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Acotaciones con pesos para la integral fraccionaria
de funciones radiales y sus aplicaciones

Resumen

En esta tesis estudiamos acotaciones con pesos de la integral fraccionaria (también
llamada potencial de Riesz)

(Tγv)(x) =

∫
Rn

v(y)

|x− y|γ
dy, 0 < γ < n

en el caso en que v(x) = v0(|x|) es una función radial de Rn. En particular, demostramos
que restringiendo el operador a funciones radiales, el rango de pesos potencia admisibles
para que valga una desigualdad del tipo

‖|x|−βTγv‖Lq(Rn) ≤ C‖|x|αv‖Lp(Rn)

es estrictamente mayor del que se obtiene cuando se consideran funciones cualesquiera de
Lp(Rn, |x|αp).

Luego mostramos que este resultado tiene aplicaciones directas en problemas de ecua-
ciones diferenciales, y en el estudio de otros operadores clásicos del análisis armónico.
Más precisamente, nos concentramos en tres aplicaciones:

- Obtenemos un resultado de compacidad para la inmersión de las funciones radiales
de los espacios de Sobolev fraccionarios Hs(Rn) en espacios Lq(Rn, |x|c) de utilidad en el
estudio de sistemas Hamiltonianos con pesos en Rn.

- Obtenemos mejoras para desigualdades de tipo Caffarelli-Kohn-Nirenberg y de trazas
en el caso de funciones radiales.

- Obtenemos estimaciones con pesos potencias para multiplicadores de tipo transfor-
mada de Laplace para desarrollos en funciones de Laguerre y Hermite, y mostramos cómo
se pueden obtener estimaciones con pesos de tipo Ap,q para estos multiplicadores en el
caso de Laguerre para ciertos valores de α.

Palabras clave: Integral fraccionaria, potencial de Riesz, funciones radiales, estima-
ciones con pesos, multiplicadores de Laguerre, sistemas hamiltonianos, desigualdad de
Caffarelli-Kohn-Nirenberg, desigualdad de trazas.
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Weighted inequalities for fractional integrals

of radial functions and applications
Abstract

This thesis deals with weighted estimates for the fractional integral (also known as
Riesz potential)

(Tγv)(x) =

∫
Rn

v(y)

|x− y|γ
dy, 0 < γ < n

in the case when v(x) = v0(|x|) is a radial function in Rn. In particular, we prove that
if we restrict the operator to the subspace of radially symmetric functions, the range of
admissible power weights for the inequality

‖|x|−βTγv‖Lq(Rn) ≤ C‖|x|αv‖Lp(Rn)

is strictly larger than that obtained when considering arbitrary functions in Lp(Rn, |x|αp).
We then show that this result has direct applications in problems in partial differen-

tial equations, and in the study of other classical operators in harmonic analysis. More
precisely, we concentrate on three applications:

- We obtain a compactness result for the imbedding of radial functions of fractional
Sobolev spaces Hs(Rn) in weighted spaces Lq(Rn, |x|c), useful in the study of Hamiltonian
elliptic systems with weights in Rn.

- We obtain improvements for Caffarelli-Kohn-Nirenberg-type and trace inequalities
in the case of radial functions.

- We obtain estimates with power weights for multipliers of Laplace transform type
for Laguerre and Hermite expansions, and show how Ap,q-type weighted estimates can be
obtained for these multipliers in the Laguerre setting for certain values of α.

Key words: fractional integrals, Riesz potentials, radial functions, weighted estimates,
Laguerre multipliers, Hamiltonian systems, Caffarelli-Kohn-Nirenberg inequalities, trace
inequalities.
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Introducción

Acotaciones con pesos para la integral fraccionaria

El estudio de acotaciones para la integral fraccionaria (también llamada potencial de
Riesz)

(Tγv)(x) =

∫
Rn

v(y)

|x− y|γ
dy, 0 < γ < n.

es un problema clásico de análisis, de gran importancia por sus aplicaciones, ya que este
operador permite dar una representación integral a las potencias negativas del Laplaciano,
e interviene en la demostración clásica de los teoremas de inmersión de Sobolev (ver, por
ejemplo, [41]).

La teoŕıa de desigualdades con pesos para este operador se remonta al trabajo de G. H.
Hardy y J. E. Littlewood [20] en en caso unidimensional, mientras que la generalización
a Rn, n ≥ 1, corresponde a E. M. Stein y G. Weiss, quienes en [42] obtuvieron el siguiente
teorema:

Sean n ≥ 1, 0 < γ < n, 1 < p <∞, α < n
p′
, β < n

q
, α + β ≥ 0 y 1

q
= 1

p
+ γ+α+β

n
− 1. Si

p ≤ q <∞ entonces la desigualdad

‖|x|−βTγv‖Lq(Rn) ≤ C‖|x|αv‖Lp(Rn)

vale para toda v ∈ Lp(Rn, |x|pαdx), donde C es una constante independiente de v.

Desigualdades para pesos más generales fueron después estudiadas por diferentes au-
tores, hasta la obtención por parte de E. T. Sawyer y R. L Wheeden en [37] de la ca-
racterización de tipo Ap,q para los pesos admisibles. De esta teoŕıa puede deducirse, en
particular, que para pesos potencia el resultado de Stein y Weiss no puede ser mejorado
en general.

Sin embargo, si nos restringimos al espacio de funciones con simetŕıa radial, es posible
obtener un rango más amplio de exponentes para los cuales la integral fraccionaria es con-
tinua con pesos potencia. Más precisamente, probamos en esta tesis que vale el siguiente
resultado:
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Teorema 0.1. Sean n ≥ 1, 0 < γ < n, 1 < p <∞, α < n
p′
, β < n

q
, α+ β ≥ (n− 1)(1

q
− 1

p
)

y 1
q

= 1
p

+ γ+α+β
n
− 1. Si p ≤ q <∞ entonces la desigualdad

‖|x|−βTγv‖Lq(Rn) ≤ C‖|x|αv‖Lp(Rn)

vale para toda función radial v ∈ Lp(Rn, |x|pαdx), donde C es una constante independiente
de v. Y el mismo resultado vale en el caso p = 1 reemplazando la condición sobre α + β
por α + β > (n− 1)(1

q
− 1).

Con posterioridad a la publicación del resultado contenido en esta tesis, encontramos
el mismo resultado en el trabajo [33] de B. S. Rubin. Sin embargo, dicho trabajo no
contempla el caso p = 1 y su método de demostración es completamente distinto del
nuestro, ya que se basa en propiedades de ciertas funciones hipergeométricas, mientras
que nuestra prueba utiliza simplemente la desigualdad de Young en el grupo multiplicativo
(R+, ·) con la medida de Haar dx/x en combinación con estimaciones elementales sobre
el comportamiento del núcleo.

Otros resultados previos en el caso de funciones con simetŕıa radial (posteriores a [33]
pero que también parecen haber desconocido ese trabajo) son los de M. C. Vilela, quien
realizó una demostración para el caso p < q y β = 0 en [47]; y el trabajo de K. Hidano
y Y. Kurokawa [22], quienes demostraron la acotación en el caso p < q con la restricción
adicional β < 1

q
. Esta restricción, junto con las condiciones adicionales en α y β implican

nuestro mismo teorema para el caso n − 1 < γ < n, mientras que nuestro resultado
contempla todo el rango 0 < γ < n. Esto se debe a que la prueba de Hidano y Kurokawa
reduce el problema al caso unidimensional del teorema de Stein y Weiss, mientras que
como ya dijimos nuestro método de prueba es diferente, y más simple que el de [22], sobre
todo en el caso n = 2.

Aplicaciones al estudio de sistemas hamiltonianos con pesos

Una consecuencia inmediata del Teorema 0.1 es la obtención de un resultado de inmersión
compacte de las funciones radiales de los espacios de Sobolev fraccionarios Hs(Rn) en
espacios Lq(Rn, |x|c) apropiados, generalizando el trabajo de P.L Lions [25] donde se
prueba un resultado análogo sin pesos.

La idea de obtener mejores propiedades para la inmersión (y en particular compacidad)
restringiéndose al subespacio de funciones radiales se remonta a los trabajos de W. Strauss
[45], W. M. Ni [29] y W. Rother [33], y fue generalizada en diferentes direcciones por W.
Sickel y L. Skrzypczak [38] y P. L. Lions [25].

Más precisamente, la primer aplicación de las estimaciones con pesos para la integral
fraccionaria de funciones radiales será la demostración del siguiente teorema:

2



Introducción

Teorema 0.2. Sean 0 < s < n
2
, 2 < q < 2∗c := 2(n+c)

n−2s
.

Entonces se tiene la inmersión compacta

Hs
rad(Rn) ⊂ Lq(Rn, |x|c)

siempre que −2s < c < (n−1)(q−2)
2

.

Notemos que en el caso sin pesos (c = 0) el teorema da el resultado de inmesión de
Sobolev clásico en el caso particular de las funciones con simetŕıa radial. Para este caso,
la compacidad de la inmersión Hs

rad(Rn) ⊂ Lq(Rn) bajo las condiciones 0 < s < n
2

y
2 < q < 2n

n−2s
fue demostrada por P. L. Lions en [25]. El caso s = 1 del resultado con

pesos puede en cambio encontrarse en el trabajo de W. Rother [32].

La compacidad de la inmersión en combinación con un teorema abstracto de minimax
debido a T. Bartsch y D. G. de Figueiredo [3], nos permite demostrar la existencia de
infinitas soluciones radiales del siguiente sistema eĺıptico en Rn:{

−∆u+ u = |x|a|v|p−2v
−∆v + v = |x|b|u|q−2u

(Ec. 1)

Más precisamente, demostramos el siguiente teorema:

Teorema 0.3. Si

p, q > 2,
1

p
+

1

q
< 1 (Ec. 2)

0 < a <
(n− 1)(p− 2)

2
, 0 < b <

(n− 1)(q − 2)

2
(Ec. 3)

n+ a

p
+
n+ b

q
> n− 2 (Ec. 4)

y

q <
2(n+ b)

n− 4
, p <

2(n+ a)

n− 4
si n ≥ 5. (Ec. 5)

Entonces, (Ec. 1) admite infinitas soluciones débiles con simetŕıa radial.

Cabe destacar que si bien en esta tesis consideraremos el sistema modelo (Ec. 1), las
mismas técnicas se pueden extender a sistemas eĺıpticos hamiltonianos más generales en
Rn, de la forma: {

−∆u+ u = Hv(|x|, u, v)
−∆v + v = Hu(|x|, u, v)

(Ec. 6)

con hipótesis adecuadas sobre el hamiltoniano H (análogas a las que aparecen en [3]).
Como veremos, una caracteŕıstica importante de esta clase de sistemas es su estructura,

3



Introducción

que permite encontrar las soluciones débiles como puntos cŕıticos de un funcional en un
espacio apropiado.

Para un dominio acotado Ω ⊂ Rn, T. Bartsch y D. G. de Figueiredo demostraron en
[3] que el sistema asociado {

−∆u = |x|a|v|p−2v en Ω
−∆v = |x|b|u|q−2u en Ω

(Ec. 7)

con condiciones de Dirichlet (u = v = 0 en ∂Ω), admite infinitas soluciones no triviales
en el caso sin pesos a = b = 0, (Ec. 7) si

p, q > 2,
1

p
+

1

q
< 1

1

p
+

1

q
> 1− 2

n
(Ec. 8)

q <
2n

n− 4
, p <

2n

n− 4
si n ≥ 5.

También en [3] se demuestra la existencia de infinitas soluciones radiales para el sistema
sin pesos en Rn (es decir, (Ec. 1) con a = b = 0).

En [14], D. G. de Figueiredo, I. Peral y J. Rossi extendieron estos resultados al pro-
blema con pesos no triviales en un dominio Ω ⊂ Rn acotado, tal que 0 ∈ Ω. Nuestro
resultado es la existencia de infinitas soluciones radiales del sistema con pesos (Ec. 1) en
el espacio Rn con restricciones apropiadas en los pesos.

La principal diferencia con el caso acotado radica precisamente en el teorema de in-
mersión con pesos, ya que en el caso de un dominio acotado, la inmersión necesaria puede
ser obtenida aplicando la inmersión clásica junto con la desigualdad de Hölder, mientras
que en el caso de Rn no es posible hacer lo mismo ya que los pesos |x|r no son integrables.
Además, nuestra demostración precisa del teorema abstracto de minimax mencionado an-
teriormente en lugar de un teorema más simple que puede ser usado en el caso acotado
(ver Teorema 3.1 de [14]) ya que la prueba en el caso acotado utiliza el hecho de que el
Laplaciano tiene espectro discreto en un dominio acotado, cosa que no sucede en Rn para
la parte lineal de (Ec. 1).

Aplicaciones a desigualdades de tipo Caffarelli-Kohn-Nirenberg

La segunda aplicación del Teorema 0.1 que presentaremos en esta tesis es una mejora de
las desigualdades de tipo Caffarelli-Kohn-Nirenberg en el caso de funciones radiales. Para
precisar qué entendemos con esto, recordemos primero la con conocida desigualdad de
intepolación de primer orden:

4
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Teorema ([6]). Sean p, q ≥ 1, r > 0, 0 ≤ a ≤ 1 tales que

1

p
+
α

n
,

1

q
+
β

n
,

1

r
+
γ

n
> 0,

siendo
γ = aσ + (1− a)β.

Existe una constante C positiva tal que la desigualdad

‖|x|γu‖Lr ≤ C‖|x|α|∇u|‖aLp‖|x|βu‖1−a
Lq (Ec. 9)

vale para toda u ∈ C∞0 (Rn) si y sólo si valen las siguientes relaciones:

1

r
+
γ

n
= a

(
1

p
+
α− 1

n

)
+ (1− a)

(
1

q
+
β

n

)
0 ≤ α− σ si a > 0

y

α− σ ≤ 1 si a > 0 y
1

p
+
α− 1

n
=

1

r
+
γ

n

Recordando que si f ∈ C∞0 (Rn), entonces vale que

|f(x)| ≤ C(n)

∫
Rn

|∇f(y)|
|x− y|n−1

dy = C(n)Tn−1(|∇f |)

se deduce que a partir de estimaciones con pesos para la integral fraccionaria se pueden
obtener estimaciónes del tipo (Ec. 9).

Sin embargo, se puede ver que el rango óptimo de exponentes para los cuales vale una
desigualdad asociada a (Ec. 9) en la que interviene la integral fraccionaria es distinto del
que se obtiene si se considera la desigualdad para la función y el gradiente directamente.
Para explicar este fenómeno consideremos, por simplicidad, el caso a = 1. En este caso,
es fácil ver que a partir de la desigualdad asociada

‖|x|γTn−1f‖Lr ≤ C‖|x|αf‖Lp (Ec. 10)

se obtiene la desigualdad de Caffarelli-Kohn-Nirenberg, pero con la restricción adicional
α < n

p′
, que no es necesaria en (Ec. 9). Por lo tanto, una vez demostrada la desigualdad

asociada (Ec. 10), es necesario probar que cuando f es un gradiente la desigualdad admite
una automejora que permite deshacerse de ciertas restricciones.

Si bien la demostración original de (Ec. 9) es elemental (aunque técnica y separada en
un gran número de casos) y nuestra aplicación precisa de acotaciones con pesos para la in-
tegral fraccionaria, la ventaja de nuestro enfoque es que permite extender inmediatamente

5
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el rango de exponentes para los que la desigualdad vale en el caso de funciones radiales
(dado que si f es radial, |∇f | también lo es). Por ejemplo, en el caso a = 1 considerado
anteriormente, podemos reemplazar la restricción α− σ ≥ 0 por α− σ ≥ (n− 1)(1

r
− 1

p
).

Otras desigualdades que se conocen con el nombre de desigualdades de tipo Caffarelli-
Kohn-Nirenberg son las desigualdades de trazas del tipo

‖|x|−βu(x, 0)‖Lq(Rn) ≤ C‖|(y, z)|α∇u(y, z)‖Lp(Rn×R+) (Ec. 11)

donde u ∈ C∞0 (Rn × R+).

Como en el caso anterior, demostraremos que estas desigualdades tienen un operador
asociado, que está dado por

Tf(x) =

∫
Rn×R+

f(y, z)

[(x− y)2 + z2]n/2
dy dz.

Como veremos, este operador goza de propiedades análogas a a las de la integral frac-
cionaria que, en particular, en el caso de las funciones radiales nos permitirán demostrar
el siguiente teorema:

Teorema 0.4. Sean n ≥ 1, 1 < p <∞,− n
q′
< β < n

q
y n
q
− n+1

p
= α+β−1. Si p ≤ q <∞

entonces la desigualdad

‖|x|−βTf(x, 0)‖Lq(Rn) ≤ C‖|(y, z)|αf(y, z)‖Lp(Rn×R+)

vale para toda función radial f ∈ Lp(Rn × R+, |(y, z)|pαdydz), donde C es una constante
independiente de f .

Como en el caso de la desigualdad (Ec. 9) también probaremos que ciertas restricciones
del Teorema 0.4 no son necesarias en el caso en que la función f sea un gradiente, dado
que la desigualdad (Ec. 11) también admite una automejora en este caso.

Aplicaciones a multiplicadores de tipo transformada de Laplace

para desarrollos de Laguerre y Hermite

En el último caṕıtulo de esta tesis mostraremos que la técnicas que utilizamos en la de-
mostración de las acotaciones con pesos para la integral fraccionaria de funciones radiales
pueden ser utilizadas también para el estudio de acotaciones Lp−Lq con pesos de ciertos
multiplicadores para desarrollos en funciones de Laguerre.

Recordemos que las funciones de Laguerre, para α > −1 fijo, están dadas por

6
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lαk (x) =

(
k!

Γ(k + α + 1)

)1/2

e−x/2Lαk (x) , k ∈ N0

donde Lαk son los polinomios de Laguerre. Las funciones lαk (x) son autofunciones de auto-
valor λα,k = k + (α + 1)/2 del operador diferencial de Laguerre

L = −
(
x
d2

dx2
+ (α + 1)

d

dx
− x

4

)
,

y constituyen una base ortonormal de L2(R+, x
α).

Entonces, dada f ∈ Lp(R+, x
γ) con γ < p(α + 1) − 1 podemos asociarle su serie de

Laguerre

f(x) ∼
∞∑
k=0

aα,k(f)lαk (x), aα,k(f) =

∫ ∞
0

f(x)lαk (x)xαdx (Ec. 12)

Esta serie es conocida como desarrollo de Laguerre de tipo convolución, ya que existe
una estructura de convolución generalizada asociada que será la que nos permitirá explotar
en este contexto las técnicas mencionadas anteriormente. Sin embargo, cabe aclarar que
existen otros tipos de desarrollos de Laguerre. Un estudio exhaustivo puede encontrarse
en el libro de S. Thangavelu [46].

Si m = (mk) es una sucesión acotada, podemos definir el multiplicador Mα,m asociado
en L2(R+, x

α) como

Mα,mf(x) ∼
∞∑
k=0

aα,k(f)mkl
α
k (x) (Ec. 13)

y diremos que Mα,m es un multiplicador del tipo transformada de Laplace si mk = m(k)
donde la función m está dada por la transformada de Laplace-Stieljtes de alguna función
ψ(t) de variación acotada en R+, o sea, si

m(s) = Lψ(s) :=

∫ ∞
0

e−stdψ(t). (Ec. 14)

Los multiplicadores de este tipo aparecen de forma bastante natural y, en efecto, una
definición ligeramente distinta de la usaremos en esta tesis fue dada por E. M. Stein en [40]
y estudiada en el caso sin pesos por E. Sasso en [41]. Más recientemente, B. Wróbel [50]
demostró estimaciones Lp con pesos para los mismos multiplicadores y ciertos valores de α.
También cabe destacar que T. Mart́ınez ha estudiado mutliplicadores de tipo transformada
de Laplace para expansiones ultraesféricas en [27].

Otros tipos de multiplicadores para expansiones de Laguerre también han sido consi-
derados, por ejemplo en los trabajos [16, 44, 46], donde se estudian criterios de acotación
en términos de operadores en diferencias. En esta tesis sólo pediremos hipótesis mı́nimas
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sobre la función ψ, que son más naturales en nuestro contexto y más fácilmente verificables
en los ejemplos que consideraremos. Más precisamente, probaremos el siguiente teorema

Teorema 0.5. Sea ψ tal que:

(H1) ∫ ∞
0

|dψ(t)| < +∞

(H2) Existen δ > 0, C > 0 y 0 < σ < α + 1 tales que

|ψ(t)| ≤ Ctσ for 0 ≤ t ≤ δ

Si además α ≥ 0, 1 < p ≤ q <∞, a < α+1
p′
, b < α+1

q
, 2a+ 2b ≥

(
1
q
− 1

p

)
(2α + 1) y

1

q
≥ 1

p
− σ − a− b

α + 1
(Ec. 15)

entonces Mα,m se extiende a un operador acotado de Lp(R+, x
α+ap) en Lq(R+, x

α−bq) y
vale la estimación

‖Mα,mf‖Lq(R+,xα−bq) ≤ C‖f‖Lp(R+,xα+ap).

Un caso particular de estos multiplicadores, que ha sido objeto de estudio de distintos
autores, es el de la integral fraccionaria de Laguerre, que corresponde a la elección mk =
(k+ 1)−σ. Este operador fue introducido por G. Gasper, K. Stempak y W. Trebels en [16]
como un análogo de la integral fraccionaria clásica para el caso de Laguerre. Estos autores
demostraron, además, una desigualdad con pesos que corresponde al Teorema 0.5 en el
caso particular a + b ≥ 0. Posteriormente, en el trabajo de G. Gasper y W. Trebels [17],
este resultado fue demostrado con otra técnica, obteniendo el mismo rango de exponentes
admisibles del Teorema 0.5.

