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Algunos problemas de análisis sobre cúspides exteriores

Resumen
En esta tesis estudiamos distintos problemas de análisis sobre dominios con cúspides exte-
riores. Principalmente: la densidad de funciones suaves en espacios de Sóbolev, el pro-
blema de extensión y la desigualdad de Korn. Se sabe que muchos de los resultados clásicos
de análisis en espacios de Sóbolev estandar, necesarios para el trabajo con ecuaciones en
derivadas parciales y para la aproximación de sus soluciones usando métodos numéricos, no
son ciertos en dominios con singularidades, como las cúspides exteriores. Por ello se hace
necesario trabajar con espacios de Sóbolev con pesos, donde los pesos son tomados de modo
de compensar la singularidad del dominio.

Las distintas nociones de cúspide exterior con las que trabajamos prescinden de una
descripción precisa del borde del dominio, aunque le impongan algunas restricciones. En
primer lugar, introducimos el concepto de cúspide normal, cuya definición está basada en la
descomposición de Whitney del dominio e incluye una propiedad de uniformidad por bandas
que establece cierta regularidad local sobre el borde. Esta definición nos permite probar los
siguientes resultados:

• La densidad de funciones suaves hasta el borde del dominio, en el espacio de Sóbolev
Wk,p(Ω).

• Teoremas de extensión en los que se construyen operadores: E : Wk,p(Ω) −→ Wk,p
σ (Rn),

donde σ es un peso apropiado.

Luego introducimos las nociones de cadenas de rectángulos y cadenas de cuasi-rectángu-
los. Las cadenas de cuasi-rectángulos nos permiten definir una clase muy general de dominios
que incluyen a las cúspides normales, pero admiten condiciones más laxas sobre el borde.
Para estas cadenas probamos:

• Desigualdades de Poincaré sin pesos.

• Desigualdades de tipo Korn con pesos.

En algunos casos exhibimos contraejemplos que muestran que los pesos obtenidos son
óptimos. También estudiamos estos problemas considerando que el espacio original es un
Sóbolev pesado: Wk,p

ω (Ω).

Palabras clave: Cúspides exteriores, operadores de extensión, dominios de extensión,
desigualdad de Korn, desigualdad de Poincaré, espacios de Sóbolev con peso.
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Some problems of analysis on external cusps

Abstract
In this thesis we study several problems of analysis on domains with external cusps. Mainly:
the density of smooth functions on Sobolev spaces, the extension problem and Korn’s in-
equality. It is known that many classical analysis results on standard Sobolev spaces, which
are necessary for the study of partial differential equations and for approximating their so-
lutions using numerical methods, do not hold on singular domains, such as external cusps.
Hence, it is necessary to work with weighted Sobolev spaces, where the weights are taken in
a way that somehow compensates the singularity of the domain.

The different notions of external cusp that we handle avoid any precise description of the
domain’s boundary, even when they impose some restrictions. In the first place, we introduce
the concept of normal cusp, which definition is based on the Whitney decomposition of the
domain, and includes a sectional unifomity property that establishes some local regularity on
the boundary. This notion allows us to prove the following results:

• The density of smooth functions up to the boundary of the domain, in the Sobolev
space Wk,p(Ω).

• Extension theorems where we build operators of the form E : Wk,p(Ω) −→ Wk,p
σ (Rn),

being σ a proper weight.

Afterwards, we introduce the notions of chains of rectangles and chains of quasi-rectan-
gles. Chains of quasi-rectangles allow us to define a very general class of domains, that
includes normal cusps, but admits more relaxed conditions on the boundary. For these chains,
we prove:

• Unweighted Poincaré inequalities.

• Weighted Korn inequalities.

In some cases we exhibit counterexamples that show that the obtained weights are opti-
mal. We also study these problems considering that the original space is a weighted Sobolev
space Wk,p

ω (Ω).

Keywords: External cusps, extension operator, extension domain, Korn inequality, Poin-
caré inequality, weighted Sobolev spaces.
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Introducción

1.1 Dominios con cúspides exteriores
Dado Ω ⊂ Rn un dominio acotado, coloquialmente decimos que tiene una cúspide exterior
en x0 si x0 ∈ ∂Ω y Ω se angosta al acercarse a x0 de modo que ningún cono con vértice en
x0 está contenido en Ω. A lo largo esta tesis asumiremos que x0 = 0. En la bibliografı́a
se presentan distintas definiciones de cúspide exterior. Las cúspides más simples son las
llamadas cúspides de tipo potencia:

Ω =
{
(x′, xn) ∈ Rn−1 × R>0 : |x′| < xγn

}
, (1.1.1)

siendo γ algún número real mayor que 1.
Esta noción se generaliza naturalmente a dominios cuyo perfil está descripto por una

función ϕ, cuyas caracterı́sticas implican un comportamiento cuspidal:

Ω =
{
(x′, xn) ∈ Rn−1 × R>0 : |x′| < ϕ(xn)

}
, (1.1.2)

donde ϕ : R≥0 −→ R≥0 es una función creciente y derivable tal que ϕ(0) = 0 y ϕ′(0) = 0, ó,
más generalmente, ϕ es Lipschitz y ϕ(t)

t −→ 0 (t −→ 0+).
Si llamamos B′ = Bn−1(0, 1) a la bola n − 1 dimensional con centro en el origen y radio

1, y aB′ es la dilatación de B′ por a, (i.e.: aB′ = Bn−1(0, a)) está claro que (1.1.2) puede
escribirse:

Ω =
{
(x′, xn) ∈ Rn−1 × R>0 : x′ ∈ ϕ(xn)B′

}
.

Maz’ya y Poborchiı̌, en [Maz’ya and Poborchiı̌, 1997], generalizan esta idea, e introducen la
siguiente definición de cúspide experior:

Definición A. Sea Ω ⊂ Rn (n ≥ 2) un dominio con borde compacto ∂Ω. Asumimos que
0 ∈ ∂Ω y que ∂Ω\ {0} es localmente el gráfico de una función Lipschitz. Decimos que Ω tiene
una cúspide exterior en el origen si existe un entorno del origen U ⊂ Rn, tal que

U ∩Ω = {(x′, xn) ∈ Rn−1 × R>0 : x′ ∈ ϕ(xn)$},

1
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donde $ ⊂ Rn−1 es un dominio Lipschitz acotado y ϕ : R≥0 → R≥0 es una función Lipschitz
creciente tal que ϕ(t)

t → 0 (t → 0+) y ϕ(0) = 0.

La Definición A implica una importante generalización en la medida en que contempla
dominios que no incluyen el eje vertical, sino que se comportan de manera tangencial a él.
Sin embargo, impone aún una restricción importante: todo corte horizontal de Ω presenta la
misma forma ($), escalada de acuerdo a la altura.
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(b) Cúspide tangencial al eje z

Figura 1.1: Cúspides de Maz’ya

En esta tesis introducimos una noción de cúspide que generaliza la Definición A (ver las
Definiciones 3.2.1 y 3.3.1). Nuestra definición está basada en la existencia de una cadena de
cubos en la descomposición de Whitney del dominio, que forma lo que llamamos la espina
del dominio, su columna vertebral. Esta cadena de cubos se ubica aproximadamente en
el centro del dominio. Por ejemplo, en el caso de una cúspide de tipo potencia, estarı́a
formada por cubos que tocan el eje vertical. Además, se angosta al aproximarse al origen,
y la velocidad de este angostamiento da el comportamiento cuspidal del dominio. Sobre el
borde, en lugar de la Lipschitzianidad local de la Definición A, imponemos una condición
de uniformidad por secciones. Los dominios uniformes [Martio and Sarvas, 1979, Martio,
1980, Jones, 1981, Smith et al., 1994, Väisälä, 1988] incluyen a los Lipschitz, y admiten
la construcción de operadores de extensión [Jones, 1981]. En este sentido, la condición
de uniformidad por secciones representa una hipótesis de regularidad bastante laxa sobre el
borde del dominio que permite definir un operador de extensión localmente.

Para simplicar las demostraciones presentamos dos definiciones ligeramente distintas. En
3.2.1 introducimos las cúspides normales, cuya espina contiene al eje vertical. Estas cúspides
mantienen cierta simetrı́a respecto del eje, como en (1.1.2). Las cúspides curvas (Definición
3.3.1) cumplen con las mismas propiedades que las normales, pero pueden ser tangenciales
al eje, como las que satisfacen la Definición A.

La principal virtud de las cúspides normales es que, en tanto no involucran una des-
cripción del perfil del dominio, nos permiten probar que los pesos necesarios para compensar
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la singularidad no dependen del detalle del borde, sino sólo de la velocidad a la que el dominio
se angosta al aproximarse al origen. La definición de cúspide normal puede interpretarse
como un análogo de la Definición A, en donde la función ϕ no representa un perfil preciso de
la cúspide sino que simplemente la interpola en algunos puntos, dando ası́ una descripción
de la velocidad del angostamiento. Además, según esta definición, ϕ puede no ser monótona.
Finalmente, el requisito de uniformidad por secciones constituye una condición mucho más
general que la Lipschitzianidad local de la Definición A. A modo de ejemplo, probamos que
una cúspide cumpliendo con la Definición A, pero donde $ es un dominio uniforme, no
necesariamente Lipschitz, es una cúspide normal o curva.

1.2 Dominios de Extensión

Sea Ω un dominio en Rn. Wk,p(Ω) es el espacio de Sóbolev de funciones con derivadas débiles
de orden α para todo α tal que |α| ≤ k, con la norma:

‖ f ‖p
Wk,p(Ω) =

∑
|α|≤k

‖Dα f ‖p
Lp(Ω).

Decimos que Ω es un dominio de extensión de Sóbolev (E.D.S., por sus siglas en inglés) si
existe un operador lineal y acotado:

E : Wk,p(Ω) −→ Wk,p(Rn),

tal que E f |Ω = f para toda f ∈ Wk,p(Ω).
La existencia de un operador de extensión es de suma utilidad, en tanto implica que

muchos resultados válidos para Wk,p(Rn) son heredados por Wk,p(Ω). Un ejemplo clásico de
esta situación está dado por los teoremas de inmersión, que pueden demostrarse primero en
Rn y luego, a través de un argumento de extensión, para ciertos dominios. Pueden encontrarse
esta y otras aplicaciones de los teoremas de extensión en la bibliografı́a clásica de espacios de
Sóbolev. Por ejemplo: [Adams and Fournier, 2003, Burenkov, 1998, Evans, 1998, Maz’ya,
2011, Maz’ya and Poborchiı̌, 1997].

Es sabido que los dominios suaves son E.D.S. De hecho, al ser suave, el borde del do-
minio puede ser localmente aplanado a través de transformaciones regulares y el operador
de extensión puede construirse aplicando argumentos de reflexión (ver [Adams and Fournier,
2003, Maz’ya, 2011]). Por otro lado usando la fórmula de representación de Sóbolev en un
cono e integrales singulares, Calderón [Calderón, 1968] probó que los dominios Lipschitz
son E.D.S. para 1 < p < ∞. Este resultado fue extendido por Stein al rango 1 ≤ p ≤ ∞,
usando un procedimiento de reflexión promediada [Stein, 1970].

Las técnicas de reflexión son un enfoque natural para extender funciones. Dominios más
generales requieren técnicas de reflexión más complejas. En este contexto, Jones, en [Jones,
1981], estudió los dominios (ε, δ) también llamados localmente uniformes, que habı́an sido
introducidos en [Martio and Sarvas, 1979] y forman una clase más general que los Lipschitz.
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Jones probó que todo dominio (ε, δ) es un E.D.S. En términos de las descomposiciones de
WhitneyW yWc, de Ω y (Ωc)o respectivamente, la idea de Jones se basa en que los dominios
(ε, δ) satisfacen las siguientes propiedades:

(a) Los cubos de Whitney Q ∈ Wc cerca de Ω tienen un cubo “reflejado” Q∗ ∈ W, de
tamaño similar y cercano a Q.

(b) Los reflejados Q∗1,Q
∗
2 ∈ W de cubos vecinos Q1,Q2 ∈ W

c pueden unirse a través de
una cadena de cubos enW.

Gracias a esto, una aproximación polinomial de f en Q∗ puede utilizarse para definir la
extensión de f en Q. En la Figura 1.2 mostramos dos cubos vecinos y sus reflejados, junto
con una possible cadena uniéndolos.

Figura 1.2: Cubos reflejados y cadena

En el caso de las cúspides exteriores, en cambio, se conocen contraejemplos que muestran
que no es posible construir operadores de extensión en el sentido clásico, por lo que se hace
necesario extender a espacios de Sóbolev con pesos.

En este sentido, Maz’ya y Poborchiı̌ [Maz’ya and Poborchiı̌, 1997] probaron el siguiente
teorema de extensión para cúspides cumpliendo con la Definición A.

Teorema A. Sea Ω ⊂ Rn un dominio con una cúspide exterior en el origen, según la
Definición A. Entonces, existe un operador de extensión

Λ : Wkp(Ω)→ Wkp
σ (R),

donde el peso σ puede tomarse según las siguientes condiciones:

(a) Si kp < n − 1, ó k = n − 1 y p = 1, y ϕ satisface:

ϕ(t)
t

es no decreciente. (1.2.1)

entonces,

σ(x) =

 1 x ∈ Ω(
ϕ(|x|)
|x|

)kp
x ∈ Ωc
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(b) Si kp > n − 1, y ϕ es tal que:

∃Cϕ constante : ϕ(2t) ≤ Cϕϕ(t) (1.2.2)

entonces,

σ(x) =

 1 x ∈ Ω(
ϕ(|x|)
|x|

)n−1
x ∈ Ωc

(c) Si kp = n − 1, 1 < p < ∞, ϕ es tal que vale (1.2.1) y además:

∃δ > 0 : ϕ(t + ϕ(t)) = ϕ(t)[1 + O(ϕ(t)/t)δ] as t → 0 (1.2.3)

entonces,

σ(x) =

 1 x ∈ Ω(
ϕ(|x|)
|x|

)kp
log

(
ϕ(|x|)
|x|

) 1
p′ x ∈ Ωc

(d) Asumiendo (1.2.2), si σ̃ es un peso radial no decreciente, tal que existe un operador de
extensión: Λ̃ : Wkp(Ω)→ Wkp

σ̃ (Rn), entonces:

σ̃(x) ≤ Cσ(x) ∀x ∈ U \Ω,

donde U es un entorno del origen y σ se toma según el caso. Para el peso del item (b)
asumimos que 0 ∈ $.

Entre otras aplicaciones, un resultado de estas caracterı́sticas es crucial , por ejemplo,
para la construcción de mallas triangulares (o tetraedrales) apropiadas para la aplicación del
método de elementos finitos para la resolución de ecuaciones elı́pticas en derivadas parciales.
Cualquier triangulación de una cúspide exterior Ω produce un dominio poligonal que ex-
cede el borde de Ω. Pero en tanto los resultados clásicos de extensión no son válidos sobre
cúspides, la solución de la ecuación sobre el dominio poligonal es menos regular que la
solución exacta del problema original. Una consecuencia de este hecho es que las mallas
cuasi-uniformes no permiten obtener órdenes óptimos de convergencia, como sucede en caso
de dominios suaves. En [Acosta et al., 2007] y [Acosta and Armentano, 2011], se muestra
que el orden óptimo de convergencia puede recuperarse utilizando mallas graduadas, donde
la graduación de la malla se realiza de acuerdo al peso σ del operador de extensión.

En el Apéndice A presentamos otra posible aplicación de los teoremas de extensión de-
duciendo de ellos desigualdades de Korn con pesos para cúspides normales.

En esta tesis presentamos una serie de teoremas de extensión que generalizan al Teorema
A en varios sentidos. Por un lado, valen para cúspides normales y curvas, que son más ge-
nerales que las contempladas en la Definición A. Por otro, probamos que puede prescindirse
de las condiciones sobre los parámetros k, p y n, impuestas en los incisos (a) y (b) del Teorema
A. Finalmente, tratamos el caso de espacios de Sóbolev con pesos, obteniendo operadores de
extensión de la forma: E : Wk,p

ω (Ω) −→ Wk,p
ωσ(Rn).
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Siguiendo los argumentos de Maz’ya, nuestro operador de extensión se construye en tres
etapas. En la primera se extiende a una doble cúspide. Esta extensión local tiene por objeto
independizar el resto del proceso del detalle del borde, y utiliza la uniformidad por secciones
para aplicar una adaptación de las ideas de [Jones, 1981]. Al no resolver la singularidad
del dominio, esta etapa no requiere de ningún peso. La segunda etapa extiende a un cono,
usando sólo la información de la cadena de cubos central del dominio. El peso que surge
naturalmente es el estrictamente necesario para compensar la velocidad del angostamiento de
la cadena de cubos. Finalmente, en la tercera etapa se completa la extensión a un entorno del
origen, radialmente.

Para poder garantizar que la extensión de la primera etapa se encuentra con la función
original en ∂Ω de manera tal que las derivadas débiles se mantienen en Lp, la demostración
se realiza primero para funciones suaves, en C∞(Ω̄ \ {0}) y se generaliza luego a Wk,p(Ω) a
través de un argumento de densidad. Para ello es necesario demostrar que las funciones de
Wk,p(Ω) pueden aproximarse por funciones en C∞. Dado que el problema de aproximación
por funciones suaves tiene interés en sı́ mismo, probamos el teorema de densidad separada-
mente, en el Capı́tulo 4.

1.3 Desigualdad de Korn

Dado un campo vectorial u ∈ Wk,p(Ω)n, la desigualdad de Korn establece que

‖Du‖Lp(Ω)n×n ≤ C‖ε(u)‖Lp(Ω)n×n , (1.3.1)

donde ε(u) es la parte simétrica de la matriz diferencial de u, Du. Es decir:

εi j(u) =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
.

En el contexto de las ecuaciones de elasticidad lineal, u(x) representa el desplazamiento
del punto x ∈ Ω, al ser Ω sometido a deformaciones, mientras que ε(u) es el tensor de de-
formaciones. La desigualdad de Korn es fundamental para probar la coercividad de la forma
bilineal asociada a las ecuaciones de elasticidad, lo que permite garantizar la existencia de
soluciones, pero también la convergencia de los métodos numéricos aplicados para aproxi-
marlas.

Está claro que la desigualdad (1.3.1) podrı́a ser falsa. Basta tomar, por ejemplo, un campo
vectorial u cuya matriz diferencial fuese antisimétrica. Por lo tanto, es necesario imponer
condiciones adicionales sobre u. Korn, [Korn, 1906, 1909] probó, en el caso particular p = 2,
la validez de (1.3.1) para funciones de traza nula, siendo Ω un abierto cualquiera. Este resul-
tado es conocido como el primer caso de la desigualdad. El llamado segundo caso se refiere
a campos u que satisfacen: ∫

Ω

Du − Dut

2
= 0, (1.3.2)



1. Introducción 7

y para ellos la validez de (1.3.1) depende de la naturaleza del dominio Ω.
El segundo caso de la desigualdad de Korn está fuertemente relacionado con el caso

general que establece que:

‖Du‖Lp(Ω)n×n ≤ C
{
‖u‖Lp(Ω)n + ‖ε(u)‖Lp(Ω)n×n

}
. (1.3.3)

Está claro que, para funciones que satisfacen (1.3.2), (1.3.1) implica (1.3.3). Para una u
cualquiera, vale la misma implicación, independientemente de las carecterı́sticas del do-
minio, a través de un sencillo argumento que puede verse en [Brenner and Scott, 2008], y
que adaptamos en el Capı́tulo 6. Por otro lado, (1.3.1) puede deducirse de (1.3.3) utilizando
argumentos de compacidad algo más complejos, que dependen del dominio considerado (ver,
por ejemplo [Kikuchi and Oden, 1988]).

Se conocen diversas demostraciones de esta desigualdad para dominios no singulares.
Friederichs [Friederichs, 1937],[Friederichs, 1947] la prueba en algunos casos particulares
en espacios de 2 y 3 dimensiones. Nitsche, en [Nitsche, 1981] la demuestra para dominios
Lipschitz, utilizando argumentos de extensión. En [Kondratiev and Oleinik, 1989] los autores
tratan dominios estrellados respecto de una bola y prueban que la constante de la desigualdad
está acotada en términos del cociente entre el diámetro del dominio y el diámetro de la bola.
En un artı́culo reciente, [Durán, 2012], se prueba el segundo caso de la desigualdad para
dominios estrellados respecto de una bola para p = 2 usando la continuidad de la inversa
a derecha del operador divergencia, y se obtiene una expresión explı́cita para la constante.
Para n = 2, la constante se puede acotar por R

ρ
por un término logarı́tmico, donde R y ρ son

los radios de Ω y de la bola, respectivamente. En [Costabel and Dauge, 2013] se muestra
que el término logarı́tmico puede ser eliminado. Por otra parte, en [Durán, 2012] el autor
prueba que la constante para dominios convexos en Rn es R

ρ
. Este hecho resultará de utilidad

más adelante. Debemos mencionar también [Durán and Muschietti, 2004], donde los autores
prueban que (1.3.3) vale para dominios uniformes usando el operador de extensión constru-
ido en [Jones, 1981] para estos dominios. En el Apéndice A mostramos, siguiendo a [Durán
and Muschietti, 2004], cómo las técnicas de extensión que desarrollamos en el Capı́tulo 5
pueden adaptarse para probar desigualdades de Korn sobre cúspides normales. Finalmente,
en [Acosta et al., 2006b] se prueba la desigualdad de Korn para dominios de John, como un
corolario de la existencia de una inversa a derecha para el operador divergencia. Se cono-
cen también demostraciones que utilizan la teorı́a de integrales singulares, debidas a Govert,
Fichera y Ting. Sus argumentos se siguen en [Kikuchi and Oden, 1988]. Otras referencias
clásicas son [Fichera, 1974], [Horgan, 1995].

A pesar de estos resultados, se sabe que la desigualdad de Korn no vale en cúpisdes
exteriores [Acosta et al., 2012]. Esto puede ser resuelto, como en el caso del problema de
extensión, utilizando pesos apropiados para obtener una desigualdad de la forma:

‖Du‖Lp(Ω)n×n ≤ C
{
‖u‖Lp(Ω)n + ‖ε(u)‖Lp

σ(Ω)n×n

}
. (1.3.4)

Los principales antecedentes que seguimos en lo concerniente a la desigualdad de Korn
sobre cúspides exteriores son: [Acosta et al., 2006a], [Durán and López Garcı́a, 2010b] y
[Acosta et al., 2012].
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En [Durán and López Garcı́a, 2010b] se tratan cúspides de tipo potencia y se prueba la
existencia de una inversa a derecha para el operador divergencia. Como corolario, se deduce
la siguiente desigualdad de Korn con pesos (ver [Durán and López Garcı́a, 2010b, Theorem
6.2]):

Teorema B. Dado Ω un dominio de la forma (1.1.1), 1 < p < ∞, B ⊂ Ω una bola abierta
y β ≥ 0; existe una constante C, dependiendo sólo de Ω, B, p y β, tal que para toda u ∈
W1,p

dpβ (Ω)n:
‖Du‖Lp

dpβ (Ω)n×n ≤ C
{
‖u‖Lp(B)n + ‖ε(u)‖Lp

dp(β+1−γ) (Ω)n×n
}
,

donde d = d(x) es la distancia al origen, y γ es la potencia de la cúspide.

Para el caso sin pesos W1,p(Ω)n, tomamos β = 0, y el peso a la derecha debido al compor-
tamiento cuspidal de Ω es dp(1−γ).

La optimalidad de este resultado se prueba en [Acosta et al., 2012], donde los autores
trabajan con cúspides de perfil ϕ y prueban el siguiente teorema:

Teorema C. Sea Ω una cúspide de perfil ϕ, según (1.1.2), β1, β2 ∈ R, 1 < p < ∞ y B una
bola compactamente contenida en Ω. Si hay una constante C tal que:

‖Dv‖Lp

(ϕ′)pβ1
(Ω)n×n ≤ C

{
‖v‖Lp(B)n + ‖ε(v)‖Lp

(ϕ′)pβ2
(Ω)n×n

}
,

para toda v ∈ W1,p
(ϕ′)pβ1

(Ω)n, entonces β1 ≥ β2 + 1.

Es importante observar que para cúspides de tipo potencia, ϕ′(t) = γtγ−1, y por lo tanto,
la desigualdad de Korn del Teorema B se corresponde con el caso en que β1 = β2 + 1 en el
Teorema C y el peso del miembro derecho resulta, en este sentido, el mejor posible.

Quisiéramos también mencionar [Nazarov, 2012], donde se prueban desigualdades de
Korn con pesos anisotrópicos para cúspides en R3 que satisfacen la Definición A, tomando
ϕ(z) = zγ, aunque el autor menciona que pueden tratarse casos más generales utilizando las
mismas ideas. Finalmente en [Acosta et al., 2006a] se demuestran desigualdades de Korn
con pesos para dominios Hölden-α, que incluyen a las cúspides de tipo potencia. En este
caso, como un dominio Hölder-α puede tener muchas singularidades, los pesos que surgen
naturalmente dependen de la distancia al borde.

Si bien muchas de las demostraciones de Korn se realizan a través de argumentos de
extensión ([Nitsche, 1981],[Durán and Muschietti, 2004]), se sabe que la desigualdad vale
incluso para dominios que no admiten extensión. Por ejemplo, en [Acosta et al., 2006b] los
autores construyen una solución para el problema de la divergencia sobre dominios de John.
El segundo caso de la desigualdad de Korn puede deducirse fácilmente de este resultado, y
como ya señalamos, el segundo caso implica el caso general, por lo cual ambos valen en do-
minios de John. Es interesante observar que el problema de extensión puede no tener sentido
para un dominio de John. Esto nos hizo sospechar que puede haber cúspides exteriores más
generales que las normales para las cuales una desigualdad de Korn con pesos es cierta.
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En efecto, teniendo esto en mente, en el Capı́tulo 6 presentamos un abordaje del pro-
blema de Korn que excede el caso de las cúspides normales. Allı́ probamos desigualdades
de Poincaré y de Korn con pesos para cadenas de rectángulos. Una cadena de rectángulos es
una unión de rectángulos que satisfacen ciertas propiedades. Esencialmente: cada rectángulo
tiene sólo dos vecinos (el anterior y el siguiente), y cualesquiera dos rectángulos vecinos son
comparables entre sı́. Nuestra demostración está basada fundamentalmente en una versión
discreta de una desigualdad de Hardy.

Una cadena de rectángulos puede formar una cúspide exterior, si los rectángulos se an-
gostan apropiadamente al aproximarse a un punto. Sin embargo, la noción de cadena de
réctangulos abarca también muchos otros dominios, no necesariamente singulares. Lo in-
teresante de nuestra técnica es que puede aplicarse con facilidad a cadenas de subdominios
cuya forma sea sólo aproximadamente rectangular. Para ello introducimos la noción de ca-
dena de cuasi-rectángulos y deducimos desigualdades de Poincaré y de Korn para dominios
de este tipo. A modo de ejemplo, mostramos que pueden construirse cúspides exteriores
cuyo borde sea, por secciones, el de un dominio de John. Ası́, definimos la noción de cúspide
localmente John, que generaliza la de cúspide normal (o curva), en tanto todo dominio uni-
forme es un dominio de John. La validez de una desigualdad de Korn con pesos para cúspides
localmente John se deduce inmediatamente de los resultados obtenidos para cadenas de cuasi
rectángulos.

Nuestros resultados se generalizan facilmente a la situación en que el campo u está en
un espacio de Sóbolev con peso Wk,p

ω (Ω). Para el caso de las cúspide localmente John, anal-
izamos especı́ficaemente pesos ω dependiendo de la distancia a la cúspide y de la distancia
al borde del dominio. Es interesante observar que para pesos de la forma ω = (ϕ′)pβ general-
izamos el Teorema B probando la desigualdad de Korn incluso para algunos valores negativos
de β.

1.4 Resumen

Comenzamos el Capı́tulo 2 definiendo los espacios de Sóbolev con peso. Luego introducimos
la notación que usaremos para referirnos a cubos y rectángulos y damos una demostración
clásica del teorema de descomposición de Whitney. A continuación, presentamos los domi-
nios localmente uniformes y los dominios de John, probando algunas de sus propiedades más
importantes. Finalmente, demostramos una serie de resultados referidos a aproximaciones
polinomiales sobre cubos y rectángulos, que son de uso extensivo a lo largo de la tesis.

En el Capı́tulo 3 introducimos la noción de cadena de rectángulos que nos permite luego
definir cúspides normales y cúspides curvas. Concluimos el capı́tulo con un ejemplo que
muestra que toda cúspide que satisfaga la Definición A es necesariamente una cúspide normal
(o curva).

En el Capı́tulo 4 probamos que C∞(Ω̄ \ {0}) es denso en Wk,p(Ω), siendo Ω una cúspide
normal o curva. Tratamos también el caso pesado Wk,p

ω (Ω), y probamos que la densidad sigue
valiendo cuando el peso ω puede ser aproximado por constantes en bandas horizontales. Este
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resultado se generaliza en la Sección 5.3, donde se concluye que C∞(Ω̄) es denso en Wk,p(Ω).
El Capı́tulo 5 está dedicado a la construcción del operador de extensión. Desarrollamos

primero el caso de las cúspides normales, porque es más simple y permite evitar algunos
tecnicismos que oscurecen las demostraciones sin aportar ninguna idea de fondo. Para las
cúspides curvas desarrollamos una etapa cero que, de manera análoga a la etapa uno de la
extensión para cúspides normales, permite extender funciones desde una cúspide curva a una
normal.

En el Capı́tulo 6 probamos desigualdades de Poincaré y desigualdades de Korn con pesos
para cadenas de rectángulos y cadenas de cuasi-rectángulos. También definimos cúspides
localmente John, como un caso particular de cadenas de cuasi-rectángulos y mostramos que
nuestros resultados generalizan el Teorema B.

Finalmente, mostramos cómo puede obtenerse la desigualdad de Korn para cúspides nor-
males a través de argumentos de extensión. Dado que este resultado es menos general, y su
demostración más intrincada, que los dados en el Capı́tulo 6, lo incluimos en el Apéndice A.

Es importante señalar que el contenido de la presente tesis ha dado lugar a dos artı́culos.
El primero de ellos contiene fundamentalmente las definiciones de cúspides normales y cur-
vas, y los teoremas de extensión desarrollados en el Capı́tulo 5 y ha sido publicado en [Acosta
and Ojea, 2012]. El segundo, [Acosta and Ojea, 2014], que introduce las nociones de cade-
nas de rectángulos y de cuasi-rectángulos y establece las desigualdades de Korn que aquı́
presentamos en el Capı́tulo 6, ha sido recientemente remitido para su publicación.
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Introduction

1.1 Domains with external cusps
Given Ω ⊂ Rn a bounded domain, roughly speaking we say that Ω has an exterior cusp at x0

if x0 ∈ ∂Ω and Ω narrows as it approaches x0 in a way that prevents any cone with vertex at x0

to be contained in Ω. Throughout this thesis we assume x0 = 0. Many different definitions of
external cusps are considered in the bibliography. The simplest cusps are power type cusps:

Ω =
{
(x′, xn) ∈ Rn−1 × R : |x′| < xγn

}
, (1.1.1)

being γ some real number γ > 1.
This notion is naturally generalized to domains with a profile depicted by a function ϕ

with cuspidal behaviour.

Ω =
{
(x′, xn) ∈ Rn−1 × R : |x′| < ϕ(xn)

}
, (1.1.2)

where ϕ : R≥0 −→ R≥0 is a derivable function such that ϕ(0) = 0 and ϕ′(0) = 0, or, more
generally, ϕ is Lipschitz and ϕ(t)

t −→ 0 (t −→ 0+).
If we denote B′ = Bn−1(0, 1) the n − 1 dimensional ball with center at the origin an radius

1, and aB′ is the dilatation of B′ by a, (i.e.: aB′ = Bn−1(0, a)) it is clear that (1.1.2) can be
written:

Ω =
{
(x′, xn) ∈ Rn−1 × R : x′ ∈ ϕ(xn)B′

}
.

Maz’ya and Poborchiı̌, in [Maz’ya and Poborchiı̌, 1997], generalize this idea, and intro-
duce the following definition of external cusp:

Definition A. Let Ω ⊂ Rn (n ≥ 2) be a domain with compact boundary ∂Ω. Assume that
0 ∈ ∂Ω and that ∂Ω \ {0} is locally the graph of a Lipschitz function. We say that Ω has an
exterior cusp at the origin if there is a neighbourhood of the origin U ⊂ Rn, such that

U ∩Ω = {(x′, xn) ∈ Rn−1 × R : x′ ∈ ϕ(xn)$},

where $ ⊂ Rn−1 is a bounded Lipschitz domain ϕ : R≥0 → R≥0 is a Lipschitz nondecreasing
function such thatϕ(t)

t → 0 (t → 0+) and ϕ(0) = 0.

11
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Definition A implies an important generalization, as long as it admits domains that do not
include the vertical axis, but are tangential to it. However, it imposes an important restriction,
yet: every horizontal slice of Ω presents the same shape ($), scaled according to the height.
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(a) Cusp containing the verical axis
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(b) Cusp tangential to the vertical axis

Figure 1.1: Maz’ya’s cusps.

In this thesis, we introduce a notion of cusp that generalizes Definition A (see Definitions
3.2.1 and 3.3.1). Our definition is based on the existence of a chain of cubes in the Whitney
decomposition of the domain that forms what we call its spine. This chain of cubes is placed
approximately at the center of the domain. For example, in the case of power type cusp, it
would be formed by cubes touching the vertical axis. Furthermore, it narrows towards the
origin, and the speed of this narrowing gives the cuspidal behaviour of the domain. On the
boundary, instead of the local Lipschitzianity asked in Definition A, we impose a condition
of uniformity by stripes. Uniform domains [Martio and Sarvas, 1979, Martio, 1980, Jones,
1981, Smith et al., 1994, Väisälä, 1988] include the Lipschitz ones, and admit the construc-
tion of extension operators [Jones, 1981]. In this sense, our sectional uniformity condition
constitutes a rather weak regularity hypothesis, that allows us to define extension operators
locally.

