Práctica 9: Diferenciación - Teoremas de Punto Fijo

"Pure mathematics is, in its way, the poetry of logical ideas."

Albert Einstein

"La inspiración es necesaria en geometría, tanto como en poesía."

Aleksandr Pushkin

Diferenciación

Ejercicio 1. Sea $f: \mathbb{R} \to \mathbb{R}$ una función derivable tal que f' es acotada. Probar que f es uniformemente continua.

Ejercicio 2. Sea $f:(a,b)\to\mathbb{R}$ una función continua y derivable en $(a,b)\setminus\{x_0\}$. Supongamos además que los límites laterales de f' en x_0 existen y son finitos. Probar que:

- i) f es derivable lateralmente en x_0 . Más aún, si ambos límites laterales coinciden, entonces f es derivable en x_0 ; determine $f'(x_0)$ en ese caso.
- ii) Los resultados de la parte anterior dejan de ser válidos si se omite la hipótesis de continuidad de f en x_0 .

Ejercicio 3. Sean $\alpha < a < b < \beta$ y $f : [\alpha, \beta] \to \mathbb{R}$ una función derivable en (α, β) tal que $f'(a) \neq f'(b)$. Probar que:

- i) Si f'(a) < 0 < f'(b), entonces existe $c \in (a, b)$ tal que f'(c) = 0.
- ii) Si $\lambda \in \mathbb{R}$ es tal que $f'(a) < \lambda < f'(b)$, entonces existe $d \in (a,b)$ tal que $f'(d) = \lambda$.
- iii) Si $g:(-1,1)\to\mathbb{R}^2$ está definida por

$$g(t) = \begin{cases} (t^2 \operatorname{sen} \frac{1}{t}, t^2 \operatorname{cos} \frac{1}{t}) & \text{si } 0 < t < 1, \\ (0, 0) & \text{si } -1 < t \le 0, \end{cases}$$

entonces g es derivable en (-1,1) pero g'((-1,1)) no es conexo.

Ejercicio 4. Sea $A \subseteq \mathbb{R}^n$ un abierto no vacío y sea $f: A \to \mathbb{R}^n$. Probar que si f es diferenciable en x_0 , entonces existen $\delta > 0$ y $c \ge 0$ tales que $B(x_0, \delta) \subseteq A$ y $||f(x) - f(x_0)|| \le c||x - x_0||$ para todo $x \in B(x_0, \delta)$.

Ejercicio 5. Sean $x_1, x_2 \in \mathbb{R}^n$ y sea $A \subseteq \mathbb{R}^n$ un abierto que contiene al segmento S que une x_1 y x_2 . Mostrar que:

- i) Si $f: A \to \mathbb{R}$ una función diferenciable, entonces existe x en el segmento S tal que $f(x_1) f(x_2) = Df(x)(x_1 x_2)$.
- ii) Sin embargo, esto es falso para una función $f: A \to \mathbb{R}^m$.
- iii) Si $f: A \to \mathbb{R}^m$ es una función diferenciable tal que $||Df(x)|| \le M$ para todo $x \in A$, entonces $||f(x_1) f(x_2)|| \le M||x_1 x_2||$.

Ejercicio 6. Sea $A \subseteq \mathbb{R}^n$ un abierto conexo y sea $f: A \to \mathbb{R}^m$ una función diferenciable. Probar que si Df(x) = 0 para todo $x \in A$, entonces f es constante en A.

Ejercicio 7. Sea $A \subseteq \mathbb{R}^n$ un abierto conexo y sea $f: A \to \mathbb{R}^m$ una función tal que

$$||f(x) - f(y)|| \le ||x - y||^2$$

para cada par de puntos $x, y \in A$. Probar que f es constante.

Ejercicio 8. Probar que una función $f: A \to \mathbb{R}$ definida en un abierto de \mathbb{R}^n y con derivadas parciales acotadas es continua.

Teorema de punto fijo.

Ejercicio 9.