En [30], A. Nowak y K. Stempak demostraron un resultado similar para desarrollos
de Laguerre multidimensionales aprovechando la relación entre desarrollos de Laguerre y
desarrollos de Hermite. Su definición de la integral fraccionaria de Laguerre es ligeramente
diferente, ya que está dada por potencias negativas del operador L. Sin embargo, las
acotaciones para ambos operadores son equivalentes, gracias a un resultado profundo
sobre multiplicadores, por lo que el teorema de [30] contiene como caso particular el
resultado de [16] (en el caso unidimensional).

La demostración de nuestro teorema recupera algunas ideas del método original de [16],
extendiéndolo para multiplicadores más generales que la integral fraccionaria y obteniendo
un rango mejor de exponentes, que en particular permite redemostrar el resultado de [17]

8
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para la integral fraccionaria de Laguerre. En efecto, el Teorema 0.5 se puede aplicar a los
ejemplos anteriormente mencionados eligiendo

mk = (k + c)−σ, η(t) =
1

Γ(σ)
tσ−1e−ct (c > 0)

(el caso c = 1 corresponde a la definición de integral fraccionaria de [16], mientras que el
caso c = α+1

2
corresponde a la definición de [30]).

Además, nuestra prueba es más simple que la de [16] en muchos detalles técnicos,
gracias a que, como mencionamos anteriormente, la estructura de convolución generalizada
asociada a los desarrollos de Laguerre que consideraremos está fuertemente relacionada
con la integral fraccionaria (usual) de funciones radiales. Más aún, para ciertos valores de
α, esta relación nos permite obtener para los multiplicadores mencionados estimaciones
con pesos de tipo Ap,q radiales, mientras que las acotaciones conocidas hasta el momento
se limitan exclusivamente a pesos potencia.

Por último, de manera análoga al caso de Laguerre, consideraremos multiplicadores
de tipo transformada de Laplace para desarrollos en funciones de Hermite.

Para esto, recordemos que dada f ∈ L2(R), su serie de Hermite está dada por

f ∼
∞∑
k=0

ck(f)hk

donde ck(f) = 〈f, hk〉 y hk son las funciones de Hermite, que se definen como

hk(x) =
(−1)k

(2kk!π1/2)1/2
Hk(x)e−x

2/2,

siendo Hk los polinomios de Hermite. Estas funciones son autofunciones normalizadas del
oscilador armónico H = − d2

dx2 + |x|2.

Entonces, dada una sucesión acotada {mk} podemos definir, como antes, el multipli-
cador de Hermite asociado

MH,mf ∼
∞∑
k=0

ck(f)mkhk

y decimos que este es un multiplicador de tipo transformada de Laplace si vale (Ec. 14).
Gracias a las relaciones que existen entre las funciones de Hermite y las funciones Laguerre,
veremos que vale el siguiente teorema análogo al Teorema 0.5:

Teorema 0.6. Sea ψ tal que:

(H1h) ∫ ∞
0

|dψ(t)| < +∞

9
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(H2h) Existen δ > 0, C > 0 y 0 < σ < 1
2

tales que

|ψ(t)| ≤ Ctσ for 0 ≤ t ≤ δ

Si además 1 < p ≤ q <∞, a < 1
p′

, b < 1
q
, a+ b ≥ 0 y

1

q
≥ 1

p
− (2s− a− b) (Ec. 16)

entonces MH,m se extiende a un operador acotado de Lp(R, xα+ap) en Lq(R, xα−bq) y vale
la estimación

‖MH,mf‖Lq(R,xα−bq) ≤ C‖f‖Lp(R,xα+ap)

10
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Weighted inequalities for fractional integrals

The study of weighted inequalities for fractional integrals (also called Riesz potentials)

(Tγv)(x) =

∫
Rn

v(y)

|x− y|γ
dy, 0 < γ < n.

is a classical problem in analysis, of great importance because of its applications, since this
operator provides an integral representation of the negative powers of the Laplacian, and
plays a key role in the classical proof of Sobolev’s imbedding theorems (see, for example,
[41]).

The study of weighted inequalities for this operator goes back to the the work of G.
H. Hardy and J. E. Littlewood [20] in the one-dimensional case, while the generalization
to Rn, n ≥ 1, is due to E. M. Stein and G. Weiss, who obtained the following theorem in
[42]:

Let n ≥ 1, 0 < γ < n, 1 < p <∞, α < n
p′
, β < n

q
, α+ β ≥ 0 and 1

q
= 1

p
+ γ+α+β

n
− 1. If

p ≤ q <∞ then the inequality

‖|x|−βTγv‖Lq(Rn) ≤ C‖|x|αv‖Lp(Rn)

holds for all v ∈ Lp(Rn, |x|pα), where C is a constant independent of v.

Inequalities for more general weights were later studied by several authors, until the
achievement of E. T. Sawyer and R. L Wheeden in [37] of an Ap,q-type characterization of
the admissible weights. From this theory it can be deduced, in particular, that for power
weights the result of Stein and Weiss cannot be improved in general.

However, if we restrict ourselves to the subspace of radially symmetric functions, it is
possible to obtain a wider range of exponents for which the fractional integral is continuous
with power weights. More precisely, we show in this thesis that the following result holds:

Theorem 0.7. Let n ≥ 1, 0 < γ < n, 1 < p <∞, α < n
p′
, β < n

q
, α + β ≥ (n− 1)(1

q
− 1

p
)
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and 1
q

= 1
p

+ γ+α+β
n
− 1. If p ≤ q <∞ the the inequality

‖|x|−βTγv‖Lq(Rn) ≤ C‖|x|αv‖Lp(Rn)

holds for all radially symmetric v ∈ Lp(Rn, |x|pα), where C is a constant independent ov.
The same result holds for p = 1 replacing the condition on α+β by α+β > (n−1)(1

q
−1).

After the publication of the result contained in this thesis, we found the same result
in the work [33] by B. S. Rubin. However, his work does not consider the case p = 1 and
his method of proof if completely different from ours, since it is based on on properties
of certain hypergeometric functions, while our proof is based only on the use of Young’s
inequality in the multiplicative group (R+, ·) with Haar measure dx/x in combination
with elementary estimates on the behavior of the kernel involved.

Other previous results for the case of radially symmetric functions (posterior to [33]
but who also seem to have been unaware of that work) are those of M. C. Vilela, who made
a proof for the case p < q and β = 0 in [47]; and the work of K. Hidano and Y. Kurokawa
[22], who proved the inequality in the case p < q under the additional assumption β < 1

q
.

This restriction, together with the other conditions on α and β implies our result for
the case n − 1 < γ < n, while our result holds for the whole range 0 < γ < n. This
is due to the fact that the proof of Hidano and Kurokawa reduces the problem to the
one-dimensional case of Stein and Weiss’ theorem while, as we already said, our method
of proof is different, and simpler than that of [22], particularly when n = 2.

Applications to the study of hamiltonian systems with weights

An immediate consequence of Theorem 0.7 is the existence of a compact imbedding of
the subspace of radially symmetric functions of fractional order Sobolev spaces Hs(Rn)
into appropriate Lq(Rn, |x|c) spaces, generalizing the result of P.L. Lions [25], where he
obtains an analogous result in the unweighted case.

The idea of obtaining better properties for the imbedding (and especially compactness)
by restricting us to the subspace of radilly symmetric functions goes back to the works
of W. Strauss [45], W. M. Ni [29] y W. Rother [33], and was generalized in different
directions by W. Sickel and L. Skrzypczak [38] and P. L. Lions [25].

More precisely, the first application of the weighted estimates for the fractional integral
of radial functions will be the proof of the following theorem:

Theorem 0.8. Let 0 < s < n
2
, 2 < q < 2∗c := 2(n+c)

n−2s
.

Then, we have a compact imbedding

Hs
rad(Rn) ⊂ Lq(Rn, |x|c)

12
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provided that −2s < c < (n−1)(q−2)
2

.

It is worth noting that the unweighted case c = 0 corresponds to the classical Sobolev
imbedding theorem for the particular case of radially symmetric functions. In this case,
the compactness of the imbedding Hs

rad(Rn) ⊂ Lq(Rn) under the conditions 0 < s < n
2

and 2 < q < 2n
n−2s

was proved by P. L. Lions in [25]. The case s = 1 of the weighted case
can be found in the work of W. Rother [32].

The compactness of the imbedding in combination with an abstract minimax theorem
due to T. Bartsch and D. G. de Figueiredo [3], will allow us to prove the existence of
infinitely many radially symmetric functions of the following elliptic system in Rn:{

−∆u+ u = |x|a|v|p−2v
−∆v + v = |x|b|u|q−2u

(Eq. 1)

More precisely, we will prove the following theorem:

Theorem 0.9. Let

p, q > 2,
1

p
+

1

q
< 1 (Eq. 2)

0 < a <
(n− 1)(p− 2)

2
, 0 < b <

(n− 1)(q − 2)

2
(Eq. 3)

n+ a

p
+
n+ b

q
> n− 2 (Eq. 4)

and

q <
2(n+ b)

n− 4
, p <

2(n+ a)

n− 4
si n ≥ 5. (Eq. 5)

Then, (Eq. 1) admits infinitely many radially symmetric weak solutions.

It is worth noting that although in this thesis we will consider only the model system
(Eq. 1), the same techniques can be extended to more general Hamiltonian elliptic systems
in Rn of the form: {

−∆u+ u = Hv(|x|, u, v)
−∆v + v = Hu(|x|, u, v)

(Eq. 6)

with appropriate hypotheses on H (analogous to those of [3]). As we will see, an important
characteristic of this class of systems is their Hamiltonian structure, that allows us to find
weak solutions as critical points of a functional in an appropriate space.

For a bounded domain Ω ⊂ Rn, T. Bartsch and D. G. de Figueiredo proved in [3] that
the associated system {

−∆u = |x|a|v|p−2v in Ω
−∆v = |x|b|u|q−2u in Ω

(Eq. 7)

13
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with Dirichlet conditions (u = v = 0 in ∂Ω), admits infinitely many non-trivial solutions
in the unweighted case a = b = 0, (Eq. 7) if

p, q > 2,
1

p
+

1

q
< 1

1

p
+

1

q
> 1− 2

n
(Eq. 8)

q <
2n

n− 4
, p <

2n

n− 4
if n ≥ 5.

They also prove in [3] the existence of infinitely many radially symmetric functions for
the unweighted system in Rn (that is, (Eq. 1) with a = b = 0).

In [14], D. G. de Figueiredo, I. Peral and J. Rossi extended these results to the weighted
problem in a bounded domain Ω ⊂ Rn, such that 0 ∈ Ω. Our result is the existence of
infinitely many radially symmetric solutions of the weighted system (2.1) in the space Rn

with appropriate restrictions on the weights.

The main difference with the bounded case lies precisely in the weighted imbedding
theorem, since in the case of a bounded domain the necessary imbedding can be obtained
by applying the classical imbedding together with Hölder’s inequality, while in the case
of the whole space Rn it is not possible to do the same since the weights |x|r are not
integrable. Moreover, our proof needs the abstract minimax theorem mentioned before
instead of a simpler theorem that can be used in the bounded case (see Theorem 3.1 from
[14]) since the proof in the bounded case uses the fact that the Laplacian has discrete
spectrum in a bounded domain, which is not the case in Rn for the linear part of (Eq. 1).

Applications to inequalities of Caffarelli-Kohn-Nirenberg type

The second application of Theorem 0.7 that we will present in this Thesis is an improve-
ment of Caffarelli-Kohn-Nirenberg type inequalities in the case of radial functions. To
make this precise, recall first the well-known first order interpolation inequality:

Theorem ([6]). Let p, q ≥ 1, r > 0, 0 ≤ a ≤ 1 such that

1

p
+
α

n
,

1

q
+
β

n
,

1

r
+
γ

n
> 0,

where
γ = aσ + (1− a)β.

Then, there exists a positive constant C such that the inequality

‖|x|γu‖Lr ≤ C‖|x|α|∇u|‖aLp‖|x|βu‖1−a
Lq (Eq. 9)

14
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holds for all u ∈ C∞0 (Rn) if and only if the following relations hold:

1

r
+
γ

n
= a

(
1

p
+
α− 1

n

)
+ (1− a)

(
1

q
+
β

n

)
0 ≤ α− σ if a > 0

and

α− σ ≤ 1 if a > 0 and
1

p
+
α− 1

n
=

1

r
+
γ

n

Using the fact that if f ∈ C∞0 (Rn), then

|f(x)| ≤ C(n)

∫
Rn

|∇f(y)|
|x− y|n−1

dy = C(n)Tn−1(|∇f |)

we can deduce that estimates of the form (Eq. 9) can be obtained from weighted estimates
for the fractional integral.

However, one can see that the optimal range of exponents for which an inequality
associated to (Eq. 9) and involving the fractional integral holds, is different from that
obtained by considering the inequality for the function and the gradient directly. To
explain this phenomenon, let us consider, for simplicity, the case a = 1. In this case, it is
easy to see that from the associated inequality

‖|x|γTn−1f‖Lr ≤ C‖|x|αf‖Lp (Eq. 10)

we can obtain the Caffarelli-Kohn-Nirenberg inequality in some cases, but with the ad-
ditional restriction α < n

p′
, unnecessary for (Eq. 9). Therefore, once we have proved the

associated inequality (Eq. 10), it will be necessary to prove that when f is a gradient, the
inequality admits a self-improvement that allows us to get rid of certain restrictions.

Even if the original proof of (Eq. 9) is elementary (though technical and split in several
different cases) and our proof requires weighted estimates for fractional integrals, the ad-
vantage of our approach is that it allows us to immediately extend the range of admissible
exponents in the case of radially symmetric functions (since if f is radial, |∇f | is radial
also). For example, in the case a = 1 considered before, we can replace the restriction
α− σ ≥ 0 by α− σ ≥ (n− 1)(1

r
− 1

p
).

Other inequalities also known by the name of Caffarelli-Kohn-Nirenberg type inequal-
ities are trace inequalities like

‖|x|−βu(x, 0)‖Lq(Rn) ≤ C‖|(y, z)|α∇u(y, z)‖Lp(Rn×R+) (Eq. 11)

where u ∈ C∞0 (Rn × R+).

15
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As in the previous case, we will prove that these inequalities have an associated oper-
ator, given by

Tf(x) =

∫
Rn×R+

f(y, z)

[(x− y)2 + z2]n/2
dy dz.

As we will see, this operator enjoys properties analogous to those of the fractional
integral which, in particular, in the case of radially symmetric functions will allow us to
prove the following theorem:

Theorem 0.10. Let n ≥ 1, 1 < p < ∞,− n
q′
< β < n

q
and n

q
− n+1

p
= α + β − 1. If

p ≤ q <∞ then the inequality

‖|x|−βTf(x, 0)‖Lq(Rn) ≤ C‖|(y, z)|αf(y, z)‖Lp(Rn×R+)

holds for all radially symmetric f ∈ Lp(Rn × R+, |(y, z)|pαdydz), where C is a constant
independent of f .

As in the case of inequality (Eq. 9) we will also prove that certain restrictions of
Theorem 0.10 are not necessary when the function f is a gradient, since inequality (Eq. 11)
also admits a self-improvement in this case.

Applications to multipliers of Laplace transform type for La-

guerre and Hermite expansions

In the last chapter of this Thesis we will show how the techniques used in the proof of
the weighted inequalities for the fractional integral of radial functions can also be used
for the study of weighted Lp−Lq bounds for certain multipliers for Laguerre expansions.

Recall that Laguerre functions, for fixed α > −1, are given by

lαk (x) =

(
k!

Γ(k + α + 1)

)1/2

e−x/2Lαk (x) , k ∈ N0

where Lαk are the Laguerre polynomials. The functions lαk (x) are eigenfunctions with
eigenvalues λα,k = k + (α + 1)/2 of the Laguerre differential operator

L = −
(
x
d2

dx2
+ (α + 1)

d

dx
− x

4

)
,

and form an orthonormal basis of L2(R+, x
α).

16



Introduction

Then, given f ∈ Lp(R+, x
γ) with γ < p(α+ 1)− 1 we can associate to it its Laguerre

series expansion

f(x) ∼
∞∑
k=0

aα,k(f)lαk (x), aα,k(f) =

∫ ∞
0

f(x)lαk (x)xαdx (Eq. 12)

This series is known as Laguerre expansion of convolution type, since there exists an
associated generalized convolution structure that will allow us to exploit in this context the
techniques mentioned before. However, there are also other types of Laguerre expansions.
An exhaustive study can be found in the book by S. Thangavelu [46].

If m = (mk) is a bounded sequence, we can define the associated multiplier operator
Mα,m in L2(R+, x

αdx) by

Mα,mf(x) ∼
∞∑
k=0

aα,k(f)mkl
α
k (x) (Eq. 13)

and we will say that Mα,m is a multiplier of Laplace transform type if mk = m(k) where the
function m is given by the Laplace-Stieljtes transform of some function ψ(t) of bounded
variation in R+, that is, if

m(s) = Lψ(s) :=

∫ ∞
0

e−stdψ(t). (Eq. 14)

Multipliers of this kind are quite natural to consider and, indeed, a slightly different
definition from the one we will give in this Thesis was given by E. M. Stein in [40] and
studied in the unweighted case by E. Sasso in [41]. More recently, B. Wróbel [50] proved
Lp weighted bounds for the same kind of multipliers and certain values of α. It is also
worth noting that T. Mart́ınez has studied multipliers of Laplace transform type for
ultraspherical expansions in [27].

Other kind of multipliers for Laguerre expansions have also been considered, for in-
stance in the works of [16, 44, 46], where boundedness criteria are given in terms of
difference operators. In this Thesis we will only require minimal assumptions on the func-
tions ψ, which are more natural in our context and easier to verify in the examples that
we will consider. More precisely, we will prove the following theorem:

Theorem 0.11. Sea ψ tal que:

(H1) ∫ ∞
0

|dψ(t)| < +∞

17
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(H2) There exist δ > 0, C > 0 and 0 < σ < α + 1 such that

|ψ(t)| ≤ Ctσ for 0 ≤ t ≤ δ

If α ≥ 0, 1 < p ≤ q <∞, a < α+1
p′
, b < α+1

q
, 2a+ 2b ≥

(
1
q
− 1

p

)
(2α + 1) and

1

q
≥ 1

p
− σ − a− b

α + 1
(Eq. 15)

then Mα,m can be extended to a bounded operator from Lp(R+, x
α+ap) to Lq(R+, x

α−bq)
and the following estimate holds:

‖Mα,mf‖Lq(R+,xα−bq) ≤ C‖f‖Lp(R+,xα+ap)

A special case of these multipliers, that has been studied by several authors, is that
of the Laguerre fractional integral, that corresponds to the choice mk = (k + 1)−σ. This
operator was introduced by G. Gasper, K. Stempak and W. Trebels in [16] as an analogue
of the classical fractional integral in the setting of Laguerre expansions. They also prove
a weighted estimate that corresponds to Theorem 0.11 in the particular case a + b ≥ 0.
Afterwards, in the work of G. Gasper and W. Trebels [17], this result was proved by a
different method, obtaining the same range of exponents as Theorem 0.11.

In [30], A. Nowak and K. Stempak proved a similar result for multidimensional La-
guerre expansions using the relation between Laguerre and Hermite expansions. Their
definition of the Laguerre fractional integral is slightly different, since it is given by nega-
tive powers of the operator L. However, the bounds for both operators can be seen to be
equivalent using a deep result on multipliers, therefore, the theorem from [30] contains as
a special case the result of [16] (in the one-dimensional case).

The proof of our theorem recovers some of the ideas of the original method of [16],
extending it to cover more general multipliers than the Laguerre fractional integral and
obtaining a better range of exponents, that in particular allows us to give a different
proof of the result in [17] for the Laguerre fractional integral. Indeed, Theorem 0.11 can
be applied to the examples above choosing

mk = (k + c)−σ, η(t) =
1

Γ(σ)
tσ−1e−ct (c > 0)

(the case c = 1 corresponds to the definition of the fractional integral in [16], while the
case c = α+1

2
corresponds to the definition in [30]).

Moreover, our proof is simpler than that of [16] in many technical details thanks to
the fact that, as mentioned before, the structure of generalized convolution associated to

18
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the Laguerre expansions that we will consider is strongly related to the (usual) fractional
integral of radial functions. Also, for certain values of α, this relation allows us to obtain
weighted Ap,q-type estimates for the multipliers considered above, while the previously
known results are limited to power weights only.

Finally, analogously to the Laguerre case, we will consider multipliers of Laplace trans-
form type for Hermite function expansions.

To this end, recall that given f ∈ L2(R), its Hermite series is given by

f ∼
∞∑
k=0

ck(f)hk

where ck(f) = 〈f, hk〉 and hk are the Hermite functions, given by

hk(x) =
(−1)k

(2kk!π1/2)1/2
Hk(x)e−x

2/2,

where Hk are the Hermite polynomials. This functions are normalized eigenfunctions of
the harmonic oscillator H = − d2

dx2 + |x|2.

Then, given a bounded sequence {mk} we can define, as before, the associated Hermite
multiplier

MH,mf ∼
∞∑
k=0

ck(f)mkhk

and we say that this is a multiplier of Laplace transform type if (4.5) holds. Thanks to
the well-known relations between Laguerre and Hermite polynomials, we will see that the
following analogue of Theorem 0.11 holds:

Theorem 0.12. Let ψ be such that:

(H1h) ∫ ∞
0

|dψ(t)| < +∞

(H2h) There exist δ > 0, C > 0 and 0 < σ < 1
2

such that

|ψ(t)| ≤ Ctσ for 0 ≤ t ≤ δ

If 1 < p ≤ q <∞, a < 1
p′

, b < 1
q
, a+ b ≥ 0 and

1

q
≥ 1

p
− (2s− a− b) (Eq. 16)

then MH,m can be extended to a bounded operator from Lp(R, xα+ap) to Lq(R, xα−bq) and
there holds the estimate

‖MH,mf‖Lq(R,xα−bq) ≤ C‖f‖Lp(R,xα+ap)

19



20



Chapter 1

Weighted inequalities for fractional
integrals of radial functions

In this chapter we prove the announced weighted bounds for the fractional integral

(Tγv)(x) =

∫
Rn

v(y)

|x− y|γ
dy, 0 < γ < n

in the case when v(x) = v0(|x|) is a radial function in Rn.

