Práctica 6: Espacios L^p y Cambio de Variable

Ejercicio 1. Sean (X, Σ, μ) un espacio de medida, $E \in \Sigma$ un conjunto de medida finita y $1 \le p_1 \le p_2 \le \infty$.

- (a) Probar que $L^{p_2}(E, d\mu) \subseteq L^{p_1}(E, d\mu)$.
- (b) Mostrar que $\mu(E) < \infty$ es una condición necesaria para la inclusión.

Ejercicio 2. Sean (X, Σ, μ) un espacio de medida y $1 \le r \le p \le s < \infty$. Si $f \in L^r(X, d\mu) \cap L^s(X, d\mu)$, entonces $||f||_p^p \le ||f||_r^r + ||f||_s^s$.

Ejercicio 3. Sea (X, Σ, μ) un espacio de medida. Probar que:

- (a) Si $f_n \to f$ en $L^p(X, d\mu)$, para algún $p: 1 \le p \le \infty$, entonces $f_n \to f$ en medida.
- (b) Si $f_n \to f$ en $L^p(X, d\mu)$, $g_n \to g$ en $L^q(X, d\mu)$, y 1/p + 1/q = 1, entonces $f_n g_n \to f g$ en $L^1(X, d\mu)$.
- (c) Si $\mu(X) < \infty$ y $f_n \to f$ en $L^{\infty}(X)$, entonces $f_n \to f$ en $L^p(X, d\mu)$, para todo $p \ge 1$.
- (d) Si $f_n \to f$ en L^p , $1 \le p < \infty$, $g_n \to g$ a.e. $y ||g_n||_{\infty} \le M$, para todo $n \in \mathbb{N}$, probar que $f_n g_n \to f g$ en L^p .

Ejercicio 4. Dadas las funciones $f_n:[0,1]\to\mathbb{R}$,

$$f_n = \begin{cases} e^n, & 0 \le x \le 1/n \\ 0, & \text{en otro caso,} \end{cases}$$

probar que $f_n \to 0$ a.e. y $f_n \to 0$ en medida pero f_n no converge en $L^p([0,1])$ para $1 \le p \le \infty$.

Ejercicio 5. Sean (X, Σ, μ) un espacio de medida, $(f_n)_{n\geq 1}$ y f en $L^p(X, d\mu)$, $1 \leq p < \infty$. Probar:

- (a) $||f_n f||_{L^p(X, d\mu)} \to 0 \Rightarrow ||f_n||_{L^p(X, d\mu)} \to ||f||_{L^p(X, d\mu)}$
- (b) Si $f_n \to f$ a.e. sobre X entonces:

$$||f_n||_{L^p(X, d\mu)} \to ||f||_{L^p(X, d\mu)} \Rightarrow ||f_n - f||_{L^p(X, d\mu)} \to 0.$$

(Sug.: Aplicar el Lema de Fatou a la sucesión: $g_n(x) = 2^{p-1}(|f_n(x)|^p + |f(x)|^p) - |f_n(x) - f(x)|^p$.)

Ejercicio 6. Sea $k: \mathbb{R}^{d+d} \to \mathbb{R}$ medible tal que existe c > 0 que verifica:

$$\sup_{x \in \mathbb{R}^d} \int |k(x,y)| dy \le c \quad \text{ y } \quad \sup_{y \in \mathbb{R}^d} \int |k(x,y)| dx \le c.$$

Probar que si $1 , entonces <math>K : L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$ dada por

$$K(f)(x) = \int k(x,y)f(y)dy$$

está bien definida y es uniformemente continua.

Ejercicio 7. Sean (X, Σ, μ) un espacio de medida y $E \in \Sigma$ tal que $0 < \mu(E) < \infty$. Para $1 \le p < \infty$ y f medible, definimos:

$$N_p[f] = \left(\frac{1}{\mu(E)} \int_E |f|^p\right)^{1/p}.$$

Probar:

- (a) $p_1 < p_2 \implies N_{p_1}[f] \le N_{p_2}[f]$.
- (b) $N_p[f+g] \le N_p[f] + N_p[g]$.
- (c) $\frac{1}{\mu(E)} \int_E |fg| \le N_p[f] N_q[g], \ 1/p + 1/q = 1.$
- (d) $\lim_{p\to\infty} N_p[f] = ||f||_{\infty}$.
- (e) Sea $f \in L^{\infty}(E)$, $||f||_{\infty} > 0$. Para cada $n \in \mathbb{N}$, consideramos $a_n = \int_E |f(x)|^n d\mu$. Demostrar que $\lim_{n\to\infty} a_{n+1}/a_n = ||f||_{\infty}$.

Ejercicio 8. Demuestre la siguiente generalización de la desigualdad de Hölder. Si $\sum_{i=1}^{k} 1/p_i = 1/r$, $p_i, r \ge 1$, entonces

$$||f_1 \cdots f_k||_r \le ||f_1||_{p_1} \cdots ||f_k||_{p_k}$$

Ejercicio 9. Muestre que cuando $0 , los entornos <math>\{f \in L^p(0,1) : ||f||_p < \varepsilon\}$ de la función nula, no son convexos.

