PRÁCTICA 7: COMPACIDAD, CONTINUIDAD UNIFORME

Compacidad

Ejercicio 1.

- i) Mostrar que el intervalo $(0,1] \subset \mathbb{R}$ no es compacto.
- ii) Sea $S = (a, b) \cap \mathbb{Q}$ con $a, b \in \mathbb{R} \mathbb{Q}$. Probar que S es un subconjunto cerrado y acotado pero no compacto de (\mathbb{Q}, d) , donde d es la métrica usual de \mathbb{R} .

Ejercicio 2. Sea $E = \{e^{(n)} \in \ell_{\infty} / n \in \mathbb{N}\}$, donde cada sucesión $e^{(n)} = (e_k^{(n)})_{k \in \mathbb{N}}$ está definida por

$$e_k^{(n)} = \begin{cases} 0 & \text{si} \quad k \neq n \\ 1 & \text{si} \quad k = n \end{cases}$$

Probar que E es discreto, cerrado y acotado, pero no compacto.

Ejercicio 3. Sea $c_0 = \{(x_n)_{n \in \mathbb{N}} \subset \mathbb{R} / \lim_{n \to \infty} x_n = 0\}$. Se define en c_0 la métrica

$$d(x,y) = \sup\{|x_n - y_n| / n \in \mathbb{N}\}.$$

Demostrar que la bola cerrada $\overline{B}(x,1) = \{y \in c_0 / d(x,y) \le 1\}$ no es compacta.

Ejercicio 4. Sea X un espacio métrico y sea $(a_n)_{n\in\mathbb{N}}\subset X$ tal que $\lim_{n\to\infty}a_n=a\in X$. Probar que el conjunto $K=\{a_n\mid n\in\mathbb{N}\}\cup\{a\}\subset X$ es compacto.

Ejercicio 5. Sea (X, d) un espacio métrico. Probar que:

- i) Si (X, d) es compacto, todo subconjunto cerrado de X es compacto.
- ii) Toda unión finita y toda intersección (finita o infinita) de subconjuntos compactos de X es compacta.
- iii) Un subconjunto $F \subset X$ es cerrado si y sólo si $F \cap K$ es cerrado para todo compacto $K \subset X$.

Ejercicio 6. Sean (X, d) e (Y, d') espacios métricos. Se considera $(X \times Y, d_{\infty})$, donde

$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{d(x_1, x_2), d'(y_1, y_2)\}.$$

Probar que $(X \times Y, d_{\infty})$ es compacto si y sólo si (X, d) e (Y, d') son compactos.

Ejercicio 7. Sea X un espacio métrico compacto y sea $f: X \longrightarrow \mathbb{R}$ una función continua tal que f(x) > 0 para todo $x \in X$. Probar que existe $\varepsilon > 0$ tal que $f(x) \ge \varepsilon$ para todo $x \in X$.

Ejercicio 8. Sea (X, d) un espacio métrico.

i) Sean $F \subset X$ un cerrado y $x \in X - F$. Probar que no es cierto en general que exista un punto $y \in F$ tal que d(x,y) = d(x,F). Es decir, la distancia entre un punto y un cerrado puede no realizarse.

- ii) Sean $K \subset X$ un compacto y $x \in X K$. Probar que existe $y \in K$ tal que d(x,K) = d(x,y). Es decir, la distancia entre un punto y un compacto siempre se realiza.
- iii) Probar que si X tiene la propiedad de que toda bola cerrada es compacta (por ejemplo, si $X = \mathbb{R}^n$) entonces sí vale que la distancia entre un punto y un cerrado siempre se realiza.
- iv) Sean $F, K \subset X$ dos subconjuntos disjuntos de X tales que F es cerrado y K es compacto. Probar que la distancia d(F, K) entre F y K es positiva, pero puede no realizarse.
- v) Sean $K_1, K_2 \subset X$ dos subconjuntos compactos de X tales que $K_1 \cap K_2 = \emptyset$. Probar que existen $x_1 \in K_1$ y $x_2 \in K_2$ tales que $d(K_1, K_2) = d(x_1, x_2)$. Es decir, la distancia entre dos compactos siempre se realiza.