As we have explained in the introduction, the theory of weighted inequalities for
fractional integrals has received considerable attention over the years, beginning with the
work [20] of G. H. Hardy and E. Littlewood in 1928, where they consider admissible
power weights in the one-dimensional case of the operator; and reaching a high-point
with the achievement of E. T. Sawyer and R. L. Wheeden [42] in 1992 of an Ap,q-type
characterization of the necessary and sufficient conditions for two weight inequalities in
the n-dimensional case of the operator, both in the Euclidean case and in the more general
context of homogeneous spaces.

However, the fact that the operator admits a larger class of weights when restricted to
the subspace of radial functions seems to have passed almost unnoticed, even though this
fact, interesting in itself, has also direct applications both in the field of partial differential
equations and in the study of other classical operators in analysis, such as the Laguerre
fractional integral.

As said before, in this thesis we shall restrict ourselves to the study of admissible
power weights only. The proof we present here will appear in [11].



Weighted inequalities for fractional integrals of radial functions

1.1 Statement of results and structure of this chapter

The main theorem we prove in this chapter is:

Theorem 1.1. Let n ≥ 1, 0 < γ < n, 1 < p <∞, α < n
p′
, β < n

q
, α + β ≥ (n− 1)(1

q
− 1

p
),

and 1
q

= 1
p

+ γ+α+β
n
− 1. If p ≤ q <∞, then the inequality

‖|x|−βTγv‖Lq(Rn) ≤ C‖|x|αv‖Lp(Rn)

holds for all radially symmetric v ∈ Lp(Rn, |x|pα), where C is independent of v.

Remark 1.2. If p = 1, then the result of Theorem 1.1 holds for α + β > (n− 1)(1
q
− 1)

as may be seen from the proof of the Theorem.

Remark 1.3. When γ ≤ n − 1, the condition 1
q

= 1
p

+ γ+α+β
n
− 1 automatically implies

α + β ≥ (n− 1)(1
q
− 1

p
).

Remark 1.4. It is worth noting that if n = 1 or p = q, Theorem 1.1 gives the same
range of exponents as those obtained in the case of non-necessarily radial functions by E.
M. Stein and G. Weiss in [42].

The key point in our proof is to write the desired estimate as a convolution inequality
in the multiplicative group (R+, ·) with Haar measure dx/x. The theorem will then follow
from a combination of good estimates of the involved kernel with an improved version on
Young’s inequality.

The remainder of this chapter is organized as follows:

In Section 1.2 we prove Theorem 1.1 in the case n = 1. As we have already pointed
out, in this case our range of weights coincides with that of Stein and Weiss (and Hardy
and Littlewood) and, therefore, the assumption that v be radially symmetric (i.e., even)
is unnecessary. Also, in this case we shall consider the multiplicative group (R∗, ·) with
the correspondig Haar measure dx/|x| instead of (R+, ·), but the proof is useful to explain
some of the ideas that we will use to prove n-dimensional theorem. Section 1.3 is devoted
to the proof of Theorem 1.1 in the general case, and we show, by means of an example
when n = 3, that the condition on α + β is sharp.

1.2 The 1-dimensional case

As mentioned in the introduction to this chapter, in this case we aim to write the desired
estimate as a convolution inequality in (R∗, ·) and then use the following improved version
of Young’s inequality, that we recall for the sake of completeness:
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1.2 The 1-dimensional case

Theorem 1.5. [19, Theorem 1.4.24] Let G be a locally compact group with left Haar
measure µ that satisfies µ(A) = µ(A−1) for all measurable A ⊆ G, and let ∗ denote the
convolution with respect to the group operation, that is

(f ∗ g)(x) =

∫
G

f(y)g(y−1x) dµ(y),

(y−1 stands for the inverse of y).

Assume 1 < p, q, s <∞ satisfy

1

q
+ 1 =

1

p
+

1

s
.

Then, there exists a constant Bpqs > 0 such that for all f ∈ Lp(G, µ) and g ∈ Ls,∞(G, µ)
we have

‖f ∗ g‖Lq(G,µ) ≤ Bpqr‖f‖Lp(G,µ)‖g‖Ls,∞(G,µ). (1.1)

For the case p = 1, we shall use instead the classical Young’s inequality in the locally
compact group (R∗, ·); this accounts for the strict inequality α + β > (n − 1)(1

q
− 1) in

Remark 1.2.

Now, recall that we want to prove

‖|x|−βTγf‖Lq(R) ≤ C‖f |x|α‖Lp(R) (1.2)

Letting µ = dx
|x| , this inequality can be rewritten as

‖|x|−β+ 1
qTγf‖Lq(µ) ≤ C‖|x|α+ 1

pf‖Lp(µ).

But now,

|x|−β+ 1
qTγf(x) =

∫ ∞
−∞

|x|−β+ 1
q f(y)|y|α+ 1

p

|y|γ−1+α+ 1
p |1− x

y
|γ
dy

|y|
= (h ∗ g)(x)

where h(x) = f(x)|x|α+ 1
p , g(x) = |x|−β+1

q

|1−x|γ , and we have used that γ − 1 + α+ 1
p

= −β + 1
q
.

Using Young’s inequality we obtain

‖|x|−β+ 1
qTγf‖Lq(µ) ≤ C‖|x|α+ 1

pf‖Lp(µ)‖g‖Ls,∞(µ),

where
1

q
+ 1 =

1

p
+

1

s
,

(and taking ‖g‖Ls(µ) instead of the weak norm if p = 1).
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Weighted inequalities for fractional integrals of radial functions

Therefore, it suffices to check that ‖g‖Ls,∞(µ) < ∞ (respectively, ‖g‖Ls(µ) < ∞). For
this purpose, consider ϕ ∈ C∞(R), supported in [1

2
, 3

2
] and such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1

in (3
4
, 5

4
). We split g = ϕg + (1− ϕ)g := g1 + g2.

Clearly, g2 ∈ Ls(µ), since the integrability condition at the origin for |g2|s (with respect
to the measure µ) is β < 1

q
, and the integrability condition when x→∞ is 1

q
−β−γ < 0,

which, under our assumptions on the exponents, is equivalent to α < 1
p′

.

Therefore,

µ({g1 + g2 > λ}) ≤ µ

({
g1 >

λ

2

})
+

(
‖g2‖Ls(µ)

λ

)s
≤ µ

({
g1 >

λ

2

})
+
C

λs

but,

µ

({
g1 >

λ

2

})
≤ µ

({
C

|1− x|γ
> λ

})
= µ

({
C

λ
1
γ

> |x− 1|
})

≤ C

λ
1
γ

≤ C

λs

as long as sγ ≤ 1, that is, γ ≤ 1 + 1
q
− 1

p
, which is equivalent to α + β ≥ 0. Hence,

g ∈ Ls,∞(µ) and this concludes the proof if p 6= 1. When p = 1 it is easy to see that
g ∈ Ls(µ) provided that α + β > 0.

1.3 Proof of the weighted HLS theorem for radial

functions

In this Section we prove Theorem 1.1. The main idea, as in the one-dimensional case, will
be to write the fractional integral operator acting on a radial function as a convolution
in the multiplicative group (R+, ·) with Haar measure µ = dx

x
. For this purpose, we shall

need the following lemma.

Lemma 1.6. Let x ∈ Sn−1 = {x ∈ Rn : |x| = 1} and consider an integral of the form:

I(x) =

∫
Sn−1

f(x · y) dy
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1.3 Proof of the weighted HLS theorem for radial functions

(the integral is taken with respect to the surface measure on the sphere), where f :
[−1, 1] → R, f ∈ L1([−1, 1], (1 − t2)(n−3)/2). Then, I(x) is a constant independent of
x and moreover

I(x) = ωn−2

∫ 1

−1

f(t)(1− t2)
n−3

2 dt

where ωn−2 denotes the area of Sn−2.

Proof. First, observe that I(x) is constant for all x ∈ Sn−1. Indeed, given x̃ ∈ Sn−1, there
exists a rotation R ∈ O(n) such that x̃ = Rx and, therefore,

I(x̃) =

∫
Sn−1

f(x̃ · y) dy =

∫
Sn−1

f(Rx · y) dy =

∫
Sn−1

f(x ·R−1y) dy = I(x).

So, taking x = en, it suffices to compute I(en) =
∫
Sn−1 f(yn) dy. To this end, we split

the integral in two and consider first the integral on the upper-half sphere (Sn−1)+. Since
(Sn−1)+ is the graph of the function g : {x ∈ Rn−1 : |x| < 1} → (Sn−1)+, g(x) =√

1− |x|2, we obtain∫
(Sn−1)+

f(yn) dy =

∫
{|x|<1}

f(
√

1− |x|2)
1√

1− |x|2
dx

using polar coordinates, this is∫
Sn−2

∫ 1

0

f(
√

1− r2)
1√

1− r2
rn−2 dr dy = ωn−2

∫ 1

0

f(t)(1− t2)
n−3

2 dt.

Analogously, one obtains∫
(Sn−1)−

f(yn) dy = ωn−2

∫ 0

−1

f(t)(1− t2)
n−3

2 dt.

This completes the proof.

Now we can proceed to the proof of our main theorem.

Using polar coordinates,

y = ry′, r = |y|, y′ ∈ Sn−1

x = ρx′, ρ = |x|, x′ ∈ Sn−1

and the identity

|x− y|2 = |x|2 − 2|x||y|x′ · y′ + |y|2
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Weighted inequalities for fractional integrals of radial functions

we write the fractional integral of a radial function v(x) = v0(|x|) as

Tγv(x) =

∫ ∞
0

∫
Sn−1

v0(r)rn−1drdy′

(r2 − 2rρx′ · y′ + ρ2)γ/2
.

Using lemma 1.6, we have that:

Tγv(x) = ωn−2

∫ ∞
0

v0(r)rn−1

{∫ 1

−1

(1− t2)(n−3)/2

(ρ2 − 2ρrt+ r2)γ/2
dt

}
dr.

Now, we may write the inner integral as:∫ 1

−1

(1− t2)(n−3)/2

(ρ2 − 2ρrt+ r2)γ/2
dt =

∫ 1

−1

(1− t2)(n−3)/2

rγ
[
1− 2

(
ρ
r

)
t+
(
ρ
r

)2
]γ/2 dt.

Therefore,

Tγv(x) = ωn−2

∫ ∞
0

v0(r)rn−γIγ,k

(ρ
r

) dr
r

where k = n−3
2

, and, for a ≥ 0,

Iγ,k(a) =

∫ 1

−1

(1− t2)k

(1− 2at+ a2)γ/2
dt.

Notice that the denominator of this integral vanishes if a = 1 and t = 1 only. Therefore,
Iγ,k(a) is well defined and is a continuous function for a 6= 1.

This formula shows in a explicit way that Tγv is a radial function, and can be therefore
thought of as a function of ρ. Furtheremore, we observe that as consequence of this
formula, ρ

n
q
−βTγv has the structure of a convolution on the multiplicative group (R+, ·):

ρ
n
q
−βTγv(x) = ωn−2

∫ ∞
0

v0(r)rn−γ+n
q
−β ρ

n
q
−β

r
n
q
−β Iγ,k

(ρ
r

) dr
r

= ωn−2 (v0r
n−γ+n

q
−β) ∗ (r

n
q
−βIγ,k(r)).

Hence, using Theorem 1.5 we get that

‖|x|−βTγv‖Lq(Rn) =

(
ωn−1

∫ ∞
0

|Tγv(ρ)|qρn−βq dρ
ρ

)1/q

= ω
1/q
n−1 ‖Tγv(ρ)ρ

n
q
−β‖Lq(µ)

≤ ω
1/q
n−1ωn−2‖v0(r)rn−γ+n

q
−β‖Lp(µ) ‖r

n
q
−βIγ,k(r)‖Ls,∞(µ)

26



1.3 Proof of the weighted HLS theorem for radial functions

provided that:
1

q
+ 1 =

1

p
+

1

s
(1.3)

(and with the obvious modification in the case p = 1).

Using polar coordinates once again:

ω
1/p
n−1 ‖v0(r)rn−γ+n

q
−β‖Lp(µ) = ω

1/p
n−1

(∫ ∞
0

|v0(r)|pr(n−γ+n
q
−β)p−nrn

dr

r

)1/p

= ‖v0|x|n−γ+n
q
−β−n

p ‖Lp(Rn).

But, by the conditions of our theorem,

n− γ +
n

q
− β − n

p
= α.

Therefore, it suffices to prove that

‖r
n
q
−βIγ,k(r)‖Ls,∞(µ) < +∞. (1.4)

For this purpose, consider ϕ ∈ C∞(R), supported in [1
2
, 3

2
] and such that 0 ≤ ϕ ≤ 1

and ϕ ≡ 1 in (3
4
, 5

4
). We split r

n
q
−βIγ,k = ϕr

n
q
−βIγ,k + (1− ϕ)r

n
q
−βIγ,k := g1 + g2.

We claim that g2 ∈ Ls(µ). Indeed, since Iγ,k(r) is a continuous function for r 6= 1, to
analyze the behavior (concerning integrability) of g2 it suffices to consider the behavior

of r(n
q
−β)s|Iγ,k(r)|s at r = 0, and when r → +∞.

Since Iγ,k(r) has no singularity at r = 0 (Iγ,k(0) is finite) the local integrability condi-
tion at r = 0 is β < n

q
.

When r → +∞, we observe that

Iγ,k(r) =
1

rγ

∫ 1

−1

(1− t2)k

(r−2 − 2r−1t+ 1)γ/2
dt

and using the bounded convergence theorem, we deduce that

Iγ,k(r) ∼
Ck
rγ

as r → +∞ (with Ck =

∫ 1

−1

(1− t2)kdt).

It follows that the integrability condition at infinity is n
q
− β − γ < 0, which, under our

conditions on the exponents, is equivalent to α < n
p′

.

We proceed now to g1. To analyze its behavior near r = 1, we shall need the following
lemma:
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Weighted inequalities for fractional integrals of radial functions

Lemma 1.7. For r ∼ 1 and k > −1, we have that

|Iγ,k(r)| ≤


Cγ,k if γ < 2k + 2
Cγ,k log 1

|1−r| if γ = 2k + 2

Cγ,k|1− r|−γ+2k+2 if γ > 2k + 2

Remark 1.8. Notice that since in the proof of our theorem k = n−3
2

, the conditions
relating γ and k above correspond to conditions on γ and n which cover all the range
0 < γ < n.

Proof. Assume first that k ∈ N0 and −γ
2

+ k > −1. Then,

Iγ,k(1) ∼
∫ 1

−1

(1− t2)k

(2− 2t)
γ
2

dt ∼ C

∫ 1

−1

(1− t)k

(1− t) γ2
dt.

Therefore, Iγ,k is bounded.

If −γ
2

+ k = −1, then

Iγ,k(r) ∼
∫ 1

−1

(1− t2)k
dk

dtk

{
(1− 2rt+ r2)−

γ
2

+k
}
dt.

Integrating by parts k times (the boundary terms vanish),

Iγ,k(r) ∼
∣∣∣∣∫ 1

−1

dk

dtk
{

(1− t2)k
}

(1− 2rt+ r2)−
γ
2

+k dt

∣∣∣∣ .
But dk

dtk

{
(1− t2)k

}
is a polynomial of degree k and therefore is bounded in [−1, 1] (in

fact, it is up to a constant the classical Legendre polynomial). Therefore,

Iγ,k(r) ∼
1

2r
log

(
1 + r

1− r

)2

≤ C log
1

|1− r|
.

Finally, if −γ
2

+ k < −1, then integrating by parts as before,

Iγ,k(r) ≤ Ck

∫ 1

−1

(1− 2rt+ r2)−
γ
2

+k dt.

Thus,

Iγ,k(r) ∼ (1− 2rt+ r2)−
γ
2

+k+1|t=1
t=−1 ≤ Ck,γ|1− r|−γ+2k+2.

This finishes the proof if k ∈ N0.
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1.3 Proof of the weighted HLS theorem for radial functions

Consider now the case k = m+ ν with m ∈ N0 and 0 < ν < 1. Then,

Ik,γ(r) =

∫ 1

−1

(1− t2)ν(m+1)(1− 2rt+ r2)−
νγ
2 (1− t2)(1−ν)m(1− 2rt+ r2)−

(1−ν)γ
2 dt

therefore, by Hölder’s inequality with exponent 1
ν
,

Iγ,k(r) ≤
(∫ 1

−1

(1− t2)(m+1)(1− 2rt+ r2)−
γ
2 dt

)ν (∫ 1

−1

(1− t2)m(1− 2rt+ r2)−
γ
2 dt

)1−ν

= Iνm+1,γ(r)I
1−ν
m,γ (r)

If γ < 2m+ 2, by the previous calculation

|Iγ,k(r)| ≤ C.

If γ > 2(m+ 1) + 2, then, by the previous calculation

|Ik,γ(r)| ≤ C|1− r|ν(−γ+2(m+1)+2)|1− r|(1−ν)(−γ+2m+2) = C|1− r|−γ+2k+2.

For the case 2m + 2 < γ < 2m + 4, notice that we can always assume r < 1, since
Iγ,k(r) = r−γIγ,k(r

−1). Then, as before, we can prove that

I ′γ,k(r) ≤ γ(1− r)Iγ+2,k(r)

But now we are in the case γ+2 > 2(m+1)+2 and, therefore, |Ik,γ+2(r)| ≤ C|1−r|−γ+2k.

Therefore, if −γ + 2k + 1 6= −1

Iγ,k(r) =

∫ r

0

I ′γ,k(s) ds ≤ C

∫ r

0

(1− s)−γ+2k+1 ds ≤ C|1− r|−γ+2k+2,

and if −γ + 2k + 1 = −1

Iγ,k(r) ≤ C

∫ r

0

1

1− s
ds = C log

1

|1− r|
.

It remains to check the case k ∈ (−1, 0),

Iγ,k(r) =

∫ 0

−1

(1− t2)k

(1− 2rt+ r2)
γ
2

dt+

∫ 1

0

(1− t2)k

(1− 2rt+ r2)
γ
2

dt

= I + II
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Weighted inequalities for fractional integrals of radial functions

Since γ > 0 and k + 1 > 0,

I ≤
∫ 0

−1

(1 + t)k dt = C

II ≤
∫ 1

0

(1− t)k

(1− 2rt+ r2)
γ
2

dt = − 1

k + 1

∫ 1

0

d
dt

[(1− t)k+1]

(1− 2rt+ r2)
γ
2

dt

=
2r

k + 1

∫ 1

0

(1− t)k+1

(1− 2rt+ r2)
γ
2

+1
dt ≤ CIγ+2,k+1.

Since now k + 1 > 0, Iγ,k can be bounded as before.

Now we can go back to the study of g1. We shall split the proof into three cases,
depending on whether γ is less than, equal to or greater than n− 1.

i. Assume first that 0 < γ < n− 1. Then |r|(−β+n
q

)s|Iγ,k(r)|s is bounded when r ∼ 1,
and, therefore, ‖g1‖Ls(µ) < +∞.

ii. Consider now the case γ = n− 1. Since in this case

|Iγ,k(r)| ≤ C log
1

|1− r|
,

we conclude, as before, that ‖g1‖Ls(µ) < +∞.

iii. Finally, we have to consider the case n− 1 < γ < n. In this case,

|Iγ,k(r)| ≤ C|1− r|−γ+2k+2 = C|1− r|−γ+n−1.

Therefore,

µ

({
g1 >

λ

2

})
≤ µ

({
C

|1− x|γ−n+1
> λ

})
= µ

({
C

λ
1

γ−n+1

> |1− x|
})

≤ C

λ
1

γ−n+1

≤ C

λs

as long as s(γ−n+1) ≤ 1, which is equivalent to α+β ≥ (n−1)(1
p
− 1

q
). Therefore,

‖g1‖Ls,∞(µ) < +∞ (and if p = 1, the strong norm is bounded provided the condition
on α + β holds with strict inequality).
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1.3 Proof of the weighted HLS theorem for radial functions

Remark 1.9. The following example shows that for n = 3 the condition α + β ≥ (n −
1)(1

q
− 1

p
) is necessary.

Assume that α + β < (n− 1)(1
q
− 1

p
). Then, by Remark 1.3, γ > n− 1.

Since 1
q

= 1
p

+ 1
s
− 1, we obtain γ− n+ 1 > 1

s
and, therefore, by Lemma 1.7, for n = 3

and r ∼ 1, Iγ,k(r) ∼ 1

|1−r|
1
s+ε

for some ε > 0.

Fix η such that ηp > 1 and let

f(r) =
χ[ 1

2
, 3
2

](r)

|1− r|
1
p log( 1

|1−r|)
η

Then f ∈ Lp(µ) and, for r > 1,

(Iγ,k ∗ f)(r) ≥
∫ 3

2

r

t
1
s

+ε

t
1
s

+ε|1− r
t
| 1s+ε|1− t|

1
p log( 1

|1−t|)
η
dt

≥
∫ 3

2

r

1

(t− r) 1
s

+ε(t− 1)
1
p (log 1

|1−r|)
η
dy

≥ 1

(log 1
|1−r|)

η

∫ 3
2

r

dy

(t− 1)
1
s

+ 1
p

+ε

∼ 1

(log 1
|1−r|)

η|1− r|
1
q

+ε
6∈ Lq.

Recall now that for a radial function,

ρ
n
q
−βTγf0(ρ) = f0r

n
p

+α ∗ r
n
q
−βIγ,k(r)

Therefore, defining f0 = f(|x|)|x|−
n
p
−α we have, ‖f0|x|α‖Lp <∞ but Tγf |x|−β 6∈ Lq.