Ejercicio 10. Sean (X, Σ, μ) un espacio de medida, f medible sobre X y

$$\omega(\alpha) = \mu(\{x \in X : |f(x)| > \alpha\})$$

- (a) Supongamos que para todo $\alpha > 0$, $\omega(\alpha) \leq c(1+\alpha)^{-p}$. Probar que $f \in L^r(X, d\mu)$, para 0 < r < p.
- (b) Probar que $f \in L^p(X, d\mu)$ (0 , si y sólo si

$$\sum_{k=-\infty}^{+\infty} 2^{kp} \omega(2^k) < +\infty.$$

Mostrar además que existen constantes positivas c_1 y c_2 que no dependen de f tales que:

$$c_1 \left(\sum_{k=-\infty}^{+\infty} 2^{kp} \omega(2^k) \right)^{1/p} \leq \|f\|_p \leq c_2 \left(\sum_{k=-\infty}^{+\infty} 2^{kp} \omega(2^k) \right)^{1/p}.$$

Ejercicio 11. Sea E = [0, 1/2]. Probar:

- (a) $f(x) = x^{-1/p} (\ln x^{-1})^{-2/p} \in L^p(E)$, $(1 \le p < \infty)$, pero $f \notin L^r(E)$ si r > p.
- (b) $g(x) = \ln x^{-1} \in L^p(E)$ para todo $p: 1 \le p < \infty$, pero $g \notin L^\infty(E)$.

Ejercicio 12. Sea $E = [0, \infty)$. Probar que $f(x) = x^{-1/2}(1 + |\ln x|)^{-1} \in L^2(E)$ pero $f \notin L^p(E)$ para ningún $p: 1 \le p < \infty$, y $p \ne 2$.

Ejercicio 13. Dada $f \in L^p(\mathbb{R}^d), 1 \leq p < \infty$, probar que:

(a)
$$\left(\int_{\mathbb{R}^d} |f(x-h) + f(x)|^p dx \right)^{1/p} \longrightarrow_{\|h\| \to \infty} 2^{1/p} \|f\|_p$$

(b)
$$\left(\int_{\mathbb{R}^d} |f(x-h) + f(x)|^p dx \right)^{1/p} \longrightarrow_{\|h\| \to 0} 2\|f\|_p$$

Ejercicio 14.

- (a) Dadas funciones $f \in L^p(\mathbb{R}^d)$ y $g \in L^q(\mathbb{R}^d)$ donde 1/p + 1/q = 1, probar que la convolución f * g(x) existe y es finita para todo $x \in \mathbb{R}^d$. Además define una función acotada y uniformemente continua.
- (b) Dado $E \subseteq \mathbb{R}^d$ tal que $0 < |E| < \infty$, probar que:

$$E - E = \{x - y : x, y \in E\}$$

contiene un conjunto abierto no vacío. (Sug.: considerar $\chi_E * \chi_{-E}$.)

Ejercicio 15. Dada $f: \mathbb{R} \to \mathbb{R}$ integrable, para cada h > 0 sea

$$f_h(t) = \frac{1}{h} \int_{t-h/2}^{t+h/2} f(x) dx.$$

Si $f \in L^p$, probar que:

- (a) $||f_h||_{\infty} \le h^{-1/p} ||f||_p$.
- (b) $f_h \in L^p \text{ y } ||f_h||_p \le ||f||_p$.
- (c) Para cada $r \ge p \ge 1$, $||f_h||_r \le h^{1/r 1/p} ||f||_p$.
- (d) $||f_h f||_p \longrightarrow_{h \to 0} 0$.

Ejercicio 16. Sean (X, Σ, μ) un espacio de medida y $f \in L^p(X, d\mu)$, 0 . Si <math>1/p + 1/q = 1 probar:

- (a) $||f||_p = \sup_{\|g\|_q=1} \left| \int_X f(x)g(x)d\mu \right|$.
- (b) Si $(f_k)_{k\geq 1}$ es una sucesión de funciones en L^p tal que para toda $g\in L^q$ resulta: $\lim_{k\to\infty}\int_X f_k g dx = \int_X f g d\mu, \text{ entonces:}$

$$||f||_p \le \liminf_{k \to \infty} ||f_k||_p.$$

Ejercicio 17. Sean (X, Σ, μ) un espacio de medida y $p \ge 1$. Definimos:

$$L^p_*(X) = \{f: X \to \overline{\mathbb{R}} \text{ medible}: \sup_{t>0} t \left(|\{x \in X: |f(x)| > t\}| \right)^{1/p} < \infty \}.$$

Probar:

- (a) $L^p(X) \subseteq L^p_*(X)$,
- (b) Si $\mu(X) < \infty$ y p > 1, entonces $L_*^p(X) \subseteq L^1(X)$.

Ejercicio 18.

(a) Probar que para cualquier función medible no negativa f(x,y) de \mathbb{R}^2 vale,

$$\int_{\mathbb{R}^2} f(x,y) \, dx \, dy = \int_0^{2\pi} \int_0^{\infty} f(r \cos \theta, r \sin \theta) r \, dr d\theta$$

(b) Probar,

$$\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$$

Ejercicio 19. Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica y sea $Q(x) : \mathbb{R}^n \to \mathbb{R}$ la forma cuadrática definida por $Q(x) = xAx^t$. Probar que la función $f(x) = e^{-Q(x)}$ es integrable sobre \mathbb{R}^n si y sólo si todos los autovalores de A son positivos. Probar, además, que en tal caso

$$\int_{\mathbb{R}^n} f \, dx = \frac{\pi^{n/2}}{\sqrt{\det(A)}}.$$

Ejercicio 20. Decimos que $f: \mathbb{R}^n \to \mathbb{R}$ es una función radial si existe $g: \mathbb{R}_{\geq 0} \to \mathbb{R}$ tal que $f(x) = g(\|x\|)$. Probar que existe una constante C_n tal que para toda función radial f vale que

$$\int_{\mathbb{R}^n} f(x) dx = C_n \int_0^\infty r^{n-1} g(r) dr$$

Ejercicio 21. ¿Para qué valores de p es $||x||^p$ integrable sobre la bola unitaria $\{||x|| \le 1\}$ de \mathbb{R}^n ?

Ejercicio 22. Calcular

$$\int_{\mathbb{R}^n} \frac{1}{(1+\|x\|^2)^{\frac{n+1}{2}}} \, dx$$