ELEMENTOS DE CÁLCULO NUMÉRICO (M) - CÁLCULO NUMÉRICO Primer Cuatrimestre 2014

Práctica N°6: Polinomios ortogonales y aproximación por cuadrados mínimos

Ejercicio 1 Escribir un programa que reciba como datos dos vectores \mathbf{x} e \mathbf{y} y un número \mathbf{n} y devuelva un vector con los coeficientes del polinomio de grado \mathbf{n} que mejor ajusta la tabla dada por \mathbf{x} e \mathbf{y} en el sentido de cuadrados mínimos. Para el cálculo, utilice la descomposición QR de una matriz apropiada.

Ejercicio 2 a) Encontrar el polinomio de grado 1 que aproxima en el sentido de cuadrados mínimos la siguiente tabla de datos:

	0		l .		1		l .			
y	1	1.1	1.9	3.2	3.8	5	6	7.3	8.1	8.9

y el polinomio de grado 2 que aproxima en el mismo sentido la siguiente tabla de datos:

\boldsymbol{x}	-1	0	1	3	6
y	6.1	2.8	2.2	6	26.9

b) En cada caso, comparar gráficamente, usando Matlab, con el polinomio interpolador.

Ejercicio 3 Considerar la función $f(x) = \frac{1}{1+25x^2}$ en el intervalo [-1,1]. Para n=5,10,15; graficar simultáneamente f junto con

- los polinomios que aproximan a f en el sentido de cuadrados mínimos en n+1 puntos equiespaciados y tienen grado $\frac{2}{5}n$ y $\frac{4}{5}n$,
- el polinomio que resulta de interpolar a f en los puntos anteriores.

Ejercicio 4 Hallar la constante o polinomio de grado 0 que mejor aproxima en el sentido de cuadrados mínimos a una función $f:[a,b] \to \mathbb{R}$ en n puntos x_1, \ldots, x_n en [a,b].

Ejercicio 5 Escribir un programa que reciba como datos dos vectores \mathbf{x} e \mathbf{y} , y un conjunto de funciones \mathbf{S} :

$$\mathtt{S} = \{f_1, \dots, f_n\}$$

y calcule la función $f \in < f_1, \ldots, f_n >$ que mejor aproxima a la tabla dada por x e y en el sentido de cuadrados mínimos.

Nota: Investigar la estructura de datos cell como una forma de dar el conjunto S.

Ejercicio 6 Sea S el subespacio de funciones continuas definidas de \mathbb{R} en \mathbb{R} generado por las funciones del conjunto $B = \{1, x, 2^x, 3^x\}$. Para i = 0, 1, 2, 3, sea $x_i = i$, y sea T un conjunto de datos del tipo $\{(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3)\}$.

- a) Demostrar que B es una base de S y que para todo conjunto de datos T existe una única función $p \in S$ tal que p interpola a T.
- b) Demostrar que $\langle p, q \rangle = \sum_{i=0}^{3} p(x_i) q(x_i)$ es un producto interno en S.
- c) Aproximar la siguiente tabla de datos en el sentido de cuadrados mínimos

$$\begin{array}{c|ccccc} x & 0 & 1 & 2 & 3 \\ y & 0.3 & -0.2 & 7.3 & 23.3 \end{array}$$

con funciones del tipo: (a) $y = a2^x + b3^x$, (b)

(b)
$$y = a2^x + b3^x + c$$
.

d) Graficar los resultados obtenidos junto con los valores de la tabla de datos.

Ejercicio 7 Considerar erf : $\mathbb{R} \to \mathbb{R}$ la función dada por

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

- a) Graficar la función con el comando erf de Matlab en el intervalo [-15,15]. Observar que $\lim_{x\to\pm\infty} {\rm erf}(x)=\pm 1$.
- b) Aproximar la función erf en el sentido de cuadrados mínimos con polinomios de grado 1, 3 y 5; considerando 20 puntos equiespaciados en el intervalo [-10, 10]. Graficar erf junto con estos polinomios en el intervalo [-15, 15]. Observar que la aproximación es mala fuera del intervalo [-10, 10].
- c) Se quiere aproximar nuevamente la funcion erf en el sentido de cuadrados mínimos con una combinación lineal de funciones que compartan con erf la propiedad de ser acotada e impar. Para ello, ajustar la función erf con una función del tipo

$$c_1 x e^{-x^2} + c_2 \arctan(x) + c_3 \frac{x}{x^2 + 1},$$

considerando 20 puntos equiespaciados en el intervalo [-10, 10]. Graficar erf junto a esta aproximación en el intervalo [-15, 15] y comparar con el ítem (b).

Ejercicio 8 Aproximar los datos de la tabla siguiente con un modelo de la forma $f(x) \sim ae^{bx}$ en el sentido de cuadrados mínimos para la función $\ln(f(x))$.

\boldsymbol{x}	-1	0	1	2
y	8.1	3	1.1	0.5

Ejercicio 9 Aproximar los datos de la tabla siguiente con un modelo de la forma $f(x) \sim -e^{ax^2+bx+c}$ en el sentido de cuadrados mínimos para la función $\ln(-f(x))$.

\boldsymbol{x}	-1	0	1	2
y	- 1.1	- 0.4	- 0.9	- 2.7

2

Ejercicio 10 Decidir en cada caso, cuáles de las siguientes aplicaciones $\langle , \rangle : S \times S \to \mathbb{R}$, son productos internos:

a)
$$\langle f, g \rangle = f(0) + f(1) + 2g(0), \quad S = \mathbb{R}_1[X],$$

b)
$$\langle f, g \rangle = f(0)g(0) + f(1)g(1), \quad S = \mathbb{R}_2[X],$$

c)
$$\langle f, g \rangle = f(0)g(0) + f(1)g(1) + f(2)g(2), \quad S = \mathbb{R}_2[X].$$

d)
$$\langle f, g \rangle = f(0)g(0) + \int_0^1 f'(t)g'(t)dt, \quad S = \mathcal{C}^1([0, 1]),$$

Aclaración: $\mathbb{R}_m[X]$ denota el subespacio de polinomios con coeficientes reales y grado menor o igual que m.