31



Weighted inequalities for fractional integrals of radial functions

32



Chapter 2

Application to the study of
Hamiltonian elliptic systems with
weights

In this chapter, we will use the weighted estimates in the previous chapter to obtain a
weighted imbedding theorem for radial functions and apply this theorem to the study
of the existence of non-trivial, radially symmetric solutions of the following Hamiltonian
elliptic system in Rn: {

−∆u+ u = |x|a|v|p−2v
−∆v + v = |x|b|u|q−2u

(2.1)

The compactness of our weighted imbedding will be of fundamental importance, since
it will allow us to prove a suitable form of the Palais-Smale compactness condition (see
Lemma 2.8). The other important ingredient of our proof of the main theorem in this
chapter (Theorem 2.2) is an abstract minimax theorem from T. Bartsch and D. G. de
Figueiredo [3] that we recall for easy-reference (see Theorem 2.4 below).

The results of this chapter were published in [12]. However, the proof of the existence
of the compact imbedding in that paper was obtained with a different technique, using the
Fourier transform definition of fractional order Sobolev spaces and a theorem on Lp −Lq
estimates for the Fourier-Bessel transform due to L. De Carli [8]. The original proof of
the imbedding that we obtained in [12] can be found in Appendix A.

2.1 Statement of results and stucture of this chapter

Our first result in this chapter is a weighted imbedding theorem for fractional order
Sobolev spaces. More precisely, we will prove:



Application to the study of Hamiltonian elliptic systems with weights

Theorem 2.1. Let 0 < s < n
2
, 2 < q < 2∗c := 2(n+c)

n−2s
. Then we have the compact

imbedding
Hs
rad(Rn) ⊂ Lq(Rn, |x|c)

provided that −2s < c < (n−1)(q−2)
2

. Here Hs
rad(Rn) denotes the subspace of radially

symmetric functions of the Sobolev space Hs(Rn).

Then, we will proceed to apply this theorem to the study of system (2.1) and will
show that the following result holds:

Theorem 2.2. Assume that the following conditions hold:

p, q > 2,
1

p
+

1

q
< 1 (2.2)

0 < a <
(n− 1)(p− 2)

2
, 0 < b <

(n− 1)(q − 2)

2
(2.3)

n+ a

p
+
n+ b

q
> n− 2 (2.4)

and

q <
2(n+ b)

n− 4
, p <

2(n+ a)

n− 4
if n ≥ 5. (2.5)

Then, (2.1) admits infinitely many radially symmetric weak-solutions (see Definition 2.6
below).

The remainder of this chapter is organized as follows. In section 2.2 we prove the
announced weighted imbedding theorem for fractional order Sobolev spaces. In section
2.3 we recall the abstract minimax theorem from T. Bartsch and D. G. de Figueiredo [3]
(see Theorem 2.4 below) that we will use to prove existence of solutions of system (2.1).
Finally, in Section 2.4 we complete the proof of Theorem 2.2 by checking that all the
conditions of Theorem 2.4 hold.

2.2 A weighted imbedding theorem

In this section we prove Theorem 2.1. To this end, we recall the definition of the fractional
order Sobolev space

Hs(Rn) = {u ∈ L2(Rn) : (−∆)s/2u ∈ L2(Rn)} (s ≥ 0).

Then, if u ∈ Hs
rad(Rn), f := (−∆)s/2u ∈ L2(Rn), and, recalling the relation between

the negative powers of the Laplacian and the fractional integral (see, e.g., [45, Chapter
V]), we obtain

Tn−sf = C(−∆)−s/2f = Cu.
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2.2 A weighted imbedding theorem

Then, it follows from Theorem 1.1 that

‖|x|
c
qu‖L2∗c (Rn) = C‖|x|

c
qTn−sf‖L2∗c (Rn) ≤ C‖f‖L2(Rn) ≤ C‖u‖Hs(Rn).

Therefore, writing q = 2ν + (1− ν)2∗c , and using Hölder’s inequality, we obtain

‖|x|
c
qu‖Lq(Rn) ≤ ‖|x|

c
qu‖ν

L2∗c (Rn)
‖u‖1−ν

L2(Rn) ≤ C‖u‖Hs(Rn).

It remains to prove that the imbedding Hs
rad(Rn) ⊂ Lq(Rn, |x|c) is compact. To this

end, it suffices to show that if un → 0 weakly in Hs
rad(Rn), then un → 0 strongly in

Lq(Rn, |x|c). Since

2 < q < 2∗c =
2(n+ c)

n− 2s

by hypothesis, we claim that it is possible to choose r and q̃ so that 2 < r < q < q̃ < 2∗c
and the following conditions hold

q̃ <
2(n+ c̃)

n− 2s
, −2s < c̃ <

(n− 1)(q̃ − 2)

2
.

Indeed, assume first that c > 0. Then, if θ ∈ (0, 1) is sufficently small, taking c̃ = c
1−θ ,

we see that c̃ < (q−2)(n−1)
2

. Since c̃ > c, it is clear that q < 2(n+c̃)
n−2s

, and we can choose q̃ > q

such that q̃ < 2(n+c̃)
n−2s

and θ > q̃−q
q̃−2

.

On the other hand, if −2s < c < 0 and c̃ = c
1−θ with θ ∈ (0, 1) sufficiently small, we

have that −2s < c̃ and q < 2(n+c̃)
n−2s

. Since now c̃ < c, it is immediate that c̃ < (q−1)(n−1)
2

,

and we can choose q̃ > q such that θ > q̃−q
q̃−2

and c̃ < (q̃−1)(n−1)
2

.

In either case, if we let r satisfy q = θr+(1−θ)q̃, it follows from the previous conditions
that 2 < r < q and, using Hölder’s inequality, we have that∫

Rn
|x|c|un|q dx ≤

(∫
Rn
|un|r dx

)θ (∫
Rn
|x|c̃|un|q̃ dx

)1−θ

. (2.6)

Therefore, by the imbedding that we have already established:(∫
Rn
|x|c̃|un|q̃ dx

)1/q̃

≤ C‖un‖Hs ≤ C ′.

Since the imbedding Hs
rad(Rn) ⊂ Lr(Rn) is compact by Lions theorem [25], we have

that un → 0 in Lr(Rn). From (2.6) we conclude that un → 0 strongly in Lq(Rn, |x|c),
which shows that the imbedding in our theorem is also compact. This concludes the proof.
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Application to the study of Hamiltonian elliptic systems with weights

2.3 An abstract critical point theorem

In order to prove Theorem 2.2 we will use an abstract critical point result from [3]. For
the reader’s convenience, we will try to keep the notation from that paper. We start by
recalling the specific form of the Palais-Smale-Cerami compactness condition used in [3]:

Definition 2.3. We consider a Hilbert space E and a functional Φ ∈ C1(E,R). Given a
sequence (Xn)n∈N of finite dimensional subspaces of X, with Xn ⊂ Xn+1 and

⋃
Xn = E,

the functional Φ is said to satisfy condition (PS)Fc at level c if every sequence (zj)j∈N with
zj ∈ Xnj , nj → +∞ and such that

Φ(zj)→ c and (1 + ‖zj‖)(Φ|Xnj )
′(zj)→ 0

(a so-called (PS)Fc sequence) has a subsequence which converges to a critical point of Φ.

Theorem 2.4 (Fountain Theorem, Theorem 2.2 from [3]). Assume that the Hilbert space
E splits as a direct sum E = E+ ⊕ E−, and that E±1 ⊂ E±2 ⊂ . . . ⊂ E±n ⊂ are strictly

increasing sequences of finite dimensional subspaces such that
⋃∞
n=1 E

±
n = E± and let En =

E+
n ⊕E−n . Furthermore, assume that the functional Φ satisfies the following assumptions:

(Φ1) Φ ∈ C1(E,R) and satisfies (PS)Fc with respect to F = (En)n∈N and every c > 0.

(Φ′2) There exists a sequence rk > 0 (k ∈ N) such that

bk = inf{Φ(z) : z ∈ E+, z ⊥ Ek−1 ‖z‖ = rk}

satisfy bk → +∞.

(Φ′3) There exist a sequence of isomorphisms Tk : E → E (k ∈ N) with Tk(En) = En for
all k and n, and there exists a sequence Rk > 0 (k ∈ N) such that, for z = z+ +z− ∈
E+
k ⊕ E− with max(‖z+‖, ‖z−‖) = Rk one has

‖Tk‖ > Rk and Φ(Tkz) < 0.

(Φ′4) dk = sup{Φ(Tk(z
+ + z−)) : z+ ∈ E+

k , z
− ∈ E−, ‖z+‖, ‖z−‖ ≤ Rk} < +∞.

(Φ5) Φ is even, i.e. Φ(−z) = Φ(z) ∀ z ∈ E.

Then Φ has an unbounded sequence of critical values.

In our application, we will also use Remark 2.2 from [3], that we state here as a lemma
for the sake of completeness:
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2.4 Proof of Theorem 2.2

Lemma 2.5. Let E be a Hilbert space, and E1 ⊂ E2 ⊂ E3 ⊂ . . . be a sequence of finite
dimensional subspaces of E such that E =

⋃∞
n=1En. Assume that we have a compact

imbedding E ⊂ X, where X is a Banach space.

Let Φ ∈ C1(E,R) be a functional of the form Φ = P −Ψ where

P (z) ≥ α‖z‖pE ∀ z ∈ E

and
|Ψ(x)| ≤ β(1 + ‖z‖qX) ∀ z ∈ E

where α, β and q > p are positive constants. Then, there exist rk > 0 (k ∈ N) such that

bk = inf{Φ(z) : z ∈ E, z ⊥ Ek−1 ‖z‖ = rk} → +∞

i.e. condition (Φ′2) in theorem 2.4 holds.

2.4 Proof of Theorem 2.2

2.4.1 The Functional Setting

Using conditions (2.2), (2.4) and (2.5) we may choose s, t such that 0 < s, t < n
2
, s+ t = 2

and

2 < p <
2(n+ a)

n− 2t
, 2 < q <

2(n+ b)

n− 2s
.

From Theorem 2.1 we then have the compact imbeddings

Hs
rad(Rn) ⊂ Lq(Rn, |x|b), H t

rad(Rn) ⊂ Lp(Rn, |x|a). (4.1)

Recalling that s + t = 2, and following the ideas of [13], we consider the functional
associated to (2.1) given by:

Φ(u, v) =

∫
Rn
Asu · Atv −

∫
Rn
H(x, u, v) (4.2)

in the subspace E = Hs
rad(Rn)×H t

rad(Rn) ⊂ Hs(Rn)×H t(Rn), with the pseudo-differential
operator Asu = (−∆ + I)s/2 given in terms of the Fourier transform:

Âsu(ω) = (1 + |ω|2)s/2û(ω),

and where H is the Hamiltonian:

H(x, u, v) =
|x|b|u|q

q
+
|x|a|v|p

p
.

The imbeddings (4.1) imply that Φ is well defined in E and Φ ∈ C1(E,R) (see the
appendix of [33]).
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Application to the study of Hamiltonian elliptic systems with weights

Definition 2.6. We say that z = (u, v) ∈ Hs
rad × H t

rad is an (s, t)-weak solution of the
system (2.1) if z is a critical point of the functional (4.2).

Remark 2.7. The functional Φ is not well-defined in Hs(Rn) × H t(Rn) because the
imbedding (4.1) is not valid in general for non-radial functions. However, the functional
is well-defined in Ẽ = (Hs(Rn) ∩ Lq(Rn, |x|bdx))× (H t(Rn) ∩ Lp(Rn, |x|adx)). Moreover,
since Φ is invariant with respect to radial symmetries, the critical points of Φ in E are
also critical points in Ẽ thanks to the Symmetric Criticality Principle (see Theorem A
5.4 of [31]).

Next, consider the bilinear form B : E × E → R given by:

B[z, η] :=

∫
(AsuAtφ+ AsψAtv) where z = (u, v), η = (ψ, φ).

Asociated with B we have the quadratic form

Q(z) =
1

2
B(z, z) =

∫
AsuAtv.

It is well-known that the operator L : E → E defined by 〈Lz, η〉 = B[z, η] has exactly
two eigenvalues +1 and −1 and that the corresponding eigenspaces are given by

E+ = {(u,A−tAsu) : u ∈ Es}, E− = {(u,−A−tAsu) : u ∈ Es}.

Then, we have that

Φ(z) =
1

2
〈Lz, z〉 −Ψ(z) (4.3)

where:

Ψ(z) =

∫
H(x, u, v).

We now define the sequence of finite dimensional subspaces that we need to apply The-
orem 2.4. For this purpose, choose an orthonormal basis {ej}j∈N of Hs

rad(Rn). By density,
we can choose ej ∈ S(Rn) (the Schwarz class). Then fj = A−tAsej form an orthonor-
mal basis of H t

rad(Rn), fj ∈ S(Rn), and we may define the following finite dimensional
subspaces:

Es
n = 〈ej : j = 1...n〉 ⊂ Hs

rad(Rn)

Et
n = 〈fj : j = 1...n〉 ⊂ H t

rad(Rn)

En = Es
n ⊕ Et

n.
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2.4 Proof of Theorem 2.2

2.4.2 The Palais-Smale condition

In what follows, we will prove that the functional Φ satisfies conditions (Φ1), (Φ′2) −
(Φ′4), (Φ5) in Theorem 2.4. We begin by checking the compactness condition (PS)Fc :

Lemma 2.8. Condition (Φ1) holds.

Proof. Using the imbedding in Theorem 2.1, it follows from standard arguments (see for
example [33]) that Φ is well defined, and morover Φ ∈ C1(E,R). It remains to show that
Φ satisfies the (PS)Fc condition. Assume that we have a sequence zj ∈ Enj such that
Φ(zj)→ c, (1 + ‖zj‖)(Φ|Enj )

′(zj)→ 0.

We observe that since the functional Φ has the form (4.3) where L : E → E is a linear
Fredholm operator of index zero and ∇Ψ : E → E is completely continuous (due to the
compactness of the imbeddings (4.1)), then by Remark 2.1 of [3], it is enough to prove
that zj is bounded.

Since (Φ|Enj )
′(zj)→ 0, in particular we have that

|Φ′(zj)(w)| ≤ C‖w‖E for all w ∈ Enj . (4.4)

If zj = (uj, vj), taking wj = pq
p+q

(
1
p
uj,

1
q
vj

)
, we have that

C(1 + ‖wj‖E) ≥ Φ(zj)− Φ′(zj)(wj)

=

∫
AsujA

tvj −
∫
H(x, uj, vj)

−
[

q

p+ q

∫
AsujA

tvj +
p

p+ q

∫
AsujA

tvj

− q

p+ q

∫
Hu(x, uj, vj)uj −

p

p+ q

∫
Hv(x, uj, vj)vj

]
=

(
pq

p+ q
− 1

)∫
H(x, uj, vj).

Using (2.2) and Theorem 2.1 we obtain∫
H(uj, vj, x) dx =

∫
|x|b|uj|q

q
+
|x|a|vj|p

p
≤ C(1 + ‖uj‖Hs + ‖vj‖Ht). (4.5)

Now, considering w = (ψ, 0), ψ ∈ Es
nj
⊂ Hs

rad(Rn) in (4.4)

|Q′(zj)(w)| =
∣∣∣∣∫ AsψAtvj

∣∣∣∣ ≤ ∫ |Hu(uj, vj, x)ψ| dx+ C‖ψ‖Hs
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Application to the study of Hamiltonian elliptic systems with weights

=

∫
|x|b|uj|q−2ujψ + C‖ψ‖Hs ≤ ‖uj‖q−1

Lq(|x|b)‖ψ‖Lq(|x|b) + C‖ψ‖Hs

and using Theorem 2.1 we conclude that∣∣∣∣∫ AsψAtvj

∣∣∣∣ ≤ C
(
‖uj‖q−1

Lq(|x|b) + 1
)
‖ψ‖Hs .

Using a duality argument (and the fact that
∫
AsψAtvj = 0 ∀ψ ∈ (Es

nj
)⊥), this implies

that
‖vj‖Ht ≤ C

(
‖uj‖q−1

Lq(|x|b) + 1
)
. (4.6)

Similarly, taking w = (0, ψ), ψ ∈ Et
nj

in (4.4), we obtain

|Q′(zj)(w)| =
∣∣∣∣∫ AsujA

tψ

∣∣∣∣ ≤ C
(
‖v‖p−1

Lp(|x|a) + 1
)
‖ψ‖Ht

hence,

‖uj‖Hs ≤ C
(
‖vj‖p−1

Lp(|x|a) + 1
)
. (4.7)

Therefore, replacing (4.6) and (4.7) into (4.5), we obtain(
1

C
‖uj‖Hs − 1

)q/(q−1)

+

(
1

C
‖vj‖Ht − 1

)p/(p−1)

≤ C (1 + ‖uj‖Hs + ‖vj‖Ht) .

Since p, q > 1, we conclude that zj is bounded in E, as we have claimed. It follows
that Φ satisfies the (PS)Fc condition.

Lemma 2.9. Condition (Φ2′) holds.

Proof. We follow the proof of Lemma 3.2 of [3]. We apply Lemma 2.5 in E+, with

P (z) := Q(z) =

∫
AsuAtv, Ψ(z) :=

∫
H(x, u, v) dx.

Since z ∈ E+,

Q(z) =

∫
AsuAt(A−tAsu) dx =

∫
|Asu|2 dx = ‖u‖2

Hs =
1

2
‖z‖2

E.

Using the imbeddings (4.1), we have that∣∣∣∣∫ H(x, u, v)

∣∣∣∣ ≤ C
(
‖u‖qHs + ‖v‖pHt

)
≤ C (‖z‖qE + ‖z‖pE) ≤ ‖z‖max(p,q)

E .

Thus, we have Φ = P − ψ with P (z) ≥ 1
2
‖z‖2

E and |ψ(z)| = |
∫
H(x, u, v)| ≤ C(1 +

‖z‖max(p,q)
E ), with max(p, q) > 2. Therefore, by Lemma 2.5, condition (Φ2′) holds.
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2.4 Proof of Theorem 2.2

2.4.3 The Geometry of the Functional Φ

In the next two lemmas, we check the requiered conditions on the geometry of the func-
tional Φ:

Lemma 2.10. Condition (Φ3′) holds.

Proof. We follow the proof of Lemma 5.1 of [3]. We want to prove that there exist
isomorphisms Tk : E → E (k ∈ N) such that Tk(En) = En for all k, n and that there exist
Rk > 0(k ∈ N) such that, if z = z+ + z− ∈ E+

k ⊕ E
−
k with Rk = max(‖z+‖, ‖z−‖), then

‖Tkz‖ > rk and φ(Tkz) < 0 (rk being the same as that in condition (Φ2′)).
We want to see that there exists λk such that the above condition holds with Tk = Tλk

and Rk = λk, where

Tλk(u, v) = (λµku, λ
ν
kv) with µ =

m− q
q

, ν =
m− p
p

, m > max(p, q).

Clearly, Tk : E → E is isomorphism for all k. Moreover, TλkEn = En for all k and, for all
λ > 0, we have that∫

Rn
H(x, Tλz) ≥ C

(
λµq
∫

Rn
|u|q|x|b + λνp

∫
Rn
|v|p|x|a

)
. (4.8)

For z = z+ + z− ∈ E+
k ⊕ E−k , let z− = z−1 + z−2 with z−1 ∈ E−k and z−2 ⊥ E−k , and let

z̄ = z+ + z−1 . If z = (u, v), we extend these definitions to u and have that ū = u+ + u−1
and, therefore, u−2 ⊥ ū in L2. Then,

‖ū‖2
L2 = |〈ū, ū〉L2| = |〈ū+ u−2 , ū〉L2| = |〈u, ū〉L2|

=

∫
Rn
|u||ū||x|b/q|x|−b/q ≤ ‖u‖Lq(|x|b)‖ū‖Lq′ (|x|−b/(q−1)).

But, since ū ∈ Ek
s ⊂ S(Rn), we have that

‖ū‖Lq′ (|x|−b/(q−1)) =

(∫
Rn
|ū|q′|x|−b/(q−1)

)1/q′

< +∞ since b < n(q − 1)

and, thanks to the equivalence of the norms ‖ū‖L2 and ‖ū‖Lq′ (|x|−b/(q−1)) (in the finite
dimensional subespace Es

k), we obtain

‖u‖Lq(|x|b) ≥ γk‖ū‖Hs ∀ u ∈ Es
k

for some γk > 0. Similarly there exists γk > 0 such that

‖v‖Lp(|x|a) ≥ γk‖v̄‖Ht ∀ v ∈ Et
k.
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It then follows from (4.8) that∫
Rn
H(x, Tλz) ≥ C

(
λµq γqk‖u‖

q
Hs + λνp γpk‖v‖

p
Ht

)
and (as in lemma 4.2 of [3]) we get a lower bound of the form:∫

Rn
H(x, Tλz) ≥ cmin

{
1

2q
λµqγqkλ

q,
1

2p
λνpγpkλ

p

}
≥ σkλ

m

provided that ‖z+‖E = λ.

On the other hand,

Q(Tλz) = λν+µ(‖z+‖2
E − ‖z−‖2

E) ≤ λν+µ+2

for ‖z+‖E = λ. As a consequence, we have that

Φ(Tλz) ≤ λν+µ+2 − σkλm.

Since m > ν + µ + 2, it follows that there is a λ0(k) such that Tλk(z) < 0 if λk > λ0(k).
Also we have that

‖Tλz‖E ≥ λmin(ν,µ)‖z‖2
E

which implies that

‖Tλz‖E ≥ λ
min(µ,ν)+2
k for max(‖z+‖E, ‖z−‖E) = λk

Therefore, it is possible to select λk > 0 such that

Φ(Tλkz) ≤ 0 and ‖Tλkz‖E ≥ rk

for any given rk.

