Lógica y Computabilidad

FCEyN - UBA

Primer Cuatrimestre 2013

Práctica 5: Cálculo de Predicados

- 1. Sea \mathcal{L} un lenguaje de primer orden con un símbolo de predicado binario P, dos símbolos de función f_1, f_2 , donde f_1 es unario y f_2 es binario, y un símbolo de constante c. Decidir cuáles de las siguientes expresiones del lenguaje \mathcal{L} son términos y cuáles son fórmulas, donde x, y denotan variables.

- a) $\exists f_2(x) P(f_2(x))$. d) $\forall c \exists x P(x, c)$ b) $f_2(f_1(x), f_1(y))$. e) $\exists x \exists y \exists x P(f_2(x, y), f_1(y))$. c) $\forall x \exists c P(x, c)$. f) $\exists x P(x, y) \forall y$.

- 2. Sea \mathcal{L} un lenguaje con un símbolo de predicado binario P. En cada una de las siguientes fórmulas, encontrar las apariciones libres y ligadas de las variables de dichas fórmulas.
 - a) $\forall x \exists y P(x, x)$.
- c) $\exists x (\exists y P(x, x) \land P(x, y)).$
- b) $(\exists x P(y,y) \rightarrow \exists y P(y,z))$.
- d) $\forall z (\forall x P(x, y) \lor P(x, z)).$
- 3. Para cada uno de los siguientes lenguajes, en donde f es unario y gbinario, decidir si son interpretaciones de dichos lenguajes los siguientes ejemplos
 - a) $C = \emptyset$, $F = \{f, g\}$, $P = \{=\}$, $U_I = \mathbf{N}$, $f_I(n) = \sqrt{n}$, $g_I(n, m) = \mathbf{N}$
 - b) $C = \{c\}, \mathcal{F} = \{f, g\}, \mathcal{P} = \{=\}, U_I = \mathbb{N}, f_I(n) = n^2, g_I(n, m) = n^2, f_I(n) = n^2, f_$ $n + m, c_I = 2.$
 - c) $C = \{c, d\}, \mathcal{F} = \{f, g\}, \mathcal{P} = \{=\}, U_I = \mathbb{N}, c_I = d_I = 0\}$

$$f_I(n) = \begin{cases} 1 & \text{si } n \text{ es primo} \\ 2 & \text{si } n \text{ no es primo} \end{cases}$$

 $g_I(n,n) = n^2 - n$

- 4. En cada uno de los siguientes ejemplos, describir en castellano la propiedad que determinan los siguientes enunciados (del modo más sencillo posible).
 - a) $\forall x \forall y (P(x,y) \rightarrow \exists z ((Q(z) \land P(x,z)) \land P(z,y))),$ donde $P \lor Q$ son símbolos de predicados binario y unario respectivamente, el universo de la interpretación son los números reales, $P_I = <, Q_I(x)$ significa x es un número racional.
 - b) $\forall x (Q(x) \rightarrow \exists y (R(y) \land P(y, x))),$ donde P es un símbolo de predicado binario, Q y R son símbolos de predicados unarios, el universo de la interpretación es el conjunto de los días y las personas, $P_I(x, y)$ significa x nace en el día y, $Q_I(x)$ significa x es un día, y $R_I(x)$ significa x es un esclavo.
 - c) $\forall x \forall y (Q(x) \land Q(y)) \rightarrow P(f(x,y))$, donde Q y P son símbolos de predicados unarios, f es un símbolo de función binario, el universo de la interpretación son los números enteros, $Q_I(x)$ significa x es par, $P_I(x)$ significa x es impar, y $f_I(x,y) = x + y$.
- 5. Describir la propiedad que determinan los siguientes enunciados, en los cuales el universo de la interpretación es el conjunto de la gente, donde P es un símbolo de predicado binario, tal que $P_I(x, y)$ significa x quiere a y.
 - a) $\exists x \forall y P(x, y)$ b) $\forall y \exists x P(x, y)$
 - c) $\exists x \exists y (\forall z P(y, z) \rightarrow P(x, y)) d) \exists x \forall y \neg P(x, y)$
- 6. Sea \mathcal{L} el lenguaje con igualdad que consiste de un símbolo de función binario f y una constante c. Para cada una de las siguientes interpretaciones
 - $U_I = \mathbb{N}, f_I(x, y) = x + y, c_I = 1$
 - $U_I = \mathbb{N}, f_I(x, y) = x \cdot y, c_I = 0$

escribir en el idioma castellano la propiedad que determinan los siguientes enunciados y analizar la veracidad o falsedad de los mismos.

