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Categorias de K-teoria algebraica bivariante y un espectro para la
K-teoria algebraica bivariante G-equivariante

Este trabajo se enfoca en el estudio de K-teorias algebraicas bivariantes universales.
Cortifias y Thom construyeron en [2] una K-teoria bivariante, invariante por homotopia,
escisiva, M-estable y universal en la categoria Alg, de dlgebras sobre un anillo unital
{. Més precisamente, construyeron una categoria triangulada kk junto con un funtor j :
Alg, — kk que verifica:

1. j manda morfismos (polinomialmente) homotépicos en morfismos iguales;

2. j manda sucesiones exactas cortas en Alg, que se parten como sucesiones de ¢-
modulos en tridngulos distinguidos en kk;

3. j(A = M, A) es un isomorfismo, para toda algebra A.

El funtor j es universal en el sentido de que cualquier otro functor Alg, — .7 con las
mismas propiedades —donde .7 es una categoria triangulada— se factoriza por j de
manera Unica. Independientemente de [2]], Garkusha construy6 en [|6] distintas teorias
de homologia bivariantes, invariantes por homotopia, escisivas y universales en Alg,.
Todas estas teorias verifican (1) y (2), pero satisfacen condiciones de estabilidad dis-
tintas de (3). Los métodos usados por Garkusha son bien distintos de los usados por
Cortinas-Thom: el primero construye sus categorias de K-teoria bivariante derivando
una categoria de Brown mientras que los segundos dan una descripcion mas explicita
de la categoria kk en términos de clases de homotopia de morfismos de ind-algebras. En
esta tesis combinamos resultados de [S]] con ideas desarrolladas por Cortifias-Thom en
[2] y damos nuevas descripciones de las categorias de K-teoria bivariante definidas por
Garkusha en [[6]. Nuestra construccion de la categoria de homotopia estable por lazos
sigue de cerca a la construccion hecha en [3, Section 6.3] en el contexto topologico. En
el camino, calculamos los grupos de homotopia del espacio de morfismos Homgyg (A, BY)
para cualquier par de dlgebras A y B, generalizando [2, Theorem 3.3.2]. Como aplicacién
de esto dltimo, damos una demostracién simplificada de [5, Comparison Theorem A] sin
usar localizacion de Bousfield de categorias de modelos. Por ultimo, usando el espectro
de K-teoria bivariante definido por Garkusha en [5], construimos un espectro simplicial
que representa a la K-teorfa algebraica bivariante G-equivariante kk© definida por Euge-
nia Ellis en [4]. Ademds, mostramos que el teorema de Green-Julg [4, Theorem 5.2.1] y
la adjuncion entre induccién y restriccidn [4, Theorem 6.14] se levantan a equivalencias
débiles de espectros.

Palabras clave: K-teoria algebraica bivariante, teorias de homologia bivariantes, espec-
tros de K-teoria bivariante, teoria de homotopia de algebras, categorias trianguladas.



Bivariant algebraic K-theory categories and a spectrum for
G-equivariant bivariant algebraic K-theory

This work is focused on the study of universal bivariant algebraic K-theories. Cortifias
and Thom constructed in [2] a universal bivariant, homotopy invariant, excisive and M-
stable homology theory in the category Alg, of algebras over a unital ring £. More pre-
cisely, they constructed a triangulated category kk together with a functor j : Alg, — kk
that has the following properties:

1. j sends (polynomially) homotopic morphisms to the same morphism;

2. j sends short exact sequences in Alg, that split in the category of {-modules to
distinguished triangles in kk;

3. j(A —» M, A) is an isomorphism, for any algebra A.

The functor j is universal in the sense that any other functor Alg, — .7 with the above
properties —where .7 is a triangulated category— factors uniquely trough j. Indepen-
dently of [2], Garkusha constructed in [|6] various universal bivariant, homotopy invariant
and excisive homology theories in Alg,. All these theories have properties (1) and (2), but
they satisfy different stability conditions instead of (3). The methods used by Garkusha
are very different from the ones used by Cortifias-Thom: the former constructs his bivari-
ant K-theory categories by means of deriving a Brown category and the latter give a more
explicit description of kk in terms of homotopy classes of morphisms of ind-algebras.
In this work we combine results from [5] with the ideas developed by Cortifias-Thom
in [2]] to give new descriptions of the bivariant K-theory categories defined by Garkusha
in [6]. Our construction of the loop-stable homotopy category closely follows that of
the suspension-stable homotopy category given in [3, Section 6.3] in the topological set-
ting. Along the way, we compute the homotopy groups of the simplicial mapping space
Hompy,, (A, B*) for any pair of algebras A and B, generalizing [2, Theorem 3.3.2]. As an
application of the latter, we give a simplified proof of [S, Comparison Theorem A] that
avoids the use of Bousfield localization of model categories. Finally, using the bivariant
K-theory spectrum defined by Garkusha in [5], we construct a simplicial spectrum that
represents the G-equivariant bivariant algebraic K-theory kk® defined by Eugenia Ellis
in [4]. Moreover, we show that the Green-Julg theorem [4, Theorem 5.2.1] and the ad-
junction between induction and restriction [4, Theorem 6.14] lift to weak equivalences of
spectra.

Keywords: bivariant algebraic K-theory, bivariant homology theories, bivariant K-theory
spectra, homotopy theory of algebras, triangulated categories.
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Introduccion

Sea ¢ un anillo conmutativo con unidad y sea Alg, la categoria de {-algebras no necesaria-
mente unitales. Una extension en Alg, es una sucesion exacta corta de dlgebras

& A—=B——=C ey

que se parte en la categoria de £-mddulos. Sea (.7, L) una categoria triangulada —en rea-
lidad, queremos decir la categoria opuesta de lo que usualmente se entiende por categoria
triangulada, de manera que los triangulos en .7 seran de la forma: LZ - X — Y — Z.
Siguiendo a Cortifias-Thom [2], una teoria de homologia escisiva a valores en .7 consiste
de:

(i) Un funtor X : Alg, —» .7;

(i1) Un morfismo 64 € .7 (LX(C), X(A)) por cada extension ().
Estos datos estdn sujetos a las siguientes condiciones:

(a) Para cada extension (), el tridngulo que sigue es distinguido:

[

LX(C)

X(A) X(B) X(C)

(b) Los morfismos 6+ son naturales con respecto a morfismos de extensiones.

Ejemplos de teorias de homologia escisivas fueron construidos por Cortifias-Thom [2]],
Garkusha [6] y Ellis [4]]. Todas estas teorias son invariantes por homotopia —i.e. identi-
fican morfismos (polinomialmente) homotépicos— y poseen cierta propiedad universal.
La mayoria satisface algin tipo de estabilidad por matrices.

Cortifias y Thom [2] introdujeron la kk-teoria algebraica; esta es una teoria de ho-
mologia escisiva e invariante por homotopia tal que, para todo A € Alg,, la inclusion
Seo : A = MA en la coordenada (1, 1) es inversible en kk. La kk-teoria algebraica es
ademds universal con estas propiedades: cualquier otra teoria de homologia con las mis-
mas propiedades se factoriza por kk de manera tnica. Una propiedad importante de la
kk-teoria es que se relaciona con la K-teoria homotdpica de Weiblel, KH. Mas precisa-
mente, para todo A € Alg,, hay un isomorfismo natural kk({,A) = KHyA [2, Theorem
8.2.1].

Para definir la kk-teoria, Cortifias y Thom introdujeron un enriquecimiento simpli-
cial de dlgebras: Para toda ¢-algebra A y todo conjunto simplicial K, definieron una ¢£-
dlgebra AX; esta puede pensarse como el dlgebra de funciones polinomiales en K con

7
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coeficientes en A. Para cada par de £-algebras A y B, definieron un espacio de morfismos
Homyy,, (A, B%). Sin embargo, este no es un enriquecimiento simplicial en el sentido de
[9, Chapter 4] porque no se satisface la ley exponencial (AX)f = AX*L_ Otra herramienta
técnica importante para la definicidn de kk es la nocién de homotopia entre morfismos de
ind-4lgebras.

Sea G un grupo. Basédndose en el trabajo de Cortifias-Thom [2]], Ellis [4] contruy6
una versién G-equivariante de kk, que llamé kk“. Esta es una teoria de homologia univer-
sal, escisiva, invariante por homotopia y G-estable en la categoria de {-algebras con una
accion de G. Sdlo esta definida cuando G es a lo sumo numerable.

Usando métodos completamente distintos, Garkusha [|6] construyé varias categorias
de K-teoria algebraica bivariante. Todas estas son universales, escisivas e invariantes por
homotopia, pero satisfacen distintas condiciones de estabilidad por matrices. La K-teoria
de Kasparov inestable D(R, ) no satisface ninguna condicion de estabilidad por matrices.
La K-teoria de Kasparov Morita-estable Dy,,.(R, &) es M,-estable para todo n € N. La
K-teoria de Kasparov estable Dy(R, &) es M -estable —y, por lo tanto, es naturalmente
isomorfa a la kk-teoria de Cortifias-Thom.

Garkusha probé en [5] que las categorias de K-teoria de Kasparov definidas en [6]] son
representables por ciertos espectros de K-teoria de Kasparov. Por ejemplo, para todo par
de élgebras A y B, contruyd un espectro K(A, B) tal que m,K(A, B) = D(R, &)(A,Q"B)
[S, Comparison Theorem B] —aqui, Q es el functor de traslacion en la categoria trian-
gulada D(R, §). En [5, Comparison Theorem A], se calcula el grupo myK(A, B) en
términos de clases de homotopia de morfismos de ind-dlgebras; la férmula obtenida es
practicamente igual a la definicion de kk(A, B) de Cortiflas-Thom —sin tener en cuenta
la M-estabilidad. La demostracion de este resultado, sin embargo, usa herramientas del
algebra homotopica tales como la localizacion de Bousfield.

En esta tesis, utilizamos los métodos desarrollados por Cortifias-Thom [2]] para dar
nuevas construcciones de las categorias de K-teoria de Kasparov definidas por Garkusha
[6] y de otras categorias de K-teoria algebraica bivariante. El primer resultado importante
es el siguiente:

Teorema 1 (Theorem [2.3.3). Para todo par de (-dlgebras A'y By todo n > 0, hay una

biyeccion natural:
m,Hompy, (A, B*) = [A, BS"]

Aqui, BS" es la ind-dlgebra de funciones polinomiales en el cubo n-dimensional que se
anulan en el borde del cubo, y los corchetes en el lado derecho de la igualdad denotan
al conjunto de clases de homotopia de morfismos. Este teorema de una generalizacion a
dimension arbitraria de lo hecho en [2, Theorem 3.3.2] paran < 1.

Como aplicacion inmediata del Teorema [I] damos una demostracion simplificada del
cdlculo hecho por Garkusha de los grupos de homotopia de K(A, B) en términos de clases
de homotopia de morfismos [5, Corollary 7.1]; nuestra demostracion no utiliza la locali-
zacion de Bousfield:

Teorema 2 (Theorem cf. [5, Corollary 7.1]). Para todo par de {-dlgebras Ay By
todo n € 7, hay un isomorfismo natural:

m,K(A, B) = colim[J'A, BZ"]
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Otra consecuencia del Teoremaes que, para n > 2, el conjunto [A, B:"] tiene una es-
tructura natural de grupo abeliano; esto es relevante para la construccién que procedemos
a describir. Imitando la definicion de la categoria de homotopia estable por suspensiones
en el contexto topoldgico de algebras bornoldgicas [3, Chapter 6], definimos una cate-
goria K de la siguiente manera: Los objetos de & son pares (A,m) con A € Alg, y m € Z.
Los conjuntos de morfismos estdn definidos por un cierto colimite filtrante de grupos:

Homg((A, m), (B, n)) := colim[J™" A, BZ"] 2)

La definicién de la composicién que hace de lo anterior una categoria es técnicamente
complicada y ocupa toda la seccion La estructura de grupo en el lado derecho de (2))
es fundamental para la definicion de esta composicion, ya que permite manejar los signos
que aparecen al permutar coordenadas —ver, por ejemplo, los lemas y Hay
un funtor natural j : Alg, — R tal que j(A) = (A, 0) para toda {-dlgebra A. Después de
mostrar que R es una categoria triangulada (seccién[3.12), probamos el resultado principal
del capitulo 3}

Teorema 3 (Theorem [3.13.12). EI funtor j : Alg, — K es una teoria de homologia
universal, escisiva e invariante por homotopia.

Una teoria de homologia universal, escisiva e invariante por homotopia ya habia sido
construida por Garkusha [6, Theorem 2.6 (2)] utilizando métodos completamente distin-
tos. Por supuesto, ambas construcciones son naturalmente isomorfas ya que satisfacen la
misma propiedad universal. Es fécil ver que un funtor F' : Alg, — Alg, que preserva
extensiones y homotopia induce un funtor triangulado F : & — K. Probamos el siguiente
resultado andlogo para transformaciones naturales:

Teorema 4 (Theorem [3.13.14). Sean : F — G : Alg, — Alg, una transformacion
natural entre funtores que preservan extensiones y homotopia. Entonces n induce una
unica transformacion natural (graduada) 77 : F — G tal que 7y = j(na) para toda
{-dlgebra A.

Sea X un conjunto infinito y sea My la £-4lgebra de matrices finitas a coeficientes en ¢
indexadas por X X X. Basdndonos en nuestra definicién de R, construimos una categoria
triangulada Ky dotada de un funtor jy : Alg, = K y probamos el siguiente resultado:

Teorema 5 (Theorem [5.2.16). El funtor jx : Alg, — RKx es una teoria de homologia
universal, escisiva, invariante por homotopia y My-estable.

En el caso particular X = N, nuestra construccién coincide con las teorias de homologia
M -estables definidas por Cortifias-Thom [2, Theorem 6.6.2] y Garkusha [5, Theorem
9.3.2]. Probamos el siguiente teorema, que relaciona a & y con la K-teoria homotdpica de
Weibel, KH:

Teorema 6 (Theorem [5.2.20; cf. [2, Theorem 8.2.1]). Sea X un conjunto infinito y sea
A € Alg,. Entonces hay un isomorfismo natural:

Kx(€,A) = KHy(A)
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El Teorema @] generaliza a un X arbitrario lo hecho en [2, Theorem 8.2.1] para X = N.
Finalmente, usamos nuestra categoria Ry para generalizar la definicién de la K-teoria
algebraica bivariante G-equivariante a un grupo G cualquiera —la definicion de [4] pide
que G sea a lo sumo numerable.

También hacemos algunos célculos con los espectros de K-teoria bivariante:

Teorema 7 (Propositions 4.4.1] and #.4.3). Sea X un conjunto simplicial finito y sean
A, B € Alg,. Entonces hay equivalencias débiles de espectros:

K(A, B) A X, — K(AX, B)

K(A7 BX) — Map(Xa K(A7 B))
Aqui, ]K(A, B) es un reemplazo cofibrante de IK(A, B) en la categoria de modelos estable.

Sea G un grupo y sea R la categoria de K-teoria algebraica bivariante G-equivariante.
Para todo par de ¢-algebras A y B con una accién de G, definimos un espectro K¢(A, B)
que representa a KC:

Teorema 8 (Theorem [5.3.11). Sean A, B € GAlg, y sea n € 7. Entonces hay un isomor-
fismo natural:
m,K9(A, B) = KRS(A, (B, n))

Probamos que el teorema de Green-Julg [4, Theorem 5.2.1] y la adjuncién entre induccion
y restriccion [4, Theorem 6.14] pueden levantarse a equivalencias débiles de espectros:

Teorema 9 (Theorem [5.3.15). Sea G un grupo finito de n elementos y supongamos que n
es inversible en €. Sean A € Alg, y B € GAlg,. Entonces hay una equivalencia débil de
espectros como sigue, que induce el isomorfismo de Green-Julg al aplicar my:

KS(AT, B) —= K. (A, B x G)

Aqui, AT denota a la (-dlgebra A con la accion trivial de G, y K, denota al espectro que
representa a la K-teoria algebraica bivariante M -estable.

Teorema 10 (Theorem [5.3.18). Sea G un grupo a lo sumo numerable y sea H € G un
subgrupo. Sean B € HAlg, y C € GAlg, Entonces hay una equivalencia débil de
espectros como sigue:

KY(Indy B, C) —— K"(MyB, Res!'C)

Aqui, Resg C denota a la €-dlgebra C con la accion de H que se obtiene al restringir la
accion de G. El funtor de induccion Indfl se define al final de la seccion

Esta tesis estd organizada de la siguiente manera:
En el capitulo [T] presentamos definiciones y resultados que se usan en el resto de la
tesis. Los temas tratados aqui son: categorias de diagramas dirigidos, enriquecimiento
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simplicial de élgebras y homotopia algebraica (polinomial). Nada de este material es
nuevo.

Al principio del capitulo 2| definimos, para cada par de conjuntos simpliciales finitos
Ky Ly cada B € Alg,, un morfismo de dlgebras (B¥): — BX*L que llamamos morfismo
de multiplicacion (Lema[2.2.1). El resultado principal de este capitulo es el teorema[2.3.3]
en donde calculamos los grupos de homotopia del espacio de morfismos Homyj,, (A, BY).
Esto es una generalizaciéon de [2, Theorem 3.3.2], como se explicé anteriormente. La
demostracion del teorema [2.3.3tiene dos ingredientes importantes; ambos comparan las
nociones de homotopia simplicial y algebraica: El primero es [5, Hauptlemma (2)], cuyo
enunciado recordamos en el lema[2.3.1] El segundo es el lema[2.3.2]—este es un resultado
en la linea de [5, Hauptlemma (3)], que se deduce inmediatamente de la existencia de los
morfismos de multiplicacion.

En el capitulo[3|construimos, utilizando los métodos desarrollados por Cortifias-Thom
[2], una teoria de homologia universal, escisiva e invariante por homotopia (teorema
[3.13.12). Esta teoria es naturalmente isomorfa a la teoria D(R, &) de Garkusha [6, The-
orem 2.6 (2)] ya que ambas satisfacen la misma propiedad universal. La llamamos la
categoria de homotopia estable por lazos y la denotamos por K.

En el capitulof]recordamos la definicién del espectro de K-teorfa de Kasparov K(A, B)
definido por Garkusha (definicion y damos una demostracion simplificada de [5,
Comparison Theorem A] (teorema[4.3.3). Sea K un conjunto simplicial finito. Probamos
que los grupos K(AX, (B, n)) y K(A, (BX, —n)) son, respectivamente, el n-ésimo grupo de
homologia y el n-ésimo grupo de cohomologia de K con coeficientes en K(A, B) (proposi-
ciones y l . Como consecuencia, toda equivalencia débil K — L entre conjuntos

simpliciales finitos induce un isomorfismo X(A%) = X(AX) en cualquier teoria de ho-
mologia escisiva e invariante por homotopia X (corolariod.4.2)). Probamos que en & vale
la ley exponencial (B¥)! = BX*L para K y L finitos (corolario .

En el capitulo[5]definimos, para todo conjunto infinito X, una teoria de homologia uni-
versal, escisiva, invariante por homotopia y My-estable, que denotamos por K x (teorema
[5.2.16). En el teorema probamos que, para toda £-dlgebra A, hay un isomorfismo
natural R x(¢, A) = KHy(A); esto generaliza [2, Theorem 8.2.1]. Para todo grupo G, defini-
mos una teoria de homologia universal, escisiva, invariante por homotopia y G-estable en
la categoria de ¢-dlgebras con una accién de G; denotamos a esta teorfa por K¢ (teorema
[5.3.8). Aqui seguimos de cerca [4], reemplazando a kk por ] para deshacernos de la
restriccidn sobre la cardinalidad de G. Finalmente, definimos un espectro que representa
a K¢ (teorema y mostramos que los teoremas de adjuncién [4, Theorem 5.2.1]
y [4, Theorem 6.14] pueden levantarse a equivalencias débiles de espectros (teoremas

5.3.15y 5.3.13).
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Introduction

Let £ be a commutative ring with unit and write Alg, for the category of (not necessarily
unital) {-algebras and ¢{-algebra homomorphisms. An extension in Alg, is a short exact
sequence of algebras

&: A—B——C (1)

that splits in the category of £-modules. Let (.7, L) be a triangulated category —by this,
we actually mean the opposite category of what is usually understood by triangulated
category, so that triangles in .7~ will be of the form: LZ — X — Y — Z. Following
Cortinas-Thom [2], an excisive homology theory with values in .7 consists of:

(i) A functor X : Alg, —» 7;
(ii) A morphism 6¢ € 7 (LX(C), X(A)) for every extension (T.
These data are subject to the following conditions:

(a) For every extension (I)), the triangle below is distinguished:

LX(C) =22~ X(A) X(B) X(C)

(b) The morphisms d¢ are natural with respect to morphisms of extensions.

Examples of excisive homology theories were given by Cortifias-Thom [2], Garkusha [6]]
and Ellis [4]. All these theories are homotopy invariant —i.e. they identify (polynomially)
homotopic morphisms— and are characterized by a certain universal property. Most of
them satisfy some kind of matrix-stability.

Cortinas-Thom [2]] introduced algebraic kk-theory; this is an excisive and homotopy
invariant homology theory such that, for any A € Alg,, the inclusion s, : A — M.A into
the (1, 1)-place becomes invertible in kk. Algebraic kk-theory is moreover universal with
respect to these properties: any other homology theory with the same properties factors
uniquely through kk. An important property of kk-theory is that it relates to Weibel’s
homotopy K-theory KH. More precisely, for any A € Alg,, there is a natural isomorphism
kk(¢,A) = KHyA [2, Theorem 8.2.1].

In order to define kk-theory, Cortifias-Thom introduced a simplicial enrichment of
algebras: For an f-algebra A and a simplicial set K, they defined an ¢-algebra AX; this
is to be thought of as the algebra of polynomial functions on K with coefficients in A.
For two £-algebras A and B, they defined a simplicial mapping space Homyy,, (A, B%).

13
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However, this is not a simplicial enrichment in the sense of [9, Chapter 4] because the
exponential law (AX)L = AX*L fails to hold. Another important technical tool involved in
the definition of kk is the notion of homotopy between ind-algebra homomorphisms.

Let G be a group. Based on the work by Cortifias-Thom [2], Ellis [4] constructed
a G-equivariant version of kk, denoted by kkC. This is a universal excisive, homotopy
invariant and G-stable homology theory in the category of £-algebras with an action of G.
It is only defined when G is countable.

Using completely different methods, Garkusha constructed in [6] several bivariant
algebraic K-theory categories. All of these are universal, excisive and homotopy invariant
homology theories, but they differ from each other in their matrix-stability conditions.
The unstable Kasparov K-theory D(R, ) is not matrix-stable at all. The Morita stable
Kasparov K-theory Dy (R, §) is M,-stable for all n € N. The stable Kasparov K-theory
Dy(R, §) 1s M, -stable —hence, it is naturally isomorphic to the kk-theory of Cortifias-
Thom.

Garkusha proved in [5] that the Kasparov K-theory categories defined in [6] are rep-
resentable by certain Kasparov K-theory spectra. For example, for any pair of algebras
A and B, he constructed a spectrum K(A, B) such that 7, K(A,B) = D(R, ¥)(A,Q"B)
[S, Comparison Theorem B] —here, Q is the translation functor in the triangulated cat-
egory D(R, §). In [5, Comparison Theorem A], the group myK(A, B) is computed in
terms of homotopy classes of morphisms of ind-algebras; the formula is almost equal to
the definition of kk(A, B) by Cortifias-Thom —without taking into account M,,-stability.
The proof of this result, however, involves techniques from homotopical algebra such as
Bousfield localization.

In this thesis, we use the methods developed by Cortifias-Thom [2] to give new con-
structions of the Kasparov K-theory categories defined by Garkusha [6]] and other bivari-
ant K-theory categories. The first important result is the following:

Theorem 1 (Theorem [2.3.3)). For any pair of €-algebras A and B and any n > 0, there is
a natural bijection: R
m,Homay, (A, B) = [A, BJ"]

Here, B is the ind-algebra of polynomial functions on the n-dimensional cube that van-
ish at the boundary of the cube, and the square brackets on the right-hand side stand for
the set of homotopy classes of morphisms. This theorem is a generalization to arbitrary
dimensions of [2, Theorem 3.3.2], which addresses the cases n < 1.

As an easy application of Theorem|[I] we give a simplified proof of Garkusha’s com-
putation of the homotopy groups of K(A, B) in terms of homotopy classes of morphisms
[S, Corollary 7.1]; our proof doesn’t involve Bousfield localization:

Theorem 2 (Theorem |4.3.3; cf. [S, Corollary 7.1]). For any pair of {-algebras A and B
and any n € 7, there is a natural isomorphism:

H”K(Aa B) = COlim[]"A, B?nﬂr]

Another consecuence of Theorem [I] is that, for n > 2, we have a natural abelian

group structure on the set [A, B.6 "]; this is relevant for the construction that we proceed
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to describe. Mimicking the definition of the suspension-stable homotopy category in the
topological setting of bornological algebras [3, Chapter 6], we define a category & as
follows: The objects of R are pairs (A, m) with A € Alg, and m € Z. The hom-sets are
defined by a certain filtering colimit of groups:

Homg((4, m), (B, n)) := colim[J™" A, BZ"] (2)

The definition of the composition law that makes these data into a category is technically
involved and occupies the whole section[3.7] The group structure on the right-hand side of
(2) is fundamental for the definition of this composition law, in order to handle the signs
that appear when permuting coordinates —see, for example, Lemmas [3.7.4] and [3.7.5]
We have a natural functor j : Alg, — & such that j(A) = (A, 0) for every {-algebra A.
After showing that R is a triangulated category (Section [3.12)), we prove the main result
of Chapter

Theorem 3 (Theorem (3.13.12). The functor j : Alg, — & is a universal excisive and
homotopy invariant homology theory.

A universal excisive and homotopy invariant homology theory was already constructed
by Garkusha [[6, Theorem 2.6 (2)] using completely different methods. Of course, both
constructions are naturally isomorphic, since they satisfy the same universal property. It
is easily seen that a functor F' : Alg, — Alg, that preserves extensions and homotopy
induces a triangulated functor £ : & — K. We prove the following similar statement
about natural transformations:

Theorem 4 (Theorem 3.13.14). Letn : F — G : Alg, — Alg, be a natural transforma-
tion between functors that preserve extensions and homotopy. Then n induces a unique
graded natural transformation ij - F — G such that ijjay = j(na) for every l-algebra A.

Let X be an infinite set and let My be the {-algebra of finite matrices with coeflicients
in ¢ indexed on X X X. Based on our construction of &, we construct a triangulated
category 8 x endowed with a functor jy : Alg, — K and prove the following result:

Theorem 5 (Theorem [5.2.16). The functor jx : Alg, — RKx is a universal excisive,
homotopy invariant and M x-stable homology theory.

In the special case X = N, we recover the M,-stable homology theories constructed
by Cortiflas-Thom [2, Theorem 6.6.2] and Garkusha [5, Theorem 9.3.2]. We prove the
following theorem, relating K x to Weibel’s homotopy K-theory KH:

Theorem 6 (Theorem [5.2.20} cf. [2| Theorem 8.2.1]). Let X be any infinite set and let
A € Alg,. Then there is a natural isomorphism:

Kx(€,A) = KHy(A)

Theorem [6] is a generalization of [2, Theorem 8.2.1], which addreses the case X = N.
Finally, we use our category S to generalize the definition of G-equivariant bivariant
algebraic K-theory [4] to an arbitrary group G —the definition in [4] requires G to be
countable.

We also make some computations concerning the bivariant K-theory spectra:
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Theorem 7 (Propositions@.4.Tjand.4.5)). Let X be a finite simplicial set and A, B € Alg,.
Then there are natural weak equivalences of spectra:

K(A, B) A X, —— K(AX, B)

K(A7 BX) — Map(Xa K(A7 B))
Here, ]K(A, B) is a cofibrant replacement of K(A, B) in the stable model category.

Let G be a group and let K¢ denote the G-equivariant bivariant K-theory category.
For any pair (A, B) of £-algebras with an action of G, we define a spectrum K¢(A, B)
representing R¢:

Theorem 8 (Theorem [5.3.11). Let A, B € GAlg, and let n € 7. Then there is a natural
isomorphism:
1, K%(A, B) = R(A, (B, n))

We prove that the Green-Julg theorem [4, Theorem 5.2.1] and the adjunction between
induction and restriction [4, Theorem 6.14] lift to weak equivalences of spectra:

Theorem 9 (Theorem [5.3.15). Let G be a finite group of n elements and suppose that n
is invertible in €. Let A € Alg, and let B € GAlg,. Then there is a weak equivalence of
spectra as follows, inducing the Green-Julg isomorphism upon taking m:

KO(A™, B) —— Ko (A, B x G)

Here, AT denotes the (-algebra A with trivial G-action and K., denotes the spectrum
representing M,-stable bivariant algebraic K-theory.

Theorem 10 (Theorem|(5.3.18)). Let G be a countable group and let H C G be a subgroup.
Let B € HAlg, and let C € GAlg,. Then there is a weak equivalence of spectra as follows:

KS(Indy, B, C) —— K¥(MyB, Res'’C)

Here, Resg C denotes the (-algebra C with the H-action obtained by restricting the action
of G. The induction functor Indg is defined at the end of section

This thesis is organized as follows:

In Chapter|[I|we present definitions and results used in the rest of the thesis. The topics
covered here are: categories of directed diagrams, simplicial enrichment of algebras and
algebraic (polynomial) homotopy. None of this material is new.

At the beginning of Chapter 2] we define, for every pair of finite simplicial sets K and L
and every B € Alg,, an algebra homomorphism (BX¥)L — BX*E that we call multiplication
morphism (Lemma [2.2.1). The main result of this chapter is Theorem where we
compute the homotopy groups of the simplicial mapping space Homyye, (A, B*). This is a
generalization of [2| Theorem 3.3.2], as explained above. The proof of Theorem[2.3.3]has
two key ingredients, both comparing the notions of simplicial and algebraic homotopy:
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The first one is [5, Hauptlemma (2)], whose statement we recall in Lemma [2.3.1] The
second one is Lemma @ —this is a result in the line of [5, Hauptlemma (3)], which
follows immediately from the existence of the multiplication morphisms.

In Chapter 3| we construct, using the methods developed by Cortifias-Thom [2f], a
universal excisive and homotopy invariant homology theory (Theorem [3.13.12). This
theory is naturally isomorphic to Garkusha’s D(R, &) [6, Theorem 2.6 (2)] since they
both satisfy the same universal property. We call it the loop-stable homotopy category
and denote it by K.

