi_B(\lambda) = \lambda^8$ y rg(B) = 6. ¿Cuál es la forma de Jordan de B?

Ejercicio 4. Considere la matriz $A \in \mathbb{C}^{6 \times 6}$.

$$A = \begin{pmatrix} 1 & 1 & -2 & 0 & 1 & -1 \\ 3 & 1 & 5 & 1 & -1 & 3 \\ -2 & -1 & 0 & 0 & -1 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -5 & -3 & -1 & -1 & -1 & -1 \\ -3 & -2 & -1 & -1 & 0 & -1 \end{pmatrix}$$

1

- (i) Calcule el rango y el grado de nilpotencia de A.
- (ii) Determine la forma de Jordan de A.
- (iii) Halle una base en la que A esté en forma de Jordan.

Ejercicio 5. Sea $S \subset \mathcal{C}^{\infty}(\mathbb{R})$ el subespacio $S = \langle e^x, xe^x, x^2e^x \rangle$ y sea $D: S \to S$ la transformación lineal D(f) = f'.

- (i) Muestre que D-I es nilpotente.
- (ii) Halle una base de Jordan para D-I y concluya una base de Jordan para D.
- (iii) Calcule (matricialmente) e^{tD} .
- (iv) Calcule $e^{tD}v$, donde v es alguno de los vectores generadores de S; por ejemplo, $v = x^2 e^x$. (Observar que si e^{tD} lo calculó en términos matriciales, para calcular $e^{tD}v$ hay que escribir las coordenadas de v en la base donde considero la matriz de D).
- (v) Escriba $(x+t)^2e^{t+x}$ como combinación lineal de la base (con coeficientes que dependen de t). Compare con el item anterior.

Ejercicio 6. Considere la matriz $A = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix}$.

- (i) Muestre que N = A 2I es nilpotente.
- (ii) Halle una base de Jordan de N, y luego de A.
- (iii) Calcule e^{tA} (Sugerencia: Utilice la formula $e^{D+N} = e^D e^N$, si D y N conmutan).

Ejercicio 7. Considere la matriz $A = \begin{pmatrix} 3 & 1 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 3 \end{pmatrix}$.

- (i) Calcule el polinomio característico de A.
- (ii) Conociendo χ_A , ¿qué dimensión puede tener Nu(A-3I)? ¿qué dimensión puede tener Nu(A-2I)?
- (iii) Muestre que $Nu(A-2I)^2$ es un subespacio A-estable y que está en suma directa con el subespacio de autovalor 3. Calcule e^{tA} .