Finally, we observe that condition (Φ5) holds trivially. Therefore, all the conditions of
Theorem 2.4 are fulfilled, and hence the proof of Theorem 2.2 is complete.
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Chapter 3

Application to
Caffarelli-Kohn-Nirenberg type
inequalities

In this chapter we will use the weighted estimates for the fractional integral of radial
functions from Chapter 1 to obtain an improvement of the Caffarelli-Kohn-Nirenberg
inequality [6] in the case of radially symmetric functions. More precisely, the improvement
that we will obtain will be a direct consequence of Theorem 1.1 together with the well-
known inequality relating u ∈ C∞0 (Rn) with the fractional integral of its gradient

|u(x)| ≤ C

∫
Rn

|∇u|(y)

|x− y|n−1
dy =: Tn−1(|∇u|)(x), (3.1)

and the observation the Caffarelli-Kohn-Nirenberg inequality enjoys a certain self-improving
property. It is worth noting that this method of proof is different from that of the original
proof in [6], and also from a different approach developed by F. Catrina and Z-Q. Wang
in [7].

We then use similar ideas of to show that also certain trace inequalities admit better
power weights when restricted to radially symmetric functions. In this case the operator
associated to the inequalities we will prove is no longer the fractional integral, but, as we
shall see, the analogous of Theorem 1.1 for this operator can be obtained with similar
ideas.

The results appearing in this chapter are the subject of the article [9].



Application to Caffarelli-Kohn-Nirenberg type inequalities

3.1 Statement of results and structure of this chapter

Recall the Cafarelli-Kohn-Nirenberg first order interpolation inequality

Theorem ([6]). Assume
p, q ≥ 1, r > 0, 0 ≤ a ≤ 1 (3.2)

1

p
+
α

n
,

1

q
+
β

n
,

1

r
+
γ

n
> 0, (3.3)

where
γ = aσ + (1− a)β. (3.4)

Then, there exists a positive constant C such that the following inequality holds for all
u ∈ C∞0 (Rn)

‖|x|γu‖Lr ≤ C‖|x|α∇u‖aLp‖|x|βu‖1−a
Lq (3.5)

if and only if the following relations hold:

1

r
+
γ

n
= a

(
1

p
+
α− 1

n

)
+ (1− a)

(
1

q
+
β

n

)
(3.6)

0 ≤ α− σ if a > 0, (3.7)

and

α− σ ≤ 1 if a > 0 and
1

p
+
α− 1

n
=

1

r
+
γ

n
. (3.8)

As explained before, although the conditions of the above theorem cannot be improved
in general, we will prove that if we require u to be radially symmetric, inequality (3.5)
holds true for certain negative values of α−σ also. Indeed, the first theorem we will prove
in this chapter is:

Theorem 3.1. Assume conditions (3.2), (3.3), (3.4) and (3.6) hold. Then there exists a
positive constant C such that inequality (3.5) holds for all radially symmetric u ∈ C∞0 (Rn)
and all

1− a
q
≤ 1

r
≤ a

p
+

1− a
q

(3.9)

provided that, if a > 0,

(n− 1)

[
1

a

(
1

r
− 1

q

)
+

1

q
− 1

p

]
≤ α− σ ≤ 0 (3.10)

and

−σ
n
<

1

a

(
1

r
− 1

q

)
+

1

q
, (3.11)

with strict inequality in (3.10) if p = 1.
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3.1 Statement of results and structure of this chapter

Remark 3.2. If σ > 0 condition (3.11) trivially holds because of (3.9), and thus our
result admits a simpler statement in this case.

We then show that also improved trace inequalities can be obtained in a similar way,
but looking at weighted estimates for another operator instead of the fractional integral.
However, we will see that the behavior of this operator when restricted to radially sym-
metric functions can be analyzed with ideas similar to those used in Chapter 1. By doing
this, we will prove the following theorem:

Theorem 3.3. Let x ∈ Rn and

Tf(x) :=

∫
Rn×R+

f(y, z)

[(x− y)2 + z2]
n
2

dy dz. (3.12)

Assume f ∈ C∞0 (Rn × R+) is such that f(y, z) = f0(|y|, z). Then, the inequality

‖Tf(x)|x|−β‖Lq(Rn) ≤ C‖|(y, z)|αf(y, z)‖Lp(Rn×R+) (3.13)

holds provided that
1 ≤ p ≤ q <∞ (3.14)

n

q
− n+ 1

p
= α + β − 1 (3.15)

and
−n
q′
< β <

n

q
. (3.16)

Once this theorem is proved, we will use the weighted estimates to obtain the following
trace inequality:

Theorem 3.4. Let f ∈ C∞0 (Rn × R+) be a radially symmetric function in the first n
variables. Then, the following inequality holds

‖f(x, 0)|x|−β‖Lq(Rn) ≤ C‖|(y, z)|α∇f(y, z)‖Lp(Rn×R+) (3.17)

provided that:

−n
q′
≤ α + β ≤ 1

p′
, (3.18)

α > −n+ 1

p
+ 1, (3.19)

and
n

q
− n+ 1

p
= α + β − 1. (3.20)

Remark 3.5. Using condition (3.20), condition (3.18) can be seen to be equivalent to
1 ≤ p ≤ q <∞.
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Application to Caffarelli-Kohn-Nirenberg type inequalities

The above theorem can be easily seen to be a refinement for radially symmetric func-
tions (in the first n variables) of the following known trace inequality:

Theorem ([2]). Let f ∈ C∞0 (Rn × R+). Then, the following inequality holds

‖|x|−βf(x, 0)‖Lq(Rn) ≤ C‖|(y, z)|α∇f(y, z)‖L2(Rn×R+)

provided that:

0 ≤ α + β ≤ 1

2
, (3.21)

α > −n+ 1

2
+ 1, (3.22)

and
n

q
− n+ 1

2
= α + β − 1. (3.23)

The remainder of this chapter is organized as follows:

In Section 3.2 we prove Theorem 3.1. In Section 3.3 we explain the relation between
the operator Tf defined by (3.12) and the weighted trace inequalities we are interested
in, and find a convenient expression for this operator when acting on radially symmetric
functions (in the first n variables). In Section 3.4 we prove Theorem 3.3 and, finally, in
Section 3.4, we use Theorem 3.3 to prove Theorem 3.4.

3.2 Proof of Theorem 3.1

Clearly, when a = 0 the theorem is completely trivial. Therefore, we will split the proof
into two cases, namely, when a = 1 and when 0 < a < 1.

3.2.1 Case a = 1

Notice that in this case, σ = γ by (3.4).

Observing that for u ∈ C∞0 (Rn)

|u(x)| ≤ C

∫
Rn

|∇u|(y)

|x− y|n−1
dy := Tn−1(|∇u|)(x)

we see that

‖|x|γu‖Lr ≤ C‖|x|γTn−1(|∇u|)‖Lr
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3.2 Proof of Theorem 3.1

but, since we are assuming that u is a radial function, then so is |∇u| and we can use
Theorem 1.1 to deduce that

‖|x|γTn−1(|∇u|)‖Lr ≤ C‖|x|α∇u‖Lp

provided that

1 ≤ p ≤ r <∞ (3.24)

1

r
+
γ

n
=

1

p
+
α− 1

n
(3.25)

α <
n

p′
(3.26)

−γ < n

r
(3.27)

and

(n− 1)

(
1

r
− 1

p

)
≤ α− γ, (3.28)

with strict inequality in (3.28) if p = 1.

Clearly, the scaling condition (3.25) equals condition (3.6) when a = 1; and using
(3.25), condition (3.24) can be seen to be equivalent to γ − α ≤ 1, which holds because
of hypothesis (3.10) (recall that in this case γ = σ). Condition (3.27) equals condition
(3.11) (in this case it is also included in (3.3)); and (3.28) follows from (3.10) since a = 1.

We claim that condition (3.26) can be removed if we only wish to consider the inequal-
ity

‖|x|γu‖Lr ≤ C‖|x|α∇u‖Lp (3.29)

(this is not the case if the operator Tn−1 is not acting on |∇u|). Indeed, we will prove
that if (3.29) holds for α and γ, then it also holds for α + 1 and γ + 1, provided that
αp 6= −1. To this end, we apply the inequality to |x|u (strictly speaking, this function is
not C∞0 , but it suffices to take a regularized distance function to the origin, see e.g. [41],
and apply the same argument).

Then,

‖|x|γ+1u‖r ≤ C‖|x|α∇(|x|u)‖p ∼ C(‖|x|α+1∇u‖p + ‖|x|αu‖p)
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and, therefore, it suffices to see that ‖|x|αu‖p ≤ C‖|x|α+1∇u‖p. To this end write

‖|x|αu‖pp =

∫
|x|pα|u|p dx

≤ C

∫
|∇|x|pα+1||u|p dx

≤ C

∫
|x|pα+1|∇|u|p| dx

≤ C

∫
|x|pα+1|u|p−1|∇u| dx

≤ C

(∫
|x|pα|u|p dx

) 1
p′
(∫
|x|p(α+1)|∇u|p dx

) 1
p

Thus, we have proved that

‖|x|αu‖pp ≤ C‖|x|αu‖
p
p′
p ‖|x|α+1∇u‖p

whence it follows immediately that

‖|x|αu‖p ≤ C‖|x|α+1∇u‖p.

Iterating the same argument, we can see that if (3.29) holds for γ and α, then it also
holds for γ + k and α + k with k ∈ N0 provided that (α − k)p 6= −1. Therefore, to see
that we can remove condition (3.26), it suffices to observe that any α ≥ n

p′
can be written

as (α− k) + k, with −n
p
< α− k < n

p′
, and (α− k)p 6= −1. Indeed, since n

p′
− (−n

p
) = n,

such a k exists except when n = 1 and α = 1
p′

. But this is impossible, since in that case,

by (3.25) we should have 1
r

+ γ = 1
p

+ 1
p′
− 1, that is, 1

r
+ γ = 0, which contradicts (3.3).

3.2.2 Case 0 < a < 1

Write (∫
|x|γr|u|ra+(1−a)r dx

) 1
r

=

(∫
|x|rβ(1−a)|u|(1−a)r|x|rγ(1−β(1−a)

γ
)|u|ar dx

) 1
r

≤ ‖|x|βu‖1−a
Lq ‖|x|

γ
a

(1−β(1−a)
γ

)u‖a
L

arq
q−r(1−a)

(3.30)

= ‖|x|βu‖1−a
Lq ‖|x|

σu‖a
L

arq
q−r(1−a)

(3.31)

where in (3.30) we have used Hölder’s inequality with exponent q
r(1−a)

(which is larger

than 1 by (3.9)) and in (3.31) we have used the definition of σ, given in (3.4).

48
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Applying now the result obtained in the case a = 1, we deduce that

‖|x|γu‖Lr ≤ C‖|x|βu‖1−a
Lq ‖|x|

α∇u‖aLp

provided that

1 ≤ p ≤ arq

q − r(1− a)
<∞ (3.32)

q − r(1− a)

arq
+
σ

n
=

1

p
+
α− 1

n
(3.33)

−σ < n(q − r + ar)

arq
(3.34)

and

α− σ ≥ (n− 1)

(
q − r(1− a)

arq
− 1

p

)
, (3.35)

where in (3.35) the inequality is strict if p = 1.

Clearly, condition (3.32) holds because of (3.9), and condition (3.33) is easily seen to
be equivalent to (3.6) using the definition of σ given in (3.4). Finally, condition (3.34)
equals conditon (3.11) while (3.35) is the same as (3.10). This concludes the proof.

3.3 The operator associated to trace inequalities

Before we can proceed to the proof of the announced trace inequality, we first need to
obtain an expression analogous to (3.1) and, then, a convenient expression for the involved
operator when acting on radial functions.

To this end, given u and a unitary vector ξ, consider g(s) = u(sξ, 0). Then, g(0) =
−
∫∞

0
g′(s) ds = −

∫∞
0
∇u(sξ) · ξ ds.

Consider now ϕ ∈ C∞0 (Sn) supported in Rn × R+ and such that
∫
Sn
ϕ(ξ) dσ(ξ) = 1.

Then

u(0, 0) = −
∫ ∞

0

∫
Sn

∇u(sξ) · ξ ϕ(ξ) dξ ds.

For (y, z) ∈ Rn+1 let φ(y, z) = ϕ((y, z)/‖(y, z)‖). Therefore, φ(sξ) = ϕ(ξ) for all
s ∈ R+, ξ ∈ Sn, and the above identity becomes

u(0, 0) = −
∫ ∞

0

∫
Sn

∇u(sξ) · sξ φ(sξ)
1

sn+1
sn ds dξ

= −
∫

Rn×R+

∇u(y, z) · (y, z)φ(y, z)
1

‖(y, z)‖n+1
dy dz
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More generally,

|u(x, 0)| ≤
∫

Rn×R+

|∇u(y, z)| 1

‖(x− y, z)‖n
dy dz

=

∫
Rn×R+

|∇u(y, z)| 1

[(x− y)2 + z2]
n
2

dy dz

Then, we have to study the behavior of the operator

Tf(x) =

∫
Rn×R+

f(y, z)

[(x− y)2 + z2]
n
2

dy dz

for x ∈ Rn.

Since we are interested in the radial case, assume f is a radially symmetric function
in the first variable (by an abuse of notation we will still call it f).

Using polar coordinates

y = ry′, r = |y|, y′ ∈ Sn−1

x = ρx′, ρ = |x|, x′ ∈ Sn−1

if n ≥ 2 we may write:

Tf(x) =

∫ ∞
0

[∫ ∞
0

∫
Sn−1

f(r, z) rn−1

(ρ2 − 2ρrx′ · y′ + r2 + z2)
n
2

dy′ dr

]
dz

=

∫ ∞
0

∫ ∞
0

f(r, z)rn−1

∫ 1

−1

(1− t2)
n−3

2

(ρ2 − 2ρrt+ r2 + z2)
n
2

dt dr dz

where the second equality can be justified integrating in the sphere as in Lemma 1.6 from
Chapter 1.

Making the change of variables z = rz̄, dz = r dz̄ we obtain

Tf(x) =

∫ ∞
0

∫ ∞
0

f(r, rz̄)rn
∫ 1

−1

(1− t2)
n−3

2

rn
[
1− 2

(
ρ
r

)
t+
(
ρ
r

)2
+ z̄2

]n
2

dt dr dz̄

=

∫ ∞
0

∫ ∞
0

f(r, rz)I
(ρ
r
, z
)
dr dz (3.36)

where, for a > 0,

I(a, z) :=

∫ 1

−1

(1− t2)
n−3

2

(1− 2at+ a2 + z2)
n
2

dt.

Expression (3.36) will allow us to write Tf as convolution operator and to obtain Theorem
3.3, that we proceed to prove next.
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3.4 Proof of Theorem 3.3

3.4 Proof of Theorem 3.3

If n = 1 recall that we want to prove

‖Tf(x)|x|−β‖Lq(R) ≤ C‖|(y, z)|αf(y, z)‖Lp(R×R+)

Since in this case (3.36) does not hold, we remark that

‖Tf(x)|x|−β‖Lq(R,dx) = ‖|x|−β+ 1
qTf‖Lq(R, dx|x| )

and write

|x|−β+ 1
qTf(x) =

∫ ∞
−∞

∫ ∞
0

f(y, z)|x|−β+ 1
q

[(x− y)2 + z2]
1
2

dz dy

=

∫ ∞
−∞

∫ ∞
0

f(y, |y|z̄)|x|−β+ 1
q |y|

(|x
y
− 1|2 + z̄2)

1
2

dz̄
dy

|y|

=

∫ ∞
0

∫ ∞
−∞

f(y, |y|z̄)( |x||y|)
−β+ 1

q |y|1−β+ 1
q

(|x
y
− 1|2 + z̄2)

1
2

dy

|y|
dz̄

=

∫ ∞
0

(f(y, |y|z̄)|y|1−β+ 1
q ) ∗

(
|y|−β+ 1

q

(|y − 1|2 + z̄2)
1
2

)
dz̄

where the convolution is taken with respect to the first variable in the multiplicative group
R− {0} with Haar measure dx/|x|.

Let g(y) = |y|−β+1
q

(|y−1|2+z̄2)
1
2

. Then, by Young’s inequality, if

1

q
+ 1 =

1

p
+

1

s
(3.37)

‖Tf(x)|x|−β‖Lq(R,dx)

≤
∫ ∞

0

‖f(y, |y|z̄)|y|1−β+ 1
q ‖Lp( dy|y| )

‖g‖Ls( dy|y| ) dz̄

=

∫ ∞
0

(∫ ∞
−∞
|f(y, |y|z̄)|p|y|(1−β+ 1

q
)p−1(1 + z̄2)

αp
2

) 1
p

( ‖g‖Ls( dy|y| )
(1 + z̄2)

α
2

)
dz̄ (3.38)
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Observing now that

‖|(y, z)|αf(y, z)‖Lp(R×R+) =

∫ ∞
0

∫ ∞
−∞

(y2 + z2)
αp
2 |f(y, z)|p dy dz

=

∫ ∞
0

∫ ∞
−∞

(y2 + y2z̄2)
αp
2 |f(y, |y|z̄)|p|y| dy dz̄

=

∫ ∞
0

∫ ∞
−∞

(1 + z̄2)
αp
2 |y|αp+1|f(y, |y|z̄)|p dy dz̄

and that (1−β+ 1
q
)p− 1 = αp+ 1 (by (3.15)), we can apply Hölder’s inequality to (3.38)

to obtain

‖Tf(x)|x|−β‖Lq(Rn) ≤ ‖|(y, z)|αf(y, z)‖Lp(Rn×R+)

∫ ∞
0

‖g‖p
′

Ls( dy|y| )

(1 + z2)
αp′
2

dz


1
p′

Therefore, to conclude the proof of the one-dimensional case it suffices to see that

∫ ∞
0

‖g‖p
′

Ls( dy|y| )

(1 + z2)
αp′
2

dz < +∞

provided that (3.15), (3.16) and (3.37) hold. We omit the details since the computations
are analogous to those that we will do in the higher dimensional case.

Now we proceed to the case n ≥ 2. In this case, remark that,

‖Tf(x)|x|−β‖Lq(Rn) = C

(∫ ∞
0

|Tf(ρ)|qρ−βq+ndρ
ρ

) 1
q

= C‖ρ−β+n
q Tf‖Lq( dρ

ρ
)

We claim that ρ−β+n
q Tf can be written as a convolution in the multiplicative group

(R+, ·). Indeed,

ρ−β+n
q Tf =

∫ ∞
0

∫ ∞
0

f(r, rz) I
(ρ
r
, z
)
ρ−β+n

q drdz

=

∫ ∞
0

∫ ∞
0

f(r, rz) I
(ρ
r
, z
)(ρ

r

)−β+n
q
r−β+n

q
+1 dr

r
dz

=

∫ ∞
0

(f(r, rz)r−β+n
q

+1) ∗ (I(r, z)r−β+n
q ) dz

where ∗ denotes the convolution with respect to the Haar measure dr/r in the first variable.
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Therefore, using Young’s inequality, for

1

q
+ 1 =

1

p
+

1

s
, (3.39)

we obtain

‖Tf(ρ)ρ−β+n
q ‖Lq( dρ

ρ
)

≤
∫ ∞

0

‖(f(r, rz)r−β+n
q

+1) ∗ (I(r, z)r−β+n
q )‖Lq( dr

r
) dz

≤
∫ ∞

0

‖f(r, rz)r−β+n
q

+1‖Lp( dr
r

)‖I(r, z)r−β+n
q ‖Ls( dr

r
) dz

=

∫ ∞
0

(∫ ∞
0

|f(r, rz)|pr(−β+n
q

+1)pdr

r

) 1
p

‖I(r, z)r−β+n
q ‖Ls( dr

r
) dz

=

∫ ∞
0

(∫ ∞
0

|f(r, rz)|pr(−β+n
q

+1)p(1 + z2)
αp
2
dr

r

) 1
p ‖I(r, z)r−β+n

q ‖Ls( dr
r

)

(1 + z2)
α
2

dz

Now, since

‖|(y, z)|αf(y, z)‖Lp(Rn×R+) =

(∫ ∞
0

∫ ∞
0

(r2 + z2)
αp
2 |f(r, z)|prn−1 drdz

) 1
p

=

(∫ ∞
0

∫ ∞
0

(r2 + r2z̄2)
αp
2 |f(r, rz̄)|prn dz̄dr

) 1
p

=

(∫ ∞
0

∫ ∞
0

rαp(1 + z̄2)
αp
2 |f(r, rz̄)|prn dz̄dr

) 1
p

,

observing that n+αp = p(−β + n
q

+ 1)− 1 and applying Hölder’s inequality to the above
expression, we obtain

‖Tf(ρ)ρ−β+n
q ‖Lq( dρ

ρ
)

≤ ‖|(y, z)|αf(y, z)‖Lp(Rn×R+)

∫ ∞
0

‖I(r, z)r−β+n
q ‖p

′

Ls( dr
r

)

(1 + z2)
αp′
2

dz


1
p′

Therefore, to conclude the proof of the theorem it suffices to see that∫ ∞
0

‖I(r, z)r−β+n
q ‖p

′

Ls( dr
r

)
(1 + z2)−

αp′
2 dz < +∞. (3.40)
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Observe first that the denominator of

I(r, z) =

∫ 1

−1

(1− t2)
n−3

2

(1− 2rt+ r2 + z2)
n
2

dt

can be rewritten as [(r− t)2 + (1− t2) + z2]
n
2 and, therefore, it vanishes for r = t = 1 and

z = 0 only.

To bound ‖I(r, z)r−β+n
q ‖Ls( dr

r
), consider ϕ ∈ C∞(R) such that supp(ϕ) ⊆ [1

2
, 3

2
],

0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in (3
4
, 5

4
). We can then split I(r, z)r−β+n

q = I(r, z)r−β+n
q ϕ(r) +

I(r, z)r−β+n
q (1− ϕ(r)) = g1(r) + g2(r) and bound both terms separately. To this end, we

will study first the behavior of g1 and g2 and then estimate (3.40).

