Ecuaciones Diferenciales - 1° cuatrimestre 2013

ECUACIÓN DE LAPLACE Y POISSON

1. Probar que la ecuación de Laplace

$$\Delta u = 0$$

es invariante por rotaciones; esto es, si O es una matriz ortogonal y definimos v(x) = u(Ox), entonces

$$\Delta v = 0$$
.

- 2. Verificar las siguientes afirmaciones indicando en cada caso las hipótesis de regularidad sobre u necesarias para su validez.
 - (a) Combinaciones lineales: Si u_1 y u_2 son funciones armónicas, entonces $\alpha u_1 + \beta u_2$ es armónica.
 - (b) Homotecias: Si u es armónica, entonces $u_{\lambda}(x) = u(\lambda x)$ es armónica.
 - (c) Traslaciones: Si u es armónica, entonces $u(x-\xi)$ es armónica.
 - (d) Diferenciación respecto a parámetros: Si $u(x,\gamma)$ es armónica para cada γ , entonces $\frac{\partial u}{\partial \gamma}(x,\gamma)$ es armónica para cada γ .
 - (e) Integración respecto a parámetros: Si $u(x,\gamma)$ es armónica para cada γ , entonces $\int_a^b u(x,\gamma)d\gamma$ es armónica.
 - (f) Diferenciación respecto a x: Si u es armónica, entonces $D^{\alpha}u$ es armónica para todo multiíndice $\alpha \in \mathbb{N}^n$.
 - (g) Convoluciones: Si u es armónica, entonces $\int u(x-\xi)\varphi(\xi)d\xi$ es armónica.
- 3. Sea u armónica en $\Omega \subseteq \mathbb{R}^2$, abierto simplemente conexo. Probar que entonces existe v armónica en Ω tal que u+iv es holomorfa.
- 4. Decimos que $v \in C^2(\Omega)$ es subarmónica si $\Delta v \geq 0$ en Ω .
 - (a) Probar que si $v \in C(\overline{\Omega})$ entonces $\max_{\overline{\Omega}} v = \max_{\partial \Omega} v$. Sugerencia: Probarlo primero suponiendo que v satisface que $\Delta v > 0$ y luego probarlo para $v_{\varepsilon}(x) := v(x) + \varepsilon |x|^2$ y hacer $\varepsilon \to 0$.
 - (b) Probar que si $x_0 \in \Omega$ y $r < d(x_0, \partial \Omega)$, entonces

$$v(x_0) \le \int_{B(x_0,r)} v(\xi) d\xi$$

- (c) Probar que v verifica el principio fuerte del máximo.
- (d) Sea $\phi: \mathbb{R} \to \mathbb{R}$ una función convexa y regular. Si u es armónica y $v = \phi(u)$, entonces v es subarmónica.
- (e) Probar que $v = |\nabla u|^2$ es subarmónica, si u es armónica.
- 5. Sea u una solución regular de

$$\begin{cases} \Delta u = f & \text{en } B_1(0) \\ u = g & \text{en } \partial B_1(0). \end{cases}$$

Probar que existe una constante C, que depende sólo de la dimensión del espacio, tal que

$$\max_{\overline{B_1(0)}} |u| \le C \left(\max_{\partial B_1(0)} |g| + \max_{\overline{B_1(0)}} |f| \right).$$

Es cierta la conclusión del ejercicio si cambiamos $B_1(0)$ por Ω un dominio acotado cualquiera?

6. Notemos por B_1^+ a la semiesfera $\{x \in \mathbb{R}^n / |x| < 1, x_1 > 0\}$. Sea $u \in C(\overline{B_1^+})$, armónica en B_1^+ con u = 0 en $\partial B_1^+ \cap \{x_1 = 0\}$ y notamos $x = (x_1, x')$ con $x' \in \mathbb{R}^{n-1}$. Definimos

$$U(x) = \begin{cases} u(x) & \text{si } x_1 \ge 0, \\ -u(-x_1, x') & \text{si } x_1 < 0, \end{cases}$$

para $x \in B_1(0)$. Probar que U es armónica en $B_1(0)$. Concluir que u es C^{∞} hasta $\{x_1 = 0\}$.