In order to simplify calculations, we present two slightly different definitions. In 3.2.1
we introduce normal cusps, which spine contains the vertical axis. These cusps are somehow
symmetric with respect to the axis, as (1.1.2). Curved cusps (Definition 3.3.1), on the other
hand, satisfy the same properties than normal cusps, but are allowed to be tangential to the
axis, like those satisfying Definition A.

The main virtue of normal cusps is that, since their definition does not involve any descrip-
tion of the domain’s profile, they allow us to prove that the weights necessary to compensate
the singularity do not depend on the detail of the boundary, but only on the speed of the
narrowing toward the origin. Our definition of normal cusp can be interpreted as an analo-
gous of Definition A, where the function ϕ does not represent the precise profile of the cusp,
but simply interpolates it in some points, giving a description of the speed of the narrowing.
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Furthermore, according to this definition, ϕ does not need to be monotonous. Finally, the re-
quierement of sectional uniformity constitutes a much more general condition that the local
Lipschitzianity of Definition A. As an example, we prove that a cusp satisfying Definition A,
but taking $ a uniform domain, not necessarily Lipschitz, is a normal or curved cusp.

1.2 Extension Domains

Let Ω be a domain in Rn. Wk,p(Ω) is the Sobolev space of functions having weak derivatives
of order α for every α such that |α| ≤ k, with the norm:

‖ f ‖p
Wk,p(Ω) =

∑
|α|≤k

‖Dα f ‖p
Lp(Ω).

We say that Ω is an extension domain of Sobolev (E.D.S.) if there exists a linear bounded
operator:

E : Wk,p(Ω) −→ Wk,p(Rn),

such that E f |Ω = f for every f ∈ Wk,p(Ω).
The existence of an extension operator is very useful, since it implies that many results

valid for Wk,p(Rn) are inherited by Wk,p(Ω). A classical example of this situation is given
by embedding theorems, that can be proved in Rn in the first place, and then, through an
extension argument, for certain domains. This and other applications of extension theorems
can be found in the classic literature regarding Sobolev spaces. For example: [Adams and
Fournier, 2003, Burenkov, 1998, Evans, 1998, Maz’ya, 2011, Maz’ya and Poborchiı̌, 1997].

It is well known that smooth domains are E.D.S. In fact, since the boundary of a smooth
domain can be locally flattened by means of a regular transformation, the extension operator
can be constructed applying a simple reflection method (see [Adams and Fournier, 2003,
Maz’ya, 2011]). On the other hand, by using the so called Sobolev representation formula in
a cone and singular integrals Calderón [Calderón, 1968] showed that Lipschitz domains are
also E.D.S. for 1 < p < ∞. This result was extended to the range 1 ≤ p ≤ ∞ by Stein [Adams
and Fournier, 2003, Stein, 1970] by using an appropriate averaged reflection procedure.

Reflection type techniques are a natural approach for dealing with extension of functions.
More complex ways of reflection are needed in order to handle more general domains. In this
context Jones, in [Jones, 1981], studied (ε, δ) domains, also called locally uniform domains,
that had been introduced in [Martio and Sarvas, 1979], and form a broader class than Lips-
chitz domains. Jones proved that every (ε, δ) domain is an E.D.S. In terms of the Whitney
decompositionsW andWc, of Ω and (Ωc)o respectively, Jones’s idea hinges on the fact that
(ε, δ) domains enjoy the following properties:

(a) Whitney cubes Q ∈ Wc near Ω have a “reflected” cube Q∗ ∈ W, of similar size and
near Q.

(b) reflected cubes Q∗1,Q
∗
2 ∈ W of neighboring cubes Q1,Q2 ∈ W

c can be joined by a
bounded chain of touching cubes inW.
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Thanks to this, an appropriate polynomial approximation of f in Q∗ can be used to define
the extension of f in Q. In Figure 1.2 we show two touching cubes and their reflected cubes,
along with a possible chain of cubes joining them.

Figure 1.2: Reflected cubes and chain.

In the case of external cusps, on the contrary, there are counterexamples that show that it
is not possible to build an extension operator in the classical sense. Hence, it is necessary to
perform an extension to a weighted Sobolev space.

In this sense, Maz’ya and Poborchiı̌ [Maz’ya and Poborchiı̌, 1997] proved the following
extension theorem for external cusps satisfying Definition A.

Theorem A. Let Ω ⊂ Rn a domain with an external cusp at the origin, according to Definition
A. Then, there exists an extension operator:

Λ : Wkp(Ω)→ Wkp
σ (R),

where σ can be taken according to the following conditions:

(a) If kp < n − 1, or k = n − 1 and p = 1, and ϕ satisfies

ϕ(t)
t

is nondecreasing. (1.2.1)

then,

σ(x) =

 1 x ∈ Ω(
ϕ(|x|)
|x|

)kp
x ∈ Ωc

(b) If kp > n − 1, and ϕ is such that:

∃Cϕ constant : ϕ(2t) ≤ Cϕϕ(t) (1.2.2)

then,

σ(x) =

 1 x ∈ Ω(
ϕ(|x|)
|x|

)n−1
x ∈ Ωc
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(c) If kp = n − 1, 1 < p < ∞, ϕ is such that (1.2.1) and:

∃δ > 0 : ϕ(t + ϕ(t)) = ϕ(t)[1 + O(ϕ(t)/t)δ] as t → 0 (1.2.3)

then,

σ(x) =

 1 x ∈ Ω(
ϕ(|x|)
|x|

)kp
log

(
ϕ(|x|)
|x|

) 1
p′ x ∈ Ωc

(d) Assuming (1.2.2), if σ̃ is a radial nondecreasing weight such that there is an extension
operator: Λ̃ : Wkp(Ω)→ Wkp

σ̃ (Rn), then:

σ̃(x) ≤ Cσ(x) ∀x ∈ U \Ω,

where U is a neighbourhood of the origin and σ is taken according to the case. For the
weight in item (b) we assume 0 ∈ $.

Among several applications, such a result is crucial, for example in the construction of
triangular (or tetraedral) meshes for the application of the finite element method for the re-
solution of elliptic partial differential equations. Any triangulation of an external cusp Ω

produces a polygonal domain that exceeds the boundary of Ω. But since the classical ex-
tension results do not hold for cuspidal domains, the solution on the polygonal domain is
less regular than the exact solution of the original problem. A consequence of this fact is
that quasi-uniform meshes do not lead to optimal orders of convergence, as it happens in the
case of smooth domains. In [Acosta et al., 2007] and [Acosta and Armentano, 2011], it is
shown that the optimal order of convergence can be recovered using graded meshes, where
the graduation is performed according to the weight σ of the extension operator.

In Appendix A we present another possible application of extension theorems, obtaining
a weighted Korn inequality for normal cusps.

In this thesis we present a series of extension theorems that generalizes Theorem A. Our
results are valid for normal and curved cusps, that are more general than the ones satisfying
Definition A. On the other hand, we prove that the conditions on the parameters k, p and n
on items (a) and (b) of Theorem A are not necessary. Finally, we treat the case of weighted
Sobolev spaces, obtaining extension operators of the form: E : Wk,p

ω (Ω) −→ Wk,p
ωσ(Rn).

Following [Maz’ya and Poborchiı̌, 1997], our extension operator is built in three stages.
The first one extends to a double cusp. This local extension is meant to make the rest of
the process independent of the detail of the boundary. Here, we use the sectional uniformity
property of normal and curved cusps in order to apply an adaptation of the ideas of [Jones,
1981]. Since the singularity of the domain is not solved, this stage does not requiere a weight.
Second stage extends to a cone, using only the information of the chain of central cubes of
the domain. The weight that appears is the strictly necessary to compensate the speed of the
narrowing of the chain of cubes. Finally, the third stage extends to a neighborhood of the
origin, radially.

In order to guarraty that the extension of the first stage meets the original function on ∂Ω

in a way such that the weak derivatives remain in Lp, the proof is performed first for smooth
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functions, in C∞(Ω̄ \ {0}) and is generalized later to Wk,p(Ω) through a density argument. For
doing this, it is necessary to prove that functions in Wk,p(Ω) can be approximated by functions
in C∞. Since the problem of the approximation by smooth functions is interesting in itself,
we prove a density theorem separately, in Chapter 4.

1.3 Korn’s inequality

Given a vector field u ∈ Wk,p(Ω)n, Korn’s inequality establishes that

‖Du‖Lp(Ω)n×n ≤ C‖ε(u)‖Lp(Ω)n×n , (1.3.1)

where ε(u) is the symmetric part of the differential matrix of u, Du. In other words:

εi j(u) =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
.

In the context of linear elasticity equations, u(x) represents the displacement of the point
x ∈ Ω, when the body Ω is under deformation, whereas ε(u) is the strain tensor. Korn’s
inequality is a funtamental tool for proving the coercivity of the bilinear form associated with
elasticity equations, which allows to prove the existence of solutions, but also the convergence
of the numerical methods applied to approximate them.

It is clear that inequality (1.3.1) could be false. It is enough to take, for example, a vector
field u such that Du is skew-symmetric. Hence, it is necessary to impose additional conditions
on u. Korn, [Korn, 1906, 1909] proved, in the case p = 2, the validity of (1.3.1) for functions
with null trace, being Ω any open set. This result is known as the first case of the inequality.
The so called second case consider fields u that satisfy:∫

Ω

Du − Dut

2
= 0, (1.3.2)

and for them, the validity of (1.3.1) depends on the nature of the domain Ω.
The second case of Korn’s inequality is closely related with the general case, that esta-

blishes:
‖Du‖Lp(Ω)n×n ≤ C

{
‖u‖Lp(Ω)n + ‖ε(u)‖Lp(Ω)n×n

}
∀u ∈ W1,p(Ω). (1.3.3)

For functions that satisfy (1.3.2), (1.3.1) implies (1.3.3) trivially. For any u ∈ W1,p(Ω),
the same implication holds, regardless the shape of the domain Ω. The proof requieres a
simple argument that can be seen in [Brenner and Scott, 2008], or in Chapter 6. On the other
hand, (1.3.1) can be deduced from (1.3.3) using a more complex compactness argument that
depends on the domain (see, for example [Kikuchi and Oden, 1988]).

Many proofs of Korn’s inequality are known for non singular domains. Friederichs proves
it in [Friederichs, 1937],[Friederichs, 1947] for some particular cases in spaces of 2 and 3
dimensions. Nitsche, in [Nitsche, 1981] proves it for Lipschitz domains, using extension
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arguments. In [Kondratiev and Oleinik, 1989] the authors treat domains starshaped with
respect to a ball and prove that the constant in the inequality is bounded in terms of the
quotient between the diameter of the domain and the diameter of the ball. In a recent paper,
[Durán, 2012], the second case is proved for domains star shaped with respect to a ball, for
p = 2, using the continuity of the right inverse of the divergence operator, and an explicit
expression for the constant is found. For n = 2, the constant behaves as R

ρ
times a logarithmic

term, where R and ρ are the radii of Ω and the ball respectively. In [Costabel and Dauge,
2013] it is shown that the logarithmic term can be removed. On the other hand, in [Durán,
2012] the author proves that the constant for convex domains in Rn is R

ρ
, a fact that will be

useful later. We should also mention [Durán and Muschietti, 2004], where the authors prove
that (1.3.3) holds on uniform domains, using the extension operator built in [Jones, 1981]
for such domains. In the Appendix A we show how the extension procedure developed in
Chapter 5 can be applied to prove weighted Korn inequalities for normal cusps. Finally, in
[Acosta et al., 2006b], Korn’s inequality is proved for John domains, as a corollary of the
existence of a right inverse for the divergence operator. The inequality has also been proved
using Calderón-Zygmund inequalities for singular integrals, by Govert, Fichera and Ting.
Their arguments are followed in [Kikuchi and Oden, 1988]. Other classical references are
[Fichera, 1974], [Horgan, 1995].

Despite these results, it is well known that Korn’s inequality does not hold on external
cusps [Acosta et al., 2012]. This can be solved, as in the extension problem, using appropriate
weights in order to obtain an inequality of the form:

‖u‖Lp(Ω)n ≤ C
{
‖u‖Lp(Ω)n + ‖ε(u)‖Lp

σ(Ω)n×n

}
. (1.3.4)

The main precedents that we follow regarding Korn’s inequality on external cusps are:
[Durán and López Garcı́a, 2010b], [Acosta et al., 2012] and [Acosta et al., 2006a].

In [Durán and López Garcı́a, 2010b] power type cusps are treated, and the existence of
a right inverse for the divergence operator is proved. As a corollary, the following weighted
Korn inequality is obtained (see [Durán and López Garcı́a, 2010b, Theorem 6.2]):

Theorem B. Given Ω a domain of the form (1.1.1), 1 < p < ∞, B ⊂ Ω an open ball and
β ≥ 0; there exists a constant C, depending only on Ω, B, p and β, such that for every
u ∈ W1,p

dpβ (Ω)n:
‖Du‖Lp

dpβ (Ω)n×n ≤ C
{
‖u‖Lp(B)n + ‖ε(u)‖Lp

dp(β+1−γ) (Ω)n×n
}
,

where d = d(x) is the distance to the origin and γ is the exponent of the cusp.

For the unweighted case, W1,p(Ω)n, we take β = 0, and the weight on the right hand side,
due to the cuspidal behaviour of Ω is dp(1−γ).

The optimality of this result is proved in [Acosta et al., 2012], where the authors work
with cusps with profile ϕ and prove the following theorem:

Theorem C. Let Ω be a cusp with profile ϕ, according to (1.1.2), β1, β2 ∈ R, 1 < p < ∞ and
B a ball compactly contained in Ω. If there is a constant C such that:

‖Dv‖Lp

(ϕ′)pβ1
(Ω)n×n ≤ C

{
‖v‖Lp(B)n + ‖ε(v)‖Lp

(ϕ′)pβ2
(Ω)n×n

}
,
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for every v ∈ W1,p
(ϕ′)pβ1

(Ω)n, then β1 ≥ β2 + 1

It is important to observe that for a power type cusp ϕ′(t) = γtγ−1, and therefore, Korn’s
inequality in Theorem B corresponds with the case β1 = β2 + 1 in Theorem C, and the weight
on the right hand side is, in this sense, the best possible.

We would also like to mention [Nazarov, 2012], where weighted anisotropic Korn in-
equalities are proved for exterior peaks in R3, satisfying Definition A, taking ϕ(z) = zγ,
although the author mentions that more general cases could be treated in the same way. Fi-
nally, in [Acosta et al., 2006a], the authors prove weighted Korn inequalities for Hölder-α
domains, that include power type cusps. In this case, since a Hölder-α domain may have
many singularities, the weight that naturally arises for them depends on the distance to the
boundary.

In spite of the fact that many proofs of Korn’s inequality are carried out using extension
arguments, ([Nitsche, 1981],[Durán and Muschietti, 2004]), it is known that the inequality
holds even for domains that do not admit an extension operator. For example, in [Acosta
et al., 2006b] the authors provide a solution for the divergence problem on John domains.
The second case of Korn’s inequality can be obtained from this result and, as we commented
above, the general case can be easily deduced from the second. It is interesting to observe
that the extension problem can be senseless in a John domain. This induced us to suspect that
there could be external cusps of a more general kind than normal or curved cusps, for which
a weighted Korn inequality holds.

Indeed, bearing this in mind, in Chapter 6 we present an approach for the problem of
Korn’s inequality that exceeds the case of normal or curved cusps. There, we prove Poincaré
and weighted Korn inequalities for chains of rectangles. A chain of rectangles is a union of
rectangles satisfying certain properties. Essentially: each rectangle has two neighbours (a
preceding and a subsequent one), and any two neighbouring rectangles are comparables. Our
proof is based mainly on a discrete version of a Hardy type inequality.

A chain of rectangles may form an external cusp, if the rectangles narrow properly as
they approach a point. However, the notion of chain of rectangles also includes many other
domains, not necessarily singular. An important aspect of our technique is that it can be easily
applied to chains of subdomains which shape is only approximately rectangular. For that, we
introduce the notion of chain of quasi-rectangles, and we deduce Poincaré and weighted
Korn inequalities for these domains. As an example, we show that with chains of quasi-
rectangles it is possible to build external cusps which boundary is, by stripes, the one of a
John domain. In this way we define the notion of locally John cusps, that generalizes normal
and curved cusps, since every uniform domain is a John domain. The validity of a weighted
Korn inequality for locally John cusps is an inmediate consequence of the results obtained
for chains of quasi-rectangles.

Our results can be easily generalized to the situation where the field u belongs to the
weighted Sobolev space Wk,p

ω (Ω). For the case of locally John cusps, we analyze specifically
weights ω depending on the distance to the cusp and on the distance to the boundary of the
domain. It is interesting to notice that for weights of the form ω = (ϕ′)pβ we generalize
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Theorem B, proving Korn’s inequality even for some negative values of β.

1.4 Summary
We begin Chapter 2 defining weighted Sobolev spaces. Afterwards we introduce the notation
that we use for cubes and rectangles, and we provide a classical proof of Whitney’s decompo-
sition theorem. Later, we present locally uniform domains and John domains, proving some
of their most important properties. Finally, we prove several results regarding polynomial
approximations on cubes an rectangles that are extensively used along the thesis.

In Chapter 3 we introduce the notion of chain of rectangles, that allows us to define normal
and curved cusps. We finish this chapter with an example that shows that every external cusp
satisfying Definition A is necessarily a normal or curved cusp:

In Chapter 4 we prove that C∞(Ω̄ \ {0}) is dense in Wk,p(Ω), being Ω a normal or curved
cusp. We also treat the weighted case Wk,p

ω (Ω), and we prove that the density holds when the
weight ω can be approximated by constants over horizontal stripes. This result is generalized
in Section 5.3, where we conclude that C∞(Ω̄) is dense in Wk,p(Ω).

Chapter 5 is devoted to the construction of the extension operator. We first develop the
case of normal cusps, because it is simpler and because in this way we avoid some technical
details that blur the proof not providing any important idea. For curved cusps we develop
a stage zero that works like the first stage of the process for normal cusps, and allows us to
extend from a curved cusp to a normal one.

In Chapter 6 we prove Poincaré and weighted Korn inequalities for chains of rectangles
and quasi-rectangles. We also define locally John cusps, as a particular case of chain of
quasi-rectangles, and show that our results are a generalization of Theorem B.

Finally, we show how Korn’s inequality for normal cusps can be obtained using extension
arguments. Since this result is less general, and its proof more cumbersome, than the ones in
Chapter 6, we include it in the Appendix A.

It is important to notice that the content of the present thesis has been included in two
articles. The first one contains mainly the definitions of normal and curved cusps, and the
extension theorems developed in Chapter 5, and has been published in [Acosta and Ojea,
2012]. The second one, [Acosta and Ojea, 2014], which introduces the notions of chains of
rectangles and quasi-rectangles and establishes the Korn’s inequalities that are presented here
in Chapter 6, has been recently summited for its publication.
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Preliminaries

This chapter is meant to present the basic definitions and the notation that is used throughout
this work. We divide it in four sections. The first three are introductory and deal with the
definitions of weighted Sobolev spaces, the notation that we use for cubes and rectangles,
which leads to the Whitney decomposition theorem, and the notions of uniform and John
domains, respectively. In the last one we define two different polynomial approximations for
Sobolev functions and we prove their main properties.

2.1 Weighted Sobolev Spaces

Let Ω be an open connected set in Rn, and f : Ω −→ R a locally integrable function. We say
that hα ∈ L1

loc(Ω) is a weak derivative of f of order α, with α = (α1, · · ·αn) ∈ Nn
0 a multi-index

if : ∫
Ω

f Dαφ = (−1)|α|
∫

Ω

hαφ ∀φ ∈ C∞0 ,

where |α| = α1 + · · · + αn. We denote hα = Dαu.
Sometimes we write

∇m f :=
∑

α:|α|=m

Dα f .

Let ω : Rn → R≥0 be a locally integrable nonnegative function. For k ∈ N and 1 ≤ p ≤ ∞,
the weighted Sobolev space Wk,p

ω (Ω) is the space of functions f defined in Ω having weak
derivatives of order α, for |α| ≤ k, Dα f ∈ Lp

loc(Ω), and satisfying (for p < ∞):

‖ f ‖p

Wk,p
ω (Ω)

:=
∑
|α|≤k

‖ω
1
p Dα f ‖p

Lp(Ω) =
∑
|α|≤k

∫
Ω

ω(x)|Dα f (x)|pdx < ∞. (2.1.1)

The natural extension is taken for p = ∞

In the first chapters we deal with scalar fields, proving the density of smooth functions in
Sobolev spaces, and the extendability of Sobolev functions, both on domains with external

21
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cusps. These results can be easily extended to vector fields, handling each coordinate se-
parately. However, in the last chapter we work specifically with vector fields, in the context
of the equations of linear elasticity. Hence let us denote, for a constant matrix A ∈ Rn×n:

|A|p =

n∑
i=1

n∑
j=1

|Ai, j|
p.

Furthermore, let us define Wk,p
ω (Ω)n, the space of vector fields u : Ω → Rn, with weak

derivatives of order α for all 0 ≤ |α| ≤ k, equipped with the norm:

‖u‖p

Wk,p
ω (Ω)n

=

n∑
i=1

∑
|α|≤k

‖ω
1
p Dαui‖

p
Lp(Ω).

We also take the Lp norm of a matrix field A : Ω −→ Rn×n as:

‖A‖p
Lp
ω(Ω)n×n =

n∑
i=1

n∑
j=1

‖ω
1
p Ai, j‖

p
Lp(Ω).

In the unweighted case (ω ≡ 1) we write ‖u‖W1,p(Ω), ‖u‖W1,p(Ω)n and ‖A‖Lp(Ω)n×n , respectively.
p′ stands for the conjugate exponent of p: 1

p + 1
p′ = 1.

Sometimes we write −
∫

S
f to denote the mean value of f on S :

−

∫
S

f =
1
|S |

∫
S

f .

Troughout this thesis, we denote with C a generic constant that may change from line to
line. Most of the times, this constant depends on the general parameters (n and p), and on
the measure or the parameters of the domain being considered. Sometimes we specify this
dependance for the sake of clarity.

2.2 Cubes and rectangles
We say that two positive numbers are C comparable, and we denote it a ∼

C
b, if

1
C

a ≤ b ≤ Ca.

Sometimes we write simply a ∼ b, omitting the constant C.
For a collection of sets C, we denote ∪C, the union of all the sets in C, i.e.:

∪C =
⋃
S∈C

S .

Given two sets A and B, we denote A ≡ B if they differ in measure zero.
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Given a rectangle R ⊂ Rn with edges parallels to the coordinate axis, the size vector of
R is denoted with ~̀(R) = (`1(R), `2(R), . . . , `n(R)), where `i(R) is the length of R’s i-th edge.
For a cube Q we use `(Q) to denote the length of any of its edges, and for a rectangle R,
we define `M(R) := max1≤i≤n{`i(R)} and `m(R) := min1≤i≤n `i(R). Sometimes we deal with
rectangles with n − 1 short edges, that we denote `(R), and a long one, that we denote L(R).
Our rectangles are sometimes closed, sometimes open, and sometimes semi-open sets. We
hope this will be clear from the context, in each case.

A pair of rectangles R1, R2 are called C-comparable, and we write R1 ∼
C

R2, if there is a
constant C, such that `i(R1) ∼

C
`i(R2) for 1 ≤ i ≤ n.

We say that R1 and R2 are touching rectangles if Ro
1 ∩ Ro

2 = ∅ and R̄1 ∩ R̄2 = F with F a
face of R1 or R2.

For a rectangle R, we denote its center with cR. Our external cusps are defined in terms of
rectangles that are placed vertically, one below the other, so we introduce a special notation
for the upper and lower faces of a cube or rectangle, and for the respective xn coordinate: If
cR = (c1, · · · , cn) the upper face Fu

R of R is given by

Fu
R =

{
(x1, · · · , xn) ∈ R̄ : xn = cn +

1
2
`n(R)

}
,

and analogously is defined the lower face F l
R.

For a rectangle R, centered in cR = (c1, · · · , cn) we denote zR = cn −
1
2`n(R) (the last

coordinate of points belonging to F l
R). Anagolously, we denote z̄R the last coordinate of the

points belonging to Fu
R.

We denote by aR (a > 1), the expanded rectangle centered at cR with edges `i(aR) = a`i(R).
Sometimes we consider the special case of horizontal expansions, so we denote:

a ? R =
{
(x′, xn) ∈ Rn : x′ ∈ aR′, zR ≤ xn < z̄R

}
,

being R′ the projection of R into the space Rn−1 corresponding to the first n − 1 coordinates.
Finally, throughout this work x̂n stands for the xn axis.
Now, we can establish the following well known decomposition Theorem, due to Whit-

ney:

Theorem 2.2.1 (Whitney). Let Ω ⊂ Rn, Ω , Rn, be an open set. Then, there is a collection
W =W(Ω) := {Q j} of (countably) infinite dyadic closed cubes such that Ω = ∪W, and:

(a) Qo
j ∩ Qo

k = ∅ ∀Q j,Qk ∈ W(Ω),

(b)
√

n`(Q j) ≤ d(Q j, ∂Ω) ≤ 4
√

n`(Q j) ∀Q j,

(c) if Q j ∩ Qk , ∅ then: `(Q j) ≤ 4`(Qk).

Proof. Let W0 be the set of all the cubes in Rn of unit length whose vertices have integer
coordinates. From W0 we can obtain a two tails chain of sets, given by: Wk = 2−kW0,
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k ∈ Z. Wk+1 can be constructed dividing every cube Q ∈ Wk into 2n equal cubes. Naturally,
the edges of the cubes inWk have length 2−k.

We also consider

Ωk =
{
x ∈ Ω : c2−k < d(x, ∂Ω) ≤ c2−k+1},

where c is a constant that we specify later. Observe that the size of the cubes inWk is 2−k

and the distance of every point in Ωk to ∂Ω is proportional to 2−k. Consequently, in order to
obtain (b), it is natural to consider the cubes inWk that intersects Ωk. Hence, we define:

W̃ =
⋃

k

{
Q ∈ Wk : Q ∩Ωk , ∅

}
.

Now we can select the value of c: given Q ∈ W̃, we have that Q ∈ Wk, for some k and
there is a point x ∈ Q ∩Ωk. Then:

d(Q, ∂Ω) ≤ d(x, ∂Ω) ≤ c2−k+1 = 2c`(Q),

so, we can take c = 2
√

n, and we have: d(Q, ∂Ω) ≤ 4
√

n`(Q). On the other hand:

d(Q, ∂Ω) ≥ d(x, ∂Ω) −
√

n`(Q) ≥ c2−k −
√

n`(Q) =
√

n`(Q).

In order to complete the proof we need to exclude from W̃ the redundant cubes. First,
suppose Q1 ∈ Wk1 , Q2 ∈ Wk2 , Q1∩Q2 , ∅ and Q1,Q2 ∈ W̃. Then, one of them is contained
in the other. In particular, if k1 ≥ k2, Q1 ⊂ Q2.

Now, for every Q ∈ W̃, we take the maximal cube in W̃ that contains Q. Given Q1, Q2

such that Q ⊂ Q1,Q2, we have that Q1∩Q2 , ∅, and then, thanks to the previous observation,
Q1 ⊂ Q2 or vice versa. Since d(Q, ∂Ω) < ∞, the maximal cube referred above is unique. We
defineW, the set of all these maximal cubes in W̃.

Every cube Q ∈ W satisfies (a), since every cube in W̃ does. Morever, it is clear thatW
also satisfies (b) and (c). �

Remark 2.2.2. One can easily observe, from the proof, that for any pair of open sets A and
B, with A ⊂ B, every cube Q ∈ W(A) is contained in some cube Q̃ ∈ W(B).

2.3 Domains

2.3.1 Smooth domains and the cone condition

It is well known that some important properties of the Sobolev space Wk,p(Ω) depend strongly
on the nature of the domain Ω1.The classical theory of Sobolev spaces treats smooth domains,
providing several notions of smoothness. Here we state only three important classical defini-
tions before passing to more general domains that are the basis of our external cusps.

1We use the word domain to denote “open connected set in Rn”
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Figure 2.1: Whitney decomposition of an ellipse

Definition 2.3.1. A domain D ⊂ Rn is called a Lipschitz domain if its boundary is locally
the graph of a Lipschitz function. More precisely, if there are numbers ε, M and N, a finite
collection of open sets {Ui} and one of functions { fi}, such that:

(i) If x ∈ D and d(x, ∂D) < ε then x ∈ Ui for some i.

(ii) A point x cannot belong to more than N sets Ui.

(iii) D ∩ Ui can be represented by the inequality xn < fi(x1, . . . , xn−1) in some Cartesian
coordinate system, for (x1, . . . , xn−1) in some domain in Rn−1.

(iv) All the funcitons fi satisfy the Lipschitz condition with constant M:

| fi(ξ) − fi(η)| ≤ M|ξ − η|.

Sometimes domains satisfying Definition 2.3.1 are called strong Lipschitz (for example,
[Adams and Fournier, 2003]) or C0,1-domains ([Maz’ya and Poborchiı̌, 1997]). Since we are
stating this definition just for the sake of completeness, we prefer to use the simpler name of
Lipschitz domains.

Definition 2.3.2. A domain D belongs to the class C (or has a C boundary) if ∂D is locally
the graph of a continuos function. More precisely, if it satisfies Definition 2.3.1, but taking fi

just continuous, and not necessarily Lipschitz.

A more geometric notion that have proved to be a very useful tool is the so called cone
condition:
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Definition 2.3.3. Given a parameter ξ, let us consider the cone

K =

{
x ∈ Rn : (x2

1 + · · · + x2
n−1)1/2 < ξxn

}
.

We say that a domain D ⊂ Rn satisfies the cone condition if for every x ∈ D there is a cone
Kx which is the result of a rigid movement of K, such that Kx ⊂ D.

This definition remains the same if we state the existence of the cones Kx for every x in
∂D or in D̄, instead of x ∈ D.

It is well known that every Lipschitz domain satisfies the cone condition. Moreover a
domain is Lipschitz if and only if it satisfies the uniform cone condition2. However, there are
domains that satisfy the cone condition but are not Lipchitz. Consider, for example, an inner
cusp in R2 (see Figure 2.2):

Ωα = B(0, 1) \ {(x, y) ∈ R2 : |y| < xα} α > 1. (2.3.1)

And the limit case Ω∞, which corresponds with a ball without a segment:

Ω∞ = B(0, 1) \ {(x, y) ∈ R2 : 0 ≤ x ≤ 1, y = 0}. (2.3.2)

(a) Ωα (b) Ω∞

Figure 2.2: Inner cusp and limit case.

These examples show that the cone property can be satisfied by singular domains. More-
over, it is clear that both Ω∞ and (Ωc

∞)o satisfy the cone condition. But it is also clear that
∂Ω∞ cannot be represented by a Lipschitz function in any neighborhood of the point (1, 0).

On the other hand, external cusps of power type and profile cusps, are in the class C, but
do not fulfill the cone condition. Furthermor, take a bent cusp, such as:

Ω = {(x, y) ∈ R2 : 0 < y < 1, y2 < x < 2y2}.

This domain, whose singularity is esentially of the same kind that the one in a power type
cusp, is not in the class C, and does not satisfy the cone condition.

2We say that D satisfies the uniform cone condition if it satisfies the cone condition in the following way:
there is a collection of open sets C = {Ui} that covers D and a corresponding collection of cones Ki that are
rotations of a fixed cone K with vertex at the origin, and such that x + Ki ⊂ D for every x ∈ Ui. The proof
of the equivalence between the uniform cone condition and the Lipschitzianity of the boundary can be seen in
[Grisvard, 1985, Theorem 1.2.2.2].
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2.3.2 John domains
John domains were first introduced by Fritz John in [John, 1961], and named after him by
Martio and Sarvas in [Martio and Sarvas, 1979]. These domains can be understood as a
generalization of the notion of domains star shaped with respect to a ball. Essentially, in a
John domain there is a distinguished point x0, and every point x can be joined with x0 through
a twisted cone:

Definition 2.3.4. Let 0 < α ≤ β < ∞. A domain D ⊂ Rn is called a John domain with
parameters α and β if there is a point x0 ∈ D (the John-center of D) such that for every
x ∈ D there is a rectifiable curve with parametrization by arc length γ : [0, `]→ D such that
γ(0) = x and γ(`) = x0, and:

` ≤ β, (2.3.3)

d(γ(t), ∂D) ≥
α

`
t ∀t ∈ [0, `]. (2.3.4)

Given x ∈ D, and its correspondant curve γ, the set ∪tB(γ(t), α
`
t) is a twisted cone with its

axis depicted by the curve γ.
The inner cusps Ωα defined in (2.3.1) and the limit case Ω∞, in (2.3.2), are good examples

of John-domains, and are shown along with examples of twisted cones, in Figure 2.3. Another
interesting example is the fractal known as the Koch snowflake. In Figure 2.4(a), we show the
snowflake and a possible twisted cone. It is important to observe that every domain satisfying
the cone condition is a John domain. On the other hand, Koch snowflake does not satisfy the
cone condition, which proves that the converse is not true.

x0

x

(a) The inner cusp Ωα

x0

x

(b) The limit case Ω∞

Figure 2.3: Examples of John domains.

Ω∞ is also a good example for showing that some of the problems that we tackle in this
thesis can be unsolvable, if the domain is particularly evil: it is clear that no set of smooth
functions up to the boundary of Ω∞ could be dense in Wk,p(Ω∞). Moreover, the extension
problem is also meaningless in Ω∞, and consequently in a general John domain.
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2.3.3 Uniform domains
The concept of (ε, δ)-uniform domain was introduced in [Martio and Sarvas, 1979]. There
are several equivalent definitions for this kind of domains (see, for example, [Martio, 1980],
[Smith et al., 1994], [Väisälä, 1988]). Here, we state the definition used in [Jones, 1981]
(which is presented in [Martio, 1980]), because it fits better with the extension procedure
developed in Chapter 5.