In Chapter 4 we recall the definition of Garkusha’s unstable Kasparov K-theory spec-
trum K(A, B) (Definition [3.6.4) and we give a simplified proof of [5, Comparison The-
orem A] (Theorem 4.3.3). Let K be a finite simplicial set. We prove that the groups
K(AX, (B, n)) and K(A, (BX, —n)) are, respectively, the n-th homology and n-th cohomol-
ogy groups of K with coefficients in K(A, B) (Propositions [4.4.1| and #.4.3). As a con-

secuence of this, any weak equivalence K — L between finite simplicial sets induces an

isomorphism X(AL) 5 X(AX) in any excisive and homotopy invariant homology theory
X (Corollary . We prove that the exponential law (BX)L = BX*L holds in K, for finite
K and L (Corollary 4.4.3)).

In Chapter we define, for any infinite set X, a universal excisive, homotopy invariant
and Mx-stable homology theory, that we denote by Ky (Theorem [5.2.16). In Theorem
[5.2.20] we prove that, for any f-algebra A, there is a natural isomorphism Kx(¢,A) =
KHy(A); this extends [2, Theorem 8.2.1]. For any group G, we define a universal excisive,
homotopy invariant and G-stable homology theory in the category of {-algebras with an
action of G; we denote this theory by K¢ (Theorem . Here we closely follow [4],
replacing kk by K to get rid of the restriction on the cardinality of G. Finally, we define
a spectrum representing 8¢ (Theorem and show that the adjunction theorems [4,
Theorem 5.2.1] and [4, Theorem 6.14] lift to weak equivalences of spectra (Theorems

5.3.15|and [5.3.18).
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Chapter 1

Preliminaries

Resumen del capitulo

En este capitulo presentamos definiciones y resultados que usaremos mas adelante; nada
de este material es nuevo. En las secciones y principalmente fijamos notacion.
En la seccion estudiamos diferentes nociones de morfismo entre diagramas dirigidos
y analizamos algunas relaciones entre ellas (Lema[1.2.3.1)). La seccion|[I.4]estd dedicada
al enriquecimiento simplicial de dlgebras introducido en [2]. Para cada par de ¢-4lgebras
Ay B, se define un espacio de morfismos Homyy, (A, B%). Para una (-dlgebra B y un
conjunto simplicial X, describimos una £-algebra BX, que puede pensarse como el dlgebra
de funciones polinomiales en X a coeficientes en B. En la seccién estudiamos la
nocién de homotopia algebraica.

Chapter summary

In this chapter we present definitions and results that will be used later on; none of this
material is new. In sections and we mainly fix notation used throughout the text.
In section [I.2] we discuss different notions of morphism between directed diagrams and
explore some relations among them (Lemma|[I.2.3.1). Section[I.4]is concerned with the
simplicial enrichment of algebras developed in [2]]. For £-algebras A and B, a simplicial
mapping space Homyy,, (A, BY) is defined. For an (-algebra B and a simplicial set X, we
describe an ¢-algebra BX, which is to be thought of as the algebra of polynomial functions
on X with coefficients in B. Section [I.5]discusses the notion of algebraic homotopy.

1.1 Conventions

Throughout this text, £ is a commutative ring with unit and G is a group. We only consider
not necessarily unital £-algebras. A G-{-algebra is, by definition, an £-algebra with an
action of G. The letter C denotes either the category Alg, of £-algebras or the category
GAlg, of G-¢-algebras. Simplicial objects in C can be considered as simplicial sets using

19
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the forgetful functor C — Set; this is usually done without further mention. The symbol
® indicates tensor product over Z.

1.2 Categories of directed diagrams

Let € be a category. A directed diagram in € is a functor X : I — €, where [ is a filtering
partially ordered set. We often write (X, /) or X, for such a functor. We shall consider
different categories whose objects are directed diagrams:

1.2.1 Fixing the filtering poset

Let I be a filtering poset. We will write €/ for the category whose objects are the functors
X : I — € and whose morphisms are the natural transformations.

If J is another filtering poset, the cartesian product I X J is a filtering poset with
the product order and there is an isomorphism of categories (€/)’ = €/ given by the
exponential law.

1.2.2 Varying the filtering poset

We will write € for the category whose objects are the directed diagrams in € and whose
morphisms are defined as follows: Let (X, /) and (Y,J) be two directed diagrams. A
morphism from (X, I) to (¥, J) consists of a pair (f,6) where 6 : I — J is a functor and
f : X — Y ofis anatural transformation.

For a fixed filtering poset I, there is a faithful functor a : ¢/ — € that acts as the
identity on objects and that sends a natural transformation f to the morphism (£, id;).

1.2.3 The category of ind-objects

The category €'"¢ of ind-objects of € is defined as follows: The objects of €"¢ are the
directed diagrams in €. The hom-sets are defined by:

Homgina (X, 1), (Y, J)) := lil’}l cqlijm Homg(X;, Y))
i€ JjE

There is a functor € — €™ that acts as the identity on objects and that sends a
morphism (f,6) : (X,I) — (Y, J) to the morphism:

(fi : Xi = Yoi)e € lir}lco_lijm Homg¢ (X, Y))
i€ je

Lemma 1.2.3.1. Let I be a filtering poset and let € be a category. There are functors
a: (€ > € and a™ : ()4 — € sych that, for every filtering poset J, the following
diagram commutes:

-

(€1 — () — (&)™

l a L (1)

-

@I xJ € G:ind
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Proof. Let us define the functor @. If X : J — € is an object of (€7 and the diagram ()
commutes, then @(X) should be the functor X : IxJ — € obtained by the exponential law;
this defines @ on objects. Let (f,60) : (X, J) — (¥, K) be a morphism in ((f"), ie.0:J—-K
is a functor and f : X — Y o @ is a natural transformation of functors / — €. Then
id; x0:IxJ— IxKisafunctorand f : X — Y o (id; X ) is a natural transformation
of functors I x J — €, this defines @ on morphisms. It is clear that the definitions above
determine a functor & that makes the left square in (I)) commute.

Let us define the functor a™. Again, it is clear how to define the functor on objects:
one should use the exponential law. Let X : J — €/ and Y : K — € be two objects of
(€h)nd We have to define a function:

lim colim Homg(X(0), Yi(i)) — lim colim Homg(X; (), Yk(z))
jeJ  keK icl (. DeIxJ (i,k)elxK

This is equivalent to defining compatible functions:

7G5 - limcolim Homg(X(7), Yi(i)) — colim Homg(X; (), Y; (z))
’ jeJ  keK  Jier G.fyeIxK

Let 7; 5, be the composite of the following solid morphisms, whose definition we proceed
to explain:

limcolim | Homg(X;(i), ¥(i)) = colim Homg(X:(), Y;(}))
jel  keK  Jigp (k,HekxI '

|

colim Homg(X;(0), Yi(i)) —— C(thm Homg (X 7(7), Y, (D)
- 4

keK iel

The vertical map on the left is the projection from lim c;; the horizontal map on the bottom
is the colimycx of the projections

f Home(X;(0). Y,(1)) —> Home(X;(0), Yi():
iel

and the vertical map on the right is the one induced by the structural morphisms:

Homg(X; G), V(1)) — colim Homg(Xj; G), Yk(z))

GkeIxK

It is straightforward but tedious to verify that this definition determines a functor a'™® that
makes the diagram ((I)) commute. m]

1.3 Simplicial sets

The category of simplicial sets is denoted by S [9, Chapter 3]. Let Map(?, ??) be the
internal-hom in S; we often write Y* instead of Map(X, Y).
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1.3.1 The iterated last vertex map

Let sd : S — S be the subdivision functor. There is a natural transformation y : sd — idg
called the last vertex map [7, Section III. 4]. Put y' := y and define inductively y% to be
the following composite:

1

Y -
sd"X = sd(sd"'X) —X L qdrlx

vyl

X

It is immediate that 9" : sd” — ids is a natural transformation. Let sd’ : S — S be the
identity functor and let ¥ : sd’® — ids be the identity natural transformation.

Lemma 1.3.1.1. For any p,q > 0 and any X € S we have:

p+q q

Yx = ')’;} o sd” ('}’;) = 7§ © Ysarx

Proof. It follows from a straightforward induction on n = p + q. O

1.3.2 Simplicial cubes

Let I := A' and let 01 := {0,1} c I. Forn > 1,let I" := I x --- x I be the n—fold direct
product and let 91" be the following simplicial subset of I":

oI =[O XIX---XINU[IX@O)X---XxI|U---U[IX---xIx ()]

Let 1° := A" and let 0I° := 0. We identify I = I" x I" and (I"*") = [(OI™) X ["] U
[ x (0I")] using the associativity and unit isomorphisms of the direct product in S.

1.3.3 Iterated loop spaces

Let (X, *) be a pointed fibrant simplicial set. Recall from [[7, Section I.7] that the loopspace
QX is defined as the fiber of a natural fibration 7y : PX — X, where PX has trivial
homotopy groups. By the long exact sequence associated to a fibration, we have pointed
bijections m,, (X, *) = m,(QX,*) for n > 0 that are group isomorphisms for n > 1.
Iterating the loopspace construction we get:

mo(Q'X) = m(Q71X, %) = - = (X, *)

morphism ¢ : X — Y of pointed fibrant simplicial sets induces group homomorphisms
@. @ mpQQ"X — mpQ"Y for n > 1. Let inc denote the inclusion 1" — I". It is easy to
see that the iterated loop functor Q" on pointed fibrant simplicial sets can be alternatively
defined by the following pullback of simplicial sets:

Thus, mp€Q2"X is a group for n > 1 and this group is abelian for n > 2. Moreover, a

Q"X —%- Map(I", X)

j l )

A® —— Map(9I", X)
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We will always use this description of Q". Occasionally we will need to compare "
for different integers n; for this purpose we will explicitely describe how the diagram
(2) arises from successive applications of the functor Q. We start defining QX by the
following pullback in S:

QX X Map(l, X)

Linc*

A’ —— Map(d1, X)
For n > 1, define inductively ¢, x : QX - Map(I"“, X) as the following composite:

L Qny (tn,x )«

Q(Q"X) — Map (I, Q"X) —= Map (I, Map(I", X)) = Map (I" x I, X)
It is easily verified that (2)) is a pullback. Moreover, ¢,,,, x equals the following composite:

Ly.omx ([m,X)*

Q" (Q"X) —— Map (I", Q" X) —— Map (I", Map(I"", X)) = Map (I" x I", X)

Thus, under the identification of diagram (2)), each time we apply Q the new /-coordinate
appears to the right.

1.4 Simplicial enrichment of algebras

We proceed to recall some of the details of the simplicial enrichment of Alg, introduced
in [2, Section 3]. Let Z* be the simplicial ring defined by:

[pl = Z% = Zlty, ..., t,)/{1 = 2 1)

An order-preserving function ¢ : [p] — [¢] induces a ring homomorphism Z*' — Z*" by
the formula:

Now let B € Alg, and define a simplicial ¢-algebra B* by:
[p]l = BY :=B®Z" 3)

If A is another {-algebra, the simplicial set Homygg, (A, B%) is called the simplicial mapping
space from A to B. For X € S, put BX := Homg(X, B®); it is easily verified that BX is an
¢-algebra with the operations defined pointwise. When X = AP, this definition of BY"
coincides with (3). We have a natural isomorphism as follows, where the limit is taken
over the category of simplices of X:

BX —=~ lim B~ 4)
AP X
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For A, B € Alg, and X € S we have the following adjunction isomorphism:

Homs(X, Homgye, (A, B*)) = Homs (CZ)}li)I(Il AP, Hompyg, (A, BA))
~ | p A
= E?)l( Homg (A , Homy)g, (A, B ))

~ . AP
~ Erlr)l( Homyg, (A, B )

= HOl’l’lAlg€ (A, glplll} BAI’)

= Homyy, (A, BX)

The category GAlg, has a simplicial enrichment as well [4, Section 2.3]; we proceed
to recall some of the details. Let B € GAlg,. For any X € S, consider Z* as a G-ring with
the trivial action of G. Consider B*" = B® Z*" as a G-{-algebra with the diagonal action
of G. Now the assignment [p] — B" defines a simplicial G-f-algebra B2. If A is another
G-(-algebra, the simplicial set Homgayg, (A, B%) is called the simplicial mapping space
from A to B. For X € S, the {-algebra BX = Homg(X, B*) is now a G-(-algebra with the
G-action defined pointwise. The morphism (4)) is in this case a G-f-algebra isomorphism.
Again, for A, B € GAlg, and X € S there is an adjunction isomorphism:

Homg (X, Homgayg, (A, BA)) = Homgalg, (A, BX)

Remark 1.4.1. Let X and Y be simplicial sets. In general (B¥)Y 2 B**Y —this already
fails when X and Y are standard simplices; see [2, Remark 3.1.4].

Remark 1.4.2. The simplicial ring Z* is commutative and hence the same holds for the
rings ZX = Homg (X, ZA), for any X € S. Thus, the multiplication in Z* induces a ring
homomorphism my : ZX ® Z*¥ — ZX. Note that my is natural in X.

1.5 Algebraic homotopy

Two morphisms fy, fi : A — B in C are elementary homotopic if there exists f : A — B
such that the following diagram commutes for i = 0, 1:

f BAI

A
f,-] j(d")*
B

AO

—= - B

Here the d' : A — A! are the coface maps. Elementary homotopy ~, is a reflexive and
symmetric relation, but it is not transitive. Let ~ be the transitive closure of ~,. Two
morphisms fy, fi : A = B in C are homotopic if fy ~ fi. It can be shown that fy ~ fi iff
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there existre Nand f : A — B2 such that the following diagrams commute:

A f Bsd’Al
f,l l(di)*
B = BSdrAO

Let [A, Bl¢ := Hom¢(A, B)/ ~; we will often drop C from the notation and write
[A, B] instead of [A, B]c. It can be shown that ~ is compatible with composition; i.e.
f ~gimpliesho f ~hogand f ok ~ gok. Thus, we have a category [C] whose objects
are the objects of C and whose hom-sets are the sets [A, B]c. We also have an obvious
functor C — [C].

Definition 1.5.1 ([2, Definition 3.1.1]). Let (A, I) and (B, J) be two directed diagrams in C
and let f, g € Homgina ((A, 1), (B, J)). We say that f and g are homotopic if they correspond
to the same morphism upon applying the functor C" — [C]™. We also write:

[As, B.]c := Homygyna ((A, 1), (B, J)) = ljr}l cqlijm[Ai, Bjle
i€ Jj€
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Chapter 2

Homotopy groups of the simplicial
mapping space

Resumen del capitulo

Sean A y B dos ¢-dlgebras. En este capitulo calculamos los grupos de homotopia del
espacio de morfismos Homay,, (A, B*). Més precisamente, en el Teorema probamos
que hay una biyeccidn natural:

m,Ex®Hompyg, (A, BY) = [A, B']

Aqui, BS" es la ind-dlgebra de funciones polinomiales en el cubo n-dimensional a coefi-
cientes en B que se anulan en el borde del cubo. Este resultado es una generalizacion de
[2, Theorem 3.3.2]. En la seccion definimos, para cada par de conjuntos simpliciales
finitos K y L, un morfismo de dlgebras u%* : (BX)l — BX*L; llamamos a estos morfismos
morfismos de multiplicacion. En la seccién[2.3| probamos el Lema[2.3.2} este es un resul-
tado en la linea de [5, Hauptlemma (3)] que se deduce inmediatamente de la existencia de
los morfismos de multiplicacién. Finalmente, usamos el Lema @ y [5, Hauptlemma

(2)] para probar el Teorema

Chapter summary

Let A and B be two {-algebras. In this chapter we compute the homotopy groups of the
simplicial mapping space Homa,, (A, B*). More precisely, in Theorem [2.3.3] we prove
that there is a natural bijection:

7, Ex®Hompg, (A, BY) = [A, BS"]

Here, B is the ind-algebra of polynomial functions on the n-dimensional cube with
coeflicients in B vanishing at the boundary of the cube. This result is a generalization
of [2, Theorem 3.3.2]. In section [2.2] we define, for every pair of finite simplicial sets
K and L, an algebra homomorphism u%t : (BX)E — BK*L; we call these morphisms

27
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multiplication morphisms. In section [2.3) we prove Lemma [2.3.2] which is a result in the
line of [5, Hauptlemma (3)] that follows immediately from the existence of multiplication
morphisms. Finally, we use Lemma and [5, Hauptlemma (2)] to prove Theorem
233

2.1 Functions vanishing on a subset

A simplicial pair is a pair (K, L) where K is a simplicial set and L € K is a simplicial
subset. A morphism of pairs f : (K',L’) — (K, L) is a morphism of simplicial sets
f 1 K’ — K suchthat f(L") C L. A simplicial pair (K, L) is finite if K is a finite simplicial
set. We will only consider finite simplicial pairs, omitting the word “finite” from now on.
Let (K, L) be a simplicial pair, let B € C and let r > 0. Put:

B&D) = ker (BSdrK — BSer) €eC
The last vertex map induces morphisms B — Bf’lL) and we usually consider BY" as
a directed diagram in C:
BED ; BED _ pED _ gD,
Notice that a morphism f : (K’, L") — (K, L) induces a morphism f™ : B&D BSK,’L') of
Zso-diagrams.

Lemma 2.1.1 (cf. [2, Proposition 3.1.3]). Let (K, L) be a simplicial pair and let B € C.
Then Z\*" is a free abelian group and there is a natural isomorphism in C:

B® 7KL =, pKL (1)
In the case C = GAlg,, we consider ZgK’L) as a G-ring with the trivial action of G, and the
domain of (1) as a G-t-algebra with the diagonal G-action.

Proof. The following sequence is exact by definition of 75D and [2, Lemma 3.1.2]:

0 Z(rK’L) st’K st’L 0 (2)

The group Z*'% is free abelian by [2, Proposition 3.1.3] and thus the sequence (2) splits.
It follows that Z!*" is free because it is a direct summand of the free abelian group Z4K,
Moreover, the following sequence is exact:

0—=B®Z " —~ B 7K —~ B 7t —0

To finish the proof we identify B ® Z*¢'X — B*YK using the natural isomorphism of
[2, Proposition 3.1.3]. It is immediate to check that the isomorphism (1)) respects the
G-action in the equivariant setting. O

Important example 2.1.2. Following [5, Section 7.2], we will write B instead of
BEI 91 Notice that Bf’ ? is the constant Z(-diagram B.
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2.2 Multiplication morphisms

Let (K, L) and (K’, L") be simplicial pairs. It follows from Lemma that ZgK’L)@)Z(SK,’L’)
identifies with a subring of Z*¢X @ Z*¢'X". Let u*X" be the composite of the following ring
homomorphisms:

strK ® stSK’ & yew": strﬂ'K ® strﬂK/
e l(prl ye(pr)’
Y
str+s(1(><1(’) m str”(KXK’) ® ZSdHS(KXK')

Here y/ is the iterated last vertex map defined in section|1.3.1} pr; is the projection of the
direct product into its j-th factor and m is the map described in Remark [[.4.2]

Lemma 2.2.1. The morphism u**X" defined above induces a ring homomorphism:

(K,L),(K",L") . Z(K,L) ® Z(K’,L’) N Z(IEXK’,(KXL’)U(K’XL))
© Hr s r+s

u

Moreover, WKL) is natural in both variables with respect to morphisms of simplicial
pairs. We call u'®P L) g multiplication morphism.

Proof. Let & be the restriction of u®%" to 75D @ 7K. we have to show that ¢ is zero
when composed with the morphism:

ST EKXK) __ rpsd™ S (KXL)U(LXK'))
Since the functor Z*"'® : S — Alg)’ commutes with colimits, it will be enough to show
that € is zero when composed with the projections to Z*"“®*) and to 7" K*D); this is a

straightforward check. For example, the following commutative diagram shows that € is
zero when composed with the projection to Z* XK we write i for the inclusion L C K.

—

K,L K'.I'
75D @ 7KL

st’K ® stSK’ el st’L ® stSK’
o eu")” ey
str+xK ® ZSdH'SK' el ZSdH—SL ® ZSdH—SK,
(pr)*®(pry)* (pry)*®(pry)*

TS (KXK' @ 7sd (KxK') __EOF _ r7sd ™ (LxK") g 775" (LxK')

m m

st’”(KXK’) i str“(LxK’)

The assertion about naturality is clear. m|
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Remark 2.2.2. We can consider Z5Y @ Z& ) as a directed diagram of rings indexed over
Zisg X Ziso. Let 0 : Zsg X Zsy — Zs be defined by 6(r, s) = r + s; it is clear that 0 is a
functor. Then the morphisms of Lemma assemble into a morphism in (Alg,):

(N(K,L),(K’,L’)’ 6’) : ZEK,L) ® Z(.K’,L’) Z(.KXK’,(KXL’)U(K’XL))

We will often consider K" in this way, omitting 6 from the notation.

Remark 2.2.3. Upon tensoring u&D-KL) with B € C and using (T)) we obtain a morphism
in C:
(KLJ(K'L) . ( kD) K L) (KXK' (LXK )U(KXL'))
B . (Br ) - Br+s
This morphism is natural in both variables with respect to morphisms of simplicial pairs.
. . . . . =
Again, defining 6 as in Remark , we have a morphism in C:

('U(K,L),(K’,L/) 9) . ( B(K,L))(K'v”) XK (LXK U(KXL)
B 9 . L] . (]

Important example 2.2.4. By Remark [2.2.3] we have a morphism in C:

"o, 91") (RG> Gt
Hp \B) — B

We will write 4" instead of ,ugm’alm)’(ln’aln). It is straightforward to verify that these maps

are associative; i.e. that the following diagram in C commutes:

mn

e H s
=4 =) =) ~
S\ om " B! S\ Om+n
Bol r B\_,/
N S+t

t

W | i

S I+m.n
B\31+rn " B 5 Bbl-f—m-*—n
r+s t

r+s+t

Indeed, asociativity holds for the maps ,u;K’L)’(K"L,) of Remark

Example 2.2.5. For any n > 0 and any B € C we have a morphism ¢ : B — B*" induced
by A" — x. It is well known that ¢ is a homotopy equivalence, as we proceed to explain.
Let v : B — B be the restriction to the O-simplex 0. Explicitely, we have v(z;) = 0 for
i > 0and v(ty) = 1. It is easily verified that v o ¢ = idz. Now let H : BY" — B*"[u] be the
elementary homotopy defined by H(#;) = ut; fori > 0 and H(#y) = to+ (1 —u)(t; +-- -+ 1,).
We have ev; o H = idg and evy o H = ¢ o v. This shows that ¢ o v = idga in [C].

The homotopy H constructed above is natural with respect to the inclusion of faces
of A" that contain the O-simplex 0. More precisely: if f : [m] — [n] is an injective
order-preserving map such that f(0) = 0, then the following diagram commutes:

By . BA'[y)
f*l lf*[u]

B A H B A [u]
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Now let p,g > 0. Recall from the proof of [9, Lemma 3.1.8] that the simplices
of A” x A7 can be identified with the chains in [p] X [¢] with the product order. The
nondegenerate (p + g)-simplices of A” X A? are identified with the maximal chains in
[p] X [q]; there are exactly (p;q) of these. Following [9], let ¢(i) for 1 < i < (p ;q) be the
complete list of maximal chains of [p]x[qg]. Then A? X A? is the coequalizer in S of the two
natural morphisms of simplicial sets f and g induced by the inclusions c(i) N ¢(j) C c(i)
and c(i) N ¢(j) C c(j) respectively:

f, g: | | Atene() ———> | | AN
<ici< <i< ;

Here n. is the number of edges in c; that is, the dimension of the nondegenerate simplex
corresponding to ¢. Since B’ : S® — C preserves limits, it follows that BA"™4" is the
equalizer of the following diagram in C:

e n BA

1<i<(”37) 1<i<j<("37)

)16(1)

BA"c(i)ﬂC(j) 3)

Moreover, since Z[u] is a flat ring, ? ® Z[u] preserves finite limits and B[] is the
equalizer of the following diagram:

Flude: [ B m—= [] B @)

1<i<(”37) 1<i<j<("37)

Notice that every maximal chain of [ p] x[g] starts at (0, 0). This implies, by the discussion
above on the naturality of H, that the following diagram commutes for every i and j:

B (i) H B Ac(i) [u]

| |

BAn(‘(i)ﬂ(‘(j) H BAnf(i)ﬁC(j) [u]

Then the homotopy H on the different BA“” gives a morphism of diagrams from @) to
(@) that induces H : BA™4" — BA™A'[y]. Lett : B — B4 be the morphism induced by
AP x A — % and let v : BA"*A" — B be the restriction to the O-simplex (0, 0). It is easily
verified that ev; o H is the identity of BA”*A" and that evy o H = 1 o v; this shows that ¢ is a
homotopy equivalence.

Finally, consider the following commutative diagram. Since each ¢ is a homotopy
equivalence, it follows that ¢ : (B*")A" — BA"™A" is a homotopy equivalence too.

BAP L (BA/?)M

T |+

BA” XA4

B——~

The author does not know whether u®F : (BX)E — BX*L is a homotopy equivalence
for general K and L. Later on we will prove that u®* becomes invertible in the bivariant
algebraic K-theory categories (Corollary {4.4.3).
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2.3 Main theorem

Let A, B € C and let n > 0. In this section we prove that there is a natural bijection:
n,Ex*Homg(A, B) = [A, BS"]¢

This result is a generalization of [2, Theorem 3.3.2].

We start by recalling a result from [5]] that allows us to compare simplicial and al-
gebraic homotopy. Following [5, Section 7.2], put B2 = BYMD The coface maps
d': A — I induce morphisms (d')* : Be" — BZ".

Lemma 2.3.1 (Garkusha). Let f : A — BY" be a morphism in C. Then the following
composites are algebraically homotopic; i.e. they belong to the same class in [A, BS"¢:

~  (dY* ~
AL Be Y pa (=01

Proof. In the case C = Alg, this is [5, Hauptlemma (2)]; the proof given there works
verbatim in the G-equivariant setting. O

Lemma 2.3.2 (cf. [5, Hagptlemma~ (~3)]). LetH : A — (BVE’")SdS’ be a morphism in C. Then
there exists a morphism H : A — B, in C such that the following diagram commutes for
i=0,1:
A H (Bfn)sd“l L[)*_ BE‘/n
H j()f“)*
@y

B, B,
Proof. Let H be the composite:
n qn (m.ar",(1,0) n n
A H (B£I oI ))(SI,O)) H Bg]ﬁ;q,(a[ YxI)
It is immediate from the naturality of u that H satisfies the required properties. O

Theorem 2.3.3 (cf. [2, Theorem 3.3.2]). Let A,B € C and let n > 0. Then there is a
natural bijection:
n,Ex*Hom¢(A, B*) = [A, BZ"]e (5)

Proof. We will show that 7oQ"Ex®*Homg(A, BY) = [A, BE "lc. Consider Hom¢(A, BY) as
a simplicial set pointed at the zero morphism. For every p > 0 we have a pullback of sets:

("Ex*Homc(A, BY)) ——= Map (1", Ex"Home(A, BY)

| (©)
x Map (61", Ex™Home(4, BY))
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For a finite simplicial set K we have:

Map (K Ex*Homg(A, BA))p Homs (K X A”, ExX*Homg(A, BA))

IR

colim Homg (K X AP, Ex"Hom¢(A, BA))

IR

colim Homg (sd’(K X AP), Hom¢(A, BA))

IR

colim Homg (A, B XAP))

It follows from these identifications, from (6)) and from the fact that filtered colimits of
sets commute with finite limits, that we have the following bijections:

IR

(Q"Ex*Homc(4, BA))0 colim Homg(A, BS") (7)

IR

(Q"Ex“Homc(A, BA))l colim Homg(A, B") (8)

Using (7) we get a surjection:

(Q”Ex“’HomC(A, BA))0 = colim Homg(A, B®") — [A, B&']¢

We claim that this function induces the desired bijection. The fact that it factors through
o follows from the identification (§) and Lemma [2.3.1] The injectivity of the induced
function from 7y follows from Lemma [2.3.2] mi

Remark 2.3.4. Let A,B € C and let n > 1. Consider the set [A, B.e”]c together with the
group structure for which (5)) is a group isomorphism. This group structure is abelian if
n > 2. Moreover, if f : A — A’ and g : B — B’ are morphisms in [C], then the following
functions are group homomorphisms:

f* (A, BS e —[A, B']e

gt A, BXe —[A, (BN e
In the sequel we will always consider [A, B;"]¢ as a group with this group structure.

Example 2.3.5. Recall that B = Blty,t11/{1 — ty — t;). Let w be the automorphism
of B2 defined by w(ty) = t;, w(ty) = to; it is clear that w induces an automorphism of
By = ker(B> — B'). Let f : A — B;' be a morphism in C and let [f] be its class
in [A, B?I]C. We claim that [w o f] = [f]™' € [A, B.e']c. In order to prove this claim, we
proceed to recall the definition of the group law * in 71; ExX*Home(A, BY). Consider f and
w o f as 1-simplices of Ex*Hom¢(A, B*) using the identification:

(Ex*Homc(A, BA))l = colim Homg(A, B2
According to [7, Section I.7], if we find « € (Ex‘”HomC(A, BA))2 such that

dyx=wo f
{@a:f ©)
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then we have [f] * [w o f] = [dia]. Let ¢ : B2 — BY be the morphism in C defined
by @(ty) = ty + tr, (1) = t;. Let a be the 2-simplex of Ex*Hom¢(A, B*) induced by the

composite:
2

A—L £ g

It is easy to verify that the equations (9)) hold and that d, « is the zero path.

Example 2.3.6. Let A,Be Candletm,n> 1. Letc: I" X I" S 1" % I" be the commuta-
tivity isomorphism. It is easily verified that ¢ induces an isomorphism ¢* : B — BJ"™".
We claim that the following function is multiplication by (—1)"":

c*: [A, B;en-ﬂn]c ——[A, B?mM]C

Indeed, this follows from Theorem [2.3.3] and the well known fact that permuting two
coordinates in Q"*" induces multiplication by (—1) upon taking 7.



Chapter 3

The loop-stable homotopy category

Resumen del capitulo

Construimos la categoria de homotopia estable por lazos —denotada por R¢— que es
una teoria de homologia universal, escisiva e invariante por homotopia en el sentido de
[2, Theorem 6.6.2]. La existencia de una teoria con estas caracteristicas ya habia sido
probada por Garkusha en [6, Theorem 2.6 (2)] usando métodos completamente distintos.
Seguimos de cerca la construccion de la categoria de homotopia estable por suspensiones
hecha en [3, Chapter 6] para algebras bornoldgicas. Desde luego, es necesario hacer al-
gunos cambios para traducir los resultados del contexto topolgdgico al algebraico; aqui
utilizamos métodos e ideas de Cortifias-Thom [2]]. En la secciéon[3.1]estudiamos las exten-
siones de algebras y sus morfismos clasificantes; este material puede encontrarse en [2]],
(5] y [4]. Hay dos funtores de lazos J y (?)®' que se vuelven equivalencias (naturalmente
isomorfas) en R¢; estos funtores se estudian en las secciones y En la seccion
damos la definicién de K€, que se obtiene de la categoria de homotopia [C] invirtiendo
formalmente a los funtores J y (?)°'. En la seccién probamos que K€ es una cate-
goria triangulada. Al igual que en el contexto topolégico [3, Theorem 6.63], probamos
que la triangulacién de K€ puede definirse usando tanto extensiones como mapping path
algebras (Proposicion . En la seccion mostramos que el funtor j : C — K¢
es una teoria de homologia universal, escisiva e invariante por homotopia. Por lo tanto,
cualquier funtor F : C — C que preserve extensiones y homotopia induce un funtor trian-
gulado F : K¢ — KC. En el Teorema mostramos que cualquier transformacion
natural n : F — G entre funtores con dichas propiedades induce una transformacion
natural (graduada) 7 : F — G.

