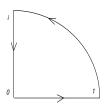
Análisis Complejo

Práctica N°3.

- 1. Calcular
 - $\int_{\gamma} \overline{z} dz$ para $\gamma : [0, 2\pi] \to \mathbb{C}$ dada por $\gamma(t) = e^{it}$,
 - $\int_{\gamma} |z|^2 z dz$ para la siguiente curva γ :



2. Sea $\gamma:[a,b]\to\mathbb{C}$ una curva. Notamos por $-\gamma:[a,b]\to\mathbb{C}$ a la curva dada por $-\gamma(t)=\gamma(a+b-t)$. Probar que

$$\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz.$$

3. Sean $a,b\in\mathbb{C},\ a\neq 0$ y sea $T:\mathbb{C}\to\mathbb{C},\ T(z)=az+b.$ Dadas una curva γ y $c\not\in\gamma,$ probar que

$$\int_{T \circ \gamma} \frac{dz}{z - T(c)} = \int_{\gamma} \frac{dz}{z - c}.$$

4. Sea γ la curva:

Demostrar que

$$\left| \int_{\gamma} \frac{\sin(z)}{z^2} dz \right| \le \pi \frac{1+e}{2}.$$

- 5. Sea $\gamma_r: [0,\pi] \to \mathbb{C}$ dada por $\gamma_r(t) = re^{it}$. Probar que $\lim_{r \to +\infty} \int_{\gamma_r} \frac{e^{iz}}{z} dz = 0$.
- 6. Sea γ como en el ejercicio 4. Calcular $\int_{\gamma} \cos(z) dz$.
- 7. Sean $r \in \mathbb{R}_{>0}$, $a,b \in \mathbb{C}$ tales que $|b-a| \neq r$ y $\gamma: [0,2\pi] \to \mathbb{C}$ dada por $\gamma(t) = a + re^{it}$.
 - Calcular $\int_{\gamma} (z-b)^n dz$ si n es un entero distinto de -1.
 - Probar que si |b-a| < r, entonces $\int_{\gamma} \frac{dz}{z-b} = 2\pi i$.
 - Probar que si |b-a| > r, entonces $\int_{\gamma} \frac{dz}{z-b} = 0$.

- 8. Sea $\Omega \subseteq \mathbb{C}$ un abierto y $f_n, f : \Omega \to \mathbb{C}$. Demostrar que si $f_n \xrightarrow{\text{unif}} f$ en una curva $\gamma \subseteq \Omega$ entonces $\int_{\gamma} f_n(z)dz \longrightarrow \int_{\gamma} f(z)dz$.
- 9. Evaluar $\int_{\gamma} \frac{e^z}{z} dz$ siendo γ alguna de las siguientes curvas:

- 10. Encontrar todos los posibles valores de $\int_{\gamma} \frac{dz}{1+z^2}$, donde γ es una curva diferenciable simple cerrada que no pasa por $\pm i$.
- 11. Sea γ la curva cuya imagen es la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ parametrizada por $\gamma(t) = a\cos t + ib$ sent con $0 \le t \le 2\pi$. Calcular $\int_{\gamma} \frac{dz}{z}$ y deducir que $\int_{0}^{2\pi} \frac{dt}{a^2\cos^2 t + b^2\sin^2 t} = \frac{2\pi}{ab}$.
- 12. Sea γ una curva y $w \in \mathbb{C}$ tal que $w \notin \gamma$. Notamos por $\eta(\gamma, w)$ al índice de la curva γ con respecto a w. Probar:
 - $\eta(\gamma, w) = -\eta(-\gamma, w)$ donde $-\gamma$ se define como en el ejercicio 2.
 - $\eta(\gamma, w) = 0$ para todo $w \notin \{|z| \le \max|\gamma|\}.$
 - $\eta(\gamma, w)$ es continua.
 - $\eta(\gamma, w)$ es constante como función de w en cada componente conexa de $\mathbb{C} \setminus \gamma$.
- 13. Sean $\gamma:[a,b]\to\mathbb{C}$ una curva diferenciable a trozos y $\Omega\subseteq\mathbb{C}$ un abierto. Sea $\varphi:\gamma\times\Omega\to\mathbb{C}$ una función continua y $g:\Omega\to\mathbb{C}$ definida por $g(z)=\int_{\gamma}\varphi(w,z)dw$. Probar que:
 - (a) g es continua.
 - (b) Si para todo $w \in \gamma$, la función $\varphi(w, -) : \Omega \to \mathbb{C}$ es holomorfa y además $\frac{\partial \varphi(w, z)}{\partial z}$ resulta continua en w y z, entonces g es holomorfa y $g'(z) = \int_{\gamma} \frac{\partial \varphi(w, z)}{\partial z} dw$.
- 14. (a) Sean $\gamma:[a,b]\to\mathbb{C}$ una curva diferenciable a trozos y $f:\gamma\to\mathbb{C}$ una función continua. Definimos $\varphi:\gamma\times(\mathbb{C}\setminus\gamma)\to\mathbb{C}$ por $\varphi(w,z)=\frac{f(w)}{w-z}$ y $g:\mathbb{C}\setminus\gamma\to\mathbb{C}$ por $g(z)=\int_{\gamma}\varphi(w,z)dw$. Probar que g es holomorfa y $g^{(n)}(z)=n!\int_{\gamma}\frac{f(w)}{(w-z)^{n+1}}dw$.
 - (b) Deducir que si γ es cerrada y f es holomorfa, entonces se tiene que