Consider first g2. For r → 0, we have

I(0, z) = (1 + z2)−
n
2

∫ 1

−1

(1− t2)
n−3

2 dt ∼ (1 + z2)−
n
2 .

Therefore, ‖g2‖Ls( dr
r

) behaves like (1 + z2)−
n
2 , provided that β < n

q
.

When r →∞,

I(r, z) ∼ 1

(r2 + z2)
n
2

.

In this case, if z is bounded, say z ≤ 2, ‖g2‖Ls( dr
r

) is also bounded provided that β > − n
q′

.

On the other hand, when z →∞, we need to estimate(∫ ∞
2

rs(−β+n
q

)

(r2 + z2)
ns
2

dr

r

) 1
s

=

(
zs(−β+n

q
−n)

∫ ∞
2
z

rs(−β+n
q

)

(r2 + 1)
ns
2

dr

r

) 1
s

∼ z
−β− n

q′

assuming again that β > − n
q′

.

We can proceed now to ‖g1‖Ls( dr
r

). We consider first the case k = n−3
2
∈ N0, that is

n ≥ 3 and odd.

If z is sufficiently large, then I(r, z) ∼ z−n and, therefore, ‖g1‖Ls( dr
r

) ∼ z−n.

If, on the contrary, z → 0, we may write

I(r, z) ∼
∫ 1

−1

(1− t2)k
dk

dtk
{

(1− 2rt+ r2 + z2)−
n
2

+k
}
dt

and integrating by parts k-times (the boundary terms vanish), we obtain

I(r, z) ≤ Ck[(1− r)2 + z2]−
n
2

+k+1.
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Since we are assuming that −n
2

+ k + 1 = −1
2
, we conclude that

‖g1‖Ls( dr
r

) ∼

(∫ 3
2

1
2

dr

[(1− r)2 + z2]
s
2

) 1
s

∼

(∫ 3
2

1
2

dr

(|1− r|+ z)s

) 1
s

∼ 1

z1− 1
s

We can consider now k = m+ 1
2
,m ∈ N0. In this case∣∣∣∣ ddz I(r, z)

∣∣∣∣
≤ Cz

∫ 1

−1

(1− t2)k

(1− 2rt+ r2 + z2)
n
2

+1
dt

≤ Cz

(∫ 1

−1

(1− t2)m

(1− 2rt+ r2 + z2)
n+2

2

dt

) 1
2
(∫ 1

−1

(1− t2)m+1

(1− 2rt+ r2 + z2)
n+2

2

dt

) 1
2

and, since now n+2
2
∈ N, we deduce from the previous case that∣∣∣∣ ddz I(r, z)

∣∣∣∣ ≤ Cz[(1− r2) + z2]
−(n+2)+2m+3

2

= Cz[(1− r)2 + z2]−
3
2

≤ Cz[|1− r|+ z]−3

Therefore,

I(r, z) =

∫ z

0

d

dt
I(r, t) dt ≤ Cz[|1− r|+ s]−2|z0 ≤ Cz[|1− r|+ z]−2

which implies

‖g1‖Ls( dr
r

) ∼
1

z1− 1
s

.

It remains to check the case k = −1
2

(i.e., n = 2). To this end, we write

I(r, z) =

∫ 0

−1

(1− t2)−
1
2

(1− 2at+ a2 + z2)
dt︸ ︷︷ ︸

(i)

+

∫ 1

0

(1− t2)−
1
2

(1− 2at+ a2 + z2)
dt︸ ︷︷ ︸

(ii)
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Clearly,

(i) ≤
∫ 0

−1

dt

(1 + t)
1
2

= 2

while

(ii) ≤
∫ 1

0

(1− t)− 1
2

(1− 2at+ a2 + z2)
dt

= −2

∫ 1

0

d
dt

[(1− t) 1
2 ]

1− 2at+ a2 + z2
dt

≤ 4a

∫ 1

0

(1− t2)
1
2

(1− 2at+ a2 + z2)2
dt

and the last integral can be bounded as before (notice that it corresponds to the case
n = 4).

We are now able to see that (3.40) holds. Indeed, by our previous calculations, we
need to bound ∫ 1

0

(
1

z1− 1
s (1 + z2)

α
2

+
1

(1 + z2)
n+α

2

)p′

dz

+

∫ ∞
1

(
1

zn(1 + z2)
α
2

+
1

z
β+ n

q′ (1 + z2)
α
2

)p′

dz

When z → 0, the integrability condition is p′(1− 1
s
) < 1, which holds because of (3.14)

and (3.39). When z →∞, since we are assuming that β < n
q
, there holds that n > β+ n

q′
,

whence the integralibity condition is p′(β + n
q′

+ α) > 1, that is, α + β > 1
p′
− n

q′
. But,

by (3.20) this condition is equivalent to n
p′
> 0, which trivially holds. This concludes the

proof of the theorem.

3.5 Proof of Theorem 3.4

As in the case of the Caffarelli-Kohn-Nirenberg interpolation inequality, if we simply apply
Theorem 3.3 to |∇f | we obtain (3.17) provided that

1 ≤ p ≤ q <∞ (3.41)

n

q
− n+ 1

p
= α + β − 1 (3.42)
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and
−n
q′
< β <

n

q
. (3.43)

Notice that this last condition is equivalent to −n+1
p

+ 1 < α < n+1
p′

because of (3.42).

To prove Theorem 3.4 we need to see that condition α < n+1
p′

is unnecessary for

inequality (3.17) to hold. Indeed, with a similar argument as that used for Theorem 3.1,
we will prove that if the inequality holds for α and β then it also holds for α+1 and β−1
provided that αp 6= −1.

To see this, consider f(x)|x| (strictly speaking, we would need to replace |x| by a
regularized distance, to guarantee that the product is in C∞0 ). Then,

‖f(x, 0)|x|−β+1‖Lq(Rn) ≤ C‖|(y, z)|α∇(|(y, z)|f(y, z))‖Lp(Rn×R+)

≤ C‖|(y, z)|α+1∇f(y, z)‖Lp(Rn×R+)

+ ‖|(y, z)|αf(y, z)‖Lp(Rn×R+)

Therefore, it suffices to see that

‖|(y, z)|αf(y, z)‖Lp(Rn×R+) ≤ C‖|(y, z)|α+1∇f(y, z)‖Lp(Rn×R+).

To this end, consider

‖|(y, z)|αf(y, z)‖pLp(Rn×R+)

=

∫
R+

∫
Rn
|(y, z)|pα|f(y, z)|p dy dz

≤ C

∫
R+

∫
Rn
|∇|(y, z)|pα+1||f(y, z)|p dy dz

≤ C

∫
R+

∫
Rn
|(y, z)|pα+1|∇|f(y, z)|p| dy dz

≤ C

∫
R+

∫
Rn
|(y, z)|pα+1|f(y, z)|p−1|∇f(y, z)| dy dz

= C

∫
R+

∫
Rn
|(y, z)|α(p−1)|f(y, z)|p−1|(y, z)|α+1|∇f(y, z)| dy dz

Applying Hölder’s inequality we see that

‖|(y, z)|αf(y, z)‖pp ≤ C‖|(y, z)|αf(y, z)‖
p
p′
p ‖|(y, z)|α+1∇f(y, z)‖p

and it follows immediately that

‖|(y, z)|αf(y, z)‖p ≤ C‖|(y, z)|α+1∇f(y, z)‖p
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Application to Caffarelli-Kohn-Nirenberg type inequalities

as we wanted to see.

Iterating the same argument we see that if inequality (3.17) holds for α and β, then
it holds for α + k and β − k with k ∈ N0. Therefore, to see that condition α < n+1

p′

is uneccessary, it suffices to see that any α ≥ n+1
p′

can be written as (α − k) + k, with

−n+1
p

+ 1 < α− k < n+1
p′

and (α− k)p 6= −1.

But, n+1
p′
−
(
−n+1

p
+ 1
)

= n, and therefore k can be chosen as above, except when

n = 1 and α = n+1
p′

= 2
p′

(that is, β = − 1
q′

) that cannot happen because for n = 1, α > 2
p′

(because of (3.43) and (3.42)). This completes the proof of the theorem.
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Chapter 4

Application to Laplace transform
type multipliers for Laguerre and
Hermite expansions

In this chapter, we show that the ideas of the proof of Theorem 1.1 can be used to obtain
weighted bounds for certain multiplier operators for Laguerre and Hermite expansions.
More precisely, we consider multipliers that arise from a Laplace-Stieltjes transform. In
doing so, we extend the weighted bounds obtained by for Laguerre fractional integrals
by G. Gasper, K. Stempak and W. Trebels in [16] and simplify their method of proof,
recovering in particular the improved result for Laguerre fractional integrals proved by G.
Gasper and W. Trebels in [17]. We also give a rigorous interpretation of the series defining
these operators, showing that their convergence can be justified in the Abel sense.

The well-known connection between Laguerre and Hermite expansions allows us then
to extend the result for Laplace type multipliers for Laguerre expansions to analogous
results for Laplace type multipliers for Hermite expansions.

The key point in our proofs is to exploit the generalized convolution structure for the
kind of multipliers under consideration (described in [16] for the case of the Laguerre
fractional integral). Indeed, we show that the generalized convolution can be bounded
by a convolution in the multiplicative group (R+, ·) with a kernel of the kind considered
in Lemma 1.7. This fact suggest that there is a connection between the operators under
consideration in this chapter and the fractional integral of radial functions, and as a
final remark we indicate how this fact can be exploited to obtain weighted estimates of
Ap,q-type for Laguerre multipliers for certain values of α.

The bounds with power weights in this section are the subject of the article [10], while
the final remarks on more general weights correspond to work-in-progress that exceeds
the aim of this Thesis.



Application to multipliers for Laguerre and Hermite expansions

4.1 Statement of results and structure of this chapter

In order to explain our results, recall first that the Laguerre functions, for a given α > −1,
are given by

lαk (x) =

(
k!

Γ(k + α + 1)

) 1
2

e−
x
2Lαk (x) , k ∈ N0

where Lαk (x) are the Laguerre polynomials. The lαk (x) are eigenfunctions with eigenvalues
λα,k = k + (α + 1)/2 of the differential operator

L = −
(
x
d2

dx2
+ (α + 1)

d

dx
− x

4

)
(4.1)

and are an orthonormal basis in L2(R+, x
αdx). Therefore, for γ < p(α + 1) − 1 we can

associate to any f ∈ Lp(R+, x
γ dx) its Laguerre series:

f(x) ∼
∞∑
k=0

aα,k(f)lαk (x), aα,k(f) =

∫ ∞
0

f(x)lαk (x)xαdx (4.2)

and, given a bounded sequence {mk}, we can define a multiplier operator by

Mα,mf(x) ∼
∞∑
k=0

aα,k(f)mkl
α
k (x). (4.3)

The main example of the kind of multipliers we are interested in is the Laguerre
fractional integral, introduced by G. Gasper, K. Stempak and W. Trebels in [16] as an
analogue in the Laguerre setting of the classical fractional integral of Fourier analysis,
and given by

Iσf(x) ∼
∞∑
k=0

(k + 1)−σak,αl
σ
k (x). (4.4)

In [16] the aforementioned authors obtained weighted estimates for this operator that
were later improved by G. Gasper and W. Trebels in [17] using a completely different
proof. In this work we recover some of the ideas of the original method of [16], but
simplifying the proof in many technical details and extending it to obtain a better range
of exponents that, in particular, give the same result of [17] for the Laguerre fractional
integral. Moreover, we show that our proof applies to a wide class of multipliers, namely
multipliers arising from a Laplace-Stieltjes transform, which are of the form (4.3) with
mk = m(k) given by the Laplace-Stieljtes transform of some real-valued function ψ(t),
that is,

m(s) = Lψ(s) :=

∫ ∞
0

e−stdψ(t). (4.5)
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4.1 Statement of results and structure of this chapter

We will assume that ψ is of bounded variation in R+, so that the Laplace transform
converges absolutely in the half plane Re(s) ≥ 0 (see [49, Chapter 2]) and the definition
of the operator Mα,m makes sense.

Multipliers of this kind are quite natural to consider and, indeed, a slightly different
definition is given by E. M. Stein in [40] and was previously used in the unweighted setting
by E. Sasso in [41]. More recently, B. Wróbel [50] has proved weighted Lp estimates for
the same kind of multipliers and certain values of α (see Section 4 below for a precise
comparison). Also, let us mention that T. Mart́ınez has considered multipliers of Laplace
transform type for ultraspherical expansions in [27].

Other kind of multipliers for Laguerre expansions have also been considered, see, for
instance, [16, 44, 46] where boundedness criteria are given in terms of difference operators.
In our case, we will only require minimal assumptions on the function ψ, which are more
natural in our context, and easier to verify in the case of the Laguerre fractional integral
and in other examples that we will consider later. Indeed, the main theorem we will prove
for multipliers for Laguerre expansions reads as follows:

Theorem 4.1. Assume that α > −1 and that Mα,m is a multiplier of Laplace transform
type for Laguerre expansions, given by (4.3) and (4.5), such that:

(H1) ∫ ∞
0

|dψ|(t) < +∞;

(H2) there exist δ > 0, 0 < σ < α + 1, and C > 0 such that

|ψ(t)| ≤ Ctσ for 0 ≤ t ≤ δ.

Then Mα,m can be extended to a bounded operator such that

‖Mα,mf‖Lq(R+,x(α−bq)) ≤ C‖f‖Lp(R+,x(α+ap))

provided that the following conditions hold:

1 < p ≤ q <∞ (4.6)

a <
α + 1

p′
(4.7)

b <
α + 1

q
(4.8)

2a+ 2b ≥
(

1

q
− 1

p

)
(2α + 1) (4.9)

and
1

q
≥ 1

p
− σ − a− b

α + 1
. (4.10)
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Application to multipliers for Laguerre and Hermite expansions

The well-known connection between Laguerre and Hermite expansions will then allow
us to extend the above result to an analogous result for Laplace type multipliers for
Hermite expansions. To make this precise, recall that, given f ∈ L2(R), we can consider
its Hermite series expansion

f ∼
∞∑
k=0

ck(f)hk, ck(f) =

∫ ∞
−∞

f(x)hk(x)dx. (4.11)

where hk are the Hermite functions given by

hk(x) =
(−1)k

(2kk!π1/2)1/2
Hk(x)e−

x2

2 ,

which are the normalized eigenfunctions of the Harmonic oscillator operator H = − d2

dx2 +
|x|2.

As before, given a bounded sequence {mk} we can define a multiplier operator by

MH,mf ∼
∞∑
k=0

ck(f)mkhk (4.12)

and we say that it is a Laplace transform type multiplier if equation (4.5) holds. Then, we
have the following analogue of Theorem 4.1, which, in the case of the Hermite fractional
integral (that is, for mk = (2k + 1)−σ), gives the same result of [30, Theorem 2.5] in the
one-dimensional case:

Theorem 4.2. Assume that MH,m is a multiplier of Laplace transform type for Hermite
expansions, given by (4.12) and (4.5), such that:

(H1h) ∫ ∞
0

|dψ|(t) < +∞;

(H2h) there exist δ > 0, 0 < σ < 1
2
, and C > 0 such that

|ψ(t)| ≤ Ctσ for 0 ≤ t ≤ δ.

Then MH,m can be extended to a bounded operator such that

‖MH,mf‖Lq(R,x−bq) ≤ C‖f‖Lp(R,xap)

provided that the following conditions hold:

1 < p ≤ q <∞ (4.13)
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4.2 Proof of the theorem in the Laguerre case

a <
1

p′
(4.14)

b <
1

q
(4.15)

a+ b ≥ 0 (4.16)

and
1

q
≥ 1

p
− (2σ − a− b). (4.17)

The remainder of this chapter is organized as follows. In Section 4.2 we prove Theo-
rem 4.1. For the case α ≥ 0 the proof relies on the representation of the operator as a
twisted generalized convolution, already used in [16] for the Laguerre fractional integral.
However, instead of using the method of that paper to obtain weighted bounds, we give a
simpler proof based on the use of Young’s inequality in the multiplicative group (R+, ·),
which allows us to obtain a wider range of exponents. Moreover, we obtain an estimate
for the convolution kernel which simplifies and generalizes Lemma 2.1 from [16]. For the
case −1 < α < 0 the result is obtained from the previous case by means of a weighted
transplantation theorem from [15]. A similar idea was used by Y. Kanjin and E. Sato in
[24] to prove unweighted estimates for the Laguerre fractional integral using a transplan-
tation theorem from [23]. In Section 4.3 we exploit the relation between Laguerre and
Hermite expansions to derive Theorem 4.2 from Theorem 4.1. In Section 4.4 we present
some examples of operators covered by Theorems 4.1 and 4.2 and make some further
remarks. Finally, in Section 4.5 we prove weighted Ap,q-type estimates in the Laguerre
case for certain values of α, .

4.2 Proof of the theorem in the Laguerre case

In this section we prove Theorem 4.1. We will divide the proof in three steps:

1. We write the operator as a twisted generalized convolution and obtain the estimate
for the convolution kernel when α ≥ 0. This part of the proof follows essentially
the ideas of [16], but in the more general setting of multipliers of Laplace transform
type. In particular, we provide an easier proof of the analogue of [16, Lemma 2.1]
in this setting (see Lemma 4.3 below).

2. We complete the proof of the theorem in the case α ≥ 0 by proving weighted
estimates for the generalized euclidean convolution.

3. We extend the results to the case −1 < α < 0 using the case α ≥ 0 and a weighted
transplantation theorem from [15] (Lemma 4.6 below).
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Application to multipliers for Laguerre and Hermite expansions

4.2.1 Step 1: representing the multiplier operator as a twisted
generalized convolution when α ≥ 0

Following [28, 1] we define the twisted generalized convolution of F and G by

F ×G :=

∫ ∞
0

τxF (y)G(y) y2α+1 dy

where the twisted translation operator is defined by

τxF (y) =
Γ(α + 1)

π1/2Γ(α + 1/2)

∫ π

0

F ((x, y)θ)Jα−1/2(xy sin θ)(sin θ)2α dθ

with
Jβ(x) = Γ(β + 1)Jβ(x)/(x/2)β

where Jβ(x) is the Bessel function of order β and

(x, y)θ = (x2 + y2 − 2xy cos θ)1/2.

Then, we have (formally) that

Mα,mf(x2) = F ×G (4.18)

where
F (y) = f(y2) , G(y) = g(y2)

and

g(x) ∼ 1

Γ(α + 1)

∞∑
k=0

mkL
α
k (x)e−

x
2 . (4.19)

Recalling that |Jβ(x)| ≤ Cβ if β ≥ −1
2
, we have that:

|F ×G| ≤ C(|F | ? |G|) (4.20)

where ? denotes the generalized Euclidean convolution which is defined by

F ? G(x) :=

∫ ∞
0

τEx F (y)G(y) y2α+1 dy (4.21)

with

τEx F (y) :=
Γ(α + 1)

π1/2Γ(α + 1/2)

∫ π

0

F ((x, y)θ)(sin θ)
2α dθ. (4.22)

As a consequence of (4.18) and (4.20), the operator Mα,m is pointwise bounded by
a generalized euclidean convolution with the kernel G (with respect to the measure
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4.2 Proof of the theorem in the Laguerre case

x2α+1 dx). Therefore, we need to obtain an appropriate estimate for G(x) = g(x2), that
essentially is:

|g(x)| ≤ Cxσ−α−1 for α ≥ 0 and 0 < σ < α + 1

(see Lemma 4.3 below for a precise statement).

This generalizes the result given in [16, Lemma 2.1] but, while in that paper the proof
of the corresponding estimate is based on delicate pointwise estimates for the Laguerre
functions, our proof is based on the following generating function for the Laguerre poly-
nomials (see, for instance, [46]):

∞∑
k=0

Lαk (x)wk = (1− w)−α−1e−
xw

1−w := Zα,x(w) (|w| < 1) (4.23)

To explain our ideas, we point out that if the series in (4.19) were convergent (this
need not be the case) we would have:

g(x) =
1

Γ(α + 1)

∞∑
k=0

mkL
α
k (x)e−

x
2

=
1

Γ(α + 1)

∞∑
k=0

(∫ ∞
0

e−ktdψ(t)

)
Lαk (x)e−

x
2

=
1

Γ(α + 1)
e−

x
2

∫ ∞
0

Zα,x(e
−t) dψ(t).

The main advantage of this formula is that it shields a rather explicit expression for
g in which, thanks to (4.23), the Laguerre polynomials do not appear.

However, in general it is not clear if the series in (4.19) is convergent (not even in the
special case of the Laguerre fractional integral m(t) = tσ−1). Moreover, the integration
of the series in Zα,x(w) is difficult to justify since it is not uniformly convergent in the
interval [0, 1] (because Zα,x(w) is not analytical for w = 1).

Nevertheless, we will see that the formal manipulations above can be given a rigorous
meaning if we agree in understanding the convergence of the series in (4.19) in the Abel
sense. For this purpose, we introduce a regularization parameter ρ ∈ (0, 1) and consider
the regularized function

gρ(x) =
1

Γ(α + 1)

∞∑
k=0

mkρ
kLαk (x)e−

x
2 (4.24)

and recall that the series in (4.19) is sumable in Abel sense to the limit g(x) if there exists
the limit

g(x) = lim
ρ→1

gρ(x). (4.25)

65



Application to multipliers for Laguerre and Hermite expansions

With this definition in mind, we can give a rigorous meaning to the heuristic idea
described above. More precisely, we will prove the following:

Lemma 4.3. Let gρ be defined by (4.24). Then:

(1) For 0 < ρ < 1 the series (4.24) converges absolutely.

