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Titulo: Desigualdades Geométricas e Interpolacién de operadores p -Schatten.

Resumen: En el conjunto de las perturbaciones de la identidad por operadores
de la clase p-Schatten que resultan positivos e inversibles (denotado por A, con
1 < p < o) intoducimos la métrica d,(a, b) definida por el infimo de las longitudes
de las curvas uniendo a con b, medidas con una métrica de Finsler. Tal espacio
métrico comparte propiedades analogas a la de un espacio métrico de curvatura no
positiva en el sentido de Alexandrov a pesar de no serlo. Entre ellas podemos citar
la existencia de curvas minizantes (geodésicas), la convexidad de la funcién dis-
tancia entre dos geodésicas, la proyeccién a todo conjunto cerrado y convexo. Por
otro lado vemos que las geodésicas resultan ser la curva interpolante que se ob-
tiene al aplicar el método de interpolacién de Calderdn a los espacios p-Schatten,
finalmente obtenemos como corolario directo de este resultado una serie de de-
sigualdades de tipo Clarkson.
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Title: Geometric Inequalities and Interpolation of p-Schatten Operators.

Abstract: In the set of perturbations of the identity by p-Schatten class operators
which result positive and invertible (that we denotes by A, with 1 < p < o0)
we introduce a metric dj,(a, b) defined by the infimum of the lengths of the curves
joining a with b, measured with a Finsler metric. Such metric space shares proper-
ties with a non-positive curvature metric space in the sense of Alexandrov despite
not being such space. Among them we can cite the existence of minimazer curves
(geodesics), the convexity of the function distance, the projection to a closed and
convex set. On the other hand we notice that the geodesics are the interpolating
curve obtained when applying the Calderon’s interpolation method, finally as a
by-product of this fact, we obtain Clarkson’s type inequalities.
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INTRODUCCION

En los afios 40 Alexandrov [1] y Busemann [17] mostraron que la nocién de espacio
con curvatura acotada superior o inferiormente tenia sentido para una clase maés
general de espacios métricos que las variedades Riemannianas, denominados “es-
pacios geodésicos” (espacios métricos donde alguna desigualdad de comparaciéon
de tridngulos es valida). Los trabajos clasicos sobre este tema son [41], [16] y [8]].
La geometria de los espacios métricos de curvatura no positiva es ciertamente rica
y tiene aplicaciones en muchos campos de la matematica, como teoria geométrica
de grupos, topologia, sistemas dindmicos y teoria de probabilidades.

Recordemos los principales resultados validos para los espacios métrico (X, d) de
curvatura no positiva en el sentido de Alexandrov (ANPC):

1. Existencia de curvas cortas: Dados dos puntos p, g € X, X simplemente conexo,
existe una tnica geodésica que conecta pcon 4.

2. Convexidad de la funcién distancia: Para cualquier par de geodesicas 7, d en X,
la funcién

es convexa.

3. Proyeccion a subconjuntos cerrados y convexos: Sea C un subconjunto cerrado y
convexo de X y g € X. Entonces existe un tnico go € C tal que

d(qo,q) < d(p,q),

para todo p € C.

En este trabajo probamos resultados analogos a los mencionados anteriormente en
una familia de subvariedades diferenciables las cuales no resultan ser espacios de
curvatura no positiva en el sentido de Alexandrov (sin embargo son espacios de
curvatura no positiva en el sentido de Busemann paral < p < coy parap =
1 satisface una desigualdad similar pero para una familia distinguida de curvas
cortas). Méas precisamente:

Sean H un espacio de Hilbert separable y B, = B,(H) la clase de operadores p-
Schatten de H, 1 < p < 0. Denotamos con

Ay={1+X:X€By 1+X>0},



donde 1 es el operador identidad y X es un operador autoadjunto perteneciente a
la clase p-Schatten (conjunto que denotamos B3').

El conjunto A, es una variedad diferenciable, con una carta natural dada por exp :
B — Ap. Asimismo, es facil ver que A, es simplemente conexa.

Dado Y € B’y 1+ X € A, consideramos la métrica de Finsler

Y llpaex = 111+ X)7V2Y (1 4+ X) 712

A partir de dicha estructura métrica sobre los espacios tangentes podemos calcular
la longitud de una curva « : [0,1] — A, de la manera natural

Ly(e) = [ 0

Sea d, la métrica dada por el infimo de las longitudes de las curvas uniendo dos
puntos cualesquiera, medidas en la métrica de Finsler. La variedad A, es completa

p,k(t)dt'

(tanto en sentido geodésico como en la métrica d,). Cabe aclarar que esta métrica
no es Riemanniana.

En esta tesis estudiamos las propiedades de (Ap,d,) poniendo énfasis en aquellas
que comparte con los espacios métricos de curvatura no positiva. A continuacién
comentamos la organizacién y los principales resultados obtenidos.

En el capitulo 2, introducimos la notacién y los resultados preliminares necesarios
para todo el trabajo.

En el capitulo 3, analizamos las propiedades topolégicas y la estructura diferencia-
ble de A,.

En el capitulo 4, para estudiar la geometria en el caso p = 1, correspondiente a per-
turbaciones de operadores nucleares, nuestro enfoque, similar al de [49], consiste
en utilizar herramientas de la geometria diferencial, méds precisamente métricas de
Finsler, y tratar tal conjunto como un espacio homogéneo.

Los casos restantes, 1 < p < oo, se estudiaron en el capitulo 5 utilizando fuerte-
mente la convexidad uniforme de los espacios tangentes B}’ (propiedad no dispo-
nible en el caso p =1).

Los resultados obtenidos son los siguientes:

Teorema I. Sean a,b € A, con1 < p < co. Lacurva v,,(t) = az(a~2ba=2)laz
es la mas corta que los une y por lo tanto

Ly(7ap) = dp(a,b) = [|log(a~2ba=2)],.

Ademéds, sil < p < o0, 7, es la tinica curva con tal propiedad.



La existencia de curvas cortas nos permite introducir la nocién de convexidad en
Ap de una forma natural. Decimos que K C A, es convexo si para todo a,b € K la
geodésica 7, () € K para todo t € [0,1].

Otro hecho interesante que satisfacen las subvariedades estudiadas es que la dis-
tancia antes definida resulta ser convexa sobre geodésicas, es decir:

TeoremaIl. Sean a, b, c,d € Ay, 1 < p < 00,79, Y .4 las respectivas geodésicas que
los une. Luego, para t € [0,1]

dP('}’a,b(t);'Yc,d(t)) < <1 - t)dp(al C) + tdp(bl d)-

Paral < p < oo, las subvariedades A, satisfacen que la funcién exponencial au-
menta distancias (propiedad que verifica toda variedad Riemanniana de curvatura
seccional no positiva) es decir:

Teorema IIl. Seana € A, y X, Y € B;“. Entonces

X — YHp,u < dp(expa(X),expa(Y)).

En [7], Ball et al. introdujeron la nocién de convexidad p uniforme en espacios
de Banach. Recordemos que un espacio de Banach (X, |.||) es p-uniformemente
convexo para 2 < p < oo si existe una constante C > 1 tal que

v+ w

|| v—w
2

2

1 1 -
17 < Sllell + 5l = | 222,
paratodov, w € X.
Por ejemplo, los espacios B, con 1 < p < 2, son 2-uniformemente convexos con
C =1/4/p—1 (ver [7]), y p-uniformemente convexos con C = 1si2 < p < o0
(desigualdades de Clarkson, ver Proposicion [2.2.3). Una generalizacién natural de

la convexidad p uniforme a un espacio métrico geodésico (X, d) es la siguiente:

Para todo x € X y cualquier curva geodésica minimal 7 : [0, 1] — X, tenemos

A0, 7(0) + 2437 (1)P ~ 555 d((0), 7 (1))

N =

d(x,7(1/2))F <

En la Proposicién 5.3.11|establecemos que A, es r-uniformemente convexo con r =
max{p,2}.



Teorema IV. Sean X € By’ y 7 : [0,1] — A, una geodésica. Entonces para 1 < p <
00, existe una constante ¢, > 0 tal que

1
(dp(eX,70)" +dp(eX,m)") = Jerdp(r0, 1)

En la seccion 5.3.3 enunciamos y demostramos el teorema sobre la existencia y uni-
cidad de una geodésica minimizante entre un punto y un subconjunto convexo y
cerrado:

Teorema V. Sea K un subconjunto cerrado y convexo de A, con1 < p < co. En-
tonces para cada punto a € A, existe un punto g9 € K tal que

Ly ('Ya,qo) = dp(a, K).

Paral < p < 2, las subvariedades satisfacen una condicién del tipo de curvatura
no positiva en el sentido de Alexandrov (ver Teorema [5.3.15).

Teorema VI. Dados X € By, 7: : [0,1] — Ap una geodésicay 1 < p < 2. Entonces
para todo t € [0,1]

dp(eX, )" < (11— t)dp(eX, Yo)" + tdp(ex, 71)" —t(1 - t)crdp('YOr'Yl)r-

En el capitulo 6, al aplicar el método de interpolacién complejo de Calderén a los
espacios By, con las métricas de Finsler antes definidas, obtenemos que las geodési-
cas minimizantes resultan ser la curva de interpolacion. Mds precisamente:

Teorema VIL. Sean a,b € B(H) positivos e inversibles, 1 < p,s < oo, n € Ny
t € (0,1). Entonces

_ p(n)
)i = B st

donde BSE;S denota el espacio de n-uplas de operadores de la clase p-Schatten

dotado con la norma [[(Xo, ..., Xu-1)ll,5s = (IXoll}p + - + HXnAH;,b)l/S e in-

dicamos con (B}(fa),.s, B;’jb); s)j el espacio de interpolaci6n asociado al par B,(,Q;s y ;nb) .



Una aplicacién directa de este teorema nos brinda una serie de desigualdades de

tipo Clarkson para las normas ||.|| 4.

Teorema VIII. Dados a,b € B(H) positivos e inversibles, n € N, X, ...,

By, 1 <p <ooyte|0,1], entonces

n—1
SETAES oot 2
]:

0,,_1 son las n raices de la unidad,

<K

donde 6, ...,
np—1 Hb1/2a71b1/2H*Pf
n Hbl/zaflbl/ZH*Pf

k=k(p,ab,t) = {

n Ha1/2b—1a1/2HPf

np—1 Hal/Zb—lal/ZHPt

K=K(p,ab,t)= {

Teorema IX. Dados a,b € B(H) positivos e inversibles, n € N, X, ...,

By, 1 < p <ooytec[0,1], entonces

n—1 — —
SMETES oo
= k=0 j=

donde 6y, ..., 0,_1 son las n raices de la unidad,

1’1272/;7 Hbl/za—lbl/zH—Zt
k=k(p,a,bt) = { n/P bt/ 2a 112
nz/p Hal/zbflal/ZHZt
n2-2/p Hal/zbflal/ZHZt

K=K(p,a,b,t) = {

X,_1 €
guxjuz,a,
sil<p<2,
si 2<p <o,
sil<p<2,
si 2 <p<oo.

X1 €

p(t) < KZ 1%l

sil<p<2,
si2<p<oo

sil<p<2,
si2<p<co.

Los resultados obtenidos en esta tesis tienen como precedentes a los siguientes tra-

bajos:

1. En 1955, Mostow [52] dot6 de una estructura Riemanniana al conjunto M}
de matrices positivas e inversibles; la métrica inducida transforma a dicho
conjunto en un espacio simétrico y de curvatura no positiva.



. Corach et al. [22], estudiaron las propiedades geométricas de la variedad
G®, donde G es el conjunto de elementos autoadjuntos e inversibles de una
algebra C* A con identidad.

. Mata Lorenzo y Recht en [49] dieron un marco general a la geometria de es-
pacios homogéneos reductivos de dimensién finita en un dlgebra de Banach.
Maés recientemente, Beltita [11] publicé un libro sobre espacios homogéneos
de operadores que recopila la resultados anteriores.

. Andruchow et al. mostraron en [3] que si A C B(H) es una &lgebra C*,
a,b elementos positivos e inversibles en A, y ||.|l. y ||.||» las correspondi-
entes normas cuadréticas en H inducidas por dichos elementos, i.e. ||x||, =
(ax, x), entonces el método de interpolaciéon complejo estd determinado por
Yap- Tal curva es la tinica geodésica de la variedad de elementos positivos e
inversibles de A, que une a con b.

. En [46], Larotonda di6 una estructura Riemanniana al conjunto X de opera-
dores de Hilbert-Schmidt unitizados, positivos e inversibles, a través del pro-
ducto interno definido por la traza. Esta métrica convierte a X en una var-
iedad de Hilbert métricamente completa, simplemente conexa y de curvatura
no positiva.
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Chapter 1

Introduction

In the 1940s Alexandrov [1] and Busemann [17] showed that the notions of upper
and lower curvatures bounds make sense for a more general class of metric spaces
than Riemannian manifolds, namely for “geodesic spaces”. For more details on
such metric spaces we refer to [41], [16] and [8]

La geometria de los espacios métricos de curvatura no positiva es ciertamente rica
y tiene aplicaciones en muchos campos de la matemadtica, como teoria geométrica
de grupos, topologia, sistemas dindmicos, teoria de probabilidades, etc.

We recall the basic properties of these spaces:

1. Existence of short curves : Any two points in a simply connected Alexandrov
non positive curvature space (ANPC) can be connected by a unique geodesic.

2. Projection to closed and convex subsets: Let (X,d) be a global Busemann non
positive curvature space (BNPC), C a closed, convex subset of X and q € X.
Then there exists a unique qg € C with

d(qo,q) < d(p,q),

forall p € C.
3. Convexity of the distance function: If vy, be geodesics in X, with X a BNPC,
then the
f(t) = d(y(8);6(t))
is convex.

23



24 Chapter 1. Introduction

Let H be a separable Hilbert space and B, = B,(H) the p-Schatten class with 1 <
p < co. We denote by

Apy={1+X:X€By1+X >0},

where 1 is the identity operator and X is a selfadjoint operator belongs to B, (set
which we denote by Bj').

The set A, is a differentiable manifold, with a natural chart given by exp : B;“ — Ap.
It is easy to see that is simply connected.

LetY € B’ and 1+ X € A, we consider the Finsler metric

Y llpaex = 111+ X)72Y (1 4+ X) 712

From the metric structure on the tangent spaces we can measured the length of a
curve & : [0,1] — A, de la manera siguiente

1
Ly(w) = [ 1600 aco .

We consider the metric space (A, d,) where d,, is given by the infima of the lengths
of curves joining two given points in A,, measured with the Finsler metric. The
manifold is complete (in the sense geodesic and metric)

In this thesis we study the properties of (A, d;) focusing on those that share with
the non positive curvature metric spaces. Few words about the structure of this
work.

In the Chapter 2, we introduce the notation and the necessary preliminaries.

In el Chapter 3, we analyze the topological and differential properties of A,.

In the Chapter 4, we consider the geometry in the case p = 1. We treat the set
as a homogeneous space (i.e. A; = M/G)- with a connection and Finsler metric,
in a way that for arbitrary elements a,b € A, there exists a unique geodesic with
endpoints 2 and b. We investigate the basic facts of Finsler geometry on orbit spaces
M/ G for isometric proper actions of classical Banach-Lie groups. The geodesics are
minimal curves in the metric space M/G.

