Álgebra 1

Primer Cuatrimestre 2012

Práctica 4 - Enteros (primera parte)

1. Decidir cuáles de las siguientes afirmaciones son verdaderas $\forall a, b, c \in \mathbb{Z}$

i)
$$ab \mid c \Rightarrow a \mid c \ y \ b \mid c$$

ii)
$$4 \mid a^2 \Rightarrow 2 \mid a$$

iii)
$$2 \mid ab \Rightarrow 2 \mid a \land 2 \mid b$$

iv)
$$9 \mid ab \Rightarrow 9 \mid a \land 9 \mid b$$

v)
$$a \mid b + c \Rightarrow a \mid b \text{ \'o } a \mid c$$

vi)
$$a \mid c$$
 y $b \mid c \Rightarrow ab \mid c$

vii)
$$a \mid b \Rightarrow a < b$$

viii)
$$a \mid b \Rightarrow |a| \leq |b|$$

ix)
$$a \mid b + a^2 \Rightarrow a \mid b$$

2. Hallar todos los $n \in \mathbb{N}$ tales que

i)
$$3n-1 \mid n+7$$

ii)
$$3n-2 \mid 5n-8$$

iii)
$$2n+1 \mid n^2+5$$

iv)
$$n-2 \mid n^3-8$$

3. Probar que las siguientes afirmaciones son verdaderas para todo $n \in \mathbb{N}$

i)
$$99 \mid 10^{2n} + 197$$

ii)
$$9 \mid 7 \cdot 5^{2n} + 2^{4n+1}$$

iii)
$$56 \mid 13^{2n} + 28n^2 - 84n - 1$$

iv)
$$256 \mid 7^{2n} + 208n - 1$$

- **4**. i) Probar que $a b \mid a^n b^n$ para todo $n \in \mathbb{N}$.
 - ii) Probar que si n es un número natural par entonces $a + b \mid a^n b^n$.
 - iii) Probar que si n es un número natural impar entonces $a + b \mid a^n + b^n$.
- 5. Hallar todos los primos positivos menores o iguales que 100
- 6. i) Probar que un número natural n es compuesto si y sólo si es divisible por algún primo positivo $p \le \sqrt{n}$
 - ii) Determinar cuáles de los siguientes enteros son primos: 91, 209, 307, 791, 1001, 3001
- 7. Sea $n \in \mathbb{N}$. Probar que
 - i) si n es compuesto, entonces $2^n 1$ es compuesto
 - ii) si $2^n + 1$ es primo, entonces n es una potencia de 2
- **8**. Calcular el cociente y el resto de la división de a por b en los casos

i)
$$a = 133$$
, $b = -14$

ii)
$$a = 13$$
, $b = 111$

iii)
$$a = 3b + 7, b \neq 0$$

iv)
$$a = b^2 - 6$$
, $b \neq 0$

v)
$$a = n^2 + 5$$
, $b = n + 2 (n \in \mathbb{N})$

vi)
$$a = n + 3$$
, $b = n^2 + 1 (n \in \mathbb{N})$

- 9. Sabiendo que el resto de la división de un entero a por 18 es 5, calcular el resto de
 - i) la división de $a^2 3a + 11$ por 18
 - ii) la división de *a* por 3
 - iii) la división de 4a + 1 por 9
- iv) la división de $a^2 + 7$ por 36
- v) la división de $7a^2 + 12$ por 28
- vi) la división de 1 3a por 27

- **10**. Hallar todos los $n \in \mathbb{N}$ para los cuales $n^3 + 4n + 5 \equiv n 1$ $(n^2 + 1)$
- 11. i) Si $a \equiv 22$ (14), hallar el resto de dividir a a por 2, por 7 y por 14
 - ii) Si $a \equiv 13$ (5), hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5
 - iii) Hallar, para cada $n \in \mathbb{N}$, el resto de la división de $\sum_{i=1}^{n} (-1)^i \cdot i!$ por 36
- **12.** i) Hallar todos los $a \in \mathbb{Z}$ tales que $a^2 \equiv 3$ (11)
 - ii) Probar que no existe ningún entero a tal que $a^3 \equiv -3$ (13)
 - iii) Probar que $a^2 \equiv -1$ (5) $\Leftrightarrow a \equiv 2$ (5) $oldsymbol{6}$ $a \equiv 3$ (5)
 - iv) Probar que $a^7 \equiv a$ (7) para todo $a \in \mathbb{Z}$
 - v) Probar que $7 \mid a^2 + b^2 \Leftrightarrow 7 \mid a \text{ y } 7 \mid b$
 - vi) Probar que $5 \mid a^2 + b^2 + 1 \Rightarrow 5 \mid a \neq 5 \mid b$
 - vii) Sean $a, b, c \in \mathbb{Z}$ tales que $a^2 + b^2 = c^2$. Probar que $3 \mid a \circ 3 \mid b$
- 13. Enunciar y demostrar criterios de divisibilidad por 8, 9 y 11
- 14. Sea a un entero impar que no es divisible por 5
 - i) Probar que $a^4 \equiv 1 \ (10)$
 - ii) Probar que a y a^{45321} tienen el mismo resto en la división por 10
- **15**. i) Probar que $2^{5n} \equiv 1$ (31) para todo $n \in \mathbb{N}$
 - ii) Hallar el resto de la división de 2^{51833} por 31
 - iii) Sea $k \in \mathbb{N}$. Sabiendo que $2^k \equiv 39$ (31), hallar el resto de la división de k por 5
 - iv) Hallar el resto de la división de $43 \cdot 2^{163} + 11 \cdot 5^{221} + 61^{999}$ por 31
- **16**. i) Sea a un entero impar. Probar que $2^{n+2} \mid a^{2^n} 1$ para todo $n \in \mathbb{N}$
 - ii) Hallar el resto de la división de 5²²⁶⁷ por 32
- 17. Probar que existen infinitos primos congruentes a 3 módulo 4

Sugerencia: probar primero que un número congruente a 3 módulo 4 distinto de 1 y -1 necesariamente es divisible por un primo congruente a 3 módulo 4. Luego probar que si existieran finitos primos congruentes a 3 módulo 4, digamos p_1, p_2, \ldots, p_n , entonces

a=-1+4. $\prod_{i=1}^n p_i$ sería un entero distinto de 1 y -1 que no es divisible por ningún primo congruente a 3 módulo 4.