Definition 2.3.5. (Locally Uniform Domains) D is a (ε, δ) domain if for all x, y ∈ D with
|x − y| < δ there is a rectifiable curve γ joining x and y such that:

`(γ) <
|x − y|
ε

, (2.3.5)

d(z, ∂D) >
ε|x − z||z − y|
|x − y|

∀z ∈ γ. (2.3.6)

where `(γ) denotes the length of γ.
If δ > diam(D), we say that D is a uniform domain.

Roughly speaking, a uniform domain D admits, for every pair of points x, y ∈ D, a cigar
that joins them and remains inside D. This cigar is the neighborhood of the curve γ defined
by (2.3.6), which is fat in the center of γ and thin at its endpoints. A unique parameter ε
controls the fatness of every cigar. In Figure 2.4(b), we show an example of cigar.

Uniform domains include Lipschitz domains, but they form a much larger class. In fact,
if D is uniform, ∂D could be very rough. The Koch fractal snowflake mentioned earlier is
uniform (see Figure 2.4(b)).

xx0

(a) Is John domain - Twisted cone

x

y

(b) Is uniform domain - Cigar

Figure 2.4: Koch snowflake.
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On the other hand some simpler domains with an isolated singular point are not uniform.
In inner cusps like Ωα, in (2.3.1), property (2.3.5) fails: for every election of ε we can pick a
pair of points x, y as near of each other as needed, in order to force the curve γ to be larger
than requested in (2.3.5). This shows that a John domain need not to be uniform, even when
every uniform domain is a John domain.

Complementarily, the kind of domain that we are interested in, external cusps, are not
uniform either: for every fixed value of ε we can take a point x and another point y as near of
the tip of the cusp as needed in order to force the cigar to touch the boundary of the domain,
so property (2.3.6) fails. In Figure 2.3.3 we show an external cusp of power type, with a cigar
that exceeds the boundary of the domain.

x

y

Figure 2.5: External cusps are not uniform.

The Koch snowflake example shows that the boundary of a uniform domain can be very
intricated. However, the measure of this boundary have to be null. In order to prove this, let
us recall the following well known result:

Lemma 2.3.6. Let E ⊂ Rn be a measurable set, then almost every point of E is a density
point of E. In other words:

lim
Q↘x

|Q ∩ E|
|Q|

= 1 for almost every x ∈ E.

Proof. It is a simple corollary of Lebesgue’s differentiation theorem for the indefinite integral
(see, for example, [Wheeden and Zygmund, 1977]). This theorem states that if f is locally
integrable in Rn, then, for almost every x,

lim
Q↘x

1
|Q|

∫
Q

f (y)dy = f (x).

The results follows by taking f = χE, and x ∈ E. �

Lemma 2.3.7. If D is a (ε, δ) domain, then |∂D| = 0.
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Proof. Let x0 ∈ ∂D, y ∈ D, and consider a cube Q centered at x0 and such that `(Q) ≤ 1
2 |y−x0|.

Take x ∈ D such that |x − x0| ≤
1
8`(Q), and γ the curve joining x and y. There is a z ∈ γ such

that |z − x| = 1
8`(Q). Then:

d(z, ∂D) ≥ ε
|x − z||z − y|
|x − y|

≥ ε
1

100
`(Q).

Then |D ∩ Q| ≥ Cεn|Q|. Consequently, Properties (2.3.5) and (2.3.6) allow us to estimate the
measure of D ∩ Q. Now, let us observe that:

1 =
|Q|
|Q|

=
|Q ∩ D| + |Q ∩ Dc|

|Q|
≥ Cεn +

|Q ∩ Dc|

|Q|
.

And then:
|Q ∩ Dc|

|Q|
≤ 1 −Cεn < 1.

And this happens for every Q 3 x0, and for every x0 ∈ ∂D. Hence, ∂D is a subset of points of
Dc that are not density points of Dc. Consequently, |∂D| = 0. �

2.4 Polynomial approximations
Throughout this work we deal extensively with polynomial approximations of Sobolev func-
tions on cubes and on rectangles. We begin this section stating some general results on
polynomials, and afterwards we present two different kinds of polynomial approximations,
and prove some of their most important properties.

For a polynomial P, degP stands for the degree of P.

Lemma 2.4.1. Let R be a rectangle, P a polynomial with deg(P) ≤ k, then:

‖P‖L∞(R) ≤
C

|R|
1
p

‖P‖Lp(R), 1 ≤ p ≤ ∞,

with C depending only on k.

Proof. Let Q̂ = [−1
2 ,

1
2 ]n. Let F : Q̂ → R be the linear application: F : x̂ → x, that maps Q̂

onto R: F(x̂) = ~̀(R) · x̂t + cR. Observe that |DF| = |R|. We consider the polynomial P̂ defined
on Q̂ as P̂(x̂) = P(F(x̂)). Notice that deg(P̂) = deg(P). Changing variables, we obtain:

‖P‖L∞(R) = ‖P̂‖L∞(Q̂) ≤ Ĉ‖P̂‖Lp(Q̂)

= Ĉ
( ∫

Q̂
|P̂(x̂)|pdx̂

) 1
p

≤ Ĉ
( ∫

R
|P(x)|p

1
|R|

dx
) 1

p

,

where the first inequality follows from the equivalence of norms in the finite dimensional
space of polynomials of degree ≤ k defined on Q̂. �
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Lemma 2.4.2. Let R and Q be rectangles such that R ⊂ Q, and P a polynomial with degP ≤ k.
Then, there exists a constant C, depending only on k, such that:

‖P‖Lp(Q) ≤ C
(
|Q|
|R|

) 1
p ∑
|α|≤k

‖DαP‖Lp(R)~̀(Q)α.

Proof. We may assume 0 ∈ R. Let q ∈ Q such that ‖P‖L∞(Q) = |P(q)|, then:

‖P‖Lp(Q) ≤ ‖P‖L∞(Q)|Q|
1
p = |P(q)||Q|

1
p ≤ |Q|

1
p

∑
|α|≤k

|DαP(0)|
|qα|
α!

≤ C|Q|
1
p

∑
|α|≤k

‖DαP‖L∞(R)~̀(Q)α ≤ C
(
|Q|
|R|

) 1
p ∑
|α|≤k

‖DαP‖Lp(R)~̀(Q)α.

�

The following corollary is derived from Lemma 2.4.2 using a simple inverse inequality:

Corollary 2.4.3. Let R ⊂ Q rectangles such that Q ∼ R, and P a polynomial with deg(P) ≤ k.
Then, there exists a constant C, depending only on k such that:

‖P‖Lp(Q) ≤ C‖P‖Lp(R).

Remark 2.4.4. A version of Corollary 2.4.3 is proved in [Jones, 1981, Lemma 2.1]. In our
case we need to compare polynomials in rectangles that are not of similar size (a fact that
eventually leads to the weights involved in the extension) and we need the less comfortable
variant given in Lemma 2.4.2.

Definition 2.4.5. Let f ∈ Wk,p(Ω), and S ⊂ Ω a set of positive measure, we denote with
Pk−1(S ) (or just P(S ) if the degree is clear from the context) the unique polynomial of degree
k − 1 such that: ∫

S
Dα( f − Pk−1(S )) = 0 for all α, with |α| ≤ k − 1.

Naturally, P(S ) depends on the function f , so we should write P(S )( f ), but we prefer the
simpler notation P(S ), since the function f will be clear from the context.

Let us recall the well known Poincaré inequality:

Theorem 2.4.6 (Poincaré inequality). Let Ω ⊂ Rn be a bounded domain, and f ∈ W1,p(Ω)
such that 1

|Ω|

∫
Ω

f = 0, then, there is a constant CP depending on n, p and Ω, such that:

‖ f ‖Lp(Ω) ≤ CP‖D f ‖Lp(Ω)

The validity of Poincaré inequality depends on the domain Ω. Here we are mainly in-
terested on the following version, regarding convex domains, where the constant CP can be
expressed in terms of the diameter of Ω:
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Lemma 2.4.7. Let Ω ⊂ Rn be a convex domain and f ∈ W1,p(Ω) such that 1
|Ω|

∫
Ω

f = 0, then
there is a constant C depending on n and p such that:

‖ f ‖Lp(Ω) ≤ Cdiam(Ω)‖∇ f ‖Lp(Ω).

Proof. We proceed by a density argument, asuming f ∈ C1(Ω). Being Ω convex we have:

f (x) − f (y) =

∫ 1

0
∇ f

(
tx + (1 − t)y

)
(x − y)dt.

Now integrating with respect to y and multiplying by 1
|Ω|

:

f (x) −
1
|Ω|

∫
Ω

f (y)dy =
1
|Ω|

∫
Ω

∫ 1

0
∇ f

(
tx + (1 − t)y

)
(x − y)dtdy.

Hence, since
∫

u = 0,

| f (x)|p ≤
diam(Ω)p

|Ω|p

( ∫
Ω

∫ 1

0

∣∣∣∇ f
(
tx + (1 − t)y

)∣∣∣dtdy
)p

≤
diam(Ω)p

|Ω|p

∫
Ω

∫ 1

0

∣∣∣∇ f
(
tx + (1 − t)y

)∣∣∣pdtdy|Ω|
p
p′

=
diam(Ω)p

|Ω|

∫
Ω

∫ 1

0

∣∣∣∇ f
(
tx + (1 − t)y

)∣∣∣pdtdy.

Now let us extend ∇ f by 0 outside Ω, and call F such extension. Then:

‖ f ‖p
Lp ≤

diam(Ω)p

|Ω|

∫
Ω

∫
Ω

∫ 1

0

∣∣∣F(tx + (1 − t)y)
∣∣∣pdtdydx =

=
diam(Ω)p

|Ω|

{∫
Ω

∫
Ω

∫ 1
2

0

∣∣∣F(tx + (1 − t)y)
∣∣∣pdtdydx︸                                         ︷︷                                         ︸

I

+

∫
Ω

∫
Ω

∫ 1

1
2

∣∣∣F(tx + (1 − t)y)
∣∣∣pdtdydx︸                                         ︷︷                                         ︸

II

}
.

Now:

I =

∫
Ω

∫ 1
2

0

∫
Ω

∣∣∣F(tx + (1 − t)y)
∣∣∣pdydtdx ≤

∫
Ω

∫ 1
2

0

∫
Rn

∣∣∣F(tx + (1 − t)y)
∣∣∣pdydtdx

=

∫
Ω

∫ 1
2

0

∫
Rn

∣∣∣F((1 − t)y)
∣∣∣pdydtdx =

∫
Ω

∫ 1
2

0

∫
Rn
|F(z)|p

1
(1 − t)n dzdtdx

≤ C|Ω|‖F‖p
Lp(Rn) = C|Ω|‖∇ f ‖p

Lp(Ω).

II can be estimated in the same way, and the result follows. �
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The constant obtained in Lemma 2.4.7 is not optimal, but it is enough for our needs.
Optimal estimates for convex domains can be seen, for example, in [Payne and Weinberger,
1960], for p = 2, and in [Acosta and Durán, 2003], for p = 1. For other values of p the
optimal constant is unknown but some sharp bounds are provided in [Chua and Wheeden,
2006].

In particular, for a rectangle R, we can apply Poincaré inequality to Dα(P(R)− f ), obtain-
ing:

‖Dα(P(R) − f )‖Lp(R) ≤ C`M(R)k−|α|‖∇k f ‖Lp(R). (2.4.1)

So, P(R) has good approximation properties if R is a rectangle (regardless the eccentricity
of R). In the spirit of [Jones, 1981, Lemma 2.2] we also need such a result for the union of
two touching rectangles of similar size.

Lemma 2.4.8. Let R1,R2 rectangles such that R1 ∼ R2. Assume that either R1 and R2 are
touching or R1 ⊆ R2 (renumbering if necessary). Then, for any f ∈ Wk,p(R1 ∪ R2):

‖ f − P(R1 ∪ R2)‖Lp(R1∪R2) ≤ C`M(R1)k
∑
|α|=k

‖Dα f ‖Lp(R1∪R2).

Proof. Clearly it is enough to prove the result in the case k = 1. If R1 ⊆ R2 (or vice versa)
then the result follows by Lemma 2.4.7. Let us then treat the case of touching rectangles.
Define fR1∪R2 = 1

|R1∪R2 |

∫
R1∪R2

f , then P(R1 ∪ R2) = fR1∪R2 . Write

‖ f − P(R1 ∪ R2)‖p
Lp(R1∪R2) = ‖ f − P(R1 ∪ R2)‖p

Lp(R1) + ‖ f − P(R1 ∪ R2)‖p
Lp(R2).

We now show how to deal with the first term (the other follows analogously). We have

‖ f − P(R1 ∪ R2)‖Lp(R1) ≤
|R1|

|R1| + |R2|
‖ f − P(R1)‖Lp(R1) +

|R2|

|R1| + |R2|
‖ f − P(R2)‖Lp(R1).

The first term is fine. For the other term we write

‖ f − P(R2)‖Lp(R1) ≤ ‖ f − P(R1)‖Lp(R1) + ‖P(R1) − P(R2)‖Lp(R1),

and again the first term is all right. In order to treat ‖P(R1) − P(R2)‖Lp(R1) observe that, since
R1 and R2 are touching, there exist rectangles R3 and R4 such that R3 ⊂ R1 ∪ R2 ⊂ R4,
R1 ∼ R1 ∩ R3 ∼ R2 ∩ R3 ∼ R2 ∼ R3 ∼ R4, then (using, for instance, Corollary 2.4.3)

‖P(R1) − P(R2)‖Lp(R1) ≤ C‖P(R1) − P(R3)‖Lp(R1∩R3) + ‖P(R3) − P(R2)‖Lp(R4),

and
‖P(R1) − P(R3)‖Lp(R1∩R3) ≤ ‖P(R1) − f ‖Lp(R1) + ‖ f − P(R3)‖Lp(R3),

while (using again Corollary 2.4.3)

‖P(R3) − P(R2)‖Lp(R4) ≤ C‖P(R3) − P(R2)‖Lp(R2∩R3) ≤ C‖ f − P(R2)‖Lp(R2) + ‖P(R3) − f ‖Lp(R3).

The lemma follows. �
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The polynomial P(R) is a very simple and useful approximation of f over R, and it is the
one used for the construction of the extension operators in Chapter 5. However, in order to
prove the density of smooth functions, we need to introduce a more sofisticated approxima-
tion, that enjoys some specific properties.

Let us state the well known Sobolev Representation Formula for star shaped domains,
that can be seen, for example in [Maz’ya and Poborchiı̌, 1997, Section 1.5, Theorem 1], or in
[Maz’ya, 2011, Section 1.1, Theorem 1]:

Theorem 2.4.9. Let Ω be a star shaped domain with respect to the ball B(z, δ), k a positive
integer and take f ∈ Wk,p(Ω). Then:

f (x) = δ−1
∑
|β|<k

( x − z
δ

)β ∫
B(0,δ)

ϕβ
(y
δ

)
f (y + z) +

∑
|α|=k

gα(x; r, θ)
rn−1 Dα f (y)dy,

where r = |y − x|, θ =
y−x
rn , gα ∈ C∞, |gα| ≤ c

(
diam(Ω)

δ

)n−1
, and:

ϕβ(y) =
∑

|γ|≤k−1−|β|

(n + k − 1)!
(n + |γ + β|)!(k − 1 − |γ + β|)!

(−1)|β|

β!γ!
yγDβ+γh(y),

h ∈ C∞0 (B(0, 1)) and
∫

h = 1.

This Theorem induce the definition of another projection onto Pk−1:

Definition 2.4.10. Given a cube Q, consider the ball B = B(cQ, `(Q)) ⊂ Q, and a function
f ∈ Wk,p(Q), we define:

π(Q)( f )(x) = `(Q)−1
∑
|β|<k

( x − cQ

`(Q)

)β ∫
B
ϕβ

(
y

`(Q)

)
f (y + cQ)dy,

where ϕβ is the one in Theorem 2.4.9.

When it is clear from the context, we denote π(Q) instead of π(Q)( f ). π(Q) is a poly-
nomial approximation of f over Q, that enjoys a very important propery that P(Q) does not
satisfy:

Theorem 2.4.11. Let Q be a cube contained in a domain Ω, f ∈ Wk,p(Ω), 1 ≤ p ≤ ∞ and γ:
|γ| < k, then:

‖Dγπ(Q)‖Lp(Q) ≤ C‖Dγ f ‖Lp(Q).

Proof. It is clear that, since
ϕβ =

∑
|γ|≤k−1−|β|

Cβ,γyγDβ+γh,



2. Preliminaries 35

and h ∈ C∞0 (B(0, 1)), then ϕβ = Dβψβ, with ψβ ∈ C∞0 (B(0, 1)). Consequently:∣∣∣∣∣ ∫
B
ϕβ

( y
`(Q)

)
f (y + cQ)

∣∣∣∣∣ =

∣∣∣∣∣ ∫
B

Dβψβ

( y
`(Q)

)
f (y + cQ)

∣∣∣∣∣
≤

∣∣∣∣∣ ∫
B
`(Q)|γ|Dβ–γψβ

( y
`(Q)

)
Dγ f (y + cQ)

∣∣∣∣∣ ≤ C`(Q)|γ|‖Dγ f ‖L1(B).

On the other hand:

Dγπ(Q)(x) = `(Q)−1
∑

γ≤β,|β|<k

C
( x − cQ

`(Q)

)β−γ ∫
B
ϕβ

( y
`(Q)

)
f (y),

and then, taking into account that |B| ∼ |Q|:

|Dγπ(Q)(x)| ≤ C`(Q)−n‖Dγ f ‖L1(B) ≤ C`(Q)−n‖Dγ f ‖Lp(B)|B|
1
p′ ≤

C

|B|
1
p

‖Dγ f ‖Lp(B).

Which lead us to:

‖Dγπ(Q)‖Lp(Q) ≤
C

|B|
1
p

|Q|
1
p ‖Dγ f ‖Lp(B) ≤ C‖Dγ f ‖Lp(Q).

�

The projection π(Q) also satisfies an approximation property analogous to (2.4.1):

Theorem 2.4.12. Let Q be a cube in Ω, 1 ≤ p ≤ ∞, γ : |γ| < k, then:

‖Dγ(π(Q) − f )‖Lp(Q) ≤ C`(Q)k−|γ|‖∇k f ‖Lp(Q).

Proof. We alternate P(Q), in order to deduce the Theorem from (2.4.1).

‖Dγ(π(Q)( f ) − f )‖Lp(Q) ≤ ‖Dγ(π(Q)( f ) − P(Q))‖Lp(Q)︸                            ︷︷                            ︸
I

+ ‖Dγ(P(Q) − f )‖Lp(Q)︸                   ︷︷                   ︸
II

.

II can be bounded immediatly by applying (2.4.1). For I, observe that π(Q)(P(Q)) = P(Q),
so, applying Theorem 2.4.11 and (2.4.1):

I = ‖Dγ(π(Q)( f − P(Q)))‖Lp(Q) ≤ C‖Dγ( f − P(Q))‖Lp(Q) ≤ C`(Q)k−|γ|‖∇k f ‖Lp(Q).

�

Remark 2.4.13. In [Chua, 1992], the author proves that these Theorems hold in the weighted
case Wk,p

ω , when ω is in the class of Muckenhoupt (see Section 4.2), and he uses these results
for proving the density of smooth functions on Wk,p

ω (D), for D a uniform domain. Our argu-
ments are essentially Chua’s, but we state only the unweighted case for the sake of simplicity.
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Normal and curved cusps

In this work, we provide several definitions for external cusps. The central ideal of all of
them is to describe the cuspidal behaviour of the domain through a chain of rectangles that
narrows toward the origin faster than any cone. This chain is somehow the core of the cusp,
and contains all the essential information about its cuspidal singularity. Stepped cusps, that
are presented in the Appendix A, are nothing more but such a chain. The other definitions cor-
respond to domains that grow around this chain, satisfying certain properties. In this Chapter
we introduce the notions of normal and curved cusps. Both of them satisfy a sectional unifor-
mity property. Roughly speaking: a horizontal stripe of a normal or curved cusp is a uniform
domain. The only difference between a normal and a curved cusp is that the first is straight,
and contains an axis, whereas the latter can be tangential to an axis.

In the first section we present the definitions and main properties concerning chains of
rectangles. The second and third ones are devoted to the definitions of normal and curved
cusps, respectively. Finally, in the forth section of this Chapter we present a few examples.
Particularly, we show that every external cusp satisfying Definition A is a normal (or curved)
cusp.

3.1 Chains of rectangles

In this section we introduce some basic definitions on chains of rectangles that are extensively
used in the sequel.

Definition 3.1.1. A (finite or countable) collection of rectangles R = {Ri} for which
∑
|Ri| <

∞, is called a chain of rectangles if:

a) R̄i ∩ R̄ j = ∅ for |i − j| > 1.

b) For any i, Ri and Ri+1 are touching.

c) There is a constant C such that Ri ∼
C

Ri+1 for every i.

37
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Remark 3.1.2. Given a chain of rectangles R = {Ri}, we have the following important facts:

• since the rectangles Ri and Ri+1 are touching and C-comparable, there exists a rectan-
gle Ri,i+1 ⊂ R̄i ∪ R̄i+1 and a constant C̃ depending only on C such that:

Ri,i+1 ∼
C̃

(Ri,i+1 ∩ Ri) ∼
C̃

Ri ∼
C̃

(Ri,i+1 ∩ Ri+1) ∼
C̃

Ri+1.

• Naturally, this implies that the same relation stands for the measure of the rectangles:

|Ri,i+1| ∼
C̃
|Ri,i+1 ∩ Ri| ∼

C̃
|Ri| ∼

C̃
|Ri,i+1 ∩ Ri+1| ∼

C̃
|Ri+1|.

Definition 3.1.3. Any collection of intermediate rectangles Ri,i+1 enjoying properties like
those in Remark 3.1.2 is denoted RI = {Ri,i+1}.

The existence of a chainRI is crucial for proving most of the results included in this thesis.
There are many properties that are well known to hold for cubes or rectangles, and we are
able to prove them for chains passing from the rectangle Ri to Ri+1 through the intermediate
one Ri,i+1.

However, for describing cusps that are tangencial to an axis it is useful to define:

Definition 3.1.4. A collection of rectangles R = {Ri} is called a quasi-chain of rectangles if
it satisfies:

a) R̄i ∩ R̄ j = ∅ for |i − j| > 1.

b) R̄i ∩ ¯Ri+1 , ∅, Ro
i ∩ Ro

i+1 = ∅.

c) There is a constant C such that Ri ∼
C

Ri+1 for every i.

The only difference between a chain and a quasi-chain is that in a chain two consecutive
rectangles touch each other in a face, whereas in a quasi-chain this contact can be performed
in an edge or a corner. Naturally, in a quasi-chain cannot be guaranteed the existence of an
intermediate chain.

3.2 Normal cusps
Normal cusps are defined in terms of a particular chain of cubes belonging to the Whitney
decomposition of the domain Ω. This chain S = {S i}i has cubes placed one under the other
along the xn axis, i.e: S i ∩ S i+1 = Fu

i+1. In this context, we write zi instead of zS i to denote the
xn coordinate of the floor of S i. Furthermore, for z > 0, we write S (z) the cube in S at height
z. In other words:

S (z) = S i ∈ S : zi ≤ z < zi + `(S i).

Observe that there is only one cube S (z) for each z. On the other hand, iz stands for the
index of the cube S (z) in S , i.e.: S (z) = S iz . Finally, let us denoteW andWc the Whitney
decompositions of Ω and (Ωc)o respectively.
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Definition 3.2.1 (Normal Cusp). Let Ω ⊂ Rn be an open set such that 0 ∈ ∂Ω. Let ε > 0 and
K > 1 be given parameters. We say that Ω has a (ε,K)−normal external cusp (or outer peak)
at the origin if it satisfies:

(i) There exists a chain of cubes S = {S i}
∞
i=1 ⊂ W increasingly numbered towards the

origin (i.e.: d(S i+1, 0) ≤ d(S i, 0)), such that

S i ∩ S i+1 = Fu
S i+1
, (3.2.1)

and
d(S i, 0)→ 0 (i→ ∞). (3.2.2)

(ii) We have that {
x ∈ Ω : xn < z

}
⊂

∞⋃
i=iz

Ωi for any z1 > z > 0, (3.2.3)

with Ωi = KS i ∩Ω.

(iii) For every pair of points x, y ∈ Ωi ∪ Ωi+1, there is a rectifiable curve, γ ⊂ Ω, joining x
and y, and satisfying:

`(γ) ≤
1
ε
|x − y|, (3.2.4)

d(z, ∂Ω) ≥ ε
|x − z||z − y|
|x − y|

∀z ∈ γ. (3.2.5)

(iv) We have
`(S i)

zi
−→ 0 (i→ ∞). (3.2.6)

The set S is named the spine of Ω.

Condition (3.2.1) implies that the chain is decreasing, i.e.: `(S i+1) ≤ `(S i). This last fact
is not really necessary, but is assumed for the sake of simplicity: the sizes of the cubes in S
could oscillate, as long as its oscillation is controlled by some universal parameter, depending
only on Ω.

On the other hand, conditions (3.2.1) and (3.2.2) imply that every cube S i of S touches
x̂n, while (3.2.3) guarantees that Ω’s behavior (its narrowing toward the origin) is faithfully
represented by the behavior of the chain S: a fixed expansion of the tails of S reaches the
whole boundary of Ω below certain height z, and consequently ∂Ω narrows toward the origin
as fast as `(S (z)). In other words, the function `(S (z)) plays the role of ϕ(z) in Definition A.

Finally, conditions (3.2.4) and (3.2.5) constitute what we call the sectional uniformity
property of Ω. They provide some regularity to the boundary of Ω and exclude the existence
of non connected components.

Condition (3.2.6) is stated in order to exclude cones and other non-singular domains from
our definition of cusp. However, it is important to notice that our extension theorems (see
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Figure 3.1: Cusp of power type vs. Normal cusp with its spine

Theorems 5.1.1 and 5.2.1) stand even for domains where (3.2.6) is not fulfilled. In that cases
the weight turns to be a constant, and a classical (unweighted) extension is obtained.

Now, we state some important results on normal cusps.
Since external cusps are not uniform domains, it is clear that the sectional uniformity

properties (3.2.4) and (3.2.5) do not hold for every x, y in Ω. However, they can be extended
to larger bands:

Proposition 3.2.2. Let us define Ω′i = K′S i ∩ Ω, for some K′ > K, such that Ω′i contains a
finite number of Ωi’s. Then, Properties (3.2.4) and (3.2.5) stand for every x, y ∈ Ω′i ∩ Ω′i+1,
with some ε′ > 0.

Proof. It is sufficient to prove that (3.2.4) and (3.2.5) stand for every x, y ∈ Ωi ∪Ωi+1 ∪Ωi+2.
Naturally, the only interesting case is x ∈ Ωi \Ωi+1, and y ∈ Ωi+2.

Observe that d(x, S i+1) ≤ `(S i) +
√

nK`(S i) ≤ C`(S i+1) with C depending only on n
and K. Consequently, |x − v| ≤ C`(S i+1) for every v ∈ S i+1. The same results hold for y.
Furthermore, since x ∈ Ωi \Ωi+1, |x − y| ≥ C`(S i+1).

Now, let w be the center of S i+1. Then, since S i+1 ⊂ Ωi+1, we have curves γ1 and γ2 given
by Definition 3.2.1, joining x and w, and y and w respectively. We take γ = γ1 ∪ γ2. Then

`(γ) = `(γ1) + `(γ2) ≤ ε(|x − w| + |y − w|) ≤ C|x − y|.

It only remains to prove (3.2.5). First, let z ∈ γ ∩ S i+1, then, we have that:

|x − z||z − y|
|x − y|

≤ C
`(S i+1)2

`(S i+1)
≤ C`(S i+1) ≤ Cd(z, ∂Ω),

where in the last step we used that S i+1 is a Whitney cube of Ω.
Finally, let us take z ∈ γ \ S i+1. We can assume z ∈ γ1. We have:

d(z, ∂Ω) ≥ ε
|x − z||z − w|
|x − w|

≥ C
|x − z|`(S i+1)
`(S i+1)

≥ C
|x − z||z − y|
|x − y|

.
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The result follows, takin ε′ the worst of the constants C involved in the previous inequal-
ities. �

The following Lemma is a fundamental property of uniform domains. Since we apply it
to normal cusps, we state it in terms of the sets Ωi:

Lemma 3.2.3. Let Ω be a normal cusp, andW its Whitney decomposition. Let Q1,Q2 ∈ W,
be such that, for some i: Q j ∩ (Ωi ∪ Ωi+1) , ∅, j = 1, 2, and d(Q1,Q2) ≤ C`(Q1). Then there
is a constant C̃ = C̃(ε, n,K) and a chain of cubes F1,2 = {V1 := Q1,V2, . . . ,Vr := Q2} ⊂ W

such that r ≤ C̃ and `(V j) ∼
C̃
`(Q1), for every j.

Proof. There is a curve γ joining Q1 and Q2 with `(γ) ≤ Cd(Q1,Q2) ≤ C`(Q1). Observe that
here C denotes different constants, but all of them independent of the cubes considered. Let
us consider, then, the chain

F1,2 = {V1 = Q1,V2, . . . ,Vr = Q2} ⊂ W,

of cubes touching γ. We need a lower bound for the size of V j: `(V2) ≥ 1
4`(Q1). Analogously,

`(Vr−1) ≥ C`(Q1). If 1 < j < r, let us take z ∈ γ ∩ V j. Then:

d(z, ∂Ω) ≥ ε
|x − z||z − y|
|x − y|

≥ C
`(Q1)2

`(Q1)
≥ C`(Q1).

It follows that no more than C cubes can be placed along γ, and then r ≤ C. Once again C̃ is
the worst of the constants C. �

Remark 3.2.4. It is important to observe that Lemma 3.2.3 is a consequence of the sectional
uniformity properties (3.2.4) and (3.2.5). Hence, regarding Proposition 3.2.2, it holds for
every pair of cubes Q1 and Q2 such that d(Q1,Q2) ≤ C`(Q1) as long as they are contained in
some band K′S i ∩Ω.

3.3 Curved cusps
Normal cusps are, somehow, “symmetric” with respect to x̂n. More precisely, normal cusps
are those that grow around an axis, which is placed approximately at its center; see Figure
3.1. The following definition includes cusps that are tangential to a certain axis, which is not
necessarily interior to the domain:

Definition 3.3.1 (Curved Cusp). Let Ω ⊂ Rn be an open set such that 0 ∈ ∂Ω. Let ε > 0 and
K > 1 be given parameters. We say that Ω has a (ε,K)−curved external cusp (or outer peak)
at the origin if there exists a quasi-chain of cubes S = {S i}i, S i ∈ W, increasingly numbered
towards the origin, such that zi+1 < zi, and satisfying:

d(S i, x̂n) ≤ CΩ`(S i) for some CΩ, (3.3.1)
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`(S i+1) ≤ `(S i), (3.3.2)

and if Ω satisfies conditions (ii), (iii) and (iv) of Definition 3.2.1.

Condition (3.3.1), along with the fact that S is a quasi-chain (and not a chain), constitutes
a relaxation of condition (3.2.1). Since the spine is now a quasi-chain, it is not forced to be
straight and parallel to x̂n, but is allowed to approximate it asymptotically. As we remarked
earlier, condition (3.3.2) is not necessary, but comfortable. Since we abandoned property
(3.2.1), (3.3.2) is not implicit any more, and so we include it in the definition of curved
cusps. Finally, we ask {S i} to satisfy: zi+1 < zi because this implies that for every height z
there is a unique cube S (z), which is necessary for the correct statement of condition (ii).

Remark 3.3.2. Since S is a quasi-chain, we cannot conclude the existence of intermediate
cubes joining S i and S i+1. However, S is formed by Whitney cubes, and hence it is easy to
see that there is a chain S̃ = {S̃ i} with S̃ i ∈ W, such that S ⊂ S̃.

3.4 Examples
Below we show that the class of normal and curved cusps is broader than the class of cusps
satisfying Definition A.

Generally speaking our results can be understood in the following way: the role of the
“profile” function ϕ in Definition A can be relaxed in the sense that it can just describe
the speed of the narrowing of Ω towards the origin (i.e. if the spine of Ω decreases as ϕ:
`(S (z)) ∼ ϕ(z)) provided that ∂Ω \ {0} remains smooth enough.

For example, consider the domain:

Ω = {(x, z) ∈ R2 : z3 < x < z2}.

This domain does not satisfy Definition A: its narrowing cannot be described by a profile
function ϕ, since the two curves that form the boundary of Ω approach the origin at different
speeds. However, it is easy to see that it is an external curved cusp. In fact, the chain S̃ is
formed by all the cubes inW that intersect the central curve: γ(z) = z3+z2

2 , and the spine S
can be obtained by substracting from S̃ redundant cubes, if any.

The second example is general, and it constitutes the proof of the fact that every domain
satisfying Definition A is a normal or curved cusp, so we devote a few lines to it:

Definition 3.4.1. Let Ω ⊂ Rn (n ≥ 2) be a domain with compact boundary ∂Ω. Assume
that 0 ∈ ∂Ω. We say that Ω has a restricted external cusp at the origin if there exists a
neighborhood of 0, U ⊂ Rn such that

U ∩Ω = {(x, z) ∈ Rn−1 × R>0 : x ∈ ϕ(z)$},

where $ ⊂ Rn−1 is a bounded uniform domain and ϕ : R+ → R+ is a Lipschitz increasing
function such that ϕ(0) = 0 and ϕ(t)

t → 0 (t → 0+).
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Definition 3.4.1 is exactly like Definition A, but the domain $ ⊂ Rn−1 is asked to be
uniform instead of Lipschitz. Therefore, it is clear that every outer peak satisfying Definition
A is a restricted external cusp.