For the cases 1 < p < oo, we use strongly the uniformly convexity of the tangent
spaces .

The principal results obtained are the following;:

Theorem 1. Let a,b € A, the geodesic v,,(t) = az(a~2ba~?)faz is the shortest
curve joining them. So

Ly(7ap) = dp(a,b) = [|log(a~2ba=2)]|,.
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Furthermore, if 1 < p < o0, 7, the unique curve with such property.

Another fact that the submanifolds A, hold is the convexity of the distance func-
tion (property that verifies any Riemannian manifold of non positive sectional cur-
vature), i.e.

Theorem II. Let a,b,c,d € Ap, 1 < p < o0, 7, and 7.4 the respectively geodesics
joining them. Then, for all t € [0, 1]

dp(')/a,b(t);’)’c,d(t)) < (1 - t)dp(al C) + tdp(b/ d)

For 1 < p < oo, the submanifolds A, verifies that the exponential map increases
distances.

Theorem III. For alla € Ay and X, Y € B;f‘we have

X — Y”;ﬂ,a < dp(expﬂ(X),expﬂ(Y)).

In [7], Ball et al. introduced the notion of p-uniform convexity in a Banach space.
A Banach space (X, ||.||) is said to be p-uniformly convex for 2 < p < oo if there is
a constant C > 1 such that

v+ w

I v—w
2

2

1P < Sloll? + llwll? — 222
holds for any v, w € X.

These inequalities turned out to be useful instruments in Banach space theory and
the geometry of Banach spaces. For instance, the B, spaces are 2-uniformly convex
withC =1/,/p—1if1 < p < 2 (see [7], Proposition 3), and p-uniformly convex
with C = 1if 2 < p < co (Clarkson’s inequality, see Proposition[2.2.3).

One natural generalization of the p-uniform convexity to a geodesic metric space
(X, d) is the following:

For any x € X and any minimal geodesic 77 : [0,1] — X, we have

1

(e, 1(1/2))P < (e (0))? + (e p(1)) ~ Zpd ()71 (LD

If C = 1and p = 2, then the inequality corresponds to the CAT(0)-property.
In Proposition|5.3.11|we establish that A, is r-uniform convex with con r = max{p,2}.
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Theorem IV. Let X € B} and 7 : [0,1] — A, be a geodesic. Then for 1 < p < o0
there exist a constant ¢, > 0 such

1
2

1

dp(eX,712)" < = (dp(e®,7v0) +dp(eX, 11)") — 16 (10, m)",

where r = max{p,2}.

In Section 5.3.3 we prove the existence and uniqueness of geodesics that realizes
the distance betwen a point and a convex and closed subset of A:

Theorem V. Let K be a convex and closed subset of A, with 1 < p < co. Then for
any a € Ay, there is a unique qo € K such that:

Lp('ya,qu) = dp(a, K).

For 1 < p < 2, the submanifolds satisfies a type of non positive curvature in the
sense of Alexandrov (ver Teorema [5.3.15).

Theorem VI. Let X € B;”, vt : [0,1] — Ap a geodesicand 1 < p < 2. Then for all
te[0,1]

dp(eX, 1) < (1= 1)dy(e¥,70)" + tdy(e¥, m)" — t(1 = t)erdy(70,11)"

Finally, in Chapter 6, al aplicar el complex interpolation methos to the spaces B,
with the con Finsler metrics before defined, we obtain that the geodesics curves are
the interpolating curve. More precisely:

Theorem VII. Let a,b € B(H) positive and invertible operators, 1 < p,s < oo,
ne€Nandt e (0,1). Then

Plns)[f] T Pprap()s’

(n)
p/bis

norm ||(Xo, ... , Xy—1)

where B/ denotes the space of n-tuples of p-Schatten operators endowed with the

= (||X0||;b + ..+ ||Xn_1|];/b)1/s and one indicates with
(n)

(Bgfa);s, B;’Zs)[t] the complex interpolation space, associated with the couple B s

()
and B pijb; .

|| p,b;s
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As a direct consequence of this theorem, we obtain Clarkson’s type inequalities for
the norms ||.|| 4.

Theorem VIII Let a,b € B(H) positive and invertible operators, Xy, ..., X;—1 € By,
neN,1<p<oandt € [0,1], then

B n—1 p n—1 n—1 f p B n—1 p
kY%, < 212 6%l 0,0 < K L IXl,
j=0 k=0 j=0 j=0

where 0, ..., 0,,_1 are the n roots of the unity,

. nP1 |62 2| T i 1< p <2,
k:“”%h”:{ w0122 T i 2 < p < oo,

o - n||a/26-1al2|" i 1< p <2,
K=K(p,a,b,t)= { a1 Hal/zb_lal/szt if 2<p < oco.

Theorem IX. Let a,b € B(H) positive and invertible operators, Xy, ..., X,—1 € By,
neN,1<p<ooandt € [0,1], then

n—1 » n—1 n-1 f ) n—1 ’
k Z HXJ'Hp,a <) Z GJ'XJ'Hp,%,b(t) <K Z HX]'HW’
j=0 k=0 j=0 j=0

where 6, ..., 0,,_1 are the n roots of the unity,

) |22 1< p <,
k=k(p,a,bt)= { n2/P (|02 1612 7H i 2 < p < oo,

B - w27 |[aV/2b 1012 |* if 1< p <2,
K=K(p,a,b,t) = { 2-2/p Hal/zb_lal/zHZt if 2 < p < oo

The results obtain in this thesis have as precedents the following works:

1. In 1955, Mostow [52] gave a Riemannian structure to the set M, of positive
invertible matrices; the metric induced makes a symmetric and non positive
curvature space.

2. Corach et al. [22], studied the geometric properties of G°, where G* is the set
of invertible and selfadjoint elements of a C*-dlgebra A with unity.
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3. Mata Lorenzo y Recht en [49] gave a framewok to the geometry of reductive
homogeneous spaces of infinite dimension. Recently, Beltitd ([11]) published
a book about .

4. Andruchow et al. proved in [3] thatif A C B(H) is a C* algebra, 4, b two in-
vertible positive elementsin A, and || ||, and || ||, the corresponding quadratic
norms on H induced by them, i.e. ||x||, = (ax, x), then the complex interpo-
lation method, is also determined by 7, ;. This curve is the unique geodesic
of the manifold of positive invertible elements of A, which joins a and b.

5. In [46], Larotonda gave a Riemannian structure to the set of positive, invert-
ible and unitized Hilbert- Schmidt operators X induced by the trace.




Chapter 2

Preliminaries

2.1 Linear Operators in Hilbert Spaces

Definition 2.1.1. A complex linear space H is called a Hilbert space if there is a complex
valued function (.,.) : H x H — C with the properties

1. (n,y) > 0and (,n) = O0ifand only ify = 0;
2. (n+¢,0) = (n,0)+(,0) forally,,ocH
- \B1,6) = B {1, ) forall ;& € Hand p € C;

- {&,m) = (n,8) foralln;¢ € H;

5. H is complete with the norm defined by ||C|| = /(C, ).

SN

HN

Troughout, we will suppose that H is a separable Hilbert space.
A linear map (operator) T : H — H is said to be bounded if there is a number K
with

IT¢]] < K¢l Vg € H.
The infimum of all such K is called the norm of T, written ||T||. Boundedness of
an operator is equivalent to continuity. Let B(H) denote the algebra of bounded
operators acting on H.

To every bounded operator T € B(H) there is another T* € B(H), called the adjoint
of T, which is defined by the formula

(Tn, ) = (1, T°G),

29
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forally, ¢ € H.

ITIl = sup  [{Ty,&)| =T = |T°T||"">.
i<t gli<1

Definition 2.1.2. The identity map on H is a bounded operator denoted 1.
An operator T € B(H) is called self-adjoint if T = T*.
An operator T € B(H) is called positive (T > 0) if (Ty,n) > 0Vy € H. Wesay T > S
if T — S is positive.
An operator T € B(H) is called unitary if TT* = T*T = 1. We denote by U(H) the set of
all unitary operators in H.

We denote by GI(H) the general linear group of all invertible bounded operators
on H and by GI(H)™ the subset of the positive and invertible operators.

Given T be a positive operator in B(H). Then, exist a unique positive operator B
such that T = B? which we denote T'/2.

Definition 2.1.3. |A| = (A*A)!/2.
Every invertible operator T admits a representation in the form
T = PU,

where P = |T*| and U € U(H). Such decomposition is called a polar decomposi-
tion of T.

Definition 2.1.4. Let T € B(H).

The resolvent set of T, denoted p(T) is the set of scalars A € C such that A1 — T is bijective
with a bounded inverse.

IfA € p(T), then Ry(T) = (A — T) "L is called the resolvent of T (at A).

IfA & p(T), then A is in the “spectrum of T” = o(T).

Note: From the Open Mapping Theorem, if A — T is bijective, then its inverse is continuous

1. A € 0(T) is said to be an eigenvalue of T if ker(A — T) # 0. If 0 # x € ker(A —T)
we say that x is an eigenvector. The set of eigenvalues is called the point spectrum of
T.

2. Ascalar A € o(T) which is not an eigenvalue and for which ran(A — T) is not dense
is said to be in the residual spectrum of T.

Definition 2.1.5. T € B(H) is said to be compact if T(ball H) has compact closure in
H, where ball H = {n € H : ||5|| < 1}. The set of compact operators in H is denoted by
By(H).
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Remark 2.1.6. In this remark we recall some basic properties of compact operators.

1. By(H)isalinear spaceandif {T,} C Bo(H)and T € B(H) such that||T, — T| —
0,then T € By(H),

2. If T € By(H) and S € B(H), then TS and ST are compact,

In addition, we consider an important characterization of compact operators. The
following conditions are equivalent:

1. T € By(H).
2. T maps bounded sets into precompact sets (i.e. sets with compact closure).

3. T maps bounded sequences into sequences which have convergent subse-
quences.

4. T* € By(H).

5. There is a sequence {T,} of operators of finite rank (i.e. ran(T,) is finite di-
mensional) such that || T, — T|| — 0.

Theorem 2.1.7. (Riesz-Schauder) Let T € By(H). Then, the following hold:
1. 0 € o(T),

2. o(T) — {0} consists of eigenvalues of finite multiplicity (i.e. the dimension of the
A-eigenspace (ker(T — A)) has finite dimension VA € o(T) — {0} ),

3. o(T) — {0} is either empty, finite or a sequence converging to 0 (i.e. it is a discrete
set with no limits other than Q).

Now, we recall a result that essentially says that: “compact operators on a Hilbert
space, can be ‘diagonalized” over an orthonormal basis”.

Theorem 2.1.8. (Canonical form for Compact Operators, [60], Th. 1.4) Let T € By(H).
Then T has the norm convergent expansion,

T = an (Pu, )

(where he sum may be finite or infinite), each s,,(T) > 0, decreasingly ordered with s, —
0 and ¢, Py are orthonormal sets (not necessarily complete). Moreover, the s,(T) are
uniquely determined. The s, = s,(T) are eigenvalues of |T| = (T*T)"/? and are called
singular values of T.
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2.1.1 The p-Schatten class

If T € By(H) we denote by {s,(T)} the sequence of singular values of T (decreas-
ingly ordered). For 1 < p < oo, let

IT||, = (Y sa(T)P)/?
and
Bp(H) ={T € B(H) : [|T||, < oo},

called the p — Schatten class of B(H) (to simplify notation we use B,). That is the
subset of compact operators with singular values in [,,.

By convention || X|| = || X||, = s1(X). A reference for this subject is [36].

Now, let us recall some properties of the classes B,

Theorem 2.1.9. Let1 < p < oo.

1. By is a -ideal of B(H),

2. [|X||, = [UXV||, forall X € B,and U,V € U(H),

3. The set of all finite-dimensional operators is dense in By,

4. Ifp1 <p2andT € By, then T € Bp, and |[T|,,, < [|T||,,,,

5. If the operators T; with j = 1,2,...,n belong respectively to the spaces By, and
n

pj_l < 1, then the operator T = T T»...T,, belongs to the space B,, where

]
pl= ) pj’l, and
j=1

1

ITIl, < Ty, 1 T2llp, - 1 Tull, -
In particular, if T € By and S € By, with pfl + qfl =1, then TS,ST € By and
ITSIy < ITH, SN, STy < 1T, (IS, -
Remark 2.1.10. A norm |||.||| defined on I C B(H) that satisfies
[Huxvif| = [[1X|[l,

for all X € I and for pair of unitary operators U, V is called a norm unitarily invari-
ant.
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From now on an operator T will be called nuclear if it belongs to By, i.e. if
ITlly = Y_5u(T) < co.
n

Another characterization of a nuclear operator will be given below, which makes it
possible to introduce the notion of a trace for such operators.

Lemma 2.1.11. Let T be a positive operator. Then the sum
tr(T) := Z (T, 1n)
n=1

has the same value (finite or infinite) for any orthonormal basis {1, } of H. The number
tr(T) is called the trace of T and it has the following properties:

1. tr(T+S) =tr(T)+tr(S),

2. tr(AT) = Atr(T) forall A > 0,

3. tr(UTUY) = tr(T) for any unitary operator U,

4. If0 < T < S, then tr(T) < tr(S).
The connection between the p-Schatten operators and the trace is simple.
Theorem 2.1.12. T € B, ifand only if || ||, = (¢ [T|")'/7 < oo,
Theorem 2.1.13. If 1 < p < oo and

¢ : By — By, ¢(T)(S) := tr(ST),

then ¢ is an isometric isomorphism:

ITllg = sup{[tr(VT)[: V € By, [VI[y <1} = [[¢(T)].

2.2 Uniform Convexity

We begin by recalling the definition and some of the properties of uniformly convex
Banach spaces which can be found in [10], [15], [29] and [30].

Definition 2.2.1. A Banach space X is called uniformly convex if and only if for all € €
(0,2], the modulus of convexity

. 1
Jy ) (e) == inf{1 — Sflx+yll + x| = lly| = L |x —yll = e}

satisfies (SHH () >0
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Theorem 2.2.2. For a Banach space X the following are equivalent:

1. X is uniformly convex

2. X has an equivalent uniformly convex norm ||.|| with modulus of convexity of power
type q; i.e. for some k > 0 one has &) () > ke for all e € (0,2].

3. X has an equivalent uniformly smooth norm ||.||, i.e. such that its modulus of smooth-

ness .
P11 (1) == Fsuplllx +yll +[lx —yll =2 [[x| = Llyl| <
T
satisfies lim M =0.
T7]0 T
4. X has an equivalent uniformly smooth norm ||.| with modulus of smoothness of

power type s, i.e. such that for some ¢ > 0 one has p | (t) < cT° forall T > 0.

5. X has an equivalent norm which is both uniformly convex and uniformly smooth and
which has moduli of convexity and smoothness of power type.