7. (a) Sea u una función armónica en $B_1(0)$. Probar que

$$\sup_{B_{1/2}(0)} |\nabla u(x)| \le C \sup_{B_1(0)} |u(x)|,$$

donde C depende sólo de la dimensión del espacio.

(b) Sea u armónica en Ω y sea $\Omega' \subset\subset \Omega$. Probar que entonces se tiene

$$\sup_{\Omega'} |\nabla u| \le C \sup_{\Omega} |u|,$$

donde C es una constante positiva que sólo depende de la dimensión del espacio y de $dist(\Omega', \partial\Omega)$.

(c) Deducir de (a) que si u es armónica en $B_R(0)$, entonces

$$\sup_{B_{R/2}(0)} |\nabla u(x)| \leq \frac{C}{R} \sup_{B_R(0)} |u(x)|,$$

donde C es la constante de (a).

- (d) Concluir que si u es armónica en \mathbb{R}^n y acotada, entonces u es constante.
- 8. Probar que existe a lo sumo una solución acotada del problema

$$\begin{cases} \Delta u = f & \text{en } \mathbb{R}^n_+, \\ u = g & \text{en } \partial \mathbb{R}^n_+. \end{cases}$$

¿Vale la unicidad si eliminamos la hipótesis de que u sea acotada?

- 9. Sea $\{u_n\}_{n=1}^{\infty}$ una sucesión de funciones armónicas en Ω que converge uniformemente sobre los compactos de Ω a una función u. Probar que u es armónica.
- 10. Sea $u_n \in C^2(\Omega) \cap C(\overline{\Omega})$ (Ω acotado), la solución del siguiente problema,

$$\begin{cases} \Delta u_n = 0 & \text{en } \Omega \\ u_n = g_n & \text{en } \partial \Omega. \end{cases}$$

Probar que si $g_n \to g$ uniformemente en $\partial \Omega$, entonces existe $u \in C^2(\Omega) \cap C(\overline{\Omega})$ tal que $u_n \to u$ uniformemente en Ω y $\Delta u = 0$ en Ω .

11. Sea Ω un dominio acotado y sea $u_n \in C^2(\Omega) \cap C(\overline{\Omega})$, la solución del siguiente problema,

$$\begin{cases} \Delta u_n = f_n & \text{en } \Omega \\ u_n = g_n & \text{en } \partial \Omega. \end{cases}$$

Probar que si $f_n \to f$ uniformemente en Ω y $g_n \to g$ uniformemente en $\partial \Omega$, entonces existe $u \in C^2(\Omega) \cap C(\overline{\Omega})$ tal que $u_n \to u$ uniformemente en Ω y, más aún, u es solución de

$$\begin{cases} \Delta u &= f & \text{en } \Omega \\ u &= g & \text{en } \partial \Omega, \end{cases}$$

en el siguiente sentido débil:

$$\int_{\Omega} u \Delta v dx = \int_{\Omega} f v dx, \operatorname{paratoda} v \in C_0^{\infty}(\Omega).$$

12. Teorema de Harnack de convergencia monótona.

Sea $\{u_n\}_{n=1}^{\infty}$ una sucesion monótona de funciones armónicas en un dominio Ω , entonces la sucesión converge en todo punto o diverge en todo punto. En el primer caso, la convergencia es uniforme sobre compactos y el límite es una función armónica.

13. Probar que si u es armónica en \mathbb{R}^n y $|u(x)| \leq C(1+|x|^k)$, entonces u es un polinomio de grado a lo sumo k.

2

14. Probar que si el problema de Neumann

$$\begin{cases} \Delta u = f & \text{en } \Omega, \\ \frac{\partial u}{\partial \nu} = g & \text{en } \partial \Omega, \end{cases}$$

tiene una solución en Ω acotado $(u \in C^2(\Omega) \cap C^1(\overline{\Omega}))$ entonces

$$\int_{\Omega} f(x)dx = \int_{\partial \Omega} g(x) dS.$$

Relacionar con el ejercicio 10 de la práctica 1.