Claim 3.4.2. Every restricted cusp satisfies Definition 3.3.1 (or 3.2.1).

We sketch the proof of this claim through a series of observations:
Given Ω a restricted cusp, let us define Ωz the set of points of Ω at height z and the

boundary of this set ∂Ωz := {(x, z) ∈ Rn−1 × R : x ∈ ϕ(z)∂$}.
Observe that the distance from a point (x, z) ∈ Ω to ∂Ω is equivalent to its distance to ∂Ωz.

Indeed, it is clear that d((x, z), ∂Ω) ≤ d((x, z), ∂Ωz). On the other hand, let us denote x = ϕ(z)ζ,
for some ζ ∈ $. Let (x0, z0) = (φ(z0)ζ0, z0) ∈ ∂Ω be such that d((x, z), ∂Ω) = d((x, z), (x0, z0)).
Naturally, x̃0 = (ϕ(z)ζ0, z) is in ∂Ωz. Then

d((x, z), ∂Ωz) ≤ |x − x̃0| = |ϕ(z)ζ − ϕ(z)ζ0| ≤ |ϕ(z)ζ − ϕ(z0)ζ0| + |ϕ(z0) − ϕ(z)||ζ0|

≤ |ϕ(z)ζ − ϕ(z0)ζ0| + CϕC$|z0 − z| ≤ C(|ϕ(z)ζ − ϕ(z0)ζ0| + |z0 − z|)
≤ Cd((x, z), (x0, z0)) = Cd((x, z), ∂Ω),

where Cϕ is the Lipschitz constant of ϕ and C$ = sup{‖ξ‖ : ξ ∈ $}.
Let r$ be the inner radius of $:

r$ = sup
x∈$

inf
y∈∂$

d(x, y),

and c$ ∈ $ a point such that B(c$, r$) ⊂ $.
Let us consider the curve Γ : R+ → R

n, Γ(t) = (ϕ(t)c$, t) that describes the “center” of Ω.
Let S̃ be the set of all cubes S ∈ W = W(Ω) such that S ∩ Γ(t) , ∅. Let S = {S i}

∞
i=1 be a

subset of S̃ such that S i ∩ S i+1 , ∅ and zS i+1 < zS i (this is possible because ϕ(t)
t → 0). S is the

spine of Ω.
Since ϕ is Lipschitz, we have:

ϕ(z + Cϕ(z)) − ϕ(z) ≤ Cϕ(z + Cϕ(z) − z) = Cϕ(z).

Then:
ϕ(z + Cϕ(z)) ≤ Cϕ(z). (3.4.1)

On the other hand d(Γ(t), ∂Ωt) = r$ϕ(t), and consequently d(Γ(t), ∂Ω) ∼ ϕ(t). Taking this
into account, (3.4.1) implies that `(S i) ∼ ϕ(zi).

Properties (3.3.1) and (3.3.2) (as well as (3.2.1) and (3.2.2) when c$ can be taken equal
to 0) follow easily from the definition of S. The covering property (3.2.3) is a consequence
of (3.4.1). Since $ is a fixed bounded domain, there is a radius R$ such that $ ⊂ B(c$,R$).
This radius scaled to the section Ωz is ϕ(z)R$, but ϕ(z) is essentially the length `(S (z)). Taking
(3.4.1) into consideration, this implies that there is a constant K (depending on r$, R$ and
n), such that KS i covers the slice of Ω between heights zi and zi + `(S i), ∀i. Thence, (3.2.3)
follows.
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The last thing to prove, then, is that uniformity properties (3.2.4) and (3.2.5) stand for
every restricted cusp. We use the following result stated by Smith, Stanoyevitch and Stegenga
in [Smith et al., 1994]:

Lemma 3.4.3. Let Ω1 and Ω2 be uniform domains with finite diameters. Then Ω1 × Ω2 is a
uniform domain.

Remark 3.4.4. The definition of uniform domain used in [Smith et al., 1994] (for the proof
of this lemma) is slightly different than that stated here. For the equivalence between both
see [Väisälä, 1988] and [Martio, 1980].

In Definition 3.2.1, Properties (3.2.4) and (3.2.5) are requiered for points in Ωi∪Ωi+1. We
prove that they stand in every slice between heights z − Cϕ(z) and z + Cϕ(z), for every fixed
constant C. Our proof is based on the following idea: since ϕ is Lipschitz, the set:

Ω ∩ {(x, z) ∈ Rn : z ∈ (z0 −Cϕ(z0), z0 + Cϕ(z0))},

is almost the cylinder:

Ω̂0 := ϕ(z0)$ × (z0 −Cϕ(z0), z0 + Cϕ(z0)), (3.4.2)

which is uniform thanks to Lemma 3.4.3. In that lemma, the ε parameter of Ω1 ×Ω2 depends
on the respective values of the parameters of Ω1 and Ω2 and on the quotient diam(Ω1)

diam(Ω2) . Since
in (3.4.2) diam(Ω1) ∼ diam(Ω2), we may assume that the same ε stands for the cylinder for
every z0.

Let z0 > 0 be a fixed number and C0 a constant such that C0 <
z0

ϕ(z0) . Observe that since
t

ϕ(t) → ∞ as t → 0, the constant C0 chosen for a certain z0 remains useful for every z < z0.
Let us denote:

Ω0 = Ω ∩ {(x, z) ∈ Ω : z0 −C0ϕ(z0) < z < z0 + C0ϕ(z0)}.

We want to prove that Ω0 is uniform. We associate points in Ω̂0 with points in Ω0 at the
same heights, so we denote (x̂, z) the points in Ω̂0 and (x, z) those in Ω0. Let F : Ω̂0 → Ω0 be
the function:

F(x̂, z) =
( ϕ(z)
ϕ(z0)

x̂, z
)
.

Suppose ζ ∈ $ is such that ϕ(z0)ζ = x̂. Then x =
ϕ(z)
ϕ(z0) x̂ = ϕ(z)ζ, and F(x̂, z) = (x, z) ∈ Ω0.

F is obviously bijective, with

F−1(x, z) =
(ϕ(z0)
ϕ(z)

x, z
)
.

Now we prove that both F and F−1 are Lipschitz with constants independent of z0 (this, in
turn, shows that Ω0 is uniform). We show only the case F−1 since the proof for F is similar.
Let us consider (x, z), (y,w) ∈ Ω0, x = ϕ(z)ζ, y = ϕ(w)ξ for some ζ, ξ ∈ $.
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|F−1(x, z) − F−1(y,w)| = |(ϕ(z0)ζ − ϕ(z0)ξ, z − w)| ≤ |ϕ(z0)ζ − ϕ(z0)ξ|︸              ︷︷              ︸
I

+ |z − w|︸︷︷︸
II

.

And
I ≤ ϕ(z0)

∣∣∣∣ϕ(z)
ϕ(z)

ζ −
ϕ(w)
ϕ(w)

ξ
∣∣∣∣ = ϕ(z0)

∣∣∣∣ϕ(w)x − ϕ(z)y
ϕ(z)ϕ(w)

∣∣∣∣.
Since z,w ∈ (z0 −Cϕ(z0), z0 + Cϕ(z0), Equation (3.4.1) implies that ϕ(z0) ∼ ϕ(z) so:

I ≤ C
∣∣∣∣ϕ(w)x − ϕ(z)y

ϕ(w)

∣∣∣∣.
On the other hand:

|ϕ(w)x − ϕ(z)y| ≤ |ϕ(w)x − ϕ(w)y| + |ϕ(w)y − ϕ(z)y| ≤ ϕ(w)|x − y| + |ϕ(w) − ϕ(z)||y|
≤ ϕ(w)|x − y| + Cϕ|w − z||ϕ(w)ξ| ≤ CϕC$ϕ(w){|x − y| + |w − z|}.

Hence: I ≤ C{|x − y| + |w − z|}, and consequently

|F−1(x, z) − F−1(y,w)| ≤ C{|x − y| + |w − z|} ≤ C|(x, z) − (y,w)|.

So, F−1 is Lipschitz with a Lipschitz constant depending only on the constants C0, Cϕ and
C$.

Remark 3.4.5. We do not really need Ω0 to be uniform as a separate domain (with its floor
and its roof as parts of the boundary): we just need to prove that the curve joining two points
in Ω0 satisfy property (3.2.5), which is given in terms of the distance to the boundary of Ω.
But d((x, z), ∂Ω) ≥ d((x, z), ∂Ω0), ∀(x, z) ∈ Ω0, so (3.2.5) stands.

This complete the proof of Claim 3.4.2. Since the class of domains given by Definition
3.4.1 is broader than that of Definition A, we can state the following:

Corollary 3.4.6. Every domain satisfying Definition A is an external cusp in terms of Defini-
tion 3.3.1 (or Definition 3.2.1).
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Approximation by smooth functions

The density of smooth functions on a certain Sobolev space is a very useful tool for many
pourposes, since it allows to prove different properties arguing first for smooth functions, that
are easier to treat, and then, by a simple density argument, for functions in the correspondant
Sobolev space.

Given a bounded open set D, it is well known that every function f ∈ Wk,p(D) can be ap-
proximated by a sequence of functions fm ∈ C∞(D) (see, for example, [Evans, 1998, Section
5.3.2.]). Observe that, in this case, no conditions on the boundary of D are imposed. We are
interested in a stronger version of this result, which is the approximation by smooth functions
up to the boundary of D, i.e. we want fm to be in C∞(D̄) or, in other words, we want fm to be
the restriction to D̄ of functions f̃m in C∞(Rn), or in C∞0 (Rn). The possibility of approximating
Sobolev functions by smooth ones up to ∂D depends on the nature of the domain considered.
The classical literature concerning Sobolev spaces includes results of this kind for domains
with Lipschitz or C1 boundary (e.g.: [Evans, 1998, Section 5.3.3], [Maz’ya, 2011, Section
1.1.6], [Burenkov, 1998, Chapter 2]), and, more generally for domains satisfying the seg-
ment property, or equivanlently, with C boundary (e.g. [Adams and Fournier, 2003, Theorem
3.22],[Kufner, 1985, Chapter 7]).

In this Chapter, we prove that given a normal (or curved) cusp Ω, and f ∈ Wk,p(Ω), there
is a function g ∈ C∞(Rn

+), with Rn
+ = {x ∈ Rn : xn > 0}, as close to f as needed. Observe that

such a result does not involve the whole boundary of Ω, but excludes precisely the singular
point at the tip of the cusp. The density of C∞(Ω̄) is proved in Section 5.3 as a corollary of
the first stage of the extension process given in Theorems 5.1.1 and 5.2.1.

Our approximation theorem is a simple corollary of the density of smooth functions on
uniform domains, that is proved in [Jones, 1981]. We reproduce Jones’s proof just for the
sake of completeness. For normal and curved cusps, we prove first an unweighted density
theorem and afterwards, an easy weighted generalization, for weights that can be considered
constants by bands.

47
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4.1 The unweighted case

4.1.1 Uniform domains

In [Jones, 1981, Proposition 4.4], the author proves that every function in Wk,p(D), with D a
uniform domain, can be approximated by functions in C∞(D̄). In other words, he proves that
given f ∈ Wk,p(D), and η > 0, there is a funcion gη ∈ C∞(Rn) such that ‖ f − gη‖Wk,p(D) < η.
The main tool for obtaining this result is the existence of a chain of cubes similar to the one
in Lemma 3.2.3. An inmediate consequence of this fact is that if Ω is a normal (or curved)
cusp we can approximate f ∈ Wk,p(Ω) by C∞ functions on the bands Ωi = KS i ∩ Ω. Pasting
this local approximations, we construct a smooth approximation of f over all Ω.

Some technical aspects of the proof of Jones’s density theorem, only sketched in [Jones,
1981], are developed in detail in [Chua, 1992], although the author ommits a few details
(particularly, those fully explained in Jones [1981]).

For the sake of completeness, we include here a complete proof of this result. We follow
mostly [Chua, 1992], although we introduce some little modifications. We prove:

Proposition 4.1.1. Let D be a ε-uniform domain, and let f ∈ Wk,p(Ω). Then, for every η > 0
there is a function g ∈ C∞(Rn) such that ‖ f − g‖Wk,p(D) < η.

We avoid the weighted version of this result (which is proved, for weights in the Ap class
of Muckenhoupt, in [Chua, 1992]), since the weights that we are interested in can be treated
in a very simple way (see Section 4.2).

Let ρ = 2−m a number that will be fixed later. Let Q = {Q j} be the collection of all diadic
cubes with `(Q j) = ρ and Q j ⊂ D. We define:

Q′ =

{
Q j ∈ Q : Q j ⊂ Vk for some Vk ∈ W, `(Vk) ≥

15
√

n
ε

ρ
}
.

For Q j ∈ Q
′, we denote Q̃ j = 601n

ε2 Q j, and ˜̃Q j = 1202n
ε2 Q j. For simplicity, we assume ε < 1.

Lemma 4.1.2. ρ can be taken small enough so that D ⊂ ∪Q j∈Q′ Q̃ j.

Proof. Given z ∈ D, let

mz = inf
{
d(z,V) : V ∈ W(D), `(V) ≥

15
√

nρ
ε

}
.

If mz ≤
600nρ
ε2 , then there is some Q j ∈ Q

′ and w ∈ Q j such that |z − w| ≤ 600nρ
ε2 . And then:

|z − c(Q j)| ≤ |z − w| +
√

nρ ≤
600n
ε2 ρ +

√
nρ ≤

601nρ
ε2 .

And then, z ∈ 601n
ε2 Q j = Q̃ j.
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Now, we want to prove that mz ≤
600nρ
ε2 for every z ∈ D. Suppose that for some z,

mz >
600nρ
ε2 . Then, let x ∈ D be such that |x − z| = 1

2 min{r,mz}, where r is the radius of D.
Take γ the curve joining x and z, and x0 ∈ γ such that |x0 − z| = 1

2 |x − z|. Observe that if Vx0

is the cube inW(D) that contain x0, then:

4
√

n`(Vx0) ≥ d(Vx0 , ∂(D)) ≥ d∂(x0) −
√

n`(Vx0).

Hence:

5
√

n`(Vx0) ≥ d∂x0 ≥ ε
|x − x0||x0 − z|
|x − z|

≥ ε
|x − z|

4
=
ε

8
min{r,mz}.

Now, if we take ρ such that ε
8r > 75n

ε
ρ, then: `(Vx0) ≥

15
√

n
ε
ρ. Which is a contradiction, since

d(z,Vx0) ≤
mz
4 . �

Lemma 4.1.3. If Q1,Q2 ∈ Q
′ are such that ˜̃Q1 ∩

˜̃Q2 , ∅, then there is a chain of cubes in Q
connecting Q1 and Q2, F = {U1 = Q1,U2, . . . ,Ur = Q2}, with r ≤ C, for some C independent
of Q1 and Q2.

Proof. The arguments are similar to those used to prove Lemma 3.2.3. Let us consider γ
the curve joining Q1 and Q2, and let z ∈ γ. We can assume that d(z,Q1) ≤ d(z,Q2). If
d(z,Q1) ≤ 10

√
n

ε
ρ, then

5
√

n`(Vz) ≥ d∂(z) ≥ d∂(Q1) − d(z,Q1) ≥
15
√

n
ε

ρ −
10
√

n
ε

ρ ≥
5
√

n
ε

ρ.

Hence,
`(Vz) ≥

ρ

ε
.

Anf if d(z,Q1) > 10
√

n
ε
ρ, then:

5
√

n`(Vz) ≥ d∂(z) ≥ ε
d(z,Q1)d(z,Q2)

d(Q1,Q2)
≥ ε

d(z,Q1)
2

> 5
√

nρ.

Consequently, in any case, `(Vz) ≥ ρ, for all z ∈ γ. Therefore, the collection of cubes U j ∈ Q
′

such that U j ∩ γ , ∅ contain a chain as the one desired. �

For each Q j ∈ Q
′, let π j = π(Q j)( f ), the polynomial approximation of f given by Defini-

tion 2.4.10. Let us also construct functions ϕ j ∈ C∞0 (˜̃Q j), satisfying:

0 ≤ ϕ j ≤ 1, 0 ≤
∑

Q j∈Q′

ϕ j ≤ 1, and
∑

Q j∈Q′

ϕ j(x) = 1, ∀x ∈
⋃

Q j∈Q′

Q̃ j.

With:
|Dαϕ j| ≤

C
r|α|
.
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We define
g0 =

∑
Q j∈Q′

π jϕ j.

g0 will approximate f near ∂Ω, so we will define the approximation g as a smooth combi-
nation of g0 and another function that approximates f in the interior of D. However, before
proving Proposition 4.1.1, let us state two lemmas concerning the local approximation pro-
perties of the polynomials π j:

Lemma 4.1.4. If Q j ∈ Q
′, 0 ≤ |α| ≤ k, then:

‖Dαπ j‖Lp(˜̃Q j)
≤ C‖Dα f ‖Lp(Q j) + Cρk−|α|‖∇k f ‖Lp(Q j).

Proof. Applying Corollary 2.4.3 and Theorem 2.4.12:

‖Dαπ j‖Lp(˜̃Q j)
≤ C‖Dαπ j‖Lp(Q j) ≤ C‖Dα f ‖Lp(Q j) + C‖Dα(π j − f )‖Lp(Q j)

≤ C‖Dα f ‖Lp(Q j) + Cρk−|α|‖∇k f ‖Lp(Q j).

�

Lemma 4.1.5. If Q0 ∈ Q
′, 0 ≤ |α| ≤ k. We denote F0 the collection of cubes formed by all

the chains F0, j between Q0 and Q j for some Q j ∈ Q
′ such that ˜̃Q j ∩

˜̃Q0 , ∅. Then:∑
Q j∈Q′:

˜̃Q j∩
˜̃Q0,∅

‖Dα((π0 − π j)ϕ j)‖Lp(Q0) ≤ Cρk−|α|‖∇k f ‖Lp(∪F0).

Proof. Fix Q j and take F0, j = {U1 = Q0, . . . ,Ur = Q j} the chain joining Q0 and Q j. We have:

‖Dγ(π0 − π j)‖Lp(Q0) ≤

r−1∑
i=1

‖Dγ(π(Ui) − π(Ui+1))‖Lp(Q0) ≤ C
r−1∑
i=1

‖Dγ(π(Ui) − π(Ui+1))‖Lp(Ui∪Ui+1)

≤ C
r−1∑
i=1

{
‖Dγ(π(Ui) − π(Ui ∪ Ui+1))‖Lp(Ui) + ‖Dγ(π(Ui ∪ Ui+1) − π(Ui+1))‖Lp(Ui+1)

}
≤ C

r−1∑
i=1

{
‖Dγ(π(Ui) − f )‖Lp(Ui) + ‖Dγ( f − π(Ui+1))‖Lp(Ui+1) + ‖Dγ( f − π(Ui ∪ Ui+1))‖Lp(Ui∪Ui+1)

}
≤ C

r−1∑
i=1

{
`(Ui)k−|γ|‖∇k f ‖Lp(Ui) + `(Ui+1)k−|γ‖∇k f ‖Lp(Ui+1 + L(Ui ∪ Vi+1)k−|γ|‖∇k f ‖Lp(Ui∪Ui+1)

}
≤ C

r−1∑
i=1

ρk−|γ|‖∇k f ‖Lp(Ui∪Ui+1) ≤ ρ
k−|γ|

r−1∑
i=1

(
‖∇k f ‖p

Lp(Ui∪Ui+1)

) 1
p

r
1
p′ ≤ Cρk−|γ|‖∇k f ‖Lp(∪F0, j).

Observe that in the last step it is crucial the fact that the number r of cubes in the chain F0, j

is bounded by a constant independent of Q0 and Q j.
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Now: ∑
Q j∈Q′:

˜̃Q j∩
˜̃Q0,∅

‖Dα((π0 − π j)ϕ j)‖Lp(Q0) ≤
∑

Q j∈Q′:
˜̃Q j∩

˜̃Q0,∅

∑
γ≤α

‖Dγ(π0 − π j)Dα−γϕ j‖Lp(Q0)

≤ C
∑

Q j∈Q′:
˜̃Q j∩

˜̃Q0,∅

∑
γ≤α

ρ|γ|−|α|ρk−|γ|‖∇k f ‖Lp(∪F0, j) ≤ Cρk−|α|‖∇k f ‖Lp(∪F0).

In the last step we use that a cube U participates at most in a finite number of chains F0, j

bounded by a constant that depends only on D, but not on Q0. This fact is a consequence of
the finiteness of the chains (Lemma 4.1.3). �

Now we can prove the Proposition:

Proof of Proposition 4.1.1. Let Ds = {x ∈ D : d(x, ∂D) ≥ s}, for some s ∈ (0, 1). We
take s such that ‖ f ‖Wk,p(D\D2s) < η. Let ψ ∈ C∞0 (Ds/2), such that ψ(x) = 1, ∀x ∈ Ds, and
|Dαψ| ≤ C(|α|)s−|α|. Now, let ξ ∈ C∞0 (B(0, 1)) such that

∫
Rn ξ = 1, and take ξt = t−nξ( x

t ). We
can choose t in order to obtain:

‖ f − f ∗ ξt‖W1,p(Ds/2) ≤ ηsk.

Finally, put g1 = g0(1−ψ) and g2 = ( f ∗ξt)ψ. Then, g = g1+g2 is the desired approximation
of f . In fact, it is clear that g ∈ C∞(Rn), and |g| ≤ M for some constant M. Furthermore:

‖Dα( f − g)‖Lp(D) ≤ ‖Dα( f − g)‖Lp(Ds)︸               ︷︷               ︸
I

+ ‖Dα( f − g)‖Lp(D\Ds)︸                  ︷︷                  ︸
II

.

I = ‖Dα( f − (g1 + g2))‖Lp(Ds) = ‖Dα( f − g2)‖Lp(Ds) = ‖Dα( f − f ∗ ξt)‖Lp(Ds) < ηsk.

For II, observe that:

Dα( f − (g1 + g2)) =
∑
β≤α

Cα,β(Dα−βψ)(Dβ( f − f ∗ ξt))︸                                   ︷︷                                   ︸
II′

+
∑
β≤α

Cα,β(Dα−β(1 − ψ))(Dβ( f − g0))︸                                       ︷︷                                       ︸
II′′

.

And:
‖II′‖Lp(D\Ds) ≤ C

1
s|α|−|β|

skη = Cη.

The only thing left is to estimate II′′. We solve separately the cases β = α and β < α:
Case β < α: The advantage of this case is that Dα−β(1 − ψ) = 0 on D \ Ds/2. We can take ρ
small enough so Ds/2 \ Ds ⊂ ∪Q∈Q′Q (for this we need at least ρ < s/2):

‖(Dα−β(1 − ψ))(Dβ( f − g0))‖p
Lp(D\Ds)

≤ Cs−|α−β|p‖Dβ( f − g0)‖p
Lp(Ds/2\Ds)

≤ Cs−|α−β|p
∑

Q0∩(Ds/2\Ds),∅

‖Dβ( f − g0)‖p
Lp(Q0).
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And:

‖Dβ( f − g0)‖p
Lp(Q0) ≤ C‖Dβ( f − π0)‖p

Lp(Q0) + C
∥∥∥∥Dβ

∑
j:˜̃Q j∩

˜̃Q0,∅

(π j − π0)ϕ j

∥∥∥∥p

Lp(Q0)

≤ Cρ(k−|β|)p‖∇k f ‖p
Lp(Q0) + Cρ(k−|β|)p‖∇k f ‖p

Lp(∪F0) ≤ Cρ(k−|β|)p‖∇k f ‖p
Lp(∪F0).

Now we need to estimate the summation of ‖∇k f ‖p
Lp(∪F0) over all the sets F0, for all

Q0 ∈ Q
′ such that Q0 ∩ (Ds/2 \ Ds) , ∅. For this matter, we can take ρ small enough so

that if Q0 ∩ (Ds/2 \ Ds) , ∅ and Q j such that ˜̃Q0 ∩
˜̃Q j , ∅, then ∪F0, j ⊂ D \ D2s. In this way:

‖(Dα−β(1 − ψ))(Dβ( f − g0))‖Lp(D\Ds) ≤ Cs−|α−β|ρk−|β|‖∇k f ‖Lp(D\D2s) ≤ Cη.

Which conclude the analysis of this first case.
Case β = α: In this case we cannot restrict the domain, because 1 − ψ does not necessarily
vanish in any subset of D\Ds. On the other hand, no derivative is applied on 1−ψ, and hence
the factor s−|α−β| in the previous case does not appear here.

‖Dβ( f − g0)‖Lp(D\Ds) ≤ ‖D
β f ‖Lp(D\Ds) + ‖Dβg0‖Lp(D\Ds) ≤ η + ‖Dβg0‖Lp(D\Ds).

‖Dβg0‖Lp(D\Ds) ≤
∑

Q0⊂D\Ds

∥∥∥∥∥Dβ
∑

j

(
π jϕ j

)∥∥∥∥∥
Lp(Q̃0)

.

But, since
∑
ϕ j = 1 on Q0,

Dβ
∑

j

(
π jϕ j

)
≤ Dβπ0 + Dβ

∑
j

(π j − π0)ϕ j,

so:

‖Dβg0‖Lp(D\Ds) ≤ C
∑

Q0⊂D\Ds

(
‖Dβπ0‖Lp(Q̃0) +

∥∥∥∥∥∑
j

Dβ
(
(π j − π0)ϕ j

)∥∥∥∥∥p

Lp(Q̃0)

)
≤ C

∑
Q0⊂D\Ds

(
‖Dβ f ‖Q0 + ρk−|β|‖∇k f ‖Lp(∪F0)

)
≤ C‖ f ‖Wk,p(D\D2s) < Cη.

�

4.1.2 External cusps
As we commented earlier, the density of smooth functions on Sobolev spaces for uniform
domains can be used as a local approximation result for normal cusps.

Given Ω a normal (or curved) cusp, with spine S = {S i}, we define:

Ω̌i = Ω ∩
{
x = (x′, xn) : zi −

`(S i+1)
2

≤ xn < zi−1 +
`(S i−1)

2

}
,
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Ω̌′i = Ω ∩
{
x = (x′, xn) : zi −

`(S i+1)
2

≤ xn < zi +
`(S i)

2

}
.

The proof of Proposition 4.1.1 relies on the existence of the chain given by Lemma 4.1.3.
Furthermore, thanks to Proposition 3.2.2 we can affirm that this kind of chain also exists in
Ω̌i. Consequently, we obtain the following:

Corollary 4.1.6. Given Ω a normal (or curved) cusp, with Ω̌i the sets defined above, and
f ∈ Wk,p(Ω). For every η > 0, there is a function gi ∈ C∞(Rn) such that

‖ f − gi‖Wk,p(Ω̌i) < η.

Now we can prove the main result of this Chapter:

Theorem 4.1.7. Let Ω be a normal or curved cusp, and f ∈ Wk,p(Ω). Given η > 0, there is a
function g ∈ C∞(Rn

+) such that ‖ f − g‖Wk,p(Ω) < Cη

Proof. Let us consider gi ∈ C∞ such that ‖ f − gi‖Wk,p(Ω̌i) <
η

2i `(S i)k.
Let {ψi}i be a partition of the unity in the segment (0, z1], such that

ψi ∈ C∞0

([
zi −

`(S i+1)
2

, zi−1 +
`(S i−1)

2

])
,

∑
ψi(t) ≡ 1 ∀t ∈ (0, z1], and |Drψi| ≤

C
`(S i)r .

Let us define

g(x) =

∞∑
i=2

gi(x)ψi(xn).

Observe that, in Ω̌′i , ψi + ψi+1 ≡ 1. And then:

‖Dα( f − g)‖Lp(Ω̌′i )
≤ ‖Dα( f − (ψigi + ψi+1gi+1))‖Lp(Ω̌′i )

≤ ‖Dα(ψi( f − gi))‖Lp(Ω̌′i )
+ ‖Dα(ψi+1( f − gi+1))‖Lp(Ω̌′i )

.

But,

‖Dα(ψi( f − gi))‖Lp(Ω̌′i )
≤

∥∥∥∥∑
β≤α

Dα−βψiDβ( f − gi)
∥∥∥∥

Lp(Ω̌′i )

≤
∑
β≤α

C
`(S i)|α|−|β|

‖Dβ( f − gi)‖Lp(Ω̌′i )

≤
∑
β≤α

C
`(S i)|α|−|β|

η

2i `(S i)k ≤ C
η

2i .

Consequently:

‖ f − g‖p
Wk,p(Ω) =

∞∑
i=1

‖ f − g‖p
Wk,p(Ω̌′i )

≤

∞∑
i=1

C
ηp

2pi ≤ Cηp.

�
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4.2 The weighted case

In [Muckenhoupt, 1972], the author introduces the class of Ap weights, also known as the
Muckenhoupt class. We say that a nonnegative function ω is in the class Ap if:

sup
Q⊂Rncube

1
|Q|

( ∫
Q
ω(x)dx

)( ∫
Q
ω(x)−

1
p−1 dx

)p−1

≤ C < ∞.

Chua ([Chua, 1992]) proves Proposition 4.1.1 for the weighted Sobolev space Wk,p
ω (Ω),

where ω is an Ap weight. In fact, the proof is exactly the one that we provide in Section 4.1.1,
since the approximation properties of the polinomials π(Q) (Theorems 2.4.11 and 2.4.12),
hold for the weighted case, with Ap weights. We avoid this approach for the sake of simplicity,
and because our interest on the weighted case is mostly devoted to weights depending on the
distance to the tip of the cusp, which can be treated in a very easy way. However, let us state
that Theorem 4.1.7 holds in Wk,p

ω (Ω), for ω an Ap weight. This fact is recalled in Chapter 5
for stating a weighted extension theorem. This said, let us now prove a very simple weighted
density theorem for weights depending on the distance to the tip of the cusp.

Definition 4.2.1. Let Ω be a normal or curved cusp, and ω : Ω −→ R≥0 a nonnegative
integrable function. We say that ω is an admissible weight for Ω if there is a constant C such
that:

ω(x) ∼
C
ωi ∼

C
ωi+1 ∀x ∈ Ω̌i, ∀i

where ωi and ωi+1 are constants that approximates ω on Ω̌i and Ω̌i+1 respectively.

Example 4.2.1. Let us consider ω̂ : R≥0 −→ R≥0, a nonnegative, monotonous, integrable
function, such that ω̂(2t) ∼

C
ω̂(t) for some constant C independent of t. Take ω : Ω −→ R≥0,

ω(x) = ω(|x|). Then, ω is an admissible weight for Ω.

The following is the weighted version of Theorem 4.1.7, and it is proved merely pulling
out of the integrals the constants approximating the weight on each Ω̌i:

Theorem 4.2.2. Let Ω be a normal or curved cusp, f ∈ Wk,p
ω (Ω), with ω an admissible weight

for Ω. Given η > 0, there is a function g ∈ C∞(Rn
+) such that ‖ f − g‖Wk,p

ω (Ω) < η.

Proof. Let ψi be the partition of the unity constructed in Theorem 4.1.7, and gi functions in
C∞(Rn) such that,

‖ f − gi‖Wk,p(Ω̌i) <
η

ωi2i `(S i)k.

We define

g(x) =

∞∑
i=2

ψi(x)gi(x).
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Then:

‖Dα( f − g)‖p
Lp
ω(Ω)

= ‖Dα( f − g)ω
1
p ‖

p
Lp(Ω) =

∑
i

‖Dα( f − g)ω
1
p ‖

p
Lp(Ω̌′i )

≤ C
∑

i

ωi‖Dα( f − g)‖p
Lp(Ω̌′i )

≤ C
∑

i

ωi‖Dα( f − g)‖p
Lp(Ω̌′i )

.

And now, following like in Theorem 4.1.7:

≤
∑

i

∑
β≤α

C
`(S i)−|α−β|

ωi
η

ωi2i `(S i)k ≤ Cη.

�





5

Extension Theorems

Given a domain Ω, a linear bounded operator E is called an extension operator on Wk,p(Ω), if

E : Wk,p(Ω) −→ Wk,p(Rn),

and E f |Ω = f for every F ∈ Wk,p(Ω). The existence of an extension operator implies that
many properties that hold in Wk,p(Rn) are inherited by Wk,p(Ω). As we commented earlier, a
classical example of this situation is given by embedding results (see, for example [Burenkov,
1998, Sections 4.2 and 4.7], [Adams and Fournier, 2003, Section 5.7]). In the sequel we
provide another results that can be obtained from extension theorems. For example, we prove
the density of smooth functions up to the tip of a normal cusp. Also in Appendix A we prove
weighted Korn inequalities for external cusps, using the extension operator constructed in
this Chapter.

If Ω is such that Wk,p(Ω) admits an extension operator, we say that Ω is an extension
domain for Sobolev spaces (E.D.S.). Simple examples ([Stein, 1970]) show that external
cusps are not E.D.S. Therefore, we can only expect to obtain weighted extension operators of
the form:

Λ : Wk,p(Ω) −→ Wk,p
σ (Rn),

where σ is a weight that somehow compensates the singularity of the domain.

Remark 5.0.3. The narrowing of a cuspidal domain Ω allows functions in Wk,p(Ω) to go to
infinity very rapidly at the tip of the cusp. This forces the weight that naturally arises in the
extension process to vanish at the origin. Moreover, for this reason we are not able to guar-
ranty that the extension of a function f , Λ f has weak derivatives at the origin. Particularly,
we cannot prove that Λ f is in L1

loc of a neighborhood of the origin. We can prove, however,
that our extension and its derivatives are in L1

loc(G \ {0}), being G a neighborhood of the ori-
gin. This induce us to define a special weighted Sobolev space where the extension belongs.
Following Maz’ya and Poborchiı̌, we state the following definition: given G a domain con-
taining the origin 0, and ω a weight that vanishes at 0 and is bounded away from that point,
we say that a function g is in Wk,p

ω (G) if g has weak derivatives of order α for |α| ≤ k, defined
in G setminus{0}, and

∑
α ‖ω

1
p Dαg‖Lp(G) < ∞.

