0.1. **Ejercicio.** Sean $A \subset \mathbb{R}$ un conjunto compacto $y \ f : A \to \mathbb{R}$ una función continua. Probar que f es uniformemente continua (con sucesiones).

Demostración. Vamos por el absurdo. Si f no es uniformemente continua, entonces existen dos sucesiones $(x_n), (y_n) \subset A$ tales que $d(x_n, y_n) \to 0$ pero $d(f(x_n), f(y_n)) \to 0$. Es decir, existe $\varepsilon > 0$ tal que

$$(0.2) \forall n_0, \exists n > n_0 \mid d(f(x_n), f(y_n)) > \varepsilon.$$

A partir de esto podemos armar fácilmente¹ subucesiones x_{n_k} , y_{n_k} tales que $d(f(x_{n_k}), f(y_{n_k})) > \varepsilon \ \forall k$.

Volvemos a llamar x_n, y_n a estas subsucesiones². Tenemos entonces

$$(0.3) d(f(x_n), f(y_n)) > \varepsilon \ \forall n.$$

Tomemos ahora, aprovechando la compacidad de A, una subsucesión de x_n convergente, es decir $x_{n_k} \to x \in A$. Consideramos la subsucesión y_{n_k} y le extraemos una subsucesión $y_{n_{k_i}} \to y \in A$. Luego también $x_{n_{k_i}} \to x$.

Volvemos a llamar x_n, y_n a estas subsucesiones. Luego $d(x, y) = \lim d(x_n, y_n) = 0$, es decir x = y y por lo tanto f(x) = f(y). Pero también, como f es continua, $f(x_n) \to f(x)$ y $f(y_n) \to f(y)$, luego $0 = d(f(x), f(y)) = \lim d(f(x_n), f(y_n)) \ge \varepsilon$ por $(0.3)^3$.

Este es un absurdo que provino de suponer que f no era uniformemente continua, luego debe serlo.

Les dejo otro ejercicio para que practiquen subsucesiones.

0.4. **Ejercicio.** Sean $(x_n) \subset \mathbb{R}$ una sucesión $y \ x \in \mathbb{R}$ con la siguiente propiedad:

para toda subsucesión x_{n_k} , existe una subsucesión $x_{n_{k_j}}$ de esta t.q. $x_{n_{k_j}} \to x$. Probar que $x_n \to x$.

¹Ya hicimos cuentas así en clase. Primero tomamos $n_0 = 0$ en (0.2), y así obtenemos n_1 . Luego, inductivamente, tomando $n_0 = n_i$ obtenemos n_{i+1} .

²Este abuso de notación consistente en volver a llamar x_n a las subsucesiones es muy cómodo pero hay que usarlo con cuidado para no mentir. Si quieren pueden probar de usarlo otra vez en el párrafo siguiente para evitar el doble subíndice.

 $^{^{3}}$ Acá, por ejemplo, x_n no es exactamente el mismo x_n de la fórmula (0.3), sino un término probablemente posterior de la sucesión. Pero, como cualquier propiedad de los términos de una sucesión sigue siendo válida para una subsucesión, es que uno puede hacer el abuso de notación.