- i) Sea $f : \mathbb{R} \to \mathbb{R}$ una función derivable tal que $f'(x) \neq 1$ para todo $x \in \mathbb{R}$. Probar que f tiene a lo sumo un punto fijo.
- ii) Sea $f: \mathbb{R} \to \mathbb{R}$ una función derivable tal que $|f'(x)| \le \alpha < 1$. Probar que f tiene un único punto fijo.
- iii) Mostrar que la función $f(x) = x + (1 + e^x)^{-1}$ satisface 0 < f'(x) < 1 para todo $x \in \mathbb{R}$ pero no tiene puntos fijos. Explicar por qué no contradice el Teorema de Punto fijo.

Ejercicio 10. Sea (X, d) un espacio métrico completo y sea $f: X \to X$. Probar que la condición

$$d(f(x), f(y)) < d(x, y)$$
 $\forall x, y \in X,$ $x \neq y,$

no es suficiente para garantizar la existencia de un punto fijo de f, pero que sí lo es si X es compacto.

Ejercicio 11. Considere la siguiente ecuación integral no lineal en el espacio $C([a, b], \mathbb{R})$ dada por,

$$f(x) = \lambda \int_{a}^{b} K(x, y, f(y)) dy + \varphi(x),$$

con $K: \mathbb{R}^3 \to \mathbb{R}$ y $\varphi: [a, b] \to \mathbb{R}$ continuas, tal que K satisface la condición de Lipschitz en la tercer variable:

$$|K(x, y, z_1) - K(x, y, z_2)| \le M|z_1 - z_2|.$$

Probar que la ecuación integral tiene solución única para todo

$$|\lambda| < \frac{1}{M(b-a)}.$$

Muestre una sucesión que converja a la solución.

Ejercicio 12. Sea X un espacio métrico completo y sea $T: X \to X$ tal que existe $n \in \mathbb{N}$ tal que T^n es una contracción. Entonces existe un único $x \in X$ tal que T(x) = x.

Teoremas de la Función Inversa y de la Función Implícita

Ejercicio 13. Sea $f: \mathbb{R} \to \mathbb{R}$ la función tal que

$$f(t) = \begin{cases} t + 2t^2 \operatorname{sen} \frac{1}{t} & \text{si } t \neq 0, \\ 0 & \text{si } t = 0. \end{cases}$$

Probar que f'(0) = 1 y f' es acotada en (-1,1), pero sin embargo f no es biyectiva en ningún entorno de 0. En particular, la continuidad de f' en el punto es necesaria en el teorema de la función inversa.

Ejercicio 14. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ la función tal que $f(x,y) = (e^x \cos y, e^x \sin y)$. Probar que:

- i) f no es inyectiva.
- ii) El jacobiano de f es no nulo en todo punto de \mathbb{R}^2 , de manera que f es localmente inyectiva.

Ejercicio 15. Sea U un abierto de \mathbb{R}^n y sea $f:U\to\mathbb{R}^n$ de clase C^1 con jacobiano no nulo en todo U. Probar que:

- i) f es abierta.
- ii) Para cada $y \in \mathbb{R}^n$ el conjunto $f^{-1}(y)$ es discreto en U.

Ejercicio 16. Sea $F: \mathbb{R}^2 \to \mathbb{R}$ una función tal que (1,2,0) es solución de la ecuación F(xz,y-2x)=0.

i) Determinar condiciones suficientes para que existan un entorno $W \subseteq \mathbb{R}^2$ de (1,0) y una función $\phi: W \to \mathbb{R}$ de clase C^1 tales que $\phi(1,0) = 2$ y

$$F(xz, \phi(x, z) - 2x) = 0$$
 para todo $(x, z) \in W$.

ii) Mostrar que

$$x \frac{\partial \phi}{\partial x}(x,z) - z \frac{\partial \phi}{\partial z}(x,z) = 2x \text{ en } W.$$

Ejercicio 17. Mostrar que el sistema de ecuaciones

$$\begin{cases} x^2 + \sin x - y^2 + z^3 = 0, \\ -\log(1+x) + y^2 z = 1, \end{cases}$$

define dos funciones y=y(x) y z=z(x) en un entorno del punto (0,1,1). Sean $C\subseteq\mathbb{R}^2$ la curva que define el sistema de ecuaciones considerado, dada en forma paramétrica por $\alpha(x)=(x,y(x),z(x))$, y la función $g(x,y,z)=2xyz+z\tan x$. Calcular la derivada direccional de g en (0,1,1) según el vector tangente a α en el punto x=0.