57
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This Chapter is organized as follows: in the first Section we construct two weighted
extension operators for normal cusps assuming two different extra conditions on the domain.
In this way, we prove Theorem 5.1.1, which is a generalization of Theorem A, stated in the
Introduction and due to Maz’ya and Poborchiı̌, (see [Maz’ya and Poborchiı̌, 1997, Chapter
5]). Our extension operators are constructed in three stages, the first of which is a simple
adaptation of the techniques used by Jones [Jones, 1981] for proving the extendability of
functions on uniform domains. In Section 5.2, we introduce a zero stage, that allows us to
extend functions from a curved cusp to a normal one. In this way we prove Theorem 5.2.1,
that extends Theorem 5.1.1 to the case of curved cusps. In Section 5.3 we use the first stage
of the extension process to prove the density of smooth functions up to the tip of the cusp,
extending the result obtained in Chapter 4. Finally, in Section 5.4, we prove a weighted
version of our extension results, obtaining an operator of the form:

Λ : Wk,p
ω (Ω) −→ Wk,p

ωσ(Ω).

We focus our analysis on weights depending on the distance to the tip of the cusp, but we
also consider weights depending on the distance to the boundary.

5.1 Extension for normal cusps in the unweighted case
The aim of this section is to build an extension operator for normal cusps in the unweighted
case Wk,p. For doing this, we need to introduce two extra conditions, which are generaliza-
tions of the ones requiered by Maz’ya and Poborchiı̌ in Theorem A.

The first condition is:
`(S i)

zi
≤ C

`(S j)
z j

∀i > j C constant, (5.1.1)

which is a generalization of (1.2.1). We use it to prove item (a) in Theorems 5.1.1 and 5.2.1.
The second condition is:

`(S j) ≤ K`(S i) ∀i > j such that d(S i, 0) >
1
2

d(S j, 0), (5.1.2)

which is a generalization of (1.2.2), and it is necessary for the proof of item (b) in both
theorems.

Now, we can state the main result of this Section:

Theorem 5.1.1. Let Ω ⊂ Rn be a domain with an external normal cusp at the origin.

(a) If kp , 1 or kp = 1 and the spine S satisfies (5.1.1), there is an extension operator

Λ : Wk,p(Ω)→ Wk,p
σ (Rn),

where

σ(x) =

 1 x ∈ Ω(
`(S (|x|))
|x|

)kp
x ∈ Ωc
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(b) If the spine S satisfies (5.1.2), there is an extension operator

Λ : Wk,p(Ω)→ Wk,p
σ (Rn),

where

σ(x) =

 1 x ∈ Ω(
`(S (|x|))
|x|

)n−1
x ∈ Ωc

(c) Assuming (5.1.2) stands, if σ̃ is such that there is Λ̃ : Wk,p(Ω)→ Wk,p
σ̃ (Rn), an extension

operator, then
σ̃(x) ≤ Cσ(x) ∀x ∈ U \Ω,

where U a neighborhood of the origin, and σ is taken as in item (a) when kp < n − 1
and as in item (b) when kp > n − 1.

Remark 5.1.2. Observe that Theorem A imposes conditions on the relationship between the
parameters k, n and p. For example, if an external cusp satisfies property (1.2.1) (but not
(1.2.2)) then, it admits the application of Theorem A only if kp < n − 1. This is not the case
of Theorem 5.1.1, where the extension operators are built regardless of the values of k, n
and p (except for the particular case kp = 1). Moreover, observe that item (b) in Theorem
5.1.1, when kp , 1, provides an extension operator that does not requiere any additional
hyphothesis on the domain.

Below we provide a detailed proof for items (a) and (b) of Theorem 5.1.1. Item (c) is
proved later by a simple adaptation of the counterexample given in [Maz’ya and Poborchiı̌,
1997] for proving the optimality of the weight in Theorem A. Observe that we do not prove
the optimality of the weight in the critical case kp = n− 1. In fact, we believe that the weight
is not sharp for kp = n − 1, and that an equivalence for the weight obtained in Theorem A
in this case should stand for normal cusps, although we were not able to prove it, so far. The
case of curved cusps requires a little modification of our arguments (similar to that needed in
[Maz’ya and Poborchiı̌, 1997]) and it is presented later in Theorem 5.2.1, in the next section.

Let us notice that thanks to item (iii), in Definition 3.2.1, and the results on extension for
locally uniform domains proved in [Jones, 1981], it is clear that it is enough to construct an
extension operator Λ for functions f such that supp( f ) ⊂ Dr = {x = (x1, · · · , xn) : |xn| < r/2},
where r <<

∑∞
i=1 `(S i). Our operator Λ is defined in a set of cubes belonging toWc. Let us

callW2 ⊂ W
c to the set of cubes belonging toWc and contained in Dr. We divideW2 in

three parts related to three different stages of the extension process.

W3 =

{
Q ∈ W2 : zQ > 0 and `(Q) ≤

( ε

5
√

n
K − 1

K

)
`(S (zQ))

}
, (5.1.3)

W4 =
{
Q ∈ W2 \W3 : zQ > 0 and `(Q) ≤ zQ/(8

√
n)

}
, (5.1.4)

W5 =
{
Q ∈ W2 \ (W3 ∪W4)

}
. (5.1.5)
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W3

W4

z S(z)

W5

Figure 5.1: W3,W4 andW5 for a normal cusps.

In Figure 5.1 we show schematically the area covered by each setWi.
Furthermore, let us denote Q j the cubes inW3, so: W3 = {Q j} j, and similarly, {T j} j the

cubes in W4, and {U j} j those in W5. Finally, let {ξ j} j, {φ j} j and {ψ j} j be a partition of the
unity on ∪W2, such that ξ j, φ j, ψ j ∈ C∞0 ; sop(ξ j) ⊂ 17

16 Q j, sop(φ j) ⊂ 17
16T j, sop(ψ j) ⊂ 17

16U j,
and: ∑

j

ξ j(x) +
∑

j

φ j(x) +
∑

j

ψ j(x) = 1 ∀x ∈ ∪W2.

As usual, we may also assume that:

|Dαξ j(x)| ≤
C

`(Q j)|α|
, |Dαφ j(x)| ≤

C
`(T j)|α|

, |Dαψ j(x)| ≤
C

`(U j)|α|
.

Observe that Ω ∪ (∪W3) is an expanded cusp, broader than Ω, but with the same kind of
singularity. On the other hand Ω∪ (∪W3)∪ (∪W4) contains a cone with vertex at the origin,
and therefore it is not a singular domain. Finally, the addition of the cubes inW5 completes
a neighbourhood of the origin.

In each stage of the extension process we define the extension operator in one of these sets
of cubes (in the first stage, inW3, etc.). Since the first stage does not solve the singularity of
Ω, the weight only appears in the second stage.

Our construction is based on the ideas used in [Jones, 1981] for proving an extension
theorem for uniform domains. Jones shows that for a uniform domain D, every cube Q in
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W(Rn \ D̄) near D has a reflected cube Q∗ ∈ W(D) such that (a) `(Q∗) ∼
C
`(Q) and (b)

d(Q,Q∗) ≤ C`(Q), for some universal constant C. These facts allows him to define the
extension Λ f on Q through a polynomial that approximates f on Q∗.

The difficulty for applying this technique to a normal cusp Ω is that it is only possible to
define reflected cubes Q∗ with the previous properties for cubes Q in a close neighbourhood
of the domain. Specifically, we are able to do this just for the cubes inW3. On the contrary
the cubes in W4 are bigger than any cube in W near them. Consequently, for each cube
Q ∈ W4, we are forced to choose between two options: defining a reflected set S (Q), that
is not necessarily a cube, or finding a cube Q∗ comparable to Q, but far from it. These two
options lead to the two different versions of the extension operator, and to the two different
weights, in items (a) and (b) of Theorem 5.1.1. Finally, the extension to the cubes inW5 is
permorfed radially, and preserves the weight obtained forW4.

5.1.1 First stage
This stage follows closely the reflection method given in [Jones, 1981]. It is based on Lemma
5.1.5, where the existence of a reflected cube for every Q ∈ W3 is proved. We need to state
a previous lemma:

Lemma 5.1.3. Given Ω an external normal cusp, with parameters ε,K, there is a constant
K̃ (that could be taken K̃ =

K(K+1)
2 ) such that, if x ∈ Ω, and

zi −
K − 1

2
`(S i) ≤ xn ≤ zi +

K + 1
2

`(S i),

then, x ∈ K̃S i.

Proof. Let us take j = ixn . We suppose j < i (the complementary case is analogous). Property
(3.2.3) implies that KS j 3 x. On the other hand z j ≤ zi + K+1

2 `(S i). But, since `(S j) ≥ `(S i),
we have `(S j) = 2N`(S i) for some N ∈ N0. The largest size for S j is obtained when the cubes
in S grow exponentially between S i and S j. In that case:

z j − zi =

N−1∑
m=0

2m`(S i) ≤
K + 1

2
`(S i),

and 2N ≤ K+1
2 , which leads us to conclude that

`(S j) ≤
K + 1

2
`(S i).

But then x ∈ K K+1
2 S i, since x ∈ KS j. �

Remark 5.1.4. Proposition 3.2.2 implies that properties (3.2.4) and (3.2.5) hold for finite
unions of sets Ωi (and not only for Ωi ∪ Ωi+1). Therefore we may apply both properties for
Ω̃i ∪ Ω̃i+1, where Ω̃i = K̃S i ∩ Ω. On the other hand (3.2.4) implies that the curve given by
item (iii) in Definition 3.2.1 is contained in a finite union of sets Ωi (or in a universal dilation
of S i).
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Lemma 5.1.5. For each Q ∈ W3 there is a cube Q∗ ∈ W such that:

1
4
`(Q) ≤ `(Q∗) ≤ `(Q), (5.1.6)

d(Q∗,Q) ≤ C`(Q). (5.1.7)

Proof. Let i be such that zQ ∈ [zi, zi−1), and x ∈ Ω such that d(Q, x) ≤ 5
√

n`(Q). We may
assume that ε

√
nK < 1

2 . In this case, observe that

xn ≥ zQ − 5`(Q) ≥ zi − 5
ε(K − 1)
5
√

nK
`(S i) ≥ zi −

K − 1
2

`(S i).

The right hand term of the equation is exactly the floor of the expanded cube KS i. On the
other hand:

xn ≤ zi−1 + 5`(Q) ≤ zi−1 + 5
ε(K − 1)
5
√

nK
`(S i)

≤ zi + `(S i) +
K − 1

2
`(S i) = zi +

K + 1
2

`(S i),

and the right term is the roof of the expanded cube KS i. Consequently, x ∈ Ω̃i. Let y ∈ Ω̃i be
such that |x − y| = 5

√
n

ε
`(Q). Note that this is possible because:

|x − y| =
5
√

n
ε

`(Q) ≤
K − 1

K
`(S i) < diam(Ω̃i).

Let, then, γ be the curve given by properties (3.2.4) and (3.2.5). If ξ ∈ γ is such that
|x − ξ|, |ξ − y| ≥ |x−y|

2 , we have: d∂Ω(ξ) ≥ ε
4 |x − y| = 5

√
n

4 `(Q). If S ∈ W, S 3 ξ, then:

4
√

n`(S ) ≥ d(S , ∂Ω) ≥ d(ξ, ∂Ω) −
√

n`(S ) ≥
5
√

n
4

`(Q) −
√

n`(S ).

Therefore
`(S ) ≥

1
4
`(Q).

Let us consider all the cubes T ∈ W satisfying `(T ) ≥ 1
4`(Q) and take Q∗ to be the one that

minimizes the distance to Q. Then `(Q∗) ≤ `(Q). On the other hand

d(Q∗,Q) ≤ d(S ,Q) ≤
1
ε
|x − y| + d(x,Q) ≤

(5
√

n
ε2 + 5

√
n
)
`(Q).

This completes the proof of the lemma. �

Corollary 5.1.6. If Q1,Q2 ∈ W3, Q1 ∩ Q2 , ∅, then d(Q∗1,Q
∗
2) ≤ C`(Q1).
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The following lemma is a simple corollary of Lemma 3.2.3:

Lemma 5.1.7. Given Q1,Q2 ∈ W3, Q1 ∩ Q2 , ∅, there is a constant C = C(ε, n,K) and a
chain of cubes F1,2 = {V1 := Q∗1,V2, . . . ,Vr := Q∗2} ⊂ W such that r ≤ C and `(Vi) ∼ `(Q1),
∀i.

Lemmas 5.1.5 and 5.1.7 are the essential tools for proving Jones’s extension theorem for
uniform domains. Therefore, they are the key of the first stage of our extension process.

For each Q j ∈ W3 let us define PQ j = P(Q∗j). The first term of the extension operator is:

Λ1 f (x) = χΩ(x) f (x) +
∑

Q j∈W3

PQ j(x)ξ j(x).

Thanks to Lemmas 5.1.5 and 5.1.7, and Corollary 5.1.6, this operator can be bounded
using the same arguments that are employeed in [Jones, 1981, Chua, 1992] for the case of
uniform domains.

Remark 5.1.8. In this first stage, and in particular during the proof of the next lemma, we
could invoke Corollary 2.4.3. However, in order to be consistent with the rest of the stages
we show how to use Lemma 2.4.2 instead.

Lemma 5.1.9. If Q ∈ W3 far fromW4 (i.e. Q ∈ W3 is surrounded by cubes inW3) , then:

‖DαΛ1 f ‖Lp(Q) ≤ C
{
`(Q)k−|α|‖∇k f ‖Lp(∪F (Q)) + ‖ f ‖Wkp(Q∗)

}
,

where F (Q) is the set of all the cubes that participate in a chain F j(Q), connecting Q∗ with
Q∗j, for Q j ∩ Q , ∅.

Proof. We have

‖DαΛ1 f ‖Lp(Q) =
∥∥∥∥Dα

∑
Q j∩Q,∅

PQ jξ j

∥∥∥∥
Lp(Q)

≤

∥∥∥∥Dα
∑

Q j∩Q,∅

(PQ j − PQ)ξ j

∥∥∥∥
Lp(Q)︸                               ︷︷                               ︸

I

+
∥∥∥DαPQ

∥∥∥
Lp(Q)︸         ︷︷         ︸

II

.

The second term is easily bounded by means of Lemma 2.4.2, taking into account that Q
and Q∗ can be included inside an auxiliary cube Q̃, Q ∼ Q̃ ∼ Q∗. Alternating the derivatives
of f we get

II ≤ C
∑
|γ+α|<k

`(Q)|γ|‖Dγ+αPQ‖Lp(Q∗)

≤ C
∑
|γ+α|<k

`(Q)|γ|
{
‖Dγ+α(PQ − f )‖Lp(Q∗) + ‖Dγ+α f ‖Lp(Q∗)

}
≤

≤ C‖∇k f ‖Lp(Q∗)`(Q)k−|α| + ‖ f ‖Wk,p(Q∗) ≤ C‖ f ‖Wk,p(Q∗).
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On the other hand:

I ≤ C
∑

Q j∩Q,∅

∑
β≤α

‖Dα−βξ jDβ(PQ j − PQ)‖Lp(Q)

≤ C
∑

Q j∩Q,∅

∑
β≤α

1
`(Q)|α−β|

‖Dβ(PQ j − PQ)‖Lp(Q).

For each j, let us alternate the polynomials associated to the cubes of the chain between Q∗j
and Q∗, given by Lemma 5.1.7. We set F j = {T1 = Q∗,T2, . . . ,Tr = Q∗j} and obtain:

‖Dβ(PQ j − PQ)‖Lp(Q) ≤

r−1∑
i=1

‖Dβ(P(Ti+1) − P(Ti))‖Lp(Q)

≤

r−1∑
i=1

{
‖Dβ(P(Ti+1) − P(Ti ∪ Ti+1))‖Lp(Q) + ‖Dβ((P(Ti ∪ Ti+1) − P(Ti))‖Lp(Q)

}
≤ C

r−1∑
i=1

{
‖Dβ(P(Ti+1) − P(Ti ∪ Ti+1))‖Lp(Ti+1) + ‖Dβ((P(Ti ∪ Ti+1) − P(Ti)‖Lp(Ti)

}
≤ C

r−1∑
i=1

{
‖Dβ(P(Ti+1) − f )‖Lp(Ti+1) + ‖Dβ( f − P(Ti ∪ Ti+1))‖Lp(Ti∪Ti+1) + ‖Dβ( f − P(Ti))‖Lp(Ti)

}
≤ C

r−1∑
i=1

`(Q)k−|β|‖∇k f ‖Lp(Ti∪Ti+1) ≤ `(Q)k−|β|‖∇k f ‖Lp(∪F j).

And then:
I ≤ C`(Q)k−|α|‖∇k f ‖Lp(∪F (Q)).

�

Finally, let us observe that from Lemmas 5.1.5 and 5.1.7 it follows that:∥∥∥∥ ∑
Ql∈W3

Ql∩Q j,∅

χ∪F jl

∥∥∥∥
∞
≤ C < ∞ for all Q j ∈ W3, (5.1.8)

∥∥∥∥ ∑
Q j∈W3

χ∪F (Q j)

∥∥∥∥
∞
≤ C < ∞ (5.1.9)

This means that each cube Q∗j is used at most a fixed number of times, then

‖DαΛ1 f ‖p
Lp(∪W3) =

∑
Q∈W3

‖DαΛ1 f ‖p
Lp(Q) ≤ C‖ f ‖p

Wk,p(Ω).

Therefore
‖DαΛ1 f ‖Lp(∪W3) ≤ C‖ f ‖Wk,p(Ω). (5.1.10)

hence, the operator (Λ1) is bounded far fromW4.
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5.1.2 Second stage
This stage, where the extension operator is defined overW4, is the heart of the extension pro-
cess. The first stage was essentially a translation of Jones’ theorem, which extends functions
to an expanded cusp, where no weight is needed. Second stage, on the other hand, extends
functions to a cone: the cuspidal behaviour of Ω is compensated here by a weight. Stage
three, in turn, completes the extension to a neighborhood of the origin, but does not contain
any interesting idea.

Let us begin stating some properties ofW4 itself. Let T be a cube inW4, and S i = S (zT ).
Observe that from the definition of W3 we know that `(T ) > C`(S i), with the constant
C = ε

5
√

n
K−1

K . In order to simplify notation in subsequent calculations we set C = 1 and
assume that `(T ) ≥ `(S i).

Let W̃4 denote the Whitney decomposition of Rn \ x̂n. Observe that the structure of W̃4

is very simple: cubes grow exponentially as we move away from the axis. Since the positive
semiaxis of x̂n is contained in Ω, Remark 2.2.2 implies that for every cube T ∈ W4, there
is a cube T̃ ∈ W̃4, such that T ⊂ T̃ . The following lemma proves that in fact `(T ) ∼ `(T̃ ),
∀T ∈ W4.

Lemma 5.1.10. There is a constant C such that d(T, x̂n) ≤ C`(T ), for all T ∈ W4

Proof. Let x∗ ∈ ∂Ω be such that d(T, ∂Ω) = d(T, x∗). Let γ be the segment joining T and x∗,
and Q ∈ W3, the nearest cube to T such that Q ∩ γ , ∅. It is clear that

√
n`(Q) ≤ d(Q, ∂Ω) ≤ d(T, ∂Ω) ≤ 4

√
n`(T ).

Let us denote xq ∈ ∂Ω the point such that d(Q, ∂Ω) = d(Q, xq). Then:

d(T, x̂n) ≤ d(T,Q) +
√

n`(Q) + d(Q, x̂n) ≤ 4
√

n`(T ) + 4n`(T ) + d(Q, xq) + d(xq, x̂n)

≤ C`(T ) + d(xq, x̂n) ≤ C`(T ) + K̃`(S (zQ)).

Consequently, if `(S (zQ)) ≤ C`(T ), the result is proved.
Let us denote I = izQ . Furthermore, let T1 ∈ W4 be such that T1 ∩ Q , ∅ and T1 ∩ γ , ∅.

Then, 1
4`(Q) ≤ `(T1) ≤ 4`(Q). Suppose that `(Q) < 1

16`(S I). Then

zT1 ≥ zQ − `(T1) ≥ zI − 4`(Q) > zI −
1
4
`(S I) ≥ zI − `(S I+1) ≥ zI+1.

But, since T1 ∈ W4,

`(Q) ≥
1
4
`(T1) ≥

1
4
`(S (zT1)) ≥

1
4
`(S I+1) ≥

1
16
`(S I).

which is a contradiction. Consequently, `(T ) ≥ C`(Q) ≥ C`(S I), and the result follows. �

Remark 5.1.11. A much simpler proof for this lemma can be provided assuming property
(5.1.2). However, item (a) in Theorem 5.1.1 can be proved without (5.1.2), and so we prefer
to detail the general proof.
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As we stated above, Lemma 5.1.10 shows that `(T ) ∼ `(T̃ ), ∀T ∈ W4. This fact implies
that the number of cubes of a certain size inW4 is comparable with the number of cubes of
the same size in W̃4. In some passages of this stage, we estimate the number of cubes inW4

by the number of cubes in W̃4, which is easier to count.
In this second stage a weight is needed in order to bound the norm of the extension

operator: we provide two different versions for the extension to the cubes inW4, the first one
is horizontal (each cube will be associated with a set at the same height), leading to the weight

σ(x) =
(
`(S (|x|))
|x|

)n−1
corresponding to item (b) in Theorem 5.1.1. Property (5.1.2) is needed in

this case. The second version is vertical giving another possible weight: σ(x) =
(
`(S (|x|))
|x|

)kp
as

in item (a) in Theorem 5.1.1. Property (5.1.2) is not needed for this version.

First version: dimensional-horizontal weight

For each cube T j ∈ W4 let us define

S (T j) =
⋃{

S i : zT j ≤ zi < zT j + `(T j)
}
.

TS(T)

Figure 5.2: Reflected tower: second stage’s first version.

Remark 5.1.12. S (T j) is the reflected set of T j as well as Q∗j is the reflected cube for Q j

in the first stage. Observe that S (T j) is not a cube, nor a rectangle. However, normality
property (3.2.1) implies that it is a tower of cubes, eventually of different sizes. Since cubes
in W4 are far from Ω, T j will be larger than the S i’s in S (T j). Nevertheless, the dyadic
nature of cubes in Whitney decompositions implies that its height is exactly `(T j). Finally, if

S (T j) = {S I j , S I j+1 . . . , S I j+N j}, property (5.1.2) guarantees that
`(S I j )

`(S I j+N j )
≤ C < ∞. Therefore,

for each T j there is a pair of rectangles R1
j and R2

j such that:

R1
j ⊂ S (T j) ⊂ R2

j ,
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~̀(R1
j) = (`(S I j+N j), . . . , `(S I j+N j), `(T j)),

~̀(R2
j) = (`(S I j), . . . , `(S I j), `(T j)),

satisfying:
`i(R2

j )

`i(R1
j )
≤ C for all T j and i = 1, . . . , n; i.e.: R1

j ∼ R2
j .

Let us define, for each T j ∈ W4, PT j = P(R1
j). Our extension operator is

Λ2 f (x) =
∑

T j∈W4

PT j(x)φ j(x). (5.1.11)

The following lemma is equivalent to Lemma 5.1.9. However, sinceW4 is far from Ω, a
weight is needed:

Lemma 5.1.13. If T ∈ W4 (far fromW3 andW5), then:

‖DαΛ2 f ‖Lp(T ) ≤ C
(
|T |
|R1|

) 1
p

‖ f ‖Wk,p(∪F (T )),

where F (T ) is the family of all the towers S (T j) with T j ∩ T , ∅, and R1 is the rectangle in
S (T ) provided by Remark 5.1.12.

Proof. As we procceded in Lemma 5.1.9, we alternate the polynomial corresponding to T ,
PT :

‖DαΛ2 f ‖Lp(T ) =
∥∥∥∥Dα

∑
T j∩T,∅

PT jφ j

∥∥∥∥
Lp(T )
≤

∥∥∥∥Dα
∑

T j∩T,∅

(PT j − PT )φ j

∥∥∥∥
Lp(T )︸                               ︷︷                               ︸

I

+
∥∥∥DαPT

∥∥∥
Lp(T )︸        ︷︷        ︸

II

.

Since d(T, S (T )) ≤ C`(T ), the second term can be bounded by means of Lemma 2.4.2,
by considering an auxiliary cube T̃ ∼ T , such that T, S (T ) ⊂ T̃ :

II ≤ C
( |T |
|R1|

) 1
p

∑
γ:|γ+α|<k

`(T )|γ|‖Dα+γPT ‖Lp(S (T )).

If we go on like in Lemma 5.1.9:

II ≤ C
( |T |
|R1|

) 1
p
‖ f ‖Wk,p(S (T )).

On the other hand:
I ≤ C

∑
T j∩T,∅

∑
β≤α

1
`(T )|α−β|

‖Dβ(PT j − PT )‖Lp(T ),

and T ∩ T j , ∅, implies that S (T ) ∩ S (T j) , ∅ and R1 ∼ R1
j . In fact, S (T ) ⊂ S (T j) or

S (T j) ⊂ S (T ) (which imply R1 ⊂ R1
j or R1

j ⊂ R1 resp.), or S (T ) and S (T j) form a new, longer
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tower where S (T ) is over S (T j), or vice versa (which implies that R1 and R1
j are touching).

We show only the case that leads to touching rectangles (the other cases follow similarly):

‖Dβ(PT j − PT )‖Lp(T ) ≤ ‖Dβ(PT j − P(R1 ∪ R1
j)‖Lp(T ) + ‖Dβ(PT − P(R1 ∪ R1

j))‖Lp(T )

≤ C
( |T |
|R1|

) 1
p

∑
γ:|γ+β|<k

`(T )|γ|
{
‖Dβ+γ(PT − P(R1 ∪ R1

j))‖Lp(R1)

+ ‖Dβ+γ(PT j − P(R1 ∪ R1
j))‖Lp(R1

j )

}
≤ C

( |T |
|R1|

) 1
p

∑
γ:|γ+β|<k

`(T )|γ|
{
‖Dβ+γ(PT − f )‖Lp(R1) + ‖Dγ+β( f − P(R1 ∪ R1

j))‖Lp(R1)

+ ‖Dβ+γ(PT j − f )‖Lp(R1
j )

+ ‖Dγ+β( f − P(R1 ∪ R1
j))‖Lp(R1

j )

}
.

Applying Lemma 2.4.8 we obtain:

‖Dβ(PT j − PT )‖Lp(T ) ≤ C
( |T |
|R1|

) 1
p

∑
γ:|γ+β|<k

`(T )|γ|`(R1)k−|γ|−|β|
∑
τ:|τ|=k

‖Dτ f ‖Lp(S (T )∪S (T j)).

And, consequently:

I ≤ C
∑

T j∩T,∅

∑
|β|≤|α|

1
`(T )|α−β|

C
( |T |
|R1|

) 1
p

∑
γ:|γ+β|≤k

`(T )|γ|`(R1)k−|γ|−|β|
∑
τ:|τ|=k

‖Dτ f ‖Lp(S (T )∪S (T j))

≤ C
∑

T j∩T,∅

∑
|β|≤|α|

`(T )|k|−|α|C
( |T |
|R1|

) 1
p

∑
γ:|γ+β|<k

∑
τ:|τ|=k

‖Dτ f ‖Lp(S (T )∪S (T j))

≤ C
( |T |
|R1|

) 1
p
‖ f ‖Wk,p(F (T )).

�

Lemma 5.1.9 bounds the norm of the extension operator in all the cubes inW3 far from
W4. That is, in all cubes Q ∈ W3 such that all the neighbours of Q are inW3. Lemma 5.1.13
does the same thing for cubes inW4, far fromW3. Let us consider now cubes in the frontier
of these sets: let Q ∈ W3 and T ∈ W4 be such that Q ∩ T , ∅. Notice that 1

4 ≤
`(Q)
`(T ) ≤ 4.

Furthermore:

4
√

n`(Q) ≥ d(Q, ∂Ω) ≥ d(T, ∂Ω) −
√

n`(Q) ≥
√

n`(T ) −
√

n`(Q),

and then
`(T ) ≤ 5`(Q) ≤ C`(S I),

where S I is the cube in the spine of Ω such that zQ ∈ [zI , zI−1). This implies that `(Q∗) ∼ `(T ),
and since S I ∩ S (T ) , ∅, by means of lemma 5.1.7, there is a chain of cubes joining Q∗ and
S (T ). Hence, the proof for the following lemma is the same that the one for Lemmas 5.1.9
and 5.1.13.
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Lemma 5.1.14. Let Q ∈ W3 and T ∈ W4 be such that Q ∩ T , ∅, then:

‖Dα(Λ1 + Λ2) f ‖Lp(Q) ≤ C‖ f ‖Wk,p(F (Q)),

‖Dα(Λ1 + Λ2) f ‖Lp(T ) ≤ C‖ f ‖Wk,p(F (T )).

We need to prove that the norm of the extension is bounded as in Lemma 5.1.13 all over
W4 and not only in a particular cube. Let us pick, then, a cube S i ∈ S. A simple comparison
with W̃4 implies that the number of cubes T j, with `(T j) = 2m`(S i) , such that S i ⊂ S (T j)
is bounded by a constant independent of S i. Furthermore, such a comparison allows us to
bound the possible values of m, for each i: 0 ≤ m ≤ log

( zi
`(S i)

)
, where log = log2.

Proposition 5.1.15. If we denote σ(x) =
(
`(S (|x|))
|x|

)n−1
, then:

‖σ
1
p DαΛ2 f ‖Lp(∪W4) ≤ C‖ f ‖Wk,p(∪S)

for every α, |α| ≤ k.

Proof. We can take σ as constant in each cube T ∈ W4: σT ∼
(
`(S (zT ))

zT

)n−1
. Then

‖σ
1
p DαΛ2 f ‖p

Lp(∪W4) =
∑

T :T∈W4

‖σ
1
p Dα f ‖p

Lp(T ) ≤ C
∑

T :T∈W4

(
`(S (zT ))

zT

)n−1

‖Dα f ‖p
Lp(T )

≤ C
∑

T :T∈W4

(
`(S (zT ))

zT

)n−1 |T |
|R1|
‖ f ‖p

Wk,p(∪F (T )).

Now, since `i(R1) ∼ `(S (zT )) for i = 1, . . . , n − 1, and `n(R1) = `(T ), we have:

‖σ
1
p DαΛ2 f ‖p

Lp(∪W4) ≤ C
∑

T :T∈W4

(
`(T )
zT

)n−1

‖ f ‖p
Wk,p(∪F (T ))

= C
∑

T :T∈W4

∑
S :S∈F (T )

(
`(T )
zT

)n−1

‖ f ‖p
Wk,p(S )

= C
∑

S :S∈S

∑
T :F (T )3S

(
`(T )
zT

)n−1

‖ f ‖p
Wk,p(S ).

Given a fixed cube S ∈ S, the cubes T ∈ W4 such that S ∈ F (T ), can be classified by
their sizes: `(T ) = 2m`(S ), where 0 ≤ m ≤ M = log( zS

`(S ) ). Furthermore, zT ∼ zS for every

T ∈ W4 such that S ∈ F (T ). Finally, the comparison between cubes inW4 and cubes in W̃4,
guarantees that, given a cube S ∈ S, there is a bound C, depending only on the dimension n,
such that

#{T ∈ W4 : S ∈ F (T ) `(T ) = 2m`(S )} ≤ C.
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Then:

‖σ
1
p Dα f ‖p

Lp(∪W4) ≤ C
∑

S :S∈S

M−1∑
m=1

∑
T :F (T )3S
`(T )=2m`(S )

(
`(T )
zT

)n−1

‖ f ‖p
Wk,p(S )

≤ C
∑

S :S∈S

z1−n
S `(S )n−1

( M−1∑
m=1

(
2n−1)m

)
‖ f ‖p

Wk,p(S ),

and the result follows by recalling that M ≈ log( zS
`(S ) ). �

This result concludes the first version of the second stage of the extension.

Second version: derivative-vertical weight

This version of the extension is based on a different construction of the reflected set of a cube
inW4. For each T , we find some T ∗ ∈ S such that `(T ∗) ∼ `(T ), but T ∗ is far above T . The
weight in this case is due to the distance between T and T ∗.

Let us consider T̃ a cube belonging to W̃4 (the Whitney decomposition of Rn \ x̂n) such
that T̃ ∩T , ∅, for some T ∈ W4. Thanks to Lemma 5.1.10 only a finite number (the number
does not depend on T̃ ) of cubes belonging toW4 are contained in T̃ . We can now pack the
elements ofW4 in cylinders of the form η(T̃ ) = Q′×R, where Q′ ⊂ Rn−1 is the projected face
Fu

T̃
of T̃ into Rn−1. We identify cylinders given by cubes T̃ sharing the projection Q′. In this

way each cube T ∈ W4 belongs to only one cylinder. Moreover, cubes inside the cylinder
η(T̃ ) are equivalent, i.e T1,T2 ∈ η(T̃ ) implies that T1 ∼ T̃ ∼ T2. For each T j ∈ W4, we denote
with τ(T j) the set of cubes inW4 that share the cylinder with T j. The set τ is called a tower.

Let us consider T 1 one of the upper cubes in τ(T 1). We define T ∗ = S (zT 1) for every
T ∈ τ(T 1). This situation is represented in Figure 5.3.

It is important that, with this definition, for every T ∈ W4 we have T ∗ ∈ S, and T ∗ ∼ T .
However, the distance between T and T ∗ could be large, particularly in the xn direction. In
fact, since d(T 1,T N) ∼ zT 1 , we have d(T 1,T 1∗) ∼ `(T 1), but d(T N ,T N∗) ∼ zT 1 (where T 1 and
T N are upper and lower cubes in a certain tower τ).

As in the first version of the second stage extension, we define PT j = P(T ∗j ) and

Λ2 f (x) =
∑

T j∈W4

PT j(x)φ j(x).