Ejercicio 9. Sea (X, d) un espacio métrico completo. Se define

$$\mathcal{K}(X) = \{ K \subset X \mid K \text{ es compacto y no vacío} \}.$$

- i) Sea $\tilde{d}(A,B) = \sup_{a \in A} \{d(a,B)\}$. Verificar que, en general, \tilde{d} no es una métrica en $\mathcal{K}(X)$.
- ii) Se define $d: \mathcal{K}(X) \times \mathcal{K}(X) \to \mathbb{R}$ como $d(A, B) = \max\{\tilde{d}(A, B), \tilde{d}(B, A)\}$. Probar que para todo $\varepsilon > 0$ vale

$$d(A,B)<\varepsilon\qquad\Longleftrightarrow\qquad A\subset B(B,\varepsilon)\quad\text{y}\quad B\subset B(A,\varepsilon),$$

donde $B(C,\varepsilon)=\{x\in X\ /\ d(x,C)<\varepsilon\}$ para cada $C\subset X.$

iii) Probar que d es una métrica en $\mathcal{K}(X)$.

Ejercicio 10. Dado un cubrimiento por abiertos $(U_i)_{i\in I}$ de un espacio métrico (X,d), un número $\varepsilon > 0$ se llama número de Lebesgue de $(U_i)_{i\in I}$ si para todo $x \in X$ existe $j \in I$ tal que $B(x,\varepsilon) \subset U_j$. Probar que todo cubrimiento por abiertos de un espacio métrico compacto tiene un número de Lebesgue.

Ejercicio 11. (Teorema de Dini) Sea K un espacio métrico compacto y sea $(f_n)_{n\in\mathbb{N}}\subset C(K)$ una sucesión de funciones que converge puntualmente a $f\in C(K)$. Supongamos además que para cada $x\in K$ y $n\in\mathbb{N}$ se tiene $f_n(x)\leq f_{n+1}(x)$. Probar que (f_n) converge uniformemente en K.

Ejercicio 12. Sea X un espacio métrico compacto, sea $(f_n)_{n\geq 1}$ una sucesión de funciones continuas de X en \mathbb{R} y sea $f: X \to \mathbb{R}$ una función continua. Probar que $(f_n)_{n\geq 1}$ converge uniformemente a f si y sólo si para toda sucesión $(x_n)_{n\geq 1}$ en X que converge a $x\in X$, la sucesión $(f_n(x_n))_{n\geq 1}$ converge en \mathbb{R} a f(x).

Ejercicio 13. Sean (X, d) e (Y, d') espacios métricos y $f: X \longrightarrow Y$ continua y biyectiva. Probar que si (X, d) es compacto, entonces f es un homeomorfismo.

Ejercicio 14. Sea (X, d) un espacio métrico compacto. Probar que para cada espacio métrico (Y, d'), la proyección $\pi: X \times Y \to Y$ definida por $\pi(x, y) = y$ es cerrada.

Ejercicio 15. Sean (X, d) e (Y, d') espacios métricos, y sea $f: X \longrightarrow Y$ una función. Probar que si Y es compacto y el gráfico de f es cerrado en $(X \times Y, d_{\infty})$, entonces f es continua. Comparar con el ejercicio 8 de la práctica 3.

Ejercicio 16. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función continua y abierta.

- i) Probar que f no tiene extremos locales; es decir, no existen $x_0 \in \mathbb{R}$ y $\varepsilon > 0$ tales que $f(x_0) \leq f(x)$ (resp. $f(x_0) \geq f(x)$) para todo $x \in (x_0 \varepsilon, x_0 + \varepsilon)$.
- ii) Comprobar que existen $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ tales que $f(\mathbb{R}) = (a, b)$.
- iii) Mostrar que $f: \mathbb{R} \longrightarrow (a, b)$ es un homeomorfismo y que ella y su inversa son funciones monótonas.

Ejercicio 17. Sea $f:[a,b] \to \mathbb{R}$ una función continua con la siguiente propiedad: para todo $n \in \mathbb{N}_0$, es $\int_a^b x^n f(x) dx = 0$. Probar que f es la función idénticamente nula.