Let us recall classical inequalities for the p-Schatten class B).
Proposition 2.2.3. 1. For1<p<2
27| A+ 11BIIE) < 1A= Bl + 1A+ Bl < 2(|AlIF + IBI}),  @1)

— 2 2 2 2 2 2
2272V (|| Al + 1BII,) < 1A = Bl + A+ B[, < 22P(| Al + [IB]l,)- (2:2)

2. For2 <p <o

21415 + 1Bl < 1A= Bllp+ lA+Blp < 2°7L(JAIIS + [IBIIS),  (2.3)

2 2 2 2 - 2 2
22/P(||All, + I1BI,) < lA = BIl, + |4 + Bll, < 22727 (|| A|l} + |IB]l,)- (24)

The inequalities and are called Clarkson inequalities. The proofs of these
inequalities can be found in [14].

These inequalities have useful applications, in particular they imply the uniform
convexity of By.

Theorem 2.2.4. For 1 < p < oo, By, is uniformly convex.
Proof. See [31] for p > 2 and [50] for general p. O
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2.3 Different notions of convexity in metric spaces

Following [33], one can define two different notions of convexity of metric spaces.
A midpoint map for a metric space (X, d) isamap m : X x X — X satisfying

dm(x,y),%) = 3d(cy) = d(m(xy)y)  VryeX

Definition 2.3.1. ([33]) Let (X, d) be a metric space admitting a midpoint map. (X, d) is
called

1. ball convex if for all x,y,z € X
d(m(x,y),z) < max{d(x,z),d(y,z)}. (2.5)

for any midpoint m. It is called strictly ball convex if the inequality is strict whenever

X #y.

2. distance convex if for all x,y,z € X

d(m(x,y),z) < =[d(x,z) +d(y,z)], (2.6)

N =

for any midpoint map m.

Note that the condition (2.6) implies condition (2.5), and also that strictly ball con-
vexity implies the uniqueness of a midpoint map.
Now, we give the definition of uniform ball convexity of metric spaces:

Definition 2.3.2. Let (X, d) be a metric space admitting a midpoint map. (X, d) is called
uniformly ball convex if for all € > 0 there exists a p(€) > 0 such that for all x,y,z € X
satisfying d(x,y) > emax{d(x,z),d(y,z)}, it holds that

d(m(x,y),2) < (1 - ple)) max{d(x,z),d(y,2)}

for the (unique) midpoint map m.

2.4 Non positive curvature metric spaces

For the development of the theory of nonpositively curved metric spaces, we shall
consider works that have been carried out in two different directions: the works of
H. Busemann and the works of A. D. Alexandrov and his collaborators. Both Buse-
mann and Alexandrov started their works in the 1940s, and the two approaches
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gave rise to rich and fruitful developments, with no real interaction between them.
The ramifications of these two theories continue to grow today, especially since the
rekindling of interest that was given to nonpositive curvature by M. Gromov in the
1970s.

Let us briefly describe the basic underlying ideas of these works. First we need
to recall a few definitions. For more details on metric spaces with non-positive
curvature we refer to [41].

We now introduce the notion of geodesic space (X, d).

Definition 2.4.1. A complete metric space (X,d) is called a geodesic length space, or
simply a geodesic space, if for any two points x,y € X, there exists a shortest geodesic
joining them, i.e. a continuous curve such that vy : [0,1] — X with y(0) = x,y(1) =y,
and

d(x,y) = L (7).

Here, L4 (y) denotes the length of vy (respect to the metric d) and it is defined as
n
Li(y) := sup{) _d(v(tii1),7(t)): 0=ty <t <..<t,=1,n€ N}
i=1

A curve 1y : [0,1] — X is called a geodesic if there exists € > 0 such that
Ld('y][t/t/]) =d(y(t),v(t)) whenever |t — t’| < €.
Finally, a geodesic 7y : [0,1] — X is called a shortest geodesic if

LY () = d(7(0),7(1)).

For a geodesic metric space the condition can be phrased as follows: A geodesic
metric space is distance convex if and only if for all x € X the distance function
dy :=d(x,.) is convex, where the convexity of d, means that the restriction of d, to
every geodesic is a convex function.

We recall Busemann’s definition of nonpositive curvature, which has the advantage
of being the simplest to describe.

Definition 2.4.2. A geodesic space (X, d) is said to be an Busemann nonpositive curvature
space if for every p € X there exists 5, > 0 such that for any x,y,z € B(p,d,) and any
shortest geodesic 1,72 : [0,1] — X with 71(0) = 72(0) = x € B(p,0,) and with
endpoints (1), v2(1) € B(p, ), we have

A (5) m(3)) < 5l (1), (D).

—_
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Now we consider the point of view of Alexandrov.

Definition 2.4.3. A geodesic space (X, d) is said to be an Alexandrov nonpositive curva-
ture space if for every p € X there exists p, > 0 such that for any x,y,z € B(p,p,) and
any shortest geodesic vy : [0,1] — X with v(0) = x, y(1) = z, we have for 0 < t <1

Py, v(1) < (1—1)d>(y,1(0)) + td?(y, ¥ (1)) — (1 — )L ()%

It should be noted that a metric space which is nonpositively curved in the sense of
Alexandrov is also nonpositively curved in the sense of Busemann, but that the con-
verse is not true. For instance, any finite-dimensional normed vector space whose
unit ball is strictly convex is nonpositively curved in the sense of Busemann, but
if the norm of such a space is not associated to an inner product, then this space
is not nonpositively curved in the sense of Alexandrov. Alexandrov mentions this
example in [2], p. 197.

2.5 Manifolds

In this thesis we work with smooth manifolds modeled in Banach spaces or usually
called Banach manifolds, thus it is a topological space in which each point has a
neighborhood homeomorphic to an open set in a Banach space (a more involved
and formal definition is given below). We refer to Lang’s book ([45]) for the basic
differential geometry of this type of manifolds.

We recall the definition of this object.

Definition 2.5.1. Let X be a set. An atlas of class C" on X is a collection of pairs (called
charts) (Ui, ¢;) satisfying the following conditions:

1. Each U, is a subset of X and the U, cover X.

2. Each ¢; is a bijection of U; onto an open subset ¢;(U;) of some Banach space E; and
forany i, j, ¢;(U; N U;) is open in E;.

3. The map
Piei ' (Ui U)) — ¢;(UiN L)
is a C"-isomorphism for each pair of indices i, j.

One can then show that there is a unique topology on X such that each U; is open
and each ¢; is a homeomorphism. Very often, this topological space is assumed to
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be a Hausdorff space, but this is not necessary from the point of view of the formal
definition.
If all the Banach spaces E; are equal to the same space E, the atlas is called an E-
atlas. However, it is not a priori necessary that the Banach spaces E; be the same
space, or even isomorphic as topological vector spaces. However, if two charts
(U;, ¢;) and (U}, ¢j) are such that U; and U; have a non-empty intersection, a quick
examination of the derivative of the crossover map
shows that E; and E; must indeed be isomorphic as topological vector spaces. Fur-
thermore, the set of points x € X for which there is a chart (U;, ¢;) with x € U;
and E; isomorphic to a given Banach space E is both open and closed. Hence, one
can without loss of generality assume that, on each connected component of X, the
atlas is an E-atlas for some fixed E.
A new chart (U, ¢) is called compatible with a given atlas {(U;, ¢;) : i € I} if the
map

¢yl PUNU;) — ¢ (UN ;)

is an r-times continuously differentiable function for every i € I.

Two atlases are called compatible if every chart in one is compatible with the other
atlas. Compatibility defines an equivalence relation on the class of all possible at-
lases on X.

A C'-manifold structure on X is then defined to be a choice of equivalence class of
atlases on X of class C". If all the Banach spaces E; are isomorphic as topological
vector spaces (which is guaranteed to be the case if X is connected), then an equiv-
alent atlas can be found for which they are all equal to some Banach space E. X is
then called an E-manifold, or one says that X is modeled on E.

A morphism f : X — Y will be called a submersion at a point x € X if there exists a
chart (U, ¢) at x and a chart (V, ¢) at f(x) such that ¢ is an isomorphism of U onto
a product Uy x U, and such that the map

Yfep = fou:h xUp —V

is a projection. We say that f is a submersion if it is a submersion at every point.
For manifolds modeled on Banach spaces, we have the usual criterion for submer-
sion in terms of the differential.

Proposition 2.5.2. Let X,Y be manifolds of class CP modeled on a Banach spaces. Let
f: X — Y bea CP-morphism. Let x € X. Then:

f is a submersion at x if and only if exists a chart (U, ¢) at x and (V, ¢) at f(x) such that
fvu(@(x)) is surjective and its kernel splits.
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Recall that a Finsler metric on a manifold M (infinite dimensional) is a function
F : TM — R satisfying the following conditions:

1. The function F is continuous on the complement of the zero section,

2. It defines a norm on each tangent space T,M, witha € M.

This means that F(X) > 0for X # 0, F(cX) = [¢c|X forc € R,and F(X+Y) <
F(X)+F(Y).

Remark 2.5.3. In the finite dimensional theory of Finsler manifold [9], one defines
Finsler structures by functions F : TM — R which are smooth on the on the com-
plement of the zero section and positively homogeneous and strong convex on each
tangent space. Since, we work with not necessarily smooth norms, we have to give
up this requirement.

Finally, we recall that a set G endowed with a group structure and an analytic Ba-
nach manifold structure is called a Banach-Lie group; if these two structures are com-
patible in the following sense: the mapping

GxG—G,(gh) —gh,

is analytic. A reference for this subject is [38].
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The set Ap

3.1 Topological and differentiable structure of A, with 1 <
p < oo.

Consider for 1 < p < oo the following set of Fredholm operators,
L,={Bp+XeB(H):BcC, X€B}.

L, is a complex linear subalgebra consisting of the p-Schatten class perturbations
of multiples of the identity. There is a natural norm for this subspace

1B+ Xllpy = Bl + 1 XIlp-
Lemma 3.1.1. (L, || ||(p)) is a complex Banach space.
Note thatif B+ X,y +Y € L, then
LB+ X[ < (18 + Xl ),

2. 1B+ X)(r+Y)lpy < 1B+ Xyl + Yl )-

In particular, (£,, +,.) is a Banach algebra and (L, ||.[|(,)) is the unitization of
By [I-l,)-
The selfadjoint part of £, is

Ly ={B+XecLy: (B+X)" =p+X},

40
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Remark 3.1.2. 1. Note that since dim H = oo, the multiples of the identity p1
and the operators X € By, are linearly independent. Therefore

B+ X e Ly ifandonlyif BER, X" =X,
Formally,
L, =C®B, and L) =R& B

Inside E;“, we consider

Apc={B+XeL,: p+X >0} CGI(H)".
and, in particular if = 1 we denote by

Ap={1+XeL,: 1+X >0}

We begin proving some elementary facts abouts the topology of A, c.
Proposition 3.1.3. A, ¢ is open and convex subset of L3

Proof. Convexity
It is apparent that A, ¢ is convex. Let us prove that it is open.
Let xo = Bo + Xo € Apc, since xg > 0 we get that

—Bo<p  forall B € o(Xp).

Set r > 0 such that —By +r < Xy or equivalently Xo + By —r > 0.
Consider

r r
B(xo,i) ={x=pu+XeLy/|x—xol) < E}
Given b = pu + X € B(xo, ), we have:

1. p > Bo— 5since —5 < u— o < 5 and

2. X — X > —%, from the inequality —[|X — X, < —[|X — Xp[| < X — Xop.
Hence,

r r roor
pu+X > 'BO_§+X:ﬁO_§+(X_XO)+XOZ'BO_E_§+XO
= ﬁo—?’—l—X0>0

therefore p + X € A, ¢ O
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In particular A, ¢ is differentiable (analytic) submanifold of £}'.
The next step is to prove that A, C A, ¢ is a submanifold. For this purpose, we
consider

0:6+X— B

Lemma 3.1.4. 0 is a submersion.

Proof. 1t is sufficient to show that dfg, x is surjective and ker(d6g,x) is comple-
mented .
Since £} and R are Banach spaces and 6 is a continuous linear map we get that
dbpg,x = 0. It is evident that dflg | x is surjective.
Finally the kernel of dflg, x has codimension 1, and hence is complemented.

O

It follows that A, is a submanifold, since A, = 671({1}). Fora = 1+Y € A, we
identify the tangent space T,A, with B}, and endow this manifold with a complete
Finsler metric by means of the formula

_1 _1
1Xl[p.a = [la=2Xa™z]],, 3.1)

for X € By
If Z(H) is an ideal in the algebra B(H), we denote by GI(H,Z(H)) the subset of
GI(H) consisting of those operators of the form 1+ a witha € Z(H), i.e.

GI(H,Z(H)) = {1+ac Gl(H):aec IT(H)} ={be GI(H):b—1€I(H)}

The standard examples occur when Z(H) is the ideal of compact operators, in
which case GI(H, Bo(H)) is the so-called Fredholm group of H, or when Z (H) is the
ideal of Hilbert-Schmidt operators and when Z(H) is the ideal of trace class oper-
ators B;. Under the conditions stated above, GI(H,Z(H)) is a group. In particular,
GI(H,By)is a group for 1 < p < oo.

There is a natural action of GI(H, By) on A, given by

1:GI(H,By) x Ay — Ay, [,(1+X) =¢g(1+X)g"
This action is clearly differentiable and transitive, sinceif 1 + X,1+Y € A, then
lg(l +X)=(1+4Y),

forg=(1+Y):(1+ X)"? € GI(H, B,).
We denote
Bpa = (By [l-lp.a)-
The next proposition justifies the definition of the Finsler metric (3.1):
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Proposition 3.1.5. The norm |||, is invariant for the action of the group GI(H, B).
That is: for each X € By, a € GI(H)" and g € GI(H, B,,), we have

HXHW = ng(X)Hp,gag*-
Proof. Leta € GI(H)*,¢ € GI(H,B,) and X € B,, observe that
8 p p

Zafl/ZXafl/Zal/Z

*

gXg" = ga' g

Denote by z = ga% then

NI—

(gag") "2 = (gatatg") ™t = (22)72 = |2*| ",

therefore

-3 — |z*|_1za’%Xa’%z* ]z*|_1.

*) — 1 * *
(gag") 28Xg" (gag")
From the polar decomposition applied to z € GI(H), z = |z*| p, with p, unitary, we
have

(3ag")gXg" (gag") "t = pza~2Xa™ 20l
Since |srs*| = s|r|s* for all unitary s, we get
« Sl 1, Sl 1
I18X8" Il gagr = trloza"2Xa 2% = tr(pzla”2Xa"2|Pp?)
= trla i Xa 2P = a2 Xa 2|} = X,
0

Let X be the usual exponential map, i.e. eX = ¥ )}% The restriction of this map to
n=0
B;“ is injective and takes values in GI(H, B}), in fact, if X € B“;“, then
X Lo 1
e :1+X—|—§X +...:1+X(1+§X+...) € Ap.

Moreover, any positive element a in A, is of the form a = e for the unique X € B
Let us denote X = log(a). Therefore,

One can compute the length of the curve a in A, by

1
Ly(w) = [ Na(t) ot
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Definition 3.1.6. Let a,b € A,. We denote by
Qup={a:[0,1] = A, :aisa C' curve, a(0) = a and a(1) = b},

the set of smooth curves in Ay, joining a to b.
As in classical differential geometry, we consider the geodesic distance between a and b (in
the Finsler metric) defined by

dp(a,b) =inf{Ly(a) : & € Oyp}.