Observe that, if T j,T ∈ W4, and T j ∩ T , ∅, the tops of the towers τ(T ) and τ(T j) could
be setted at very different heights (and so would be the heights of the reflected cubes T ∗j and
T ∗). This is so because of the following fact:

Remark 5.1.16. Suppose S ∈ S is the higher cube of a certain size. Let us denote #(S ) the
number of cubes with edges of lengh exactly `(S ). Then, since 0 ∈ ∂Ω, zS − #(S )`(S ) > 0,
and consequently, #(S ) ≤ zS

`(S ) . However, no better estimate can be provided (in fact, it is easy
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T1 T1,1

TN

T1*=T1,1*=...=TN*

Figure 5.3: Reflected cubes: second stage’s second version.

to see that for cusps with profile ϕ(z) = zν, there are ∼ z1−ν cubes with edges zν), so the worst
case, that there could be ∼ zS

`(S ) cubes in S with side `(S ), should be assumed to hold.

Consequently, the shape ofW4 could show long steps. When two towers touching each
other are in the edge of a long step, their heights are very different. This situation is repre-
sented in Figure 5.4. In this figure, two touching towers are shown, where reflected cubes are
far from each other. Therefore, the chain (in S) joining the reflected cubes for each tower is
large.

Lemma 5.1.17. For every cube T ∈ W4:

‖DαΛ2 f ‖Lp(T ) ≤ C`(T )k−|α|
(
`n(τ(T ))
`(T )

)k− 1
p

‖ f ‖Wk,p(∪F (T )),

whereF (T ) is the family of all the cubes in all the chains connecting T ∗ and T ∗j for T j∩T , ∅.

Proof.

‖DαΛ2 f ‖Lp(T ) ≤

∥∥∥∥Dα
∑

T j∩T,∅

(PT j − PT )φ j

∥∥∥∥
Lp(T )︸                               ︷︷                               ︸

I

+
∥∥∥DαPT

∥∥∥
Lp(T )︸        ︷︷        ︸

II

.

As usual:

I ≤ C
∑
β≤α

1
`(T )|α|−|β|

∑
T j∩T,∅

‖Dβ(PT j − PT )‖Lp(T ).
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{ l(S(z))

z

Figure 5.4: Long steps imply long chains.

Let us denote F j(T ) = {T ∗ = S 1, S 2 . . . ,T ∗j = S M} the chain of cubes joining T ∗ and T ∗j ,
then:

‖Dβ(PT j − PT )‖Lp(T ) ≤

M−1∑
l=1

‖Dβ(P(S l+1) − P(S l))‖Lp(T ).

Now, if we denote Rl the minimal rectangle containing T and S l, we have `i(Rl) ∼ `(T ),
i = 1, . . . , n − 1, and `n(R) ≤ `n(τ(T )).

‖Dβ(P(S l+1) − P(S l))‖Lp(T ) ≤ C
{
‖Dβ(P(S l+1) − P(S l+1 ∪ S l))‖Lp(T )+

‖P(S l+1 ∪ S l) − P(S l))‖Lp(T )

}

≤ C|T |
1
p

{
‖Dβ(P(S l+1) − P(S l+1 ∪ S l))‖L∞(Rl+1)

+ ‖Dβ(P(S l+1 ∪ S l) − P(S l))‖L∞(Rl)

}

≤ C|T |
1
p

∑
|γ+β|<k

{
`(Rl)|γ|

|S l+1|
1
p

‖Dβ+γ(P(S l+1) − P(S l+1 ∪ S l)‖Lp(S l+1)

+
`(Rl)|γ|

|S l|
1
p

‖Dβ+γ(P(S l) − P(S l+1 ∪ S l)‖Lp(S l)

}
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≤ C
∑
|γ+β|<k

`n(τ(T ))|γ|`(S l)k−|β|−|γ|‖∇k f ‖Lp(S l∪S l+1).

Consequently:

I ≤ C
∑

T j∩T,∅

∑
β≤α

1
`(T )|α|−|β|

M−1∑
l=1

∑
|γ+β|<k

`n(τ(T ))|γ|`(S l)k−|β|−|γ|‖∇k f ‖Lp(S l∪S l+1)

≤ C`(T )k−|α|
(
`n(τ(T ))
`(T )

)k−1 M−1∑
l=1

‖∇k f ‖Lp(S l∪S l+1).

Applying the Hölder inequality gives

I ≤ C`(T )k−|α|
(
`n(τ(T ))
`(T )

)k−1

M
1
p′ ‖∇k f ‖Lp(∪F (T )),

where 1
p + 1

p′ = 1. But M is the number of cubes in the chain joining T ∗ and T ∗j , which we
saw that could be as large as `n(τ(T ))

`(T ) , and then:

I ≤ C`(T )k−|α|
(
`n(τ(T ))
`(T )

)k− 1
p

‖∇k f ‖Lp(∪F (T )).

II could be bounded by means of the same ideas.
�

A proposition equivalent to 5.1.15 can now be easily proved:

Proposition 5.1.18. If we denote σ(x) =
(
`(S (|x|))
|x|

)kp
, then:

‖σ
1
p DαΛ2 f ‖Lp(∪W4) ≤ C‖ f ‖Wk,p(∪S).

Proof. As we did in Proposition 5.1.15, let us observe that the weight σ could be considered

constant in each cube T ∈ W4, σT ∼
(
`(S (zT ))

zT

)kp
. Then:

‖σ
1
p DαΛ2 f ‖p

Lp(∪W4) =
∑

T∈W4

‖σ
1
p DαΛ2 f ‖p

Lp(T ) ≤ C
∑

T∈W4

(`(S (zT ))
zT

)kp
‖DαΛ2 f ‖p

Lp(T )

≤ C
∑

T∈W4

(`(S (zT ))
zT

)kp
`(T )(k−|α|)p

(
`n(τ(T ))
`(T )

)kp−1

‖ f ‖p
Wk,p(∪F (T ))

= C
∑

S :S∈S

∑
T :F (T )3S

(`(S (zT ))
zT

)kp
`(T )(k−|α|)p

(
`n(τ(T ))
`(T )

)kp−1

‖ f ‖p
Wk,p(S ).

Now, observe that if we fix a cube S ∈ S, every cube T ∈ W4 such that S ∈ F (T )
satisfies: `(T ) ∼ `(S ) and `n(τ(T )) ≤ zS . By considering this and |α| ≤ k, we obtain:
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‖σ
1
p DαΛ2 f ‖p

Lp(∪W4) ≤ C
∑

S :S∈S

∑
T :F (T )3S

(
`(S (zT ))

zT

)kp( zS

`(T )

)kp−1

‖ f ‖p
Wk,p(S ) = ~.

The rest of the proof is done in two separate cases. If kp = 1, using property (5.1.1) we
obtain:

~ = C
∑

S :S∈S

∑
T :F (T )3S

`(S (zT ))
zS

‖ f ‖p
Wk,p(S ) ≤ C

∑
S :S∈S

∑
T :F (T )3S

`(S )
zS
‖ f ‖p

Wk,p(S ).

But, for a fixed S ∈ S, the number of cubes T such that S ∈ F (T ) is at most C zS
`(S ) and then:

≤ C
∑

S :S∈S

zS

`(S )
`(S )
zS
‖ f ‖p

Wk,p(S ) ≤ C
∑

S :S∈S

‖ f ‖p
Wk,p(S ) = C‖ f ‖p

Wk,p(∪S).

On the other hand, if kp , 1, property (5.1.1) can be avoided. Proceeding in a similar
way than we did in Proposition 5.1.15, we clasify the cubes T ∈ W4 such that S ∈ F (T )
according to their heights zT . Observe that the minimum possible zT is `(S ), whereas the
maximum possible zT is zS /`(S ). Then:

~ ≤ C
∑

S :S∈S

∑
T :F (T )3S

z−kp
T zkp−1

S `(S )‖ f ‖p
Wk,p(S ) = C

∑
S :S∈S

( zS /`(S )∑
m=1

∑
T :F (T )3S
zT =m`(S )

z−kp
T

)
zkp−1

S `(S )‖ f ‖p
Wk,p(S ).

But the number of cubes T at the same height is bounded by a constant depending only on
the dimension n (because of the comparison with cubes in W̃4), then:

= C
∑

S :S∈S

( zS /`(S )∑
m=1

m−kp
)
zkp−1

S `(S )−kp+1‖ f ‖p
Wk,p(S )

∼ C
∑

S :S∈S

( zS

`(S )

)−kp+1

zkp−1
S `(S )−kp+1‖ f ‖p

Wk,p(S )

= C
∑

S :S∈S

‖∇k f ‖p
Wk,p(S ) ≤ C‖ f ‖p

Wk,p(∪S).

The key point of this approach is the estimation of
∑

m−kp, where we use that kp , 1. �

5.1.3 Third Stage
This stage is devoted to define our extension operator in the cubes of W5. We explain the
construction of the reflected sets for each version of the extension, but we do not enter into de-
tails since the ideas are exactly the same given in Lemmas 5.1.13 and 5.1.17 and Propositions
5.1.15 and 5.1.18, according to the case.
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For the first (dimensional) version of the extension, let us define:

S (U) =
⋃
{S i : `(U) ≤ zi < 2`(U)}.

It is clear that d(U, S (U)) ≤ C`(U). On the other hand, S (U) is a tower of cubes that admits
an interior rectangle R1, with `i(R1) ∼ `(S (`(U))) for i = 1, . . . , n − 1 and `n(R1) ∼ `(U).
Because of property (5.1.2), there is an exterior rectangle R2 ⊃ S (U) such that R2 ∼ R1.
Hence, Remark 5.1.12 holds for cubes in W5, and so do Lemma 5.1.13 and Proposition
5.1.15. As we did earlier, we define PU j = P(R1

j). The last thing to notice is that if T ∈ W4

and U ∈ W5 are such that T ∩ U , ∅, then d(S (U), S (T )) ≤ C`(T ), and then there is a finite
chain of towers that join S (U) and S (T ). This guarantees that the transition betweenW4 and
W5 is smooth.

For the second (derivative) version, let us define U∗ = S i the cube in S with i the maxi-
mum index such that `(S i) ≥ `(U). This implies `(U∗) ∼ `(U), which is the essential property
of the reflected cube in this case. On the other hand, d(U,U∗) ≤ CzU∗ . Once again, we de-
fine PU j = P(U∗j ). It is clear that if T ∈ W4 and U ∈ W5 are such that T ∩ U , ∅ and
U∗ ∼ T ∗, then d(U∗,T ∗) ≤ CzT ∗ , and so the norm of the extension can be bounded in the
frontier betweenW4 andW5 as we did inW4.

As we did in the previous sections, let us define, for both versions:

Λ3 f (x) =
∑

U j∈W5

PU j(x)ψ j(x).

The last matter that we need to deal with is the superposition induced by this definitions of
reflected sets. In the previous stage we introduced W̃4 in order to help us counting some sets
of cubes inW4. Similarly, let us introduce now W̃5 =W(Rn \ {0}). Thanks to Remark 2.2.2
we may define, for every U ∈ W5, Ũ the cube in W̃5 such that U ⊂ Ũ. On the other hand
the ideas exposed earlier (see Lemma 5.1.10) lead us to conclude that U ∼ Ũ. The number
of cubes in W̃5 with edges of a certain length 2−l are bounded by a constant depending only
on the dimension n. The same holds for cubes inW5. Consequently, after this third stage,
every cube in S is loaded with at most a bounded quantity of cubes of the exterior of Ω.

Our complete extension operator is, then,

Λ f (x) = Λ1 f (x) + Λ2 f (x) + Λ3 f (x).

For every x = (x′, xn) ∈ W4, xn ∼ |x|. We use this fact to write the weight in terms of |x|
instead of xn. Since the third term of the extension is also radial, the weight can be taken(

`(S (|x|))
|x|

)γ
for every x ∈ ∪W2, where γ is the exponent corresponding to the case.
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5.1.4 DαΛ f is in W1,∞
loc

Observe that the proof of Lemma 2.3.7 can be easily applied to prove that |∂Ω| = 0 for every
normal (or curved) cusp Ω. Consequently Λ f is defined almost everywhere in a neighborhood
of the origin. In order to complete the proof of items (a) and (b) in Theorem 5.1.1, we need to
prove that Λ f has weak derivatives of all orders α, 0 ≤ |α| ≤ k everywhere except, perhaps,
at the origin. Hence, we only need to consider the first term of the extension operator: Λ1 f .
Let us denote, then, Ω̂ = Ω ∪ (∪W3), the expanded cusp covered by the first stage of the
extension process. It is enough to prove that DαΛ1 f ∈ W1,∞

loc (Ω̂). We proceed following a
density argument: taking into account Theorem 4.1.7, we may assume that f is the restriction
to Ω of a function in C∞(Rn

+). Moreover, if we take η > 0 we have: ‖Dα f ‖L∞(Ω̂\B(0,η)) ≤ M,
0 ≤ |α| ≤ k. Recall that a function is in W1,∞

loc if and only if it is locally Lipschitz1. Therefore,
in order to guarranty the existence of weak derivatives of Λ1 f we only need to prove that
DαΛ1 f is Lipschitz, for every α, 0 ≤ |α| ≤ k− 1. Our proof is esentially the same that the one
provided by [Jones, 1981] and [Chua, 1992] for proving the same thing for uniform domains:

Proposition 5.1.19. DαΛ1 f is locally Lipschitz, for |α| < k.

Proof. As we stated earlier, we assume f ∈ C∞(Rn
+), and ‖Dβ f ‖L∞(Ω̂\B(0,η)) ≤ M,∀|β| ≤ k. We

begin proving that DαΛ1 f is continuous. It is clear that we only need to prove the continuity
in ∂Ω. Let us define, for every Q j ∈ W3:

f j =
1
|Q∗j |

∫
Q∗j

Dα f

Given x ∈ ∂Ω \ B(0, 2η), we show that:

‖DαΛ1 f − f j‖L∞(Q j) −→ 0, as Q j −→ x.

Alternating P j = P(Q∗j), we obtain:

‖DαΛ1 f − f j‖L∞(Q j) ≤ ‖D
αP j − f j‖L∞(Q j) + ‖Dα(Λ1 f − P j)‖L∞(Q j)

= ‖DαP j − f j‖L∞(Q j)︸               ︷︷               ︸
I

+ ‖Dα
∑

k

(Pk − P j)ξk‖L∞(Q j)︸                          ︷︷                          ︸
II

.

where the last summation involves all the cubes Qk ∈ W3 such that Q̄k ∩ Q̄ j , ∅. Now, for I:

I ≤ C‖DαP j − f j‖L∞(Q∗j) ≤ C
{
‖Dα(P j − f )‖L∞(Q∗j) + ‖Dα f − f j‖L∞(Q∗j)

}
≤ C

{
`(Q j)k−|α|‖∇k f ‖L∞(Q∗j) + `(Q j)‖∇Dα f ‖L∞(Q∗j)

}
≤ CM`(Q j) −→ 0.

1See [Evans and Gariepy, 1992, Theorem 4.2.3].
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On the other hand, II was estimated in Lemma 5.1.9, so:

II ≤ C`(Q j)k−|α|‖∇k f ‖L∞(∪F (Q j)) −→ 0.

Observe that we are assuming that Q j is small enough so F (Q j) ⊂ Ω \ B(0, η).
Thence: DαΛ1 f is continuous. Now, we want to deduce from this fact the local Lips-

chitzianity of DαΛ1 f , far from the origin. In other words, if K is a compact set such that
0 < K , and x, y ∈ K , we need to show:

|DαΛ1 f (x) − DαΛ1 f (y)| ≤ CK |x − y|. (5.1.12)

But this fact follows inmediatly, since DβΛ1 f is continuous and bounded on Ω̂ \ B(0, η) for
every |β| ≤ k, where η is chosen such that K ⊂ Ω̂ \ B(0, η). �

This implies that DαΛ1 f are in fact the weak derivatives of Λ1 f , when f ∈ C∞(Rn
+). The

result follows for f ∈ Wk,p(Ω) by means of a simple density argument, taking into account
that Λ1 is an unweighted extension.

This completes the proof of Theorem 5.1.1, except item (c), that is proved below.

5.1.5 Optimality of the weights
We prove item (c) in Theorem 5.1.1 by showing two examples of functions f that need a
weight at least as small as σ. These examples are exactly the ones proposed by Maz’ya and
Poborchiı̌ for proving item (c) in Theorem A (see [Maz’ya and Poborchiı̌, 1997, Theorem 5.2
and Theorem 5.4]), we state them for the sake of completeness.

Derivative weight

For this case we assume kp < n − 1.
Take g ∈ C∞0 (0, 3) such that g(t) = 1, ∀t ∈ (1, 2). Let ρ > 0 be a small number, and

consider:
fρ(x) = g

( xn

ρ

)
.

Clearly, fρ ∈ Wk,p(Ω). Moreover:

‖Dα fρ‖Lp(Ω) ≤ C
1
ρ|α|

ρ
1
p `(S (3ρ))

n−1
p . (5.1.13)

Now, let us suppose that there is an extension operator Λ̃ : Wk,p −→ Wk,p
σ̃

(Rn), with
σ̃(x) = σ̃(|x|) nondecreasing. Then:

‖ fρ‖
p
Wk,p(Ω) ≥ C‖σ̃

1
p DαΛ̃ fρ‖

p
Lp(Rn) ≥ Cσ̃(ρ)

∫ 2ρ

ρ

‖DαΛ̃ fρ(·, xn)‖p
Lp(Rn−1)dxn = ~.



78 5. Extension Theorems

Now we apply the imbedding Wk,p(Rn−1) ⊂ Lq(Rn−1), for q =
(n−1)p
n−1−kp

2. In this way, taking
Ωz = {x ∈ Ω : xn = z}:

~ ≥ Cσ̃(ρ)
∫ 2ρ

ρ

‖ fρ(·, xn)‖p
Lq(Ωxn )dxn ∼ Cσ̃(ρ)ρ`(S (ρ))

p
q = Cσ̃(ρ)ρ`(S (ρ))n−1−kp.

And then, considering the worst case in (5.1.13), in which |α| = k, we have:

C1σ̃(ρ)
1
pρ

1
p `(S (ρ))

n−1−kp
p ≤ ‖ fρ‖Wk,p(Ω) ≤ C2ρ

1
p−k`(S (3ρ))

n−1
p .

Finally, thanks to Property (5.1.2), `(S (3ρ)) ∼ `(S (ρ)). Then:

σ̃(ρ) ≤ C
(
`(S (ρ))
ρ

)kp

= Cσ(ρ).

Dimensional weight

We asume kp > n − 1
Take g ∈ C∞0 (2, 5) such that g(t) = 1, ∀3 < t < 4. Let ρ > 0 be a small number, and

consider:
fρ(x) = g

( xn

ρ

)
.

Once again, fρ ∈ C∞(Ω) ∩ Wk,p(Ω). Now, let us suppose that there is an extension operator
Λ̃ : Wk,p −→ Wk,p

σ̃
(Rn), with σ̃(x) = σ̃(|x|) nondecreasing. Let us take

Πρ = {(x′, xn) ∈ Rn−1 × R : ρ < xn < 2ρ}.

Then, arguing as in the previous case, we have:

‖σ̃
1
p DαΛ̃ fρ‖Lp(Rn) ≤ ‖ fρ‖Wk,p(Ω) ≤ Cρ

1
p−k`(S (5ρ))

n−1
p .

Now, in order to obtain the optimality of the dimensional weight we need to prove that

‖σ̃
1
p∇kΛ̃ fρ‖Lp(Rn) ≥ Cρ

n
p−kσ̃(ρ)

1
p . (5.1.14)

In fact, observe that in that case,

C1ρ
n
p−kσ̃(ρ)

1
p ≤ C2ρ

1
p−k`(S (4ρ))

n−1
p ,

which leads to:

σ̃(ρ) ≤ C
(
`(S (ρ))
ρ

)n−1

= Cσ(ρ).

2For a proof of this classical result, which is a consequence of the Gagliardo-Nirenberg-Sobolev inequality,
see for example: [Maz’ya and Poborchiı̌, 1997, Theorem 1.8.1], [Adams and Fournier, 2003, Theorem 4.12],
[Brezis, 2010, Corollary 9.13].
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The proof of (5.1.14) is much more complicated than the corresponding inequality in the
derivative case. The reason is the lack of sharpness of the imbedding used earlier. Now, we
use the imbedding Wk,p ⊂ L∞.

Note that the function Λ̃ fρ(x′, ·) is in Wk,p(R) for almost every x′ ∈ Rn−1. Now, fixing the
value of x′, we can take the polynomial in the variable xn: π(x′, xn) = π(Λ̃ fρ(x′, ·))([ρ, 2ρ])(xn),
that approximates the function Λ̃ fρ(x′, ·) on the interval [ρ, 2ρ], according to definition 2.4.10.
Thanks to the approximation property given by Theorem 2.4.12:

‖Λ̃ fρ(x′, ·) − π(x′, ·)‖p
Lp(ρ,2ρ) ≤ Cρkp

∫ 2ρ

ρ

∣∣∣∣∣∂kΛ̃ fρ
∂xn

k (x′, z)
∣∣∣∣∣pdz.

π(x′, ·) can be written:

π(x′, xn) =

k−1∑
m=1

am(x′)
(
xn −

3
2
ρ
)m

,

with:

am(x′) =
1
ρ1+k

∫ 2ρ

ρ

ϕm

( t
ρ

)
Λ̃ fρ(x′, t)dt.

Let us denote:

hρ(x′) =
1
ρ

∫ 5ρ

2ρ

(
Λ̃ fρ(x′, z) − π(x′, z)

)
dz, x′ ∈ Rn−1.

Since x̂n is contained in every normal cusp, we have that Λ̃ fρ(0, xn) = fρ(0, xn). But taking
into account that supp( fρ) ⊂ (2ρ, 3ρ), we obtain that if x′ = 0 the coefficients am equal zero.
Consequently:

hρ(0) =
1
ρ

∫ 5ρ

2ρ
fρ(0, z)dz =

∫ 5

2
g(z)dz > 0.

Now, take B′ρ the n − 1 dimensional ball of radius ρ. Sobolev’s imbedding Wk,p(B′ρ) ⊂
C(B′ρ) ∩ L∞(B′ρ), along with the estimation ‖u‖Wk,p(B(0,1)) ≤ C{‖u‖Lp(B(0,1)) + ‖∇ku‖Lp(B(0,1))} and
a scaling argument, leads to:

C|B′ρ|
1
p ‖hρ‖L∞(B′ρ) ≤ ‖hρ‖Lp(B′ρ) + ρk‖∇khρ‖Lp(B′ρ).

Hence:
C ≤ ρ−

n−1
p ‖hρ‖Lp(Rn−1)︸             ︷︷             ︸

I

+ ρk− n−1
p ‖∇khρ‖Lp(Rn−1)︸                  ︷︷                  ︸

II

. (5.1.15)

We need to bound I and II. For I, we apply Hölder inequality to hρ:

|hρ(x′)| ≤
1
ρ
ρ

1
p′ ‖Λ̃ fρ(x′, ·) − π(x′, ·)‖Lp(ρ,2ρ) = C

1

ρ
1
p

ρk

( ∫ 2ρ

ρ

∣∣∣∣∣∂kΛ̃ fρ
∂xn

k (x′, z)
∣∣∣∣∣pdz

) 1
p

.
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And then:
I ≤ ρ−

n−1
p −

1
p +k
‖∇kΛ̃ fρ‖Lp(Πρ) = Cρk− n

p ‖∇kΛ̃ fρ‖Lp(Πρ).

On the other hand, for II, take α, |α| = k, then:

Dαhρ(x′) =
1
ρ

∫ 2ρ

ρ

Dα
x′
(
Λ̃ fρ(x′, z) − π(x′, z)

)
dz.

But applying Hölder inequality to Dαam(x′), we obtain:

|Dαam(x′)| ≤
1
ρk+1ρ

1
p′ ‖Dα

x′Λ̃ fρ(x′, ·)‖Lp(ρ,2ρ) = ρ−k− 1
p ‖Dα

x′Λ̃ fρ(x′, ·)‖Lp(ρ,2ρ).

Which leads to:
|Dα

x′P(x′, z)| ≤ Cρ−
1
p
‖Dα

x′Λ̃ fρ(x′, ·)‖Lp(ρ,2ρ).

And finally:
II ≤ Cρk− n−1

p ρ−
1
p ‖∇kΛ̃ fρ‖Lp(Πρ) = Cρk− n

p ‖∇kΛ̃ fρ‖Lp(Πρ).

This fulfill our needs, since, by the monotonicity of σ̃:

‖σ̃
1
p∇kΛ̃ fρ‖Lp(Rn) ≥ ‖σ̃

1
p∇kΛ̃ fρ‖Lp(Πρ) ≥ Cσ̃(ρ)

1
pρ

n
p−k,

and (5.1.15) is proved.

5.2 Extension for curved cusps in the unweighted case
Theorem 5.2.1. Let Ω ⊂ Rn be a domain with an external curved cusp at the origin.

(a) If kp , 1 or kp = 1 and the spine S satisfies (5.1.1), there is an extension operator

Λ : Wk,p(Ω)→ Wk,p
σ (Rn),

where

σ(x) =

 1 x ∈ Ω(
`(S (|x|))
|x|

)kp
x ∈ Ωc

(b) If the spine S satisfies (5.1.2), there is an extension operator

Λ : Wk,p(Ω)→ Wk,p
σ (Rn),

where

σ(x) =

 1 x ∈ Ω(
`(S (|x|))
|x|

)n−1
x ∈ Ωc
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(c) In case (a), assuming (5.1.2) stands, if σ̃ is such that there is an extension operator
Λ̃ : Wk,p(Ω)→ Wk,p

σ̃ (Rn), then

σ̃(x) ≤ Cσ(x) ∀x ∈ U \Ω,

being U a neighborhood of the origin.

In order to prove Theorem 5.2.1 We introduce a stage zero, consisting of an extension
from a curved cusp Ω to a larger domain that includes a normal cusp Ω̂. Functions defined
on Ω̂ will be extended as in Theorem 5.1.1. The most important fact to mention is that after
the stage one, the distance of cubes inW4 andW5 to Ω are comparable with the distance of
them to Ω̂, and so will be the weights.

5.2.1 Stage zero
Let Ω be a curved cusp, and S = {S i}

∞
i=1 its spine. Then d(S i, x̂n) ≤ CΩ`(S i), and we may take

CΩ ≥ K. Assuming `(S i) ≤ 1, let us consider:

Ω̃ =
⋃

i

4(CΩ + 1) ? S i.

Recall that C ? S i is the horizontal dilatation of S i:

C ? S i = CS i ∩ {x = (x′, xn) : zi ≤ xn ≤ zi + `i}.

Clearly, Ω ⊂
⋃

i CΩS i. Even more: let us take S ′i the horizontal traslation of S i to x̂n, so
S ′i ∩ S ′i+1 = Fu

S ′i+1
, and zS ′i = zS i . Then, if we denote Ω̂ =

⋃
i 2CΩS ′i , we have:

Ω ⊂ Ω̂ ⊂ Ω̃.

Lemma 5.1.5 can be reproduced in order to find a reflected cube for every Q ∈ W2 such
that Q ⊂ Ω̃, eventually relaxing the definition ofW3 with a larger constant. Consequently,
a first (unweighted) extension can be performed as in stage one. Let us denote Λ0 f the
extension of f to Ω̃, and let us take f̂ : Ω̂ → R, f̂ = Λ0 f |

Ω̂
. Observe that Ω̂ is a normal

cusp. Then, we can extend f̂ as in Theorem 5.1.1. Let us denote Ŵ3, Ŵ4, Ŵ5, the subsets
of the Whitney decomposition of the exterior of Ω̂ corresponding to stage one, two and three
respectively. If we denote Ŝ = {Ŝ i}i the spine of Ω̂ (observe that Ŝ i is not necessaily S ′i , but
they are equivalent), we have Ŝ i ∼ S i. Now, if we take T ∈ Ŵ4, such that zi ≤ zT < zi−1, then

`(T ) ≥ C`(Ŝ i) ≥ C`(S i). (5.2.1)

Furthermore,
d(T, S i) ≤ Cd(T, Ŝ i) ≤ C`(T ), (5.2.2)
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and
d(T, ∂Ω̂) ≤ d(T, ∂Ω) ≤ Cd(T, Ŝ i) ≤ Cd(T, ∂Ω̂). (5.2.3)

The weight of the extension operator based on Ω̂ is expressed in terms of Ŝ i, but these
inequalities allow us to change it for S i, and then items (a) and (b) in Theorem 5.2.1 are
proved.

For item (c), the same function fρ taken in the previous section for normal cusps provides
the optimality of the weight in item (a).

5.3 Approximation by smooth functions up to the tip of the
cusp

In Chapter 4, we prove that every function f ∈ Wk,p(Ω), with Ω a normal or curved cusp, can
be approximated in Ω by functions in C∞(Rn

+). This fact was used to prove the extension the-
orems that constitute the main results of this chapter. In particular, it was used in Proposition
5.1.19 to prove that the extension meets the function smoothly in ∂Ω \ {0}. Now, we can use
the first stage of the extension process for normal cusps (or stage zero for curved cusps) to
prove that, in fact, the smooth approximation can be performed up to the tip of the cusp.

It is a well known fact that C∞(D̄) is dense in Wk,p(D) for every domain D of class C . The
proof can be seen, for example, in [Maz’ya, 2011, Theorem 1.2] and [Maz’ya and Poborchiı̌,
1997, Theorem 1.4.2.1]. Also in [Adams and Fournier, 2003, Theorem 3.22]. There, the
authors work with domains satisfying the segment condition. We say that D satisfies the
segment condition if for every x ∈ ∂D there is a neighborhood of x, Ux and a nonzero vector
yx such that for every z ∈ D̄∩Ux, the points z + tyx belongs to D for 0 < t < 1. It is important
to notice that domains satisfying the segment condition are exactly the domains of class C.
It is clear that every domain with continuos boundary satisfies the segment condition. The
converse is proved, for example, in [Maz’ya and Poborchiı̌, 1997, Theomem 1.3].

Observe that both the segment condition and the belonging to the class C, hold for every
power type cusp satisfying (1.1.1), and for every profile cusp sastisfying (1.1.2). Moreover,
they hold for every external cusp according to Definition A, as long as 0 ∈ $. Consequently,
the density of smooth functions up to the boundary stands for all these domains.

Now, consider a normal cusp Ω. Take Ω̂ = ∪iKS i. Thanks to item (iii) in Definition 3.2.1,
we have that Ω ⊂ Ω̂. On the other hand we may assume Ω̂ ⊂ Ω∪ (∪W3) (eventually it could
be necessary to take another constant in the definition ofW3 in order to allow bigger cubes).
Hence, we have a profile cusp Ω̃ contained in Ω̂ with profile given, for example, by the interior
polygonal ϕ that interpolates K`(S (z)). This profile cusp contains Ω. Morever, the first
stage of the extension process provides an extension unweighted operator Λ̃ : Wk,p(Ω) −→
Wk,p(Ω̃). So, given f ∈ Wk,p(Ω), we have Λ̃ f ∈ Wk,p(Ω̃). Now, taking into account the
previous discusion, we obtain the density of C∞( ¯̃

Ω) in Wk,p(Ω̃). Hence, for every η > 0 there
is some gη ∈ C∞(Rn) such that ‖Λ̃ f − gη‖Wk,p(Ω̃) < η. But then:

‖ f − gη‖Ω ≤ ‖Λ̃ f − gη‖Wk,p(Ω̃) < η,
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and gη approximates f up to the boundary of Ω, including the tip of the cusp.
It is clear that the same argument stands for curved cusps, with the previous application

of stage zero extension. In this way, we have proved:

Theorem 5.3.1. Let Ω be a normal or curved cusp. Then, for every f ∈ Wk,p(Ω), and every
η > 0, there is a function gη ∈ C∞(Rn) such that ‖ f − gη‖Wk,p(Ω) < η.

5.4 Extensions in the weighted case
In this section we prove that the extension from normal or curved cusps can be performed in
the weighted case, obtaining an extension operator of the form Λ : Wk,p

ω (Ω) −→ Wk,p
ωσ(Rn), for

some particular weights. We begin discusing a few technical details. This discusion leads us
to restrict our analysis to two kind of weights: weights depending on the distance to the cusp,
and weights depending on the distance to the boundary. Our arguments are very simple, since
we follow the line of reasoning used in Theorem 4.2.2: We work with weights that can be
approximated by constants in each cube, and that therefore, can be pulled out or in the norms.
Hence, in this Section we do not state the complete proof of almost any result, but we limit
our exposition to the arguments that allow the application of this trivial technique.

5.4.1 Discussion
For all measurable set S ⊂ Rn, let ω(S ) be the measure induced by the weight ω:

ω(S ) =

∫
S
ω.

We say ω is doubling if for every cube Q ∈ Rn, ω(2Q) ≤ Cω(Q) with C independent of Q.
In [Chua, 1992, 1994] the author adapts Jones’s techniques for proving an extension the-

orem for locally uniform domains in the weighted case. Essentially, he proves:

Theorem 5.4.1. Let D be an (ε, δ) connected domain, 1 ≤ p < ∞. Suppose that ω is
doubling, ω−

1
p−1 is locally integrable and Lipk−1

loc (Rn) is dense on Wk,p
ω (D). Finally, suppose

that for every cube Q and every f ∈ Liploc(Rn)

‖ f − fQ,ω‖Lp
ω(Q) ≤ C`(Q)‖∇ f ‖Lp

ω(Q), (5.4.1)

where fQ,ω = 1
ω(Q)

∫
f dω. Then an extension operator Λ : Wk,p

ω (D)→ Wk,p
ω (Rn) exists.

