
UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Matemática

Algoritmos de álgebra conmutativa

en anillos de polinomios

Tesis presentada para optar al t́ıtulo de Doctor de la

Universidad de Buenos Aires en el área Ciencias

Matemáticas

Santiago Jorge Laplagne

Director de tesis: Dra. Teresa Krick

Consejero de estudios: Dra. Teresa Krick

Buenos Aires, 2012

Algoritmos de álgebra conmutativa
en anillos de polinomios

Resumen

En esta tesis nos enfocamos en los aspectos algoŕıtmicos de algunos de los tópi-
cos más importantes del álgebra conmutativa. Estudiamos el cálculo de radicales
y primos y minimales, la normalización de anillos e ideales y otros problemas
relacionados. En los últimos años, se desarrollaron varios programas de álgebra
computacional con implementaciones muy eficientes de las herramientas básicas
para trabajar con polinomios, ideales y anillos. Esto renovó el interés por algo-
ritmos eficientes para resolver algunos problemas dif́ıciles del área.

Proponemos nuevos algoritmos para algunos de estos problemas, basándonos en
ideas matemáticas y resultados nuevos. Hemos implementado todos los algoritmos
en esta tesis en Singular (Decker et al., 2011), uno de los programas de álgebra
computacional más comúnmente utilizados, y están actualmente disponibles para
su uso por toda la comunidad matemática. Si bien para la mayoŕıa de estos
problemas ya exist́ıan algoritmos, los nuevos algoritmos propuestos los superan
en la mayoŕıa de los casos, siendo ahora los algoritmos por default en Singular.

Palabras clave: ideales polinomiales, radical, primos minimales asociados, nor-
malización, bases enteras

Commutative algebra algorithms
in polynomial rings

Abstract

This thesis addresses the algorithmic aspects of some major topics of commutative
algebra. We study the computation of radicals and minimal associated primes
of ideals, the normalization of rings and ideals and other related problems. In
recent years a number of computer algebra systems have been developed with very
efficient implementations of some basic tools to work with polynomials, ideals and
rings. This put on the spot the need for efficient algorithms to solve some difficult
problems.

We propose new algorithms for some of these problems, based on new mathemat-
ical ideas and results. All the algorithms in this thesis have been implemented
in Singular (Decker et al., 2011), one of the most commonly used computer
algebra systems, and are now available for use of the mathematical community.
Although other algorithms already existed for most of these tasks, the new al-
gorithms outperform them in most cases and are now the default algorithms in
Singular.

Keywords: polynomial ideals, radical, minimal associate primes, normalization,
integral bases

Agradecimientos

A mi familia mamá, papá, Diego, Ignacio, Naty, Nico, Fede.

A Teresa por guiarme y aconsejarme a lo largo de ya tanto años.

A toda la gente del equipo Singular de Kaiserslautern: Gert-Martin Greuel, Wol-
fram Decker, Gerhard Pfister, Janko Böhm, Frank Seelisch, Hans Schönemann,
Stefan Steidel, Andreas Steenpaß, Petra Bäsell, que siempre me trataron tan bien
y son parte fundamental de esta tesis.

A los jurados Alicia Dickenstein, André Galligo y Thomas Markwig, por el laburo
de leer la tesis y sus valiosos comentarios.

A toda la gente de la Olimṕıada: Patricia, Flora, Ceci, Bibi, Elisita, Juanca,
Graciela, Julia, Marita, Vero, Norma y Juan Carlos.

Y a todos mis amigos, con quienes compart́ı en estos años almuerzos, merien-
das, oficinas y tantas cosas, Dano, Flor, Santi, Guille, Colo, Dani, Delpe, Caro,
Eze, Ele, Vendra, Carla, Gabriela, Leandro, Sandra, Fede, Seba, Nico, Marce,
Charly, Mart́ın, Maxi, Nahuel, Sergio, Vicky, Magui, Mariana, Ani, Constanza,
Cristian, Malena, Agust́ın, Dora, Gustavo, Pablo H, Eduardo, Matilde, Flavia,
Gumu, Julián, Silvia, Fernando, Tada, Fede.

Contents

1 Introducción (Versión en español) 13

1.1 Radical y primos minimales asociados 14

1.2 Normalización de anillos . 15

1.2.1 Trabajos previos . 16

1.2.2 El nuevo algoritmo . 17

1.2.3 Aplicaciones . 18

1.2.4 Criterios de dependencia entera 19

1.3 Bases enteras por Lema de Hensel 19

2 Introduction (English version) 23

2.1 Radical and minimal associated primes 24

2.2 Normalization of rings . 25

2.2.1 Previous work . 26

2.2.2 The new algorithm . 27

2.2.3 Applications . 28

2.2.4 Criteria for integral dependence 29

2.3 Integral bases via Hensel’s Lemma 29

3 Preliminaries 31

3.1 Ideals and varieties . 31

3.1.1 Localization of rings . 36

3.2 Operations on ideals . 37

3.2.1 Sum of ideals . 37

3.2.2 Product of ideals . 38

3.2.3 Intersection of ideals . 38

3.2.4 Quotient and saturation of ideals 39

9

3.3 Gröbner bases . 40

3.4 Applications of Gröbner bases . 43

3.4.1 Ideal membership . 43

3.4.2 Elimination of variables 44

3.4.3 Intersection of ideals . 44

3.4.4 Quotient and saturation of ideals 45

4 Radical and Minimal Associated Primes 47

4.1 Preliminaries . 47

4.1.1 Irreducible varieties and prime ideals 47

4.1.2 Primary decomposition and associated primes 49

4.2 Computation of the radical of an ideal 55

4.2.1 Theoretical aspects . 55

4.2.2 Algorithms . 59

4.2.3 Complexity analysis . 61

4.2.4 Performance evaluation . 65

4.3 Minimal Associated Primes . 65

4.3.1 Algorithms . 66

4.3.2 Performance evaluation . 71

5 Normalization of rings 73

5.1 Basic definitions and tools . 73

5.2 Computing over the original ring 78

5.3 Algorithms . 82

5.4 Examples and comparisons . 87

5.5 Normalization of local rings . 90

5.6 Normalization via localization . 92

6 Applications of the normalization and related tasks 97

6.1 Integral closure of ideals . 97

6.1.1 Preliminaries . 97

6.1.2 Algorithm . 98

6.1.3 Performance evaluation . 99

6.2 Integral bases via normalization 100

10

6.2.1 Basic definitions . 100

6.2.2 Algorithm . 101

6.3 Criteria for integral dependence 103

6.3.1 Integral dependence over rings 103

6.3.2 Integral dependence over ideals 105

7 Integral bases via Hensel’s lemma 107

7.1 Basic Remarks on Puiseux Series 107

7.1.1 Puiseux Series . 107

7.1.2 The Newton-Puiseux Algorithm 109

7.1.3 Puiseux Blocks . 110

7.1.4 Maximal Integrality Exponents 111

7.2 Sketch of the algorithm . 113

7.3 The element of largest degree of the integral basis 114

7.3.1 Expansions with one or no characteristic exponents 114

7.3.2 Expansions with several characteristic exponents 116

7.4 Hensel’s Lemma . 118

7.5 A local version of Hensel’s Lemma 119

7.6 Local integral basis . 122

7.6.1 One conjugacy class of expansions 124

7.6.2 The general case . 124

7.6.3 The optimization problem 127

7.7 Integral bases algorithm . 129

7.7.1 One singularity at the origin 129

7.7.2 The general algorithm . 131

7.8 Timings . 131

7.8.1 Ak-singularity . 132

7.8.2 Dk-singularity . 132

7.8.3 Ordinary multiple points 132

7.8.4 Curves with many Ak singularities 133

7.8.5 More general singularities 133

11

Caṕıtulo 1

Introducción (Versión en español)

Los fundamentos del álgebra conmutativa fueron introducidos hace más de un
siglo, a mediados del siglo XIX. Dedekind definió en 1879 la noción de ideal, que
podemos considerar como el punto de partida de la teoŕıa, en los suplementos
que escribió al libro Vorlesungen ber Zahlentheorie (Dirichlet, 1968) que conteńıa
las notas de las clases de Dirichlet sobre teoŕıa de números. También probó un
teorema de factorización de ideales para una clase especial de anillos que ahora
llamamos anillos de Dedekind.

Unos años más tarde, Lasker (1905) generalizó estos resultados, desarrollando la
teoŕıa de descomposición primaria y demostrando la existencia de esta descom-
posición para ideales en anillos de polinomios.

Alrededor de 1920, Emmy Noether estudió estos trabajos, simplificándolos y re-
formulando la teoŕıa en un contexto mucho más general. Su brillante trabajo
(Noether, 1921) es considerado como el punto de partida del álgebra conmutativa
moderna.