IfK C Ap, let
dp(a,K) = inf{d,(a k) : k € K}.

Note that by Proposition the geodesic distance d, is invariant under the action
of GI(H, By), i.e. dy(a,b) = d,(gag*, gbg*) forall g € GI(H, B,).
From now on, we denote by

NI=

Yap(t) = aZ(a~2ba"2)'az,
witha,b € A.

Remark 3.1.7. 1. Through these notes, we use alternatively the following nota-
tion for the curve 7,
ateb = v,u(t) = expa(t exp, 1 (D)),

which is called the t-power mean between a and b in the literature (see [53]),
and the relative operator entropy

NI—

S(a/b) = a?log(a 2ba~2)a> = ,,(0),

defined in [35].
Lemma 2 in [34] shows that fora,b € A, and t € R

atib=bt_a

2. Note that this curve looks formally equal to the geodesic (or shortest curve)
between positive definitive matrices (regarded as a symmetric space, see [52])
and positive invertible elements of a C*-algebra [22].
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3. Note that 7, ; € (), (because pqp is positive and invertible whenever p, g are
positive and invertible).

Proposition 3.1.8. Given a,b in A, the curve vy, has length || log(a*%bu*% )N p-

Proof. Since the group GI(H, B,) acts isometrically and transitively on A, it suffices
to prove the theorem for a = 1. Then

1916(D) 171, ) = 1108 (0)6' [0 = (1% Log(b)6 2|, = || Log(b) |,

because log(b) and b’ conmute for every t € R. O

3.1.1 The Exponential Metric Increasing (EMI) property

The inequality will be useful in the next chapters; its proof for matrices can
be found in [52]. This inequality, in the context of matrices, is called by Bhatia the
exponential metric increasing property and our proof is based on a similar argument
used in [13]].

We begin with the following inequality

Theorem 3.1.9. (see [39]): Let A, B, X be Hilbert space operators with A, B > 0. For any
unitarily invariant norm |||.||| we have

1 1
1|AV2XBY2)|| < || / A'XB'dt||| < ~|||AX + XBJ||. (32)
0
Proposition 3.1.10. Forall X,Y € B}
_X _X
1Y, < lle~ 2 dexpx(Y)e 3 ]),, (33)

where dexpx denotes the differential of the exponential map at X.

Proof. The proof is based on the inequality and the formula below:
Claim 3.1.11. dexpx(Y) = fol et Xye(1-H)X 44,

Here is a simple proof of this equality. Since

;t(etxe(l—t)l/) — etX(X _ Y)e(l—t)Y,

we have
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and hence

XY X el Xy (1-1)X
}llz_r)% - —foe Ye dt.

Let X,Y € B}f. Write Y = eZ(e"2Ye 7)ez. Then using the inequalities 1) we
obtain

1 1
Iyl, < H/ efX(e*%Ye%)e@*f)thHp:He*%(/ e Xye 10X gy,
0 0
= He’gdepr(Y)e’%Hp.

This proves the proposition. ]

The inequality can be rephrased in terms of the the linear map dexpx(Y) as
follows

X
2

Corolary 3.1.12. Forany X € B, themap Tx : Y — e*§depr(Y)e is bounded and

invertible. The inverse is contractive, that is, | Ty ' (Z) ||, < || Z||p-

Proof. This map is clearly bounded and invertible and the bound for the inverse is
a consequence of the previous proposition . ]




Chapter 4

The geometry of Ay

4.1 Introduction

In this chapter we focus on the case p = 1;
M={1+acLy: 1+a>0},

The main reason to consider this specific case p = 1 is that positive trace class op-
erators usually appear in Physics [62] and Probability, as densities of non negative
functionals.

We consider the homogeneous space GI(H, By)/U;, where U; is the subgroup of
GI(H, By) of unitary operators. This space can be identified with A; . This space
is a reductive homogeneous space, such structure we allow construct a covariant
derivate and via the covariant derivate introduce the notion of a geodesic as a so-
lution to a ordinary differential equation. We then show that the geodesics are
solutions of a variational problem (Prop. [£.3.7). They are critical points to the so
called energy functional and furthermore shortest paths between their endpoints.

4.2 Reductive structure of A; .
Forl+4a € Aq,let

Tiva=1{8 € GI(H,By) : lg(1+a) =1+a},
the isotropy group of 1+ a. In particular, for 1 € Ay

I ={g € GI(H, B1) : p(g) = 1} = U(H) N GI(H, B1) = Uy.

47
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where p(g) = gg* = Iy(1).
Let us recall the definition of homogeneous reductive space

Definition 4.2.1. A homogeneous space G/ F is reductive (RHS) if there exists a vector
space decomposition g = § @ m of the Lie algebra g of G, such that wm is invariant under the
action of F

In order to give an RHS structure to GI(H, By)/U;, under the action of GI(H, By),
we must find a decomposition

TlGl(H, Bl) = T1Z/{1 @ m.
N—————’ N~
g f
Recall that g = T1GI(H, By) and § = Ty can be identified with By and iB5?, respec-
tively. Then, we have
Bl = lBia D m.

The most natural choice is m = Bj?. Note that B} is U;-invariant:
l(B}*) = {gXg" : X € B{"} = B".

Now, we observe that p(GI(H, B1)) = A, so it is clear that there exists an analytic
isomorphism given by the polar decomposition such that

Al = GZ(H,B1)/L{1

From the above remarks, we get

Proposition 4.2.2. Ay has an RHS structure under the action of GI(H, By).

There is a natural connection on Ay, i.e. a smooth distribution of subspaces of By,
g — Hg such that

2. lg(Hh) = Hyif g € Uy;

In fact, Hy = ¢B;" and V, = {X € B; : Xg* + ¢X* = 0} satisfies these properties
The spaces H, are called horizontal.

As the fibre bundle has a connection, a smooth curve 7 admits a unique horizontal
lift T in GI(H, B;), with the following properties:
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1. The curve T'lifts : I (7(0)) = 7 (t).

2. T(0) = 1.
3. I'(t) = 4T(t) € Hryy,  te€[0,1].

This curve I is called the horizontal lifting of v, and is also characterized as the
unique solution of the following linear differential equation

[=397'T
r(0) =1

These are standard facts from the theory of homogeneous reductive spaces [49].
Now, in order to construct a covariant derivative in A; , we use its reductive struc-
ture.

Definition 4.2.3. The differential equation

1.
I'= 4971
2’)/,)/ 4

is called the transport equation for -y.

The transport equation induces a covariant derivative of a tangent field X along 7,
namely

DX d . | ..
T r(t)E((Tlr(t)*l)'y(t)x(t))r(t) =X- E(X’Y Y+ 9r7X).
From now on, we denote with a, b, .. etc. the elements of A .

As with HRS in finite dimension, the invariant of the induced connection can be
computed. We shall be concerned with the curvature tensor, wich is given by:

1
R(X,Y)Z = —Za[[a_lX,a_lY],a_IZ],

for X,Y,Z € T,A.
The exponential mapping of this connection can be also computed: given a € A;
and X € Bj* the exponential mapping is

1
.-l
expy : Bi" — Ay, expa(X) = aze® 2%
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Rearranging the exponential series we obtain a simpler expression
expa(X) = ae® X,
Notice that exp, is a diffeomorphism and its inverse map is
log, = exp, ' : Ay — B{", log, (b) = az log(a_%ba_%)a%.
Definition 4.2.4. A curve vy is a geodesic if 7y is parallel, i.e.
¥ =97 (41)

The basics properties of the geodesics can be summarized in the following state-
ment.

Proposition 4.2.5. Let a € A1, X € T,A; and <y a geodesic. Then
1. The curve gyg* is also a geodesic for all ¢ € GI(H, By),
2. The unique geodesic -y such that (0) = a and 7(0) = X, is

ta

NI—=

1

p(t) = azel X 257 — expa(tX) tER,

3. Let b € Ay. There is one and only one geodesic <y, such that ,,(0) = a and
Yap(1) = b, namely

N=

Yap(t) = a%(a*%ba’%)ta t e R.

Proof. The proof is straightforward. O

4.3 Minimality of geodesics

In this section we prove that the unique geodesic joining two points is the minimun
of the p-energy functional for p > 1.

Note that given a, b € Ay, if 7, is the unique geodesic joining them, then by Propo-
sition we get that L1 (y,5) = || log(a*%ba*% -

The next step consists in showing that geodesics are short curves, i.e. if  is another
curve joining a to b then

Ll ('Ya,b) < Ll ((5)
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and hence
d1(a,b) = || log(a~2ba~2)];.

We are now ready to prove the main result in this section.

Theorem 4.3.1. Let a,b € Ay, the geodesic y, , is the shortest curve joining them. So
di(a,b) = || log(a~2ba2)]);.

Proof. Since the group GI(H, B;) acts isometrically and transitively on A1, it suf-
fices to prove the theorem for @ = 1. Then

Tip = b = e85 and  Ly(y1,) = | log(b) .
Let v € Q) 4; so write y(t) = e*(!) we get from the EMI property that

_1, _1 0] . 0] .
Iy ()2 )y ()2 |11 = [le™ ™ dexpyy(@(t))e™ 2 [li = (k) 1.

Finally,

N|—

L) = [ 10wt = [ 190 5070 a2 [ a0)

> | [ ety = ()il = (1) - a(0)]s = [10g(®)]

Remark 4.3.2. 1. The geometrical result described above can be translated to the
language of the relative entropy

di(a,b) = |la=25(a/b)a" 2|y = ||S(a/b)||, -

2. For each a € Aj and a > 0 the exponential map exp, : T,A; — A1 maps the
ball {X € T,A; : ||X|l1,. < a} onto the geodesic ball {x € Ay : dy(a,x) < a},
since

—_

_1 _1
di(a,expa(X)) = di(a,ate” *X* 2a2) = |X||,,,.

3. If we can decompose a tangent vector V in other two commuting vectors X,
Y such that V. = X + Y and || V||1 = || X]}1 + || Y]1, then the curve

e?tX te o0, 3]
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is piecewise smooth and joins 1 to e” in Aj; moreover

' 2|X|li teoi]
[oll16 =
2lYlh  te 31

Hence L1(6) = ||X|l1 + ||Y|i = ||V|l1, which proves that the curve 0 is a
minimizing piecewise smooth curve joining 1 to ¢", and it is not one of the
smooth geodesics 7, .

For instance, take V = V* € Bj" of the form V = p; + p, with p; one
dimensional mutually orthogonal projections. Then the p; commute, and
VI =2=llpalls + [[p2ll1.

Corolary 4.3.3. If X, Y € B commute, then for all a € Ay we get
1X = Y1, = di(expa(X), expa(Y)).
In particular on each line RX C B3* the exponential map preserves distances.

Note that the previous Corollary tells us that when X and Y commute the natural
parametrization of 7,x ,v is given by (t) = e1=)Xe!Y. In this case

d1(eX, vox o (1)) = tdy (e, V).

Corolary 4.3.4. If, for some a,b € A1, 1 lies on the geodesic 7y, ,(t), then a and b commute
and

mgw):~—1;tmgmy (4.2)

where t = dy(a,1)/dy(a,b).

Proof. We know that, for some ¢, 1 = a'/?(a~1/2ba=1/2)!a'/2. Thus b = a~(1-1/t 50
that a and b commute and (4.2) holds. O

Definition 4.3.5. For every s € R — {0} we define the s-energy functional

1 .
Ee:Qup = RY, E(B)i= [ (1Bt
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Remark 4.3.6. 1. For s = 1, one has the length functional

L(B) = [ 1Bl s,

and for s = 2, one has the energy functional
1 .
E(B) = [ (101500t

2. For any curve B such that [|(t)]|; g is constant we have

E«(B) = (Li(B))* = (E(B))*.

In Theorem we proved that the geodesic between 2 and b minimizes the length
functional. This fact is valid also for the s-energy functional for s € (1, o).

Proposition 4.3.7. Let a,b € Ay and s € [1,00). Then the s-energy functional

1 .
EeiQuy = R* E(B) = [ (1B(0)]p)at
takes its global minumum d5(a,b) at 7y, .

Proof. Let p € O, and s € (1,00). By Holder’s inequality

1 1
() = ([ 18Oty < [ BN gt = E(B).
On the other hand, (L1(y45))° = Es(Yap)- This implies

Es(vap) = (L1(7ap))” < (L1(B))° < Es(B)-

Proposition 4.3.8. Given a,b € A; we get

1.
di(a,b) =di(a L, b7h).

2. Forall to,t1 € R
d1(afb, iy b) = |to — t1] d1(a, b),

and in particular
di(a,atyb) = |t|d1(a,b).
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Proof. 1. Itis easy to see that S(a/b) = —azlog(b~'/a~')a2, as a consequence
from log(1/t) = —log(t). Then

di(a,b) = |log(a=2ba )|y = [la~2S(a/b)a 2|
| — a g log(a%b’la%)a’%a% 1
= || —log(azb~'a?) |y = i (a~",b7").

2. Itis apparent that L1 (Yaplto1,]) = d1(Vap(to), Vap(t1)). Then

t
di(atnb,atnd) = [ 170 it = o~ bl (a,).
0

By Proposition and remark we have that
2. d1(a,ajj%b) = %dl(a,b) = %dl(b,a) = dl(b,bﬁ%a).
The previous equalities justifies the following definition
Definition 4.3.9. For a,b € Ay, we denote by m(a,b) the midpoint of a and b (following

the notation used in [41]]),
m(a,b) := af b.

Definition 4.3.10. Let K C Ay. K is called convex if for all a,b € K the geodesic
Yo (t) € K forany t € [0,1].

4.4 Convexity of the geodesic distance

The purpose of this section is to show that the norm of the Jacobi field along a
geodesic 7 is a convex function.

Definition 4.4.1. ] is a vector field along to a geodesic v, if ] (t) € T, ;)1 for all t.
A vector field | along to a geodesic vy is a Jacobi field if

D]
dt?
where V(t) = (t) and R(X,Y)Z the curvature tensor.

+R(J,V)V =0, (4.3)
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Theorem 4.4.2. If ] (t) is a Jacobi field along the geodesic y(t), then ||J()]|1,,(s) is @ convex
map of t € R.

The method of the following proof is based on a similar argument used in [23].

Proof. Note that by the invariance of the connection and the metric under the action

of GI(H, By), we may supose that y(t) = e'X is a geodesic starting at y(0) = 1, with
X € B,

Then for the field K(t) = e~ 2 J(t)e~ 7 the differential equation changes to
4K = KX? + X?K — 2XKX. (4.4)
Since the group GI(H, By) acts by isometries, we have

()11, = (B 2221 = [IK(E)1,

thus the proof reduces to show that for any solution K(t) of (4.4), the map t —
IIK(t)]|1 is convex for t € R.
Fix u < v € Rand let t € [u,v]. We shall prove that

t—u

: K@) 1.

IK(#)]lr <

—t
K
T K+

Let X = ) Ai(. ¢;)e; be the spectral decomposition of X € Bj* where {¢; : i € N}
ieN

is an orthonormal basis of H.

