Práctica 5: Medidas Producto-Teorema de Fubini

Ejercicio 1. Sean (X_1, Σ_1) y (X_2, Σ_2) espacios medibles y sea $P_i : X_1 \times X_2 \longrightarrow X_i$, i = 1, 2, la proyección sobre X_i dada por $P_i(x_1, x_2) = x_i$.

- (a) Probar que si $E_i \in \Sigma_i$ entonces $P_i^{-1}(E_i) \in \Sigma_1 \otimes \Sigma_2$.
- (b) Probar que si Σ es una σ -álgebra en $X_1 \times X_2$ tal que $P_i^{-1}(E_i) \in \Sigma$ para todo $E_i \in \Sigma_i$, i = 1, 2, entonces $\Sigma_1 \otimes \Sigma_2 \subset \Sigma$.

Ejercicio 2. Notemos con $\mathcal{B}(\mathbb{R}^k)$ la σ-álgebra de Borel en \mathbb{R}^k , $k \in \mathbb{N}$. Probar que $\mathcal{B}(\mathbb{R}^n) \otimes \mathcal{B}(\mathbb{R}^m) = \mathcal{B}(\mathbb{R}^{n+m})$.

Ejercicio 3.

- (a) Sea $E \subseteq \mathbb{R}^2$ medible tal que para casi todo $x \in \mathbb{R}$, $E_x = \{y \in \mathbb{R} : (x,y) \in E\}$ tiene medida nula. Probar que E tiene medida nula y que para casi todo $y \in \mathbb{R}$, $E_y = \{x \in \mathbb{R} : (x,y) \in E\}$ tiene medida nula.
- (b) Sea f(x,y) una función medible y no negativa definida sobre \mathbb{R}^2 . Supongamos que para casi todo $x \in \mathbb{R}$, f(x,y) es finita para casi todo y. Probar que para casi todo $y \in \mathbb{R}$, f(x,y) es finita para casi todo x.

Ejercicio 4. Sean (X, \mathcal{A}, μ) e (Y, \mathcal{B}, ν) dos espacios de probabilidad. Sea $E \in \mathcal{A} \otimes \mathcal{B}$ tal que para todo $y \in Y$, $\mu(E_y) = 0$ o $\mu(E_y) = 1$. Si $B = \{y \in Y : \mu(E_y) = 1\}$, probar que $\mu \times \nu(E \triangle X \times B) = 0$.

Ejercicio 5. Sean f y g funciones medibles definidas sobre \mathbb{R}^n y \mathbb{R}^m respectivamente. Probar que h(x,y) = f(x)g(y) definida sobre \mathbb{R}^{n+m} es medible. Deducir que si $E_1 \subseteq \mathbb{R}^n$ y $E_2 \subseteq \mathbb{R}^m$ son conjuntos medibles, entonces su producto cartesiano $E_1 \times E_2 = \{(x,y) : x \in E_1 \land y \in E_2\}$ es medible en \mathbb{R}^{n+m} y $|E_1 \times E_2| = |E_1||E_2|$.

Ejercicio 6. Sea $f:(0,1)\to\mathbb{R}$ medible y sea $h:(0,1)\times(0,1)\to\mathbb{R}$, definida por h(x,y)=f(x)-f(y). Probar que si h es integrable sobre $(0,1)\times(0,1)$, entonces f es integrable sobre (0,1).

Ejercicio 7. Sea I = [0,1] y sea $E \subseteq I \times I$ tal que $|E_x|_e = |I - E_y|_e = 0$ para todo $(x,y) \in I \times I$. Probar que E no es medible.

Ejercicio 8. Sean (X, Σ, μ) un espacio de medida, $E \in \Sigma$ y $f : E \longrightarrow \mathbb{R}$ una función medible y no negativa. Definimos

$$O_E(f) = \{(x, t) \in E \times \mathbb{R} : 0 \le t < f(x)\}.$$

Probar:

- (a) Si f es una función simple entonces $O_E(f) \in \Sigma \otimes \mathcal{B}(\mathbb{R})$.
- (b) Si $f_n: E \longrightarrow \mathbb{R}$ es una sucesión creciente de funciones medibles y no negativas que convergen a f entonces $O_E(f_n) \nearrow O_E(f)$. Deducir que $O_E(f)$ es medible.
- (c) Probar que $\int_E f(x)d\mu = (\mu \times m)O_E(f)$, donde m denota la medida de Lebesgue en \mathbb{R} .