15. Sea Ω un dominio con borde regular. Probar que si $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ es solución de

$$\left\{ \begin{array}{lcl} \Delta u & = & 0 & \text{en } \Omega, \\ \\ \frac{\partial u}{\partial \nu} & = & 0 & \text{en } \partial \Omega, \end{array} \right.$$

entonces u es constante.

16. Una función $u \in C(\Omega)$ se dice subarmónica (superarmónica) en Ω si para cada bola $B \subset\subset \Omega$ y para cada función h armónica en B que satisface $u \leq h$ ($u \geq h$) en ∂B , se tiene que $u \leq h$ ($u \geq h$) en B.

- (a) Mostrar que si $u \in C^2(\Omega)$, u es subarmónica (según esta definición) si y sólo si $\Delta u \geq 0$.
- (b) Si u es subarmónica en Ω , entonces satisface el principio fuerte del máximo; y si v es superarmónica en Ω acotado, con v > u en $\partial \Omega$, entonces v > u en Ω o $v \equiv u$.
- (c) Sea u subarmónica en Ω y $B \subset\subset \Omega$. Notamos con \widetilde{u} la función armónica en B (dada por la integral de Poisson) que satisface $\widetilde{u}=u$ en ∂B . Definimos el levantamiento armónico de u en B por

$$U(x) = \begin{cases} \widetilde{u}(x), & x \in B, \\ u(x), & x \in \Omega - B. \end{cases}$$

Entonces U es subarmónica en Ω .

(d) Si u_1, \ldots, u_N son subarmónicas en Ω , entonces

$$u(x) = \max\{u_1(x), \dots, u_N(x)\}\$$

es subarmónica en Ω .

- (e) Enunciar y demostrar los correspondientes resultados para funciones superarmónicas.
- 17. Principio débil del máximo

Sea

$$\mathcal{L}u = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u,$$

donde a_{ij}, b_i y c son funciones continuas en $\overline{\Omega}$ y $u \in C^2(\Omega) \cap C(\overline{\Omega})$. La matriz (a_{ij}) es simétrica y definida positiva para cada $x \in \overline{\Omega}$ (un operador \mathcal{L} con estas propiedades se dice *elíptico*). Probar que si $\mathcal{L}u \geq 0$ en Ω y $c \equiv 0$ entonces el máximo de u se alcanza en $\partial\Omega$.

Sugerencia: Usar que si A,B son matrices simétricas y semidefinidas positivas de $n\times n$, entonces ${\rm tr}(AB)\geq 0$. ¿Por qué es cierto?

18. (a) Sea $\mathcal{L}u$ el operador definido en el ejercicio anterior y supongamos que $c \leq 0$ in Ω . Si $\mathcal{L}u \geq 0$, entonces

3

$$\max_{\overline{\Omega}} u \le \max_{\partial \Omega} u^+$$

donde $u^+ = \max(u, 0)$.

(b) Dar un contraejemplo para (a) si c > 0.

- (c) Sea Ω acotado y $c \leq 0$. Si $\mathcal{L}u = \mathcal{L}v$ en Ω y u = v en $\partial\Omega$ entonces u = v en Ω .
- (d) Dar un contraejemplo para (c) si Ω no es acotado.
- 19. Lema de Hopf. Sea Ω un dominio con la propiedad que para todo $x_0 \in \partial \Omega$, existe una bola $B_r(y) \subset \Omega$ tal que $x_0 \in \partial B_r(y)$ (esto se conoce como la propiedad de bola tangente interior). Sea $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ tal que $\Delta u \geq 0$ en Ω , $x_0 \in \partial \Omega$ y $x_0 \in \partial \Omega$ y $x_0 \in \partial \Omega$ y $x_0 \in \partial \Omega$. Entonces

$$\frac{\partial u}{\partial \nu}(x_0) > 0$$

20. Usar el lema de Hopf para dar otra demostración del principio fuerte del máximo.