- a) $\forall x \exists y (x = f(y, y) \lor x = f(f(y, y), c))$
- b) $\exists y \forall x (x = f(y, y) \lor x = f(f(y, y), c))$
- c) $\forall x \forall y (f(x,y) = c \rightarrow (x = c \lor y = c)),$

- 7. Traducir las siguientes expresiones del castellano en enunciados de primer orden (utilizando símbolos de función, de predicados, conectivos y cuantificadores en forma razonable):
 - a) No todas las aves pueden volar.
 - b) Todas las aves, excepto los pingüinos, pueden volar.
 - c) Ningún político es honesto.
 - d) Ivanoff odia a todas las personas que no se odian a sí mismas.
 - e) Todos aman a alguien y ninguno ama a todos, o bien alguien ama a todos.
 - f) x es racional si y sólo si x es el cociente de dos enteros.
- 8. Usando como lenguaje el de primer orden que contiene únicamente la igualdad, escribir enunciados que expresen:
 - a) Existe al menos un elemento.
 - b) Existen al menos dos elementos.
 - c) Existen exactamente dos elementos.
 - d) Existen a lo sumo dos elementos.

Agregando al lenguaje anterior un símbolo de predicado unario P, escribir:

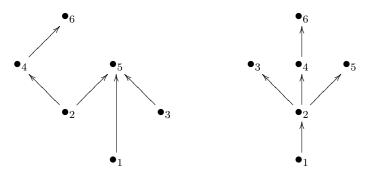
- d) No existe ningún elemento que cumple la propiedad P.
- e) Existe al menos dos elementos que cumplen la propiedad P.
- f) Existen a lo sumo dos elementos y al menos uno que cumplen la propiedad P.
- g) Si existe un elemento que cumple la propiedad P, ese elemento es único.
- h) Existe un elemento que cumple la propiedad P y es único.
- 9. Sea \mathcal{L} un lenguaje con igualdad y un símbolo de función binario, y sean \mathcal{I}_1 e \mathcal{I}_2 las siguientes interpretaciones:
 - a) $\mathcal{I}_1 = (\mathbb{N}, +)$. b) $\mathcal{I}_2 = (\mathbb{N}, \cdot)$.

donde $\mathbb N$ denota el conjunto de los números naturales. Probar que 1 es un elemento distinguible en ambas interpretaciones.

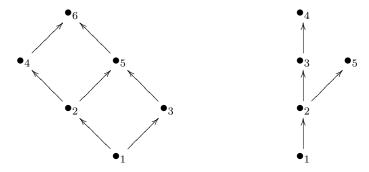
- 10. Probar que si el universo de una interpretación es finito con n+1 elementos, y tiene la propiedad que n elementos del universo son distinguibles, entonces todos los elementos son distinguibles.
- 11. Sea \mathcal{L} un lenguaje de primer orden y con un símbolo de predicado binario \leq (reflexivo, antisimétrico y transitivo).
 - a) En cada una de las siguientes interpretaciones, buscar los elementos que verifican la fórmula

$$\alpha = \exists y \exists z \left((y \le x) \land \neg (x \le y) \land (z \le x) \land \neg (x \le z) \land \neg ((y \le z) \lor (z \le y)) \right)$$

b) Para cada una de las siguientes interpretaciones, buscar una fórmula que se verifique sólo para 6



12. Sea \mathcal{L} un lenguaje de primer orden y con un símbolo de predicado binario \leq (reflexivo, antisimétrico y transitivo). Probar que todos los elementos del universo de las siguientes interpretaciones son distinguibles:



- 13. Sea \mathcal{L} un lenguaje de primer orden y con un símbolo de predicado binario \leq (reflexivo, antisimétrico y transitivo).
 - a) Mostrar un ejemplo de universo e interpretación tal que no haya elementos distinguibles.

- b) Mostrar un ejemplo de universo e interpretación tal que haya algunos elementos distinguibles y otros no distinguibles.
- 14. Sea \mathcal{L} un lenguaje de primer orden y con un símbolo de predicado binario \leq (reflexivo, antisimétrico y transitivo). ¿Cuántos subconjuntos definibles tiene el universo de las siguientes interpretaciones?