Chapter summary

We construct the loop-stable homotopy category —denoted by R¢— which is a universal
excisive and homotopy invariant homology theory of algebras in the sense of [2, Theorem
6.6.2]. The existence of such a theory was already proved by Garkusha in [|6, Theorem
2.6 (2)] using completely different methods. We closely follow the construction of the
suspension-stable homotopy category of bornological algebras [3, Chapter 6]. We make,

35
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of course, appropiate changes to translate the arguments from the topological to the alge-
braic setting, using methods and ideas developed by Cortifias-Thom in [2]]. In section3.1]
we discuss the extensions of algebras and their classifying maps; this material is not new
and can be found in [2], [5] and [4]. There are two loop functors J and (?)€' that become
(naturally isomorphic) equivalences in ]¢; these functors are dealt with in sections
and In section|3.6|we give the definition of K€, which is obtained from the homotopy
category [C] by adding formal deloopings of J and (?)'. In sectionwe prove that K¢
is a triangulated category. As in the topological setting [3, Theorem 6.63], we show that
the distinguished triangles in K¢ can be defined using either extensions or mapping path
algebras (Proposition . In sectionwe show that the functor j : C — K€ is the
universal excisive and homotopy invariant homology theory with values in a triangulated
category. Thus, any functor F' : C — C that preserves extensions and homotopy induces
a triangulated functor F : R¢ — K€, In Theorem we show that any natural trans-
formation 7 : F — G between functors with these properties induces a (graded) natural
transformation 7j : F — G.

3.1 Extensions and classifying maps

Let Mod, be the category of £-modules and let GMod, be the category of G-{-modules.

Put:
| Mod, ifC=Alg,
UC) = { GMod, if C = GAlg,

Write F : C — U(C) for the forgetful functor. An extension in C is a diagram in C
& A—B——C (D)

that becomes a split short exact sequence upon applying F. A morphism of extensions is
a morphism of diagrams in C. We usually consider specific splittings for the extensions
we work with and we sometimes write (&, s) to emphasize that we are considering an
extension & with splitting s. Let (&, s) and (&”, s") be two extensions with specified
splittings; a strong morphism of extensions (&, s") — (&, s) is a morphism of extensions
(a,B,y) : & — & that is compatible with the splittings; i.e. such that the folowing
diagram commutes:

FB <X FC’

| |

FB<——FC

The functor F : C — U(C) admits a right adjoint T : UC) — C; see [4, Section 2.4]
for details. Let T be the composite functor ToF :C — C.LetA e Candlet na:TA — A
be the counit of the adjunction. Notice that Fn, is a retraction which has the unit map
o4 FA > FT(FA) = FTA as a section. Let JA := kern,. The universal extension of A
is the extension:

Uy JA—=TA—2>A )

We will always consider o4 as a splitting for %.
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Proposition 3.1.1 (cf. [2 Proposition 4.4.1]). Let (1)) be an extension in C with splitting
sandlet f : C' — C be a morphism in C. Then there exists a unique strong morphism of
extensions Uc — (&, s) extending f:

Uer Jc' TC' X~
a £ : f (3)
v v v
(&,5) A B C
Proof. 1t follows easily from the adjointness of T and F. O

The morphism ¢ in (3)) is called the classifying map of f with respect to the extension
(&,5). When C’ = C and f = id¢ we call £ the classifying map of (&, s).

Proposition 3.1.2 (cf. [2, Proposition 4.4.1]). In the hypothesis of Proposition the
homotopy class of the classifying map & does not depend upon the splitting s.

Proof. See, for example, [5, Section 3]. O

Because of Proposition [3.1.2] it makes sense to speak of the classifying map of (T]) as
a homotopy class JC — A without specifying a splitting for (TJ).

Proposition 3.1.3 ([2, Proposition 4.4.2]). Let & : A; —» B; — C; be an extension in C
with classifying map &;. Let (a,b,c) : & — &, be a morphism of extensions. Then the
following diagram commutes in [C]:

JC, 29 e,

J -

A1—a>A2

Moreover, if we consider specific splittings for the &; and (a, b, c) is a strong morphism of
extensions then the diagram above commutes in C.

Proof. See, for example, [5, Section 3]. O

Example 3.1.4. Let (K, L) be a simplicial pair and let A € C. Then the following diagram
is an extension in C, as we proceed to explain:

(U (JAEP (TAYED W pk

The sequence is exact since it is obtained from (2]) upon tensoring with Z%P: see Lemma
The splitting of nZK’L) in U(C) is given by

oA®Z&Y AR ZIY — TAR ZIY

under the identification of Lemma The last vertex map induces strong morphisms
of extensions (%)5“) — (OZ/A)%’IL). A morphism A — B in C induces strong morphisms

of extensions (%)Y — (%)*". A morphism of simplicial pairs (K’,L’) — (K, L)
induces strong morphisms of extensions (%)ﬁ’“) — (%A)ﬁK L9,
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Lemma 3.1.5. The functor J : C — C sends homotopic morphisms to homotopic mor-
phisms. Thus, it defines a functor J : [C] — [C].

Proof. It is explained in [2] in the discussion following [2, Corollary 4.4.4.]. m|

3.2 Path extensions

Let us define a class of extensions that will be useful later on. Let B € C and let n > 0.

Put:
P(n, B). := B @I xDuIx (1))

We will often write (PB), instead of P(0, B),. The diagram of simplicial pairs
(I, o™ 2 (I, (A" x ) U (I x {1})) 2 (I" x {0}, dI" x {0})

induces the following sequence of Z,-diagrams:

Py B P(n, B), —~—~ B )

We claim that (@) is an extension in C. Exactness at P(n, B), holds because the functors
B 'S — C preserve pushouts and we have:

At = [(AI" x D) U (I" x {1)] U (I" x {0})

Exactness at B,S”+1 follows from the fact that both B;S”” and P(n, B), are subalgebras of
B We proceed to construct a splitting of (4)) in U(C). Consider the element 7, € Y/
to is actually in Zg’“}) since dy(ty) = 0. Let s, p be the composite:

s, S s\ n+l (gqn n
B;«n 0 B;-'n ® Zg’“}) ~ (BI’VH)O a BEI LOI"xDUI"{1})

Here y is the morphism defined in Remark [2.2.3] It is straightforward to check that s, 5
is a section of p, p in U(C). We will always consider s, p as a splitting for (). It is clear
that (d) is natural in B with respect to morphisms in C.

Example 3.2.1. By naturality of u (see Remark [2.2.3)), there is a strong morphism of
extensions:

Py (B7) P(m, B"), (87)"
N
Primp B! P(n +m, B)y,, B
Example 3.2.2. For n = 0, the extension (4) takes the form:
Pog: BY' —= (PB), —=B* = B (5)

Here, the morphisms are induced by the following diagram of simplicial pairs:

(1,1~ (1, (1) <=2 (A%, 0)

This is the loop extension of [2, Section 4.5]; we will write Ap for its classifying map.
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Example 3.2.3. Define P(n, B), := BY PN The diagram of simplicial pairs
(I 91y o (I, (I x oI U ({1} x I'™)) 2 ({0} x I", {0} x OI")

induces a sequence of Zs,—diagrams:

Pp : By —— P(n, B), —— B (6)

It is shown that this sequence is an extension by proceeding in analogy to what was done

above for (@). In fact, the commutativity isomorphism ¢ : I" x I — I X I" induces a strong
isomorphism of extensions:

p—

4@11,8 B;BIM — F(l’l, B)r —_— B?”

P 5 B —— P(n, B), — By

Example 3.2.4. It will be useful to have a more explicit description of (3). Consider the
following isomorphisms:

A0 _ _ ~ .
{ B™ = Bl#]/(1 - 1y) = B; (7

BY = Blto,t)1/{1 =ty —t,) = Blt], 1 & t.

Under these identifications, the face morphisms B — B coincide with the evaluations
ev; : B[t] - Bfori=0,1. We have:

(PB), = ker (BA‘ b, BAO) ~ ker (B[t] -, B) = (t - 1)BI[1]

B3 = ker((PBYy > B ) = ker (1 1BIA = B) = (7 - nBL
Hence, the extension (3)) is isomorphic to:

evo

(2 — HB[t] —=— (t — 1)B[]

B 8)

The section in (5)) identifies with the morphism B — (¢t — 1)B[f], b — b(1 —1).
We now want a description of (5) once a subdivision has been made. Recall that sdA'

fits into the following pushout:

AO LO) Al

el
Al —— sdA!
Since the functor B’ : S® — C preserves limits, we have:
B = {(x,y) € BN x B* : dy(x) = do()}
= {(p,q) € Blf] X B[] : p(1) = q(1)} = B[] o, X.,, Blf]
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Under this identification, the endpoints of sdA! are the images of the coface maps d' :
A’ — A! whose codomains are each of the two copies of A! that are contained in sdA!.
We get:

(PB); = ker (B — B} = B[1] ,, x,,, tBl1]

evy’ evy

tB[1]

CV1XCV1

B} = ker (B — B")) = 1B[1]

In this description of (PB), a choice has been made, since the two endpoints of sdA! are
indistinguishable. The extension () is isomorphic to:

evpopr,

tB[t] .. X.. tB[{] —=— B[f] .. X... tB[{]

evy’ evy evy” evy

B C))

Here pr; @ B[] ., X, tBlt] — B[] is the projection into the first factor. The section in
() identifies with the morphism:

B — Bjt] tB[t], b (b(1-1),0).

eleevl

The last vertex map induces a strong morphism of extensions from (8] to (9)); this mor-
phism has the following components:

(> = O)B[1] > tB[1] o, X, tBl1], p+ (p,0);

(t — D)B[t] — B[t] ., X, tB[t], p (p,0).

evy’ ev)

Lemma 3.2.5. Let Be C,n > 1 and r > 0. Then P(n, B), is contractible.
Proof. Letd: I x I — I be the unique morphism of simplicial sets that satisfies:

0,0) —2—~0

0,1),(1,0),(1, 1) —2=1

It is easily verified that the following square commutes, where the vertical morphisms are
inclusions:
PxIxI Ll "xI

| |

@OI'xIxHuI"x {1} xI)—=@I"x U " x {1})

Thus I" X ¢ induces a morphism in C:
f . P(I’l, B)r B(r1”><1><1,(61"><1><1)u(1”><{l}><1))
The coface maps I"*! x d' : I"*! = ["*! x A° — ["*! x | induce morphisms in C:

n n n 6,-
B£I XIXI,(OI"XIXT)U(I"x{1}x1)) P(I’Z,B)r

Notice that g o f = 0 and 6; o f = idp(, 5),. By [S, Hauptlemma (2)], o o f and 6, o f
represent the same class in [P(n, B),, P(n, B),]. Indeed, both morphisms represent the
same class in [P(n, B),, BSdr’"“] but the polynomial homotopies constructed in op. cit.
preserve our boundary conditions. m|
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3.3 Exchanging loop functors

Let B € C and let m,n > 0. We proceed to define a natural transformation:
k" o J(B7") ——(J"B);"

Recall from Example [3.1.4]that we have an extension:

(Up)* : (B (T " B (10)

L J(BY™) — (JB);" be the classifying map of (I0). It follows from Example

and Proposition [3.1.3| that Kl " can be considered as a morphism J(B") — (JB)&"
in C’ 20, For n > 1, define mductlvely /<”+1 " as the composite:

Let K

1,m
JEg™ Kin

Jn+1(B§m) B’ J((J"B) )% (Jn+lB);\5m

The «;" are easily seen to be natural morphisms J"(B‘.S ") — (J”B)f5 ™ in C%=. Let J° be
the identity functor of C and let K%m be the identity of Be” € C”=0. The next result follows
from an easy inductiononn = p + q.

Lemma 3.3.1. Let p,q € Zso and let B € C. ThenKp+qm—KJpBO]q( )

Lemma [3.3.1] should be interpreted as follows: Let n = p + g. The morphism ™"
exchanges J" and (?)°". We have J" = J? o J?. Thus, in order to exchange J" and (?)°,
we can first exchange J” and (?)° and then exchange J¢ and (?)°":

JP+a(BGn) K (JPH9B)Cn
\]‘I(K\PM %
J7((JrB)*")

Remark 3.3.2. For any finite simplicial set K we have a classifying map J(BX) — (JB)X.
Imitating what we did above, we can define morphisms J"(BX) — (J"B)X and prove

Lemma in this setting:

Jp+q(BK) (Jp+qB)K

NS

J7((JPB)¥)

The following result is an analog of Lemma [3.3.1] Its statement is, however, more
complicated since (BSr)S¢ 2 BSr+,
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Lemma 3.3.3. Let B € C. Then the following diagram in C commutes:

n,
K q

(82 ) = (57 2 ()]
64| [u‘;’n"a
(B2 ("B)L

Proof. We proceed by induction on n. The case n = 1 follows from Proposition [3.1.3]
applied to the following strong morphism of extensions:

(%), (1(87)), ——(r (87)) —— (87"
l | l |

(@) (UB7) ——(TB)7)] ——(57);

l i) |2 |
(U2 (JB) (TB)L B

Now suppose that the diagram commutes for n; we will show it also commutes for n + 1.
n,1

The following diagram commutes by inductive hypothesis and naturality of «,"; we omit
the subindices r and s to alleviate notation:

(o)) ()

KZE]BE,;) J"((KE”)cq) J,,(K;pm)
(1 (B))™ I (((JB)G”)Sq) LD ()
S K(H}Z)GP
(") (7 ((B)=))™
W)

((JnHB)G,,)S” Hon+1p (Jn+lB)5p+q

Moreover, the following equalities hold by Lemma (3.3.1} proving the result:

n,p+q n Lp+q\ _ n+l,p+q
Ky oJ (KB ) = Kp
n,p Sy o Jn 1,p Sy _ n+1,p Sy
KB Kpg = \Kp
nq n{ lg n+l,q
K. .oJ (K e ) =K . O
J(B®r) B» B®p
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3.4 Extending constructions to the ind-homotopy
category

Let (1, <) be a filtering poset and let F : C — C! be a functor. Then F induces a functor
Find . g — (C')M; composing this with the functor ™ of Lemma we get a
functor C™ — C that we still denote F. This happens, for example, in the following
situations:

G I={«jand F=J:C - C;

() I ={+}and F = ()* : C > Cforany X € S;
(i) I =Zspand F = (DED - ¢ - CP for any simplicial pair (K, L);
(iv) I any posetand F =?® C. : C — C!, with C, € (Alg,)".

In these examples, F has the aditional property of being homotopy invariant:. if f and
g are two homotopic morphisms in C then, for all i € I, F(f); and F(g); are homotopic
morphisms in C. Because of this, F induces a functor F : [C] — [C]’ and thus a functor
F : [C]™ — [C]™; here we are using Lemma[1.2.3.1]once more. It is easy to see that the
following diagram commutes:

Cind F Cind

.

[C] ind L_ [C] ind

Thus, we can apply functors like to objects and morphisms in [C]™.

By the discussion above, we can regard ((?)")<" and ()& as endfunctors of [C]™;
we would like to consider ;" as a natural transformation between these endofunctors.
For this purpose, we proceed to explain how certain morphisms from F : C —» C' to G :
C — C’ induce a natural transformation between the associated functors [C]™ — [C]™
—here, I and J may be different filtering posets, and F and G are homotopy invariant
functors.

Let F: C — C'and G : C — C’ be two homotopy invariant functors. Consider a pair
(v,0) where 0 : I — Jis a functor and v : F — 6*G is a natural transformation of functors
C — C!. This means that:

(a) Foreach A € C wehave v, : F(A) — G(A) o € C/;

(b) For each morphism f : A — A’ in C, the following diagram in C’ commutes:

F(A)—2~G(A) o0
F (f)l l @ G)()
F(A) 2~ G(A") 06
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Let (C, K) € [C]™. Define a morphism v¢, € [F(C,)., G(C.).] as follows: For each pair
(i,k) € I X K, let (vc,) iy, be the class of the morphism (vc,); : F(Cy)i = G(Cp)g in:

[F(COi, G(C.).] = colim [ F(Cy);, G(Cr) |
It is easily verified that the (VC.)(i’k) are compatible and assemble into a morphism:
ve, = {(e)gp) € im [F(C: G(C).] = [F(C)e G(CL).]
Lemma 3.4.1. The construction above determines a natural transformationv : F — G of

functors [C]™ — [C]™. That is, for every morphism f € [C., D.], the following diagram
in [C]™ commutes:

F(C.)e —>G(C.).,

F(f )j lG(f )

F(D.), —>~G(D.).
Proof. It is a straightforward verification. O
Example 3.4.2. Regard «,™ : JH(NDE™) = (JU())" as a natural transformation between

n,m

(homotopy invariant) functors C — C?. By Lemma [3.4.1, we can also regard Ky a
natural transformation:

G T3 —= () : [C]™ — [C]™

Example 3.4.3. Consider the (homotopy invariant) functors F : C — C?0*Z=0 F(B) =
(B2, and G : C — C%, G(B) = BY™". Define 0 : Zs X Zsg — Zso by 6(r, s) = r + 5.
Then 6 is a functor and ;" : F — 6"G is a natural transformation. By Lemma 3.4.1] the
pair (1", 0) induces a natural transformation:

(I ()EE —= (N [ — [C]

Remark 3.4.4. We have just seen that it makes sense to apply J and (?)s" to objects and
morphisms in [C]". Moreover, we can consider ky™" and g™ as natural transformations
between functors [C]™ — [C]™. In the sequel, we will do this without further mention.

Let A,B € C and let n > 1. Recall from Remark that the set [A, BE "]c has a
natural group structure, that is abelian if n > 2. We proceed to show that this assertion
remains true if we replace A and B by arbitrary ind-objects in [C].

Let A € C and let (B, J) € [C]™. We have a bijection:

[A, (B)I" e = colim[4, (B)'le (11

By Remark [2.3.4] the transition functions of the colimit in (LI} are group homomor-
phisms. Since filtering colimits of groups are computed as filtering colimits of sets, the
right hand side of (IT) is the underlying set of the colimit in the category of groups.
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Consider the set [A, (B.):"]c together with the group structure for which (T1) is a group
isomorphism. This group structure is abelian if n > 2. Moreover, it is easily verified that
if f: A — A’isamorphism in [C], then f* : [A’, (B.).S”]C - [A, (B.)?"]C is a group ho-
momorphism. Now let g € [B,, B,]¢c; we will show that the function g. : [A, (B.)?"]C -
[A, (B.)Z"]c is a group homomorphism. Let j € J and let g j i Bj = B ; be a component
of the morphism g. The following diagram of sets clearly commutes, where the vertical
functions are the structural morphisms into the colimit:

S (g)+ , Gy
[A, (B)Z'1—==[A, (B, ;)3"]

Ly \j L Le(i)

[A, (B)S"] —2~[A, (B,)Z']

Then g, o ¢; is a group homomorphism, since the vertical functions and (g;). are. This
shows that g, is a group homomorphism because j is arbitrary. From now on, we will
consider [A, (B.)s"]¢ as a group with this group structure.

Now let (A, 1), (B, J) € [C]™. We have an inverse system of group homomorphisms:

{140, BOZle — 141 (BITIe | (12)

i<y

Since limits of groups are computed as limits of sets, the set

[A., (B = lim[A;, (B.)S" e (13)

is the underlying set of the limit of (12)) in the category of groups. From now on, we
consider (13) as a group; it is clear that (I3)) is abelian if n > 2. It is easily verified that if
f €[A.,Al]lc and g € [B., B, ]c, then the following functions are group homomorphisms:

f* AL (B — [Ae, (B e

g 1 [Ae, (B e — [A., (B e

The discussion above can be summarized in the following result, which is actually a
corollary of Theorem[2.3.3]

Lemma 3.4.5. Let (B,J) € [C]™ and let n > 1. Then (B.).G" is a group object in [C]™,
which is abelian if n > 2. Moreover, a morphism g € [B., B,]c induces a morphism of
group objects g. € [(B.)J", (BL)J" ]c.

3.5 Some technical results

Lemma 3.5.1. Let A,, B, € [C]™ and let m,n > 1. Then the following composite function
is a group homomorphism:

[A., (B e —Z— [J"(A), J"((B)ZM)]c i), [J"(AL), (J"(B))" e (14)
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Proof. Write y/;", for the composition of the functions in (T4). It suffices to consider the

case A, =A € Cand B, = B € C, as it is easily verified that ¢/,", equals the function:

lim colim /",
i

lim; colim [A;, (B))S" e L 1im; colim,;[J"(A)), (J"(B;))" ¢

We proceed by induction on n. To prove the case n = 1, we will show that there is
a morphism of simplicial sets ¢ : Homg(A, B*) — Homg(JA, (JB)®) that induces xﬁi’,’g
under the identification of Theorem [2.3.3] Define ¢ by

¢ : Homg(A, BY") — Home(JA, (JBYY),  f > & 0 J(f),

where & : J(BX) — (JB)X is the classifying map of (%3)X; see Example It is
easily verified that the following diagram commutes:

Homg(K, Hom¢(A, B*)) Hom¢(A, BX)

‘P*L jfxof(?)

Homs(K, Hom¢(JA, (JB)®)) ——— Hom¢(JA, (JB)X)

Here, the horizontal bijections are the adjunction isomorphisms described in section (1.4
This implies that the following diagram commutes, proving the case n = 1.

(Q"Ex~Hom(4, BA))0 Homgii (A, BS")

(QV"Ex%)OL lK};"OJ(?)

(Q"Ex~Homc(JA, (JB)A))O Homgii(A, (JB)®")

The inductive step is straightforward once we notice that /" =y o g/ |

Lemma 3.5.2. Let A, B € C, let C, € (Alg,)X and let m > 1. Then the following composite
Sfunction is a group homomorphism:

7®C,

[A, B"c [A®C.,Bi" ® C.lc = [A®C.,,(B® C)I e (15)

Here, the bijection on the right is induced by the obvious isomorphism of KXZo-diagrams
B"®C, = (BRC,)".

Proof. Write ¢, for the composition of the functions in (I5)). We begin with the special
case C, = C € Alg,. Let 1, be the following composite function:

®C

Homc(A, B*") Hom¢(A® C, B ® C) = Homc(A ® C, (B® C)Y)

It is easily verified that, for varying p, the functions 7, assemble into a morphism of
simplicial sets Hom¢(A, B*) — Homg(A®C, (B®C)*) that induces 7¢ upon taking 7, Ex™
and making the identifications of Theorem [2.3.3]
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Now let C, € (Alg,)X be any ind-ring. We have:
[A®C..(B®C.);"]e = im[A® Cp, (BO®C.)["Ic
Letm : [A®C,,(B® C.)?"’ c—[A®CL (B® C.);S”’]C be the projection from the limit.

To prove that 7¢, is a group homomorphism it suffices to show that m; o 7¢, is a group
homomorphism for all k € K. Let ¢, be the natural morphism into the colimit:

[A® Ci. (B® C)Z*] = colim[A @ Cr, (BO C1)*] = [A® Cr, (B8 C)Z]
It is easily verified that 7, o 7, factors as:

(A, B3"]e —+[A® C1, (B® C)I" e —~ [A® Ci, (B& C)"]c
This shows that m; o 7¢, is a group homomorphism since both 7¢, and ¢ are. O

Lemma 3.5.3. Let A,, B, € [C]™ and let n > 1. Then the following function is a group
homomorphism:

[CNC) (Hg;n)*

[Ae, (Bo)e™)e " Ic

Proof. The general case reduces to the case A, = A € C, as it is easily verified that the
function equals:

[A.. (B¢ (16)

(i),

lim[A;, ((B.)7){" I lim[A;, (B3 1o

From now on, suppose that A, = A € C. We have:

(A, ((BJ)I)2] = colimlA, ((B));):"]

Let ¢, : [A, (B)7™)'] — [A, ((B.)S™)3"] be the natural morphism into the colimit. To
prove the result, it suffices to show that (,ug:")* o (,j) 1s a group homomorphism for every
pair (r, j). It is easily verified that there is a commutative diagram as follows, where the
vertical function is the structural morphism into the colimit:

(W), ot

[A, (B e ———[A, (B)" e
[ (17)

b T e

m,n

Thus, it is enough to show that (,u B,
consider the dotted function that makes the following diagram commute:

) is a group homomorphism. For fixed r, j, s and p,

Home (A, ((B);$"”)

1§91y (AP 0
b
\t

(QmEx’”HomC(A, (B j)A))p — Homg (A, (B ,)(ImxAl’,almXAp))

r+s

(Ex*Home(A, ((B))Y)
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This dotted function is natural in p and thus induces a morphism of simplicial sets:
Ex'Hom (A, ((B));")*) — Q"Ex"*"Homc (A. (B))")

The latter is in turn natural in s and thus induces the following morphism ¢ upon taking
colimit:
W : Ex*Homc (A, (B j)fm)A) —  O"Ex®Hom, (A, (B j)A)

Recall our conventions about iterated loop spaces from section[I.3.3] It is easily verified
that  fits into the following commutative diagram —indeed, the commutativity of the
diagram ultimately reduces to the naturality of the morphism u of Remark [2.2.3]

Home (4, ((B)S")2") Home (4, (B,)7")

|=

(@ Ex*Home(A, (B ,-)A))0

l/z
(Q”Ex‘x’Homc(A, (B j)rS'")A))O e (Q"Q’"Ex‘”HomC(A, (B j)A)) 0

R

It follows that, under the bijection in Theorem [2.3.3| the function (,u’gj’,") in (17) identifies

with the group homomorphism:
() : m,Ex“Homg(A, ((B));")") — m,Q"Ex*Homc(A, (B))*)

This finishes the proof. O

Lemma 3.54. Let A,B € C and m,n > 1. Then the following composite function is a
group homomorphism:

I 7&n S N ﬂm;n " S S
[4, B3l ——— [AZ", (BZ")"]c g [AS", B e

Proof. The functors ? ® 72" and (?)2" are naturally isomorphic. Then, by Lemma m
applied to C, = Z,", we have a group homomorphism:

Tyen © [A, B e — [AS, (BZ) e
Letc: I" x I" = I" X I" be the commutativity isomorphism. It is easily verified that the
following diagram commutes:

Sm (‘))5n Sn 6m Sn ('um’” * ‘Sn Sm+l‘l
[A, BS" e ——[AT", (B e —=[AS", B e

T &
" l c*
n,m

c Gn\& ("), S pt¢
[A.n’(B.n).Cm]C B [AS" B: n+m]C

The function (,ug’m)* is a group homomorphism by Lemma [3.5.3| and the function c¢* is
multiplication by (—1)"". The result follows. m|
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3.6 The loop-stable homotopy category

Let f : A — B> be a morphism in C. By Proposition m there exists a unique strong
morphism of extensions %, — <, p that extends f:

U JA TA A
a N Lf
v ; v ]
c@n,l_‘? B;Dnﬂ P(n, B)r B;:n

We will write A"(f) for the classifying map of f with respect to &, p.

Remark 3.6.1. We have A"(f) = A"(idg=.)oJ(f). Indeed, this follows from the uniqueness
statement in Proposition and the fact that the following diagram exhibits a strong
morphism of extensions %4 — <, p that extends f:

Uy JA TA A
J (f)L T(f) jf

Uy J(BF") T(B; B
A"(idBen)L jid

Db B —— P(n,B), — B;”

Remark 3.6.2. We have A"(f) = /1’1’3’1 o(f )g‘ "o 4. Indeed, this follows from the uniqueness
statement in Proposition [3.1.1 and the fact that the following diagram exhibits a strong
morphism of extensions %4 — &, p that extends f:

Uy JA TA A
Aa id

Py A ———=P(0,A)y——A
Ny P(0,f)o f
P s (B! P(0, B")o B>
Examp}/e IJZJI id
Pus B P(n, B), B

If f,g: A — B;‘g” are homotopic morphisms, then A"(f) and A"(g) are homotopic
too. Thus, we can regard A" as a function Aj;’ 5 - A, Bf”] - [JA, B;S"“]. We proceed to
explain how to define A’} , for ind-algebras A, and B,.

Let A € C and let (B, J) € [C]™. An easy verification shows that, for j < j/ € J, the
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following diagrams commute:

n n
AA,B AA,B

(A, (B 1—=[JA, (B)F*'T (A, (B)F']—= [JA, (B))7*"]

| e |

[A? (B])Sn ] ﬁj“ [JA, (Bj)em-l [A, (B/,);S”] 4 [JA, (B//)@m-]]

r+1 r+l1 r
Then, it makes sense to define AZ’ s - A, (B.);s"] - [JA, (B.).S”“] as the function:

M n
colim A’ B,

colim[A, (B D] ————— colim[JA, (B D7
r’.] r’.]

Now let (A, ) € [C]™. Tt is easily verified that, for i < i’ € I, the following diagram
commutes:

n
AA-/, .

[Ar, (B ——~ [JAs, (B)E]

. |

[Al’ (BO)?”] Aj.Be [JAZ, (B.).G;HI]
Then, it makes sense to define A, : [A.. (B.):"] = [J(A.). (B.):""] as the function:

- n
lim AA,-,B.

lim[A;, (B.)Z"] lim[JA;, (Bs)Z"]

When A, and B, are clear from the context, we will write A" instead of Af‘" B.-
Lemma 3.6.3. Let A, B, € [C]™ and let n > 1. Then the functions
A% g [Ae (B ]e — [T(AL), (B 1o

are group homomorphisms.

Proof. We easily reduce to the case A, = A € C and B, = B € C. Consider the following
chain of strong morphisms of extensions:

Uy J(BE") —=T(BF") — B>
K" id

(Up)=" (JB)Z" — (T B);" —= B}"
(Ap)®n id

(Zop)™  (B)), —(PB)," —B,”

g id
P B — P(n, B), —~ BY"
Exampf@] | = = id

Ps B —— P(n, B), — B,”
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By the uniqueness statement in Proposition[3.1.1] we have:

A'(idpz) = ¢ o " 0 (A5)*" 0 k5"

Then, by Remark [3.6.1} A/} ; equals the following composite:

= KI’HOJ(?) = M N l'n)* S o S
A, B3 A, UB)ET - [JA, (BE)Z] 22 1A, BEY] —S [JA, B3]
This implies that A} , is a group homomorphism by Lemma Lemma and
Example[2.3.6] ]

Definition 3.6.4 (cf. [3, Section 6.3]). We proceed to define a category K¢, that we will
call the loop-stable homotopy category. The objects of K€ are the pairs (A, m) where A is
an object of C and m € Z. For two objects (A, m) and (B, n), put:

HomRC ((A, m), (B.I’L)) = COlim[Jm+vA’ B;en-#v]c

Here, the colimit is taken over the morphisms A"*” of Lemma and v runs over the
integers such that both m + v > 0 and n + v > 0. The composition in K¢ is defined

as follows: R~epresent elements of Homgce ((A, m), (B,n)) and Homge ((B, n), (C, k)) by
fe[J"™A,BS*] and g € [J"""B, C.**"] respectively. To simplify notation, write:

Ni:=m+v, Ny:=n+v, Ny:=n+w and N;:=k+w.