- **18**. i) Hallar el desarrollo en base 2 de 1365, 2800, $3 \cdot 2^{13}$ y $13 \cdot 2^n + 5 \cdot 2^{n-1}$ ($n \in \mathbb{N}$).
 - ii) Hallar el desarrollo en base 16 de 2800
- 19. Sea a un entero. Probar que si el desarrollo en base 10 de a termina en n ceros entonces el desarrollo en base 5 de a termina en por lo menos n ceros.
- **20**. En cada uno de los siguientes casos calcular el máximo común divisor entre a y b y escribirlo como combinación lineal entera de a y b

i)
$$a = 2532, b = 63$$

iii)
$$a = 131, b = 23$$

ii)
$$a = 5335, b = 110$$

iv)
$$a = n^2 + 1, b = n + 2 (n \in \mathbb{N})$$

21. Sean $a, b \in \mathbb{Z}$. Sabiendo que el resto de dividir a a por b es 27 y que el resto de dividir b por 27 es 21, calcular (a:b)

- **22**. Sea $a \in \mathbb{Z}$, a > 1 y sean $n, m \in \mathbb{N}$.
 - i) Probar que si r es el resto de la división de n por m, entonces el resto de la división de $a^n - 1$ por $a^m - 1$ es $a^r - 1$
 - ii) Probar que $(a^n 1 : a^m 1) = a^{(n:m)} 1$
- **23**. Sea $a \in \mathbb{Z}$.
 - i) Probar que (5a + 8 : 7a + 3) = 1 o 41, y dar un ejemplo para cada caso
 - ii) Probar que $(2a^2 + 3a 1: 5a + 6) = 1$ o 43, y dar un ejemplo para cada caso
- i) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{b+4}{a} + \frac{5}{a} \in \mathbb{Z}$ **24**.
 - ii) Determinar todos los $a, b \in \mathbb{Z}$ coprimos tales que $\frac{9a}{b} + \frac{7a^2}{b^2} \in \mathbb{Z}$
 - iii) Determinar todos los $a \in \mathbb{Z}$ tales que $\frac{2a+3}{a+1} + \frac{a+2}{4} \in \mathbb{Z}$
- **25**. Sean $p \neq q$ primos positivos distintos y sea $n \in \mathbb{N}$. Probar que si $p \neq q \mid a^n$ entonces $p \neq q \mid a$
- **26**. i) Sean $a, b, c \in \mathbb{Z}, c > 0$. Probar que (ca : cb) = c(a : b)
 - ii) Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$. Probar que
 - (a) si (a : b) = 1 entonces $(a^n : b^n) = 1$
 - (b) $\operatorname{si}(a:b) = d$ entonces $(a^n:b^n) = d^n$
- **27**. Sean $a, b \in \mathbb{Z}$. Probar que
 - i) si (a:b) = 1 entonces (7a 3b: 2a b) = 1
 - ii) si (a:b) = 1 entonces (2a-3b:5a+2b) = 1 ó 19, y dar un ejemplo para cada caso
 - iii) si (a:b) = 2 entonces (5a 3b: 4a + b) = 2 ó 34, y dar un ejemplo para cada caso
- **28**. Sea $n \in \mathbb{N}$. Probar que
 - i) $(2^n + 7^n : 2^n 7^n) = 1$
 - ii) $(2^n + 5^{n+1} : 2^{n+1} + 5^n) = 3 ó 9$, y dar un ejemplo para cada caso
 - iii) $(3^n + 5^{n+1} : 3^{n+1} + 5^n) = 2$ ó 14, y dar un ejemplo para cada caso
- **29**. Determinar, cuando existan, todos los $a, b \in \mathbb{Z}$ que satisfacen
 - i) 5a + 8b = 3
- ii) 24a + 14b = 7
- iii) 39a 24b = 6
- 30. Si se sabe que cada unidad de un cierto producto A cuesta 39 pesos y que cada unidad de un cierto producto B cuesta 48 pesos, ¿cuántas unidades de cada producto se pueden comprar con 135 pesos?
- 31. Hallar, cuando existan, todas las soluciones de las siguientes ecuaciones de congruencia
 - i) $17X \equiv 3$ (11)
- ii) $56X \equiv 28 (35)$ iii) $56X \equiv 2 (884)$ iv) $33X \equiv 27 (45)$
- 32. Hallar el resto de la división de un entero a por 18, sabiendo que el resto de la división de 7a por 18 es 5
- 33. Retomando el ejercicio 21, determinar para qué valores de $a \in \mathbb{Z}$ se tiene
 - i) (5a + 8:7a + 3) = 1 y (5a + 8:7a + 3) = 41
 - ii) $(2a^2 + 3a 1:5a + 6) = 1$ y $(2a^2 + 3a 1:5a + 6) = 43$
- **34**. Hallar todos los $a \in \mathbb{Z}$ tales que $(7a+1:5a+4) \neq 1$