Consider the matrix valued map

k(t) = (kij(t))ijen,
where k;;(t) = (K(t)e;, ej) forall t € R.
The differential equation (4.4)) is equivalent to the equations
kij(t) = ki (£),
where §;; = )‘i;\j .
A simple verification shows that all solutions of f(t) = c2f(t) satisfy

f(t) = ¢(u,0,c;t) f(u) +9(u,0,¢;1) f(0),

where s
u,v,ct) = Sinh ¢(v—u) ;
4)( ) { ('Uft) lf C:O'

(v—u)”’
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Sinhc(t—u) if C;ﬁ 0:
u,v,ct) = Sinh c(v—u) ’
ll)( ) { (t_u) , lf C:O.

Then each k;;(t) satisfies

kij(t) = ij(t)kij(u) + i (t)kij (v),
where ¢;;(t) = ¢(u,v,6;;;t) and ;;(t) = ¥(u,v,6;j;t). In matrix form

k(t) = ®(t) ok(u) +¥(t) ok(v),

where ®(t) = {¢;j(t)}, ¥(t) = {¢;j(t)} and o denotes the Schur product of matri-
ces, i.e. {a;j} o {b;j} = {a;jb;j}. Thus we have that

k()1 < [|P(t) o k(u)[l1 + [[F(t) o k(0) 1. (4.5)
We make the following claim:
Claim 4.4.3. Let ¥ (t), ®(t) and k(t) as above, then
L |@(t) ok(u)llr < 5= Ik(u)]l1,
2. [¥(t) o k(v)ll < 5= llk(@) 1.

Proof. We only prove the first inequality, the second is analogous. Define for each
neNand A = {ai]-},-,jeN

al-]- 1f1§z,]§n,
An - .
0 otherwise.

Note thatif n — oo,

O(t) ok(u), — ®(t) ok(u), (4.6)
since
[D(t) 0 k(u), — () o k(u)[l1 < max‘¢ii(t)|§1‘kii(“)‘ (47)
= u)ej, ;)|
< Z\ (K( 1>:“€Z )| — 0.

i>n
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Next we use a theorem by Ando, Horn and Johnson ([5]), according to which if A
and P are n x n matrices, with P positive semidefinite, then

[A o Plly < (max pi) [|All; -

1<i<n
Thus
[D(t) o k(u),llr = [P(t)n o k(u)nllr < (fggﬂﬁ(t))l\k(u)nlh- (4.8)

We conclude from and that

v—t

[(t) o k(w)lly <~ [lk(w) |
O
Consequently we get
Ikl < Z=2 kGl + 2= k() .
0O—U 0O—U
O

Remark 4.4.4. For each n € IN both matrices ®(t), and ¥ (t),, are positive definite.
This follows from Bochner’s Theorem applied to ®(t), and ¥(t), considered as
functions of c. In both cases the matrix is of the form {F(A; — A;)},, where F(c) is
the Fourier transform of a positive function (see [32], formula 1.9.14, page 31).

A consequence of this result follows:

Theorem 4.4.5. Let y(t),p(t) be geodesics in Ay, then t — dq(7y(t),p(t)) is a convex
map in RR.

Proof. Suppose the y(t) and p(t) are defined in |1, v]. We consider k(s, t) defined as
follows:

1. themap s — h(s,u),0 <s < 1is the geodesic joining y(u) with p(u);
2. themap s — h(s,v),0 <s < 1is the geodesic joining y(v) with p(v);

3. for each s, the function t — h(s,t),u < s < v is the geodesic joining (s, u)
with h(s, v).
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Let J(s, t) = ahéz’t). Hence, for each fixed s,t — J(s,t) is Jacobi field along the

geodesic t — h(s, t). Finally, we define

£ = [ 16Dl

From Theorem t — |[J(s,t)ll1,u(sr) is @ convex function for each s. Hence,

t — f(t)isalso convex fort € [u,v]. But f(u) = fol [17(s, ) ||1,n(s,u)ds is the lenght of
s — h(s,u) and therefore f(u) = d1(y(u), p(u)). Similarly, f(v) = d1(y(v), p(v)).

Now, foru <t <wv, f(t) = fol 17(s,£)||1,n(s,1)ds is the lenght of the curve s — h(s, t)
which joins y(t) with p(f) and then we get di(y(t),p(t)) < f(t). Convexity of
di(y(t),p(t)) follows and the Theorem is proved. O

Remark 4.4.6. A particular consequence of the above theorem is that there are no
closed nonconstant geodesics in A;. Indeed if B : [0,1] — A; is a nonconstant
geodesic such that f(0) = B(1) = a, then for all t € (0,1)

d1(a, (1)) < tdr(a, B(0)) + (1 — ey (a, B(1)) = 0.

Definition 4.4.7. A subset K of Ay is called convex if for all a,b € K the geodesic vy, ,
joining a and b, is contained in K.

Corolary 4.4.8. Let a,b,c € Ay . Then forall t € [0,1]
dy (atb,aic) < td1(b,c). (4.9)

In particular,
d1(bt,Ct) S tdl(b,c).

Remark 4.4.9. The relation is known as "convexity of the metric" in the Rie-
mannian context.

There is a clear interpretation of the corollary above. If M is a Riemannian manifold,
the sectional curvature is nonpositve if and only if

d(ps(x), ps(y)) < sd(x,y),

forall x,y € M and all s € [0,1], where ps(x) = expp(s exp,'(x)) and p € M is
fixed (see [8]).
This expression reduces, in our (non Riemannian) case to

di(pisx, plisy) < sd1(x,y),
which is (.9).
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Corolary 4.4.10. Let a € Ay, a fixed. Then

flr(®) < (=1 f(v(0)) +f(v(1)),

where f(x) = di(a, x) and y(t) is a geodesic. In particular, if r > O the ball centered at a
with radius r, i.e {x € Ay : d1(a,x) < r}, is a convex set.

4.4.1 The Metric Increasing Property of the Exponential Map

In this section we provide a proof of the metric increasing property (MIP) of the ex-
ponential map (Theorem (4.4.12) which is based on the exposition in Corach, Porta
and Recht [23]. We begin with a lemma of approximation.

Lemma 4.4.11. Let y(t) be a curve in Ay, then log(<y(t)) can be approximated uniformly
by polynomials for t € [to, t1].

Proof. Throughout the proof Hol(U) and S? denote the set of all complex analytic
functions defined in U, with U an open set of complex plane and the Riemann
sphere, respectively. Let o(f) be the spectrum of (t), o(y) = U o(t) be the

teltoh

spectrum of v in the algebra C([0,1],£1),and G C C — {z : Im(z)[ §]0} an open
neighbourhood of ().

Since o(vy) is compact, S*> — o(y) is connected and log(z) € Hol(G). Then there is
a sequence P, of polynomials such that P,(z) — log(z) uniformly on () ([56],
Theorem 13.7).

Since P, (z) are analyticon G, 0(y) C G, and P,(z) — log(z) uniformly on compact
subsets of G, then ||P,(7y(t)) —log(y(f))||; — 0asn — oo. O

The Finsler structure of A; is not Riemannian. However A; shares some properties
with Riemannian manifolds of non-positive sectional curvature. For instance, the
following:

Theorem 4.4.12. The exponential map in Ay increases distances, i.e. for all a € Ay,
X,Y € B3" we have

di(expa(X),expa(Y)) > | X = Y||14- (4.10)

Proof. Let y1(t) = e, 12(t) = €'Y, a = 1 and f(t) = d1(v1(t), 72(t)). By Theorem
f is convex, with f(0) = 0. Hence Ltt) < f(1) forall t € (0,1].
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Note that
t 1 - 1 _
f(t ) — ?H log(etX/Ze tYetX/2>H1 — t?’|¥10g(€tx/2€ tYetX/2)|.
Taking limits we have
_f(t)
lim —2% < £(1).
lim S < F)

Observe next that by the previous lemma, log(x) can be approximated on any in-
terval [xp, x1] with 0 < x¢ < x; uniformly by polinomials P,(x). In particular

lim P,(x) =log(x)  and lim P,(x) = !

n—o00 n—o00 X

(in morm ||.|[,).

Then ,
li 21 tX/2 —tY tX/2 — X -l
tim | log(e/2-¢ /) = x|

From this equality and convexity we conclude that
f@) 21X =Y,

this completes the proof for a = 1.

By the invariance of the distance under the action the previous inequality implies
that

di(expa(X),expa(Y)) > [|X = Y||1,4, foralla € Aj,and all X, Y € Bj". O

Remark 4.4.13. For a = 1, from the theorem above we get
Xy X
IX = Y[l < [[log(e™Ze"e™2) s,

for X,Y € Bj*, which can also be written

11
[log(x) —log(y)[l1 < [[log(x~2yx"2)[lr, (4.11)
withx,y € Ay .
Proposition 4.4.14. A; is a complete metric space with the geodesic distance.

Proof. Consider a Cauchy sequence {a,} C A;. By (4.11) X,, = log(a,) is a Cauchy
11l

sequence in Bj*. Then there exists an operator X € Bj” such that X;, — X. Hence

di(an,€X) = | log(eZe Xre?)|; — 0,

when n — oo. O
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4.5 Non-positive Curvature

It would be very interesting to understand the relations between the geodesic dis-
tance and general metric spaces with non-positive curvature.

In particular, the geodesics v, (in the sense of the equation ) are also short
curve in the metric space (A1, d1), since

n
L (vep) = sup{Y_ d(vap(tic1), Yap(t:)) :0=to <ty < .. <t, =1,n € N}
i=1

n
= sup{z Ll(’)/a,b ‘[ti—lrti}) 0=t <h<..<t,=1ne ]N}
i=1

n £
- sup{Z/t Ve (D)l 0 = to < b1 < oo < s = 1,n € N}
i=17ti-1

= L (’)’u,b)'

In other words

Ld(')’u,b’[t,t’}) = Ll(’)’a,b‘[t,t']) = dl(’Ya,b(t)z’Ya,b(t/))-

By the above argument, we have the following statement

Proposition 4.5.1. The metric space (A1,d1) is a geodesic space and m(.,.) is a midpoint
map corresponding to the shortest geodesic 7y, , for all a,b € Ay.

Busemann has defined non-positive curvature for chord spaces [18]. These are
metric spaces in which there is a distinguished set of geodesics, satisfying cer-
tain axioms. In such a space, denote by m(x,y) the midpoint along the distin-
guished geodesic connecting the pair of points x and y. Then the chord space is
non-positively curved if, for all points x,y and z in the space,

d(m(x,y),m(x,2)) < 74(1,2),

where d is the metric.
Consequently, if in the metric space A; we consider the following distinguished set
of geodesics
G={7p:abec M}
we get by the following statement.

Theorem 4.5.2. The metric space (A1,dq) is a chord space non-positive curved.
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4.5.1 An alternative definition of sectional curvature

In this section, we shall see that it is possible to give a definition of sectional cur-
vature in Aq. Recall that in [51] Milnor observes in his optical interpretation of
curvature, that the sectional curvature, s,(X,Y), can be obtained by the following
limit

o (5%¥) — b g 11X Yl = A7) exp, 1)
r—0+ r2d(expa(rX),expa(rY))
where X, Y are tangent vectors at a point a. We will see that this limit makes sense
in our context.
Suppose that r > 0 is close to 0 such that e"X/2¢"™ ¢~"X/2 lies within the radius of
convergence of the series log(u). Then by a straightforward computation, we get
the following equality (see [4])

log(e /2 e™™X/2) = (Y — X) 4+ *x(X,Y) +o(r?),

where

_ 1 1 1 2 | y2 L 2
K(X,Y) = 6YXY+EXYX E(XY +Y°X) ﬂ(X Y +YX7).
Before stating the existence of the limit above we need the following definition and

lemma.

Definition 4.5.3. Let V a vector space and f be a function from V to R U {+oco}. We shall
say that D f(xo)(v) is the right derivate of f at x¢ in the direction v if the limit

Df (x0) (o) = tim 20 10) = F(x0)

t—0+t t

exists. In this case, we call v — D f(xo)(v) the right derivate of f at xy.

Remark 4.5.4. ([6], Proposition 4.1) Let V a vector space and f be a nontrivial con-
vex function from V to RU {+oo}. Suppose xo € Dom(f) and v € V. Then the
limit Df (xo)(v) exists in R and satisfies

f(x0) = f(x0 = v) < Df(x0)(v) < f(x0 +0) = f(x0)-
For a € Ay, we denote by

P, : T,A — ]RJF, Pa(X) = ||X||1,a
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Lemma 4.5.5. For a € Ay, P, is a convex function. Moreover, P, is right differentiable on
B3* and satisfies
X[l = 1X = Yl[1e < DP(X)(Y) < [[ X+ Y10 = [ X][10-

Proof. By the remark it suffices to prove that P, is convex. Clearly this is obvi-
ous from the usual properties of a norm, since forall A € (0,1)

Po(AX + (1= A)Y) < AP,(X) + (1= A)P(Y).

Theorem 4.5.6. Let a €Aqand X,Y € B{". The limit

[ X =Y, = di(expa(rX), expa(rY))
sa(X,Y) = rlg(l)i+ r2dy (expa(rX), expa(rY))

exists and verifies

Y =X+ (X Y|

||X - YHu
Proof. Since the metric on Bj* and the geodesic distance are invariant by the action
of GI(H, B}"), it suffices to consider the case a = 1. Note that

1 1 < 5,(X,Y) <0.

1
lim =dy (e, e™Y) = z%”y — X+ (X, Y) +o(r) |1 = ||Y — X1
r—

r—0t7
Then it is sufficient to show the existence of the following limit
|
lim = (r | X =Yy = [r(Y = X) + P.(X,Y) + () [l1),
r—0t7
which is equivalent to the existence of the limit
.1 ’
r@gﬂﬁ(\\x =Yy = [[(Y = X) +r°x(X, Y)[]1).
This limit exists and is equal to —DP; (Y — X) (x(X,Y)), therefore
—DP (Y — X)(x(X,Y))
1Y — Xl '
By the MIP property, this limit is non positive. On the other hand,

—DP(Y = X)(x(X,Y)) = [[Y = X|[; = [[Y = X+ x(X, V)|

S1 (X, Y) =

and therefore
1Y = X +x(X, V)|

1X =Yl

s1(X,Y)>1-—




Chapter 5

The geometry of A, with
I<p<oo

5.1 Introduction

In this chapter we consider the geometrical structure of the manifold A, (1 < p <
o), with the Finsler metric defined before. For each 2 € A, the tangent space
T,Ap can be identified with By’ which is a Banach space uniformly convex. This
fact is consequence of the Clarkson’s inequality (see and (2.3)). The uniform
convexity of the norm has a rich geometrical structure, for example uniqueness the
short curve connecting two points.

The concept of uniform convexity for Banach spaces was introduced in [20]. In
this work, Clarkson showed that the classical Banach spaces L? (1 < p < o0) are
uniformly convex. For p > 2, the proof is based on the inequality

1f = glly + 11f +glIp < 2" (IS + llgll) (5.1)

for the LP-norm.
This inequality, valid on the tangent spaces, has geometric consequences in A, via
the exponential map.