En esta tesis nos enfocamos en los aspectos algoŕıtmicos de algunos de los tópi-
cos más importantes del álgebra conmutativa. Estudiamos el cálculo de radicales
y primos y minimales, la normalización de anillos e ideales y otros problemas
relacionados. En los últimos años, se desarrollaron varios programas de álgebra
computacional con implementaciones muy eficientes de las herramientas básicas
para trabajar con polinomios, ideales y anillos. Esto renovó el interés por algo-
ritmos eficientes para resolver algunos problemas dif́ıciles del área.

Proponemos nuevos algoritmos para algunos de estos problemas, basándonos en
ideas matemáticas y resultados nuevos. Hemos implementado todos los algoritmos
en esta tesis en Singular (Decker et al., 2011), uno de los programas de álgebra
computacional más comúnmente utilizados, y están actualmente disponibles para
su uso por toda la comunidad matemática. Si bien para la mayoŕıa de estos
problemas ya exist́ıan algoritmos, los nuevos algoritmos propuestos los superan
en la mayoŕıa de los casos, siendo ahora los algoritmos por default en Singular.

13

1.1 Radical y primos minimales asociados

Dado un ideal I ⊂ k[x] = k[x1, . . . , xn], k un cuerpo, el radical de I es el ideal
√
I = {f ∈ k[x] | fm ∈ I para algún m ∈ N}.

El radical juega un papel importante en el álgebra conmutativa cuando nos intere-
san los aspectos geométricos, en virtud de la biyección que existe entre variedades
e ideales radicales sobre cuerpos algebraicamente cerrados.

Aunque la definición es muy simple, calcular el radical de un ideal es generalmen-
te muy dif́ıcil computacionalmente. En los últimos años, se propusieron varios
algoritmos, entre los que mencionamos (Gianni et al., 1988), (Krick and Logar,
1991b) y (Eisenbud et al., 1992) para el caso general, (Kemper, 2002) para el caso
cero–dimensional y (Matsumoto, 2001) para ideales en anillos sobre cuerpos de
caracteŕıstica positiva.

En el Caṕıtulo 4 proponemos un algoritmo para el cálculo del radical basado
en las ideas de Gianni et al. (1988) y Krick and Logar (1991b), comparamos
nuestra implementación del mismo con las implementaciones de otros algoritmos
y analizamos la complejidad teórica. Los resultados de esta sección se encuentran
publicados en (Laplagne, 2006a) y (Laplagne, 2006b).

En (Krick and Logar, 1991b), los autores usan la herramienta para descomposi-
ción de ideales

√
I =

√
I : h ∩

√
〈I, h〉 (Proposición 4.2.1) para un h adecuado

(Proposición 4.2.13). Encuentran h tal que
√
I : h pueda calcularse reduciendo

el problema al caso cero–dimensional y calculan
√
〈I, h〉 por inducción en la di-

mensión. Al tomar el ideal 〈I, h〉, aparecen componentes redundantes (es decir,
componentes que no forman parte de la descomposición del ideal original) que
vuelven lento al algoritmo. En nuestro nuevo algoritmo (Algoritmo 4.2.1), evi-
tamos usar el ideal 〈I, h〉, considerando en cambio la saturación I : h∞ para
distintos polinomios h. Esto lleva a un algoritmo más eficiente en la mayoŕıa de
los casos.

Una tarea relacionada es calcular los primos minimales asociados de un ideal.
Geométricamente, esto equivale a descomponer el conjunto de soluciones del sis-
tema de ecuaciones polinomiales en sus componentes irreducibles. Es decir, po-
demos interpretarlo como resolver el sistema dado, cuando no nos interesan las
multiplicidades de las soluciones, o más generalmente, la estructura algebraica de
las mismas.

En la sección 4.3, mostramos como se pueden aplicar las mismas ideas que usamos
para calcular el radical de un ideal al cálculo de los primos minimales. Hacemos
una breve descripción del nuevo algoritmo y comparamos el rendimiento de la
implementación que hicimos en Singular con la de otros algoritmos implemen-
tados.

Conjuntamente con Wolfram Decker, Gert-Martin Greuel y Hans Schönemann
hemos implementado los algoritmos propuestos para el cálculo del radical de un
ideal y de los primos minimales asociados en la biblioteca primdec (Decker et al.,
2006) de Singular.

14

1.2 Normalización de anillos

En el Caṕıtulo 5 nos dedicamos al problema de calcular la normalización de
anillos de polinomios. Es otra herramienta importante del álgebra conmutativa,
con aplicaciones en geometŕıa algebraica y teoŕıa de singularidades. El contenido
de las Secciones 5.1 a 5.5 es un trabajo en conjunto con Gert-Martin Greuel y
Frank Seelisch, presentado en (Greuel et al., 2010). El enfoque local propuesto
en la Sección 5.6 es un trabajo en conjunto con Janko Böhm, Wolfram Decker,
Gerhard Pfister, Andreas Steenpaßy Stefan Steidel, presentado en una versión
más general en (Böhm et al., 2011a).

Sea A un anillo conmutativo Noetheriano reducido (es decir, sin elementos nilpo-
tentes).

Sea A ⊂ B una extensión de anillos. Decimos que b ∈ B es entero sobre A si
existen ai ∈ A, 1 ≤ i ≤ s, tales que

bs + a1b
s−1 + · · ·+ as−1b+ as = 0.

La clausura entera de A en B es el conjunto de todos los elementos de B enteros
sobre A.

Definimos el anillo de fracciones Q(A) = S−1A, donde S es el conjunto de elemen-
tos no divisores de cero de A y S−1A es la localización de A en S. La normalización
Ā de A es la clausura entera de A en Q(A). Un anillo A se dice normal si A = Ā.

En nuestros algoritmos, consideramos el anillo R = k[x] = k[x1, . . . , xn], con k
un cuerpo e I ⊂ R un ideal equidimensional (i.e., todas las componentes tienen
la misma dimensión) radical y tomamos A = k[x]/I. Abusando la notación,
llamamos también x1, . . . , xn a las imágenes de x1, . . . , xn en A.

Queremos calcular la normalización de anillos A de este tipo.

Ejemplo 1.2.1. Sea I = 〈y3−x2〉 ⊂ k[x, y] y A = k[x, y]/I. Es decir, A es el anillo
de coordenadas de la curva C en la Figura 1.1.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figura 1.1: y3 − x2 = 0

15

En ese anillo, y2/x satisface la ecuación entera(
y2

x

)2

− y = 0,

por lo tanto es un elemento de A. Mas aún, como veremos en el Caṕıtulo 5,
A = A[y2/x].

Llamando t = y2/x, t satisface las relaciones t2− y = 0 y t3− x = 0. Esto nos da
la estructura de anillo de A,

A ∼= k[x, y, t]/〈y3 − x2, t2 − y, t3 − x〉 ∼= k[t].

Vemos que el resultado de la normalización es el anillo de coordenadas de una
curva suave. Esto siempre sucede en el caso de curvas. Si A es el anillo de funciones
polinomiales sobre una curva C, existe una curva no–singular C̃ (contenida en

algún km) con la propiedad de que la normalización A = k[C̃] es el anillo de

funciones polinomiales en C̃ y la inclusión A ⊂ A corresponde a una función
polinomial C̃ → C entre curvas algebraicas. Es decir, la normalización de A
corresponde a una resolución de las singularidades de A. En el ejemplo anterior,
obtenemos la función t 7→ (t3, t2) de C̃ = k en C = {y3 − x2 = 0} ⊂ k[x, y].
(Para un tratamiento más detallado se puede consultar, por ejemplo, Reid 1995,
Sección 4.5.)

Para variedades de dimensión mayor, la normalización del anillo de coordenadas
no es necesariamente no–singular, pero es en general una mejora en las singulari-
dades. Por ejemplo, la codimensión del conjunto de puntos singulares es siempre
≥ 2.

1.2.1 Trabajos previos

Los primeros algoritmos generales para calcular la normalización de anillos fueron
propuestos por Stolzenberg (1968) y Seidenberg (1970, 1975). Sin embargo, las
herramientas involucradas, tales como extensión de cuerpos y anillos, hacen que
estos algoritmos sean muy costosos computacionalmente e inadecuados para la
mayoŕıa de las aplicaciones prácticas.

En los últimos años, diversos autores propusieron nuevos y más eficientes algo-
ritmos, usando bases de Gröbner. El enfoque básico, continuando la ĺınea de los
trabajos anteriores, es calcular una cadena creciente de anillos entre el ideal ori-
ginal y su normalización. Entre estos trabajos, mencionamos (Traverso, 1986),
(Vasconcelos, 1991, 1998), (Brennan and Vasconcelos, 2001). Hasta nuestro co-
nocimiento, ninguno de estos algoritmos ha sido implementado y no es claro
qué tan eficientes son. También de Jong (1998) y Decker et al. (1999a) siguen es-
te camino, aplicando como nuevo ingrediente un criterio de normalidad propuesto
por Grauert and Remmert (1971). En (Decker et al., 1999a), los autores repor-
tan una implementación efectiva de su algoritmo en Singular. Ese algoritmo se
convirtió en el algoritmo estándar para normalización de anillos en los programas

16

de álgebra computacional, y fue implementado también en Macaulay2 (Grayson
and Stillman, 2009) y Magma (Bosma et al., 1997). En (Swanson and Huneke,
2006, Chapter 15), se puede encontrar una buena reseña de la mayoŕıa de estos
algoritmos.