Let g % f € [JM*MA, C2%™] be the unique homotopy class that makes the following
diagram in [C]™ commute:

JN] +N3A ““““
M T,
(f) (_1)N2N3 (g*f)
J%(B)
KgyNz
~ SN P Ng.Np Az\'\~
( gV B) Sn, (&2 ( C@N4 )\:Nz He CON4+N2

We will show in Lemma that the class of g x f in Homge ((A, m), (C, k)) does not
depend upon the choice of the representatives f and g. Then, in Theorem we will
prove that x defines a composition that makes K¢ into a category.

3.7 Well-definedness of the composition

In this section we prove that the composition law described in Definition [3.6.4|is well-
defined and makes {€ into a category. We will closely follow [3, Section 6.3], making
appropiate changes to translate the proof into the algebraic setting. We start with the
following two lemmas, whose proofs are straightforward verifications.
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Lemma 3.7.1. Let A,, B, € [C]™ and let g € [A., (B.)Z"].
(i) If f € [AL, Al then A"(g o f) = A"(g) o J(f) € [J(A}), (B ].
(ii) Ifh € [B., B.], then A"(h® o g) = h%*1 o A"(g) € [J(A.), (B,)Z™].
Lemma 3.7.2. Let A,, B, € [C]™ and let f € [A., (B)Z)"). Then:
A" (o f) = 1! o A(f) € LA, (B)Z ]
Lemma 3.7.3 (cf. [3| Lemma 6.30]). Let B € C. Then the following diagram in [C]™

commutes:
J(1p)

J2B—"2. J(BS)
j (18)
(Asp)7!
(JB)S

Here, (A;5)"" is the inverse of A5 in the group [J*B, (JB)S'].

Proof. Let A € C. Recall from (2) and (5)) that there are extensions:

(Up,4) . JA TA—" - A

Poa: A (PA), A

Recall from Example that, for r = 0, the extension # 4 is isomorphic to:

Pos: (2= DA —=— (1 — DA[1] —2~ A

In the rest of the proof we will identify these extensions without further mention. Define:
I:= ker( {TB)[t] —~TB—"~B )

E:={(p,q) € (TB)r] xt(JB)[1] : p(1) = g(1)}

It is easily verified that the following diagram is an extension in C, that has a section
s : B — t(T B)[t] defined by s(b) = o(b)t:

1BOeV|

B

(&,5): [ —2 < {TB)[t]

Note that evy : I — T B factors through JB and let s’ : [ — E, s'(p) = (p, p()t). It is
easily verified that the following diagram is an extension in C, where pr, is the projection
into the first factor:

(0,inc) pry

(&', 5"): (JB)y' = (** = H(IB)[1] E
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Let y : JB — [ be the classifying map of (&, s). Consider the following diagram, that
exhibits a strong morphism of extensions from %/ into itself extending idp:

Uy JB TB B
| | J |
(&, s) [— ™ - (TB)[]—2 . B
L ev] L jevl Lid
Uy JB inc TB ”

It follows that evy o y = id;z. Let w be the automorphism of (JB)‘(:O L= (2 - H(IB)[1]
defined by w(f) = 1 —¢. Now consider the following diagram, which exhibits a strong
morphism of extensions % — ;5 extending id,p:

%JB J°B T(JB)——— = JB
l X
’r o 2 (0,inc) pry
(&",5") (t* — t)(JB)[1] E 1
id lprz evy
& & - )(JB)1] — 22— 1(JB)[{] ————JB
w t(—)b—t id
Poss (2 = DI B)[1] —=— (1 = DI B[] ———JB
Since w™!' = w, it follows that the classifying map of y with respect to (&”, s”) equals the
composite:

JPB—" (2 - )(JB)[1] —— (# = )(JB)[1]

Now recall from Example that, for r = 1, the extension % 4 is isomorphic to:

evpopr;

Dot 1Al o Xo, 1Al —=— A[1] , X, A[f]

evy® Tevy evy® Tevy

A
In the rest of the proof we will identify these extensions without further mention. Define
a morphism 6 : £ — (TB)f1 = ((TB)[t] ., X, {(TB)[t] by the formula (p,q) — (g, p).

ev)” "evy
Consider the following commutative diagram in C:

U p J°B T(JB) JB

l wO/lJB L L
S (0,inc)

& (JB)S' E

l){
1

l (inc,O)l LQ L(OJIB)
B®

(Up)® S — " (rB)®
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Note that the morphism & — (%3)°" is not compatible with the sections. Let i :=
(0,mp) o x : JB — B;'. By Proposition applied to the diagram above, the following
diagram in [C] commutes:

J’B = J(B)

. 1,1
id lKB
*

B (JB)S —4~ (JB)S L~ (JB)®'

Here y* = (inc, 0) : (> — 1)(JB)[t] — t(JB)[t] evi Xev, 1(JB)[t] is the morphism induced by
the last vertex map; see Example [3.2.4] The proof will be finished if we show that J(y)
equals J(1p) in [C]. By Lemma[3.1.5]it suffices to show that ¢ equals A5 in [C]. Consider
the following diagram; it exhibits a strong morphism of extensions % — Z p extending

the identity of B:

Uy JB TB B
| | | 5
(&, 5) [ — 2 (TR —2 5B
l L p(t)H(nB{p)(l 1,0) j
:@O’B B?l inc (PB)l evoopr; B

It follows that A equals the composite:

X

JB 1 B = 1B[t] o, Xy, tBl1]
(&) ————(@5(p)(1 = 1),0)
This is easily seen to be homotopic to ¥ = (0,7p) o x. |

Lemma 3.7.4. Let B € C and let &, = (=1)". Then the following diagram in [C]"™
commutes:

Jip 5 J"(4p) Jn(B.el)
(A ’
(J"B)S!

Proof. We prove the result by induction on n. The case n = 1 is Lemma Suppose
that the result holds for n > 1. We have:

K o I () = K 0 JUKEY) 0 I (Ap) (by Lemma [3.3.1))
= K;;}B o J(Ky' 0 J"(15))
=« 7 B oJ ((Apmp)®) (by hypothesis)
[K g © S (A B)] (by Lemma|3.5.1)
= [(/lJ,mB)‘ ] = (A ) (by the case n = 1)

Then the result holds for n + 1. O
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Lemma 3.7.5 (cf. [3, Lemma 6.29]). Let B € C and let n > 0. Then the following diagram
in [C]™ commutes:

1,n

=~ K
J(BS) ——
(-1)"A"(idge, )L

(JB)"

l(/ls)s"

6 = &
B — (B?l)fn
Hp

Proof. We have to show the equality of two morphisms in [C]"; since [J(BS"), BE™']c =
lim,[J(BZ"), BE™']c, it will be enough to show that both morphisms are equal when
projected to [J(B;&"), BE "']c, for every r. Recall the definition of the extension %,B
from Example The following diagram exhibits a strong morphism of extensions
%Bgn — &, p that extends the identity of B

Uy J(BS") T(Bf") B

Ky id

(Up)* (JB);" —— (TB);" ———B,”
(Ap)®n id

(Pop)% (BZ")7" —— ((PB)y)y" — B}
g id

Pos B —— P(n, B), B
Examp&e 3.2.3 ¢ ¢ id
9} n.B B P(n, B), B

It follows that A"(idyz.) equals the composite of the vertical morphisms on the left. The

appeareance of th sign (—1)" is explained in Example [2.3.6

Lemma 3.7.6. Let B € C. Then, we have:

namg nmy _  nm+l
(—D)"A™(K5™) = k5™

Proof. The following diagram in [C]™

o JnAm(ldBEm) € [J?H'I(B‘?m)’ (JnB);o'nHl]C

commutes by Lemmas [3.3.3|and [3.7.4;

S JM(A Sm) -~ Jn(#m,l) N
Jn+1(B:'»,’) B J'((BS™MSY) B JU(BEm)
lk”";
B=m
razn T (I

Ky™® l

(J"B)Sm)S!

m,1
J'B

( Jn B) ;5»1+1
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On the other hand, by Remark [3.6.2] we have:
nm+1 o J" ) o Jn(/lem) — nm+1 o JnAm(ldBSm)

g © (g™ 0 (Ayngem)™ = (=1"A™ (K™

Note that in the second equation we are also using Lemma [3.5.3|to handle the sign (—1)".
The result follows. m]

Lemma 3.7.7 (cf. [3, Lemma 6.32]). Let f € [JMA, Bo] and g € [J¥B, Co™]. Then:
A% (g) % f = A Ne(g % ) = g % AV(f) € [V 1A, €7
Proof. First, we have:

(_1)N2N3AN2+N4(g *x f) = AN2+Ns (ﬂzc\u,Nz OgeN2 OKN3,N2 o JN3(f))
= AN2+Ns (uzc\u,Nz OgL,Nz o KN; Nz) JN3+1(f)
:ﬂ1g4,N2+1 o ANV (ch2 OKN; Nz) JN3+1(f)
_quguvzﬂ o g OANQ( N3, Nz) o JV( £y
Here the equalities follow from the definition of g % f, Lemma[3.7.1][(i)l Lemma[3.7.2]and
Lemma —in that order. We are also using Lemmato handle the (—1)"2".
Secondly, we have:
(=DM AN (g) % f =
— (_1)1\12/12/“1,1\12 o (qugu,l ° 861 o /bNaB)% oK N3+1N2 JN3+1(f)
= DM 0 (1) 0 (%)™ 0 () 7 0y 0 ()
_ (_1)N2'u274,1+1v2 Ollliv,; o (gsl)‘SNz o (/lJN3B)6N2 o KN3+1N2 TV f)

— (_1)Nz'u1(§’4,1+N2 o go1+1v2 0#3}1/\3’23 o (/lJN:%B)@Nz o Kg3+l,Nz ° JN3+1(f)

Here the equalities follow from the definition of x and Remark [3.6.2] the functoriality of
(?)®M, the associativity of u and the naturality of u —in that order.
Finally, we have:

(D" Mg % AM(f) =
— (_1)N3M1(\j]4,N2+1 o g€N2+l o Kg3,N2+1 ° JN3AN2(f)
— (_I)Ngﬂlgz;,NzH o g6N2+1 o KII;’3’N2+1 o JN3 (ANz(idB‘SNz) o J(f))
— (_I)Nalulc\{ml\’zﬂ o g6N2+1 o Kg3,N2+1 ° JN3AN2(idB‘9N2) o JN3+1(f)

Here the equalities follow from the definition of %, Remark [3.6.1]and the functoriality of
JV3 —in that order.
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Thus, AM*Ni(g x ) = g * AM(f) by Lemma and to prove that AM*Ni(g % f) =
AM+(g) x f it is enough to show that:

Ny N3,No\ _ Ny, 1,N> SN N3+1,N»
A (KB ) = (GO 0 (v p) ™ 0 K
We have:
Ny [ N3.N2\ _ A N> N N3,N,
AN (k") = A (1o 0 K3)

=AM (1 o B)SNZ) oJ (Kg3’N2)

_ Ny, LN s L. N3N
= (=D 0 () ™2 0 k3 0 J(KB2 2)

JV3B
Ny, LN, S N3+1,N
= (=D, 0 (Amp) ™ ok

The first equality is trivial and the others follow from Lemma Lemma/3.7.5]and
Lemma —in that order. mi

Theorem 3.7.8. The operation * defines an associative composition law that makes €
into a category, as described in Definition

Proof. The composition is well-defined by Lemma The associativity is a straight-
forward but lengthy verification. O

Example 3.7.9. There is a functor j : C — K¢ defined by A — (A, 0) on objects, that
sends a morphism f : A — B to its class in Homgc((A, 0), (B, 0)). It is easily verified that
this functor factors through C — [C]. We will often write f instead of j(f) and A instead

of j(A) and (A,0). We will sometimes drop C from the notation and write & instead of
KC.

3.8 Additivity

The hom-sets in R¢ are abelian groups; indeed, they are defined as the (filtered) colimit
of a diagram of abelian groups. Next we show that composition is bilinear.

Lemma 3.8.1. The composition in K€ is bilinear.

Proof. Let g € [J"™B, C? “+] represent an element 8 € K((B, n), (C, k)). Let us show that
B« R((A,m), (B,n)) = K((A, m),(C,k)) is a group homomorphism. Represent elements
a,a’ € K((A,m),(B,n)) by f,f € [J"™VA, BS™] —we may assume that n + v > 2 by
choosing v large enough. To alleviate notation, write

Nii=m+v, Ny:=n+v, Ny:=n+w and Ny:=k+w,

as in Definition [3.6.4] By definition of the composition in &, the following diagram of
sets commutes:

[IMA, BIV] —E2 [MieNag 0 )

K((A,m), (B,m) —2— R(A, m). (C.k))
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Here, the vertical arrows are the structural morphisms into the colimits —hence they are
group homomorphisms. Since S.(a + @) is represented by g x (f + f”), to prove that
B.la + @) = B.(a) + B.(a’) it suffices to show that gx? is a group homomorphism. The
function gx? and the composite of the following three functions differ in the sign (—1)V2"3:

Lemma[3.5.1]

[JNIA, B?Nz] [JN1+N3A, (JNgB);éNz]

[INNA, (VB e [N A ()]

Ny,N:
™),
B ——

It follows that g% ? is a group homomorphism, since the three functions above are —recall
Lemma[3.5.3

Now let f € [J"A, B? "] represent an element @ € KR((A, m), (B, n)). Let us show that
a" : K((B,n), (C,k)) = K((A,m),(C,k)) is a group homomorphism. Represent elements
B.,B € K((B,n),(C,k) by g,g € [J'™B,CZ"] —we may assume that k + w > 2 by
choosing w large enough. As before, write

PAGLLY W(ehb Nay FAGESY Wentas)

Ni:=m+v, Ny:=n+v, Ny=n+w and N;:=k+w.

By definition of the composition in K&, the following diagram of sets commutes:

[J¥B,CIM] —2L Mitls g, 02

|

K((B, n), (C.k)) ——= K((A, m), (C. k)

Here, the vertical arrows are the structural morphisms into the colimits —hence they are
group homomorphisms. Since a*(8 + ') is represented by (g + g’) x f, to prove that
a*(B+p) = a’(B) +a*(B) it suffices to show that ? x f is a group homomorphism. The
function ? % f and the composite of the following two functions differ in the sign (—1)""3:

Ny,N: S
,UC4 20(?) Ny

[V B, C [(JVB)3, €] (19)

N3.N, *
(KB3 2OJN3f)

[(JVB)®r, €] FAGRY Weniiied (20)

The function (19) is a group homomorphism by Lemma [3.5.4] and the function (20) is a
group homomorphism by Remark [2.3.4] Thus, ? x f is a group homomorphism. ]

Lemma 3.8.2. The category K€ has finite products.
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Proof. Let B,C € C and let n € Z. Let us first show that (B x C,n) = (B,n) X (C,n) in K.
For any (A, m) € ], we have:

R((A’ m)a (B x C, l’l)) = COlim[Jm+vA, (B X C)renw]

IR

colim[J"" A, B+ x C+]
v,r

1%

colim {[Jm+VA, B;?/)Hv] X [J"VA, C;énw]}
= colim[J™*"A, B>*'] x colim[J""" A, C="+]

= R((A,m), (B, n)) X K((A,m), (C,n))

Here we are using that the functors (?);g M:C — Cand C — [C] commute with finite
products, and that filtered colimits of sets commute with finite products.

In order to prove that & has finite products, we can reduce to the special case above,
as we proceed to explain. We claim that, for any (B,n) € & and any p > 1, we have an
isomorphism (B, n) = (J’B,n — p). Using this, any pair of objects of & can be replaced
by a new pair of objects —each of them isomorphic to one of the original ones— with
equal second coordinate. The claim follows easily from Lemma|3.10.1} and the proof of
this lemma relies only on Lemma and the definition of the composition in K. O

Proposition 3.8.3. The category K€ is additive.

Proof. 1t follows from Lemmas [3.8.1] and [3.8.2} see [3, Lemma 6.41] and [10, Section
VIIL.2]. O

3.9 Excision

In this section we closely follow [2, Section 6.3]. Let f : A — B be a morphism in C.
The mapping path (Py), is the Z(-diagram in C defined by the following pullbacks:

(Pp), —=A
| Lf @)
(PB), 2~ B

Notice that 7 is a split surjection in U(C); indeed, it is the pullback of the split surjection
d;. Define morphisms ¢; : B,' — (Py), by the following diagrams in C:

B!

(22)




60 CHAPTER 3. THE LOOP-STABLE HOMOTOPY CATEGORY

Lemma 3.9.1 (cf. [2| Lemma 6.3.1]). Let f : A — B be a morphism in C and let C € C.
Then the following sequence is exact:

e

KRE(C, A) KC(C, B) (23)

colim KEC, (P)),)

Here, the map on the left is induced by the morphisms nt; in (21).

Proof. Let r > 0 and note that &(C, (PB),) = 0 because (PB), is contractible. Then the
following composite is zero, because it factors through K(C, (PB),):

(”f)* fe

K(C, (Pp)r)

K(C,A)

K(C,B)

This shows that the composite of the morphisms in (23) is zero.

Now let g : J”C — A" be a morphism in C that represents an element @ € K(C, A)
such that f.(a) = 0 € K(C, B). Increasing m if necessary, we may assume without loss of
generality that the following composite in C is nullhomotopic:

fom

Jm C g A ;\5m B?m

It follows that there is a commutative diagram in C:
J"C —E— A7

L lf (24)

S @) s,
(B == B;

Since (?);" : C — C commutes with finite limits, we get the following pullback:

(Pp)g)," —= A"
|-

s, @Y G
(Bglw{l}))rcm ) Bom

Notice that (BY"")7" = (BZ")!"" The diagram (24)) determines a morphism:
J"C — (Pp)o);"
It is easily verified that this gives an element g € R(C, (Py),) that maps to a. |

Definition 3.9.2. Let f : A — B be a morphism in C. We call f a K-equivalence if it
becomes invertible upon applying j : C — K€.

Lemma 3.9.3 (c.f. [2, Lemma 6.3.2]). Let f : A — B be a morphism in C that is a split
surjection in U(C). Then the natural maps ker f — (Py), are ]-equivalences for all r.

Proof. The proof is like that of [2, Lemma 6.3.2]. m|
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Let f : A — B be a morphism in C that is a split surjection in U(C). As explained
in the discussion following [2, Lemma 6.3.2], Lemma [3.9.3] implies that the morphisms
(Pf)r = (Py),41 are K-equivalences for all r > 0. Indeed, this follows from the ‘two out
of three’ property of fR-equivalences. Combining this fact with Lemma(3.9.1| we get:

Corollary 3.94. Let f : A — B be a morphism in C that is a split surjection in U(C) and
let C € C. Then the following sequence is exact:

(7p)e

KE(C, (Py)o) KE(C,A) & KCE(C, B)

Corollary 3.9.5 ([2, Corollary 6.3.3]). Let f : A — B be a morphism in C. Recall the
definitions of s and vy from (1)) and (22)). Let ¢y : B;' — (Px,)o be the morphism defined
by the following diagram:

S
BO

NS
(Pr;)o—=(Py)o

b

(PA)o A

Then ¢y is a K-equivalence.

Proof. The morphism 7, is a split surjection in U(C). The result follows from Lemma
mif we show that ¢ : Bg ' — (Py)o 1s a kernel of 7¢, and this is easily verified. O

Corollary 3.9.6 ([2, Corollary 6.3.4]). Let D € C and let

0 A B C 0

be a split short exact sequence in C. Then the following sequence is exact:

0—— KC(D, A) S KRE(D, B) £~ K¢(D,C) — 0 (25)

Proof. The proof of [2, Corollary 6.3.4] carries over verbatim in this setting; we include
it here for completeness. The following sequence is exact at }(D, B) by Corollary [3.9.4]
and exact at R(D, C) because g is a retraction:

0—— (D, (Py)o) = (D, B) —~ (D, C) —=0 (26)
By Lemma [3.9.3] we have an isomorphism:
R(Da A) —E> R(D’ (Pg)())

Under this identification, (26)) becomes (25). Thus, it suffices to show that (1), in (26)
is injective. In the following diagram, the sequence of solid arrows is exact by Corollary
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3.9.4]and (¢,). is an isomorphism by Corollary [3.9.5 Thus, showing that (7). is injective
is equivalent to showing that (t,). is the zero morphism.

(g )

KD, (Py o) 2 R(D, (Po)o) —2 8(D, B)
A 7

(@o): = (27)

K(D,CE)

Let s : C — B be a splitting of g and let § : (PC)y — (P,) be the morphism defined by

the following diagram:
(PC)o

It is easily verified that ¢, equals the composite:

c;' (PC)y —— (P,)o

This implies that (¢,). = 0 because (PC), is contractible. ]

Lemma 3.9.7. Let f : A — B be a morphism in C. Then the following diagram in [C]
commutes:

AN L

A B (Pp)o—A

o A I T

Af' R (Pr,o T (Ppo—~A

Here, ¢ is the morphism defined in Corollary

Proof. The square in the middle commutes by definition of ¢,. We still have to show
that the square on the left commutes. In the whole proof, we will omit the subscript O
and write A®' instead of A;', PBinstead of (PB)y, Py instead of (Py),, etc. For C € C,

consider the isomorphism Ccr =~ C[t], t; © t. Under this identification, we have:
PB = (t — 1)BJt]

B®' = (# - 1)BJ[{]
Py ={(p(),a) € PBx A : p(0) = f(a)}

The map 7y : Py — A is given by (p(r),a) + a. The map ¢, : B> — P, is given by
p(t) — (p(1),0). We also have:
PA = (t — DA[t]
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A® = (- DAl

={(p(1),a,q(1)) € PBX A X PA : p(0) = f(a),a = q(0)}
={(p(1),q(1) € PBx PA : p(0) = f(q(0))}

The map ¢, : BS' — Py, is given by p(t) = (p(1),0). The map ¢, : AS — Py, 1s given
by g(t) — (0, ¢g(?)). To prove the result, it suffices to show that the following morphlsms
A" — P, are homotopic:

670 (f2) a0 (f(g(1 -1),0)
Ly 2 q(1) = (0,4(0)
An easy verification shows that:
Pr [u] = {(p(t,w), q(t,w) € (t = DB[t,u] X (t = DA[£,u] : p(0,u) = f(q(0,u))}
LetH : A®' — P, +[u] be the homotopy defined by:
H(q(1) = (f(g((1 = Du)), q(1 = (1 = (1 = u)))
Letev; : P, [u] — P, be the evaluation at i. We have:
(evo o H) (q(1) = (0, q(1))
(evi o H) (q(n) = (f(g(1 —1)),0)

The result follows. m|

Theorem 3.9.8 (|2, Theorem 6.3.6]). Let A i> B C be an extension in C. Then, for
any D € C, the following sequence is exact:

KE(D, B”‘) RC(D C"’l) 9. RE(D, A) . RE(D, B) == R¢(D, C)
Here, the morphism 0 is the composite:
KE(D, C‘”) RC(D (P,)o) ~—— KE(D, A)

Proof. Both g and &, are split surjections in U(C); then, the following sequence is exact
by Corollary [3.9.4;

KD, (P )0) =22 R(D, (Py)o) =2 R(D, B)—4~ R(D, C) (28)

We have a commutative diagram:
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The morphism A — (P,), is a R-equivalence by Lemma[3.9.3] Thus, we can replace (7).
in (28)) by the composite

= f*
K(D, (Pg)o) =——R(D,A) —=K(D, B)
and we get an exact sequence:

KD, (Py,)0) —= K(D, A) L~ K(D, B) £~ K(D, C) (29)

By Corollary [3.9.5, we can identify (¢,). : R(D, COe D) 5 K(D, (Py,)o) and (29) becomes:

KD, C) —= /(D A) —L= (D, B) 2~ &(D, ©) (30)

It is easily verified that 0 is the leftmost morphism in (30)); indeed, this follows from the
equality 7, © ¢ = ¢g.
By Lemma(3.9.7, we have a commutative diagram as follows:

KD, Bol) —= (D, Col) ——K(D, (Pg)o)

idl l(qbg)* id
KD, BE) —2L R(D, (P, o) 2 R(D, (Py)o) (31)
(@) id id

(ﬂﬂ'ﬁg )s (ﬂng )*
K(D, (P, )o) — K(D, (Pr,)o) —= K(D, (P,)o)

Notice that kerd = ker ((Lg)* : /D, Cf N — ], (Pg)o)). Thus, to finish the proof, it
suffices to show that the top row in (31) is exact. Since (¢,). and (#r,)+ are isomorphisms
by Corollary [3.9.5] the top row in (31) is exact if and only if the bottom one is. But 7, is
a split surjection in U(C), and so the bottom row in (31) is exact by Corollary [3.9.4] The
result follows. ]

3.10 The translation functor

Define a functor L : K¢ — K€ as follows: For (A, m) € K€ put L(A,m) := (A, m + 1). The
functor L on morphisms is defined by the following identification:

RE((A,m), (B, n)) = colim[J™*" A, B+
= colim[J"!*A, BZ» ] = RE((A,m + 1), (B,n + 1)

It is clear that L is an automorphism of R‘i.
Recall the definition of A3 : JB — B;”' from Example For any m € Z, we can
consider:
[45] € RE(IB, m), (B, 1 + m))

[id,5] € RC((B, 1 + m), (JB, m)) (32)
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These two morphisms are mutually inverses in €, as we prove below. From now on,
each time we identify (B, 1 + m) = (JB, m) it will be using these isomorphisms. Using
this i1dentification n times we get:

(B,n+m) = (J"B,m) (33)
It is easily verified that (33)) is represented by idp : J"B — J"B.
Lemma 3.10.1. The morphisms in (32)) are mutually inverses in K€.

Proof. The composite [id;g] o [1p] 1s represented by id;z * Ag € [J(JB), (JB)?‘]. By
definition of x, (id;z * A3)~! equals the following composite in [C]":

Kl,l
J(IB) L j(BE) 2~ (JB)Z

It follows from Lemma that id,z * Az = Ay € [J(JB),(JB)Z']. This implies that
[id;g] o [1g] = id(JB,m)- N

The composite [Ap] o [id,p] is respresented by Ag x id;3 € [J(B), (B)."']. It is easily
verified that /lB * id]B = AB. It follows that [/lB] o [ld]B] = id(B,l+m)- O

We can also consider:

[A5] € RSB, 1 + m), (BS', m))

_ 34
[idge, 1 € KE(BS', m), (B, 1 + m)) (34)

As before, we will show that these morphisms are mutually inverses in &€ and each time
we identify (B,1 + m) = (B;',m) it will be using these isomorphisms. We need the
following result.

Lemma 3.10.2 ([2, Lemma 6.3.10]). The morphism Ag : JB — Bf' is a K-equivalence.

Proof. The proof of [2, Lemma 6.3.10] works verbatim, but we include it here for com-
pleteness. Consider the (unique) strong morphism of extensions:

JB TB

]k

By — (PB)y—

We have TB = 0 = (PB), in &, since T B and (PB), are contractible. It follows from
Theorem that

(Ap). : K((D,0), (JB,0)) - K(D,0),(B;',0))
is bijective for all D € C. Then Ap : (JB,0) — (B‘O3 ',0) is an isomorphism by Yoneda. O

Lemma 3.10.3. The morphisms in (34) are mutually inverses in K€.
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Proof. By Lemma [3.10.2] the morphism j(1z) : (JB,0) — (B:',0) is an isomorphism.
Since L is an automorphism of &, L"(j(Ag)) is an isomorphism for all m € Z. Is is
straightforward to check that the morphism [1;] in (34)) equals the composite:

[ids5] L"(j(p))

(B,1+m) (JB,m) (By'.m)
Since [id;z] is an isomorphism by Lemma([3.10.1] it follows that [15] in (34) is an isomor-
phism too.

To finish the proof it suffices to show that [idgz, ] o [Ag] = id(p 1+m); this follows imme-

diately from the definitions. O

Remark 3.10.4. It follows from Lemma |3.10.3| that the functors j o (?)§ ':C — K€ and
Lo j:C — K€ are naturally isomorphic. Indeed, it is easily verified that the following
diagram commutes for every morphism f : A — BinC:

:, lid,z, 1
j(fosl)l jL(j(f»

ide; ]

(B, 0)—=" - (B, 1)

As a consecuence of this, if f is a R-equivalence then so is f'.

The morphism idgz, induces:
lidgs.] € KRB, m), (B, n + m)) (35)
We will show that [idg=,] is an isomorphism. We need some preliminary results.
Lemma 3.10.5. The morphisms B:" — Bi’l are \-equivalences.

Proof. We will prove the assertion by induction on n. First notice that the result holds for
n = 0; indeed, in this case B, — B, is the identity morphism of B. For the inductive
step, consider the following morphism of extensions induced by the last vertex map:

B —— P(n, B),— B,

I

B —— P(n, B)s; — B,
The vertical morphism in the middle is a K-equivalence because both its source and
its target are contractible by Lemma [3.2.5] The vertical morphism on the right is a &-
equivalence by induction hypothesis. By Theorem [3.9.8] the vertical morphism on the
left is a K-equivalence too. i

Lemma 3.10.6. The morphisms piy" (BP")2" — BE" € C are K-equivalences for all m
and n.
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Proof. Let us start with the case n = 1. Consider the following morphism of extensions:

SANCH S S
(BS")s' ——— P(B/™")s B™
! l PRUEZOXE j()ﬂ)*

G €

B> P(m, B),+ B,

The result follows from Theorem since P(B;é’”)s and P(m, B),,, are contractible by
Lemma and (y*)* is a K-equivalence by Lemma

The general case will follow from the previous one by induction on n. Suppose that
" is a K-equivalence for every B € C; we will show that "+ is a K-equivalence too.
By the associativity of u discussed in Example [2.2.4] the following diagram commutes:

n,l1

A S
S n - S n+1
((Br m) ) (B;—*m)

N 0 N
( mn l ‘u/g,n-#l

S m+n,1

= ~

Bom+n ! B Bom+n+l
r+s 0 r+s

The horizontal morphisms are K-equivalences by the case n = 1. The morphism (u};");"
is a R-equivalence because 3" is; see Remark [3.10.41 Then p/"*" is a R-equivalence. O

Lemma 3.10.7. The morphism (33)) is an isomorphism.