5.2 Clarkson’s inequalities and Uniform Convexity
It is well-known that in a Hilbert space H one has
It + (1= Oyl* = Hlx >+ 1 = Dlly]* — £ = 1)l = y[I?, (5.2)

64
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forallx,y € Hand 0 <t <1.

In a Banach space E, there are inequalities analogous to (5.2). In this section we
recall some of these inequalities, from now on we denote by W),(t) the function
tH1— )P +tP(1 —t).

Let f : E — R be a proper functional and D a nonempty convex subset of E, then f
is said convex on D if

fltx+ (1 =by) <tf(x) + (1 -1)f(y)

forall0 <t <1and x,y € D. Recall that f is said uniformly convex on D if there
exists a function y : [0,00) — [0, c0) with y(s) = 0 if and only of s = 0 such that

fltx+ (1= Dty) < tf(x) + (1= 1) f(y) = 1 = Hp(llx —yl) (5.3)

forall x,y € Dand t € [0,1]. If the inequality is valid for all x,iy € D when
t = 1, then f is said to be uniformly convex at center, Zilinescu [64] remarked that
for a convex function f, f is uniformly convex on D if and only if f is uniformly
convex at center on D.

We consider for r > 1 the functional
friBp —[0,00), £ (X) = [IX][}.

Now, we recall some inequalities which allow to prove the uniformly convexity of

fi

Ball, Carlen and Lieb in [7] proved the following inequalities:

Proposition 5.2.1. For A,B € By and 1 < p < 2 it hold

IAIZ + (p = DB, < S (1A + Bl + 14 = BII}). (54)

N[ =

Proposition 5.2.2. For 1 < p < oo, f, is uniformly convex where r = max{p,2}.

Proof. By the previous remark as f, is a convex function, it is sufficient to see that
fr uniformly convex at center on B,.

First, we consider the case 2 < p < oco. In (2.3), setting A = X/2and B = Y /2, one
has

X+Y,  (X+Y,,
e

IN

1
(XI5 + Y1) = 551X = Y1l

NI—= N =

1
(X1 + 1Y 115 = g dIX = Ylp)-
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where u(s) = 2,}—,25’7.

If1 < p <2, then using (5.4) setting A = (X +Y)/2and B = (X — Y)/2, we get

X+Y X+Y 1 1
AN =12 e < LIz YD) - S - DX - Y2
1 1
= SUXIE Y1) = grAIX = Ylp), (5.5)
with u(s) = (p — 1)s?. O

Recall the following result of Xu ([63], Th. 1)

Theorem 5.2.3. Let s > 1 be a fixed real number. Then the functional ||.||° is uniformly
convex on the whole Banach space (X, ||.||) if and only if X is s-uniformly convex, i.e. there
exists a constant ¢ > 0 that 5x(e) > ce’ forall 0 < e < 2.

Therefore one obtains, that B, is r-uniformly convex with r as above. For the sake

- p—1 it r=2,
T G ifr#2

of simplicity, we denote

By the definition of uniform convexity of f,, we have that for each t > 0

uo(t) = inf | sfr(x)+(1—s)f,%)(s;fr(sx+(1_s)y):

0 <s<1,XYe€By,(H),|X-Y|, =t}

It is easy to check that ug(ct) = c"po(t) for all ¢, t > 0. This leads to po(t) = po(1)t"
for t > 0 and hence the following inequality.

Proposition 5.2.4. Forall X,Y € By, t € [0,1],1 < p < oo and ¢, as above, we have:
[EX+ (1= 8)Y[[, <t X[, + X =Y, = We(B)ér[[ X = Y[}, (5.6)
where & = pp(1).

Remark 5.2.5. For the L? spaces ([56], Ch. 3), it is well known the best possible
function h(t) such that

ltf + (=)l < LAl + A =Dligly = O f =gl (5.7)
with f, ¢ € LP is h.(t) = W,(t)a,, with

1457

AN R
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where t, € [0,1] is the unique solution of the equation
(p—2)tr 1+ (p—1tPF2—-1=0.

ifp>2,anday=p—-1ifl <p <2
With a similar proof to Propostion [5.3.15] from the inequality (5.5), we obtain that
if X,Y € Byand 1 < p <2, thenforallt € [0,1]

X+ (1= DY} < HIXIF+ A =nlYIZ - t@-H(p-DIX =Y}, 8

and in consequence we get &, < (p —1).

5.3 The geometry of A,

5.3.1 Minimal Curves

In this section we investigate the existence of minimal curves for the Finsler metric
just defined.

We prove that the curve 7, j, joining a with b is the minimun of the s-energy func-
tional for s > 1.

For a piecewise differentiable curve B : [0,1] — B3, one computes the length of the
curve f by

L) = [ 1B(0)

The proof, that we present here, involves the uniformly convexity of the tangent
spaces.

Let & be a piecewise smooth curve § C A,. Then § = ef for a uniquely determined
piecewise smooth curve g = log(d) such that § C B}'". By Claim3.1.11

. . 1 .
6 = dexpg(B) = / e(1=0B BetPt.
0
We begin comparing the lengths of the curves § and S.
Theorem 5.3.1. Let 6 = ef C A, be a piecewise smooth curve. Then L(B) < L,(6).

Proof. Let us compute the speed of  using the Proposition(3.1.10

. _B . _B .
1Bll, < lle™>dexpg(B)e>[p = [0l -
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Corolary 5.3.2. Let X,Y € B;” and a € Ap. Then
X — Y”p,a < dp(expg(X),expg(Y)).

Proof. Let 8 € Qyx v, put 6 = ef asbeforeand a =1 € A,. Then

1Y =X, = [18(1) = BO)l, = || /01 Bat||, < /01 IBllpdt = L(B) < Ly(5).
Hence
1Y = XI|, < dy(e¥,e"). (5.9)
]

Theorem 5.3.3. Assume that, for the geometry induced by the norm || - ||, the unique
short curve joining 0 to X in By is the straight segment y(t) = tX. Then vy, is the unique
piecewise smooth curve joining a to bin Ap.

Proof. Let & = ef be a short, piecewise smooth curve joining 1 and eX in A,. Now
L(B) = [|X]|p- Since L(B) < L,(9), then B is a piecewise smooth curve in B, joining
0 to X, with length less or equal than | X||,, which is the length of the straight
segment X (t € [0,1]) in B)'. Then B(t) = tX, and 4(t) = e!X. Then general case
follows by the homogeneity of the metric of A,. O

Remark 5.3.4. The hypothesis of Theorem 5.3.3/holds for any p € (1, 00), since its is
a simple consequence of the uniform convexity of these spaces (see Theorem [2.2.4).

As a simple consequence of the Corolary we obtain the completeness of the
(Ap,dp).

Proposition 5.3.5. A, is a complete metric space with the geodesic distance d,.
Proof. Consider a Cauchy sequence {a,} C A,. By (5.9), X,, = log(a,) is a Cauchy
sequence in B}". Then there exists an operator X € B}’ such that X, m X. Hence

dy(an,e*) = | log(eze_”"e%

Mp —0,
when n — oo. O

We summarize in the following proposition the basic properties of the metric space
A,.
p
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Proposition 5.3.6. Given a,b € A, and g € GI(H, B,) we get

1.

2. Forallty),t1 € R
dp(aﬁfobl aﬁtlb) = ‘to - t1| dp(a/ b),

and in particular

dy(a,afib) = |t|dy(a,b).
3. IfX,Y € B;,” commute, we have
| X =Y|lpa = dplexpa(X),expa(Y)).
In particular on each line RX C By the exponential map preserves distances.

4. If 1 lies on the geodesic a t; b, then a and b commute

1—t¢
t

log(b) = — log(a).
where t = dp(a,1)/dy(a,b).

5. Let s € [1,00). Then the s-energy functional

1 .
E:Ou— RS,  E(B) = /O 1B, g0 dts
has its global minimun dy,(a, b) precisely at .

Proof. The proof of this proposition is similar to the proof of Corolary and[4.3.4]
and Proposition and O

Givena,b € Ay and 1, the shortest curve joining them, we can define the follow-
ing midpoint map

1

m: Ap X Ap — Ap, m(ﬂ,b) = ’Ya,b(i)-

Definition 5.3.7. Let K C A,. We say that K is convex if, for any a,b € K, v,,(t) € K
forany t € [0,1].
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5.3.2 Weak Semi Paralelogram Law

Let (V,(.,.)) be an euclidean space, i.e. V is a real vector space (finite or infinite
dimensional) and (.,.) is a positive definite symmetric bilinear form on V. Then
lv]] = \/(v,v) defines a norm on V and the parallelogram law states that for u,v €
V we have

o = wlf? + o + w]* = 2(|[o]* + [[w])-

If we consider a parallelogram with vertices x, x1, x2 and x3 = x1 + x2 — x, then the
parallelogram law reads

d(x1,x2)% +d(x,x3)% = 2d(x, x1)* 4 2d(x, x2)?
where d(a,b) := ||a — b||. If z = 213*2 is the midpoint of x; and x>, then we get
d(x1,x2)? +4d(x,2)* = 2d(x, x1)* + 2d(x, x,)?

Definition 5.3.8. Let (X,d) be a metric space. We say that (X,d) satisfies the semi
parallelogram law (SPL) if for x1,x, € X there exists a point z € X such that for each
x € X we have

d(x1,x2)% 4+ 4d(x,2)* < 2d(x, x1)? + 2d(x, x2)>.

Note that the point z occuring in the preceding definition plays the role of a mid-
point between x; and x,.

The above condition can be rephrased as follows in a geodesic length space:

For any x € X and any minimal curve 77 : [0,1] — X with 17(0) = x1,7%(1) = x2, we
have

A, 1(0) + d(x (1)) = (10, y (P (5.10)

N| =

d(x(5) <

One natural generalization of the p-uniform convexity to a metric space is the fol-
lowing:

Definition 5.3.9. Let (X, d) be a geodesic length space and p > 2. We say that (X, d)
is p-uniformly convex if for any x € X and any minimal curve 17 : [0,1] — X with
17(0) = x1,7(1) = xo, there exists a constant c, > 0 such that

A1) < 50 + 2d(x (1)) — 36d(r(0), 7). (1)

If p=2and c; = 1, then the inequality (5.11) corresponds to the SPL.

At this point we can easily prove the r-uniform convexity “at the origin ” of A,.
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Lemma 5.3.10. Let X,B € B} and vy be the geodesic joining eB with e=B. Then for
1<p<oo

1
dp(eX, 71/2)" < E(dp(ex, 70)" + dp(ex, m)") — Ecrdp(’YO, 1)’ (5.12)

with r and ¢, as above.

Proof. By (2.3),if 2 < p < o0

2([1X115 + 11BII7)

2(dy(e*,1)P +d,(eP,1)P)
< [IX=Bll,+[X+Bll}
< dy(eX, e +d,(eF, e PP
Since d(e®,1) = Jd(eB,e 8) = 1L, (:) we have

1 1
o Lo (v < S (dp(e”,70)" +dp(e™, m)P) = dp(e, m112)P.

Now, we consider the case 1 < p < 2. Applying the exponential map and using
the EMI property in the inequality we obtain

IXIZ+(p=DIBIG = dp(e®,1)" + (p— 1)dp(e”,1)?

1
< SUX+Blp+ X - Bl
1

< E(dp(ex, eB)2 + dp(ex,e’B)z).

Since d(e8,1) = 1d(e®, e B) = 1L, (:), we have

1 1
(P = Doz Lyp(r0)? < 5(dp(e¥,70)* + dp(e", 11)?) — dp(e™, my2)*.
O
The following proposition establishes the r-uniform convexity for A,.
Theorem 5.3.11. Let X € B} and +y; : [0, 1] — Ay, be a geodesic. Then for 1 < p < oo
1 1
dp (eX’ 71/2>r < E (d]ﬂ (eX/ ’)’0)r + dP <€X’ T )r) - Ecrdp (’70/ T )r’ (5'13)

with r and ¢, as above.
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Proof. Givena = 79,b = 71 € Ay, let m = m(a,b) be the midpoint of a and b. We
claim that there exist ¢ € GL(H, By) and X € By with

lo(a) = €%; I,(b) = e .

First; observe that 1y = b~ 2 satisfies In,(b) = 1. Let x := I, (a) and we define
hy : x4 and g := hah;.
Then
1
le(a) = hohyahihy = I, (x) = x2.

le(b) = hahyblyhy = 1, (1) = x 2,

Now the claim above follows with x = ¢2X.,

By the invariance of the distance under the action of GL(H, B,) and the claim, it
suffices to verify the inequality for pairs a,b with b = a~!. This case follows from
the previous lemma. O

Corolary 5.3.12. The metric space (Ap,dp) is strictly ball convex for 1 < p < co.
Proof. Leta,b,c € Ay witha # b, then

1 r 1 r r 1 r
dp(CI’Ya,b(E)) < E(dp(cfﬂ) +dp(c,b) )_Ecrdp(”rb)

< (max{d,(c,a),dy(c,b)})".
O

Corolary 5.3.13. Ifa,b,c € A, (1 < p < o) are three arbitrary points then abc will
denote the geodesic triangle of vertices a,b,c (which by the uniqueness the geodesics is
uniquely defined), then we have

zr(LA)r S 2r—1Br +2r—1cr _ CrAr

with A = d,(b,c),B = dp(c,a),C = dy(a,b) and L4 the length of the geodesic joining a
tom(b,c).

Another interesting consequence of Theorem [5.3.11}is the uniformly convexity of
(Ap, dp ) .

Corolary 5.3.14. For 1 < p < oo, the metric space (Ap,dp) is uniformly ball convex.
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One can to compute the modulus of uniform convexity explicitly in these cases.
Consider € > 0, setd,(a,b),d,(a,c) < sandd,(b,c) > es. Then,

r r 1 r r 1 r __ € rar
dy(a,m(b,c))" <s" — Ecrdp(b,c) <s — Ecr(es) =1 —cr(ﬁ) Is".

Then an admissible value for the modulus of uniform convexity is Pa, () =1-—
[1 - Ci’(zze/r )7]1/7’.
Note that the formula of the modulus is similar with the one obtained by Clarkson

for the space L.

Propos[itio]n 5.3.15. Let X € B;“, Yt : [0,1] — Ay a geodesic and 1 < p < 2. Then for
allt € 10,1

dp(e*, 71)" < (1= t)dy(eX, 70)" + tdy(eX, 1) — t(1 = t)erdp(y0,11) . (5.14)

Proof. Let us denote Wy(t) = t(1 —t).

Given any geodesic y; : [0,1] — Ay, it suffices to prove the previous inequality for
all dyadic t € [0,1]. It obviously holds for t = 0 and t = 1. Assume that it holds
forall t = k27" with k = 0,1, ...,2". We want to prove that also holds for all
t = k2-(+1) with k = 0,1,...,2"*. For k even this is clear. Fix t = k2~ ("+1) with k
odd; and put At = 2-("+1)_ Then by

1
dp (eX/ 7)<

1
S E(dp(exl Ye—ar) + dp (€X/ Yesar)) — Ecrdp(’)’t—At/ Yirar)'-  (5.15)

By the assumption for multiples of 27"

dp(eX, viear)” < (L=t F Ay (X, 70)" + (t £ At)d,(eX, 1)
— Wz(f + At)Crdp(’)/o, ’)fl)r.