Otro enfoque, presentado en (Gianni and Trager, 1997), es usar normalización de
Noether, reduciendo el problema al caso de dimensión uno, y aplicar algoritmos
espećıficos para ese caso propuestos en (Ford, 1987; Cohen, 1993). Sin embargo,
no conocemos ninguna implementación de estos algoritmos.

Un alternativa más reciente, propuesta en (Leonard and Pellikaan, 2003) y (Singh
and Swanson, 2009) es calcular una cadena decreciente de módulos finitamente
generados sobre el anillo original, que contengan a la normalización. Estos algo-
ritmos funcionan sólo en el caso de anillos sobre cuerpos de caracteŕıstica positiva
p, en donde es posible calcular la transformación de Frobenius de un ideal. Es-
tos algoritmos fueron implementados en Singular y Macaulay2, y resultan muy
rápidos para primos pequeños. Sin embargo, para primos grandes el cálculo de la
transformación de Frobenius es demasiado costoso, haciendo que el algoritmo sea
inaplicable.

Existen también métodos muy eficientes para calcular normalizaciones de ani-
llos en casos especiales. Por ejemplo, en (Bruns and Koch, 2001) se presentan
algoritmos combinatorios para calcular la normalización de anillos teóricos.

1.2.2 El nuevo algoritmo

El algoritmo que proponemos en esta tesis es un algoritmo general, basado en
los trabajos de de Jong (1998) y Decker et al. (1999a). En esos algoritmos, co-
mo comentamos antes, se construyen cadenas crecientes de anillos. Los anillos
se agrandan calculando el anillo de endomorfismos de ciertos ideales de control,
agregando nuevas variables para cada generador del anillo de endomorfismos con-
siderado como módulo sobre el anillo original, y dividiendo por las relaciones entre
las mismas. Luego, se aplica el algoritmo al nuevo anillo, en forma recursiva. Esto
produce una disminución drástica en el rendimiento del algoritmo, debido a la
cantidad creciente de nuevas variables y relaciones entre ellas. Cuando la canti-
dad de anillos intermedios es grande, el algoritmo se vuelve en la mayoŕıa de los
casos inútil, por el crecimiento exponencial de las bases de Gröbner involucradas.
Nuestro enfoque evita la complejidad creciente de los anillos intermedios, apro-
vechando la estructura de A-módulo finitamente generado de la normalización.
Realizamos la mayor parte de los cálculos sobre el anillo original, sin necesidad
de incorporar nuevas variables ni relaciones.

En la Sección 5.2 presentamos los resultados principales y en la Sección 5.3 deta-
llamos el algoritmo. La Sección 5.4 contiene varios ejemplos y comparaciones con
otros algoritmos conocidos, mientras que la sección 5.5 está dedicada a una exten-
sión del algoritmo a anillos locales. Conjuntamente con Gert-Martin Greuel y Ger-
hard Pfister, implementamos los algoritmos propuestos en la biblioteca normal

(Greuel et al., 2009) de Singular.

17

Una mejora interesante para el caso de curvas, que explicamos en la Sección 5.6, es
descomponer el conjunto de singularidades en puntos, y calcular la contribución
local en cada uno de esos puntos a la normalización para luego juntar todos
los resultados locales. De esta forma obtenemos un algoritmo que resulta mucho
mejor en la mayoŕıa de los casos.

1.2.3 Aplicaciones

La normalización de anillos tiene varias aplicaciones, y estudiamos dos de ellas en
el Caṕıtulo 6. En la Sección 6.1 nos enfocamos en el cálculo de la clausura entera
de ideales y en la Sección 6.2 estudiamos el cálculo de bases enteras usando los
algoritmos de normalización. El contenido de la Sección 6.2 es parte de un trabajo
en conjunto (en progreso) con Janko Böhm, Wolfram Decker y Frank Seelisch,
presentado en (Böhm et al., 2012a).

Definición 1.2.2. Sea I un ideal en el anillo R. Un elemento r ∈ R se dice entero
sobre I si existe un entero s y elementos ai ∈ I i, 1 ≤ i ≤ s, tales que se satisface
la ecuación de dependencia entera

rs + a1r
s−1 + a2r

s−2 + · · ·+ as−1r + as = 0.

La clausura entera de I, que denotamos Ī, es el conjunto de todos los elementos
de R enteros sobre I. Si I = Ī, decimos que I es integralmente cerrado.

A partir de un ideal I, podemos definir el álgebra de Rees de I,

R[It] = ⊕n≥0I
ntn =

{
n∑
i=0

ait
i | n ∈ N, ai ∈ I i

}
.

con t una nueva variable.

Podemos obtener la normalización de I a partir de la normalización del anillo
R[It], como veremos en la Proposición 6.1.3.

Por lo tanto, las mejoras en los algoritmos para calcular la normalización de
anillos producen inmediatamente mejoras en el cálculo de la clausura entera de
ideales. Como el álgebra de Rees es un anillo con una estructura particular, resulta
interesante estudiar como se aplica el nuevo algoritmo a este caso particular. La
Sección 6.1 está dedicada a este tema.

Usualmente, el álgebra de Rees contiene una gran cantidad de variables con rela-
ciones de grado alto entre ellas, y por lo tanto, en general este enfoque no resulta
ser eficiente. Sin embargo, no se conoce ningún algoritmo directo para calcular la
clausura entera de ideales. Esto es un tema para estudio futuro.

Como otra aplicación, en la Sección 6.2 estudiamos el cálculo de bases enteras
usando los algoritmos de normalización.

Sea R = k[x, y], f ∈ R mónico como polinomio en y y sea A = k[C] =
k[x, y]/〈f(x, y)〉. Una base entera de A es un conjunto b0, . . . , bn−1 de genera-
dores libres de A sobre k[x]:

A = k[x]b0 ⊕ · · · ⊕ k[x]bn−1.

18

Aplicaciones t́ıpicas de bases enteras son el cálculo de ideal adjuntos (ver Mňuk,
1997; Böhm et al., 2012b), espacios de Riemann-Roch (ver Huang and Ieradi,
1994; Hess, 2002) y la parametrización de curvas racionales (ver van Hoeij 1997;
Böhm et al. 2012c; la biblioteca de Singular paraplanecurves, Böhm et al.
2011c).

En conjunto con Janko Böhm, Wolfram Decker y Frank Seelisch, hemos imple-
mentado los algoritmos propuestos en esta sección en la biblioteca integralbasis

(Böhm et al., 2011b) de Singular.

Como veremos en el Caṕıtulo 7, podemos usar algoritmos espećıficos para calcular
bases enteras. Sin embargo, la aplicación directa de los algoritmos de normali-
zación es competitiva o incluso mejor que los algoritmos espećıficos, en algunos
casos particulares.

1.2.4 Criterios de dependencia entera

En la Sección 6.3, estudiamos criterios que permitan determinar en forma al-
goŕıtmica si un elemento dado pertenece a la normalización de un anillo o ideal.

Si bien una manera de hacerlo es calcular la normalización y luego verificar si el
elemento dado pertenece a la misma, Vasconcelos (2005) pregunta por la existen-
cia de criterios directos que no requieran calcular la normalización, debido al alto
costo computacional de hacerlo (especialmente en el caso de ideales).

En (Greuel and Pfister, 2008, Proposición 3.1.3) se propone un criterio de depen-
dencia entera para una extensión de la forma R[f1, . . . , fs] ↪→ R. En este trabajo,
damos criterios similares para analizar la pertenencia a la normalización de ani-
llos e ideales, y cuando la respuesta es positiva, podemos además calcular una
ecuación de dependencia entera, la cual no se puede obtener directamente de los
algoritmos de normalización.

Implementamos los algoritmos en Singular y mostramos su aplicación en algu-
nos ejemplos.

1.3 Bases enteras por Lema de Hensel

Finalmente, en el Caṕıtulo 7 explicamos cómo calcular eficientemente bases en-
teras usando el Lema de Hensel. El contenido de este caṕıtulo es un trabajo
en conjunto (en progreso) con Janko Böhm, Wolfram Decker y Frank Seelisch,
presentado en (Böhm et al., 2012a).

Desde un punto de vista teórico, nuestro enfoque es similar a (van Hoeij, 1994),
donde se utilizan las llamadas series de Puiseux. Sin embargo, aplicando el Lema
de Hensel, podemos agrupar las expansiones de Puiseux conjugadas o que coin-
cidan en sus primeros términos, obteniendo un algoritmo mucho más eficiente.