(2) The following representation formula holds:

gρ(x) =
1

Γ(α + 1)

∫ ∞
0

Zα,x(ρe
−t) dψ(t). (4.26)

(3) If we define g(x) by setting ρ = 1 in this representation formula, g(x) is well
defined and the series (4.19) converges to g(x) in the Abel sense.

(4) If α > 0, 0 < ρ0 < ρ ≤ 1 and 0 < σ < α + 1

|gρ(x)| ≤ Cxσ−α−1,

where the constant C = C(α, σ) does not depend on ρ.

Proof. (1) Observe first that hypothesis (H1) implies that (mk) is a bounded sequence.
Indeed,

|mk| ≤
∫ ∞

0

e−kt|dφ|(t) ≤
∫ ∞

0

|dφ|(t) = C < +∞.

Now recall that ([46, Lemma 1.5.3]), if ν = ν(k) = 4k + 2α + 2,

|lαk (x)| ≤ C(xν)−
1
4 if

1

ν
≤ x ≤ ν

2
.

Therefore, if we fix x, for k ≥ k0, x is in the region where this estimate holds (since
ν → +∞ when k → +∞), and from Stirling’s formula we deduce that

k!

Γ(k + α + 1)
=

Γ(k + 1)

Γ(k + α + 1)
= O(k−α).

Then we have the following estimate for the terms of the series in (4.24)

|mkρ
kLαk (x)|e−

x
2 ≤ C(x)ρkk−σ for k ≥ k0,

and, since ρ < 1, this implies that the series converges absolutely.

(2) First, observe that Zα,x(w) is continuous as a function of a real variable for w ∈ [0, 1]
(if we define Zα,x(1) = 0) and, therefore, it is bounded, say

|Zα,x(w)| ≤ C = C(α, x) for w ∈ [0, 1].
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4.2 Proof of the theorem in the Laguerre case

Hence, using hypothesis (H1) we see that the integral in the representation formula
is convergent for any ρ ∈ [0, 1]. Moreover, from our assumptions we have that, for ρ < 1,

gρ(x) =
1

Γ(α + 1)

∞∑
k=0

mkρ
kLαk (x)e−

x
2

=
1

Γ(α + 1)

∞∑
k=0

(∫ ∞
0

ρke−ktdψ(t)

)
Lαk (x)e−

x
2

= lim
N→+∞

1

Γ(α + 1)

N∑
k=0

(∫ ∞
0

ρke−ktdψ(t)

)
Lαk (x)e−

x
2

= lim
N→+∞

1

Γ(α + 1)
e−

x
2

∫ ∞
0

Z(N)
α,x (ρe−t) dψ(t) (4.27)

where

Z(N)
α,x (w) =

N∑
k=0

Lαk (x)wk

denotes a partial sum of the series for Zα,x(w). Now, since ρ < 1, that series converges
uniformly in the interval [0, ρ], so that given ε > 0 there exists N0 = N0(ε) such that

|Zα,x(w)− Z(N)
α,x (w)| < ε if N ≥ N0.

Using this estimate and hypothesis (H1), we obtain∣∣∣∣∫ ∞
0

Zα,x(ρe
−t) dψ(t)−

∫ ∞
0

Z(N)
α,x (ρe−t) dψ(t)

∣∣∣∣
≤
∫ ∞

0

|Zα,x(ρe−t)− Z(N)
α,x (ρe−t)| |dψ|(t)

≤ Cε

from which we conclude that

lim
N→+∞

∫ ∞
0

Z(N)
α,x (ρe−t) dψ(t) =

∫ ∞
0

Zα,x(ρe
−t) dψ(t) (4.28)

and, replacing (4.28) into (4.27) we obtain (4.26).

(3) We have already observed that the integral in (4.26) is convergent for ρ = 1.
Moreover, the bound we have proved in (4.2.1) for Zα,x, and (H1) imply that we can apply
the Lebesgue bounded convergence theorem to this integral (with a constant majorant
function, which is integrable with respect to |dψ|(t) by (H1)), to conclude that (4.25)
holds.
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(4) Let δ be as in (H2) and observe that

Γ(α + 1)gρ(x) = e−
x
2

∫ ∞
0

Zα,x(ρe
−t)dψ(t)

= e−
x
2

∫ δ

0

Zα,x(ρe
−t)dψ(t) + e−

x
2

∫ ∞
δ

Zα,x(ρe
−t)dψ(t)

= e−
x
2

∫ δ

0

Z ′α,x(ρe
−t)ρe−tψ(t) dt︸ ︷︷ ︸

(i)

+ e−
x
2Zα,x(ρe

−δ)ψ(δ)︸ ︷︷ ︸
(ii)

− e−
x
2Zα,x(ρ)ψ(0)︸ ︷︷ ︸

(iii)

+ e−
x
2

∫ ∞
δ

Zα,x(ρe
−t)dψ(t)︸ ︷︷ ︸

(iv)

Since |Zα,x(ρe−δ)| ≤ (1 − ρe−δ)−α−1 ≤ Cδ, ψ(0) = 0, and σ − α − 1 < 0, clearly
(ii) ≤ Cxσ−α−1 and (iii)vanishes.

To bound (iv), notice that if ω = ρe−t and t > δ, 0 ≤ Zα,x(ω) ≤Mδ. Therefore, using
(H1) and the fact that σ − α− 1 < 0 we obtain

(iv) ≤ e−
x
2Mδ

∫ ∞
δ

|dψ|(t) ≤ Cxσ−α−1.

Now, observing that

Z ′α,x(ω) = (α + 1)Zα+1,x(ω)− xZα+2,x(ω).

and using (H2), we obtain

(i) ≤ Ce−
x
2

∫ δ

0

Zα+1,x(ρe
−t)ρe−ttσ dt

+ e−
x
2

∫ δ

0

xZα+2,x(ρe
−t)ρe−ttσ dt

and the wanted estimates in this case follow by a direct application of the following
lemma.

Lemma 4.4. In the conditions of Lemma 4.3(4), if

I(x) = e−
x
2

∫ δ

0

Zβ,x(ρe
−t)ρe−ttσ dt,

and β = α + 1 or β = α + 2 then, |I(x)| ≤ Cxσ−β with C = C(β, σ, δ, ρ0).
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4.2 Proof of the theorem in the Laguerre case

Proof. Making the change of variables w = ρe−t, and recalling the definition of Zβ,x(w)
given by (4.23), we see that

I(x) = e−
x
2

∫ ρ

ρe−δ
(1− w)−β−1e−

xw
1−w logσ

( ρ
w

)
dw

Making the change of variables u = 1
2

+ w
1−w and setting cδ = e−δ this is

I(x) =

∫ 1
2

+ ρ
1−ρ

1
2

+
cδρ

1−cδρ

(
u+

1

2

)β+1

e−ux
[
log

(
ρ
u+ 1

2

u− 1
2

)]σ
1(

u+ 1
2

)2 du

≤ C

∫ 1
2

+ ρ
1−ρ

1
2

+
cδρ

1−cδρ

uβ−1e−ux
(
u− 1

2

)−σ [
u(ρ− 1) +

1

2
(ρ+ 1)

]σ
︸ ︷︷ ︸

:=ũ(ρ)

du (4.29)

where in (4.29) we have used that, since

ρ
u+ 1

2

u− 1
2

= 1 +
u(ρ− 1) + 1

2
(ρ+ 1)

u− 1
2

,

then

log

(
ρ
u+ 1

2

u− 1
2

)
≤
u(ρ− 1) + 1

2
(ρ+ 1)

u− 1
2

.

Since 1
2
< u ≤ 1

2
+ ρ

1−ρ , it is immediate that

0 ≤ u(ρ− 1) +
1

2
(ρ+ 1) ≤ ρ,

which, using that σ ≥ 0, implies ũ(ρ) ≤ 1.

Also, since

u ≥ 1

2
+

cδρ0

1− cδρ0

>
1

2

we have that (
u− 1

2

)−σ
≤ Cu−σ

where the constant depends only on ρ0 and δ. Therefore,

I(x) ≤ C

∫ ∞
0

uβ−σ−1e−ux du

= Cx−β+σ

∫ ∞
0

vβ−σ−1e−v dv (4.30)

≤ Cx−β+σ (4.31)
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where in (4.30) we have made the change of variables v = ux, and in (4.31) we have used
that β − σ − 1 > −1 because β = α + 1 or β = α + 2.

4.2.2 Step 2: weighted estimates for the generalized Euclidean
convolution

Following the idea of the previous section, we define a regularized multiplier operator
Mα,m,ρ by:

Mα,m,ρf(x) :=
∞∑
k=0

mkρ
kak,α(f)lαk (x) (4.32)

In this section we will obtain the estimate(∫ ∞
0

|Mα,m,ρ(f)|qxα−bq dx
) 1

q

≤ C

(∫ ∞
0

|f |pxα+ap dx

) 1
p

for f ∈ Lp(R+, x
α+ap) with a constant C independent of the regularization parameter ρ

and appropriate a, b (see Theorem 4.5).

Indeed, the operator can be expressed as before as a twisted generalized convolution
with kernel Gρ(y) = gρ(y

2) (in place of G), and by Lemma 4.3, if F (y) = f(y2), we have
the pointwise bound

|Mα,m,ρf(x2)| ≤ (|F | ? |Gρ|)(x) ≤ C(|F | ? |x2(σ−α−1)|)(x).

Therefore, (4.2.2) will follow from a weighted inequality for the generalized Euclidean
convolution with kernel Kσ := x2(σ−α−1) (Theorem 4.5).

Once we have (4.2.2), Theorem 4.1 will follow by a standard density argument. Indeed,
if we consider the space

E = {f(x) = p(x)e−
x
2 : 0 ≤ x, p(x) a polynomial},

any f ∈ E has only a finite number of non-vanishing Laguerre coefficients. In that case,
it is straightforward that Mα,mf(x) is well-defined and:

Mα,mf(x) = lim
ρ→1

Mα,m,ρf(x)

Then, by Fatou’s lemma,∫ ∞
0

|Mα,m(f)|qxα−bq dx ≤ lim
ρ→1

∫ ∞
0

|Mα,m,ρ(f)|qxα−bq dx
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4.2 Proof of the theorem in the Laguerre case

and, therefore, we obtain(∫ ∞
0

|Mα,m,ρ(f)|qxα−bq dx
) 1

q

≤ C

(∫ ∞
0

|f |pxα+ap dx

) 1
p

∀f ∈ E

Since E is dense in Lp(R+, x
α+ap), we deduce that Mα,m can be extended to a bounded

operator from Lp(R+, x
α+ap) to Lq(R+, x

α−bq). Moreover, the extended operator satisfies:

Mα,mf = lim
ρ→1

Mα,m,ρf

This means, that the formula (4.3) is valid for f ∈ Lp(R+, x
α+ap) if the summation is

interpreted in the Abel sense with convergence in Lq(R+, x
α−bq).

Now we can conclude the proof of Theorem 4.1 in the case α ≥ 0.

Theorem 4.5. Let α ≥ 0, 0 < σ < α + 1 and Mα,m,ρ be given by (4.32) such that it
satisfies (H1) and (H2). Then, for all f ∈ Lp(R+, x

α+ap), the following estimate holds

‖Mα,m,ρf(x2)x−2b‖Lq(R+,x2α+1) ≤ ‖f(x2)x2a‖Lp(R+,x2α+1) (4.33)

provided that conditions (4.7), (4.8), (4.9) hold, and that

1

q
=

1

p
− σ − a− b

α + 1
. (4.34)

Proof. Let Kσ(x) := x2(σ−α−1), F (y) = f(y2) and recall that

|Mα,m,ρf(x2)| ≤ C(|F | ? |Kσ|)(x)

where ? denotes the generalized euclidean convolution defined by (4.21).

We begin by computing the generalized Euclidean translation of Kσ given by (4.22).
Making the change of variables

t = cos θ ⇒ dt = − sin θ dθ = −
√

1− t2 dθ

we see that

τEx Kσ(y) = C(α)

∫ 1

−1

(x2 + y2 − 2xyt)σ−α−1(1− t2)α−
1
2 dt.

Recalling the notation of Chapter 1, if we let

Iγ,k(r) :=

∫ 1

−1

(1− t2)k

(1− 2rt+ r2)
γ
2

dt,
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then

τEx Kσ(y) = C(α)y2(σ−α−1)I2(1+α−σ),α− 1
2

(
x

y

)
and, therefore,

Kσ ? F (x) = C

∫ ∞
0

y2(σ−α−1)I2(1+α−σ),α− 1
2

(
x

y

)
F (y)y2α+1dy

= C

∫ ∞
0

y2σI2(1+α−σ),α− 1
2

(
x

y

)
F (y)

dy

y
(4.35)

Now,

‖Mα,m,ρf(x2)x−2b‖Lq(R+,x2α+1) ≤ C‖[Kσ ? F (x)]x−2b‖Lq(R+,x2α+1)

= C

(∫ ∞
0

|Kσ ? F (x)x−2b|qx2α+1 dx

) 1
q

= C

(∫ ∞
0

∣∣∣Kσ ? F (x)x
2α+2
q
−2b
∣∣∣q dx

x

) 1
q

but, by (4.35),

[Kσ ? F (x)]x
2α+2
q
−2b

= C

∫ ∞
0

y2σx
2α+2
q
−2bI2(1+α−σ),α− 1

2

(
x

y

)
F (y)

dy

y

= C

∫ ∞
0

(y
x

)−[ 2α+2
q
−2b]

I2(1−α−σ),α− 1
2

(
x

y

)
F (y)y2σ+ 2α+2

q
−2bdy

y

= [y
2α+2
q
−2bI2(1+α−σ),α− 1

2
(y) ∗ F (y)y2σ+ 2α+2

q
−2b](x)

where ∗ denotes the convolution in R+ with respect to the Haar measure dx
x

.

Then, by Young’s inequality:

‖Mα,m,ρf(x2)x−2b‖Lq(R+,x2α+1)

≤ ‖F (x)x2σ+ 2α+2
q
−2b‖Lp( dxx )‖x

2α+2
q
−2bI2(1+α−σ),α− 1

2
(x)‖Ls,∞( dx

x
)

provided that:
1

p
+

1

s
= 1 +

1

q
. (4.36)
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Since by hypothesis (4.34),

‖F (x)x2σ+ 2α+2
q
−2b‖Lp( dxx ) =

(∫ ∞
0

|F (x)x2σ+ 2α+2
q
−2b|p dx

x

) 1
p

=

(∫ ∞
0

|F (x)x2a+ 2α+2
p |p dx

x

) 1
p

= ‖F (x)x2a‖Lp(R+,x2α+1)

= ‖f(x2)x2a‖Lp(R+,x2α+1)

to conclude the proof of the theorem it suffices to see that

‖x
2α+2
q
−2bI2(1+α−σ),α− 1

2
(x)‖Ls,∞( dx

x
) < +∞. (4.37)

Using Lemma 1.7, it is clear that when x→ 1 and 2(α+ 1− σ) ≤ 2(α− 1
2
) the norm

(4.37) is bounded.

In the case 2(α + 1− σ) > 2(α− 1
2
) (that is, σ < 3), the integrability condition is

−s
[
2(α + 1− σ)− 2

(
α− 1

2

)
− 2

]
≥ −1.

But, using (4.36) and (4.34), we see that this is equivalent to hypothesis (4.9).

When x = 0, the integrability condition is

2α + 2

q
− 2b > 0

which holds because of hypothesis (4.8).

Finally, when x → ∞, since Iα− 1
2
,2(α+1−σ)(x) ∼ x−2(α+1−σ), the condition we need to

fulfill is
2α + 2

q
− 2b− 2(α + 1− σ) < 0

which, by (4.34), is equivalent to (4.7).

4.2.3 Extension to the case −1 < α < 0 and end of proof of
Theorem 4.1

First, notice that if condition (H2) holds for a certain 0 < σ0 < α + 1, then it also holds
for any 0 < σ < σ0. Therefore, it suffices to prove Theorem 4.1 in the case 1

q
= 1

p
− σ−a−b

α+1
.

When α ≥ 0 this is exactly Theorem 4.5 above. To extend this result to the case
−1 < α < 0 let us consider −1 < α < β, where β ≥ 0, and use a transplantation result
form [15, Corollary 6.19 (ii)], that we recall here as a lemma for the sake of completeness:
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Lemma 4.6 ([15]). Let 1 < q < ∞. Given α, β > −1, we define the transplantation
operator

Tα
βf =

∞∑
k=0

(∫ ∞
0

f(y)lαk (y)yα dy

)
lβk .

Then, if σ0 ∈ R and σ1 = σ0 + (α− β)(1
p
− 1

2
), Tα

β : Lqσ0
(R+, x

α dx)→ Lqσ1
(R+, x

β dx) and

Tβ
α : Lqσ1

(R+, x
β dx)→ Lqσ0

(R+, x
α dx) are bounded operators if and only if

−1 + α

q
< σ0 <

1 + α

q′
.

Using this lemma, we can write

‖Mα,mf |x|−b‖Lq(R+,xα dx) = ‖Tβ
α(Mβ,m(Tα

βf))|x|−b‖Lq(R+,xα dx)

≤ C‖Mα,m,β(Tα
βf)|x|−b̃‖Lq(R+,xβ dx)

provided that

−1 < α < β (4.38)

−b̃ = −b+ (α− β)

(
1

p
− 1

2

)
(4.39)

and

−1 + α

q
< −b < 1 + α

q′
(4.40)

and, using Theorem 4.5 for Mβ,m with β ≥ 0,

‖Mα,m,β(Tα
βf)|x|−b̃‖Lq(R+,xβ dx) ≤ C‖Tα

βf |x|ã‖Lp(R+,xβ dx)

provided that

0 < σ < β + 1 (4.41)

ã <
β + 1

p′
(4.42)

b̃ <
β + 1

q
(4.43)

2(ã+ b̃) ≥
(

1

q
− 1

p

)
(2β + 1) (4.44)

and
1

q
=

1

p
− σ − ã− b̃

β + 1
(4.45)
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Finally, using Lemma 4.6 again, we obtain

‖Mα,mf |x|−b‖Lq(R+,xα dx)C‖f |x|a‖Lp(R+,xα dx) (4.46)

provided that

ã = a+ (α− β)

(
1

p
− 1

2

)
(4.47)

−1 + α

p
< a <

1 + α

p′
(4.48)

Now, replacing (4.47) and (4.39) into (4.45) we obtain

1

q
=

1

p
− σ − a− b

α + 1
(4.49)

and replacing (4.47) and (4.39) into (4.44), we obtain

2a+ 2b ≥
(

1

q
− 1

p

)
(2α + 1).

To conclude the proof of the theorem we need to see that the restrictions a > −1+α
p

in

(4.48) and b > −1+α
q′

in (4.40) are redundant. Indeed, the first one follows from (4.49)

and b < α+1
q

, while the second one follows from (4.49) and a < α+1
p′

.

4.3 Proof of Theorem 4.2

In this section we exploit the well-known relation between Hermite and Laguerre poyno-
mials to obtain an analogous result to that of the previous section in the Hermite case.
Indeed, recalling that

H2k(x) = (−1)k22kk!L
− 1

2
k (x2)

H2k+1(x) = (−1)k22kk!xL
1
2
k (x2)

it is immediate that

h2k(x) = l
−1/2
k (x2)

h2k+1(x) = xl
1
2
k (x2)

It is then natural to decompose f = f0 + f1 where

f0(x) =
f(x) + f(−x)

2
, f1(x) =

f(x)− f(−x)

2
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and, clearly, when k = 2j, if we let g0(y) = f0(
√
y) we obtain:

ck(f) = 〈f0, hk〉 = 2

∫ ∞
0

f0(x)l
− 1

2
j (x2) dx = a− 1

2
,j(g0)

while if k = 2j + 1, and we let g1(y) = 1√
y
f1(
√
y) we have:

ck(f) = 〈f1, hk〉 = 2

∫ ∞
0

f1(x)xl
1
2
j (x2) dx = a 1

2
,j(g1)

Then,

MH,mf(x) =
∞∑
j=0

m2ja− 1
2
,j(g0)l

− 1
2

j (x2) +
∞∑
j=0

m2j+1a 1
2
,j(g1)xl

1
2
j (x2)

= M− 1
2
,m0
g0(x2) + xM 1

2
,m1
g1(x2)

where (m0)k = m2k and (m1)k = m2k+1.

To apply Theorem 4.1 to this decomposition, we need to check first that m0 and
m1 are Laplace-Stiltjes functions of certain functions ψ0 and ψ1. Indeed, notice that
m2k = Lψ0(k) where

ψ0(u) =
1

2
ψ(
u

2
)

and m2k+1 = Lψ1(k) where

ψ1(u) =
1

2

∫ u
2

0

e−τdψ(τ).

It is also easy to see that ψ0 satisfies the hypotheses of Theorem 4.1 for α = −1
2

whereas ψ1 satisfies the hypotheses for α = 1
2

(in this case condition (H2) follows after
an integration by parts).