Thus, by (5.15)
dp(e®,m)" < (1= 1)dp(e¥,70)" + tdp(e™, 1)" = [8(t, At)lerd (Y0, 1),

where g(t,At) = (At)2 4+ JWa(t — At) + LW, (¢ + At).
Since,

Wa(t) = (At)? + %Wz(t — At) + %Wz(t + At) = g(t, At). (5.16)
then

dp(eX,11)" < (1= 1)dp(e*,70)" + tdp(e*, 11)" — Wa(t)erdp(v0,71)"-
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Corolary 5.3.16. Let 7,7 : [0,1] — Ay, 1 < p <2and t € [0,1], then

(1= 1)%dp (10, 70)" + 2y (1, 71)" = t(1 = H)er (L()" + L(7)")

dyp(ne,7e) <
+ (1= 1)[dp(n0,71)" +dp(i11,70)"]-

Proof. Applying (5.14) twice, we obtain that

dp(1e,7t)" (1 =t)dp(no,ve)" + tdp(i71,71)" — (1 — t)e, L(n)"
(1—

D1 = 1)dp (0, 70)" + tdp (10, 71)" — (1 = £)erL(7)']

+ IAN A

H(L = t)dp (i1, 7v0)" + tdp (1, 11)" — 1 — t)e,L(y)']
— t(1—t)erL(n)
(1—1)2dy(170,70)" + dp (1, 11)" — (1 = t)er (L(n)" + L(7)")
+ H(1—=1)[dp(0,71)" +dp(171,70)"]-

O]

In particular if p = r = 2, the metric space (A, dy) results an Alexandrov nonposi-
tive curvature space (ANPC) and we get

da (11, vt) < (1 —t)da(n0,v0) + tda (171, 71)

or equivalently, d> is strictly convex on geodesics.

Now, we try to extend this result for p > 1 with p # 2.

Recently, Larotonda [47] using the theory of dissipative operators and the theory of
entire functions, derived several operator inequalities for unitarily invariant norms.
Among then, if X,Y € B;"

|log(e™ Xe™e X)||, < t[[log(e ™ e'e™ )|, (5.17)

This inequality establishes the convexity of the geodesic distance d, in the Finsler
manifold A, that is

Proposition 5.3.17. Leta,b,c,d € Ay, then
dp(Yap(t), vea(t)) < tdp(a,c) + (1 —t)d,(b, ). (5.18)

Proof. Consider the geodesic rectangle with vertices a,b,c,d. Let ., be the short
curve joining ¢ to b in A,, and consider the triangle with sides c,b,d, and the
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geodesic triangle with sides b,a,c. Note that .,(t) = vp(1 —t) and the same
holds for 7, ;. Then, by the triangle inequality

dp(Yap (), Yea(t)) < dp(Vap(t), Yep(t)) + dp(ven(t), vealt)),
and by
dp(')’c,b(t)/ ’)’c,d(t» < tdp(b/d)'

Also
dp(')’b,c(l - t)/ ’)’h,a(l - t)) < (1 - t) dp(a/b)'

Adding these two inequalities yields the convexity of d,,. O

Remark 5.3.18. From the uniqueness of short curves and the inequality (5.18), we
obtain that for 1 < p < o, (A, d)) is a Busemann non positive curvature space.

Now, we investigate when d, (expa(X), expa(Y)) = [[ X = Y[| .

The method of the proof that follows is based on a similar argument used in [4].
In this work the authors studied the occurrence of the equality for a C*-algebra A
with trace, in the 2-norm and the operator norm.

Theorem 5.3.19. Leta € Ay, X, Y € B;”. Then we have

dp(expa(X), expa(Y)) = || X = Y| (5.19)

pa’
, IS R | 1y 1
ifand only if a~2Xa~2 and a~2Ya~ 2commute.

Proof. Suppose that a = 1. Clearly, d,(eX,e¥) = || X — Y|l if X and Y commute.
Let ;. be the geodesic joining b = X with ¢ = ¢Y, and let & C B such that
b, = €*. Then g, that joins X with Y, satisfies the inequality

IX = Y|, < L(a) < dp(eX,e") = [ X =Y,
This implies, by the uniqueness of short curve connecting two points, that
X+ 1Y = X) = alt) = log(15,(t)) = log(btrc).

Since the map f(t) = d,(e'%,e!Y) is convex with f(0) = 0 and f(1) = d,(eX,e¥) =
X =Y||,, and sX,sY satisfy the hypothesis of this theorem for s € [0,1], we have
that

sX +st(Y — X) = log(b°ic®),
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fort,s € [0,1]. If one computes % at s = Oon both sides of this equality, one obtains

0= %(t%t)[[x,y],X— Y].

Then, [[X, Y], X] = [[X, Y], Y]. Therefore, by the properties of the trace,
tr([[X, Y], X]X) = tr([[X, Y], Y]X) =0,

this implies that
tr(X2Y?) = tr(XYXY).

This means that we have equality in the Cauchy-Schwarz inequality
tr(XYXY) = tr((YX)*'XY) < [tr((YX)"YX)] : [tr((XY)*XY)]%
= tr(X?Y?) = tr(XYXY).

So XY is a multiple of YX, i.e. XY = BYX, B € C. Replacing this equality above
equality we get,

tr(X?Y?) = tr(XYXY) = Btr(XYYX) = Btr(X>Y?).

This implies that B > 0. If B = 0, then X and Y commute. Otherwise f = 1. This
completes the proof for a = 1. For the general case, note that by the invariance
under the action

dp(expa(X),expa(Y)) = [|X =Y pa, (5.20)

is equivalent to
P R bt a-byad
dp(ea Xa e Ya ):Ha—jxa—z_a—iya_fnp,

Hence, it follows from the case 2 = 1, that the equality (5.20) holds if and only if
a~2Xa~2 and a~2Ya " commute. O

5.3.3 Best approximation
Given a subset K C A, and an element a € A, put
dy(a,K) = inf{d,(a, k) : k € K}.

We shall prove (Theorem [5.3.20) that, as in a Hilbert space, one can define a metric
projection onto convex closed subsets of A,,. In other words given K a convex closed
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subsetof Ay and a € A, thereis a unique kg € K such that the length of the geodesic
joining a with ko is the distance between a and K. That is, there is a unique solution
to the minimization problem

ko € K
2
{dp(a,ko)gdp(a,k) Vk e K 6.21)

Theorem 5.3.20. (Best Approximation) Let K C A, be a convex closed set, 1 < p < oo
and a € A,. Then the problem has a unique solution. In other words, there is a
unique g (a) = ko € K such that dy(a,qo) = dp(a,K).

In addition, if @ belongs to the geodesic segment joining a with g (a), then my(a) =
nik(a).

Proof. Let {ky},en be a sequence in K, such that
dy(a,kn) — dp(a,K),

by Theorem [5.3.11|we obtain that

%crdp(kn,km)r < %(dp(kn,a)’ - dy(aKn)") — dy (@ k)’
1
S E(dp (knr a)f’ + dp (a/ km)r) - dp (a/ K)r’ (522)

where k;, , = 71,2 € K, with 7 is the geodesic joining k, and k.
This implies that {k, },cn is a Cauchy sequence in K, hence convergent to some
ko € N. Since K is closed, ko € K. By the continuity of the distance we have

dy(ko,a) = limdy(ky,a) = dp(a,K),
For the uniqueness part, let k1, k; € K such that
dy(ky,a) = dp(a,K) = dy(ka,a).

Replacing k, and k;, by k1 and k; respectively in (5.22), we obtain

1 1
dypla k) < 5 (dp(ky,a) +dplaka)’) = gerdy (i, ko)’

1
7C1’dp (kll kZ)r/

= dp(ﬂ,K)r - 4

since k1, € K, the above inequality proves that d,(kq, k2) = 0. O
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Definition 5.3.21. Let K C A, be a convex closed set, 1 < p < coand a € A,. By
Theorem there is exactly one point 7 (a) € K such that

dp(a, g (a)) = dy(a, K).

Then g (a) is called the projection of a to K. The map rx : A, — Kis called the projection
map to K.

Remark 5.3.22. 1. One important fact here is the existence of a unique projection
without assuming any kind of compactness of K.

2. It clearly that 713 = 7.

Theorem 5.3.23. Let K C A, be a convex closed set, 1 < p < oo and 7ty the projection
map onto K. Then 7tk is continuous.

Proof. Let the sequence {c,} converge to c in A,. For simplicity, denote 7k (c,) by
uy. Now {u,} is a Cauchy sequence in K, otherwise there are positive numbers €
and subsequences {u,, } and {uy, } such that n, < my and d,(uy,, 1y, ) > € for all
k. Put ay = uy,, by = uy, and My = max{dy(c, ax),dp(c, by)}.

Note that My — d,(c,K) as k — oo. Now d,(c,ar) < My, dy(c,by) < My and
dp(ax, br) = (57 ) M- This implies

oot <0 (1o (1)) < (1, (4000)),

Also p,(57) < 1— d’jl(\z(K), letting k — oo, one has 4, (57,) — 0 and € can not be

positive. Thus {7tk (c,)} is a Cauchy sequence in K and therefore converges to a
point zin K, as d,(c,z) = d,(c, K), then z = 7rg(c). O

Another useful property of the A, spaces with 1 < p < 2 is the following Pythago-
ras type inequality.

Corolary 5.3.24. Under the same conditions stated above, we have that for all k € K with
K a closed and convex set and t € (0,1]

dy(a, (@) + (1= 1) (p = Vdy (mc(a), b2 < dp(a, b2, (523)

in particular
dy(a, i (a))* + (p — 1)dy(tk(a), k)* < dp(a, k). (5.24)
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Proof. Let ; : [0,1] — A, be the geodesic joining 9 = 7x(a) and v, = k, then
7+ € K by the convexity of K. Hence, by (5.3.15)

dy(a, (@) < dpla, 1)
< (1- B)dy(a, 7c(@))2 + 0, k) — Wa(t) (p — 1)y (c(a), k)2,

and therefore
td,(a, nK(a))z < tdy(a, k)2 —Wa(t)(p — 1)dp(7r1<(a),k)2.
Now if t € (0,1], this is the desired inequality . O

We shall prove now that the inequality (5.24) is a characterizes solutions of the
minimization problem.

Theorem 5.3.25. Let K C A, be a convex closed subset and a € A, with1 < p < 2.
Suppose that qo € K verifies (5.24)), then qq is the unique solution of (5.21]).

Proof. Forallk € Kand t € (0,1] we have
A(a,q0)* + (p — (g0, K)? < d(a, k)2
Then d(a, q9) < d(a, k). For the uniqueness part, let g9, 71 € K satisfying (5.24), then

(p—1)d(q1,q0)* < d(a,q1)* — d(a,q0)* = d(a,K)* — d(a,K)*.




Chapter 6

Geometry and Interpolation

6.1 Introduction

In [40], the Clarkson’s inequalities were generalized to a larger class of functions
including the power functions. Bhatia and Kittaneh [14] proved similar inequal-
ities for trace norms on linear combinations of n operators with roots of unity as
coefficients.

On B,, we have defined the following weighted norm :

IXllpa == la™2Xa™ 2],

associated witha € GI(H)™.

The material of this chapter is organized as follows. Section [6.2| contains a brief
summary of the Complex interpolation method. In Section[6.3|we apply this method
and obtain that the curve of interpolation coincides with the curve of weighted
norms determined by the positive invertible elements

Yop(t) = a'/*(a”V2ba~1/?)!a" /2,
In Section we present an elementary interpolation argument to obtain new

Clarkson’s type inequalities.

6.2 The Complex Interpolation Method

We recall the construction of interpolation spaces, usually called the complex inter-
polation method. We follow the notation used in [12] and refer to [44] and [19] for
details on this construction.

80
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A compatible couple of Banach spaces is a pair X = (Xp, X1) of Banach spaces
Xo, X1, both continuously embedded in some Hausdorff topological vector space
Uu.
Observe that for all a,b € GI(H)" and 1 < p < oo, the Banach spaces (By, || . [, ,)
and (By, || |,,,) are compatible considering U = (By, ||.||). We will simply write
this pair of spaces B, when no confusion can arise.
If Xp and X; are compatible, then one can form their sum Xy + X; and their inter-
section Xp N Xj. The sum consists of all x € U such that one can write x = y + z for
some y € Xpand z € Xj.
Suppose that Xy and X; are compatible Banach spaces. Then X N X is a Banach
space with norm

1% xonx, = max(llx[lx,  [1%]lx,)-

Moreover, Xy + Xj is also a Banach space with norm
¥llxyex, = inf LIVl + 12l =y +2).
A Banach space X is said to be an intermediate space with respect to X if
XoNX; CXCXo+ Xy,

and both inclusions are continuous.

Given a compatible pair X = (Xp, X;), one considers the space of all functions f
defined in the strip S = {z € C : 0 < Re(z) < 1} with values in Xy + Xj, and
having the following properties:

1. f(z) is continuous and bounded in norm of Xy + Xj on the strip S.

2. f(z) is analytic relative to the norm of Xy + X; on S.

3. f(j +iy) assumes values in the space X; (j = 0,1) and is continuous and
bounded in the norm of these spaces.

This space of functions is denoted by F(X) = F(Xo, X1).
One equips the vector space F(X) with the norm

£l 7(xy = max {sup [|f(iy)llx, sup | f(1+iy)lx, }-
yeR yeR

The space (F(X), || | 7(x)) is a Banach space.
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For each 0 < t < 1 the complex interpolation space, associated to the couple X,
which we denote X[t] = (Xo, X1)g, is the set of all elements x € Xo + X; repre-
sentable in the form x = f(t) for some function f € F(X), equipped with the
complex interpolation norm

1l = inffll 7z s £ € F(X), f(E) = x}.
The two main results of the theory are:

Theorem A. The space X is a Banach space and an intermediate space with re-
spect to X.