Dado f ∈ k[x, y] mónico de grado n en y, queremos calcular bases enteras lo-
cales de f en los puntos singulares. Podemos suponer por lo tanto que f tiene

19

una singularidad aislada en el origen, y calcular la base entera local para esa
singularidad.

Sabemos que la base entera tiene la forma b0, . . . , bn−1, donde bi = pi/x
ei , con pi

mónico de grado i como polinomio en y, para 0 ≤ i ≤ n− 1.

Nos concentramos en calcular el último término de la base, b = bn−1 = p/xe.
(Para los otros elementos, el procedimiento es similar.)

El problema es entonces encontrar p mónico de grado n− 1 en y con la máxima
valuación posible en x = 0 (es decir, que pueda ser dividido por la mayor potencia
de x y seguir siendo entero).

Sean γ1(x), . . . , γn(x) ∈ P(x) las expansiones de Puiseux de f en x = 0. Estudia-
mos cómo deben ser las expansiones de p en x = 0. Si escribimos

p = (y − η1(x)) · · · (y − ηn−1(x)), (1.1)

queremos calcular las series η1(x), . . . , ηn−1(x) que maximicen el valor de e.

Como se explica en (van Hoeij, 1994, Theorem 5.1), el mejor p̃ ∈ P(x)[y] posible se
puede obtener tomando {η1(x), . . . , ηn−1(x)} ⊂ {γ1(x), . . . , γn(x)}. En ese trabajo
se muestra también cómo elegir ese subconjunto.

Sin embargo, p̃ en general no es un elemento de k[x, y] como queremos, sino que
puede contener coeficientes en una extensión algebraica del cuerpo de base o
contener exponentes fraccionarios. Utilizando la traza, van Hoeij demuestra que
existe p ∈ k[x, y] mónico de grado n− 1 en y con la misma valuación que p̃.

Estas ideas son usadas únicamente para obtener cotas en el algoritmo, y no son
utilizadas para construir p. En nuestro trabajo, mostramos que p puede cons-
truirse fácilmente utilizando el Lema de Hensel para calcular (y − η1(x)) · · · (y −
ηn−1(x)) eficientemente, o más precisamente el producto de estos factores trun-
cados hasta un grado apropiado.

Podemos resumir nuestro algoritmo en los siguientes pasos,

(1) Calculamos e mirando las partes singulares de las expansiones de Puiseux
de f , como se describe en (van Hoeij, 1994). Este paso es en general rápido.

(2) Determinamos cómo truncar las expansiones que aparecen en p̃ para obtener
un elemento p ∈ k[x, y] con la misma valuación que p̃. (Sección 7.3.)

(3) Utilizamos el Lema de Hensel para calcular el producto de las expansiones
de Puiseux que no se anulan en el origen, hasta grado e en x. (Todas estas
expansiones deben aparecer en p pues de lo contrario el máximo exponen-
te para el cual p/xe resulte entero seŕıa e = 0.) Este paso ya representa
una gran mejora comparado con el algoritmo de van Hoeij, puesto que no
necesitamos calcular separadamente cada expansión de Puiseux fuera del
origen. (Sección 7.4.)

(4) Aplicamos una transformación a los polinomios para poder utilizar el Lema
de Hensel para calcular productos de expansiones de Puiseux conjugadas
que se anulan en el origen. (Sección 7.5.)

20

(5) Calculamos p multiplicando los factores apropiados que obtuvimos utilizan-
do el Lema de Hensel.

Comparado con el algoritmo de van Hoeij, estamos prediciendo los elementos de
la base entera, en lugar de calcularlos resolviendo sistemas de ecuaciones.

21

Chapter 2

Introduction (English version)

The fundamentals of commutative algebra have been laid more than one century
ago, in the middle of the 19th century. The notion of ideal, which can be consid-
ered as the origin of the theory, was introduced by Dedekind in the supplements
he wrote in 1879 to the book Vorlesungen ber Zahlentheorie (Dirichlet, 1968)
containing Dirichlet’s lectures on number theory. He also proved a theorem of
unique factorization of ideals in the special class of rings we now call Dedekind
rings.

These results were generalized some years later by Lasker (1905), developing the
theory of primary decomposition and proving the existence of this decomposition
for ideals in rings of polynomials.

In the 1920’s, Emmy Noether studied these works, simplified and reformulated
them in a much more general setting. Her brilliant paper (Noether, 1921) is now
considered the starting point of modern commutative algebra.

This thesis addresses the algorithmic aspects of some major topics of commutative
algebra. We study the computation of radicals and minimal associated primes
of ideals, the normalization of rings and ideals and other related problems. In
recent years a number of computer algebra systems have been developed with very
efficient implementations of some basic tools to work with polynomials, ideals and
rings. This put on the spot the need for efficient algorithms to solve some difficult
problems.

We propose new algorithms for some of these problems, based on new mathemat-
ical ideas and results. All the algorithms in this thesis have been implemented
in Singular (Decker et al., 2011), one of the most commonly used computer
algebra systems, and are now available for use of the mathematical community.
Although other algorithms already existed for most of these tasks, the new al-
gorithms outperform them in most cases and are now the default algorithms in
Singular.

23

2.1 Radical and minimal associated primes

Given an ideal I ⊂ k[x] = k[x1, . . . , xn], k a field, the radical of I is the ideal

√
I = {f ∈ k[x] | fm ∈ I for some m ∈ N}.

The radical of an ideal plays an important role in commutative algebra, when we
are concerned with the geometry aspects. This is due to the bijection existing
between varieties and radical ideals for algebraic closed fields.

Although the definition is quite simple, computing the radical of a given ideal is
usually very hard computationally. In recent years some algorithms for the com-
putation of the radical have been proposed. Among these, we mention (Gianni
et al., 1988), (Krick and Logar, 1991b) and (Eisenbud et al., 1992) for the general
case, (Kemper, 2002) for the zero–dimensional case and (Matsumoto, 2001) for
ideals over fields of positive characteristic.

In Chapter 4 we propose an algorithm for computing the radical based on the
ideas of Gianni et al. (1988) and Krick and Logar (1991b), compare an imple-
mentation of it with the implementations of other known algorithms, and analyze
its theoretical complexity. The results of this section are published in (Laplagne,
2006a) and (Laplagne, 2006b).

In (Krick and Logar, 1991b), the authors use the splitting tool
√
I =

√
I : h ∩√

〈I, h〉 (Proposition 4.2.1) for an appropriate h (Proposition 4.2.13). They find

h such that
√
I : h can be obtained by reduction to the zero–dimensional case and

obtain
√
〈I, h〉 by induction on the dimension. When taking 〈I, h〉, redundant

components appear (that is, components that are not part of the original ideal)
that slow down the algorithm performance. In our new algorithm (Algorithm
4.2.1), we avoid using 〈I, h〉 but instead we use repeatedly the saturation I : h∞

for appropriate h. This leads in many cases to a more efficient algorithm.

A related task is to compute the minimal associated primes of an ideal. Geo-
metrically, this is equivalent to decompose the set of solutions of a system of
polynomial equations into its irreducible components. That is, we can interpret
it as solving the system, when we are not interested in multiplicities or, more
specifically, in the algebraic structure of the solutions.

In Section 4.3, we show how the same ideas that we used for the computation
of the radical of an ideal can be applied to the computation of the minimal
associated primes of an ideal. We make a brief description of the new algorithm
and we show some time comparisons with the existing algorithms in Singular.

Together with Wolfram Decker, Gert-Martin Greuel and Hans Schönemann, we
have implemented the proposed algorithms for the computation of the radical
and the minimal associated primes of ideals in the Singular library primdec

(Decker et al., 2006).

24

2.2 Normalization of rings

In Chapter 5 we turn to the problem of computing the normalization of polyno-
mial rings. It is another major tool in commutative algebra, with applications
to algebraic geometry and singularity theory. The content of Sections 5.1 to
5.5 is a joint work with Gert-Martin Greuel and Frank Seelisch. It is presented
in (Greuel et al., 2010). The local approach proposed in Section 5.6 is a joint
work with Janko Böhm, Wolfram Decker, Gerhard Pfister, Andreas Steenpaßand
Stefan Steidel, and is presented in a more general version in (Böhm et al., 2011a).

Let A be a reduced Noetherian ring. (All rings are assumed to be commutative
with 1 and all ring morphisms map 1 to 1.)

Let A ⊂ B be a ring extension. We say that b ∈ B is integral over A if there
exist ai ∈ A, 1 ≤ i ≤ s, such that

bs + a1b
s−1 + · · ·+ as−1b+ as = 0.

The integral closure of A in B is the set of all elements of B that are integral
over A.

We define the total ring of fractions Q(A) = S−1A, where S ⊆ A is the set of
non–zerodivisors of A and S−1A is the localization of A at S. The normalization
Ā of A is the integral closure of A in Q(A). A ring A is called normal if A = Ā.