$$f^{(n)}(z) = \frac{n!}{2\pi i \eta(\gamma, z)} \int_{\gamma} \frac{f(w)}{(w-z)^{n+1}} dw.$$

- 15. Calcular:
 - $\int_{\gamma} \frac{e^z}{z-2} dz$, $\gamma : [0, 2\pi] \to \mathbb{C}$ dada por $\gamma(t) = 4e^{it}$,
 - $\int_{\gamma} \frac{z}{z+1} dz$, $\gamma : [0, 2\pi] \to \mathbb{C}$ dada por $\gamma(t) = 1 + e^{ikt}$ $(k \in \mathbb{Z})$,
 - $\int_{\gamma} \frac{\operatorname{sen} z}{z^3} dz$, $\gamma : [0, 2\pi] \to \mathbb{C}$ dada por $\gamma(t) = e^{it}$,

- $\int_{\gamma} \frac{\log(1+z)}{(z-\frac{1}{2})^3} dz$, $\gamma: [0,2\pi] \to \mathbb{C}$ dada por $\gamma(t) = \frac{2}{3}e^{it}$,
- $\int_{\gamma} \frac{\cos(\pi z)}{(z^2-1)^2} dz$, $\gamma : [0, 2\pi] \to \mathbb{C}$ dada por $\gamma(t) = 1 + e^{ikt}$ $(k \in \mathbb{Z})$.
- 16. Sea $\Omega \subseteq \mathbb{C}$ un abierto y $f_n, f: \Omega \to \mathbb{C}$ tales que $f_n \xrightarrow{\text{unif}} f$ en K para todo compacto K de Ω (notar que f_n puede no tender uniformemente a f en Ω). Probar que si f_n es holomorfa en Ω para todo $n \in \mathbb{N}$, entonces f es holomorfa en Ω y $f'_n \xrightarrow{\text{unif}} f'$ en K para cada compacto K de Ω .
- 17. Probar que $f(z) = \int_0^{+\infty} e^{-zt^2} dt$ es una función holomorfa en Re(z) > 0.
- 18. Probar que si f(z) es continua en el disco cerrado $|z| \le r$ y holomorfa en el disco abierto |z| < r, se tiene

$$f(z) = \frac{1}{2\pi i} \int_{|w|=r} \frac{f(w)}{w-z} dw$$

para todo |z| < r.

19. Sea $\Omega = \mathbb{C} \setminus \{a, b\}, a \neq b$, y sea γ la curva en la siguiente figura:



- Mostrar que $\eta(\gamma, a) = \eta(\gamma, b) = 0$.
- Convencerse de que γ no es homotópica a cero en Ω .
- 20. Probar que si Ω es simplemente conexo y $f:\Omega\to\mathbb{C}$ es holomorfa, entonces f tiene una primitiva en Ω . ¿Es necesaria la hipótesis de simplemente conexo?
- 21. (a) Sea Ω un abierto simplemente conexo y sea $f:\Omega\to\mathbb{C}$ holomorfa y tal que $f(z)\neq 0$ para todo $z\in\Omega$. Sean $z_0\in\Omega$ y $w_0\in\mathbb{C}$ tales que $e^{w_0}=f(z_0)$. Demostrar que existe una función holomorfa $g:\Omega\to\mathbb{C}$ tal que $f(z)=e^{g(z)}$ para todo $z\in\Omega$ y $g(z_0)=w_0$. (Sugerencia: tomar g tal que $g'=\frac{f'}{f}$ y mostrar que $h=e^{-g}f$ es constante.)
 - (b) Demostrar que tal g es única.
 - (c) Decidir si en las condiciones del ítem (a), vale que para todos $z_1, z_2 \in \Omega$, $f(z_1) = f(z_2) \Longrightarrow g(z_1) = g(z_2)$.
 - (d) ¿Es necesaria la hipótesis de "simplemente conexo" en el ítem (a)?
- 22. Sean f y g dos funciones enteras. Probar que $f^2(z) + g^2(z) = 1$ para todo $z \in \mathbb{C}$ si y sólo si existe una función entera h tal que $f(z) = \cos(h(z))$ y $g(z) = \sin(h(z))$. (Sugerencia: notar que 1 = (f + ig)(f ig), luego $(f + ig)(z) \neq 0$ para todo $z \in \Omega$.)