Theorem B. Let X and Y two compatible couples. Assume that T is a linear opera-
tor from X; to Y; bounded by M;, j = 0,1. Then for t € [0,1]

1—

6.3 Geometric Interpolation

In this section, we state the main result of this chapter. First, we introduce the
notation.
For1<p<oo,n€eN,s>1anda € GI(H)", let

BY = {(Xo, ., Xu 1) : Xi € By},
endowed with the norm
(X0, e Xnmt) s = (1Kol 0+ o+ 1 Xt [1,0) "%,
and C" endowed with the norm
(a0, -y @n-1)|, = (Jao|” + ... + |an_1]")/*.
We consider the action of GI(H) on B,(,”), defined by
1:GI(H) x B — BY", (X0, , Xu_1)) = (§X08", -, gXu18"). (6.1

From now on, we denote with Br(fa);s the space B ;(7") endowed with thenorm || (., ..., .)|| p s
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Proposition 6.3.1. The norm in Br(,'fa);s is invariant for the action of the group of invertible

elements. By this we mean that for each (Xo,... ,X,—1) € B,(g"), a € GI(H)" and g €

GI(H, By), we have
H (XOf e Xﬂ—l) Hp,u;s = ng((XU/ e Xﬂ—l)) H
Proof. See proposition |3.1.5}

p.gag*;s

Theorem 6.3.2. Leta,b € GI(H)",1<p,s <oo,n € Nandt € (0,1). Then
(n) pn)y _ pn)
(BP/WS’ Bp,b;s) [t — Bp,’y,,,b(t);s'
Proof. Recall Hadamard’s classical three line theorem ([55], page 33):
Let f(z) be a Banach space-valued function, bounded and continuous on the strip
S, analytic in the interior, satisfying

If(2)llx < Mo if Re(z)=0

and
If(2)lx <My if Re(z) =1,
where ||.||x denotes the norm of the Banach space X. Then

£ @)l < My " ay .
forallz € S.
In order to simplify, we will only consider the case n = 2. The proof below works
for n-tuples (n > 3) with obvious modifications.
By the previous proposition, we have that [|(Xy, X2)|[;; is equal to the norm of
a~12(Xy, Xp)a~'/? interpolated between the norms ||(.,.) [ 15 and [|(.,.)
sequently it is sufficient to prove our statement for these two norms.

| pes- COn-

The proof consists in showing that || (X1, X2)|[;; and [[(X1, X2) ||, «,; coincide in B;(,Z),
forallt € (0,1),.

Lett € (0,1) and (X3, X,) € BYY such that ||(X1, X2) |, ., = 1, and define

p.cts

Then foreachz € S, f(z) € Bl(,z)

iy t

c2¢ 2(Xq,Xp)c 2¢2

1)l = |
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and

2 ; ; s
LA+, = (Y [[c2eTc2Xe2cTer | )/e <1,
A pre

Since f(t) = (X1, Xz) and f = (f1, f2) € T(Béz)) we have |[(X1, X2) |y < 1. Thus
we have shown that

H (X1/X2) H 1] < H (Xl/ XZ) Hp,cf,'s .

To prove the converse inequality, let f = (f1, o) € F (B,E,z)), with f(t) = (X1, X2)
and (Y3, Y2) € B,gz) with |[Yi[|, < 1, where g is the conjugate exponent for 1 < p <
oo (or a compact operator and g = 0 if p = 1). Fork =1, 2, let

gi(z) = c2Yc Tl
Consider the function i : S — (C?,|(.,.)|,),
h(z) = (tr(f1(2)81(2)), tr(f2(2)82(2)))-
Since f(z) € F (B,(f)), then £ is analytic in $ and bounded in S, and
h(t) = (tr(c 2Xqc2Yy), tr(c 2 X 2Y5)).

By Hadamard'’s three line theorem, applied to & and the Banach space C? endowed
with the norm |(.,.)|,, we have

[h(t)]; < max{sup |h(iy)l;,sup [h(1 +iy)| }-

yER yeER
Forj=0,1,
2
sup |h(j+iy)l, = sup(Y |tr(fi(j+iy)ge(j +iy))[)"/*
yeR yeER k=1
2 . .
= sup(Y_ |tr(c 2 fij + iy)e T Pgi(iy)) [F)1/°
yeR k=1
2 . . S 1
< sup(Y G+ 150" < Uf Ly g,
yeR k=1 4
then
1%, + 11Xl = Sup. 1{ltr(c‘%X1c‘%Y1)|s +]tr(c 2 X2 T2 Vo) [}
1 9=
2|, <1
< sup |k < NI 50, -
v, <1 7

[REY/PAS
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Since the previous inequality is valid for each f € F (B,gf)) with f(f) = (X1, X2),
we have
(X1, X2) | ers < [1(X1, X2)[ -

In the special case n = s = 1 we obtain

Corolary 6.3.3. Given a,b € GI(H)" and 1 < p < oco. Then

(Bp,ﬂ/ Bp,b)[f] = BP:'Ya/b(t)'

Remark 6.3.4. Note that when a and b commute the curve is given by 7, ,(t) =
a'~'b". The previous corollary tells us that the interpolating space, By, , () can be

regarded as a weighted p-Schatten space with weight a! =’ (see [12], Th. 5.5.3).
By Theorem B, we obtain the following result of interpolation:

Corolary 6.3.5. Let a,b,c,d € GI(H)", p,s > 1, n € N and T a linear operator such
that:
The norm of T is at most My (between the spaces B;(,'fa);s and B p/b);

The norm of T is at most My (between the spaces B;(ffc),.s and B%’,s .

Then, for all t € [0, 1] we have

),
)

HT(X) ;s < M(l)_tMiupr,%,c(t);S'

| Prvp,a(t)

The complex interpolation method has been used by authors in the context of op-
erator algebras. For instance:

1. In 1977, Uhlmann [61] discussed the quadratic interpolation and introduced
the relative entropy for states of an operator algebra. His quadratic interpo-
lation is reduced to a path generated by the geometric mean and the relative
entropy is the derivative of this path. Corach et al. [24] pointed out that
this path can be regarded as a geodesic in a manifold of positive invertible
elements with a Finsler norm.

2. The theory of L? spaces associated with general (not necessarily semifinite)
von Neumann algebras has been developed by U. Haagerup [37]. Kosaki [43]
obtained these spaces via complex interpolation in a special case, when there
exists a normal faithful positive functional ¢ on the von Neumann algebra M.
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3. Andruchow et al. proved in [3] thatif A C B(H) is a C* algebra, 4, b two in-
vertible positive elementsin A, and || ||, and || ||, the corresponding quadratic
norms on H induced by them, i.e. ||x||, = (ax, x), then the complex interpo-
lation method, is also determined by 7, ;. This curve is the unique geodesic
of the manifold of positive invertible elements of A, which joins a and b.

6.4 Clarkson’s type inequalities

)

Consider the linear operator T, : B,(g'fa,.s — B\

pbys Siven by

n—1 n—1 n—1
Ty (Xo, s Xuo1) = () Xjy ) 6/ X, ) 0771X)),
j=0  j=0 j=0

where 0y, ..., 0,1 are the n roots of unity, i.e. 6; = e .

We remark that the inequalities (2.1) and (2.3) can be viewed as statements about
the norm of T. This approach was used by Klaus ([60], page 22).

We use the same idea and the interpolation method to obtain the following inequal-
ities.

Theorem 6.4.1. Fora,b € GI(H)", Xy, ..., X,—1 € By,1 < p < coand t € [0,1], we
have

_n—1 p n—-1 n-—1 " p ~n—l p
k E HX]Hp,a S Z || Z GjX]'Hp,«yﬂ,b(t) S K E HX]Hp,a (62)
j=0 k=0 j=0 j=0
where "
- . np-1 Hbl/za—lbqu— zf 1<p<2,
k = k ’ /b/t - _ - -
(p g ) { ngl/Zuflbl/ZH pt if 2<p <o,
and

n Hal/Zb—lal/ZHPt if1<p<2,

K=K(p,a,b,t) = { p-1 Hal/zb—lal/zH’”t if 2<p<oo.

Proof. We only prove the case n = 2 and 1 < p < 2, the other cases are similar. We
will denote by y(t) = v,(t), when no confusion can arise.
Consider the space B](gz) with the norm:

XY = XI55+ Y115 )7

where a € GI(H)™.
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By (or [14], Th. 2 with n = 2) the norm of T> is at most 21’7 when

T B ) — B

p,u;p) p,a;p)/

and the norm of T, is at most 2'/7||a'/2b~1a'/2|| when

T (B Ny — (B 1) p)-

Therefore, using the complex interpolation, we obtain the following diagram of
interpolation for t € [0, 1]

(B 1))
/

T}
BN ) —= BN i)

\
2
B 1) -
By Theorem B, T; satisfies

IT X < @726~ 21V

21712 2| (X, Y) 6.3)
Now applying the Complex method to
2
BNy ap)
X
2 T} 2
BN N o) ——= BNy
/
2
B )l pp)
one obtains
Ty < @YPIBY2a B2 Y)Y (X ) 012
217|628 B2 (X, Y) ]y 002 (6.4)
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Replacing in (6-4) X = 25 and Y = 25 we obtain

p p 1-p|31/2,,—121/2 pt _ P p
1ZI1% + WG, < 258120 5 2P (2 = WL, + 12+ WL, ),

or equivanletly

2BV B 2 P Z I+ (W) < 1Z = WP+ 2+ WD

Finally, the inequalities (6.16) and complete the proof.

Theorem 6.4.2. Fora,b € GI(H)", Xo,..., Xy—1 € By,1 < p < coand t € [0,1], we

have
1 A n—1
k[m&meZHZGXMm < KY IXillpa
j=0 k=0 j=0 j=0
where
n2=2/p |[b1/2a- 1127 if 1< p <o,
= k , ,b,t - - B _
(p,a,b,t) { n2/p Hbl/Za—lbl/ZH 2t if 2<p <o,
and

- w2 2 1< p <2,
= K(p,a,b,t) = { n2-2/p Hal/zbflal/ZHZt if 2<p < co.

Proof. A slight change in the previous proof proves our statement.

We need to consider the space Bén) endowed with the norm

2
H(XOI“"X )HpaZ (HXOH +..+ |’X7’l—1||p,a)1/2/

where a € GI(H)™ and the following inequality ([14], Th. 1.):
For 2 < p < oo, we have

anl ) n—-1 n-—1 " ) 277 ’
ne ) Xl < 31 07Xl < n ZIIXH
j=0 k=0 j=0

For 0 < p < 2 these two inequalities are reversed.

6.7)
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6.5 On the Corach-Porta-Recht Inequality

In [21], Corach, Porta and Recht proved that if S is invertible and selfadjoint in
B(H), then for all X € B(H)

|SXS~1 4 S71XS|| > 2||X]|.

In [42], Kittaneh proved a more general version of the CPR inequality:
For any norm ideal (Z, ||.||z) of B(H) and for all X € 7 we have

2||X|lz < ISXS™ + 571 XSz (6.8)

Remark 6.5.1. 7 is a norm ideal of B(H) if Z is an ideal and a Banach space with
respect to the norm ||. ||z satisfying:

1. I XTY ||z < | X||||T||z||Y|| for T € Z and X,Y € B(H),
2. || X||z = || X]| if T is the rank one.

In particular, condition 1. implies that the norm ||.||7 is unitarily invariant,
JUXV* 1z = 1 X]lz

for X € ZTand any U,V € U(H).
In [57], Seddik obtained the following inequality for any norm ideal 7 of B(H)
Theorem 6.5.2. Forall X € 1

157 = 57XS|lz < ([ISIHISTHI = DISXS™ + S71XS|7. (6.9)
In [47], Larotonda obtained the following inequality for any norm ideal
Theorem 6.5.3. ([47]], Corollary 28) Forall X € T

ISXS™! — S7'XS||z < ||ILt — Rellpp) ISXS™ + S7XS|, (6.10)

where e' = |S| and L, Ry are the left and right multiplication representations of T in
B(Z),Lr(U) = TU and Rr(U) = UT.

Here ||P||(7) denotes the norm of the linear operator P : 7 — T , that is

[Pllg(z) = sup{[|P(x)|lz : |x[|z = 1},
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The bound in (6.10) is related to the theory of generalized derivations. If A,B €
B(H) let
(SA,B X - (SA’B(X) = AX - XB = LA(X) — RB(X)

The theory of generalized derivations has been extensively studied in the literature,
see for example [28]. In [59], Stampfli proved the following equality

048] =inf{||A—=A||+|B—Al: A €C}, (6.11)
If (Z,||.]|z) is a norm ideal in B(H) and X € Z, then forall A € C
1648(X)llz = [[(A=A)X+X(B=A)llz < ([A= Al + [|B=AD[X]z. (6.12)

It follows from (6.11)) that
164,88y < [|04,8]-

From these facts we get,

ISXS™' —S7'XS|lz < |[Lt — Rrllpz)ISXS™" +S7'XS||z
= |orzllpa)ISXS™ + S XS||1
< |or,rlllISXS™ + S7'XS||7. (6.13)
From (6.13) and we obtain that
18XS™! = 571XS|lz < min{[|ér,r|, SIS~ = 1}[[SXS™! +57'XS]|z.

Note that the bound in Theorem is a refinement of (6.9). We start by recalling
the next

Corolary 6.5.4. ([59], Corollary 1) Let T be a normal operator. Then

loT,r|| = sup{||TX — XT||: T € B(H) and ||T|| =1} =2r(T),
where 1(T) = Amax(T) — Amin(T) is the radius of the spectrum of T.
First, we shall assume that S is positive. Then

107 7]] = Amax(T) — Amin(T) = 10g(Amax(S)) — log(Amin(S)) = log(m)f

therefore )

/\min(s) ’

S]] = Amax(S) and HsilH =
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So

)\max(s) )\max(s)
) <

/\min(s) /\mm(s)

Here we use the fact that log(t) <t —1, forall t > 1.

In the general case (i.e. S invertible and selfadjoint) we have

/\maX(‘SD
)‘min(’S’)

—1=lslliIs7!| - 1.

[or,7|| = log(

167,7]| = log( ) < lISHIsIH =1 =[sllIs~H -1,

Now, we are ready to state the next
Theorem 6.5.5. Let 7 be a norm ideal, then for all X € T

1SXS™t —S71XS||z < ||0r.7]|[|SXS™! + S71XS||1, (6.14)
with e’ = |§|.

Note that the inequality holds for any norm ideal Z where the explicit bound ||d1,7 |
depends only on the operator S and the norm in B(H) and not on the given unitar-
ily invariant norm.

Now, we shall apply the Corollary to the inequality obtained above for the
special case that 7 = B, with 1 < p < co.

For p > 1 fixed, we consider

Rys:B, — B, R,s(X)=5XS'+S!XS.

Corolary 6.5.6. Fora,b € GI(H)*,X € B, and t € [0,1], we have

1S5~ + 571Xy < 2pllall T NBI X 00 (6.15)
where p = ||S|||S].

Proof. We will denote by y(f) = v, 4(t).
The norm of R, s is at most 2y |a|| when

Rps: (Bp/ H-Hp,ﬂ) - (Bpr H-”p)/

and the norm of R, s is at most 2y||b|| when

Rys: (By, ll-llpy) — (Bp,ll-llp),
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Therefore, using the complex interpolation, we obtain the following diagram of
interpolation for t € [0,1]

(Bp, [I-llp.a)

/

R
(Bp, 1l pv6)) = (Bp, Il p)

A

CrAIRIFEY
By Corollary

IRy,s(X)Mlp < @ullpl) @pellall) = X1,
= 2uflal T BIM N X, 0)-

From Theorem [6.5.5] we get that
IsX57" = S7IXS]l, < orrllISXS™! + ST XS, < llorrl2ullall 1611 X1,

forall X € B, and any a,b € GI(H)™".
Finally, we conclude this section with the following statement.

Corolary 6.5.7. For X € B, we have
IsX571 — §71XS||), < 2plé7,[|C(X),
and

2]X[l, < [ISXS! +571XS]|, < 2uC(X),

where p = ||S||[|S7!|| and C(X) = inf{||al* oI Xlpy,,) : t € [0,1],a,b €
GI(H)*).
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