Proof. By Lemma we may assume that r = 0. We will prove the result by induction
on n. The case n = 1 holds by Lemma([3.10.3] Suppose now that the result holds forn > 1.
It is easily verified that the following diagram in & commutes:

(BSS' m) (By', 1 +m)
L'"j(u’};‘)le l;
. lid,e,, ]
(By"',m) ————(B,n+ 1 +m)

The horizontal top and vertical right morphisms are isomorphisms by induction hypothe-
sis and j(y’gl) is an isomorphism by Lemma|3.10.6, The result follows. O

Remark 3.10.8. It follows from Lemma [3.10.7] that we have natural isomorphisms of
functors j o (")"" =["ojand jo (('7)""")”l =~ [ o j. Indeed, it is easily verified that the
following diagrams commute for every morphism f : A — Bin C:

W'

A0 —2=L_am  (A3)2.0) A n+1)

fe L lf* I l S
1

S lidge, s (']
(BS',0) —="~(B,n)  ((BS" 0)—>(B n+1)
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Lemma 3.10.9. Let a € R€((A, m), (B, n)) be represented by f : J"™"A — B,G"*“. Then the
following diagram commutes:

(A, m) - (B.n)
[id]m+uA]l/E ET[idBEnﬂt]
L74(j =
(J™A, —u) G (Brcn+u ,—1t)

Proof. The vertical morphisms are the isomorphisms in (33) and Lemma The
commutativity of the diagram follows from a straightforward computation. O

3.11 Long exact sequences associated to extensions

Lemma 3.11.1. Let A ER B 5 C be an extension in C and let D € C. Then there is a long
exact sequence:

""""" > RC(Da (A’ n)) L RC(D’ (37 n)) g; RC(Da (C, f’l)) L RC(Dv (A’ n-— 1)) T
Moreover, this sequence is natural with respect to morphisms of extensions.

Proof. It follows from Theorem [3.9.8] as we proceed to explain. The following diagram
is an extension in C:

B Gy (36)

Al
By Theorem [3.9.8]applied to (36), we have an exact sequence:
KD, (B = K(D, (CZ)Z) 2= R(D, AZ") L~ (D, BE) £~ /(D, €2
Under the natural identifications described in Remark [3.10.8] the latter becomes:
KD, (B,n+1)) s KD, (C,n+1)) 4 K(D, (A, n)) L KD, (B, n)) i KD, (C,n))

For varying n > 0, these sequences assemble into a long exact sequence, infinite to the left,
ending in }(D, (C, 0)). It remains to show how to extend this sequence to the right. Upon

~

=)

applying (D", ?) to the extension A A B C,we get the following exact sequence:
K(DF, (B, 1) 5= R(DZ". (C, 1)) 2= K(DF", A) L= K(DF", B) 2~ KD, €)
After identifying R(fo "N = K((D,n), 7 = K(D,L™(?7)), this sequence becomes:

KD, (B,1 - n)) =KD, (C,1 - n)) %KD, (A, -n)) L3 K(D, (B, -n)) = K(D, (C, —n))

Now glue these for varying n > 0 to extend the long exact sequence to the right. m|
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Lemma 3.11.2. Let A ER B 5 C be an extension in C and let C' = C be a morphism in

C. Let B S C’ be the pullback of g along c. Then g’ is a split surjection in U(C) with
kernel A and c fits into the following morphism of extensions:

g/

A—B —C(C

d Lk

A——B——~C

Moreover, for any D € C, there is a long exact Mayer-Vietoris sequence:

= (D, (B',m) — K(D, (B,n)) & KD, (C', n)) — K(D, (C,n)) = K(D, (B',n = 1)) =

Proof. The existence of the long exact Mayer-Vietoris sequence follows from Lemma
3.11.1)and from the argument explained in [3, Theorem 2.41]. O

Corollary 3.11.3. Let f : A — B be any morphism in C. Then the last vertex map induces
K-equivalences (Py), — (Pf)rs1.

Proof. Consider the path extension:

Pop: B (PB),—B

If we pullback &5 along f : A — B, we get a long exact Mayer-Vietoris sequence as
explained in Lemma|3.11.2] Since (PB), is contractible, this sequence takes the form:

-------- - K(D, (4, 1) — KD, (B, 1)) <= KD, (Py),) —= K(D, A) —= K(D, B) =

It is easily verified that the sequence above is natural in r; then the result follows from the
five lemma and Yoneda. O

3.12 Triangulated structure

Let f : A — Bbe a morphism in C. Recall the definitions of 7 and ¢, from (2I) and (22)).
Definition 3.12.1. We call mapping path triangle to a diagram in K€ of the form

Ofn L j(my) L"j(f)

Afp L(B,n)

((Pf)o,n)

(A, n) (B,n) ,

where f: A — Bis a morphismin C, n € Z and d;,, equals the composite:

lidge, | (=11 L7 ()

(B,n+1) (Bg',n) ((Pf)o, )

A distinguished triangle in K€ is a triangle isomorphic (as a triangle) to some A .,.
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We are ready to verify that R€ satisfies the axioms of a triangulated category with the
translation functor L and the distinguished triangles defined above.

Axiom 3.12.2 (TRO). Any triangle which is isomorphic to a distinguished triangle is itself
distinguished. For any B € C and any n € Z, the following triangle is distinguished:

id(B,n)

L(B,n) 0 (B, n)

(B,n)

Proof. The first assertion is clear and the second one follows from the fact that the map-
ping path (Pig,)o = (PB), is contractible. O

Axiom 3.12.3 (TR1). Every morphism o : X — Y in K€ fits into a distinguished triangle
of the form:
L(Y) zZ X—=Y

Proof. By Lemma 3.10.9| we can assume that X = (C, k), Y = (B, k) and « = L*j(f) with
f : C — D amorphism in C. In this case « fits into the mapping path triangle A . O

Definition 3.12.4. Consider a triangle A in K:

B

A LZ)—2=X Yy ~1-7 (37)
We define the rotated triangle R(A) by:

R : L(Y) 2 pz) =t x Loy

Remark 3.12.5. As explained in [3, Definition 6.51], we have an isomorphism:

R(a) = (LY)—%L2Z)—~X—L-v)
Axiom 3.12.6 (TR2). A triangle A is distinguished if and only if R(2) is.

Proof. Let us first show that if A is distinguished, then R(A) is distinguished as well.
It suffices to prove that the rotation of a mapping path triangle is distinguished. Let
f : A — Bbe amorphism in C and consider the following mapping path triangles:

Ofn L"j(n i
Apnt LB, ) —2 e (P Yoy 1) — L (A, 1) — 2L (B, )
On g ) L jms)
A7'rf,n . L(A’ l’l) ((Pﬂf)09 n) - ((Pf)09 n) (A’ I’l)

Let & : L(B,n) — ((Px,)o,n) be the following composite, where ¢, is the morphism
defined in Corollary [3.9.5}

lidge, ] DML ()

(B,n+1) (Bg',n) ((Pz,)o, 1)
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Notice that ¢ is an isomorphism by Corollary [3.9.5] It follows from Lemma [3.9.7] that we
have an isomorphism R(A,,) = A, , as follows:

L) ~0pn —L" j(rf)

R(Af,n) L(A’ n) — L(B’ n) ((Pf)()’ n) (A’ n)
LE id ls —id id

671 N Ln.‘("n ) T Tr
Aryn L(A, ) — L (P )o 1) —— (P )os 1) —2> (A, )

This shows that the rotation of a mapping path triangle is distinguished.

We still have to prove that if R(A) is distinguished, then A is distinguished. We claim
that if R*(A) is distinguished, then A is distinguished; suppose for a moment that this claim
is proved. If R(a) is distinguished then R3(A) is distinguished —because R preserves
distinguished triangles— and so A is distinguished —by the claim. Thus, the proof will
be finished if we prove the claim. Let A be the triangle in (37)). Then:

R(n) = (12(2) L= Yo L) 2= L(2))

L(X)

Suppose that R3(a) is distinguished. Then there exists a morphism f : A — B in C that
fits into an isomorphism of triangles as follows:

—La Lp Ly

12(2) LX) L(Y) L(Z)

LE lg lg lg (38)
L(B,n) —2— ((P)o n) —2 (A, ) —220 (B, )

Upon applying L™!(?) to (38)) we get a commutative diagram as follows:

Y

L(Z) e X b Y Z

l j Ln_l‘/‘(ﬂ'f) L Lnflj(f) l

(B, n) st (P)on—1)——"~A,n-1)—L=B,n-1)

Thus, the vertical morphisms in the latter diagram assemble into an isomorphism of tri-
angles A = Ag,_;. Then A is distinguished. O

Lemma 3.12.7. Let f : A — B be a morphism in C, let k € Z and let n > 0. Then there is
a morphism of triangles as follows:

Afken L(B,k+n)—— ((Py)o, k+n——=Ak+n)——=(B,k+n)
l l = l [idnal L = [idnp] l =
A )k L(J"B, k) —— (P )0, k) —= (J"A, k) —— (J"B, k)

Proof. It is enough to construct a morphism Asx,; — Ay« and then consider the com-
posite:
Afgsn = Dy(frhin-1 == DR ksn—2 — = Ak
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Letc : J(Pf)o — (Py))o be the morphism defined by the following diagram in C:

HFsh

J(ry)

I

(PJ(f))o —JA

"

P(JB), —2~ JB

| A

J(PB),

It is easily verified that the following diagram commutes, where the unlabelled vertical
morphisms are induced by the natural isomorphism joJ = Lo j:C — f:

- 1\+1 k+] k+1
B3 k+ 1) —L2 o (Ppok+ 1) — L Ak + 1) ——2L (B K+ 1)
j i ) Ki(J(n _ ki _
B ) — 2 (o k) —L A ) — D (B Lk
lij(KE’ h 1¥jo) id id
IB) ) ————= (Pyep)o. k JA k JB,k
(/B)y", k) ) (Paip)o, &) 14 jri) VAR —om VB0

It is easily verified that the following diagram commutes:

] c
(B, k + 2)<B—1(Bo°l,k+ 1)
El[idJ(le)]
s | = (J(Bg"). k)
lLH’(K,‘;l)

lid 521 ] =
(JB,k + 1)<—((JB)0 ,k)

To get the desired morphism of triangles Afx,1 — Ay, put together both diagrams
]

above.

Lemma 3.12.8. Let f : A — B be a morphism in C, let k € Z and let n > 0. Then there is

an isomorphism of triangles as follows:

Ageng L(BZ", k) ((Py21)o, ) (A,@", k) (B>, k

| |- | |- 4 j

Af ik L(B,n+ k) — ((Ps)o,n + k) —=(A,n + k) —=(B,n + k)
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Proof. First notice that ((PB)O)O" = P(B°”)0 since there are natural 1sornorphlsms P(7) =
(7) ® PZ and (D" = () ® ZC” It follows easily from this that ((Pf)o), "= (Pgen)o. We
have the following commutative diagram, where the vertical morphisms from the second
row to the first one are induced by the natural isomorphism j o (?);5” =]"0j:C—- &

n+k

’1+k n+k ;o ¢
(B n+ k) ——L L (Ppo.n + k) An+k)——2D (B n+k

T Ll\ Sn Lk j(ﬂ.‘%n ) { = ]

S1e s : L4j(f3n) s
((By")r" k) ((Ppo)" ) (A7, k) d (B k)

[ R

BEM k Pre)o k) —————= (AS" k _ B k
((B")g"- K) L4020 (P10, K) L¥jry2) ( TP )

J(y)

It is easily verified that the following diagram commutes:

[id s, 1 ~
(B,n+k+1) = (BJ',n+k)
E][ld(lgul) ]
52,1 = ((Bs")7", k)
s 1)'lid e, 3] s l
(BE" k+ 1) k ((BE)21, k)

To get the desired isomorphism of triangles A e, = A4, put together both diagrams
above. O

Axiom 3.12.9 (TR3). For every diagram of solid arrows as follows, in which the rows
are distinguished triangles, there exists a dotted arrow that makes the whole diagram
commute.

L(Z) X' Y’ A
| I &
L(Z) X Y V4

Proof. Let us begin with a special case. Consider a commutative square in [C]:

AL p

|l

A——B
Suppose that (39) takes the following form, where the rows are mapping path triangles:

, ") , L"j(f") ,
LB, n)—>(<Pf>o,n>—f><A n) —2=~ (B, n)
L"*‘](b)l L”J(a)t L j(b) (40)
V Il‘ﬂ- n;
L(B.n) (Pposm) —22 (A, m) —2L (B, m)
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We want to show that a dotted arrow exists in this case. Let H : A’ — B**! be a homotopy
suchthatdy, o H = foaanddyo H = bo f’; we may assume r > 1. We have:

(Pp)r ={(x,y) € A" X (PB), | f'(x) = di(y)}
(Pp)rer ={(x,y) € AX(PB)rs1 | f(x) = di(y)}
Define a morphism ¢ : (Py), — (Py),+ by the formula:
c(x,y) = (a(x), H(x) e P(D)(y)) 41)

Here, the symbol e means concatenation of paths —we have (PB),,; = B! %, (PB),
so that we can concatenate an element of B! with one of (PB), to get an element of
(PB),+1. Note that the concatenation in (¢1)) makes sense since do(H(x)) = b(f’(x)) =
b(d(y)) = di(P(b)(y)). Moreover, c(x,y) is indeed an element of (Py),,; since we have:

di(H(x) e P(b)(y)) = di(H(x)) = f(a(x))
Let x : (Pf)o,n) — ((Pf)o,n) be the composite:
L"(j(0)

(P )o, 1) ((Py),n) ((Pf)rs1,n) ((Py)o,n)

We claim that taking the dotted arrow in (40) equal to y makes the whole diagram com-
mute. It is easily verified that the following square commutes in C, and this implies that
the middle square in (40) commutes:

(Pp), —L= A

(Pp)re1 ——= A

It is easily verified that the following diagram commutes in [C], and this implies that the
left square in (40) commutes:

(B! —= (B)]' ——=(Py),

be1 L ¢

By’ B2 —= (P

This finishes the proof of the axiom in this special case.
In the general case, we may suppose that both triangles are mapping path triangles, so
that (39) equals the following diagram, for some morphisms f : A — Band f' : A’ - B’:

Df L(B', k') —=((Py)o, k') — (A", k') —= (B, k')

: | j lﬁ (42)
Y Y
Afk L(B, k) —— ((Pf)o, k) —— (A, k) —— (B, k)
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We may choose / and r large enough so that « is represented by a : JEHAT 5 AZH B s
represented by b : JK*'B’ — B, and the following square in [C] commutes:

Jk'+l(f/)

Jk/+lA/ Jk’+lB/
aL lb
Crs f‘gk+1 Crs
A;-/k 1 Br k+1

By the special case we have already proven, we can extend a and b to a morphism of
triangles A jvvi(y ) — Ao - Then the composite

Lemma[3.12.7 Lemma[3.12.98 A

Af"k' AJ"'/*](f/),—l Afek*l,—l

1k
is a morphism of triangles that extends the diagram of solid arrows in (42). O

Axiom 3.12.10 (TR4). Leta : X — X" and n’ : X’ — Y be composable morphisms in K€
and put  := ' o . Then there exist commutative diagrams as follow, where the rows and
columns of the big diagram are distinguished triangles.

Py 1z -Eopx o1y
(4

0 77— 77 0 Lx =1y
w P
Ly—‘-z7—*t . x_*.y 77—tz

id a id

Ly—‘sz7—<.xy_ T .y

Proof. Consider the following diagram in R€:
X x ",y (43)

We will say that this diagram satisfies (TR4) if the axiom holds for this particular pair of
morphisms.

(1) Itis straightforward to verify that if two of such diagrams are isomorphic, then one
satisfies (TR4) if and only if the other does.

(i) Consider the following triangle in K:

P

A LW U—L-V—"=W
Recall from Definition that we have:
R = (LZW by _te, py it LW)

By (TR2), A is distinguished if and only if R*(A) is. Using this fact, it is easy to
prove that (43)) satisfies (TR4) if and only if the following diagram does:

La L’

LX LX' LY
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We claim that any diagram (43) is isomorphic to the diagram below, for some n € Z and
some morphismsa : A — Band b : B — CinC:
(A.m) =% (B, m) =L ()

Once this claim is proved, using [(1)]and the proof of the axiom (TR4) can be reduced
to the special case when a = j(a) : (A,0) — (B,0) and ' = j(b) : (B,0) — (C,0).

Let us prove the claim. Suppose that X = (A,m), X’ = (B,n) and Y = (C, k) and
let « : (A,m) — (B,n) be represented by f : J"™“A — B>. Write A := J"""A and
B := B to alleviate notation. By Lemma|3.10.9, we have an isomorphism of diagrams:

(A, m) —*—— (B,n) —Z——(C, k)

F % F

A, —u) — (B, —u) (C. k)

Hence we may assume that m = n and that @ = L" j(f) for some morphism f : A — B.
Let 7’ : (B,n) — (C, k) be represented by b : J"*'B — C;*'. By Lemma3.10.9, we have
an isomorphism of diagrams as follows, proving the claim:

(A, n) 2 (B, n) v (C. k)
(Jn+vA’ —V) L’Mﬁ- (Jn+VB, —V) L7jb) (kaw, —V)

Leta: A — Band b : B — C be morphisms in C. Let us prove that the following
diagram satisfies (TR4):
(4,022 (8,002 (C,0)
The argument is the one explained in [2, Axiom 6.5.7] but we give some more details. Put
c:=boa:A — C. We will use the identifications in Lemma [3.9.7| so that we have, for

example:
(PC)o = (t = DCI1]

Co' = (- DClt]
(Pp)o = {(p(1),y) € Clt] X B : p(0) = b(y) and p(1) = 0}
(Pc)o =1{(q(1),2) € Clt] X A : g(0) = c(2) and ¢(1) = 0}

Recall from (21)) and (22)) the definitions of 7, : (P)g — C and ¢, : C(;‘5 ' — (Pp)y. For
example, the morphism 7, : (P,)o — B is defined by 7,(p(#),y) = y. The morphism
n:(Po — (P, n(q(t), z) = (q(), a(z)), makes the following diagram in C commute:

CY' ——=(P)y——=A—=C

s

C§|L>(Pb)0l>B—b>C



3.12. TRIANGULATED STRUCTURE 77

By functoriality of the mapping path construction, there is a morphism 6 making the
following diagram commute:

(7p)®1

((Pp)o)y' —— B!

(PU)O (Pu)O
P Ta (44)
Co' —— (Py———A——C

jid n a \id

Co' —L— (Py)g —

We claim that 6 is a f-equivalence; indeed, it is a split surjection with contractible kernel,
as we proceed to explain. We have:

(P(Pp)o)o = {(P(f, 5),y(s)) € Clt, s] X B[s] :

p(0,s) = b(y)(s), p(l,s) =0,
p(t,1)=0and y(1) = 0

(Ppo = {(p(t, 5), ¥(5), q(1), 2) € (P(Pp)o)o X (Pc)o = (p(t,0), y(0)) = (q(1), a(z))}

In the description of (P,) above, (p(t, 5), y(s), q(1), z) satisfies g(t) = p(z,0) so that we can
get rid of g as long as we keep p. Hence, we have:

p(0, 5) = b(y)(s),
oa. PLS=0.pt.) =0,
" y(1) =0, p(0,0) = c(z)
and y(0) = a(z)

(Ppo = {(p(2, 9), y(s),2) € C[t, 5] X B[s]
It is easily seen that, using this description of (P,)o, the morphism 0 : (P,)y — (P,)o is
given by 6(p(t, s), y(s), ) = (¥(t), z). We have:

ker 6 = {(p(t, 5),0,0) € (P,)o}
= {p(t,s) € C[t,s] : p(0,s) =0, p(l,s) =0and p(z,1) = 0}

It is easily verified that ker 6 is contractible. Moreover, 6 is a split surjection with section:
(Pa)o 3 (0(1),2) = (b1 — (1 = $)(1 — 1)), y(s),2) € (Py)o

Upon applying j to (@4) and identifying (B;',0) = (B, 1), we get the following di-
agram in & whose rows and columns are mapping path triangles; the diagram clearly
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commutes, except maybe for the squares * and *:

—6,4, Lj(rp) Lj(b)

(C,2) — 2~ ((Py)o, ) — 22—~ (B, 1) —~ (C, 1)

* On0 j(@’loﬁa,o
0 ((Py)o, 0) —4— ((P,))0, 0) 0

J(my) j(ﬂa)|°j(9) *
0c0 Jj(me) Jj(o)

(C$ 1) ((PC)O’ 0) (A7 0) (C’ O)

id Jj@m) Lj(a) id
(C,1) —22  (Py)o, 0) — 22—~ (B,0) — 22—~ (C,0)

The composite c o mr, : (P,)o — C 1s easily seen to be nullhomotopic, so that the square *
commutes. The composite

(1p)®!

(CENE 2 ((Py)o)S! — (P)o

is easily seen to factor through ker 8, which is contractible; this implies that the square *
commutes too.
We still have to show that the following square commutes:

Lj(b)

(B, 1) C, 1
j0r-lodg o (45)
(P10, 0) 222 (P.)o, 0)

It is easily seen that the commutativity of is implied by the commutativity of the
following diagram in [C]:

S b1 S
B, l Co l
(P a )O p te (46)

d

(Py)o —— (Po)o

Here the morphism ¢ is given by £(y(7), z) = (b(y)(¢), z). The square in (46) commutes on
the nose. The triangle in (46) commutes in [C], as we proceed to explain. Consider the
following elementary homotopies Hy, H, : (P;)o — (P¢)olul:

Hl(P(t’ S)»)’(S), Z) = (p(tu, t)5 Z)

HZ(p(t’ S),}’(S), Z) = (p(t’ tbl), Z)

Thenev,goH, = {06, ev,-10H; = ev,-;0H, and ev,—go H, = m,, showing that o6 = 7,
in [C]. This finishes the proof of (TR4). O
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We have shown that K€ is a triangulated category with the distinguished triangles be-
ing those triangles isomorphic to mapping path triangles. As in the topological setting
[3, Section 6.6], the distinguished triangles could also be defined using extension trian-
gles; we proceed to give the details of this.

Definition 3.12.11. Let & : A J, B > C be an extension in C with classifying map
£:JC — A. Letn € Z and let d¢,, be the composite:

[idyc] (-1D"L" j(¢)

C,n+1) (JC,n) (A,n)

We call extension triangle to a diagram in K€ of the form:

e L j(f) L j(g)

Den: L(Con) (A,n) ———(B,n)

(C.n)

Proposition 3.12.12 ([3, Section 6.6]). A triangle in K€ is distinguished if and only if it
is isomorphic to an extension triangle.

Proof. Let us show first that every mapping path triangle is isomorphic to an extension
triangle. Let g : B — C be any morphism in C. Consider the mapping cylinder:

Z, :={(p,b) e Clz] X B : p(0) = g(b)}
Using the identifications in Lemma[3.9.7 we have:
(Pg)o :={(p,b) € t = Clz] X B : p(0) = g(b)}

It is easily verified that the following diagram is an extension in C:

%, (P —2sZ, —2—C
(p, b) —— p(1)

Let pr : Z, — B be the natural projection; pr is easily seen to be a homotopy equivalence
inverse to b — (g(b), b). We claim that there is an isomorphism of triangles as follows:

J(inc) J(&)

Doz,
Azo (B 1) =2 (P, 0) 2% (7,00 L2~ (C,0)
El id id = | j(pr) Lid

g, j(7rg) i(g)
Ao (B.1) =2 ((Py)p, 0) —=> (B, 0) L2~ (C, 0)

The middle and right squares clearly commute but we still have to show that 04,0 = J,0.

Let w : COe ' — Cf ' be the automorphism defined by w(p(?)) = p(1 — £). Consider the
following morphism of extensions, where the vertical map in the middle is defined by

(@) = (p(1 -1),0):

Poc Cy' — (PC)y—=C

C T

'gg (P g)O Zg C
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By Proposition the classifying map of Z, equals ¢, o w o A¢; this is easily seen to
imply that d#,0 = d,.

Let us now show that every extension triangle is isomorphic to a mapping path trian-
gle. Let& : A i> B % C be an extension in C. Leth : A — (Pg), be the natural morphism
that is a R-equivalence by Lemma We claim that there is an isomorphism of trian-
gles as follows:

&0

(A,0) J() (B,0) J(&) (C,0)

b b

") (B,0) L2~ (C,0)

A G, 1

EL idj
0g0

Bg0 (C, 1) —=((P¢)o,0)

The middle and right squares clearly commute but we still have to show that j(h) o ds =
J0. Above we proved that the classifying map of Z, equals ¢, o w o A¢ in [C]. Now
let £ : JC — A be the classifying map of & and consider the following morphism of
extensions, where the middle vertical map is b — (g(b), b):

& - A B C
I I A
Z, : (Po -7, 2> C

By Proposition|3.1.3| the classifying map of Z, equals ho& in [C]. Then,owode = hoé
in [C], and this is easily seen to imply that j(h) 0 059 = 0. O

3.13 Universal property

We recall from [2, Subsection 6.6] the definition of an excisive homology theory with
values in a triangulated category.

Definition 3.13.1. Let (.7, L) be a triangulated category. An excisive homology theory
with values in .7 consists of the following data:

(i) afunctor X : C —» 7;
(i) a morphism d, € Hom #(LX(C), X(A)) for every extension & in C:

& AL-p*t.cC (47)

These morphisms d are subjet to the following conditions:
(a) For every extension (7)), the following triangle is distinguished:

At LX(C) =2 x(A) 22 x(B) 244 x(0)

(b) The triangles A are natural with respect to morphisms of extensions.
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Example 3.13.2. Let & : A J, B 5 C be an extension in C. Recall from Proposition
3.12.12| that we have a distinguished triangle in KC:

J()

Do (C 1) —22% (4,00 22 (B,0) 22 (C,0)

Moreover, it follows from Proposition that d¢ ¢ is natural with respect to morphisms
of extensions. Then the functor j : C — K together with the morphisms dg is an
excisive homology theory.

A graded category is a pair (7, L) where o/ is an additive category and L is an
automorphism of 7. It (o7, L) is a graded category and X is an object of o7, we will
often write (X, n) instead of L"(X). A graded functor F : (</,L) — (</’, L) is an additive
functor F : &/ — o/’ suchthat FoL =L oF. Let F,G : (&/,L) — (&', L") be graded
functors. A graded natural transformation v : F — G is a natural transformation v such
that L'(vx) = vy : LF(X) = L'G(X) forall X € o7

Example 3.13.3. A triangulated category is a graded category.

Example 3.13.4. Let (.7, L) be a triangulated category. Put ./ := 7! where I = {0 — 1}
is the interval categorys; it is easily verified that .7 is an additive category. The translation
functor in .7 induces a translation functor in <7 that makes .o into a graded category.

Example 3.13.5. Let GrAb be the category whose objects are Z-graded abelian groups
and whose morphisms graded morphisms of degree zero. Then &7 = GrAb is a graded
category with the translation functor L defined by L(M), = M,,,1, n € Z, M € GrAb.

Definition 3.13.6. Let (<7, L) be a graded category. A §-functor with values in .o/ consists
of the following data:

(i) afunctor X : C — & that preserves finite products;
(i) a morphism é, € Hom,, (LX(C), X(A)) for every extension & in C:
&: A—B——C

These morphisms 6, are subject to the following conditions:

(a) d¢ : LX(C) — X(A) is an isomorphism if X(B) = 0;

(b) The morphisms d, are natural with respect to morphisms of extensions.
Example 3.13.7. An excisive homology theory X : C — .7 is a §-functor.

Example 3.13.8. Let X,Y : C — 7 be excisive homology theories and let v : X — Y
be a natural transformation such that, for every extension (47), the following diagram
commutes:

LX(C)iX(A)
Lwl y l (48)

LY(C) e, Y(A)
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Let o/ = .7 be the graded category of Example [3.13.4L Then the natural transformation
v induces a d-functor C — .7, that we still denote v. Explicitely, the functor v : C — &/
is defined as follows:

A (va: X(A) > Y(A))
[ € Homg(A, B) = (X(f), Y(f)) € Hom,,(v4, i)

For an extension (47)), the morphism 65 € Hom,,(L(v¢), v4) is defined by:
s = (6%, 0)) € Hom,(L(vc), va)

We want to show that j : C — K€ is the universal excisive and homotopy invariant
homology theory, in the sense of [2, Section 6.6]. In order to deal with natural transforma-
tions, we will work in the slightly more general setting of d-functors. From now on, fix a
homotopy invariant 6-functor X with values in a graded category (<7, L). A morphism in
C will be called an X-equivalence if it becomes invertible upon applying X. For example,
the following morphisms are X-equivalences:

1) The morphisms BY" — Bi’] for any B € C, n € Zsy and r > 0. Indeed, this
follows by induction on n. For n = 0 there is nothing to prove since B> = B. Now
suppose that we know the result for n > 0 and consider the following morphism of
extensions:

B! — P(n, B), — B;"

I

Gt S
Br-:1+ P(n, B)rv) Br-i’—ll

Since X is a o-functor, we have a commutative square as follows:

LX(B") —— X(B"")

|

h}l 6 ’:Vl‘f'
LX(Bil) — X(B;rl1
The morphisms ¢ are isomorphisms since the middle terms of the extensions are
contractible and X is homotopy invariant. This proves the result for n + 1.
2) The morphisms p" : (BP")e" — B2 for B € C and m,n,r, s > 0. We will prove
the assertion in the special case n = 1 and r = s = 0 since it is the only one we will
use below. Consider the following morphism of extensions:

(B(:)E’m )(\)51 P(B(\)Bm )0 B(C)5m

A

By —— P(m, B)y—= By"
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Since the middle terms of the extensions are contractible and X is a homotopy
invariant o-functor, we have a commutative square as follows:

LX(BS") —2= X ((BZ")S)

idt lxw’;*l)

LX(BOm) - X(BO;nH )

Since X is homotopy invariant, X induces a functor [C] — o/ that we still denote X.
Let [C]2 be the full subcategory of [C]™ whose objects are ind-objects (A, I) such that:

(i) I has an initial object iy;
(i1) all the transition morphisms A; — A; are X-equivalences.

Notice that, for any B € C, the ind-object (BS", Z) is an object of [CTid.

It is easily verified that [C] has finite products and that the functor C — [C] commutes
with finite products. Then [C]™ has finite products too; explicitely, the product of (A., /)
and (B., J) is the object (A. X B,, I xJ) with the obvious projections. Since X is a 6-functor,
we have natural isomorphisms:

Using this, it is easily seen that the product of two objects of [C]¢ is again an object of
[CI. This shows that [C]?¢ has finite products.

Let (A,]),(B,J) € [C]i“d. A morphism f € [(A, 1), (B, J)]c is a collection {[ f;]}ie; of
homotopy classes of morphisms f; : A; — By subject to certain compatibility relations.

Lemma 3.13.9. There is a functor X : [C]lnd — o such that X(A,I) = X(A;,)) and such
that X(f) is the composite

X(fiy)
X(Alo) _0> X(Bg(lo)) -~ X(Bj())

for any f € [(A, ), (B, J)]c. Moreover, X preserves finite products.