For our algorithms we will consider R = k[x] = k[x1, . . . , xn], with k a field and
I ⊂ R an equidimensional (i.e., all the components have the same dimension)
radical ideal and take A = k[x]/I. Abusing the notation, we denote also by
x1, . . . , xn the images of x1, . . . , xn in A.

We are interested in computing the normalization of such rings A.

Example 2.2.1. Let I = 〈y3 − x2〉 ⊂ k[x, y] and A = k[x, y]/I. That is, A is the
coordinate ring of the curve shown in Figure 2.1.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 2.1: y3 − x2 = 0

25

Then, y2/x satisfies the integral equation(
y2

x

)2

− y = 0,

so it is an element of A. Moreover, as we will see in Chapter 5, A = A[y2/x].

If we call t = y2/x, then t satisfies the relations t2 − y = 0 and t3 − x = 0. This
gives the ring structure of A,

A ∼= k[x, y, t]/〈y3 − x2, t2 − y, t3 − x〉 ∼= k[t].

We see that the output of the normalization is the coordinate ring of a smooth
curve. This always happens for the case of curves. If A is the ring of polynomial
functions on a curve C, there is a non-singular curve C̃ (contained in some km)

with the property that the normalization A = k[C̃] is the ring of polynomial

functions on C̃ and the inclusion A ⊂ A corresponds to a polynomial map C̃ →
C between algebraic curves. That is, the normalization of A corresponds to a
resolution of singularities. In the above example we get the map t 7→ (t3, t2) from

C̃ = k to C = {y3 − x2 = 0} ⊂ k[x, y]. (See, for example, Reid, 1995, Section
4.5)

For higher dimensional varieties, the normalization of the coordinate ring will
not necessarily be non-singular, but an improvement of the singularities. For
example, the codimension of the singular locus will be ≥ 2.

2.2.1 Previous work

The first general algorithms for computing the normalization of rings were pro-
posed by Stolzenberg (1968) and Seidenberg (1970, 1975). However, the tools
involved, such as extensions of the ground field and addition of new indetermi-
nates, make them computationally too expensive and unsuitable for most practi-
cal applications.

In recent years several new and more practicable algorithms using Gröbner bases
have been proposed. The basic approach, continuing the line of the works men-
tioned before, is to compute an increasing chain of rings from the original ring
to its normalization. This is carried out in the works of Traverso (1986), Vas-
concelos (1991, 1998), Brennan and Vasconcelos (2001). To our knowledge none
of these algorithms has been implemented and it remains unclear how efficient
they are. Also de Jong (1998) and Decker et al. (1999a) follow this path, apply-
ing as a new ingredient a criterion for normality due to Grauert and Remmert
(1971). In (Decker et al., 1999a) they report an effective implementation of their
algorithm in Singular (Decker et al., 2011). It became the standard algorithm
for normalization in computer algebra systems, being now implemented also in
Macaulay2 (Grayson and Stillman, 2009) and Magma (Bosma et al., 1997). A
good review on most of these algorithms can be found in (Swanson and Huneke,
2006, Chapter 15).

26

Another approach, presented in (Gianni and Trager, 1997), is to use Noether nor-
malization, reduce the problem to the one–dimensional case, and apply existing
special algorithms for that case (Ford, 1987; Cohen, 1993). Unfortunately, we do
not know of any implementation of these algorithms.

A more recent approach taken in (Leonard and Pellikaan, 2003) and (Singh and
Swanson, 2009) is to compute a decreasing chain of finitely generated modules
over the original ring containing the normalization. Their algorithm works only
in the case when the base field is of positive characteristic p, where they can use
the Frobenius map. It has been implemented in Macaulay2 and Singular, and
it turns out to be very fast for small p. However the computation of the Frobenius
map makes it impracticable when p is large.

There are also very efficient methods for computing the normalization in some
special cases. For example, for toric rings, one can apply fast combinatorial
techniques, as explained in (Bruns and Koch, 2001).

2.2.2 The new algorithm

The algorithm that we propose in this thesis is a general algorithm and it is
based on (de Jong, 1998) and (Decker et al., 1999a). In their algorithm, as we
mentioned before, they construct an increasing chain of affine rings. They enlarge
the rings by computing the endomorphism ring of a test ideal (see below), adding
new variables for each module generator of the endomorphism ring and dividing
out the relations among them. Then the algorithm is applied recursively to
the new affine ring. This can produce a big slow-down in the performance of
the algorithm, due to the increasing number of variables and relations among
them. For a large number of intermediate rings, the algorithm is in most cases
unusable, since the Gröbner bases of the ideals of relations grow extensively. Our
approach avoids the increasing complexity when enlarging the rings, benefiting
from the finitely generated A-module structure of the normalization. We are able
to do most computations over the original ring without adding new variables or
relations.

The main new results are presented in Section 5.2. In Section 5.3 we describe the
algorithm. Section 5.4 contains several benchmark examples and a comparison
with previously known algorithms, while Section 5.5 is devoted to an extension
of the algorithm to local rings. Together with Gert-Martin Greuel and Gerhard
Pfister, we have implemented the proposed algorithms in the Singular library
normal (Greuel et al., 2009).

A nice improvement for the case of curves, explained in Section 5.6, is to decom-
pose the singular locus of the curve into its singular points, compute the local
contribution to the normalization at each of these points and put the local results
together. In this way, we get an algorithm that performs much better in most
examples.

27

2.2.3 Applications

The normalization of rings have several applications, and we study two of them
in Chapter 6. In Section 6.1 we focus on the computation of the integral closure
of ideals and in Section 6.2 we study the computation of integral bases using the
normalization algorithm. The content of Section 6.2 is part of a joint work (in
progress) with Janko Böhm, Wolfram Decker and Frank Seelisch, presented in
(Böhm et al., 2012a).

Definition 2.2.2. Let I be an ideal in a ring R. An element r ∈ R is said to be
integral over I if there exist an integer s and elements ai ∈ I i, 1 ≤ i ≤ s, such
that

rs + a1r
s−1 + a2r

s−2 + · · ·+ as−1r + as = 0.

Such an equation is called an equation of integral dependence of r over I (of
degree n). The set of all elements that are integral over I is called the integral
closure of I, and is denoted Ī. If I = Ī, then I is called integrally closed.

From I, we can define the Rees algebra

R[It] = ⊕n≥0I
ntn =

{
n∑
i=0

ait
i | n ∈ N, ai ∈ I i

}
,

where t is a new variable.

The normalization of I can be obtained from the normalization of the ring R[It],
as we explain in Proposition 6.1.3.

That is, an improvement in the algorithms to compute the normalization of rings
immediately leads to better ways to compute the integral closure of ideals. Since
the Rees algebra is a ring with a special structure, it is interesting to study how
the new algorithms apply to this particular case. This is done in Section 6.1.

Usually the Rees algebra contains a large number of variables with high degree
relations among them, and therefore this is not a good approach in general.
However there is no known direct method to compute the integral closure of
ideals up to date. This is a problem for further studying.

As another application, in Section 6.2 we study the computation of integral bases
using the normalization algorithm.

Let R = k[x, y], f ∈ R monic in y and A = k[C] = k[x, y]/〈f(x, y)〉. An integral
basis for A is a set b0, . . . , bn−1 of free generators for A over k[x]:

A = k[x]b0 ⊕ · · · ⊕ k[x]bn−1.

Typical applications of integral bases are the computation of adjoint ideals (see
Mňuk, 1997; Böhm et al., 2012b), the computation of Riemann-Roch spaces (see
Huang and Ieradi, 1994; Hess, 2002), and the parametrization of rational curves
(see van Hoeij 1997; Böhm et al. 2012c; the Singular library paraplanecurves,
Böhm et al. 2011c).

28

Together with Janko Böhm, Wolfram Decker and Frank Seelisch, we have im-
plemented the algorithms proposed in this section in the library integralbasis

(Böhm et al., 2011b).

As we show in Chapter 7, we can also use special algorithms for computing integral
bases, based on the special structure of the ring. However, this general algorithm
is competitive in many cases and even better than the special algorithm in some
particular examples.

2.2.4 Criteria for integral dependence

In Section 6.3, we study criteria for integral dependence. That is, we want to
decide algorithmically if a given element belongs to the normalization of a ring
or an ideal.

Although a way to do this is to first compute the normalization and then check
if the given element belongs to it, Vasconcelos (2005) asks for the existence of
direct criteria that do not require to compute it, due to the high computational
cost of doing so (especially in the case of normalization of ideals).

In (Greuel and Pfister, 2008, Proposition 3.1.3), the authors propose an integral
dependence criterion for an extension of type R[f1, . . . , fs] ↪→ R. In our work, we
give similar criteria for checking if any given element belongs to the normalization
of rings and ideals. When the element is integral, we get as part of the output
an equation of integral dependence, which is not possible to obtain directly from
the normalization algorithms.