Then,

‖MH,mf |x|−b‖Lq(R) =

(∫
R
|MH,mf(x)|q|x|−bq dx

) 1
q

= C

(∫
R

∣∣∣M− 1
2
,m0
g0(x2) + xM 1

2
,m1
g1(x2)

∣∣∣q |x|−bq dx) 1
q

(4.50)

Using Minkowski’s inequality and making the change of variables y = x2, dx =
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1
2
y−

1
2 dy, we see that

(4.50) ∼
(∫ ∣∣∣M− 1

2
,m0
g0(y)

∣∣∣q |y|− bq2 − 1
2 dy

) 1
q

+

(∫ ∣∣∣M 1
2
,m1
g1(y)

∣∣∣q |y| (−b+1)q
2
− 1

2 dy

) 1
q

= ‖M− 1
2
,m0
g0(y)|y|−

b
2‖

Lq(R,x−
1
2 dx)

+ ‖M 1
2
,m1
g1(y)|y|

−b+1
2
− 1
q ‖

Lq(R,x
1
2 dx)

≤ C‖g0(y)|y|ã‖
Lp(R,x−

1
2 dx)

+ C‖g1(y)|y|â‖
Lp(R,x

1
2 dx)

where the last inequality follows from Theorem 4.1 provided that:

ã <
1

2p′
(4.51)

b <
1

q
(4.52)

1

q
≥ 1

p
−
s− ã− b

2
1
2

(4.53)

ã+
b

2
≥ 0 (4.54)

â <
3

2p′
(4.55)

1

q
≥ 1

p
−
s− â+ 1−b

2
− 1

q

3
2

(4.56)

â+ b̂ ≥
(

1

q
− 1

p

)
(4.57)

Therefore,

‖MH,mf |x|−b‖Lq(R) ≤ C

(∫
|g0(x)|p|x|ãp−

1
2 dx

) 1
p

+ C

(∫
|g1(x)|p|x|âp+

1
2 dx

) 1
p

= C

(∫
|f0(
√
x)|p|x|ãp−

1
2 dx

) 1
p

+ C

(∫
|f1(
√
x)|p|x|âp+

1
2
− p

2 dx

) 1
p

= C

(∫
|f0(x)|p|x|2ãp dx

) 1
p

+ C

(∫
|f1(x)|p|x|2âp+2−p dx

) 1
p

≤ C‖f(x)|x|a‖Lp(R)

provided that

a = 2ã = 2â+
2

p
− 1. (4.58)
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Therefore, by (4.58), (4.51) and (4.55) there must hold

a <
1

p′

while, also by (4.58), (4.53) and (4.56) are equivalent to

1

q
≥ 1

p
− (2s− a− b)

and (4.54) and (4.57) are equivalent to

a+ b ≥ 0.

Remark 4.7. It follows from the proof of Theorem 4.2 that a better result holds if the
function f is odd.

4.4 Examples and further remarks

First, we should point out that it is clear that, since a Stieltjes integral of a continuous
function with respect to a function of bounded variation can be thought as an integral
with respect to the corresponding Lebesgue-Stieltjes measure, we could equivalently have
formulated all our results in terms of integrals with respect to signed Borel measures in
R+. However, we have found convenient to use the framework of Stieltjes integrals since
many of the classical references on Laplace transforms are written in that framework (for
instance [49]), and leave the details of a possible restatement of the theorems in the case
of regular Borel measure to the reader.

We also recall that the Laplace-Stieltjes transform contains as particular cases both
the ordinary Laplace transform of (locally integrable) functions (when ψ(t) is absolutely
continuous), and Dirichlet series (see below). In particular, if ψ is absolutely continuous
and φ(t) = ψ′(t) (defined almost everywhere), the assumptions (H1) and (H2) of Theorem
4.1 can be replaced by:

(H1ac) ∫ ∞
0

|φ(x)| dx < +∞ i.e. φ ∈ L1(R+)

(H2ac) there exist δ > 0, 0 < σ < α + 1, and C > 0 such that∣∣∣∣∫ t

0

φ(x) dx

∣∣∣∣ ≤ Ctσ for 0 < t ≤ δ.
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In particular, assumption (H2ac) holds if φ(t) = O(tσ−1) when t→ 0.

As we have already mentioned in the introduction, B. Wróbel [50, Corollary 2.6]
has recently proved that Laplace type multipliers (with the definition given in [40]) are
bounded on Lp(Rd, ω), 1 < p <∞, for all ω ∈ Ap and α ∈ ({−1

2
}∪ [1

2
,∞))d. In the case of

power weights in one dimension this means that ω(x) = |x|β must satisfy −1 < β < p−1,
while taking p = q and letting the weight be |x|β on both sides, Theorem 4.1 can easily
be seen to imply −1 < β < p− 1 + αp.

Also, weighted estimates had been obtained before for the case of some particular
operators covered by our definition. Indeed, recall that one of the main examples of the
kind of multipliers we are considering is the Laguerre fractional integral introduced in
[16], which corresponds to the choice mk = (k + 1)−σ.

In [30, Theorem 4.2], A. Nowak and K. Stempak considered multi-dimensional La-
guerre expansions and used a slightly different definition of the fractional integral opera-
tor, given by the negative powers of the differential operator (4.1).

As they point out, their theorem contains as a special case the result of [16] (in the
one dimensional case). To see that both operators are indeed equivalent, they rely on a
deep multiplier theorem [44, Theorem 1.1].

Instead, we can see that Theorem 4.1 is applicable to both definitions by choosing:

mk = (k + c)−σ, φ(t) =
1

Γ(σ)
tσ−1e−ct (c > 0)

The case c = 1 corresponds to the definition in [16], whereas the choice c = α+1
2

corre-
sponds to the definition in [30]. Therefore, Theorem 4.1 applied to these choices, coincides
in the first case with the result of [17, Theorem 1] (which is an improvement of [16, The-
orem 3.1]) and improves in the second case the one-dimensional result of [30, Theorem
4.2].

The same choice of mk and φ in Theorem 4.2 gives a two-weight estimate for the Her-
mite fractional integral, which corresponds to the one-dimensional version of [30, Theorem
2.5].

Another interesting example is the operator (L2 + I)−
α
2 , where L is given by (4.1).

In this case, Theorem 4.1 with hypotheses (H1ac) and (H2ac) instead of (H1) and (H2)
applies with α = σ and

φ(t) =
1

Cα
e−

α+1
2
tJα−1

2
(t)t

α−1
2

since, by [48, formula 5, p. 386],∫ ∞
0

e−stJα−1
2

(t)t
α−1

2 dt = Cα(s2 + 1)−
α
2

and, when t→ 0, Jα−1
2

(t)t
α−1

2 ∼ tα−1.
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A further example is obtained by choosing ψ(t) = e−s0tH(t− τ) with s0 = α+1
2

, where
H is the Heaviside unit step function:

H(t) =

{
1 if t ≥ 0
0 if t < 0

and we see that Theorem 4.1 is applicable to the Heat diffusion semigroup (considered
for instance in [43] and [26])

Mτ = e−τL

associated to the operator L for any σ > 0. More generally, the same conclusion holds for

ψ(t) =
∞∑
n=1

ane
−s0tH(t− τn)

provided that the Dirichlet series

F (s) =
∞∑
n=1

ane
−τns, 0 < τ1 < τ2 < . . .

conveges absolutely for s = s0 (which corresponds to hypothesis (H1)).

As a final comment, we remark that finding a function ψ of bounded variation such
that mk = Lψ(k) holds (see (4.5)) is equivalent to solving the clasical Hausdorff moment
problem (see [49, Chapter III]).

4.5 Weighted Ap,q-type estimates for certain values of

α and some remarks on open problems

As we have pointed out in the introduction to this chapter, both the fractional integral of
radially symmetric functions and the multipliers of Laplace transform type for Laguerre
expansions can be bounded by a convolution in the multiplicative group (R+, ·) with
kernels of the same kind. This suggest that known results on the suitable weights for
fractional integrals could be transplanted to analogous results for Laguerre multipliers
with little effort, at least in some particular cases. More precisely, the following theorem
holds:

Theorem 4.8. Let α ≥ 0, 0 < σ < α + 1, 1 ≤ p ≤ q < ∞and assume that Mα,m

is multiplier of Laplace transform type for Laguerre expansions given by (4.3) and (4.5)
which satisfies hypotheses (H1) and (H2). Then, if 2α + 2 ∈ N and V (x) = v(x),
W (x) = w(x) are radially symmetric weights which for which the fractional integral of
radial functions is continuous from Lp(Rn,W (x)) into Lq(Rn, V (x)), then

‖Mα,mf(x)‖Lq(R+,w(x1/2)xα dx) ≤ C‖f(x)‖Lp(R+,v(x1/2)xα dx)
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Proof. As we have seen in the proof of Theorem 4.5,

|Mα,m,ρf(x2)|x
2α+2
q ≤ C(|F | ? x2(σ−α−1))x

2α+2
q

≤ C
[
y2σ+ 2α+2

q F (y) ∗ y
2α+2
q I2(1+α−σ),α− 1

2
(y)
]

(x)

with F (y) = f(y2) where, ? denotes the generalized euclidean convolution and ∗ denotes
the convolution in the multiplicative group (R+, ·).

But, by the results in Chapter 1, Section 1.3, if x ∈ Rn, |x| = x and g ∈ Lp(Rn) is a
radially symmetric function, g(x) = g0(x), then

Tγg(x)x
n
q = ωn−2

[
yn−γ+n

q g0(y) ∗ y
n
q Iγ,n−3

2
(y)
]

(x).

Therefore, if
n− 3

2
= α +

1

2
and γ = 2(1 + α− σ)

and g0(x) = f(x2) we see that

|Mα,m,ρf(x2)|x
2α+2
q ≤ C|Tγg(x)|x

n
q

where the fact that 0 < γ < n follows from the assumption 0 < σ < α + 1. Informally,
this says that the multiplier operator can be thought of as a fractional integral of the
radial function g(x) = f(x2) in R2α+2. Then, by our assumptions on the weights,

‖Mα,m,ρf(x2)‖Lq(R+,w(x)x2α+1 dx) =

(∫ ∞
0

|Mα,m,ρf(x2)|qw(x)x2α+1 dx

) 1
q

≤ C

(∫ ∞
0

|Tγg(x)|qw(x)xn−1 dx

) 1
q

≤ C

(∫
Rn
|Tγg(x)|qW (x) dx

) 1
q

≤ C

(∫
Rn
|g(x)|pV (x) dx

) 1
p

≤ C

(∫ ∞
0

|g0(x)|pv(x)xn−1 dx

) 1
p

= C

(∫ ∞
0

|f(x2)|pv(x)x2α+1 dx

) 1
p

= C‖f(x2)‖Lp(R+,v(x)x2α+1 dx)

81



Application to multipliers for Laguerre and Hermite expansions

This is clearly equivalent to(∫ ∞
0

|Mα,m,ρf(x)|qw(x
1
2 )xα dx

) 1
q

≤ C

(∫ ∞
0

|f(x)|pv(x
1
2 )xα dx

) 1
p

and, as in the case of the power weights, one can see that the same bound holds for Mα,m.

Remark 4.9. In particular, the previous theorem holds if p < q, and V (x),W (x) are
radially symmetric reverse doubling weights that satisfy the Ap,q condition:

|Q|
α
n
−1

(∫
Q

W

) 1
q
(∫

Q

V 1−p′
) 1

p′

≤ C

for all cubes Q ⊂ Rn. Indeed, this corresponds to a special case of the characterization
given by E. Sawyer and R. L. Wheeden of the weights for the Lp − Lq continuity of the
fractional integral [37, Theorem 1(B)].

However, it follows from our results in Chapter 1 that if p 6= q the radially symmetric
weights appropriate for the Lp−Lq continuity of fractional integrals of radially symmetric
functions are a strictly larger class than that of the radially symmetric weights which
satisfy the Ap,q condition (because the class of admissible power weights is strictly larger
than that of the power weights in Ap,q).

Remark 4.10. Besides the lack of a complete characterization of which are the appro-
priate radial weights for the fractional integral of radial functions, the main drawback of
Theorem 4.8 is the fact that it is only applicable to α ≥ 0 and 2α + 2 ∈ N. The first
restriction is due to the fact that representation of the multipliers as a generalized twisted
convolution used holds in this case only, and therefore a transplantation theorem for more
general weights would be needed to overcome this restriction.

The restriction 2α+ 2 ∈ N, in contrast, is due to the fact that 2α+ 2 plays the role of
the dimension. But the convolution with kernel Iγ,k makes sense for any γ and k. In fact,
the “higher dimensional” interpretation of the parameter α played no role in the proof of
Theorem 4.1.

A different approach to the same problem is to consider the following formula proved
by B. S. Rubin [33], that he used in his proof of the admissible power weights mentioned
in Chapter 1 (it was indeed after conjecturing such a formula that we became aware of his
result):

(Tn−αf)(
√
t) = 2−αt1−

n
2Rα

2
(s

n−α
2
−1Wα

2
f0(
√
τ))(t) (4.59)

whenever f is a radially symmetric function in Rn with trace f0 and R,W are the
Riemann-Liouville and Weyl fractional integrals given by

Rλf(x) =
1

Γ(λ)

∫ x

0

f(t) dt

(x− t)1−λ (0 < λ < 1)
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4.5 Weighted Ap,q-type estimates for certain values of α and some
remarks on open problems

Wλf(x) =
1

Γ(λ)

∫ ∞
x

f(t) dt

(t− x)1−λ (0 < λ < 1)

Since the weights for one-sided fractional integrals as Rλ and Wλ have been extensively
studied, it is reasonable to expect that formula (4.59) will provide information on the class
of weights we are trying to characterize, at least for 0 < α < 2. Also, since the right-hand
side of formula (4.59) makes sense for any α ∈ (0, 2), rewriting the multiplier operator
Mα,m in this fashion would give a result similar to Theorem 4.8 for a larger class of α’s.
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Appendix A

A.1 Alternative proof or Stein’s theorem for singular

integrals with power weights

Here we will show how Lemma 1.7 can be used to obtain an alternative proof of Stein’s
result [39] in the case of radially symmetric functions, namely,

Theorem A.1. Let f(x) = f0(|x|) be a radially symmetric function in Rn and

(Tf)(x) = P.V.

∫
Rn

H(x, x− y)

|x− y|n
f(y) dy

and assume that ‖Tf(x)‖p ≤ C‖f(x)‖p, 1 < p <∞. Assume further that |H(x, x− y)| ≤
A. Then

‖(Tf)(x)|x|β‖p ≤ C‖f(x)|x|β‖p
if 1 < p <∞ and −n

p
< β < n

p′
.

Remark A.2. Although the power weights of the above theorem are exactly the power
weights belonging to Muckenhoupt’s Ap class, the advantage of Stein’s result is that it only
requires boundedness of the singular integral in Lp(Rn) and no additional regularity on the
kernel H(x, x− y) and, therefore, it can be applied even in the case of rough kernels.

Proof. Since ‖T (|x|βf(x))‖p ≤ C‖|x|βf(x)‖p, it suffices to see that ‖T (|x|βf(x))−|x|βTf(x)‖p ≤
C‖|x|βf(x)‖p.

But

|T (|x|βf(x))− |x|βTf(x)| =
∣∣∣∣∫

Rn

H(x, x− y)

|x− y|n
(|y|β − |x|β)f(y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn

H(x, x− y)

|x− y|n

(
1− |x|

β

|y|β

)
|y|βf(y) dy

∣∣∣∣
≤ A

∫
Rn
K(x, y)|y|β|f(y)| dy
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where

K(x, y) =
1− |x|

β

|y|β

|x− y|n
(4.1)

The theorem will be then a consequence of the following lemma:

Lemma A.3. Let K be as in (4.1) and

Uf(x) =

∫
Rn
K(x, y)f(y) dy

Then, ‖Uf‖p ≤ C‖f‖p if 1 < p <∞ and −n
p
< β < n

p′
.

Let
y = ry′, |y| = r, y′ ∈ Sn−1

and
x = ρx′, |x| = ρ, x′ ∈ Sn−1.

Then, since f(x) = f0(|x|),

Uf(x) =

∫ ∞
0

∫
Sn−1

1− ρβ

rβ

(ρ2 − 2ρrx′ · y′ + r2)
n
2

dy′f0(r)rn−1 dr

= ωn−2

∫ ∞
0

f0(r)

(
1− ρβ

rβ

)
rn−1

{∫ 1

−1

(1− t2)(n−3)/2

(ρ2 − 2ρrt+ r2)n/2
dt

}
dr

= ωn−2

∫ ∞
0

f0(r)

(
1− ρβ

rβ

){∫ 1

−1

(1− t2)
n−3

2

((ρ
r
)2 − 2(ρ

r
)t+ 1)

n
2

dt

}
dr

r

Therefore, in the notation of Lemma 1.7 we have that

Uf(x) = ωn−2

∫ ∞
0

f0(r)

(
1− ρβ

rβ

)
Iγ,k

(ρ
r

) dr

r

with γ = n, k = n−3
2

.

Now, remark that
‖Uf‖Lp(Rn) = wn−1‖Uf r

n
p ‖Lp( dr

r
)

and

ρ
n
pUf = ωn−2

∫ ∞
0

f0(r)r
n
p

(ρ
r

)n
p

(
1− ρβ

rβ

)
Iγ,k

(ρ
r

) dr

r

= ωn−2(f0(r)r
n
p ) ∗ (r

n
p (1− rβ)Iγ,k(r)).
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Therefore, by Young’s inequality,

‖Uf r
n
p ‖Lp( dr

r
) ≤ C‖f0(r)r

n
p ‖Lp( dr

r
)‖r

n
p (1− rβ)Iγ,k(r)‖L1( dr

r
)

= C‖f‖Lp(Rn)‖r
n
p (1− rβ)Iγ,k(r)‖L1( dr

r
)

and to conclude the proof of the lemma it suffices to see that

‖r
n
p (1− rβ)Iγ,k(r)‖L1( dr

r
) < +∞

Indeed, when r →∞, we know that Iγ,k ∼ Ckr
−γ, which implies that the integrability

condition at ∞ is n
p

+ β − n < 0, that is, β < n
p′

.

When r → 0, since Iγ,k(0) < C, the integrability condition is n
p

+ β > 0, that is,
β > −n

p
.

When r → 1, since we are in the case γ > 2k + 2, by Lemma 1.7 |Iγ,k(r)| ≤ Cγ,k|1 −
r|−γ+2k+2, and it follows that the resulting integral is finite.
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Appendix B

B.1 Alternative proof of the weighted imbedding the-

orem in Chapter 2

Here we present the original proof of the weighted imbedding theorem that appeared in
[11]. This proof of the theorem is based on an Lp −Lq estimate for the so-called Fourier-
Bessel (or Hankel) transform due to L. De Carli [8]. In this section, we shall therefore
follow the notations in that paper, that we recall here for sake of completeness:

For given parameters α, ν, µ De Carli introduced the operator

Lαν,µf(y) = yµ
∫ ∞

0

(xy)νf(x)Jα(xy) dx

where Jα denotes the Bessel function of order α. A particular case of this operator is the
Fourier-Bessel transform:

H̃αf(x) = Lαα+1,−2α−1f(x) (4.1)

The importance of this operator for our purposes is due to the fact that it provides an
expresion for the Fourier transform of a radial function u(x) = u0(|x|):

û(|ω|) = (2π)
n
2 H̃n

2
−1(u0)(|ω|). (4.2)

Morover, we recall that we have the inversion formula:

H̃α(H̃α(u))(x) = u(x) (equation (2.4) from [8]) (4.3)

Now, we state De Carli’s theorem (Theorem 1.1 in [8]):

Theorem B.1. Lαν,µ is a bounded operator from Lp(0,∞) to Lq(0,∞) whenever α ≥ −1
2
,

1 ≤ p ≤ q ≤ ∞, if and only if
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µ =
1

p′
− 1

q
and − α− 1

p′
< ν ≤ 1

2
−max

(
1

p′
− 1

q
, 0

)
.

Finally, we observe that the De Carli operators Lαν,µ enjoy two invariance properties
that will be useful in obtaining weighted estimates (and that are immediate from their
definition):

yeLαν,µ(f)(y) = Lαν,µ+e(f)(y) (4.4)

Lαν,µ(f) = Lαν−σ,µ+σ(xσf). (4.5)

Now we are ready to give or proof:

Proof. Let u(x) = u0(|x|) ∈ Hs
rad(Rn). Using polar coordinates we have that:

(∫
Rn
|x|c|u|q dx

) 1
q

= C

(∫ ∞
0

rc+n−1|u0(r)|q dr
) 1

q

.

Thanks to the inversion formula (4.3) for the Fourier-Bessel transform of order α = n
2
− 1

(which is just the usual Fourier inversion formula for radial functions) we obtain:(∫
Rn
|x|c|u|q dx

) 1
q

= C

(∫ ∞
0

rc+n−1|H̃α(H̃α(u0))(r)|q dr
) 1

q

= C

(∫ ∞
0

rc+n−1|Lαα+1,−2α−1(H̃α(u0))(r)|q dr
) 1

q

(using (4.1))

= C

(∫ ∞
0

|Lα
α+1,−2α−1+ c+n−1

q
(H̃α(u0))(r)|q dr

) 1
q

(using (4.4))

= C

(∫ ∞
0

|Lα
α+1−σ,−2α−1+ c+n−1

q
+σ

(rσH̃α(u0))(r)|q dr
) 1

q

(using (4.5))

where the value of the parameter σ can be chosen to fulfill our needs.

Indeed, now we apply Theorem B.1 with the following choice of parametes

p =
nq

nq − n− c
, σ =

n− 1

p
, α =

n

2
−1, ν = α+1−σ, µ = −2α−1+

c+ n− 1

q
+σ

Since it easy to see that, under the hypotheses of our theorem, all the restrictions of
Theorem B.1 are fulfilled, we get the bound:
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B.1 Alternative proof of the weighted imbedding theorem

(∫
Rn
|x|c|u|q dx

) 1
q

≤ C

(∫ ∞
0

|rσH̃α(u0)(r)|p dr
) 1

p

= C

(∫ ∞
0

(1 + r2)
sp
2 (1 + r2)−

sp
2 |H̃α(u0)(r)|p rn−1 dr

) 1
p

≤ C

(∫ ∞
0

(1 + r2)s|H̃α(u0)(r)|2rn−1 dr

) 1
2
(∫ ∞

0

(1 + r2)−
sp

2−p rn−1 dr

) 2−p
2p

≤ C‖u‖Hs ,

where in the last inequality we have used (4.2) and the fact that, under the restrictions
of our theorem,∫ ∞

0

(1 + r2)−
sp

2−p rn−1 dr < +∞
(

recall that
2n

2s+ n
< p

)
.

It remains to prove that the imbedding Hs
rad(Rn) ⊂ Lq(Rn, |x|c) is compact, which can

be done in exactly the same way as in Chapter 2, Section 2.
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