Proof. 1t is easily verified that X is indeed a well-defined functor. The fact that X pre-
serves finite products follows from the fact that X : [C] — <7 does. O

LetBeCandn > 1. By Remark- B”" is a group object in [C]P9. It follows from
Lemma 3.13.9| that X(B°”) has a group object structure induced by that of BS". Since .o/

is an additive category, every object of .7 is an abelian group object. Thus, X (B“") has

two group object structures: the one coming from By and the other from being an object
of &7. By the Eckmann-Hilton argument, both group structures coincide and the function

X : [A., Bl — Hom,/(X(A;,), X(BJ))

is a group homomorphism for every (A, I) in [C]}.
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Let A € C and let %, be the universal extension of A. Since TA is contractible, there
is an isomorphism:
Sy + (X(A), 1) —=(X(JA),0)

.Jn+1

Put i/ "W := 04, and define inductively i,""" as the composite:

-J.1

(X(J"A), 1) — 24— (X(J™1A), 0)

LG

XA),n+1)

Let if"o be the identity of (X(A), 0). It is easily verified by induction on n = p + ¢ that the
following equality holds for p,q > 0:

J.p+q -J.p
iy —lJpAOLq(lA)

The morphisms i;’” assemble into a natural isomorphism L" o X = X o J"(?) : C — .
Let A € C and let & 4 be the path extension of A. Since (PA), is contractible, there
is an isomorphism:
5, + (X(A), 1) — (X(A;"), 0)

.G,n+1

Put z: =6, , and define inductively i, as the composite:

70 g

(X(A),n+ 1) —— (X(Ag"), 1) ——

(\) N

(X((AE” 51, O)ﬂ(X(A"’”“) 0)

o

Let i;f’o be the identity of (X(A), 0). It is easily verified by induction on n = p + ¢ that the
following equality holds for p,q > 0:

i = X 0 17 0 LIGT)

0
The morphisms zf" assemble into a natural isomorphism L" o X = X o (?)f " C - .

Lemma 3.13.10. Let N>, N3 > 0 and let B € C. Then the following diagram in </

commutes up to the sign (—1)N"3;
N3 (B Nz) o il’}.\./3 e
(X(B), N, + N3) (X(B, *), N3) (X(J™(B; ™)), 0)
LNz(”’%) . lx( P!
BN

N3p

(X(JV:B), N) XV B); "), 0)

Proof. If N, = 0 or N5 = 0 there is nothing to prove. Upon applying the functor X to the
diagram (I8)) we get that the followig diagram in ./ commutes up to the sign —1; the case
N, = N; = 1 follows easily from this:

X(J(p))

X(J?B) X(J(BSY)

jX(KlB'])

X((IB)S"

X(AyB)
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Once we know the case N, = N3 = 1, the case N3 = 1 with arbitrary N, follows by an
easy induction on N,. Once we know the result for N3 = 1 and arbitrary N,, the general
case follows by an easy induction on Nj. O

Theorem 3.13.11. Let (<7, L) be a graded category and let X : C — < be a homotopy
invariant 6-functor. Then there exists a unique graded functor X : K€ — &/ such that
X(8s0) = 64 for every extension & and such that the following diagram commutes:

Proof. Define X on objects by X(A, m) := (X(A), m). To define X on morphisms we must
define, for every pair of objects of &, a group homomorphism:

Xam @ © KA, m), (B,n)) —=Hom,,((X(A), m), (X(B), n)) (49)
Let X" be the dotted composite:

[ A, B3] — Hom,,(X(J"**A), 0), (X(By™*), 0))

ELUE,HH’)[ 0(?)0i1{"m+v
Hom,,((X(A), m +v), (X(B),n +v))
XV = |7

s Hom, (X(A), m), (X(B), n))

The function X" is a group homomorphism by the discussion following Lemma [3.13.9
Moreover, it is easily verified that this diagram commutes:

[J"*A, BE] —X— Hom,, ((X(A), m), (X(B), n))

A)l+\’
X\H—]

[Jm+v+lA’ B?nwﬂ]

Thus, the morphisms X" induce the desired group homomorphism X4 (5. in @9); this
defines X on morphisms. It is straightforward but tedious to verify that the definitions
above indeed give rise to an additive functor X : &€ — /. When verifying that X
preserves composition, Lemma [3.13.10| is needed to show that the signs in Definition
3.6.4) work out. We clearly have X = X o jand Lo X = X o L.

Let us now show that X(d,s ) = 6 for every extension & in C. Consider an extension
as follows, with classifying map & : JC — A:

& A—l-p_t.C
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Recall from Definition (3.12.11) that d equals the composite:

(€, 1) == (JC,0) —2— (4,0)

Upon applying X we get:

(X0, 0 — - (x(4),0)

(X(O),
By naturality of ¢, we have:
X(Bs0) = X&) 0 il = X(&) 0 6y =0

It remains to check the uniqueness of X. Let X : R — & be any graded functor
with the properties described in the statement of this theorem. Let @ € K((A, m), (B, n)) be
represented by f : J"7VA — B and let y" Bf " — B be the morphism induced by
the iterated last vertex map. By Lemma the following diagram in K¢ commutes:

(A, m) - (B, n)

| T

(A, =) (B3, =v) =L (Bg™, =)

L7

Upon applying X we get the following commutative diagram in .</:

X(a)

(X(A), m) (X(B),n) Lo

L—V(if\,mﬂv)j: TE \

m+v LiVX(f) enJrv L*VX( V) enﬂ'
(XA, -v) (X(B™), =v) =———=—— (X(B;""), =)

It follows that X is the functor defined above. O

As a corollary we get:

Theorem 3.13.12. Let (7, L) be a triangulated category and let X : C — 7 be an
excisive and homotopy invariant homology theory. Then there exists a unique triangulated
functor X : 8¢ — T such that X(g) = 65 for every extension &, and such that the
following diagram commutes:

c—7L .ge

Proof. By Theorem there exists a unique graded functor X making the diagram
commute and such that X(ds0) = d¢ for every extension & in C. It remains to check
that X sends distinguished triangles in & to distinguished triangles in .7. By Proposition
it suffices to show that X sends extension triangles As  to distinguished triangles
in .7, but this follows immediately from the fact that X(0,,) = 5. O
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Remark 3.13.13. One way to summarize Theorem [3.13.12]is to say that j : C — K€ is the
universal excisive and homotopy invariant homology theory with values in a triangulated
category. Such a universal homology theory was already constructed by Garkusha in [6]
Theorem 2.6 (2)] using completely different methods. Both constructions are, of course,
naturally isomorphic since they satisfy the same universal property.

Theorem 3.13.14. Let F : C — C be a functor satisfying the following properties:

1) F preserves homotopic morphisms;

2) F preserves extensions.

Then there exists a unique triangulated functor F making the following diagram commute:

c—l-qe

FL falF

Y
J RC

C——

Let Fi,F, : C — C be two morphisms with the properties above and letn : Fy — F,
be a natural transformation. Then there exists a unique (graded) natural transformation
i1 F\ = Fy such that fj 4y = j(na) for all A € C.

Proof. The existence and uniqueness of F follow from Theorem [3.13.12|once we notice
that jo F' : C — 8 is an excisive and homotopy invariant homology theory. Let us show
now the existence of 7. For every A € C put:

va = j(a) € R(F1(A), F2(A))

The v, assemble into a natural transformation v : joF; — joF, : C — &. Let & := (R¢)!
where [ is the interval category. Recall from Example [3.13.8] that v induces a homotopy
invariant 6-functor C — o7 if we show that the diagram ({8]) commutes. Let

&:A—L-p—t-C
be an extension in C. Then we have a morphism of extensions in C:

Fi(f) Fi(g)
F1(A) —> F|(B) —>F,(C)

FaA) 2 FyB) 22 Fa(0)

Since j sends extensions to triangles in a natural way, the following diagram in K¢ com-
mutes:

(F1(C), 1) 22 (Fy(A), 0)
L(vc)l VA
(F2(C), 1) 25 (Fy(A), 0)

Thus, v induces a homotopy invariant 6-functor C — .7, which in turn induces a graded
functor v : R¢ — &7 by Theorem [3.13.11} It is easily verified that this graded functor ¥
corresponds to the desired natural transformation 7j : F; — F). i
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Remark 3.13.15. Let F, F’, F”" : C — C be functors satisfying the hypothesis of Theorem
3.13.14/and letnp : F — F" and ' : F' — F” be natural transformations. Then n oy =
1 on.



Chapter 4

Bivariant K-theory spaces

Resumen del capitulo

Para cada par de édlgebras A y B, Garkusha [5]] construyé un espectro K(A, B) que repre-
senta a la teoria de homologia universal, escisiva e invariante por homotopia [5, Com-
parison Theorem B]. En las secciones y recordamos la definicion de K(A, B) y
probamos un resultado andlogo el teorema de representabilidad de Garkusha, usando la
categoria R definida en el capl’tulo Mas precisamente, en el Teorema mostramos
que hay un isomorfismo natural:

m,K(A, B) = KC(A, (B, n))

Este resultado se deduce facilmente del Teorema Sea X un conjunto simplicial
finito. En la seccién.4mostramos que el n-ésimo grupo de homologia y el n-ésimo grupo
de cohomologia de X con coeficientes en K(A, B) [|12] estan dados, respectivamente, por
KC(AX, (B, n)) y por KC(A, (BX,-n)). Mis precisamente, en las proposiciones y
4.4.5] construimos equivalencias débiles de espectros:

K(A, B) A X, — K(AX, B)

K(A, BY) —— Map(X, K(A, B))

Aqui, K(A, B) es un reemplazo cofibrante de K(A, B) en la categoria de modelos estable.
En el Corolario [4.4.2] probamos que una equivalencia débil f : X — Y entre conjuntos
simpliciales finitos induce una fK-equivalencia f* : AY — AX. En el Corolario m
mostramos que, para conjuntos simpliciales finitos X e Y, el morfismo de multiplicacién
wY (A% — AXXY definido en la seccion [2.2]es una K-equivalencia.

Chapter summary

For any pair of algebras (A, B), Garkusha [5] constructed a spectrum K(A, B) that rep-
resents the universal excisive and homotopy invariant homology theory [5, Comparison

89
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Theorem B]. In sections [4.2] and 4.3| we recall the definition of K(A, B) and prove an ana-
log of Garkusha’s representability theorem, using the category K€ defined in Chapter
More precisely, in Theorem 4.3.3] we show that there is a natural isomorphism:

7, K(A, B) = KC(A, (B, n))

This result follows easily from Theorem [2.3.3] In section [4.4] we show that, for a finite
simplicial set X, the n-th homology and n-th cohomology groups of X with coefficients
in K(A, B) [12] equal K€(A%, (B, n)) and KRC(A, (BX, —n)) respectively. More precisely, in
Propositions 4.4.1]and 4.4.5] we construct weak equivalences of spectra:

K(A, B) A X, —— K(AX, B)

K(A, B¥) —— Map(X, K(A, B))

Here, K(A, B) is a cofibrant replacement of K(A, B) in the stable model category of spec-
tra. In Corollary 4.4.2] we prove that a weak equivalence f : X — Y of finite simplicial
sets induces a K-equivalence f* : A¥Y — AX. In Corollary we show that, for finite
simplicial sets X and Y, the multiplication morphism p*Y : (A*)Y — AX<Y defined in
section [2.2]is a R-equivalence.

4.1 Path extensions revisited

Let B € C and let n,g > 0. We will define a class of extensions @Z p that generalize the
path extensions &2, 3 defined in Section Put:

P(n’B)‘.I .= B(.IrHlXAq,(ﬁI”xIXAq)U(I”x{1}><Aq))

On the one hand, the composite I" x A? = " x {0} x A? C I"*! x A7 induces a morphism
of Z(-diagrams in C:

q
PuB I"X A9, 01" A4
P(n, B){ —% BJ40A0

n+1 n+1
On the other hand, we have inclusions Bﬁl XATOITXAT) P(n, B)!. Proceeding in analogy
to what was done for (4) on page[38] one can show that there is an extension:

q
Jias! XAqﬁInJrl XA Pnp I"xA1,0I"x A1
P!, . B! ) —— P(n, B)l —~ B! )
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A splitting of p? , in U(C) can be constructed as follows: Recall that we have an element
to € Z'". Let 57, be the composite:

(I"xA9 JI"x A7) 1® (I"x A9, QI AT) (1.{0h
B; _ ———>B; ® 7,

1'% A9 9" x A9y (10D
(B§ XA?,0I"x A ))
0
u

\ B(I"quxI,(I”XA‘IX{O})U((')I”XA‘IXI))
r

RN U XIXAL M X(0IXADU@I"XIXA)
p

It is straightforward to check that s? ; is a section to p! , in U(C).
Remark 4.1.1. Tt is easily verified that the extensions (2! ;, s7 ) are:

(i) natural in B with respect to morphisms in C;
(i1) natural in r with respect to the last vertex map;

(i11) and natural in g with respect to morphisms of ordinal numbers.

4.2 Bivariant K-theory space

Let A,B € C and let n > 0. From the proof of Theorem [2.3.3] it follows that there is a
natural bijection:
(Q”Ex""HOmc(J "A, BA)) = colim Hom¢ (J"A, Bﬁ’”XA“ﬁI"xA"))
q r

Let f € Hom¢(J"A, BIATOIANY and define J'(f) as the classifying map of f with respect
to the extension &) ,:

Uy a JHNA———TJ"A J'A
) 0y Lf

vq (! xA: Al x A7) v q (I"xA?,0I"x AT)
3”"’ B B; ’ —— P(n, B), — B; ’

It follows from Remark [4.1.T] that this defines a morphism of simplicial sets:
' QUEx®Home(J"A, BY) —— Q"' Ex®Homg(J" A, B) (D

Definition 4.2.1 (Garkusha). Let A, B € C. The bivariant K-theory space of the pair
(A, B) is the simplicial set defined by:

#C(A, B) := colim Q"Ex“Homg(J"A, B®)

Here, the transition morphisms are the " defined in (TJ).
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Note that J#C(A, B) is a fibrant simplicial set, since it is a filtering colimit of fibrant
simplicial sets. This definition of .#"C(A, B) is easily seen to be the same as the one given
in S, Section 4]. We will often drop C from the notation and write % instead of %~ C

Theorem 4.2.2 (cf. [5, Corollary 7.1, Comparison Theorem B]). Let n > 0. Then there is
a natural isomorphism:
T C(A, B) = 8S(A, (B, n))

Proof. Since rr, = m1yQ2" commutes with filtered colimits, we have:

7, % (A, B) = colim Q" Q" Ex“Hom¢(J'A, BY)

= colim yQ " Ex*Homc(J'A, BY)

IR

colim[J'A, BZ*]¢ (by Theorem [2.3.3])

Notice that Q"Q" = Q""" because of our conventions on iterated loop spaces; see section
Recall from Definition that

S(A, (B,)) = colim[J'A, BS*"]

where the transition functions are the A"*" of Lemma Thus, we need to compare
A"V with:
ﬂn{v : [JVA, B::YH-V]C e [JV'HA’ Bf’n+v+1]c

Letc,, : I"XI" = I"xI' be the commutativity isomorphism; c,, induces an isomorphism
(Con)* @ B7™ — B, Tt is straightforward to verify that the following square commutes
for all v:

mnd”

[JVA, B:5v+n]c [JV+1A, B;@wlm]c

(Cv,n)* ] = = ] (Cv-#l,n)*

[JVA’ BE’:’nw]C AT [JV+IA, B;@n+v+l]c

These squares assemble into a morphism of diagrams that, upon taking colimit in v, in-
duces an isomorphism:
., (A, B) = K(A, (B.n))

This finishes the proof. O

4.3 Bivariant K-theory spectrum

The following result is [S, Theorem 5.1]; we sketch its proof here for future reference.

Theorem 4.3.1 (Garkusha). There is a natural isomorphism of simplicial sets:

HC(A,B) = Q¥ C(JA,B)
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Proof. Letcy, : I XTI S I x I be the commutativity isomorphism. For a simplicial set
X, we have an induced isomorphism (c;,)* : Q""'X — Q!*"X. There is a commutative
square:

Qr

Q" Ex*Home(J1*'A, BY)

(Cl,\z)*lE

Q'"VEx*Hom¢(J' VA, BY)

QV+2Ex°°HomC(J1+"“A, BA)

El(Cl,m)*

I+v
¢ Ql+v+1ExooH0mC(J1+v+1A, BA)

The colimit of the top horizontal morphisms is Q% (JA, B) and the colimit of the bottom
ones is # (A, B). The result follows. O

Let S' := Al/0A!. A spectrum is a collection {X"},so of pointed simplicial sets,
together with pointed morphisms S! A X" — X"*!, which we call bonding maps. A mor-
phism of spectra f : X — Y is a sequence of pointed morphisms f : X" — Y” commuting
with the bonding maps. Write Spt for the category of spectra and morphisms of spectra.
We will consider in Spt the stable model structure, which is proper and simplicial; see,
for example, [7, Theorem 4.15]. Let X be a spectrum and let m € Z. The m-th homotopy
group of X is defined as the following colimit:

7, X := colim 7, , X"
v

A morphism of spectra is a stable equivalence iff it induces an isomorphism upon taking
7w, for all m. A spectrum X is stably fibrant iff all the X" are fibrant simplicial sets and all
the adjoints X" — QX"*! of the bonding maps are weak equivalences of simplicial sets.

Definition 4.3.2 (Garkusha). Let A, B € C. The bivariant K-theory spectrum K€(A, B)
consists of the spaces

(A, B), #°(JA,B), #°(J*A, B),. ..
together with the bonding maps that are adjoint to the isomorphisms of Theorem{4.3.1
Notice that K¢(A, B) is a fibrant spectrum. As usual, we may drop C from the notation.

Theorem 4.3.3 (cf. [5, Corollary 7.1, Comparison Theorem B]). For every n € Z there is
a natural isomorphism:
7. KC(A, B) = K¢(A, (B, n))

Proof. For n > 0 this follows from Theorem |4.2.2| since n,K(A, B) = n,.%# (A, B). For
n < 0 we have:

1, K(A, B) = 1. # (J7"A, B)
= colim 7oQ Ex*Homg(J A, BY)
= colim[J""A, BS']¢

=~ R((A, —n), (B,0))
=~ R((A, 0), (B, n)) .
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Remark 4.3.4. Let X = Q"Ex*Hom(A, B®). Let ex : S' A QX — X be the counit of the
adjunction between the suspension and loop functors. We want an explicit description of
ex. More precisely, we have:

1 n+1 n+1
(QX), = COlrlm Hom(A, B(rl XA1,01 XM))

2)

X, = colim Hom(A, BY"*A"0I"<AD)
r

We want a description of €y in terms of the right-hand side of (2). First of all, for any
pointed simplicial set Y, the projection A! — §! induces an isomorphism:

A' xY

= 1
S T

Hence, in order to describe ey it suffices to give a morphism A! x QX — X. Let [ f] denote
n+ n+1

the class of f € Hom(A, BY IXATOITIXADY 4y (QX),. Let x : A7 > Al be a g-simplex of

Al Tt is easily verified that ex(x, [ f]) equals the class of the composite

: n+1 q A+l Aq N AG AT AG
A f B(rI XAT A XA % Bﬁl XA9,OI"XA)

where the morphism  is induced by the following morphisms of simplicial sets:

I"xdiag
" XA — =" x A7 x A1

I'"xxxA1

I"x I x A
Example 4.3.5. Theorem states the existence of isomorphisms
H (A, B) — Q. % (JA, B) 3)

that are then used to construct the bonding maps of the spectrum K(A, B). It will be useful
to have an explicit description of the adjoints of these morphisms:

S'A 4 (A, B)— ¥ (JA, B) “4)
Recall that:
(Ql+nExooH0m(Jl+nA’ BA))q ~ COlril’Il HOm(J“"A, BglMXAq’alHHXM)) ®)
For every n > 0, we proceed to define a function:

Sp: (A' x Q" Ex*Hom(J'*"A, B)), — (Q"Ex“Hom(J'*"A, BY)),

Let [ f] denote the class of f € Hom(J'*"A, T () and let £ : A — A! be
a g-simplex of A!. Define S ,(t, [f]) as the class of the composite

1+n q 1+n q n q AN q
Jl+ng f Bgl XALAIIXAT)  x Bgl XAY,0I"XAY)
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where the morphism % is induced by the following morphisms of simplicial sets:

I"xdiag

I" x A1 I"x AT x AT = A9 x [ x AN —ZLXA  plen o Ag

Clearly, the S, assemble into a morphism of simplicial sets:
S, : Al x QU Ex*Hom(J'*"A, B®) — Q"Ex®Hom(J!*"A, B*)

It is straightforward but tedious to verify that these morphisms are compatible with (T)).
Hence, upon taking colimit in n, we get a morphism:

S :A'x #(A,B)— ¥ (JA,B)

We claim that the morphism above induces (). Again, the verification of the latter is
tedious but straightforward: first smash (3]) with S' and then compose with the counit of
Remark [4.3.4} the resulting morphism equals S .

4.4 The (co)homology theory with coefficients in K(A, B)
Let X be a simplicial set and let A, B € C. We proceed to construct a natural morphism:

¢ax : KA, B) A X, —=K(AY, B) (6)
To alleviate notation, we will write ¢ instead of ¢4 5 x. We have:

H(J"A,B) x X
¥ x X

[l

H(J"A,B) A X,

Thus, to define ¢ at level n it suffices to give a morphism ¢" : #(J'A,B) X X —
J (J"(AY), B) that sends {*} x X to the basepoint —the zero morphism. Let us define
¢" in dimension g. Recall that:

JH (J"A, B), = colim (Q'Ex*Homc(J"J"A, BA))q

= colim colim HOmC (Jl’l+vA’ Bg[”)(A‘Iﬁ[VXAfI))
v r

Since cartesian products commute with colimits, to define ¢ it suffices to give compatible
functions:

Y v ¢ v v
Hom (]n+vA, B§I xA1,01 xA‘i)) X Xq _ e Hom (J’HV(AX), Bg] xA4 A1 ><A‘4))
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Let f € Hom (J”*VA,BgVXM’aIVXM)) and let x : A? — X be a g-simplex of X. Define
¢, (f, x) as the following composite function:

Jn+V(AX) ST Jn+V(AA‘1) Remark (Jn+vA)A‘1

12

( B(I"qu,al"qu))Aq
,

7

B(I"quxA‘i,al"xMxM)
AV

*

...................... IVXAK]’BIVXAZ]
> BS )

Here, the morphism * is the one induced by the diagonal map A? — A?xA9. It is straight-
forward but tedious to verify that these functions ¢} are compatible with the colimit maps
and induce a function:

¢y : A (J'A, B)y X Xy — H (J'(A%), B), (7)

It is easily seen that, for varying g, the functions (7)) assemble into a morphism of simpli-
cial sets. Moreover, the latter clearly sends X x {*} to the basepoint of .# (A, B). So far,
we have defined a morphism of simplicial sets:

¢" . A (J"A,B) A X, —= H (J"(AY), B)

Finaly, a tedious but straightforward verification shows that these morphisms ¢" assemble
into a morphism of spectra. This completes the construction of (6)).

Notice that J# (J"A, B)AA® = ¢ (J"A, B) and A%’ = A. Itis easily verified that, under
these identifications, the morphism ¢4 g A0 equals the identity of K(A, B).

Letc: JK(A, B) — K(A, B) be a cofibrant replacement in the category of spectra.

Proposition 4.4.1. Let X be a finite simplicial set. Then the following composite is a
stable weak equivalence of spectra:

cAX, ox

K(A, B) A X, K(A, B) A X, K(AX, B) (8)
Proof. Let ¢y be the composite in (§]); we have to prove that by is a weak equivalence
for finite X. The assertion holds for X = 0 and X = AY —in these cases, ¢y is an
isomorphism of spectra. Let us show now that ¢,» is a weak equivalence for any p. The

following diagram commutes:

K(A, B) A A? -2~ K(AY, B)

| |

EAO

K(A, B) A A —~ K (A", B)
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Here, the vertical morphisms are induced by A” — A°. The vertical morphism on the left
is a weak equivalence because K(A, B)A? is a left Quillen functor, and so it takes weak
equivalences between cofibrant objects to weak equivalences [9, Lemma 1.1.12]. The
vertical morphism on the right is a weak equivalence because AY 5 AY isa homotopy
equivalence.

Consider a pushout diagram of finite simplicial sets as follows, where the horizontal
morphisms are inclusions:

Yo——Y

|

Xo0——X

Upon applying A’ : S® — C we get a morphism of extensions as follows:

ATY) = AY AV

1]

A(X’X/) —>AX —>AX,

The rows are indeed extensions by [2, Lemma 3.1.2] and the vertical map on the left is an
isomorphism because the square on the right is cartesian. Upon applying K(?, B) we get
the following diagram of spectra:

K(AY, B)——K(AY, B)

l |

K(AX', B) — K(A*, B)

L |

* K(AYX), B)

The outer and bottom squares are homotopy cartesian by [5, Theorem 6.6]; hence the
top square is homotopy cartesian too, by [[11, Lemma 1.1.8]. Then the upper square is
homotopy cocartesian as well because the model structure is stable. Now consider the
following commutative diagram of spectra:

K(A,B)A Y, K(A,B)A Y,
_ 7 ; /
S e
K(A”, B)

KA,B)AX, — | — K(A,B) A X,
_ 7 a/

A S
K(AX', B) K(AX, B)
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We already know that the front face is homotopy cocartesian. The back face is homotopy
cocartesian too since K(A B)A? preserves pushouts along cofibrations. If we know that
¢y , ¢y and ¢X are weak equivalences, then ¢y is a weak equivalence too by [8l, Proposi-
tion 13.5.10]. Using the latter, we will finish the proof by induction on dim X.

Consider the following pushout diagram of simplicial sets:

O——A?

.

AB— AP [] AP

By the previous paragraph, it follows that Dar [14» 1S a weak equivalence. By induction,
one proves that ¢x is a weak equivalence when X is a finite disjoint union of A”’s. In
particular, ¢y is a weak equivalence for any finite X of dimension 0. Now suppose that ¢y
is a weak equivalence for every finite X of dimension < p, and let Y be a finite simplicial
set of dimension p. We have a pushout of finite simplicial sets as follows:

] 0AP——[] A”

L

sk, X— X

Once more, by the previous paragraph, by is a weak equivalence. O

Corollary 4.4.2. Let f : X — Y be a weak equivalence between finite simplicial sets and
let A € C. Then f* : AY — AX is a K-equivalence.

Proof. Let B € C. Note that ]K(A B)A? preserves weak equivalences [9, Lemma 1.1.12].
By Proposmon 1, . : K(A%, B) — K(A”Y, B) is a weak equivalence of spectra. Upon
applying 7, and makmg the identifications in Theorem {.3.3] we have an isomorphism:

.f* . S{(AX’ (B9 n)) I R(AY’ (B9 n))
Then f* : AY — AX is an isomorphism in & by Yoneda. i

Corollary 4.4.3. Let X and Y be two finite simplicial sets and let A € C. Then the
morphism ' . (AX)Y — AYY is a K-equivalence.

Proof. Let B € C. It is enough to show that u* : K(A¥Y, B) — K((A%)", B) is a weak
equivalence of spectra. A straightforward verification shows that the following diagram
of spectra commutes:

dxNY+

K(A, B) A X, A Y. K(AY,B) A Y,

EJ Tk

K(A, B) A (X X ¥), 2% KA, By — ~ K((A%)", B)
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Upon taking cofibrant replacements c : K — K of the bivariant K -theory spectra, we get
the following commutative diagram of solid arrows:

......................... - K(AX, B)AY,

Pt lcl\)ﬁ,

KA,B)A X, A Y, K(AX,B) A Y, ~)dy (10)

T

K(A, B) A (X X Y), 225 KA B) — X~ K((A%)", B)

The proof will be finished if we show there exists a dotted weak equivalence making the
diagram commute in the homotopy category of spectra.

Recall that the K-theory spectra K are fibrant in the stable model category of spectra.
Factoring * — K into a cofibration followed by a trivial fibration, we can choose a cofi-
brant replacement ¢ : K — K so that K is still fibrant. Since K(A B) A X, is cofibrant
and ¢ : K(AX,B) — ]K(AX , B) is a weak equivalence between fibrant spectra, there exists
a morphism of spectra  making the following diagram commute up to left homotopy
(9}, Proposition 1.2.5 (iv)]:

K(AX, B)

/ l (11)

K(A, B) A X, — 2~ K(AX, B)

Moreover, i is a weak equivalence since both ¢y and ¢ are. Since i is a weak equivalence
between cofibrant spectra and ? A Y, is a left Quillen functor, then ¢ A Y, is a weak
equivalence of spectra. We claim that ¢ A Y, is a dotted arrow that fits (I0)) making the
diagram commute in the homotopy category. Every left Quillen functor preserves left
homotopies between morphisms with cofibrant domain. Thus, upon applying ? A Y, to
(IT) we get a diagram that commutes up to left homotopy —hence, it commutes in the
homotopy category of spectra by [9, Theorem 1.2.10 (iii)]. O

Remark 4.4.4. Let X be a finite simplicial set. By Proposition |4.4.1, R(A%, (B, n)) equals
the n-th homology group of X with coefficients in K(A, B) —in the sense of [[12].

We now proceed to construct a natural morphism:
Pasx : K(A, BY) —=K(A, B)* (12)
In order to define I at level n, recall that:
H (J'A, BY), = colim (Q"Ex"Hom(J"A, (BX)A))p

= colim Hom (J"*A, (B¥){/*A"0A7) (13)

v,r
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There is a natural morphism of simplicial sets as follows —this need not be an isomor-
phism unless X is finite:

colim Map (X, Q'Ex"Hom(J"*"A, BA)) — X (J"A, B)¥ (14)

We have:

[colimMap (x. QVEx’Hom(J””A,BA))] = colim Hom (J"*'A, B/"XA%IX0AD) - (15)
P

v,r v,r

Let f € Hom (J”*VA, (BX )SIVXAP"WXM)) and define ¥"(f) to be the following composite,
where the vertical isomorphism is induced by the commutativity of the product:

......................................... |=

19n(f) ........................ . B(IVXXXAP,(?IVXXXAP)
r

It is easily verified that these functions " are compatible with the transition maps of the
colimits in (I3)) and (I5)), giving a morphism of simplicial sets:

9" . H (J"A, BY) —— colim Map (X, Q'Ex'Hom(J"A, BA))

Composing the latter with (14]) we get:
9" . o (J"A, BY) ——= (J"A, B)X

A straightforward verification shows that these ©#" assemble into the desired morphism of

spectra (12).

Proposition 4.4.5. Let X be a finite simplicial set. Then the morphism 4 g x constructed
above is a weak equivalence of spectra.