We have implemented the tests in Singular, and we give some examples of
applications.

2.3 Integral bases via Hensel’s Lemma

Finally, in Chapter 7 we explain how to compute efficiently the integral bases by
using Hensel’s lemma. The content of this chapter is a joint work (in progress)
with Janko Böhm, Wolfram Decker and Frank Seelisch, presented in Böhm et al.
(2012a).

Theoretically, the approach is similar to (van Hoeij, 1994), where the Puiseux
Expansions are used. However, by using Hensel’s lemma we can group together
conjugate or similar Puiseux expansions and obtain a much faster algorithm.

Given f ∈ k[x, y] monic of degree n in y, we want to compute the local integral
bases of f at the singular points. We therefore assume that f has an isolated sin-
gularity at the origin, and we compute the local integral basis for this singularity.

We know that the basis will have the form b0, . . . , bn−1, where bi = pi/x
ei , with

pi monic of degree i as polynomial in y.

We focus on computing the last term b = bn−1 = p/xe. (For the other terms, the

29

procedure is similar, and we explain it afterwards.)

The problem is then to find p monic of degree n−1 in y with the highest vanishing
order at x = 0 (that is, that can be divided by the largest power of x and still be
integral).

Let γ1(x), . . . , γn(x) ∈ P(x) be the Puiseux expansions of f at x = 0. We consider
how the Puiseux expansions of p at x = 0 must be. That is, we write

p = (y − η1(x)) · · · (y − ηn−1(x)) (2.1)

and we want to compute appropriate η1(x), . . . , ηn−1(x) to maximize e.

As noted in (van Hoeij, 1994, Theorem 5.1), the best p̃ ∈ P(x)[y] can be obtained
by taking {η1(x), . . . , ηn−1(x)} a subset of {γ1(x), . . . , γn(x)}. In that paper it is
also explained how to compute which subset to take.

However p̃ is usually not in the ground field and may contain fractional exponents.
By using the trace map, van Hoeij proves that there exists p ∈ k[x, y] monic of
degree n− 1 in y with the same vanishing order as p̃.

These ideas are only used there to get bounds for his algorithm, and are not
used to construct p. In this work, we show that p can be easily constructed,
using Hensel’s Lemma to efficiently compute (y− η1(x)) · · · (y− ηn−1(x)) or more
precisely the product of the truncated expansions of these factors up to the ap-
propriate degree.

Our new algorithm can be sketched as follows:

(1) We compute e by looking at the singular part of the Puiseux expansions of
f , as described in (van Hoeij, 1994). This step is usually fast.

(2) We determine how to truncate the expansions appearing in p̃ to get an
element p in the ground field with the same vanishing order as p̃. (Section
7.3.)

(3) We use Hensel’s Lemma to compute the product of the Puiseux expansions
that do not vanish at the origin, up to degree e in x. (All these expansions
must appear in p or otherwise the maximum exponent such that p/xe is
integral will be e = 0.) This step is already a major improvement compared
to van Hoeij’s algorithm, as we do not need to compute the different Puiseux
expansions outside the origin separately. (Section 7.4.)

(4) We apply a transformation to the polynomials so that Hensel’s Lemma can
be used to compute the products of conjugate Puiseux Expansions that
vanish at the origin. (Section 7.5.)

(5) We multiply the appropriate factors obtained using Hensel’s Lemma to
compute p.

Compared to van Hoeij’s algorithm, we are predicting the elements of the integral
basis instead of computing them by solving systems of equations.

30

Chapter 3

Preliminaries

3.1 Ideals and varieties

In this chapter we introduce the basic notions of commutative algebra. Some
proofs will be omitted, they can be found in (van der Waerden, 1949), (Atiyah
and Macdonald, 1969), (Lang, 2002) or (Cox et al., 1996).

We set k any field and k[x] = k[x1, . . . , xn] the ring of polynomials in n vari-
ables with coefficients in k. We start by studying the common zeros of sets of
polynomials.

Definition 3.1.1. We note kn the n–dimensional affine space over k, that is, the
set of n-uples p := (p1, . . . , pn) with pi ∈ k, with the affine vector space structure.

For any set X ⊆ k[x] of polynomials, we define

V = V(X) = {p ∈ kn | f(p) = 0 ∀ f ∈ X}.

We call V the affine variety defined by X.

We say that a given set of points V ⊆ kn is an affine variety if there exists
X ⊆ k[x] such that V = V(X).

Example 3.1.2. In R3, let U = V({(x2 + y2 − z)z2}). The picture of U is shown
in Figure 3.1.1

If k is not algebraically closed, we are usually interested in varieties over the
algebraic closure of k, k̄. In this case, we note Vk̄ and Vk to distinguish both
varieties, or we indicate explicitly the field: VC,VR,

Example 3.1.3.

VR({x2 + y2}) = {(0, 0)}

and

VC({x2 + y2}) = {(x, y) | y = ix} ∪ {(x, y) | y = −ix}.
1Picture made using Surfer software, from http://www.imaginary-exhibition.com/.

31

Figure 3.1: VR({(x2 + y2 − z)z2})

The following notion is useful for dealing with set of polynomials.

Definition 3.1.4. A set I ⊆ k[x] is called an ideal if it satisfies the following
conditions:

(1) 0 ∈ I.

(2) If f, g ∈ I, then f + g ∈ I.

(3) If f ∈ I and g ∈ k[x], then gf ∈ I.

We next see a way to construct ideals.

Definition 3.1.5. Let X ⊆ k[x]. The ideal generated by X is the ideal

I = 〈f | f ∈ X〉 =

{∑
fλ∈X

hλfλ : hλ ∈ k[x]

}
,

where all the sums contain only a finite number of terms.

Given an ideal, we can construct the variety associated to it.

Definition 3.1.6. Let I ⊆ k[x] be an ideal, we define the variety of the ideal I
as

V(I) = {p ∈ kn | f(p) = 0 ∀f ∈ I}

We have the following property.

Proposition 3.1.7. Let X ⊆ k[x] and let I = 〈f | f ∈ X〉. Then V(I) = V(X).

If X = {f1, . . . , fs} is finite, we write I = 〈f1, . . . , fs〉 and we say that I is a
finitely generated ideal. We next mention an important property, asserting that
all the ideals in k[x] are finitely generated.

32

Definition 3.1.8. A ring R is called Noetherian if all ideals in R are finitely
generated.

The following fundamental theorem is known as the Hilbert basis theorem.

Theorem 3.1.9. Let k be a field. The ring of polynomials k[x] is Noetherian.

We have seen before how to define a variety from any set of polynomials. By
Proposition 3.1.7, V = V(X) = V(I), where I = 〈f | f ∈ X〉. Since k[x] is
Noetherian, the ideal I is finitely generated, that is, I = 〈f1, . . . , fs〉 for some
f1, . . . , fs ∈ k[x]. Therefore V = V({f1, . . . , fs}). This means that in the defini-
tion of a variety we can restrict to finite sets of polynomials.

The Noetherian condition is equivalent to the ascending chain condition, which
we next define.

Proposition 3.1.10. Let R be a ring. The following conditions are equivalents:

(1) R is Noetherian.

(2) (Ascending chain condition) For every ascending chain

I1 ⊆ I2 ⊆ . . .

of ideals in R, there exists N ≥ 1 such that IN = IN+1 = IN+2 = . . . In
this case, we say that the chain of ideals stabilizes.

Proof. (1) ⇒ (2) Let I1 ⊆ I2 ⊆ I3 ⊆ . . . be an ascending chain. Consider the set
I =

⋃∞
i=1 Ii. We want to prove that I is an ideal.

(1) 0 ∈ I because 0 is in any ideal Ii.

(2) If f, g ∈ I, there exists N1 and N2 such that f ∈ IN1 and g ∈ IN2 . We
assume N2 > N1, then IN1 ⊆ IN2 and f, g ∈ IN2 . Therefore f + g ∈ IN2 and
f + g ∈ I.

(3) Let f ∈ I and h ∈ k[x]. There exists N such that f ∈ IN . Therefore,
hf ∈ IN and we get hf ∈ I.

Since R is Noetherian, the ideal I is finitely generated. This says that there exist
f1, . . . , fs which generate I. For each fi, 1 ≤ i ≤ s, there exists Ni such that
fi ∈ INi . Let N the maximum of all Ni, 1 ≤ i ≤ s. Since the ideals Ii are an
ascending chain, fi ∈ IN for all 1 ≤ i ≤ s. Therefore 〈f1, . . . , fs〉 ⊆ IN ⊆ IN+1 ⊆
· · · ⊆ I = 〈f1, . . . , fs〉. Then, all the inclusions are identities, and the ascending
chain stabilizes.

(2) ⇒ (1) We assume that R is not Noetherian. Let I be an ideal in R that does
not have any finite set of generators.