The density of smooth functions (in this case, Lipk−1
loc (Rn), the set of locally Lipschitz

functions with k − 1 weak derivatives in Rn) is used for proving that the extension meets
properly the function in ∂D, just as we do in Section 5.1.4. Property (5.4.1) is just a weighted
Poincaré inequality. A simpler but stronger hyphothesis, that implies all the requirements on
the weight, is that ω ∈ Ap.
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Chua’s extension operator is constructed as Jones’s one: For each cube Q j ∈ W
c near

the domain, a reflected cube Q∗j ∈ W is found (as in Lemma 5.1.5). Given f ∈ Wk,p
ω (Ω), a

suitable polynomial P j = P(Q∗j, ω), that can be constructed thanks to (5.4.1), is associated to
Q j. Thence, the operator is the smooth summation of all the {P j} j.

The doubling condition is crucial for Chua’s arguments to hold: since d(Q,Q∗) ≤ C`(Q),
a bounded expansion of Q, Q̃ = cQ, contains both cubes Q and Q∗. But ω being doubling,
ω(Q̃) ≤ Cω(Q). This allows the comparison between the values of the weight ω over Q and
over Q∗. Therefore, the weighted norm of the extension in Q can be bounded by the weighted
norm of the function in Q∗ just as in Lemma 5.1.9.

Since the first stage of our extension process agrees with the ideas used by Jones for
uniform domains, Chua’s techniques could be applied. However, second stage presents a
very different situation. Reflected sets for cubes in W4 do not fulfill properties (5.1.6) and
(5.1.7), that are the ones used by both Jones and Chua. In the dimensional-horizontal version,
the reflected set of Q is a tower S (Q), not a cube, and whereas d(Q, S (Q)) ∼ `(Q), the edges
`i(S (Q)) are not equivalent to `(Q), so (5.1.6) fails. Consequently, the values of the weight
ω over Q cannot be estimated by its values over S (Q). On the other hand: in the derivative-
vertical version, the reflected set of Q is a cube Q∗, with `(Q∗) ∼ `(Q), but it may happen
that d(Q,Q∗) >> `(Q), so (5.1.7) fails. In this case, no bounded fixed expansion of Q could
reach Q∗, and the doubling property of ω is useless.

Furthermore, another important problem should be pointed out: the weight σ, which
compensates the singularity of the outer peak, appears as a consequence of the asymmetries
between a cube and its reflected set, expressed in the failure of one of the reflection properties,
(5.1.6) or (5.1.7). Then, the value of σ in a certain cube Q can be estimated as long as the
measures of Q, the reflected set of Q and the distance between them are known. In other
words: the values of σ over Q, in the weighted case, depend on the measures ω(Q) and
ω(S (Q)) (or ω(Q∗)). But if these magnitudes remain unknown, no general expression can be
found for σ. Particularly, the general estimates overW4, given by Propositions 5.1.15 and
5.1.18, are not possible to obtain.

All these facts lead us to conclude that no results can be given, following our techniques,
for the weighted problem, when the weight is completely unknown, and just a few very
general properties are assumed about it.

However, it is noteworthy that some particular weights can be easily integrated into our
extension process. We present here two examples involved in several applications: weights
depending on the distance to the boundary of Ω, that fit easily with the Derivative Version
of the extension, and weights depending on the distance to 0 (the tip of the cusp), that are
naturally adapted for the Dimensional Version.

Finally, let us comment another aspect of the problem. In Theorem 5.4.1, Chua assumes
that ω is defined over the whole space Rn. In other words, ω is supposed to be defined
over all cubes inWc, and the extension process has to fit with it. This approach is possible
and comfortable for uniform domains, that don’t requiere an extension weight σ. The most
general version of the problem, however, would be to consider a weight defined just over
the domain Ω. The extension operator, in this case, should extend both the weight and the
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function. From this point of view, Theorem 5.4.1 proves that the extension for uniform
domains can be performed for every definition of the weightω outside Ω, as long as it remains
doubling and satisfies property (5.4.1) all over Rn.

For our weighted extension, we proceed accordingly to this last general idea: we assume
ω is defined only over Ω, and we set its values outside Ω in order to preserve the weight σ,
obtaining an extension operator

Λ : Wk,p
ω (Ω) −→ Wk,p

ωσ(Rn),

where the ω on the right side is a particular definition of ω on Rn taken from the large set of
all possible weights ω̃ that satisfy ω̃(x) = ω(x), ∀x ∈ Ω.

We analyze each type of weight separately.

5.4.2 Weights depending on d(x, 0) = |x|

We have already observed, that near the origin |x| ∼ xn, ∀x ∈ Ω. Moreover, the same thing
holds close enough to Ω, and in particular in the sets ∪W3 and ∪W4. Let ω : Rn → R,
ω ≥ 0. As in Example 4.2.1, we denote ω(x) = ω̂(|x|), and we assume that ω̂ : R≥0 → R≥0

is a monotonic function that satisfies ω̂(2t) ∼ ω̂(t). Notice that the only interesting case is
that either ω̂(t) → 0 or ω̂(t) → ∞ when t → 0, since otherwise the weighted space agrees
with the already treated case of Wk,p. Let us mention that Wk,p

ω (D) is a Banach space [Kufner,
1985, Theorem 3.6] for any open set D.

Since we are considering weights that are admissible for normal or curved cusps (see
Definition 4.2.1), we have, in particular, that given a cube Q ∈ W(Ω), ω(x) ∼

C
ωQ, ∀x ∈ Q

for some constant ωQ.
The first stage of the extension is trivial: for every x ∈ ∪W3, let us set ω(x) = ω̂(xn).

Lemma 5.1.5 guarantees that d(Q,Q∗) ≤ C`(Q), ∀Q ∈ W3. This implies zQ∗ ∼ zQ, and
consequently, the constant approximations of ω in Q and Q∗ are comparable: ωQ ∼ ωQ∗ .
Furthermore, it is easy to see that ωQ ∼ ωS for every S ∈ F (Q). This facts are the key tool
for our weighted extension process:

Lemma 5.4.2. If Q ∈ W3 is far fromW4, then:

‖DαΛ f ‖Lp
ω(Q) ≤ C

{
`(Q)k−|α|‖∇k f ‖Lp

ω(F (Q)) + ‖ f ‖Wk,p
ω (Q∗)

}
.

Proof. Just applying the constant approximation of the weight and Lemma 5.1.9:

‖DαΛ f ‖Lp
ω(Q) = ‖ωDαΛ f ‖Lp(Q) ≤ CωQ‖DαΛ f ‖Lp(Q)

≤ CωQ

{
`(Q)k−|α|‖∇k f ‖Lp(F (Q)) + ‖ f ‖Wkp(Q∗)

}
≤ C

{
`(Q)k−|α|‖∇k f ‖Lp

ω(F (Q)) + ‖ f ‖Wkp
ω (Q∗)

}
.

�
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For the second stage we use essentially the same idea: the weight, being approximately
constant over every cube, can be pulled in or out integrals, so the weighted norm can be
estimated using the non-weighted lemmas proved in Section 5.1.2.

However, ω should be defined differently for each version.

Version one: dimensional-horizontal weight:

Let us set ω(x) = ω̂(xn), ∀x ∈ ∪W4. In this case, it is clear that ωT ∼ ωS (T ), ∀Q ∈ W4.
The weighted form of Lemma 5.1.13 can be proved exactly as Lemma 5.4.2, so the next
proposition follows, completing the second stage for this version:

Proposition 5.4.3. If we denote σ(x) =
(
`(S (|x|))
|x|

)n−1
, then:

‖σ
1
p Dα f ‖Lp

ω(W4) ≤ C‖ f ‖Wk,p
ω (S).

Exactly the same ideas can be used for the third stage.

Version two: derivative-vertical weight:

In this case, we need to define ω overW4 in a different way. In order to preserve the simple
technique used earlier, we want to set ωT ∼ ωT ∗ .

For every cube T ∈ W4, we defineω(x) = ωT ∗ , ∀x ∈ T . In other words, ω is constant over
each cylinder η(T̃ ). It is important to note that if T1 ∩ T2 , ∅, zT ∗1

≤ zT ∗2
, then d(T ∗1 ,T

∗
2) ≤ zT ∗1

,
and then zT ∗2

≤ 2zT ∗1
, which lead us to conclude ωT ∗1

∼ ωT ∗2
. This allows to prove the weighted

version of Lemma 5.1.17 as we proved Lemma 5.4.2 and, consequently, to state the following:

Proposition 5.4.4. If we denote σ(x) =
(
`(S (|x|))
|x|

)kp
, then:

‖σ
1
p DαΛ2 f ‖Lp

ω(∪W4) ≤ C‖ f ‖Wk,p
ω (S).

Finally, for the third stage, we may define ω(x) = ωS (U) (or ω(x) = ωU∗), for every
x ∈ S (U) (or U∗), for every U ∈ W5. With this definitions, we can state the following
weighted extension theorem:

Theorem 5.4.5. Let Ω ⊂ Rn be a domain with an external normal cusp at the origin. Let
ω̂ : R+ → R+ be a monotonic function satisfying ω̂(2t) ∼ ω̂(t), and consider the weighted
Sobolev space Wk,p

ω (Ω), where ω(x) = ω̂(|x|), ∀x ∈ Ω.

a) If kp , 1 or kp = 1 and the spine S satisfies (5.1.1), there is an extension of ω over Ωc

such that there exists an extension operator

Λ : Wkp
ω (Ω)→ Wkp

ωσ(Rn),

where

σ(x) =

(
`(S (|x|))
|x|

)kp

.
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b) If the spine S satisfies (5.1.2), there is an extension of ω over Ωc such that there exist
an extension operator

Λ : Wkp
ω (Ω)→ Wkp

ωσ(Rn),

where

σ(x) =

(
`(S (|x|))
|x|

)n−1

.

Observe that the density of C∞(Rn
+) in Wk,p

ω (Ω) was proved in Section 4.2 for admissible
weights, such as the ones considered here.

5.4.3 Weights depending on d(·, ∂Ω) - the derivative case

We obviously have:

d(x, ∂Ω) ∼ `(Q) ∀x ∈ Q, ∀Q ∈ W ∪Wc. (5.4.2)

Let us set ω̂ : R+ → R+ a monotonic function such that ω̂(2t) ∼ ω̂(t). And let ω : Rn → Rn,
be the weight ω(x) = ω̂(d(x, ∂Ω)). This implies that ω can be taken as a constant ωQ over
every cube Q ∈ W ∪Wc.

This leads us to the following corollary of Lemma 5.1.9 (which proof is exactly as the
one of Lemma 5.4.2):

Lemma 5.4.6. Let Ω be a domain satisfying Definition 3.2.1, then:

‖DΛ1 f ‖Lp
ω(Q) ≤ C

{
`(Q)k−|α|‖∇k f ‖Lp

ω(F (Q)) + ‖Dα f ‖Lp
ω(Q∗)

}
.

This lemma says, esentially, that the first stage of the extension can be performed, with
weights depending only on d(·, ∂Ω), just copying the procedure for the unweighted case. The
correspondant results for the second stage depend on the version used. Since the technique
is always the same (the weight goes out the norm, and the unweighted result is applied), we
limit our exposition to the proper extension of the weight for each case:

Version one: dimensional-horizontal weight:

The problem for this version is that d(T, ∂Ω) / d(S (T ), ∂Ω). So, we need to define ω over
W4 in order to obtain ωT ∼ ωS (T ). This can be done setting ωT = ω(d(S (T ), ∂Ω)) ∀T ∈ W4,
and ω(x) = ωT ∀x ∈ T . This guarantees the desired property: ωT ∼ ωS (T ). Morever, if
T1 ∩ T2 , ∅, ωT1 ∼ ωT2 . With this definition the second stage of the extension process can be
performed.
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Derivative-vertical weight:

For the second stage, let us recall that in the derivative version, `(Q) ∼ `(Q∗), and then
d(Q, ∂Ω) ∼ d(Q∗, ∂Ω). Consequently, the definition of the weight over W4 is the natural:
ω(x) = ω̂(d(x, ∂Ω)). This fact is enough to complete the second stage.

For the third stage, the weight ω is defined overW5 just as for weights depending on xn:
ωU = ωS (U) or ωU = ωU∗ ∀U ∈ W5, and ω(x) = ωU , ∀x ∈ U.

In this way, we can state the following Theorem:

Theorem 5.4.7. Let Ω ⊂ Rn be a domain with an external normal cusp at the origin. Let
ω̂ : R+ → R+ be a monotonic function satisfying ω̂(2t) ∼ ω̂(t), and consider the weighted
Sobolev space Wk,p

ω (Ω), where ω(x) = ω̂(d(x, ∂Ω)), ∀x ∈ Ω. Finally, suppose that C∞(Rn
+) is

dense in Wk,p
ω (Ω). Then:

a) If kp , 1 or kp = 1 and the spine S satisfies (5.1.1), there is an extension of ω over Ωc

such that there exists an extension operator

Λ : Wkp
ω (Ω)→ Wkp

ωσ(Rn),

where

σ(x) =

(
`(S (|x|))
|x|

)kp

.

b) If the spine S satisfies (5.1.2), there is an extension of ω over Ωc such that there exists
an extension operator

Λ : Wkp
ω (Ω)→ Wkp

ωσ(Rn),

where

σ(x) =

(
`(S (|x|))
|x|

)n−1

.

Observe that the density of smooth functions is included as a hyphotesis of this last The-
orem. The reason is that we cannot guarranty that such a result holds for this kind of weight.
We may, however, make a few comments on the issue. Let us first state the following:

Definition 5.4.8. For 0 ≤ m ≤ n, a set F is called m − regular, if there exists a positive
constant C such that

C−1rm < Hm(B(x, r) ∩ F) < Crm,

for all x ∈ F and 0 < r ≤ diam(F). Where Hm stands for the m dimensional Hausdorff
measure and the restriction 0 < r ≤ diam(F) is eliminated if F is a set with only one point.

Let us mention that some self similiar fractals such as the Koch curve are m − regular
with m < N (in fact m = log(4)/ log(3) in the Koch example).

As we commented in Section 5.3, for a uniform domain D, a general and simple condition
that guarantees the density of C∞(D̄) in Wk,p

ω (D), is that ω ∈ Ap (see Chua [1992]). Under
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extra assumptions on the boundary of D it is possible to find conditions for which weights
of the type d(·, ∂D)µ belong to Ap. Indeed, in [Durán and López Garcı́a, 2010a] the authors
prove that such a weight is in Ap when −(n − m) < µ < (n − m)(p − 1) provided that ∂D is a
compact set contained in an m − regular set.

In such a case we can replicate Theorem 4.1.7 by using a weighted version of Proposition
4.1.1. Therefore the density assumption in Theorem 5.4.5 can be removed.

Let us observe that for a “good” domain D, one expects m = n − 1, therefore the range
−1 < µ < p − 1 is precisely the one for which the extension problem makes sense and it is
non-trivial. Indeed, on the one hand if µ ≥ p − 1, then ω−

1
p−1 < L1

loc(R
n) and the weighted

global space can not be defined in the standard way. On the other, taking for instance D
Lipschitz and µ ≤ −1 it can be shown that C∞0 (D) is dense in Wk,p

ω (D) [Kufner, 1985], and
therefore functions in that space can be extended by 0.
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Korn and Poincaré inequalities

In this Chapter we work mainly with chains of rectangles, and with chains of quasi-rectangles,
which are a generalization of the formers. These classes of domains include some cuspidal
domains, as long as we allow the rectangles to narrow faster than any cone. However, many
non cuspidal, and even non singular, domains can be described through a chain of rectangles
(or quasi-rectangles). Our technique is based on a discrete Hardy type inequality that allows
us to pass from one rectangle to another.

We begin studying chains of rectangles for the sake of simplicity, but the treatment for
chains of quasi-rectangles is exactly the same. We finish this Chapter presenting some exam-
ples of chains of quasi-rectangles with cuspidal behaviour.

6.1 Preliminaries
The following lemma is a fundamental tool in the sequel. It is a discrete version of a well
known weighted one-dimensional Hardy type inequality:

Lemma 6.1.1. Let {ui}i, {vi}i be sequences of non-negative weights; and let 1 < p ≤ q < ∞.
Then the inequality: [ ∞∑

j=1

u j

( j∑
i=1

bi

)q
] 1

q

≤ c
[ ∞∑

j=1

v jb
p
j

] 1
p

holds for every non-negative sequences {bi}i if and only if:

A = sup
k>0

( ∞∑
j=k

u j

) 1
q
( k∑

j=0

v1−p′

j

) 1
p′

< ∞.

The constant c is c = MA, where M depends only on p and q.

This result (see, for example [Kufner and Persson, 2003]), can be easily obtained from
its continuous (integral) version, that can be seen in [Kufner and Persson, 2003, page 3],
[Maz’ya, 2011, Theorem 1.3/2]

The following Lemma, is a particular case of the previous one:

91
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Lemma 6.1.2. Let {ri}i and a = {ai}i be sequences such that {ri}i ≥ 0,
∑

i ri = r < ∞ and
{airi}i is summable. Let us denote

ā =
1
r

∑
j

a jr j.

Then the inequality: ( ∞∑
j=1

|a j − ā|pr j

) 1
p

≤ c
( ∞∑

j=1

|a j+1 − a j|
pr j+1

) 1
p

, (6.1.1)

holds if

A = sup
k>0

( ∞∑
j=k

r j

) 1
p
( k∑

j=0

r1−p′

j

) 1
p′

< ∞. (6.1.2)

The constant c is c = MA where M depends only on p.

Proof. Let us define the norm:

‖a‖p =
(∑

i

|ai|
pri

) 1
p
.

From Hölder’s inequality, it holds |ā|r ≤ ‖a‖pr
1
p′ and then ‖a − ā‖p ≤ 2‖a‖p. Applying this

last inequality with a replaced by a − a0, we obtain

‖a − ā‖p ≤ 2‖a − a0‖p.

Therefore:

∑
i

|ai − ā|pri ≤ 2p
∑

i

|ai − a0|
pri ≤ 2p

∑
i

( i∑
j=1

|a j − a j−1|
)p

ri

And we conclude applying Lemma 6.1.1 with ui = vi = ri, q = p and bi = |ai − ai−1|. �

6.2 Poincaré and Korn inequalities for chains of rectangles

In this section we give a necessary condition for Korn’s inequality to hold on chains of rect-
angles (recall Definition 3.1.1). This abstract result is a consequence of Lemma 6.1.2.

Definition 6.2.1. Given a chain of open rectangles R = {Ri}, and calling RI = {Ri,i+1} the
chain of intermediate rectangles given by Remark 3.1.2, an R− linked domain Ω is any open
set such that ∪(RI ∪ R) ⊂ Ω and Ω ≡ (∪R).

Now, we can state the main result of this section:
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Theorem 6.2.2 (Second Case of Korn’s Inequality for Chains of Rectangles). Let R = {Ri}

be a chain of rectangles, and let Ci be the constants for the second case of Korn’s inequality
on Ri. Then for any R − linked domain Ω, and any u ∈ W1,p(Ω)n such that −

∫
Ω

Du−Dut

2 = 0 we
have

‖Du‖Lp(Ω)n×n ≤ C(1 + A)‖ε(u)‖Lp
σ(R)n×n ,

where A is defined in (6.1.2) with r j = |R j|, and the weight σ is constant on each Ri being
σ|Ri = Cp

i .

Proof. Let

Ai =
1

2|Ri|

∫
Ri

(Du − Dut).

Then:

‖Du‖p
Lp(Ω)n×n =

∑
i

‖Du‖p
Lp(Ri)n×n ≤ C

∑
i

‖Du − Ai‖
p
Lp(Ri)n×n︸                       ︷︷                       ︸

I

+ C
∑

i

‖Ai‖
p
Lp(Ri)n×n︸               ︷︷               ︸

II

.

I leads to

I ≤ C
∑

i

Cp
i ‖ε(u)‖p

Lp(Ri)n×n ≤ C
∑

i

‖ε(u)‖p
Lp
σ(Ri)n×n = C‖ε(u)‖p

Lp
σ(Ω)n×n .

For II, apply inequality (6.1.1) with r j = |R j|. Let us observe that
∑
|Ri|Ai = 0, therefore

taking

A = sup
k>0

(∑
j≥k

|R j|
) 1

p
(∑

j≤k

|R j|
1−p′

) 1
p′
,

we have

II = C
∑

i

|Ai|p|Ri| ≤ CAp
∑

i

|Ai+1 − Ai|p|Ri+1|,

where C is a constant depending on n and p. For each i, let us consider the intermediate
rectangle Ri,i+1. Calling

Ai,i+1 =
1

2|Ri,i+1|

∫
Ri,i+1

Du − Dut,
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we get, using extensively Remark 3.1.2,

II ≤ CAp
∑

i

{
|Ai+1 − Ai,i+1|p + |Ai,i+1 − Ai|p

}
|Ri+1|

≤ CAp
∑

i

{
|Ai+1 − Ai,i+1|p|Ri+1 ∩ Ri,i+1| + |Ai,i+1 − Ai|p|Ri ∩ Ri,i+1|

}
= CAp

∑
i

{
‖Ai+1 − Ai,i+1‖

p
Lp(Ri+1∩Ri,i+1) + ‖Ai − Ai,i+1‖

p
Lp(Ri∩Ri,i+1)

}
≤ CAp

∑
i

{
‖Ai+1 − Du‖p

Lp(Ri+1)n×n + ‖Du − Ai,i+1‖
p
Lp(Ri,i+1)n×n + ‖Du − Ai‖

p
Lp(Ri)n×n

}
≤ CAp

∑
i

Cp
i ‖ε(u)‖p

Lp(Ri+1∪Ri)n×n

≤ CAp
∑

i

Cp
i ‖ε(u)‖p

Lp(Rn×n
i ),

where, in the last inequality we use that for each Ri, Ri ∩ R j = ∅ if |i − j| > 1. Therefore

II ≤ CAp‖ε(u)‖p
Lp
σ(Ω)n×n ,

and the Theorem follows. �

By using scaling arguments, it is straightforward to check that the constant in the second
case of Korn’s inequality for cubes is the same, regardless of the size of the cube. Taking this
into account, the following Lemma is a consequence of Theorem 6.2.2. It provides a sharp
estimate for the constant on rectangles.

Lemma 6.2.3 (Korn inequality for rectangles). Let R ⊂ Rn be the rectangle with n − 1 short
edges of length ` and a long edge of length L. Then, for every u ∈ W1,p(R)n such that

∫
R

Du
is symmetric:

‖Du‖Lp(R)n×n ≤ C
L
`
‖ε(u)‖Lp(R)n×n ,

with C depending only on n and p.

Proof. For the sake of simplicity, let us assume L
`
∈ N.

We can decompose R in N = L
`

touching cubes:

R =

N⋃
i=1

Qi,

with `(Qi) = ` for all i. Now, we can apply Theorem 6.2.2, taking Ri = Qi for i = 1, . . . ,N,
and Ri = ∅ for i > N. We only need to estimate the value of A.
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A = sup
0<k≤ L

`

( k∑
j=1

|Q j|

) 1
p
( L∑̀

j=k

|Q j|
1−p′

) 1
p′

= sup
0<k≤ L

`

(
k|Q1|

) 1
p

((L
`
− k

)
|Q1|

1−p′
) 1

p′

= sup
0<k≤ L

`

k
1
p

(L
`
− k

) 1
p′

≤
L
`
.

The result follows since the weight σ is constant.
�

Example 6.2.1. Take, for n = 2, u(x, y) = (−xy, x2

2 ), defined over R = [0, L] × [− `
2 ,

`
2 ]. Then,

we have that
‖Du‖p

Lp(R)n×n = C`Lp+1 and ‖ε(u)‖p
Lp(R)n×n = C`p+1L,

where the constants denoted by C are not the same, but depend only on p. Then:

‖Du‖p
Lp(R)n×n

‖ε(u)‖p
Lp(R)n×n

≤ C
(L
`

)p

.

Hence, the estimation of Lemma 6.2.3 is sharp.

Remark 6.2.4. In a more general context, the constant for any convex domain Ω can be
bounded taking the quotient between the diameter of Ω and the diameter of a maximal ball
contained in Ω [Durán, 2012, Theorem 4.2]. Even when in [Durán, 2012] that result is
stated only for p = 2, the same proof works for 1 < p < ∞. It is important to notice that this
implies that given a rectangle R with edges `i(R), eventually all different, Korn’s constant in
the second case can be taken `M(Ri)

`m(Ri)
1. Our technique, however, only produces such a constant

when the rectangle has n − 1 short equal edges and one long edge.

Remark 6.2.5. The previous remark implies that the constants Ci in Theorem 6.2.2 can be
taken as follows:

Ci =
`M(Ri)
`m(Ri)

. (6.2.1)

and therefore σ|Ri =
(
`M(Ri)
`m(Ri)

)p
.

Theorem 6.2.2 can be straightforwardly extended to some weighted spaces. We work
with weights that are admissible for chains of rectangles in a similar sense than the one used
in Definition 4.2.1 for normal cusps:

Definition 6.2.6. Let R = {Ri}, be a chain of rectangles, and Ω an R− linked domain. We say
that ω is an admissible weight in Ω if there is a constant C such that for any x ∈ Ri

ω(x) ∼
C
ωRi ∼C

ωRi+1 ∀i. (6.2.2)

being ωRi appropriate constants.
1Recall that we denote `M(R) and `m(R) the largest and shortest edge of R, respectively.
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Now, we can prove the following elementary generalization of Theorem 6.2.2:

Theorem 6.2.7 (Second Case of weighted Korn’s Inequality for Chains of Rectangles). Let
R = {Ri} be a chain of rectangles and Ω an R − linked domain.

Let u ∈ W1,p
ω (Ω)n, with ω an admissible weight, be such that

1
ω(Ω)

∫
Ω

Du − Dut

2
ω = 0.

If
∑

i ω(Ri) = r < ∞,
‖Du‖Lp

ω(Ω)n×n ≤ C(1 + Aω)‖ε‖Lp
ωσ(Ω)n×n ,

where σ|Ri can be taken as in Theorem 6.2.2, and

Aω := sup
k>0

(∑
j≥k

ω(R j)
) 1

p (
ω(R j)1−p′

) 1
p′

. (6.2.3)

Proof. Let:

Ai =
1
|Ri|

∫
Ri

Du − Dut

2
and Ai

ω =
1

ω(Ri)

∫
Ri

Du − Dut

2
ω.

We take:

‖Du‖p
Lp
ω(Ω)n×n =

∑
i

‖Du‖p
Lp
ω(Ri)n×n ≤ C

{∑
i

‖Du − Ai
ω‖

p
Lp
ω(Ri)n×n︸                     ︷︷                     ︸

(a)

+
∑

i

‖Ai
ω‖

p
Lp
ω(Ri)n×n

}
︸              ︷︷              ︸

(b)

.

For (a) we write

‖Du − Ai
ω‖Lp

ω(Ri)n×n ≤ ‖Du − Ai‖Lp
ω(Ri)n×n︸               ︷︷               ︸

I

+ ‖Ai − Ai
ω‖Lp

ω(Ri)n×n︸              ︷︷              ︸
II

,

and for I, we can take the weight off the norms

I p = ‖Du − Ai‖
p
Lp
ω(Ri)n×n ≤ ω

p
Ri
‖Du − Ai‖

p
Lp(Ri)n×n ≤ Cωp

Ri
‖ε(u)‖p

Lp
σ(Ri)

≤ C‖ε(u)‖p
Lp
ωσ(Ri)

.

On the other hand

II p = ‖Ai − Ai
ω‖

p
Lp
ω(Ri)n×n = ω(Ri)

∣∣∣∣∣Ai −
1

ω(Ri)

∫
Ri

Du − Dut

2
ω(x)dx

∣∣∣∣∣p
= ω(Ri)

∣∣∣∣∣ 1
ω(Ri)

∫
Ri

(
Ai −

Du − Dut

2

)
ω(x)dx

∣∣∣∣∣p
≤ Cω(Ri)1−p

{∣∣∣∣ ∫
Ri

(Ai − Du)ω(x)dx
∣∣∣∣p +

∣∣∣∣ ∫
Ri

(Du −
Du − Dut

2
)ω(x)dx

∣∣∣∣p}
= Cω(Ri)1−p

{∣∣∣∣ ∫
Ri

(Ai − Du)ω(x)
1
pω(x)

1
p′ dx

∣∣∣∣p +
∣∣∣∣ ∫

Ri

ε(u)ω(x)
1
pω(x)

1
p′ dx

∣∣∣∣p}.
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Applying Hölder inequality in both terms,

II p ≤ Cω(Ri)1−p
{
‖Ai − Du‖p

Lp
ω(Ri)n×nω(Ri)

p
p′ + ‖ε(u)‖p

Lp
ω(Ri)n×nω(Ri)

p
p′

}
= C

{
I p + ‖ε(u)‖p

Lp
ω(Ri)n×n

}
≤ C‖ε(u)‖p

Lp
ωσ(Ri)

.

On the other hand, for (b), let us observe that∑
i

ω(Ri)Ai
ω = 0,

and that: ∑
i

‖Ai
ω‖

p
Lp
ω(Ri)n×n =

∑
i

ω(Ri)|Ai
ω|

p.

Consequently, Lemma 6.1.2 with ai = Ai
ω and ri = ω(Ri), yields∑

i

‖Ai
ω‖

p
Lp
ω(Ri)n×n ≤ CAω

∞∑
i=1

|Ai+1
ω − Ai

ω|
pω(Ri+1) ≤ CAω

∞∑
i=1

‖Ai+1
ω − Ai

ω‖
p
Lp
ω(Ri+1)

,

Now we may proceed like in Theorem 6.2.2, alternating Ai,i+1
ω , the weighted average of Du−Dut

2
on an overlaping rectangle Ri,i+1, afterwards alternating Du, and finally applying the estimates
for (a). We leave the final details to the reader. �

Observe that Theorem 6.2.2 is a Corollary of the previous theorem taking ω ≡ 1. How-
ever, Theorem 6.2.7 does not provide information unless Aω < ∞. A simple way to bound
Aω involves a reasonable decay for ω(Ri).

Corollary 6.2.8. Under the same hypotheses of Theorem 6.2.7. Assume that for any k,

ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1. (6.2.4)

Then for any u ∈ W1,p
ω (Ω)n such that 1

ω(Ω)

∫
Ω

Du−Dut

2 ω = 0, we have

‖Du‖Lp
ω(Ω)n×n ≤ C‖ε(u)‖Lp

ωσ(R)n×n ,

where the weight σ is constant on each element of R, and can be taken as σ|Ri =
(
`M(Ri)
`m(Ri)

)p
.

Proof. From (6.2.1), we know that Ci =
`M(Ri)
`m(Ri)

. Thence only remains to show that
∑

i ω(Ri) <
∞ and Aω < C. These follow from the bounds ω(Rk) ≤ αk−iω(Ri) for 0 ≤ i ≤ k and
ω(Ri) ≤ αi−kω(Rk) for i ≥ k. Indeed

Aω = sup
k>0

( ∞∑
j=k

ω(R j)
) 1

p
( k∑

j=0

ω(R j)1−p′
) 1

p′

≤ ω(Rk)1/p
( ∞∑

j=0

α j
) 1

p

ω(Rk)1/p′−1
( k∑

j=0

α(p′−1) j
) 1

p′

then

Aω ≤

( 1
1 − α

)1/p( 1
1 − αp′−1

)1/p′

,

and the Corollary follows. �
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Everything done so far for the second case of Korn’s inequality for chains of rectangles
can be done for Poincaré inequality following step by step the arguments given above. Since
the constant in Poincaré inequality for rectangles (and in general for convex domains) de-
pends only on the diameter of the rectangle, the weight involved in the inequality can be
weakened as it is stated below.

Theorem 6.2.9 (Poincaré inequality for Chains of Rectangles). Let R = {Ri} be a chain of
rectangles and Ω a R− linked domain. Let ω be an admissible weight (see (6.2.2)), such that
for any k, ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1. Then if u ∈ W1,p

ω (Ω)n, and 1
ω(Ω)

∫
Ω

uω = 0, we
have

‖u‖Lp
ω(Ω)n ≤ C‖Du‖Lp

ωσ(Ω)n×n ,

where the weight σ is constant on each Ri and can be taken as σ|Ri = `M(Ri)p.

The following version will be useful in the sequel.

Corollary 6.2.10. With the same hypotheses of Theorem 6.2.9, assume that B is a ball in Ω

such that B ∩ R j , ∅ only for a finite number of rectangles. Then, for every u ∈ W1,p
ω (Ω)n, we

have:

‖u‖Lp
ω(Ω)n ≤ C

{
‖u‖Lp(B)n + ‖Du‖Lp

ωσ(Ω)n×n

}
where the weight σ is constant on each Ri and can be taken as σ|Ri = `M(Ri)p.

Proof. For the sake of clarity we write the case ω ≡ 1.

‖u‖Lp(Ω)n ≤ ‖u − uB‖Lp(Ω)n + ‖uB‖Lp(Ω)n ≤ ‖u − uΩ‖Lp(Ω)n︸          ︷︷          ︸
I

+ ‖uΩ − uB‖Lp(Ω)n︸            ︷︷            ︸
II

+ ‖uB‖Lp(Ω)n︸     ︷︷     ︸
III

.

Applying Theorem 6.2.9:
I ≤ C‖Du‖Lp

σ(Ω)n×n .

On the other hand,

III p =

∫
Ω

(
−

∫
B

u
)p

=
|Ω|

|B|p
( ∫

B
u
)p
≤
|Ω|

|B|p
|B|

p
p′

∫
B

up =
|Ω|

|B|
‖u‖p

Lp(B)n .

For II, applying Hölder inequality:

|uΩ − uB| ≤
1
|B|

∫
B
|uΩ − u| ≤

|B|
1
p′

|B|
‖u − uΩ‖Lp(B) ≤

1

|B|
1
p

‖u − uΩ‖Lp(Ω)n ≤
C

|B|
1
p

‖Du‖Lp(Ω)n×n
σ
,

then

II ≤ C
|Ω|

1
p

|B|
1
p

‖Du‖Lp(Ω)n×n
σ
,

and the lemma follows for ω ≡ 1.
The general case follows similarly using (6.2.2), and taking into account that B only meets

a finite number of rectangles and then ‖u‖Lp
ω(B)n ∼

C
‖u‖Lp(B)n .