Proof. This is very similar to the proof of Proposition but there is no need to take
fibrant replacement because the bivariant K-theory spectrum K is already fibrant. First of
all, notice that ¥x is an isomorphism in the cases X = 0 and X = A°. Proceeding as in
the proof of Proposition .4.1 one shows that 94, is a weak equivalence for all p. Now
consider a pushout (9) where the horizontal morphism are inclusions; we want to show
that if ¢y, ¢y and ¥x are weak equivalences, then ¢y is a weak equivalence too. The
latter follows from a reasoning like in the proof of Proposition using (S, Theorem
5.3] and the fact that K(A, B)’ : S°® — Spt is a right Quillen functor. o

Remark 4.4.6. Let X be a finite simplicial set. By Proposition}4.4.5, &(A, (BX, —n)) equals
the n-th cohomology group of X with coefficients in K(A, B) —in the sense of [12]].



Chapter 5

Matrix-stable bivariant K-theories

Resumen del capitulo

En este capitulo estudiamos diferentes estabilizaciones de & con respecto a dlgebras de
matrices. En la seccion construimos una teoria de homologia universal, escisiva, in-
variante por homotopia y M,-estable, que denotamos por ji : C — K. La condicion
de M,-estabilidad significa que, para todo A € Cy todo n > 1, el morfismo A — M,A,
a — ej1®a, se vuelve inversible luego de aplicar ji. Una teoria con estas caracteristicas ya
habia sido construida por Garkusha [5, Theorem 6.5 (2)]. En la seccién construimos,
para cualquier conjunto infinito X, una teoria de homologia universal, escisiva, invariante
por homotopia y My-estable, que denotamos por jyx : C — Ky. Aqui, My es la £-adlgebra
de matrices finitas con coeficientes en £ indexadas por X X X. En el caso X = N, K
coincide con construcciones previas de Cortifias-Thom [2, Theorem 6.6.2] y Garkusha
[S, Theorem 9.3.2]. Probamos que, para todo conjunto infinito X y toda {-dlgebra A,
hay un isomorfismo natural Kx(£,A) = KHyA; esto extiende [2, Theorem 8.2.1]. En la
seccion definimos, para cualquier grupo G, una teoria de homologia universal, esci-
siva, invariante por homotopia y G-estable, que denotamos por j¢ : GAlg, — K¢. Aqui
seguimos de cerca la construccion hecha por Ellis [4], pero nuestra definicion es un poco
mas general ya que no imponemos restricciones sobre el cardinal de G. En el Teorema
probamos que hay un espectro K(A, B) que representa a R¢. Finalmente, en los
teoremas [5.3.15 y [5.3.18] mostramos que el teorema de Green-Julg [4, Theorem 5.2.1] y
la adjuncién entre induccion y restriccion [4, Theorem 6.14] se levantan a equivalencias
débiles de espectros.

Chapter summary

In this chapter we discuss different ways of stabilizing & with respect to matrix algebras.
In section[5.1|we construct a universal excisive, homotopy invariant and M,,-stable homol-
ogy theory j; : C — K. The M,-stability condition means that, for any A € C and any
n > 1, the morphism A — M, A, a — e; ® a, becomes invertible upon applying js. Such
a theory was already constructed by Garkusha [5, Theorem 6.5 (2)]. In section [5.2] we
construct, for any infinite set X, a universal excisive, homotopy invariant and M x-stable

101
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homology theory jx : C — K. Here, My is the {-algebra of finite matrices with coeffi-
cients in ¢ indexed by X X X. In the case X = N, we recover previous constructions by
Cortifas-Thom [2, Theorem 6.6.2] and Garkusha [5, Theorem 9.3.2]. We prove that, for
any (infinite) set X and any £-algebra A, there is a natural isomorphism K x(¢, A) = KHyA;
this extends [2, Theorem 8.2.1]. In section we define, for any group G, a universal
excisive, homotopy invariant and G-stable homology theory j¢ : GAlg, — K¢. Here,
we closely follow Ellis [4], but our definition is slightly more general since we do not
impose any restriction on the cardinality of G. In Theorem [5.3.11| we prove that there is
a spectrum KY(A, B) representing K. Finally, in Theorems [5.3.15| and [5.3.18] we show
that the Green-Julg theorem [4, Theorem 5.2.1] and the adjunction between induction and
restriction [4, Theorem 6.14] lift to weak equivalences of spectra.

5.1 Stabilization by finite matrices

For n > 0, let M,, be the algebra of n X n-matrices with coeflicients in £. In the G-
equivariant setting, we will consider M,, as a G-{-algebra with the trivial action of G. For
A € C, we will write M,A instead of M,®,A; this is, of course, the algebra of n X n-
matrices with coefficients in A. In the case C = GAlg,, we will consider M,A as a G-(-
algebra with the diagonal G-action. We have a natural morphism s, : A — M,A defined
by s,(a) = e;; ® a. We also have a morphism ¢,y : M;,A — MyA that sends M,A into
the upper left corner of MyA for n < N. We can regard M,, as a functor M, : C — C. It
is easily verified that this functor preserves extensions and homotopies, and thus induces
a triangulated functor M, : K¢ — K¢ by Theorem Moreover, we can regard
sy 1 id = M, and 1,y : M,, = My as natural transformations; by Theorem [3.13.14] they
induce graded natural transformations between the corresponding triangulated functors.

Remark 5.1.1. Let p,q > 0. Any bijection 6 : {1,...,p}x{1,...,q} = {1,..., pg} induces
a natural isomorphism 6 : M,M, = M, determined by ¢;; ® ey <> eg ;- By Theorem

the latter induces a graded natural isomorphism 6 : M,M, = M, of triangulated
functors K¢ — KC.

Example 5.1.2. Let®,, : {1,...,p} x{1,...,q} = {1,..., pg} be the bijection defined
by ©,,(, j) := j+ (i — 1)g. The corresponding isomorphism ®,, : M,M, = M,, can
be described as follows: An element of M,M, is a matrix A = (A;;) of size p X p whose
coeflicients are matrices A;; of size gxg with coeflicients in £; ®,, ,(A) is the pgx pg-matrix
obtained by drawing A and then deleting the parentheses of the A;;’s.

Definition 5.1.3 (cf. |6, Section 6]). We proceed to define a category Rf —the subscript
f standing for finite matrices. The objects of Rf are the objects of K¢ and the hom-sets
are defined by:

Homgc((A, m), (B, n)) := colim RC((A, m), M ,(B, n))
f p

Here, the transition maps are induced by ¢, ,.1 : M,(B,n) — M. (B,n). It is clear that
the hom-sets in Rf are abelian groups. As usual, we may drop C from the notation and
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write K¢ instead of Rfc. We proceed to describe a composition:
S:{f((B’ n)$ (C’ k)) X Rf((A’ m)’ (B’ I’l)) - S:{f((14’ m)$ (C’ k))

Suppose we have morphisms in K represented by o € K((A,m), M,(B,n)) and 5 €
K((B,n), M,(C, k)); their composition in K¢ is, by definition, represented by the following
composite in K:

a MyB
(A, m) = M,(B, n) —= M,M,(C, k) —= M,,,(C, k) )
Here the isomorphism 6 on the right is induced by a bijection 6 : {1,..., p} x{1,...,q} —
{1,..., pq} as explained in Remark [5.1.1] This composition rule is well defined and inde-
pendent from 6, as we prove below.

Lemma 5.1.4. The definitions above make ¢ into a category.

Proof. Suppose 7 is a natural transformation between functors C — C that preserve ex-
tensions and homotopy. By Theorem [3.13.14] 7 induces a graded natural transformation
i between the corresponding triangulated functors & — K. Any commuting diagram in-
volving such natural transformations induces a commuting diagram involving the corre-
sponding graded natural transformations; see Remark [3.13.15] This will be used without
further mention.

Fix p and g and choose a bijection 8 : {1,...,p} x{l,...,q} — {1,..., pg}. Let us
first show that the formula (I)) defines a function

K((B,n), M (C, k) X R((A, m), M (B, n)) — K((A, m), (C, k)) (2)
which is independent from 6. Let ¢ : {1,...,p} X {1,...,q} — {1,..., pq} be another

bijection. It is easily seen that there is a permutation matrix P € M,, such that the
following diagram in C commutes:

M,M, —6>Mpq

lp-(?)-Pl
9/

Mpfl

By [6, Proposition 3.1] (cf. [2, Lemma 4.1.1]), the following diagram commutes in [C]:

MP‘I

)P
o
rq

M MoM,,

0

MPMq
P
H/

It is possible to choose an isomorphism M,M,,, = M,,, such that the composite M, 3
M)M,, = M,,, equals t,,5,,. It follows that the diagram below commutes in R, proving
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the independence of (2)) from 6.

M,M,(C,k) 0 M,,,(C,k)

> P-(?i-P’l

M, y(C k) —22 - M, (C, k)

Let us show now that the functions (2)) are compatible with the transition maps in
the first variable, ¢, 4.1 @ M,(C,k) — M, (C,k). It is enough to find bijections 6 :

{1,....pIx{1,...,q} = {1,....,pgtand @ : {1,...,p}x{1,...,q+1} = {1,...,p(g+ 1)}
such that the following diagram commutes —and this is easily done:

M,M, — Mg

Mp’vq,q+l l lLP‘N’((I‘H)

H/
MyMyy — M1

Let us show now that the functions (2)) are compatible with the transition maps in
the second variable, ¢, .1 : M,(B,n) — M,,(B,n). It is enough to find bijections 6 :

{1,....p}x{1,....q} = {1,...,pgtand & : {1,...,p+1}x{1,...,q} = {1,...,(p+1)g)}
such that the following diagram commutes:

M,M, — My,

Lp,p+1 l llpq,(ml)q

9/
M(p+1)Mq > M(p+1)q

Again, it is easy to find such 6 and 6'. We can take, for example, § = 0, ,and ¢ = 0,

as defined in Example
We have proved that the formula (I)) gives a well defined composition:

Ke((B, n), (C, k) X K¢((A, m), (B, n)) —= K((A, m), (C, k))

This composition is easily seen to be associative. The identity morphism of (A, m) in K¢ is
the class of id(4 ) € K((A, m), (A, m)) = K((A, m), M (A, m)). This finishes the proof. O

Remark 5.1.5. It is easily verified that the translation functor L : 8¢ — K€ induces a
translation functor L : Rf — Rfc. Thus, (K¢, L) is a graded category.

There is a graded functor # : R¢ — Sf that is the identity on objects and that sends a
morphism « € K((A, m), (B, n)) to its class in:

K¢((A,m), (B, n)) = colim K((A, m), M (B, n))
P

Precomposing # with j : C — K¢, we get a functor j; : C — Rfc. For A € C, we will
usually write A instead of j¢(A) and (A, 0).
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Lemma 5.1.6. The functor j; : C — Rfc sends s, : B — M,B to an isomorphism for all
q=>1landall BeC.

Proof. Tt is enough to show that the following function is bijective for all (A, m):
(Sq)* : Rf((A’ m)’ B) - Rf((A9 m)’ MqB) (3)

Recall the definition of ®,,, from Example The following diagram in C commutes
for all p:

Lp.p+1

M,M, M, M,
®p,ql l®p+l,q
Lpg,(p+1)g
Mm ~ M, (p+1)g

It follows that the diagram below commutes, where the unlabeled arrows are the structural
morphisms into the colimit:

Lp,p+l

K((A,m), M,M,B) K((A,m),M,.1M,B)

Opq l l Opiig

K((A, m), MpB) —2 QA m), M(ys1),B)

\Rf«A,mLB)

This diagram induces a function p : K¢((A, m), M,B) — K¢((A,m), B). Its is tedious but
straightforward to verify that this function p is the inverse of (3). As in the proof of
Lemma(5.1.4] it is used that two morphisms M, — M, which are conjugate to each other
by a permutation matrix become homotopic when composed with s, : M, — M,M,; of
course, these composites become equal in & by homotopy invariance. See also [|6, Section
3] and [2, Section 4.1]. O

Remark 5.1.7. Suppose a € K¢((A,m), (B, n)) is represented by a € K((A,m), M (B, n)).
It is easily verified that the following diagram in ¢ commutes:

(@)

(A,m) ——— M (B, n)

\ ETlf(Sq)
a

(B,n)

Define a triangulation in Rf as follows: a triangle in Rfc is distinguished if and only if
it is isomorphic to the image by #; : K¢ — Rfc of a distinguished triangle in K€,

Lemma 5.1.8. The triangulation above makes Rfc into a triangulated category.

Proof. The verification of axioms (TR0) and (TR2) is straightforward.
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Let us verify (TR1): Let a € K¢((A,m), (B,n)) be represented by a morphism a €
K((A, m), M, (B, n)). Since 8 is triangulated, « fits into a distinguished triangle in &. Then
ty(a) fits into a distinguished triangle in & and so does a, by Remark [5.1.7]

Let us verify (TR3): Consider the diagram of solid arrows (39) on page[73] where the
rows are distinguished triangles; we have to show that the dotted arrow exists. We may
assume that the rows are images by #; of distinguished triangles in {:

t(y) tr(@) (B

(C.k+1) (A,m) (B.n)—E~(C,k)
l ; lg )
(Cl, k’ + 1) t'(’y/) (AI’ ml) L (B” n/) L (C,’ k’)

Pick g large enough so that f and g are represented by ¢ € K((B,n), M,(B’,n’)) and
€ K((C, k), My, (C’, k")) respectively, and such that the following diagram in & commutes:

(B,n) (C,k)

/| g
Mq,B,

M,(B ') =" M,(C",K)

It follows from Remark that the diagram (4) is isomorphic in K¢ to:

1t(y) tr(a) t(B)

(C’k+ 1) (Aam)ﬁ(B7 n) (C’ k)
l lff(qb) llf(ll/)
M(C K + 1) — (A ) — o M (B ) — ) M (C k)

This diagram is the image by # of a commutative diagram in & whose rows are distin-
guished triangles; thus, it can be completed to a morphism of triangles.

Recall the statement of (TR4) from Axiom The axiom clearly holds if @ and
n’ are in the image of f; we can easily reduce to this case using Remark[5.1.7] O

Remark 5.1.9. The functor #; : K¢ — RfC is triangulated. Consider an extension in C:
&: A—B——C

Recall that we have morphisms ds € K€((C, 1), A) such that the following diagram is a
distinguished triangle in ]C:

e

(G, 1) A B C

Upon applying #, we get a distinguished triangle in Rfc. It is easily verified that the functor
Jjr: C — Rfc together with the morphisms {#(0s)}s is an excisive homology theory.

Definition 5.1.10. Let X : C — € be a functor. We say that X is M,,-stable if X(s, : A —
M,A) is an isomorphism for alln € N and all A € C.
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Theorem 5.1.11. The functor j; : C — Rfc is the universal homotopy invariant and M,,-
stable o-functor with values in a graded category.

Proof. Let X : C — </ be a homotopy invariant and M,-stable §-functor with values in
a graded category (<7, L). By Theorem [3.13.11] there exists a unique graded functor X
making the following diagram commute:

c—L-g

N

o

We proceed to define a functor X : & — 7. Put X(A, m) := (X(A), m) for every (A, m) €
K. Let X : 8¢((A, m), (B,n)) — Hom,,((X(A), m), (X(B), n)) be the function determined
by the commutative diagram:

(Lq,q+] )

K((A,m), M, (B, n))

Xl lx
o (X(A), m), (X(M,B), n)) ——"" o7 (X(A), m), (X(M+1 B), n))

\ LnX(Sqw‘l)*TE
L"X(s)).
A (X(A), m), (X(B),n))

It is easy to see that these definitions give rise to a functor X such that the following
diagram commutes:

R((A,m), My.1(B,n))

CLR{-‘

Nk

o

Moreover, Xot; = X : & — o7. Using that X is a graded functor, it is easily seen that X is
graded too. The uniqueness of X follows from the uniqueness of X and Remark O

Theorem 5.1.12 (cf. [6, Theorem 6.5 (2)]). The functor j; : C — S{f is the universal
excisive, homotopy invariant and M,-stable homology theory.

Proof. Let X : C — 7 be an excisive, homotopy invariant and M,-stable homology
theory. By Theorem |5.1.11] there is a unique graded functor X making the following
diagram commute:

C LR

N

T

We claim that X is triangulated, as we proceed to explain. Recall from the proof of
Theorem|5.1.11|that Xo#; = X, where X is the unique graded functor making the following
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diagram commute:

Since X is an excisive and homotopy invariant homology theory, it follows from Theorem
that X is triangulated. Any distinguished triangle in &; is isomorphic to the image
by # of a distinguished triangle in &; since X o#; = X and X is triangulated, it follows that
X is triangulated too. O

Remark 5.1.13. A universal excisive, homotopy invariant and M, -stable homology theory
of algebras was already constructed by Garkusha [6, Theorem 6.5 (2)]. Of course, K¢ and
the theory developed in op. cit. are naturally isomorphic, since they both satisfy the same
universal property. What we here call M,,-stability is referred to in [|6] and [5] as Morita
invariance.

Theorem 5.1.14. Let B € C. Then there is a unique triangulated functor (B&;?) : RfC -
Rf making the following diagram commute:

Cc—L. ¢

f

B®.? l B®?

Je
I g

Moreover, any morphism f : B — C in C induces a unique (graded) natural transforma-
tion (f®?) : (B&,?) — (C®;?) such that:

(f®Mjuay = Ji(f®A) : (B®:A,0) = (C®A,0)

Proof. Let us prove the existence of (B®,?). Consider the functor j; o (B®,?) : C — K.
This functor is an excisive and homotopy invariant homology theory in a natural way
since tensoring with B preserves extensions and homotopies. Moreover, we claim it is
M,-stable. Indeed, j;(B®;s, : B®A — B®;M,A) is an isomorphism because there is an
algebra isomorphism B®,M,A = M,(B ®; A) making the following diagram commute:

B®¢s,

B®/A —— B®/M,A

RN

M, (B®A)

Then the existence and uniqueness of (B&,?) follow from Theorem[5.1.12]

Let f : B — C be amorphismin C. Then f induces a natural transformation j;(f®,7?) :
Jeo (B®;?) — jro(C®,?) of functors C — K. This natural transformation can be thought
of as a homotopy invariant and M,-stable 5-functor X : C — (8;)’. By Theorem
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there exists a unique graded functor X making the following diagram commute:

C L‘ Rf
X
(8
This graded functor X corresponds to the desired natural transformation:
(f®&D) : (B&:?) — (C&?) : &t — K¢ O

Definition 5.1.15 ([5, Section 9]). Let (A, B) be a pair of objects of C. The M,-stable
bivariant K-theory spectrum KfC(A, B) is defined by:

KE(A, B) := colimK®(A, M,,B)
peN

Here, the transition maps are induced by ¢, ,+1 : M,B — M, |B.

Remark 5.1.16. The spectrum K¢(A, B) was defined in [, Section 9], where it was called
the Morita-stable Kasparov K-theory spectrum. This spectrum represents the universal
excisive, homotopy invariant and M,-stable homology theory [5, Theorem 9.8], as we
prove below.

Theorem 5.1.17 (cf. [5, Theorems 9.6 and 9.8]). For every m € Z there is a natural
isomorphism:
7K (A, B) = K{((A, 0), (B, m))

Proof. Since homotopy groups commute with filtered colimits, we have:
1. K¢(A, B) = co})im 7. K(A, M,B)
=~ co})im K((A,0), M,(B,m)) (by Theorem
= R¢((A,0), (B, m)) ]

5.2 Stabilization by finite matrices indexed on an
arbitrary infinite set

Let X be an infinite set. In this section we construct a universal excisive, homotopy
invariant and M x-stable homology theory jx : C — Rf(. In the case X = N, we recover the
universal excisive, homotopy invariant and M,-stable homology theory constructed by
Cortinas-Thom in [2, Theorem 6.6.2] and by Garkusha in [|6, Theorem 9.3 (2)]. Moreover,
we generalize [2, Theorem 8.2.1] proving that, in the case C = Alg,, Rx({,A) = KHy(A).

Put My :={a: XXX — € : supp(a) < oo}. The set My is an {-algebra with the usual
sum and product of matrices. More precisely, for matrices a,b € My we have:

((l + b),’j = ajj + b,’j

(ab)ij = Z aikbkj

keX
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In the case C = GAlg,, we will consider My as a G-({-algebra with trivial action. We
will write e;; € My (i, j € X) for the matrix with a 1 in the (i, j)-place and O elsewhere.
Fix iy € X; the choice of i is not important because of homotopy invariance. We have
an (-algebra homomorphism sy : £ — My defined by sx(1) = e;,;,. For A € C, we will
write MxA instead of Mx®,A. In the case C = GAlg,, MxA will be considered as a G-
{-algebra with the diagonal G-action. By Theorem [5.1.14 we have a triangulated functor
My : 8¢ — K€ such that Mx(A, m) = (MxA, m). Moreover, the morphism sy : £ — My
induces a graded natural transformation sy : id —» My : 8¢ — K¢.

Example 5.2.1. If F c X is a subset, there is a natural inclusion Mr — My. It is easily
verified that My = colim M, where the colimit runs over all the finite subsets iy € F C X.

Notation 5.2.2. In the special case X = N, i, = 1, we will write M, instead of Mx and s,
instead of sy.

For A € C, let A = A®¢ be the unitalization of A. Note that in the case C = GAlg, Ais
a G-algebra in a natural way. Let OxA be the set of those X X X-matrices with coefficients
inA having finitely many nonzero coefficientes in each row and column. More precisely,
define OxA as the set:

{(al»j) e AYX: forallie X, {j:a;# 0} <ocoand|{j:a; # 0} < 00}

It is easily verified that OxA is a unital object of C and that MyA C OxA is a two sided
ideal. Every invertible matrix P € OxA induces a morphism ¢” : MyA — MxA by the
formula ¢*(a) = PaP™". Since j; : C — K¢ is M,-stable, it follows from [/1, Proposition
2.2.6] that ji(¢") : jr(MxA) — j:(MxA) equals the identity of ji{(MxA) in K.

Remark 5.2.3. We will usually consider a special kind of invertible P € OxA that arises
in the following manner: Let ¢ : X — X be a bijection. Define P € OxA by P;; = 0,4
—here 6 is Kronecker’s delta. Then P € OxA, P is invertible and (P™");; = 6;,-1(;). The
morphism ¢” : MyA — MxA is determined by ¢”(e;j®a) = e,ioj®ca. We call P a
permutation matrix.

Example 5.2.4. Any bijection 6 : X X X — X induces an isomorphism 6 : MxMx SM X
by the formula e;; ® ey = eginpy- By Theorem [5.1.14] the latter induces a natural
isomorphism 6 : MxMy — My : & — K. We claim that @ is independent from 6. Let
0’ : XxX — X be another bijection. It is easily verified that there is a permutation matrix
P making the following diagram commute:

MxMy —2 My

\ l"“’ 5)

My
From the discussion above, it follows that 6 = &'.

Example 5.2.5. Any bijection 6 : N X X — X induces a natural isomorphism MMy =
My in K. Proceeding as in Example [5.2.4] it is easily verified that this isomorphism is
independent from 6.
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Example 5.2.6. Suppose that |Y| > |X|. Any injective function ¢ : X — Y induces a mor-
phism ¢ : My — My by the formula e;; = e,;). By Theorem[5.1.14] ¢ induces a natural
transformation 7 : My — My of functors & — K. We claim that 7 is independent from ¢.
Let : X — Y be another injective function. By our assumption on the cardinalities of X
and Y, any bijective function «(X) — ¢/(X) can be extended to a bijection Y — Y. This
implies that there exists a permutation matrix P making the following diagram commute:

My —— My
\ las”
My
Then 7 = 7 because ¢” induces the identity in ;.

Definition 5.2.7. Define a category R{CY as follows: The objects of R/C\, are the objects of
Rf and the hom-sets are defined by:

Homgg(((A, m), (B, n)) := Rfc((A, m), Mx(B, n))

Leta € RfC((A, m), Mx(B,n)). We will often consider a both as a morphism in & and as
a morphism (A,m) — (B,n) in 8. To avoid ambiguity, we will write [a] instead of a
when considering a as a morphism in & y and we will say that [a] is represented by a. We
proceed to describe a composition:

[RGB, n), (C, k) x KG(A, m), (B, n)) —= KA, m), (C, k)

Let a € K¢«((A,m), Mx(B,n)) and b € K:((B,n), Mx(C, k)), then we set [b] o [a] := [c],
where c is the following composite in K:

(A,m) —= Mx(B.n) " MyMx(C. k) —— Mx(C. k) (6)

Here the isomorphism on the right is induced by any bijection 8 : XXX — X as explained
in Example [5.2.4]

Lemma 5.2.8. The definitions above make Rf( into a category. There is a functor ty :
Rf - R(C\, that is the identity on objects and that sends a € Rf((A,m),(B, n)) to the
morphism in R{C\, represented by the following composite in Rf:

SX,(B,n)

(A, m) ———(B,n) Mx(B,n)

Proof. The composition rule in Ky is independent from 6 by Example [5.2.4] The rest of
the proof is tedious but straightforward, and relies on the fact that j; : C — K¢ sends
¢ to the identity of ji{(MxA) for every A € C and every invertible matrix P € OxA.
For example: To prove the associativity of the composition one has to show that certain
diagram in 8¢ commutes. This diagram does not come from a commutative diagram in
C, but it does come from a diagram that commutes up to conjungation by a permutation
matrix P € OxA. The result follows from the fact that conjugating by P induces the
identity in K. m|
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The translation functor in Rfc induces a translation functor in R(C\, that makes it into
a graded category. The functor 7y : RfC — R/CY is clearly graded. Precomposing tx with
Ji : C = K¢ we get a functor jx : C — K.
Example 5.2.9. Suppose that || > |X| and let ¢ : X — Y be an injective function.
By Example ¢ induces a natural transformation 7 : My — My : 8 — §; that is
independent from ¢. We proceed to define a functor 7" : 8x — Ky: Let T be the identity
on objects. Define 7 on morphisms by:

Kx((A,m), (B,m) = Ke((A, m), Mx(B, ) —> K¢((A, m), My (B, n)) = Ky((A, m), (B, n))

By a cardinality argument, any bijection X X X — X can be extended to a bijection
Y xY — Y. Using the latter, it is straightforward to verify that 7 is indeed a functor and
that the following diagram commutes:

R —= Ky

N

Ky

Definition 5.2.10. Let X : C — € be a functor. We say that X is M y-stable if X(sx : A —
MxA) is an isomorphism for all A € C.

Lemma 5.2.11. The functor jx : C — Rf( is Mx-stable.

Proof. To alleviate notation, if B is an object of C we will still write B for its images
under the functors j; : C — K and jx : C — Kx. Let A € C. The identity of MyA in &
represents a morphism ¢ € K x(MxA, A); we claim that ¢ is the inverse of jx(sx.).

Let us show that jx(sx.4) o ¢ is the identity of MxA in K. Fix a bijectionf : X X X —
X. Using the definition of the composition rule in K&, we are easily reduced to showing
that the following diagram in & commutes:

MyA Mx(sx.a) M MyA
SX.MyA l lMx(Sx,MXA) (7
My MyA <Y ap My MyA

To prove that (7) commutes we have to show that two morphisms MxA — MxMxA are
equal; this is equivalent to showing that both morphism are equal when composed with
the isomorphism 6 : MxMxA — MyxA. These two composites are not equal in C but
they are easily seen to be conjugate by a permutation matrix P € OxA. Again, the result
follows from the fact that conjugating by P induces the identity in K.

Showing that ¢ o jx(sx.4) is the identity of A in Ky is easily reduced to showing that
the following diagram in ¢ commutes:

SX.A

A———MxA

5X.A SX.MyA

MyA <L M MyA

This diagram commutes in C if we pick the bijection 6 so that 0(iy, ip) = io. O
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Remark 5.2.12. Let a € Rf((A,m), Mx(B,n)). It is easily verified that the following
diagram in Rf’; commutes:

(A,m) ="~ (MxB,n)
ETZX(SX)

(B,n)

[a]

Define a triangulation in Rf\, as follows: a triangle in Rf( is distinguished if and only if
it is isomorphic (in &) to the image by 7y of a distinguished triangle in K.

Lemma 5.2.13. The triangulation above makes Rf( into a triangulated category.

Proof. The verification of axioms (TR0) and (TR2) is straightforward.

Let us verify (TR1): Let a € 8¢((A, m), Mx(B, n)). Since K is triangulated, a fits into
a distinguished triangle in &;. Then 7x(a) fits into a distinguished triangle in &y and so
does [a], by Remark [5.2.12]

Let us verify (TR3): Consider the diagram of solid arrows (39) on page[73] where the
rows are distinguished triangles; we have to show that the dotted arrow exists. We may
assume that the rows are images by ty of distinguished triangles in R¢:

tx(c) tx(a) tx(b)

L7’ X’ Y’ 7’
j j[f] l{g] ®)
L7 tx(c") X tx(a’) y tx(b") 7

Here f € K¢(Y’,MxY) and g € K¢(Z’', MxZ). We claim that the following square in R
commutes; indeed, this follows easily from the commutativity of the rightmost square in

@):

Y’ b 7'
| |
MyY MyZ
S,\',Mxyl lSX,MXz
MyMyY — > MyMxZ

It follows from Remark [5.2.12]that the diagram (8) is isomorphic in K to:

tx(c) tx(a) tx(b)

L7’ X’ Y’ A
th(sxof) Lb\’(&\’og)

LMxMxZ tx(MxMxc') MMy X tx(MxMxa') My MY tx(MxMxb") MxMyZ

This diagram is the image by 7y of a commutative diagram in & whose rows are distin-
guished triangles; thus, it can be completed to a morphism of triangles.

Recall the statement of (TR4) from Axiom [3.12.10] The axiom clearly holds if @ and
7’ are in the image of 7x; we can easily reduce to this case using Remark [5.2.12] m|
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Remark 5.2.14. The functor 1y : 8¢ — K is obviously triangulated and the functor
Jx:C— R(CY is an excisive, homotopy invariant and M y-stable homology theory.

Theorem 5.2.15. The functor jx : C — Rf( is the universal homotopy invariant and
M x-stable 6-functor with values in a graded category.

