Complementos de Análisis

Maestría en Estadística Matemática

Primer Cuatrimestre 2013

Práctica 0

- 1. Resolver las siguientes desigualdades y representar el conjunto de los $x \in \mathbb{R}$ que las satisfacen en la recta.
 - a) x 10 > 2 2x
 - b) 2x + 1 > 10 6x
 - c) $7x 2 \le 2x + 1$
 - d) -5 < x 4 < 2 x
 - $e) \frac{5+x}{5-x} \leqslant 2$
 - f) $\frac{3x-5}{2x+4} > 1$
 - g) $0 < \frac{2x-1}{x-1} < 1$
 - h) x(x-1) < 0
 - i) $2x^2 2 \ge x^2 x$
- 2. Hallar el conjunto de números reales que satisfacen cada una de las condiciones siguientes y representar dicho conjunto sobre la recta
 - a) |2 x| < 2
 - b) $|2x 1| \le 2$
 - c) |4x 12| > 4
 - d) |x-1| < |x+3|
 - $e) \ \frac{|x-1|}{x+2} \geqslant 4$
 - $f) \frac{|x-1|}{-x} < 3$
 - g) $|x+1|^2 = |x+1| + 2$
 - $h) \ \frac{15 3x}{2 |x + 3|} < 0$

3. Representar los siguientes conjuntos en la recta real:

a)
$$A = \{x \in \mathbb{R} : 0 < x \le x^2\}$$

b)
$$B = \{x \in \mathbb{R} : |x+3| + |x-9| > 2\}$$

c)
$$C = \{x \in \mathbb{R} : ||x+2| - |x-1|| < 1\}$$

4. Sea $a \ge 0$. Determinar para qué valores de b se verifican cada una de las siguientes condiciones:

a)
$$|a+b| = |a| + |b|$$

b)
$$|a - b| < |a| + |b|$$

c)
$$||a| - |b|| = |a - b|$$

5. Sean a y b números reales. Decidir para qué valores de a y de b son válidas cad una de las siguientes afirmaciones:

a)
$$a < a^2$$

b)
$$a < b \Rightarrow a^2 < b^2$$

c)
$$a > 0 \Rightarrow ab \geqslant b$$

d)
$$a + b \geqslant \max\{a, b\}$$

6. Sean $x, y \in \mathbb{R}$ tales que: $0 \leqslant x \leqslant y$. Probar que: $x \leqslant \sqrt{xy} \leqslant \frac{x+y}{2} \leqslant y$.

7. Parte Entera

Dado $a \in \mathbb{R}$ se define

$$[a] = \max\{m \in \mathbb{Z} / m \leqslant a\}$$

Probar

a)
$$[a] \le a < [a] + 1$$

b)
$$[a] = a \iff a \in \mathbb{Z}$$

c) Sea $m \in \mathbb{Z}$. Entonces

$$m \leqslant a < m+1 \implies [a] = m$$

d) Calcular: [3,9] , [20,18742] , [0,39] , [-1] , [-1,3] , $[-\pi]$

APÉNDICE: DEFINICIONES Y RESULTADOS

Propiedades básicas de los números reales

1.
$$a + b = b + a$$

2.
$$a + (b + c) = (a + b) + c$$

3. Existe
$$0 \in \mathbb{R}$$
 tal que $a + 0 = a$

4. Para cada
$$a \in \mathbb{R}$$
 existe $-a \in \mathbb{R}$ tal que $a + (-a) = 0$

5.
$$ab = ba$$

6.
$$a(bc) = (ab)c$$

7. Existe
$$1 \in \mathbb{R} -1 \neq 0$$
— tal que $a, 1 = a$

8. Para cada
$$a \neq 0$$
 existe $a^{-1} \in \mathbb{R}$ tal que $aa^{-1} = 1$

$$9. \ a(b+c) = ab + ac$$

10. Dados $a, b \in \mathbb{R}$, vale una y sólo una de las siguientes afirmaciones

$$a = b$$
 , $a < b$, $b < a$

11. Si
$$a < b$$
 y $b < c$, $a < c$

12. Si
$$a < b$$
 y $c \in \mathbb{R}$, $a + c < b + c$

13. Si
$$a < b y 0 < c, ac < bc$$

Módulo — Valor Absoluto

$$|x| = \begin{cases} x & \text{si } x \geqslant 0\\ -x & \text{si } x < 0 \end{cases}$$

Propiedades del módulo

1.
$$|x| \ge 0$$

$$2. -|x| \leqslant x \leqslant |x|$$

3.
$$|x| \leqslant a \iff -a \leqslant x \leqslant a$$

4.
$$|xy| = |x||y|$$

5.
$$|x+y| \le |x| + |y|$$

6.
$$|x - y| \ge ||x| - |y||$$

7.
$$|x - a| = \begin{cases} x - a & \text{si } x \ge a \\ -x + a & \text{si } x < a \end{cases}$$

Distancia

Dados $x, y \in \mathbb{R}$ se llama distancia entre los números x e y al número

$$d(x,y) = |x - y|$$

Raíz n-ésima

- \star Si n es par, la raíz n-ésima de un número positivo x es el **único número positivo** $\sqrt[n]{x}$ que satisface $(\sqrt[n]{x})^n = x$
- \star Si nes impar, la ráiz n-ésima de un número $x\in\mathbb{R}$ es el único número que satisface $(\sqrt[n]{x})^n=x$

Proposición (Parte Entera)

Dado $x \in \mathbb{R}$, existe un único $m \in \mathbb{Z}$ tal que

$$m \leqslant x < m + 1$$

Nota: este número m se llama $parte\ entera\ de\ x$ y se lo denota [x].