Ejercicio 11 Considerar

$$\langle f, g \rangle = \int_{-1}^{1} f'(x)g'(x) \ dx$$

- a) Probar que \langle , \rangle es un producto interno en S_m , el espacio generado por $\{x, x^2, x^3, \cdots, x^m\}$.
- b) Hallar una base ortonormal para S_3 .
- c) Hallar la mejor aproximación en el sentido de cuadrados mínimos sobre S_3 para $f(x) = x^4$.

Ejercicio 12 Sea

$$\langle f, g \rangle = f(1)g(1) - f(-1)g(-1) + \int_{-1}^{1} f'(x)g'(x)dx.$$

- a) Decidir si $\langle \cdot, \cdot \rangle$ es un producto interno en $C^1([-1,1])$.
- b) Probar que $\langle \cdot, \cdot \rangle$ es un producto interno para el espacio $V = \{ f \in C^1([-1,1]) : f \text{ es impar} \}.$
- c) Hallar la mejor aproximación en el sentido de cuadrados mínimos del polinomio $p(x) = x^5$ sobre el subespacio S generado por $\{x, x^3\}$.

Ejercicio 13 a) Demostrar que

$$\langle f, g \rangle = \int_{-1}^{1} f''(x)g''(x)dx + f(-1)g(-1) + f(1)g(1)$$

es un producto interno en el espacio $C^2([-1,1])$.

- b) Hallar una base ortnormal de $\mathbb{R}_2[X]$ para el producto interno definido en el ítem anterior.
- c) Probar que si f es una función par en $C^2([-1,1])$, entonces su proyección sobre $\mathbb{R}_2[X]$ es par, y que si f es una función impar, entonces su proyección es impar.

Ejercicio 14 Sea $\langle f, g \rangle$ alguno de los siguientes productos escalares en $\mathbb{R}_n[X]$:

•
$$\langle f, g \rangle = \sum_{j=0}^{n} f(x_j)g(x_j)w_j$$
, con $x_i \neq x_j$ si $i \neq j$ y $w_j > 0$ para $j = 0, \dots, n$,

• $\langle f, g \rangle = \int_a^b f(x)g(x)w(x)dx$ con $w : \mathbb{R} \to \mathbb{R}, w(x)\rangle 0 \forall x \in \mathbb{R}$ y a < b.

Probar que $S = \{1, x, x^2, \dots, x^n\}$ no puede ser un conjunto ortogonal para $n \ge 2$.

Ejercicio 15 Polinomios de Laguerre. Utilizando el método de Gram-Schmidt, calcular los primeros cuatro polinomios mónicos ortogonales con respecto al producto escalar:

$$\langle f, g \rangle = \int_0^\infty e^{-x} f(x) g(x) dx.$$

Ejercicio 16 Polinomios de Hermite. Repetir el ejercicio anterior con el producto escalar

 $\langle f, g \rangle = \int_{-\infty}^{\infty} e^{-x^2} f(x) g(x) dx.$

Ejercicio 17 Probar que el conjunto de funciones:

$$\mathcal{F} = \{\cos(mx), \ m \in \mathbb{N} \cup \{0\}\} \cup \{\sin(mx), \ m \in \mathbb{N}\}\$$

es ortogonal con el producto escalar

$$\langle f, g \rangle = \int_0^{\pi} f(x)g(x)dx$$

y calcular las normas de cada una de estas funciones.

Sugerencia: Usar la fórmula

$$\cos(kx)\cos(jx) = \frac{1}{2}\Big(\cos\big((k+j)x\big) + \cos\big((k-j)x\big)\Big).$$

y sus análogas para el producto de senos y el producto de un seno y un coseno.

Ejercicio 18 Verificar la ortogonalidad y calcular la norma de los polinomios de Tchebychev, con el producto escalar

$$\langle f, g \rangle = \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1 - x^2}} dx.$$

Sugerencia: usar el cambio de variables $u = \arccos(x)$.

Ejercicio 19 Hallar los primeros 5 términos de la expansión en serie de Tchebychev para la función f(x) = |x|. Graficar en el intervalo [-1, 1]. Notar la relación entre el peso que hace ortogonal a los polinomios de Tchebychev con la región del gráfico en que la aproximación es mejor.

Ejercicio 20 Sea T_j el polinomio de Tchebychev de grado j; $(j \in \mathbb{N})$. Considerar las relaciones de ortogonalidad discretas para éstos polinomios:

$$\sum_{k=1}^{m} T_i(x_k) T_j(x_k) = \begin{cases} 0 & i \neq j \\ m/2 & i = j \neq 0 \\ m & i = j = 0 \end{cases}$$

donde $\{x_k; k=1,\ldots,m\}$ es el conjunto de ceros de T_m .

Para una función $f:[-1,1]\to\mathbb{R}$ se definen m coeficientes $c_j,\,j=1,\ldots,m$ según

$$c_j = \frac{2}{m} \sum_{k=1}^m f(x_k) T_{j-1}(x_k).$$

Probar que el polinomio $\left[\sum_{k=1}^m c_k T_{k-1}(x)\right] - 0.5c_1$ interpola a f en las raíces de T_m .

Notar que esta fórmula proporciona una manera más directa de encontrar el polinomio interpolador en los ceros de T_m .