Proof. Let X : C — o/ be a homotopy invariant and M x-stable 6-functor with values in a
graded category (<7, L). Since X is Mx-stable, then it is M,-stable. By Theorem [5.1.11],
there exists a unique graded functor X making the following diagram commute:

Ci>ﬁf

N

o

We proceed to define a functor X : Ky — 7. Put X(4,m) := (X(A), m) for every
(A,m) € Kx. For f € K¢((A, m), Mx(B, n)) put:

X(IfD = X(sx.m)”" o X(f) € Hom, (X(A), m), (X(B), n))

This defines a function X : ] x((A, m), (B, n)) — Hom,, ((X(A), m), (X(B), n)). Let us show
that these definitions give rise to a functor X : Ry » . Let f € K((A,m), Mx(B, n))
and g € K¢((B,n), Mx(C, k)). Choose a bijection 6 : X x X — X. We have:

[g] o [f1 = [Oicuy © Mxg © f1 € Kx((A,m), (C,k))

Here 0c ) : MxMx(C, k) — Mx(C, k) is the isomorphism induced by 6 in &¢; see Example
Then:

X([gD o X(LfD = X(sxcu)™" 0 X () o X(sxsm)”" © X(f)
X([g] o [f1) = X(sx.ca) " © X(Bcp) o X(Mxg) o X(f)

Thus, to prove that X([g] o [f]) = X([g]) o X([f]) it is enough to show that X(g) o
X(sxm)™" = X(Ocp) o X(Mxg). We have:

X(6icn) 0 X(Mxg) = X(Biciy) © X(Mxg) o X(sx.8.n) © X(Sx.8m) "
= X(Oicny) © X(sxpmichy) © X() 0 X(sx 8.~

Thus, it suffices to show that:
X(Ocry) © X(sxmyciy) = idxamyorn )
If we choose 6 such that 6(iy, iy) = ij then the following diagram in C commutes:

Sx.c

MxC

Sx,cl lSX,MXC

MxC <2— MyMyC
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The equality () follows from this and from the fact that X(sx ) is invertible.
It straightforward to verify that X o ry = X : & — o and that the following diagram
commutes:

= Ry

N

o

Using that X is a graded functor, it is easily seen that X is graded too. The uniqueness of
X follows from the uniqueness of X and Remark|[5.2.12 O

Theorem 5.2.16 (cf. [2, Theorem 6.6.2] [6, Theorem 9.3 (2)]). The functor jx : C — Rf\,
is the universal excisive, homotopy invariant and M x-stable homology theory.

Proof. The proof is like that of Theorem [5.1.12] with minor changes. O

Remark 5.2.17. A universal excisive, homotopy invariant and M, -stable homology the-
ory of algebras was already constructed by Cortifias-Thom [2, Theorem 6.6.2] and by
Garkusha [6, Theorem 9.3 (2)]. Of course, these constructions are naturally isomorphic
to K since they all satisfy the same universal property.

Theorem 5.2.18. Let B be an object of C. Then there is a unique triangulated functor
(B&,?) : R{CY - Rg, making the following diagram commute:

C—=RS
B®f?‘ B@[?

Jx C
Cc—2 g

Moreover, any morphism f : B — C in C induces a unique (graded) natural transforma-
tion (f®;?) : (B&,?) — (C®;?) such that:

(f&?)jx) = jx(f ®A) : (B® A,0) — (C®A,0)
Proof. The proof is like that of Theorem [5.1.14] with minor changes. m|

Example 5.2.19. In this example, C = Alg,. For A € Alg,, let KH,(A) be Weibel’s
homotopy K-theory groups; see [ 1, Section 5]. The functors K H,, are homotopy invariant,
M,-stable, commute with filtering colimits and satisfy excision [1, Theorem 5.1.1]. The
latter means that to every extension of £-algebras

& A—B——C (10)

there corresponds a long exact sequence:

oo 25 KHyy(C) —= KH,(A) — KH,(B) — KH,(C) — - -~
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This sequence is, moreover, natural with respect to morphisms of extensions. Notice that
KH, is Mx-stable for any X because of M,-stability and the fact that it commutes with
filtering colimits; see Example[5.2.1]

Let o7 = GrAb be the category of graded abelian groups described in Example[3.13.5
There is a functor KH : Alg, — GrAb that sends an algebra A to the graded abelian
group &,KH,(A). For an extension (I0), the morphisms ds assemble into a morphism
0 € (L(KH(C)),KH(A)). Thus, KH : Alg, — </ is a homotopy invariant and M-
stable d-functor. By Theorem there exists a unique graded functor KH making the
following diagram commute:

Alg, e Kx
N
KH
GrAb

Let u : Z — { be the unique unital ring homomorphism. For any algebra A, we have a
group homomorphism:

KL, A) X GrAB(KH(£), KH(A)) — Ab(K Hol, KHyA) —“~ Ab(KHyZ., KHyA)

Since KHyZ = 7, this gives a group homomorphism ¢x 4 : 8x(¢,A) = KHy(A). Cortifias-
Thom showed that, in the case X = N, @y 4 is an isomorphism [2, Example 6.6.8 and
Theorem 8.2.1].

Theorem 5.2.20 (cf. [2, Theorem 8.2.1]). Let C = Alg, and let A be an {-algebra. Then
the morphism x4 : Sx(€,A) — KHyA defined in Example is an isomophism.

Proof. The case X = Nis [2, Theorem 8.2.1] and the general case will follow easily from
this. Suppose that |X| > |N]. It is straightforward to verify that ¢y 4 equals the following
composite:

Exampl
KoL, A) Xampf@ Sx(l. A) o KHyA

Thus, it suffices to show that the morphism 7 of Example is an isomorphism. Let
0 : Nx X — X be any bijection. By Example 6 induces an isomorphism @ :
M. MxyA = MxA in K¢, which is independent from 6. A straightforward verification
shows that 7" equals the following composite:

Rm(f,A) (S—X); Roo(f, M,\'A) = Rf(f, MooMxA) L;> Rf(f, MxA) = Rx(g,A)

But (sx). is an isomorphism because K.,(¢,?) = KHy(?) is My-stable. This finishes the
proof. O

Definition 5.2.21. Let (A, B) be a pair of objects of C. The My-stable bivariant K-theory
spectrum K§(A, B) is defined by:

K$(A, B) := K¢(A, MxB)
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Theorem 5.2.22 (cf. [S, Theorem 9.7]). For every m € Z there is a natural isomorphism:
1 K3 (A, B) = R5((A,0), (B, m))
Proof. 1t follows immediately from Theorem and the definition of K. O

Remark 5.2.23. A spectrum representing the universal excisive, homotopy invariant and
M..-stable homology theory was already constructed by Garkusha [5, Theorem 9.8].
However, the spectrum K. (A, B) is slightly different from the stable Kasparov K-theory
spectrum defined in [5, Section 9].

5.3 Equivariant bivariant algebraic K-theory

Let G be a group. We briefly recall the definition of G-stability from [4, Section 3].

A G-{-module is an {-module with an action of G. A G-{-module with basis is a pair
(‘W, B) where W is a G-(-module that is a free £-module with basis B. If (W, B) is a
G-(-module with basis, we define:

LW,B):={y: BXB— {:{v:y(v,w) # 0} is finite for all w}

Notice that L(‘W, B) is an ¢-algebra with the usual matrix product. We have an £-algebra
isomorphism:

End(‘W) —» LW.B), f iy dpv,w) = p(fw)) (1D
where p, : ‘W — { is the projection into the submodule of W generated by v. Put:

CW,B) ={y € LW,B) : {w : ¥(v,w) # 0} is finite for all v}
F(W,B)={y € LW,B) : {(v,w) : y(v,w) # 0} is finite}
Note that C(‘W, B) is a unital subalgebra of £L(‘W; B) and ¥ (‘W, B) is an ideal of C(‘W, B).
Put:
EndS (W, B) = {f € Endy(‘W) : ¢; € C(W, B)}
End} (W, B) = {f € End((‘W) : ¢; € F (W, B)}
The isomorphism (TT)) identifies EndS (‘W, B) = C(‘W, B) and End} (W, B) = ¥ (W, B).

Clearly, EndS (W, B) C End,(‘W) is a subalgebra and End} (W, B) C EndS (W, B) is an
ideal.

Example 5.3.1. Let M be the (-algebra of matrices with coeflicients in ¢ indexed by
G x G. We consider Mg as a G-{-algebra with the action:
8 €51 = €g5r

As usual, for A € GAlg,, we will write MsA instead of M;®,A —with the diagonal
G-action. As explained in [4, Example 3.1.3], Mg = F(W,B) = Endf (‘W, B) where
W = {[G] is the group algebra with the regular representation.
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Let (‘W; B) be a G-{-module with basis and consider the representation p : G —
End/(W), p,(w) = g-w. We say that (W, B) is a G-{-module by locally finite au-
tomorphisms if p(G) C Endf((W, B). In this case, Endf (‘W, B) and End?((W ,B) are
G-{-algebras with the action:

g-f=pgofop,

Definition 5.3.2. Let (W, B)) and (‘W,, B;) be G-{-modules by locally finite automor-
phisms such that |By|, |B;| < |G X N|. The inclusion W, € ‘W, & W, induces a morphism
of G-({-algebras:

¢ : End) (W)) = End} (W, @ W,), fr (68)-

A functor X : GAlg, — € is G-stable if, for any (W, B;) and (‘W>, B,) as above and any
G-{-algebra A, the following morphism in € is an isomorphism:

X(1®,A) : X(End} (W))®,A) — X(End! (W, & W,)®,A)

Proposition 5.3.3 (cf. [4, Proposition 3.1.9]). Let G be a group and let X be a set with
|X| = |G X N|. Let X : GAlg, — € be an Mx-stable functor. Then the following composite
functor is G-stable:

MgR,?

GAlg, GAlg, X ¢

Proof. The proof is like that of [4, Proposition 3.1.9], replacing M., with M. O

Definition 5.3.4 (cf. [4, Section 4.1]). We proceed to define the G-equivariant bivariant
algebraic K-theory category R°. From now on, fix a set X with |X| = |G x N|. It is easily
seen that the functor jx o (Mg®,?) : GAlg, — RféAlgf is an excisive, homotopy invariant
and Mx-stable homology theory. By Theorem [5.2.16] there exists a unique triangulated
functor M making the following diagram commute:

GAlg, - RGN

Mc®.? MG
) Y

GAlg, > QM

Explicitely, we have Mg(A, m) = (Ms®;A, m). Define K€ as follows: The objects of {¢
are the objects of RgAlg‘ . The hom-sets are defined by:

Homgo((A, m), (B, n)) := K5 ¥ (Mg(A, m), M(B, n))

Let a € R)G(Alg‘ (Mg(A,m), Mg(B,n)). We will often consider a both as a morphism in

RgAlg[ and as a morphism (A,m) — (B,n) in KR¢. To avoid ambiguity, we will write
[a] instead of a when considering a as a morphism in R¢ and we will say that [a] is
represented by a. The composition in R is the one induced by the composition in RgAlg[ ;
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this means that for a € K5 (Mg(A, m), Mg(B,n)) and b € K& % (Mg(B,n), Ms(C, )
we have:
[blo[a] =[boal

It is easily seen that the translation functor in RiAlg[ induces a translation functor in &¢
that makes it into a graded category.

There is a functor j : GAlg, — K¢ that sends a G-f-algebra A to (A,0) and a
morphism of G-{-algebras f : A — B to:

Lix(Ma®c )] = [Mgjx(f)] € K((A,0), (B, 0))

There is a functor © : RgAlg" — K¢ that is the identity on objects and that sends a

morphism a € K5 ((A, m), (B, n)) to:
[Mg(a)] € RY((A, m), (B, n))
It is easily seen that ¢© is a graded functor and that the following diagram commutes:

GAlg,

GAlg, —2~ R

Lemma 5.3.5. The functor j° : GAlg, — K¢ is G-stable.

Proof. Let X : GAlg, — € be a functor. By Yoneda, X is G-stable is and only if
Homg(c, X(?)) : GAlg, — Set is G-stable for every object ¢ of €. Thus, it is enough
to show that R¢((A, m), j°(?)) : GAlg, — Set is G-stable for any (A, m). It is easy to see
that RC((A, m), j°(?)) equals the following composite:

KM (MG (Am),)

GAlg, I KM Set

Mg®,?

GAlg,

This composite is M-stable by Proposition[5.3.3] i

Let G {x*} be the disjoint union of the G-sets G and the singleton {*}; here we consider
G as a G-set with the action by left translation. The inclusions of {*} and G into G LI {x}
induce morphisms of G-f-algebras ¢ : £ — Mgy and ¢’ : Mg — Mg respectively. By
Theorem [5.2.18] upon tensoring with ¢ and ¢’ we get graded natural transformations:

Lam € SIE((A, m), Moy (A, m))

L € SYE(MG(A, m), Moyy(A, m))

It follows from the G-stability of j° : GAlg, — K that we have the following identifica-
tions in KY; see [4, Example 3.1.8] for details:

G
1S (Lam) G

)
(A, m) ——— Mgiy(A,m) Mg (A, m)
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Lemma 5.3.6. Let | € RiAlgf (Mg(A, m), M(B, n)). Then the following diagram in {¢

commutes.:
9(f)
Ms(A,m) ———— Mg(B, n)

1 ) l = = LlG(tfsm)
Mgy (A, m) Mgy (B, 1) (12)
©am) T = = Tzc(tmm)

(A,m) v (B.n)

Proof. To alleviate notation we will write G, = G LU {x}, X = (A,m) and Y = (B,n). Let
S MgMg = MgMg and S’ : MgMg, — Mg, Mg be the isomorphisms defined by the
formula x ® y — y ® x. As usual, by Theorem tensoring with S and S’ induces
natural transformations in RiAlgf :

Sam : MgMg(A,m) — MgMg(A, m)
Stam : MoMg, (A,m) — Mg, Mg(A, m)

It is easily verified that the following diagram in RiAlg‘ commutes:

MgMgX —2— MgMgX —=L + MoMgY —2— MgMgY
Mc(t})l ‘?wal% Ej‘;wa jMG(l;/)
Sy, Mg, f Sy
MGMG+X = MG+MGX MG+MGY'TMGMG+Y

MgXx ] = 5]lMGY
Mg (x) f Mc(ty)
_—

McX MY

Thus, to show that (12)) commutes it is enough to show that Sy equals the identity of

MsMgX. Suppose for a moment that the G-£-algebra homomorphism d : Mg — MgMg,
. . . . GAlg[_

d(egn) = egn ® egy, induces an isomorphism in &, ="

dy : MgX — MgMgX (13)

It is easily verified that Sy o dy = dx. Since dy is an isomorphism, it follows that Sy =
iy, mex- Let Mg be the {-algebra M considered as a G-f-algebra with the trivial action
of G. LetT : MM, — MM be the G-(-algebra isomorphism defined by 7 (e, ,®e;;) =
eon ® gy - It 1s easily verified that d : Mg — MM equals the following composite:

7®€|_1 T

Mg MgMg

MgMg

The map on the left induces an isomorphism in RgAlg‘ by My-stability; this implies that

(I3)) is an isomorphism. o
Define a triangulation in R as follows: a triangle in K€ is distinguished if and only if
it is isomorphic (in K€) to the image by 1© : Rf(Algf — K6 of a distinguished triangle in

GAlg,
[N,
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Lemma 5.3.7. The definition above makes K€ into a triangulated category.

Proof. Axioms (TRO) and (TR2) are obvious. Axiom (TR1) follows immediately from
Lemma since every morphism in K¢ is isomorphic —in the arrow category of R6—
to a morphism lying in the image of ©.

Let us show that (TR3) holds: Consider the diagram of solid arrows (39) on page
where the rows are distinguished triangles; we have to show that the dotted arrow exists.

We may assume that the rows are images by ° of distinguished triangles in RgAlg” :

L7’ () X’ ©(a) % ©®") 7

L[f 1 l[g]

17 () e %(a) % () 7
By Lemma [5.3.6] the diagram above is isomorphic to the following one:

, 1OMs(c) ,  SMs@) , M) ,

IMg7Z —————— MX ——— Mgy —————— MsZ
lﬁ(f) ch@ (14)
S Mg(c) ®Mg(a) S Mg(b)

IMgZ —————— MgX ——— Mgy ———— MsZ
This diagram is the image by ° of a diagram in RiAlgf whose rows are distinguished
triangles, but the square in the latter may not commute. Nevertheless, the following square
in 8™ does commute:

X
MMy —2M®) v Mz
Mg(f )l lMG(g)
MMy —2M  poMoz
Thus, we can complete the following diagram to a morphism of triangles in R{C\;,Algf :
LM Moz MM ppmox M) oy M)y omz
Mc(f)l Mc(g)j (15)
LM MoZ MOy x MO p oy MO v Moz

Using Lemma once more, diagram (14)) is isomorphic to the one obtained upon
applying ¢ to (T3); this proves axiom (TR3).

To prove Axiom (TR4) note that, by Lemma every diagram in K¢ like (#3) on
page [75|is isomorphic to one lying in the image of ¢©. m|

The functor € : S)G(Algf

extension in GAlg,. Since j : GAlg, — RgAlg‘ is an excisive homology theory, we have a
morphism:

— Y is obviously triangulated. Let & : A - B — C be an

05 € SYME(LC, A)
Define 69 := 1“(ds) € KY(LC, A).
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Theorem 5.3.8 ([4, Theorem 4.1.1]). Let G be any group. Then the functor j° : GAlg, —
KO together with the collection {ag}g is the universal excisive, homotopy invariant and
G-stable homology theory.

Proof. Let X : GAlg, — .7 be an excisive, homotopy invariant and G-stable homology
theory. Since X is G-stable then it is Mx-stable —recall that X is some set with |X| =
|G x NJ; see [4, Section 3]. By Theorem there exists a unique triangulated functor
X making the following diagram commute:

GAlg,

GAlg, 2~ R

Suppose that there is a triangulated functor X’ : R¢ — .7 such that X’ o j° = X. Then the
following diagram commutes:

GAlg, 2 QM

lX’otG
X

T

By the uniqueness of X we have X = X’ o t°. Then, by Lemma|5.3.6, we must have
X' (Lf]) = X(usa)™" 0 X(t{g,) © X(f) 0 Xty )" © X(eiam)

for any f € R)G(Alg‘ (Mg(A, m), Mg(B, n)). It is straightforward to verify that the equation
above defines a triangulated functor X’ : GAlg, — .7 with the desired properties. O

Remark 5.3.9. For a countable group G, a universal excisive, homotopy invariant and G-
stable homology theory was already constructed by Ellis [4, Theorem 4.1.1]. The results
above extend the construction in op. cit. to arbitrary groups.

A spectrum for G-equivariant bivariant algebraic K-theory

Definition 5.3.10. Let G be any group and let (A, B) be a pair of G-{-algebras. The G-
equivariant bivariant K-theory spectrum K°(A, B) is defined as:

KO(A, B) := K" (MgA, MgB)
Here, X is some set with |X| = |G x N].

Theorem 5.3.11. Let G be any group and let (A, B) be a pair of G-t-algebras. Then, for
every m € 7, there is a natural isomorphism:

1, KC(A, B) = K6(A, (B, m))

Proof. It follows immediately from Theorem [5.2.22|and the definition of KC. m|
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Crossed product

From now on, we assume G to be a countable group. Let G : GAlg, — Alg, be the
crossed product functor. It can be shown that this functor induces a unique triangulated
functor making the following diagram commute; see [4}, Proposition 5.1.2]:

jG
GAlg, — K¢
xcl A %G
PR
Alg, — K,
Example 5.3.12. Let A be a G-{-algebra. Recall from Lemma that we have isomor-

phisms in K¢:

5 (tp) ()

A T‘ MG+A

MgA

Upon applying X G to the zig-zag above, we get the following diagram in K,:

Joo(ta X G) Joo(ty X G)

A NG—E>(MG+A) X G

= (MgA) ©x G (16)

We have {-algebra isomorphisms (Mg, A)XG = MG, (AXG) and (MgA)XG = MG(AXG)
given by the formula (e,,®a) X g & e, ,1,®(a x g); see [4, Proposition 5.1.1] for details.
Using these identifications and the M,,-stability, it is easily verified that the composite
equals the following composite in K,:

Joole1,1®7?)

AxG

M|G|(A X G) = (MGA) x G (17)

Let e : G — N be any injective function, so that e induces an ¢-algebra homomorphism
e: Mg — M. Itis also easy to see that the inverse of (I7)) is the morphism represented
—1in the sense explained in Section by the following composite in K;:

(MGA) X G = Mig(A x G) —— M. (A x G)

Let A and B be two G-{-algebras. We aim to construct a morphism of spectra xG :
KY(A, B) —» Ko (A x G, B x G) that induces xG : R — K, upon taking x,. We start by
defining a morphism:

K(MsA, M,MgB) N K((MgA) x G,(M,MsB) x G) (18)

In order to describe (18)) at level n, recall that:
HC(J"C,D), = colvim colrim Hom(J"'C, DU *A"9IxAD) (19)
Here, C and D may be either two £-algebras or two G-{-algebras. Represent an element of

H(JN(MGA), M uMGB), by f € Homgaig, (J""(MGA), (Mo MgB)\" *"*"*4), and define
Y"(f) as the class of the following composite:

T (MGA) % G) —= J"™" (MA) 1 G L2 (M MgB)! " s G

............................................ ’

R > (Mo MgB) 31 G)I "8
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Here, the vertical isomorphism is the obvious one; if G acts trivially on a ring C, then
?7® C and ? X G commute. We have defined a morphism:

S ONE(J'(MGA), M., MgB) v, HAR(JY((MGA) X G), (MowMgB) x G) (20)

One has to check that the given formula for " is compatible with the transition maps
of the colimits in (I9); this is a straightforward verification. Another verification shows
that, for varying n, the morphisms (20]) assemble into a morphism of spectra (I8). Now
fix an injection e : G — N and a bijection § : N X G — N, and consider the following
morphisms of £-algebras:

61,1®?

AxXG

M‘G|(A X G) = (MGA) X G
(2D

(MowMgB) 1 G = MouMig(B % G) —> MouMoo(B x G) —~ M(B x G)

Let G be the following composite, where the vertical morphism is induced by (21)):

KGA]g[(MGAa MOOMGB) L KAlg[((MGA) X G, (MooMGB) X G)

KA (A x G, M(B x G))

It is clear that XxG : KCAe((MsA, M cMgB) — KA%(A x G, M.(B x G)) is natural in
A and B with respect to morphisms of G-{-algebras. Taking the colimit of xG along the

system
t12 3

B: M]B : MQB : M3B

we get a morphism:
xG : K9A,B) —=Ko(A x G,B xG) (22)

Proposition 5.3.13. Let A and B be two G-{-algebras. Upon taking r, and making the
identifications in Theorems[5.2.22|and[5.3.11| the morphism (22)) induces:

XG : R6(A, (B,n)) —= Ko.(A x G, (B,n) x G)

Proof. Represent f' € KY(A,(B,n)) by f € Homgag, (J'(MgA), (MmMOOMGB);e”“’). Itis
straightforward to verify that, under the identifications in Theorems [5.2.22] and [5.3.11]
m,(XG)(f") is represented by the composite of the solid £-algebra homomorphisms in the
following diagram:

J'(MGA) x G
| #+6
(MM McB)>"™ x G
l (23)
(M Mo(MgB) x G)™
e
MM (B x G)=m

(A % G) B (Mg A) % G)
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The equality m,(XG)(f") = f' x G follows from a lengthy verification, of which we
proceed to sketch the main steps. It is easily seen that the crossed product with G induces

a triangulated functor xG : QoAMe _, qile making the following diagram commute:

G A]gﬁ Jé’“. RfoAlg( L QG

le
jeo(7%G) xG

Al
Rm g

Note that f represents a morphism f” € QU (MgA, (MgB, n)); in the notation of Section

[5.3|we have f” = [f”]. By the proofs of Theorems [3.13.11] [5.1.11|and [5.2.15] f” x G is
represented by the dotted morphism in (23). By Lemma[5.3.6] the following diagram in

Alg,
KROE commutes:

%G

(MgA) x G ((MgB) x G,n)
O PN
ET Tz

AXG Ll

(B,n)

The diagram above —together with Example [5.3.12}— implies that f < G is represented
by the composite of the solid morphisms in (23)). This finishes the proof. m]

The Green-Julg Theorem

Let 7 : Alg, — GAlg, be the functor that sends an {-algebra A to the same algebra,
considered as a G-{-algebra with the trivial G-action. It can be shown that this functor
induces a unique triangulated functor making the following diagram commute; see [4,
Section 5.1]:

Alg, — ],
T EH!T
i !
GAlg, —~ R

We recall the Green-Julg Theorem for bivariant algebraic K-theory.

Theorem 5.3.14 ([4, Theorem 5.2.1]). Let G be a finite group of n elements and suppose
that n is invertible in {. Then there is an adjunction:

KRE(AT, B) = K.(4, B x G)

Proof. Let A be an (-algebra and define oy : A — A" X G by as(a) =a® % DigeG &5 1t 18
easily verified that @, is an {-algebra homomorphism. Put:

@y = j(an) € Ro(A,A7 X G)



126 CHAPTER 5. MATRIX-STABLE BIVARIANT K-THEORIES

Let B be a G-f-algebra and let (3 : B — MgB be the G-equivariant morphism given by:

1
b) = — b
LB() nz:ep,q®

p.8€G

Note that j(¢5) is an isomorphism by [4, Remark 3.1.11]. Let 83 : (B x G)* — MgB be
the G-equivariant morphism defined by:

Bsb®g) = D €15 ® s(b)

seG

Finally, let 8z € R6((B x G)7, B) be the following composite:

G G ]
(B 1 G) J”(Bp) MgB J7(B)

B

One checks that @4 and By are respectively the unit and counit of an adjunction; see
the proof of [4, Theorem 5.2.1]. O

Theorem 5.3.15 (cf. [4, Theorem 5.2.1]). Let G be a finite group of n elements and
suppose that n is invertible in {. Let A € Alg, and let B € GAlg,. Letay : A — A" X G be
the C-algebra homomorphism defined in the proof of Theorem Then the following
composite is a weak equivalence of spectra:

KG (A", B) %Kw(AT % G, B X G) K (A B % G) (24)

Proof. Let ¢ denote the composite in (24). By Proposition [5.3.13] upon making the
identifications in Theorems[5.2.22|and[5.3.11], 7,,(¢) equals the following composite:

RE(A™, (B, 1)) =%~ R (A" % G. (B x G, n)) o R (A, (B X G, n))

Then 7, (1) is an isomorphism by Theorem O

The restriction functor

Let G be a countable group and let H € G be a subgroup. If B is a G-{-algebra, we
can restrict the action of G to obtain an H-{-algebra Resg (B); thus, we have a functor
Res? : GAlg, — HAIlg,. By Theorem there exists a unique triangulated functor
Res : R¢ — K* making the following diagram commute:

Resg
GAlg, — HAlg,

| I

KE K

H
Resg;

Let A and B be two G-{-algebras. We proceed to construct a morphism of spectra

Res : K¢(A, B)— K”(Resg (A), Resg (B)) (25)
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that induces Res : R6(A, (B, n)) — K (Resh(A), Resi (B, n)) upon taking 7, and making
the identifications in Theorem[5.3.T1] We start by defining a morphism:

KGAE (M A, M.,MgB) LA KAAE (M yA, Moo My B) (26)

First of all, fix a system of representatives {g;} of the cosets G/H. Each choice of rep-
resentatives induces a bijection G/H x H = G, (g;H,h) — hg;', that is H-equivariant
if we consider G/H as an H-set with trivial action. Moreover, this bijection induces an
H-(-algebra isomorphism Mg, My = M. Now choose an injection e : G/B — N and a
bijection 6 : N X N — N. These choices determine a morphism of H-algebras:

MM = MMMy —=2220 v MMy —22 M My, 27)
In order to describe (26)) at level n, recall that:
J (J'C, D), = colim colim Hom(J"*"C, DU *A"I<AD) (28)

Here, C and D may be either two G-algebras or two H-algebras. Represent an element of
H(JN(MGA), M JMB), by f € Homgay, (J"(MGA), (Mo MgB)! "*"**) and define
Y"'(f) as the class of the following composite morphism of H-{-algebras:

Jn+v(MHA) Jn+V(MGA) f MOOMGBgl"XAq,EiI"XAq)

|e

I"xA1,01"xA1
> M, My B A0 XA0

It is easily verified that the given formula for ¢ is compatible with the transition maps of
the colimits in (28)); thus, it defines a morphism of simplicial sets:

H(I"(MGA), MgB) —C~ H (J"(MyA), MyuB) (29)

Another verification shows that, for varying n, the morphisms (29) assemble into a mor-
phism of spectra (26). It is clear that is natural in A and B with respect to morphisms
of G-algebras. Taking the colimit of (26) along the system

12 3

B = M]B - MzB - MqB

we get the desired morphism (25).

Theorem 5.3.16. Let G be a countable group and let H C G be a subgroup. Then the
morphism Res : K6(A, B) — K”(Resg:(A), Resg(B)) constructed above induces Resy :
KOE(A, (B,n)) — KH(Resf(A), Resy(B, n)) upon taking n, and making the identifications
in Theorem[5.3.11)

Proof. It is a tedious but straightforward verification. O
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Adjuntion between induction and restriction

Let G be a countable group and let H C G be a subgroup. Let 7 : G — G/H be the natural

projection and let A be an H-{-algebra. Put:
=h-f(sh) Vse G,VYhe H

Sy := | feas: /O

A4 {f n(supp(/)) < oo

It is easily verified that Ind(A) is a G-¢-algebra with pointwise sum and multiplication,
and the following G-action:

(8- N()=f(g™'s) (f €Indj(A), g.5s€G)
Moreover, an H-equivariant morphism A — A’ induces a morphism of G-{-algebras
Indg(A) — Indg(A’) in the obvious way.

It can be shown that there exists a unique triangulated functor mi I G
making the following diagram commute; see [4, Proposition 6.9]:

Ind%(Mp®?)
HAlg, GAlg,
| |1
RH mg RG

We recall the adjunction between induction and restriction.

Theorem 5.3.17 ([4, Theorem 6.14]). Let G be a countable group and let H C G be a
subgroup. Then there is an adjuction:

RE(Ind,(A), B) = 87(A, Res(B))

Proof. We recall some details that we will use below; for a full proof see [4, Theorem
6.14]. For a € A and g € G, define £4(g,a) : G — A by the formula:

[ (g's)-a ifsegH,
&n(g, a)(s) = { 0 if s ¢ gH.

It is easily verified that £x(g, a) € Indg(A) and that these elements generate Indg(A) as an
abelian group. See [4, Section 6] for a list of relations among the £4(g, a) for different g
and a.
Let B € HAlg,. Let y3 : MyB — Res?Ind%(MyB) be the H-equivariant morphism
defined by:
Yple;;®b) = Ep(l,e;;® B)

Let y3 € 87(B, ResfInd,(B)) be the following composite in K, where the isomorphism
on the left is given by the natural zig-zag of Lemma[5.3.6}

-H R
B = MuB—"" . ResCInd,(B)

- —G
It can be shown that i3 is the unit of the desired adjunction between Res and Ind,,; see
the proof of [4, Theorem 6.14] for details. O
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Theorem 5.3.18 (cf. [4, Theorem 6.14]). Let G be a countable group and let H C G be
a subgroup. Let B € HAlg, and let C € GAlg,. Let yrp : MyB — ResEInd$(MyB) be
the H-equivariant morphism defined in the proof of Theorem Then the following
composite is a weak equivalence of spectra:

KS(Indy, B, C) -~ K¥(Res!/Indy(B), Res!!C) —2~ K¥ (M B, Res!C)

Proof. 1t s straightforward from Theorem and the proof of Theorem i
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