We can construct a chain 〈f1〉 (〈f1, f2〉 (· · · (〈f1, f2, . . . , fs〉 (. . . with fi ∈ I
∀i ∈ N and fi 6∈ 〈f1, f2, . . . , fi−1〉. None of these ideals can be equal to I because
I is not finitely generated. Therefore we can extend the chain infinitely, and we
conclude that R does not satisfy the ascending chain condition.

33

From the Hilbert basis theorem, we conclude that all ideals in k[x] satisfy the
ascending chain condition.

We next study the ideals obtained from varieties.

Definition 3.1.11. Let V ⊆ kn be a variety. We define

I(V) = {f ∈ k[x] | f(p) = 0 ∀ p ∈ V }.

I(V) is an ideal, which we call the ideal of V . When necessary, we will indicate
over which ring is the ideal generated (Ik[x](V), Ik̄[x](V), . . .).

Lemma 3.1.12. For any variety V ⊆ kn, it holds V(I(V)) = V .

Proof. If p ∈ V , all the polynomials in I(V) vanish at p and therefore p ∈
V(I(V)).

For the reverse inclusion, we have seen that there exist polynomials f1, . . . , fs
such that

V = V({f1, . . . , fs}) = {p ∈ kn | fi(p) = 0 ∀i, 1 ≤ i ≤ s}.

Therefore f1, . . . , fs ∈ I(V). If p ∈ V(I(V)), f1(p) = f2(p) = · · · = fs(p) = 0
and p ∈ V .

If we do the converse operation, that is, given an ideal I ⊆ k[x], we compute
I(V(I)), we do not always obtain the original ideal. For example, if I = 〈x2, y2〉 ⊂
C[x, y], then V(I) = {(0, 0)} and I(V(I)) = 〈x, y〉.

However, over algebraically closed fields, there exists an easy relation between
both ideals.

To state the relation, we define the radical of an ideal (which we study in deeper
detail in Chapter 4).

Definition 3.1.13. Let I ⊆ k[x] be an ideal. The radical of I is the ideal√
I = {f | fm ∈ I for some m ∈ N}. We say that an ideal I is radical if I =

√
I.

Theorem 3.1.14. Let k be an algebraically closed field and I ⊆ k[x] an ideal.
Let f ∈ I. There exists m ∈ N such that fm ∈ I(V(I)). That is,

√
I = I(V(I)).

This theorem is of great importance in the development of algebraic geometry.
It is usually mentioned with the original German name Nullstellensatz, which
means “the theorem of the zeros”.

Example 3.1.15. In Example 3.1.2, U = V(〈(x2 + y2 − z)z2〉 and I(U) = 〈(x2 +
y2 − z)z〉.

The following corollary is known as the weak Nullstellensatz.

34

Theorem 3.1.16. Let k be an algebraically closed field and I ⊆ k[x] an ideal. If
V(I) = ∅, then I = 〈1〉.

Proof. I(V(I)) = I(∅) = 〈1〉.

We see next the analog for varieties of the ascending chain condition for ideals.
We use the following lemma.

Lemma 3.1.17 (Reversion of inclusions).

(1) Let I ⊆ J ⊆ k[x] be ideals. Then V(I) ⊇ V(J).

(2) Let U ⊆ V ⊆ kn be varieties. Then I(U) ⊇ I(V).

Proof.

(1) Let p ∈ V(J). Then g(p) = 0 ∀g ∈ J . Since I ⊆ J , f(p) = 0 ∀f ∈ I and
p ∈ V(I).

(2) Let f ∈ I(V). Then f(p) = 0 ∀p ∈ V . Since U ⊆ V , f(p) = 0 ∀p ∈ U and
f ∈ I(U).

Proposition 3.1.18. Let

V1 ⊇ V2 ⊇ V3 ⊇ . . .

be a descending chain of varieties in kn. There exists N ≥ 1 such that

VN = VN+1 = VN+2 = . . .

Proof. If we consider the ideals of the varieties, we obtain from Lemma 3.1.17,

I(V1) ⊆ I(V2) ⊆ I(V3) ⊆ . . .

From the ascending chain condition, this chain stabilizes. This means, I(VN) =
I(VN+1) = . . . for some N ∈ N. Considering now the varieties defined by these
ideals, we get

V(I(V1)) ⊇ V(I(V2)) ⊇ V(I(V3)) ⊇ . . .

But we have already seen that V(I(V)) = V . Therefore

V1 ⊇ V2 ⊇ V3 ⊇ . . .

Definition 3.1.19. Let I (A be an ideal. I is called prime if given f , g ∈ k[x]
such that fg ∈ I then either f ∈ I or g ∈ I. I is called maximal if it is maximal
with respect to inclusion (i.e., if I ⊆ I ′ (k[x], then I = I ′).

35

The ring A itself is not considered prime (but the null ideal is, when A is an
integral domain).

Prime ideals allow us to give an algebraic definition of the dimension of rings and
ideals.

Definition 3.1.20. The Krull dimension (or dimension) of a ring A is the max-
imal length m of chains P0 (P1 (· · · (Pm of prime ideals in A.

Definition 3.1.21. Let I ⊂ A be an ideal. The dimension of I is the dimension
of the ring A/I.

Since there exists a one-to-one correspondence between prime ideals of A/I and
ideals of A containing I, the dimension of an ideal I can be defined also as the
maximal length of a chain of prime ideals of A containing I.

Example 3.1.22. The ring k[x1, . . . , xn] has dimension n (see, for example, Eisen-
bud, 1995). If I = 〈x〉 ⊂ k[x, y, z], then k[x, y, z]/〈x〉 ∼= k[y, z] and therefore
dim(I) = dim(k[y, z]) = 2.

3.1.1 Localization of rings

In this section we explain the process of localization, which will be used in the
algorithms in the next chapters.

We recall the definition of quotient field given in Section 2.2.

Definition 3.1.23. Let A be an integral domain, the quotient field of A is

Q(A) =
{a
b
| a, b ∈ A, b 6= 0

}
,

where
a

b
=
c

d
⇐⇒ ad = bc.

To extend this construction to general rings, we make first the following definition.

Definition 3.1.24. Let A be a ring. A set S ⊆ A is called multiplicatively closed
if

(1) 1 ∈ S

(2) a ∈ S, b ∈ S ⇒ ab ∈ S

We can now define the localization.

Definition 3.1.25. Let A be a ring and S ⊆ A a multiplicatively closed set. The
localization of A with respect to S is the ring

S−1A =
{a
b
| a ∈ A, b ∈ S

}
,

where
a

b
=
c

d
iff there exists s ∈ S such that s(ad− bc) = 0.

36

We will use special notations for some particular cases.

Example 3.1.26.

(1) A \ P is multiplicatively closed for any prime ideal P . The ring

AP =
{a
b
| a ∈ A, b 6∈ P

}
is called the localization of A at P . It is a local ring with maximal ideal
PAP . In particular, if m is a maximal ideal, Am is a local ring with maximal
ideal mAm.

(2) For any f ∈ A, the set S = {1, f, f 2, . . . } is multiplicatively closed. The
localization with respect to S is noted

Af =

{
a

fn
| a ∈ A, n ≥ 0

}
.

(3) The set S of all non–zerodivisors of A is also multiplicatively closed. We
note

Q(A) =
{a
b
| a ∈ A, b a non–zerodivisor of A

}
,

the total ring of fractions of A. This extends the previous definition for
integral domains.

3.2 Operations on ideals

We define now some operations among ideals that we will use through all this
work.

3.2.1 Sum of ideals

Definition 3.2.1. If I and J are ideals in k[x], we define the sum of I and J as
the set

I + J = {f + g | f ∈ I, g ∈ J}

This set is an ideal. If I and J are generated by polynomials I = 〈f1, . . . , fs〉 and
J = 〈g1, . . . , gt〉 then I + J = 〈f1, . . . , fs, g1, . . . , gt〉.

We will usually use the notation 〈I, J〉 instead of I +J and 〈I, g1, . . . , gt〉 instead
of I + 〈g1, . . . , gt〉.

Regarding the varieties defined by the ideals, we have the following property.

Proposition 3.2.2. Let I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉 be ideals in k[x].
Then

V(I + J) = V(I) ∩V(J).

37

Proof. Let p ∈ V(I + J). Then f1(p) = · · · = fs(p) = g1(p) = · · · = gt(p) = 0.
Therefore, p ∈ V(I) and p ∈ V(J). Conversely, let f ∈ V(I) ∩ V(J). Then
f1(p) = · · · = fs(p) = 0 and g1(p) = · · · = gt(p) = 0. We conclude that
p ∈ V(I + J).

3.2.2 Product of ideals

Let I, J ⊆ k[x] be ideals, and consider the set {fg | f ∈ I, g ∈ J}. This set is
not always an ideal, as we see in the following example.