Ejercicio 18. Sean (X, d) e (Y, d') espacios métricos. Una familia \mathcal{F} de funciones $X \to Y$ es equicontinua en $x_0 \in X$ si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que

$$d(x, x_0) < \delta \implies \forall f \in \mathcal{F}, \ d'(f(x), f(x_0)) < \varepsilon.$$

Se dice que \mathcal{F} es equicontinua en X si es equicontinua en x para todo $x \in X$. Por último, decimos que la familia \mathcal{F} es uniformemente equicontinua en X si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que

$$d(x,y) < \delta \implies \forall f \in \mathcal{F}, \ d'(f(x),f(y)) < \varepsilon.$$

Sea X un espacio métrico compacto.

- i) Si \mathcal{F} es una familia equicontinua de funciones $X \to Y$, entonces \mathcal{F} es uniformemente equicontinua.
- ii) Si $(f_n)_{n\in\mathbb{N}}$ es una sucesión de funciones continuas $X\to Y$ que converge uniformemente en X, entonces $\{f_n \mid n\in\mathbb{N}\}$ es una familia uniformemente equicontinua.
- iii) Si $(f_n)_{n\in\mathbb{N}}$ es una sucesión de funciones $X\to Y$ uniformemente equicontinua que converge puntualmente a $f:X\to Y$, entonces la convergencia es uniforme.

Ejercicio 19. Sea $(f_n)_{n\geq 1}$ una sucesión de funciones de [a,b] en \mathbb{R} integrables y uniformemente acotadas y para cada $n\geq 1$ sea $F_n:[a,b]\to\mathbb{R}$ tal que

$$F_n(x) = \int_a^x f_n(\xi) \, d\xi$$

para cada $x \in [a, b]$. Entonces la sucesión $(F_n)_{n\geq 1}$ posee una subsucesión que converge uniformemente sobre [a, b].

Continuidad Uniforme

Ejercicio 20. Sean (X, d) e (Y, d') espacios métricos y sea $f: X \longrightarrow Y$ una función que satisface:

$$d'(f(x_1), f(x_2)) \le c \ d(x_1, x_2)$$

para todo $x_1, x_2 \in X$, donde $c \ge 0$. Probar que f es uniformemente continua.

Ejercicio 21.

- i) Sean (X,d) e (Y,d') espacios métricos, $A\subseteq X$ y $f:X\longrightarrow Y$ una función. Probar que si existen $\alpha>0,\ (x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subset A$ sucesiones y $n_0\in\mathbb{N}$ tales que
 - $a) \ d(x_n, y_n) \longrightarrow 0 \ \text{para } n \to \infty \quad \text{y}$
 - b) $d'(f(x_n), f(y_n)) \ge \alpha$ para todo $n \ge n_0$,

entonces f no es uniformemente continua en A.

- ii) Verificar que la función $f(x) = x^2$ no es uniformemente continua en \mathbb{R} . ¿Y en $\mathbb{R}_{<-\pi}$?
- iii) Verificar que la función f(x) = sen(1/x) no es uniformemente continua en (0,1).

Ejercicio 22.

- i) Sea $f: \mathbb{R}_{\geq a} \longrightarrow \mathbb{R}$ una función que es uniformemente continua en [a,b] y también en $[b,+\infty)$. Probar que f es uniformemente continua en $\mathbb{R}_{\geq a}$.
- ii) Deducir que \sqrt{x} es uniformemente continua en $\mathbb{R}_{>0}$.
- iii) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ continua y tal que $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$. Probar que f es uniformemente continua en \mathbb{R} .

Ejercicio 23. Sea $f:(X,d) \longrightarrow (Y,d')$ una función uniformemente continua y sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy en X. Probar que $(f(x_n))_{n\in\mathbb{N}}$ es una sucesión de Cauchy en Y.

Ejercicio 24.

- i) Dar un ejemplo de una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ acotada y continua pero no uniformemente continua.
- ii) Dar un ejemplo de una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ no acotada y uniformemente continua.

Ejercicio 25. Sea $f:(X,d) \longrightarrow (Y,d')$ una función uniformemente continua, y sean $A,B \subset X$ conjuntos no vacíos tales que d(A,B) = 0. Probar que d'(f(A),f(B)) = 0.