�
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We now prove the general case of Korn’s inequality for chains of rectangles. Our proof is
a straigthforward adaptation of the classic argument given in [Brenner and Scott, 2008]. Let
us notice that we require that `M(Ri) ≤ C for any i. That is in order to remove the weigth σ
from the Poincaré inequality given above.

Theorem 6.2.11 (General Case of Korn’s inequality for Chains of Rectangles). Let R = {Ri}

be a chain of rectangles, and Ω an R− linked domain. Consider a weight ω such that (6.2.2)
holds, and assume that ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1 and that `M(Ri) < C, for any i. If
B is a ball such that B ⊂ Ω, and B meets only a finite number of rectangles Ri then for any
u ∈ W1,p

ω (Ω)n, we have

‖Du‖Lp
ω(Ω)n×n ≤ C

{
‖u‖Lp(B)n + ‖ε(u)‖Lp

ωσ(Ω)n×n

}
, (6.2.5)

where the weight σ is constant on each element of R, and can be taken as σ|Ri =
(
`M(Ri)
`m(Ri)

)p
.

Proof. Again, let us focus first on the case ω ≡ 1. Consider the space of rigid movements:

RM(Ω)n = {v ∈ W1,p(Ω)n : ε(v) = 0},

every function in RM can be written as

v(x) = a + Mx,

where M ∈ Rn×n is skew symmetric. On the other hand, a complement of RM in W1,p can be
defined as follows

Ŵ1,p(Ω)n =

{
w ∈ W1,p(Ω)n : −

∫
B

w = 0, −

∫
Ω

Dw − Dw′

2
= 0

}
.

In fact, given u ∈ W1,p(Ω)n, we can take v ∈ RM(Ω)n:

v = a + M(x − x̄),

with

a = −

∫
B

u and mi j =
1
2
−

∫
Ω

(∂ui

∂x j
−
∂u j

∂xi

)
,

being x̄ the center of B. Obviously w = u − v ∈ Ŵ1,p(Ω)n, and in particular

W1,p(Ω)n = RM(Ω)n ⊕ Ŵ1,p(Ω)n.

Moreover, it is clear by definition that

‖v‖W1,p(Ω)n ≤ C‖u‖W1,p(Ω)n ‖w‖W1,p(Ω)n ≤ C‖u‖W1,p(Ω)n .

Now we prove the theorem by contradiction. If (6.2.5) does not hold, there is a sequence
{un} ⊂ W1,p(Ω)n such that

‖Dun‖Lp(Ω)n×n = 1 (6.2.6)
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but,

‖un‖Lp(B)n + ‖ε(un)‖Lp
σ(Ω)n×n <

1
n
. (6.2.7)

If we write
un = vn + wn,

with vn ∈ RM(Ω)n and wn ∈ Ŵ1,p(Ω)n, wn admits both Poincaré inequality in B, and second
case of Korn inequality in Ω:

‖wn‖W1,p(Ω)n = ‖wn‖Lp(Ω)n + ‖Dwn‖Lp(Ω)n×n ≤ C
(
‖wn‖Lp(B)n + ‖Dwn‖Lp(Ω)n×n

)
≤ C‖Dwn‖Lp(Ω)n×n ≤ C‖ε(wn)‖Lp

σ(Ωn×n) < C
1
n
.

And then, wn −→ 0 in W1,p. On the other hand, vn belongs to the finite dimensional space
RM(Ω)n and is bounded on Ω. Consequently, there is a sub sequence, called again vn, such
that vn −→ v ∈ RM(Ω)n strongly in W1,p(B)n. As wn −→ 0, we have that

un −→ v ∈ RM(B)n in W1,p(Ω)n.

But because of (6.2.7), ‖v‖Lp(B)n = 0, and v is a linear function, so v ≡ 0 on Ω, which
contradicts (6.2.6), and the result follows in the case ω ≡ 1. The general case can be treated
by the same means defining the appropriate weighted versions

RMω(Ω)n = {v ∈ W1,p
ω (Ω)n : ε(v) = 0},

and
Ŵ1,p

ω (Ω)n =
{̃
v ∈ W1,p

ω (Ω)n :
∫

B
ṽω = 0,

∫
Ω

Dṽ − Dṽ′

2
ω = 0

}
.

�

6.3 Korn and Poincaré Inequalities for Chains of Quasi-
Rectangles

The job done for chains of rectangles can be easily generalized for chains of more general
sets, all we have to do is to set appropriate hypotheses.

Definition 6.3.1. Let V = {Ωi} be a (finite or countable) collection of disjoint open sets.
Assume that there exists a chain of rectangles R = {Ri}, and such that Ri ⊂ Ωi ⊂ CRi, for a
fixed constant C. Finally assume that CKi ≤ C `M(Ri)

`m(Ri)
and CPi ≤ C`M(Ri) being CKi and CPi the

constants for the Korn’s second inequality and Poincaré inequality for Ωi respectively. Then
V = {Ωi} is called a chain of quasi-rectangles

Definition 6.3.2. Given a chain of quasi-rectanglesV, aV−linked domain Ω is any open set
such that ∪(RI ∪ V) ⊂ Ω and Ω ≡ (∪V). Here RI is a collection of intermediate rectangles
associated to R.
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Definition 6.3.3. LetV = {Ωi}, be a chain of quasi-rectangles, and Ω aV − linked domain.
We say that ω is an admissible weight in Ω if for any x ∈ Ωi

ω(x) ∼
C
ωΩi ∼C

ωΩi+1 ∀i. (6.3.1)

being ωΩi appropriate constants.

Remark 6.3.4. From Definitions 6.3.1, 6.3.2 and 6.3.3 one can readily find that any proof
given in the previous section forR−linked domains can be carried out forV−linked domains.
For this reason we state all the results of this section without further analisys.

Theorem 6.3.5 (Second Case of weighted Korn’s Inequality for Chains of Quasi-Rectangles).
LetV = {Ωi} be a chain of quasi-rectangles and Ω aV − linked domain. Let u ∈ W1,p

ω (Ω)n,
with ω an admissible weight (see (6.3.1)), be such that

1
ω(Ω)

∫
Ω

Du − Dut

2
ω = 0.

Assume that for any k, ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1. Then

‖Du‖Lp
ω(Ω)n×n ≤ C‖ε‖Lp

ωσ(Ω)n×n

where σ|Ri can be taken as in Theorem 6.2.2.

Theorem 6.3.6 (Poincaré inequality for Chains of Quasi-Rectangles). Let V = {Ωi} be a
chain of quasi-rectangles and Ω a V − linked domain. Let ω be an admissible weight such
that for any k, ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1. Then if u ∈ W1,p

ω (Ω)n, and 1
ω(Ω)

∫
Ω

uω = 0,
we have

‖u‖Lp
ω(Ω) ≤ C‖Du‖Lp

ωσ(Ω)n×n ,

where the weight σ is constant on each Ri and can be taken as σ|Ωi = Cp
Pi

.

Corollary 6.3.7. With the same hypotheses of Theorem 6.3.6, assume that B is a ball such that
B ⊂ Ω, and B ∩ Ω j , ∅ only for a finite number of rectangles. Then, for every u ∈ W1,p

ω (Ω)n,
we have:

‖u‖Lp
ω(Ω)n ≤ C

{
‖u‖Lp(B)n + ‖Du‖Lp

ωσ(Ω)n×n

}
where the weight σ is constant on each Ωi and can be taken as σ|Ωi = Cp

Pi
.

Theorem 6.3.8 (General Case of Korn’s inequality for Chains of Quasi-Rectangles). Let
V = {Ωi} be a chain of rectangles, and Ω an V − linked domain. Consider an admissible
weight ω and assume that ω(Rk+1) ≤ αω(Rk) with 0 ≤ α < 1 and that max j ` j(Ri) < C, for
any i. If B is a ball such that B ⊂ Ω, and B meets only a finite number of rectangles Ωi then
for any u ∈ W1,p

ω (Ω)n, we have

‖Du‖Lp
ω(Ω)n×n ≤ C

{
‖u‖Lp(B)n + ‖ε(u)‖Lp

ωσ(Ω)n×n

}
, (6.3.2)

where the weight σ is constant on each element ofV, and can be taken as σ|Ωi = Cp
Ki

.
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Remark 6.3.9. All these results can be proved exactly like the ones for chains of rectangles,
except for a subtle detail: we impose the decreasing measure condition (6.2.4) on the rect-
angles Ri and not on the subdomains Ωi, as it would be natural. This is possible because
of the relationship between the measures of Ωi and Ri. Indeed, since ω is admissible and
|Ri| ≤ |Ωi| ≤ C|Ri|, we have

ω(Ωi) ≤ Cωi|Ωi| ≤ Cωi|Ri| ≤ Cω(Ri),

and
ω(Ri) ≤ Cωi|Ri| ≤ Cωi|Ωi| ≤ Cω(Ωi).

And consequently:

Aω = sup
k>0

( ∞∑
j=k

ω(Ω j)
) 1

p
( k∑

j=0

ω(Ω j)1−p′
) 1

p′

≤ C sup
k>0

( ∞∑
j=k

ω(R j)
) 1

p
( k∑

j=0

ω(R j)1−p′
) 1

p′

.

So, if the decreasing property (6.2.4) is imposed on the rectangles Ri we have that Aω is finite.

6.4 Chains of John quasi-rectangles

The previous Section seems to provide a generalization of the results obtained in Section 6.2.
However, there is an important question that remains unanswered: what is a quasi-rectangle?
In other words: let R be a rectangle, and Ω a domain such that R ⊂ Ω ⊂ CR, and suppose
that both Poincaré and the second case of Korn’s inequalities hold in Ω. The question is:
how general can Ω be if we ask the constants of these inequalities for Ω to be proportional
to the respective constants for R? Here, we provide examples that give a partial answer to
this question, showing that chains of quasi-rectangles form, indeed, a very general class of
domains.

Definition 6.4.1. We say that U = {Ωi} is a chain of quasi-cubes if it is a chain of quasi-
rectangles, where the rectangle contained in Ωi is a cube Qi, for every i.

Now, consider Ω an U − linked domain, being U = {Ωi}, i = 1, . . . ,N a finite chain of
quasi-cubes where all the cubes Qi are placed along a straight line and have the same size
`(Qi) = `. If we apply Theorem 6.3.8 to Ω, recalling that the constant A satisfies A ≤ CN
(see Lemma 6.2.3), we have that the constant in the second case of Korn’s inequality for Ω is
CK ≤ CN. But the number of cubes N is precisely `M(R)

`m(R) where R is the rectangle formed by
the union of the cubes Qi. In the same way, the Poincaré constant for U is CP ≤ CN`(Q) =

C`M(R). Hence: Ω is a quasi-rectangle.
Consequently, in order to build a quasi-rectangle we only need to put together a finite

number of almost cubic domains, where Korn and Poincaré inequalities hold.
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Remark 6.4.2. Recall that the second case of Korn’s inequality holds on John domains
[Acosta et al., 2006b]. Morever, improved Poincaré inequalities also stand on such domains:
[Hurri-Syrjänen, 1994] and [Drelichman and Durán, 2008]. This motivates the following
definition:

Definition 6.4.3. Let Ω be a U − linked domain with U = {Ωi}, i = 1, . . . ,N a chain of
quasi-cubes placed along a straight line, satisfying `(Qi) = `. We say that Ω is a John
quasi-rectangle if every subdomain Ωi is a John domain with respect to the center of Qi.

The previous discusion implies that in every John quasi rectangle, CK = C `M(R)
`m(R) , and

CP = C`M(R), where R is the rectangle formed by the union of the cubes Qi.

(a) A quasi-cube (b) A Quasi-rectangle (c) Another Quasi-rectangle

Figure 6.1: Quasi-rectangles

In Figure 6.1, we show a quasi-cube and two quasi-rectangles. The quasi-cube is a self-
similar fractal like the Koch snowflake, without the upper and lower ramifications. The first
quasi-rectangle is a tower formed by four quasicubes like the one in Figure 6.1(a). Finally, in
Figure 6.1(c), we show another quasi-rectangle, formed by quasi-cubes of different shapes,
but similar aspect-ratio. The quasicube in 6.1(a) is a uniform domain, and then, Korn’s
inequality stands there. On the other hand, the quasicubes in 6.1(c) are not all of them uniform
(observe that some of them have inner cusps), but are John domains. Consequently, both these
quasi-rectangles are in fact John quasi-rectangles.

Naturally, we can consider chains of John quasi-rectangles, where the results of the pre-
vious section can be applied, as long as Property (6.2.4) is satisfied. Since we are particularly
interested in domains having external cusps, we show a class of domains, linked by chains of
John quasi-rectangles, where the chain narrows toward the origin forming an external cusp.
Korn’s inequalities can be derived for these domains, that generalize Theorem B.
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Definition 6.4.4. LetV = {Ωi} be a chain of John quasi-rectangles with rectangles R = {Ri},
and suppose that Ri has n − 1 short edges of length `i and one of length Li. Furthermore,
suppose that the rectangles Ri are placed one above the other, along the xn axis, so that
R̄i+1 ∩ R̄i = Fu

Ri+1
, and let zi be the xn coordinate of the points in the floor of Ri. Finally, let us

assume that |Ri+1| ≤ α|Ri| for some α < 1. Now, let ϕ : R≥0 −→ R≥0 be a nondecreasing C1

function such that ϕ′ is nondecreasing, and ϕ(0) = ϕ′(0) = 0 and such that ϕ(zi) = `i. Then,
aV − linked domain Ω is called a locally John cusp.

(a) Cuspidal chain of
rectangles

(b) Locally John cusp (normal
cusp)

(c) Locally John cusp

-1

-0.5

0

0.5

1 -1
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(d) Locally John cusp by dilatation

Figure 6.2: Examples of locally John cusps
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It is clear that a locally John cusp Ω is, in fact, an external cusp, and that the function ϕ
gives the cuspidal behaviour of Ω. In Figure 6.2 we show examples of locally John cusps.
Figure 6.2(a) is just a chain of rectangles satisfying: Li+1 ∼

1
√

2
Li and `i = z2

i . Figure 6.2(b)
shows an external cusp with locally smooth boundary away from the origin. The interior
chain of rectangles is like the one in 6.2(a), but leant. In is important to notice that these are
a normal and a curved cusp, respectively. On the other hand, Figure 6.2(c) is a perturbation
of 6.2(b), formed by a chain of John quasi-rectangles. Finally, observe that arguing like in
Section 3.4, we can prove that a domain satisfying Definition A, but taking $ ⊂ Rn−1 a John
domain with respect to the center of a cube included in $, is a locally John cusp. This is the
case of Figure 6.2(d), where we take ϕ(t) = t2 and $ an inner cusp.

The unweighted results of the previous section can be immediatly applied to a locally
John cusp Ω, obtaining an unweighted Poincaré inequality, and a weighted Korn one, both in
the second and the general case.

Moreover, if we take a weight ω which is a nondecreasing function of xn (or |x|), we have:

ω(Ri+1) ≤
{

max
[zi+1,zi]

ϕ
}
|Ri+1| ≤ α

{
min

[zi,zi−1]
ϕ
}
|Ri| ≤ αω(Ri),

and the decreasing property (6.2.4) is fulfilled. In this way we can consider some particularly
interesting weights. For example, being ϕ′ non-decreasing, we can take weights of the form:
ω(x) =

(
ϕ′

)pβ with β ≥ 0. On the other hand, we can also take weights of the form ω(x) = xpβ
n ,

being β ≥ 0. In this way, we obtain the following Theorem. Let us denote L(a) and `(a) the
lengths of the edges L(R) and `(R), being R the rectangle at height a.

Theorem 6.4.5. Let Ω be a locally John cusp, and σ(x) =
(
`(|x|)
L(|x|)

)−p
. Then the inequality:

‖Du‖Lp
ω(Ω)n×n ≤ C

{
‖u‖Lp(B)n + ‖ε(u)‖Lp

ωσ(Ω)n×n
}

holds for weights of the form:

(a)
ω(x) = γxpβ

n , β ≥ 0

(b)
ω(x) =

(
ϕ′

)pβ
, β ≥ 0

It is important to observe that, if ϕ is such that ϕ(zi−1) − ϕ(zi) ∼ ϕ(zi), then:

`i

Li
=

ϕ(zi)
zi−1 − zi

∼
ϕ(zi−1) − ϕ(zi)

zi−1 − zi
∼ ϕ′(zi).

Hence, σ ∼ (ϕ′)−p and item (b) in Theorem 6.4.5 is a generalization of Theorem B. In fact,
as in Theorem B, the weight on the left hand side is (ϕ′)pβ, whereas the one on the right hand
side is (ϕ′)p(β−1). Here, ϕ is not forced to be a power function and it does not depict the precise
profile of Ω but only provides a qualitative description of its cuspidal behaviour, allowing the
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boundary of Ω to be locally John. It is also noteworthy that the critical case of Theorem C is
reached.

On the other hand, let us consider a profile cusp satisfying a definition similar to Defini-
tion A, but taking $ a John domain. An example can be seen in Figure 6.2(d). Moreover, let
us suppose ϕ(z) = zγ for some γ > 1. We show how the rectangles can be chosen in order to
prove that such a cusp is a locally John one.

Let us take
zi =

1
2i .

The rectangle Ri is placed at height zi, and the length of its edges is

`i = ϕ(zi) =
1

2iγ , and Li = zi−1 − zi =
1
2i .

Let us consider a weight of the form:

ω(x) =

(
`i

Li

)pβ

=
1

2i(γ−1)pβ ∀x ∈ Ri.

Then

ω(Ri+1) =
1

2(i+1)(γ−1)pβ |Ri+1| =
1

2(i+1)(γ−1)pβ

1
2(i+1)γ(n−1)

1
2i+1 =

1

2(i+1)
(

(γ−1)pβ+γ(n−1)+1
)

=
1

2(γ−1)pβ+γ(n−1)+1ω(Ri).

Hence, the decresing property (6.2.4) is satisfied when

1
2(γ−1)pβ+γ(n−1)+1 < 1,

or, in other words:
(γ − 1)pβ + γ(n − 1) + 1 > 0,

which leads us to:
β > −

1 + γ(n − 1)
(γ − 1)p

Since ω ∼ (ϕ′)pβ, we can express the weight in terms of ϕ′, obtaining the following result:

Theorem 6.4.6. Let Ω be an external cusp satisfying a definition like Definition A, but taking
$ ⊂ Rn−1 a John domain, and ϕ(z) = zγ, with γ > 1. Then:

‖Du‖Lp
ω(Ω) ≤ C

{
‖u‖Lp(B) + ‖ε(u)‖Lp

ωσ(Ω)}
}
,

with:
σ(x) =

(
ϕ′(x)

)−p and ω(x) = (ϕ′(x))pβ,

being β > −1+γ(n−1)
(γ−1)p .
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This result is also a generalization of Theorem B. It imposes more restrictions than The-
orem 6.4.5 on the boundary of Ω, but it admits a negative range for the exponent β. On the
other hand, the critical case β1 = β2 + 1 in Theorem C is once again reached. It is important
to notice that the counterexamples proposed in [Acosta et al., 2012] for proving Theorem C
(like the ones provided by Maz’ya for the extension problem that we reproduce in Section
5.1.5), are given in terms of functions that depend only on the last coordinate and on the
profile function ϕ. Consequently, they are independent of the boundary of the cusp, and can
be easily adapted for locally John cusps.





Appendix A

Korn inequality for normal cusps using
extension arguments

The results obtained in the last Chapter, regarding Korn and Poincaré inequalities for chains
of rectangles and quasi-rectangles, can be applied to many general domains. In fact, we prove
in Theorems 6.4.5 and 6.4.6 that Theorem B can be generalized to cusps with John boundary
by stripes.

This was not, however, our first approach. In [Durán and Muschietti, 2004], the authors
prove Korn’s inequality for uniform domains using an adaptation of Jones’s extension opera-
tor. Having proved the extension theorems of Chapter 5, and bearing [Durán and Muschietti,
2004] in mind, we begin our work on this subject hoping that the arguments developed in
[Durán and Muschietti, 2004] could be adapted to prove Korn’s inequality for normal and
curved cusps. In the course of our research, we found that the notion of quasi-rectangle
enables us to prove far more general results, such as Theorems 6.3.8, 6.4.5 and 6.4.6.

Since we find the extension approach interesting, we include in this Appendix an sketched
proof of Korn’s inequalities for normal cusps, following an adaptation of the extension argu-
ments used in [Durán and Muschietti, 2004]. It is important to take into account that the
concept of quasi-rectangle is not needed here. We only use the results of Section 6.2, regard-
ing chains of rectangles.

Our arguments follow this line of reasoning: the spine S of a normal cusp Ω can be
seen as a chain of rectangles, as long as we pack together all the cubes S i of the same size.
Consequently, we could apply Korn inequalities for chains of rectangles to S. Moreover, we
could apply them to a fixed dilatation of S that covers Ω. Then, an extension argument can be
used in order to prove Korn inequalities for normal cusps. For doing this, we begin stating the
definition of stepped cusp. Stepped cusps are ment to reproduce the behaviour of the spine
of a normal cusp, in order to simplify the extension process.

Let R = {Ri} be a chain of rectangles, such that Ri has n − 1 short edges of length `i and
one of length Li. Observe that the Korn constant on Ri satisfies: CKi ≤ C Li

`i
, ∀i. In order to

109
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produce a cuspidal behaviour in R, let us add a few hyphotheses on the rectangles Ri:

R̄i ∩ ¯Ri+1 = Fu
Ri+1
, (A.1)

zi ↘ 0. (A.2)

This implies that R is a tower that approaches the origin. Furthermore, we can suppose
that the shape of R is like the one of the spine of a normal cusp. This can be expressed
through the following conditions:

1
4
`i ≤ `i+1 ≤

1
2
`i ∀i, (A.3)

1
2

Li ≤ Li+1 ≤ Li ∀i. (A.4)

These properties establish a rule for the narrowing of the rectangles. The constants in-
volved in both of them can be chosen in a different way, or even be expressed as abstract
constants c1, c2 and c3, c4. The actual values c1 = 1

4 , c2 = 1
2 , c3 = 1

2 , c4 = 1, have been
selected arbitrarily, but not mindlessly. Property (A.3) corresponds with the narrowing given
in a spine of a normal cusp, formed by Whitney cubes. On the other hand, the constants in
Property (A.4) simplify some calculations. Finally let us impose a last requirement in order
to exclude non-singular domains:

`i

zi
−→ 0 as i −→ ∞. (A.5)

Definition A.1. Let R = {Ri} be a chain of rectangles such that the edges of Ri corresponding
to the n − 1 first coordinate axis have length `i, whereas the length of the n-th edge is Li (we
assume Li > `i). An R − linked domain Ω is a stepped cusp if the rectangles Ri are placed at
positive heights {zi}i and satisfy properties (A.1) to (A.5).

Figure 6.2(a) is a stepped cusp.
Note that:

|Ri+1| = `n−1
i+1 Li+1 ≤

1
2n−1 `

n−1
i Li =

1
2n−1 |Ri|.

Then, the results obtained in Section 6.4 in the unweighted case can be applied to stepped
cusps, and hence Korn and Poincaré inequalities hold on them. A similar analysis can be
performed for the weighted case, considering weights like those in Theorem 6.4.5.

Now we want to extend these results to normal cusps.
Let us take Ω a normal cusp, and :

Ω̂ =
⋃

i

K̂ ? S i. (A.6)
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Lemma 5.1.3 shows that K̂ can be chosen depending only on the parameter K of Ω and
such that Ω ⊂ Ω̂. It is clear that Ω̂ is a union of rectangles. In order to study these rectangles,
let us define {ik}k the sequence of indices such that the subsequence of S, {S ik}k is formed
with the first cubes of each size, it is: `(S ik) < `(S ik−1) and `(S ik−1) = `(S ik−1). Now, we can
define:

Rk =
⋃
{K̂ ? S : `(S ) = `(S ik)},

and we have that Ω̂ = ∪kRk. Morever, it is clear that Rk is a rectangle with n − 1 edges of
length

`(Rk) = K̂`(S ik),

and one edge (the xn edge) of length

L(Rk) = `(S ik)#{S ∈ S : `(S ) = `(S ik)}.

Since S i and S i+1 are placed one above the other, the same thing happens to Rk and Rk+1.
It is also clear that, by definition {Rk}k satisfies Properties (A.1) and (A.2). On the other

hand, since we are dealing with Whitney cubes, we have:

1
4
`(Rk) =

1
4
`(S ik) ≤ `(S ik+1) = `(Rk+1) ≤

1
2
`(S ik) =

1
2
`(Rk),

so {Rk}k satisfies Property (A.3). Property (A.5) is obviously satisfied thanks to Property
(3.2.6).

Finally, in order to guarranty that Ω̂ satisfies Property (A.4), we have to impose one extra
hypothesis on Ω. Let us denote:

#k = #{S ∈ S : `(S ) = `(S ik)}.

The natural translation of Property (A.4) into the language of normal cusps is:

1
2
`(S ik)#k ≤ `(S ik+1)#k+1 ≤ `(S ik)#k. (A.7)

Now, we have proved the following:

Lemma A.2. Let Ω be a normal cusp satisfying Property (A.7), and let Ω̂ be the domain
defined in (A.6). Then, Ω̂ is a stepped cusp.

In order to prove Korn’s inequality for normal cusps, we need to provide an extension
operator from the normal cusp Ω to the stepped cusp Ω̂, that preserves the norm of ε(u).
This last requirement forces us to introduce a little modification in the extension operator
presented in Chapter 5. Particularly, we take another polynomial approximation, that fulfills
all our needs. We follow [Durán and Muschietti, 2004], where the authors prove Korn’s
inequality for uniform domains using Jones’s extension operator modified with the proper
polynomial approximation on cubes.
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For every cube T ∈ W(Ω), let us define:

PT (x) = a + M(x − xT ), (A.8)

where a ∈ Rn and M = (mi j) ∈ Rn×n are defined by:

a = −

∫
T

u Mi, j =
1
2
−

∫
T

(∂ui

∂x j
−
∂u j

∂xi

)
,

and xT is the center of T .
It is easy to check that ε(PT ) = 0, so PT ∈ RM(T )n. Consequently, u − PT satisfies:

−

∫
T

u − PT = 0, (A.9)

and

−

∫
T

D(u − PT ) is symmetric. (A.10)

This allows the application of Poincaré’s and second case Korn’s inequalities on T :

‖u − PT ‖Lp(T )n ≤ C`(T )‖D(u − PT )‖Lp(T )n×n ≤ C`(T )‖ε(u)‖Lp(T )n×n . (A.11)

Furthermore,
‖DPT ‖L∞(T )n×n ≤ C‖Du‖L∞(T )n×n ,

and then,
‖D(u − PT )‖L∞(T )n×n ≤ C‖Du‖L∞(T )n×n .

The last inequalities are needed for proving the existence of weak derivatives of the ex-
tended function (as in Section 5.1.4). Property (A.11), on the other hand, allows us to prove a
suitable equivalent of Lemma 5.1.9. Observe that we only need the first stage of the extension
process, since:

Ω ⊂ Ω̂ ⊂ Ω ∪ (∪W3),

(eventually adjusting the constants in the definition of Ω̂ andW3).
The extension operator is defined as in Chapter 5, but using these new polynomials.:

Eu(x) = χΩ(x) f (x) +
∑

Q j∈W3

PQ∗j (x)ϕ j(x),

where ϕ j is a partition of the unity associated with the cubes Q j ∈ W3.
The following Lemma is equivalent to Lemma 5.1.9, and it is analogous to Lemma 2.4 in

[Durán and Muschietti, 2004]:
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Lemma A.3. Let u ∈ W1,p(Ω)n, and Q a cube inW3, then:

‖Eu‖Lp(Q)n ≤ C
{
‖u‖Lp(Q∗)n + `(Q)‖ε(u)‖Lp(F (Q))n×n

}
, (A.12)

‖ε(Eu)‖Lp(Q)n×n ≤ C‖ε(u)‖Lp(F (Q))n×n , (A.13)

‖Eu‖L∞(Q)n ≤ C
{
‖u‖L∞(Q∗)n + `(Q)‖ε(u)‖L∞(F (Q))n×n

}
, (A.14)

‖D(Eu)‖L∞(Q)n×n ≤ C‖Du‖L∞(F (Q))n×n . (A.15)

Proof. For (A.12):

‖Eu‖Lp(Q)n =
∥∥∥∥ ∑

j:Q j∩Qi,∅

PQ∗jφ j

∥∥∥∥
Lp(Q)n

≤
∑

j

∥∥∥∥(PQ∗j − PQ∗)φ j

∥∥∥∥
Lp(Q)n︸                          ︷︷                          ︸

I

+ ‖PQ∗‖Lp(Q)n︸      ︷︷      ︸
II

.

II can be easily bounded by means of Corollary 2.4.3 and (A.11):

II ≤ C‖PQ∗‖Lp(Q∗)n ≤ C{‖PQ∗ − u‖Lp(Q∗)n + ‖u‖Lp(Q∗)n}

≤ C{‖u‖Lp(Q∗)n + `(Q)‖ε(u)‖Lp(Q∗)n×n}.

On the other hand, for I we use Lemma 5.1.7: for a fixed j, let F j = {S 1 = Q∗, . . . , S r = Q∗j}
be the chain of cubes that join Q∗ with Q∗j. Then:

‖(PQ∗j − PQ∗)φ j‖Lp(Q)n ≤

r∑
i=1

‖PS i − PS i+1‖Lp(Q)n

≤

r∑
i=1

{
‖PS i − PS i∪S i+1‖Lp(Q)n + ‖PS i∪S i+1 − PS i+1‖Lp(Q)n

}
≤ C

r∑
i=1

{
‖PS i − PS i∪S i+1‖Lp(S i)n + ‖PS i∪S i+1 − PS i+1‖Lp(S i+1)n

}
≤ C

r∑
i=1

{
‖PS i − u‖Lp(S i)n + ‖u − PS i∪S i+1‖Lp(S i∪S i+1)n + ‖u − PS i+1‖Lp(S i+1)n

}
≤ C

r∑
i=1

`(S i)‖ε(u)‖Lp(S i∪S i+1)n×n ≤ C`(Q)‖ε(u)‖Lp(∪F j)n×n ,

where the last inequality is obtained applying Hölder inequality and taking into account that
r ≤ C for a universal constant C.

For (A.13), let us denote Pk
Q∗ the k-th component of PQ∗ . Since ε(PQ∗) = 0, we have that:

εkm(PQ∗i φi) =
1
2

(
Pk

Q∗i

∂φi

∂xm
+ Pm

Q∗i

∂φi

∂xk

)
,



114 Appendix A. Korn inequality for normal cusps using extension arguments

since on Q∗, Eu = PQ∗ +
∑

j PQ∗jφ j:

ε(Eu) =
∑

j:Q j∩Q,∅

ε((PQ∗j − PQ∗)φ j),

and then:

‖ε(Eu)‖Lp(Q∗)n×n ≤
∑

j

1
`(Q)

‖PQ∗j − PQ∗‖Lp(Q)n×n ≤ C
∑

j

1
`(Q)

‖PQ∗j − PQ∗‖Lp(Q∗)n×n

≤ C
∑

j

‖ε(u)‖Lp(F j)n×n ≤ C‖ε(u)‖Lp(F (Q))n×n .

The arguments for (A.14) and (A.15) are anologous. �

Now, we can sum over all the cubes in W3, as it is done in (5.1.10). We write the
following Corollary adding and admissible weight. The proof is the same than the one of
(5.1.10):

Corollary A.4. Let ω be an admissible weight for Ω. If u ∈ W1,∞(Ω)n, then:

‖Eu‖Lp
ω(∪W3)n ≤ C‖u‖Lp

ω(Ω)n ,

‖ε(Eu)‖Lp
ω(∪W3)n×n ≤ C‖ε(Eu)‖Lp

ω(Ω)n×n .

And:
‖Eu‖W1,∞(∪W3)n ≤ C‖u‖W1,∞(Ω)n .

Finally, since:

Eu ∈ W1,p((∪W3) ∪Ω)n for every u ∈ W1,p(Ω)n,

and Ω̂ ⊂ (∪W3) ∪Ω, we have:
Eu ∈ W1,p(Ω̂)n.

Being Ω̂ a stepped cusp this allows us to state the following:

Theorem A.5. Let Ω be a normal cusp satisfying Property (A.7), u ∈ W1,p(Ω)n and B a ball
contained in Ω. Then:

‖Du‖Lp(Ω)n×n ≤ C
{
‖u‖Lp(B)n + ‖ε(u)‖Lp

σ(Ω)n×n
}
,

where
σ(x) =

(
#{S ∈ S : `(S ) = `(S (|x|))}

)p
.
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Proof. Let us denote σ̃ the weight corresponding to Ω̂ according to Theorem 6.2.11. If we
denote {Ri}i the set of rectangles that defines Ω̂, we have that:

`(Ri) = `(S j),

for some S j ∈ S, and:

L(Ri) = `(Ri) · #{S ∈ S : `(S ) = `(S j)}.

Thence,
σ̃(x) = σ(x) ∀x ∈ Ω,

so σ̃ is an extension of σ on Ω̂.
Now, applying Theorem 6.2.11 for Eu and Corollary A.4:

‖Du‖Lp
ω(Ω)n×n ≤ ‖D(Eu)‖Lp

ω(Ω̂)n×n ≤ C
{
‖Eu‖Lp(B)n + ‖ε(Eu)‖Lp

ωσ̃
(Ω̂)n×n

}
≤ C

{
‖u‖Lp(B)n + ‖ε(u)‖Lp

ωσ̃
(Ω)n×n

}
≤ C

{
‖u‖Lp(B)n + ‖ε(u)‖Lp

ωσ(Ω)n×n

}
.

�

Note that the case of curved cusps can be treated in the same way, applying stage zero,
instead of the first stage.

The weighted form of this result, with weights like those in Theorem 6.4.5, can be proved
in the same way.
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