Ejercicio 9. Sean (X, Σ, μ) un espacio de medida, $E \in \Sigma$ y f una función medible no negativa definida sobre E. Para cada $\alpha > 0$, se define

$$\omega(\alpha) = \mu(\{x \in E : f(x) > \alpha\}).$$

La función ω se llama la función de distribución de f sobre E. Probar que

- (a) $\omega:[0,\infty)\to\overline{\mathbb{R}}$ es una función decreciente.
- (b) $\omega(\alpha+) = \omega(\alpha)$, es decir, ω es continua a derecha.
- (c) $\omega(\alpha -) \ge \mu(\{x \in E : f(x) \ge \alpha\}).$
- (d) ω continua en $\alpha \Rightarrow \mu(\{x \in E : f(x) \geq \alpha\}) = \mu(\{x \in E : f(x) > \alpha\}).$
- (e) Para cada $\alpha \in [0, \infty)$, $\{x : (x, \alpha) \in O_E(f)\} = \{x \in E : f(x) > \alpha\}$.
- (f) $\int_E f d\mu = \int_0^\infty \omega(\alpha) d\alpha$. (Sug. Usar el ej. 8 y el teorema de Tonelli)
- (g) Para cada p: 0 ,

$$\int_{E} f^{p} d\mu = p \int_{0}^{\infty} \alpha^{p-1} \omega(\alpha) d\alpha.$$

Ejercicio 10. Sea $f:[0,\infty)\to\mathbb{R}$ medible tal que para algún $\alpha\in(0,1)$, vale la desigualdad $|f(t)|\leq t^{\alpha}/(1+t)$ para todo $t\geq 0$. Consideramos la función $G:\mathbb{R}_{\geq 0}\times\mathbb{R}_{\geq 0}\to\mathbb{R}$, definida por $G(x,t)=e^{-xt}f(t)$. Probar que

- (a) G es medible.
- (b) $G \in L^1(\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0})$.

Ejercicio 11. Sea $k: \mathbb{R}^2 \to \mathbb{R}$ definida por k(x,y) = x.y. Probar que si $E \subseteq \mathbb{R}$ es medible entonces $k^{-1}(E)$ es medible. Deducir que si $f: \mathbb{R} \to \mathbb{R}$ es medible, entonces h(x,y) = f(x.y) es medible.

Ejercicio 12. Sean $A, B \subseteq \mathbb{R}$ conjuntos medibles. Probar que la función $h(x) = |(A - x) \cap B|$ es medible y $\int_{\mathbb{R}} h(x) dx = |A| |B|$.

Ejercicio 13. Probar el Teorema de Fubini para funciones a valores complejos.

Ejercicio 14. Sean f y g funciones medibles sobre \mathbb{R}^n .

- (a) Probar que la función F(x,y) = f(x-y)g(y) es medible sobre \mathbb{R}^{2n} .
- (b) Se define la $convoluci\'on\ de\ f\ y\ g$ por medio de la fórmula

$$(f * g)(x) = \int f(x - y)g(y)dy$$

en cada x donde la integral exista.

Si f y g son integrables sobre \mathbb{R}^n , probar que f*g existe en casi todo punto de \mathbb{R}^n , es integrable sobre \mathbb{R}^n y se satisface

$$||f * g||_1 \le ||f||_1 ||g||_1$$
.

Ejercicio 15. Sea $f \in L^1(\mathbb{R}^n)$.

(a) Probar que para cada $\xi \in \mathbb{R}^n$, la función $e^{-2\pi i < \xi, x >} f(x)$ es medible e integrable. Se define la Transformada de Fourier de f como:

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \langle \xi, x \rangle} f(x) dx, \qquad (\xi \in \mathbb{R}^n).$$

- (b) Probar que
 - (i) \hat{f} es acotada y uniformemente continua.
 - (ii) Si n = 1, $\hat{f}(\xi) \xrightarrow[|\xi| \to +\infty]{} 0$. (Lema de Riemann-Lebesgue).
 - (iii) Si $f(x) = f_1(x_1) \dots f_n(x_n)$, donde cada $f_k(x_k) \in L^1(\mathbb{R})$, $1 \leq k \leq n$, entonces $\hat{f}(\xi) = \hat{f}_1(\xi_1) \dots \hat{f}_n(\xi_n)$.
 - (iv) Si $g \in L^1(\mathbb{R}^n)$, entonces $(f * g)^{\wedge} = \hat{f}\hat{g}$.

Ejercicio 16. Sea $f: \mathbb{R} \to \mathbb{R}_{\geq 0}$ integrable y tal que f(x) = 0, para todo $x \notin [a, b]$. Se define

$$g(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t)dt.$$

Probar que

$$\int_{a}^{b} g(x)dx \le \int_{a}^{b} f(x)dx.$$

Ejercicio 17. Sean $F \subseteq [a,b]$ un compacto $(a,b \in \mathbb{R})$ y $\lambda > 0$. Notamos con d(x,F) la distancia a F de un punto $x \in \mathbb{R}$. Para $x \in [a,b]$, sea

$$M_{\lambda}(x) := \int_a^b \frac{d(y, F)^{\lambda}}{|x - y|^{1 + \lambda}} dy.$$

Probar que M_{λ} es medible e integrable sobre F. Probar además la estimación

$$\int_{F} M_{\lambda}(x) dx \le \frac{2}{\lambda} |[a, b] \setminus F|.$$

Ejercicio 18. Probar que:

- (a) $\int_0^{+\infty} e^{-tx} dt = 1/x$, para todo $x \in \mathbb{R}_{>0}$.
- (b) $\lim_{n \to \infty} \int_0^n \frac{sen(x)}{x} dx = \frac{\pi}{2}.$