1	2	3	4	5

Calif.

APELLIDO Y NOMBRE: LIBRETA:

Turno:

10 a 13

16 a 19

MAIL:

TEMA 1

Algebra Lineal - 1er Cuatrimestre 2014 2do Parcial (08/07/2014)

- 1. Sea $A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$. Sea $f : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ definida por $f(X) = A.X X^t.A^t$. Probar que f es diagonalizable y hallar una base \mathcal{B} de $\mathbb{R}^{2 \times 2}$ para la cual $[f]_{\mathcal{B}}$ es diagonal.
- 2. Sea $n \in \mathbb{N}$ y sea $A \in K^{n \times n}$ una matriz de rango 1.
 - (a) Probar que el polinomio característico de A es $\mathcal{X}_A = (\lambda \operatorname{tr}(A))\lambda^{n-1}$, y deducir que $\det(\operatorname{Id}_n A) = 1 \operatorname{tr}(A)$.
 - (b) Determinar todas las formas de Jordan posibles de A según el valor de tr(A).
- 3. Se considera $\mathbb{C}^{m\times n}$ con el producto interno $\langle A, B \rangle = \operatorname{tr}(AB^*)$.
 - (a) Sea $A = U\Sigma V^* \in \mathbb{C}^{m\times n}$ la descomposición en valores singulares de A, con valores singulares no nulos $\sigma_1 \geq \cdots \geq \sigma_r > 0$. Probar que $||A||^2 = \sum_{i=1}^r \sigma_i^2$.
 - (b) Para $1 \le k \le r$, sea Σ_k la matriz diagonal igual a Σ pero donde se reemplazaron $\sigma_{k+1}, \ldots, \sigma_r$ por 0, y sea $A_k = U\Sigma_k V^*$. Probar que $\operatorname{rg}(A_k) = k$ y que $\operatorname{dist}(A, A_k) = \sqrt{\sigma_{k+1}^2 + \cdots + \sigma_r^2}$. (Comentario: A_k es la matriz de rango menor o igual a k que está a distancia mínima de A.)
- 4. (a) Determinar, en alguna base \mathcal{B} de \mathbb{R}^3 , una (la) simetría f en \mathbb{R}^3 que satisface f(1,1,0)=(0,-1,-1).
 - (b) Probar que si g es una rotación en \mathbb{R}^3 cuyo eje es el subespacio generado por (1,0,-1), entonces $f\circ g$ es una simetría en \mathbb{R}^3 .
- 5. Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{C}^{n \times n}$ con minimal $m_A = (\lambda + 1)^r \lambda$, para algún $r \leq n$. Probar que A^2 es semejante a -A.

Justificar todas las respuestas