Example 3.2.3. Let I = 〈x, y〉, J = 〈z, w〉 ⊂ k[x, y, z, w], and set H = {fg | f ∈
I, g ∈ J}. It holds xz ∈ H and yw ∈ H, but xz + yw 6∈ H (the polynomial is
irreducible).

Taking this into account, we make the following definition.

Definition 3.2.4. Let I, J ⊆ k[x] be ideals. We define the product of I and J
as the ideal

IJ = 〈fg | f ∈ I, g ∈ J〉.

If I and J are generated by polynomials, I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉
then

IJ = 〈f1g1, . . . , f1gt, f2g1, . . . , fsgt〉.

When I is generated by a unique polynomial, I = 〈f〉, we will use the notation
fJ for the product of I and J .

We will also use the exponential notation to note the product of an ideal with
itself: In = I · · · I (n times).

In this case, we have the following property concerning the varieties defined by
the ideals:

Proposition 3.2.5. Let I and J be ideals in k[x]. Then

V(IJ) = V(I) ∪V(J)

Proof. Let p ∈ V(I) ∪V(J). We can assume that p ∈ V(I). Then (fg)(p) = 0
for all f ∈ I and g ∈ J because f(p) = 0 for all f ∈ I.

Conversely, let p 6∈ V(I) ∪ V(J). There exists f ∈ V(I) such that f(p) 6= 0
and g ∈ V(J) such that g(p) 6= 0. We conclude that (fg)(p) 6= 0 and therefore
p /∈ V(IJ).

3.2.3 Intersection of ideals

Let I, J ⊆ k[x] be ideals. Their intersection

I ∩ J = {f ∈ k[x] | f ∈ I and f ∈ J} .

38

is also an ideal.

When taking varieties, we get a similar result as in the case of products of ideals.

Proposition 3.2.6. Let I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉 be ideals in k[x].
Then

V(I ∩ J) = V(I) ∪V(J) = V(IJ).

Proof. Let p ∈ V(I)∪V(J). We assume p ∈ V(I). Then f(p) = 0 for all f ∈ I.
Since I ∩ J ⊆ I, f(p) = 0 for all f ∈ I ∩ J . Therefore, p ∈ V(I ∩ J).

Conversely, let p 6∈ V(I) ∪V(J). There exist f ∈ V(I) such that f(p) 6= 0 and
g ∈ V(J) such that g(p) 6= 0. The polynomial fg is in I and J , so fg ∈ I ∩ J
and fg(p) 6= 0. Therefore p 6∈ V(I ∩ J).

Although the varieties of IJ and I ∩ J are equal, the ideals may be different.
However, the following inclusion always holds.

Lemma 3.2.7. Let I, J ⊆ k[x] be ideals. Then IJ ⊆ I ∩ J .

Proof. Let f ∈ IJ , f =
∑s

i=1 gihi with gi ∈ I and hi ∈ J , 1 ≤ i ≤ s. Then
gihi ∈ I and gihi ∈ J for all i, 1 ≤ i ≤ s. Therefore, f ∈ I ∩ J .

The other inclusion does not always hold, as we see in the following easy example.

Example 3.2.8. Let I = J = 〈x〉 ⊂ k[x]. Then IJ = 〈x2〉 and I ∩ J = 〈x〉.

3.2.4 Quotient and saturation of ideals

Definition 3.2.9. Let I, J ⊆ k[x] be ideals. We define the quotient ideal of I
and J as

I : J = {f ∈ k[x] | fJ ⊆ I}.

We define also the saturation of I and J as

I : J∞ = {f ∈ k[x] | fJm ⊆ I for some m ∈ N}.

The sets I : J and I : J∞ are easily seen to be ideals.

When the ideal J is principal, J = 〈f〉, we use the notations I : f and I : f∞.

Observation 3.2.10. We have the following chain of ideals:

I : f ⊆ I : f 2 ⊆ · · · ⊆ I : f j ⊆ · · · ⊆ I : f∞.

Since k[x] satisfies the ascending chain condition, there exists m such that I :
fm = I : fm+1 = I : f∞.

We have the following relation between intersections and quotients.

39

Proposition 3.2.11. Let I1, I2 and J be ideals in k[x]. Then

(I1 ∩ I2) : J = (I1 : J) ∩ (I2 : J).

Proof. If f ∈ (I1 ∩ I2) : J , then fJ ⊆ I1 and fJ ⊆ I2. Therefore, f ∈ (I1 :
J) ∩ (I2 : J).

Conversely, if f ∈ (I1 : J) ∩ (I2 : J), then fJ ⊆ I1 and fJ ⊆ I2. Therefore,
fJ ⊆ I1 ∩ I2 and f ∈ (I1 ∩ I2) : J .

3.3 Gröbner bases

We have up to now seen some topics of commutative algebra and algebraic ge-
ometry from the theoretical point of view. Our main goal in this thesis is to
provide effective algorithms for some problems in these areas. In this section we
introduce the well–known Gröbner bases, that allow us to answer questions and
perform operations between ideals algorithmically. They are a basic tool that we
use in most of this thesis. The proofs that are omitted can be found in (Cox
et al., 1996).

As usual, we work over R = k[x] = k[x1, . . . , xn], where k is a field.

Definition 3.3.1. We call Mon(x1, . . . , xn) the set of monomials in x1, . . . , xn.
If a ∈ Zn≥0, a = (a1, . . . , an), we note by xa the monomial xa11 . . . xann . A (global)
monomial order in k[x] is a relation > in Mon(x1, . . . , xn) such that

(1) > is a strict total ordering.

(2) xa > xb ⇒ xa · xc > xb · xc for all a, b, c ∈ Nn
0 .

(3) > is a well–ordering.

When the last condition is not satisfied, we call > a non–global monomial order.

Definition 3.3.2. Given f ∈ k[x], f 6= 0, and a fixed monomial order >, we
write

f = cxa + f ′

with c ∈ k, c 6= 0, and xa′ < xa for all non–zero terms c′xa′ of f ′.

We define

lt(f) = cxa, the leading term of f

lc(f) = c, the leading coefficient of f

lm(f) = xa, the leading monomial of f

(We will also use the definition for polynomials over rings.)

40

Definition 3.3.3. Given a term τ = cxa, the total degree (or simply, the degree)
of τ is deg(τ) = |a| = a1 + · · · + an. We define the total degree (or degree) of a
non–zero polynomial f ∈ k[x] as the maximum of all the degrees of its terms.

For a set F ⊆ k[x] and a monomial order >, we set

Lt(F) = 〈lt(f) | f ∈ F 〉

the leading ideal of F , generated by all the leading terms of the polynomials in
F .

We define lt(0) = 0, lc(0) = 0 and deg(0) = −∞.

One of the most commonly used orderings is the lexicographical order.

Definition 3.3.4. Let a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ Zn≥0. We say that
xa > xb in the lexicographical order if there exists m ≤ n such that ai = bi for
i < m and am > bm.

For example, xy3z > xy2z2 in k[x, y] and x1 > x2 > . . . > xn in k[x1, . . . , xn]. In
some cases, we will use the lexicographical order with a different ordering on the
variables. For example, if we set z > y > x, then xy2z2 > xy3z.

Definition 3.3.5. We say that a polynomial f ∈ k[x] is reduced modulo F ⊆ k[x]
if f 6= 0 and no monomial of f is in Lt(F) (or equivalently, no monomial of f is
divisible by any monomial lt(g), g ∈ F). If not, we say that f is reducible modulo
F .

When f is reducible, we can reduce it and obtain a reduced polynomial, as we see
in the following theorem, whose proof can be found in (Cox et al., 1996, Theorem
2.3.3).

Theorem 3.3.6 (Existence of Division Algorithm in k[x]). Let > be a monomial
order in k[x]. Let F = {f1, . . . , fs} ⊆ k[x] and f ∈ k[x], then f can be written
as

f = a1f1 + · · ·+ asfs + r,

where ai, r ∈ k[x], 1 ≤ i ≤ s, and r = 0 or r is reduced modulo F . The
polynomials ai and r can be computed algorithmically and so that lm(f) ≥ lm(aifi)
if aifi 6= 0.

The theorem suggests the following definition.

Definition 3.3.7. With the notation of the previous theorem, if f ∈ k[x] can be
written as

f = a1f1 + · · ·+ asfs + r,

where ai, r ∈ k[x] and r = 0 o r is reduced modulo {f1, . . . , fs}, we say that r is
a remainder of f on division by F .

We remark that the remainder r is not unique in general.

41

Example 3.3.8. Let f = x2 + y2 ∈ k[x, y] and let F = {x + y, x2 + 3}. Then
f = (x− y)(x+ y) + 2y2 = 1(x2 + 3) + y2− 3, giving two different remainders 2y2

and y2 − 3.

Definition 3.3.9. A finite subset G of an ideal I ⊆ k[x] is called a Gröbner basis
of I with respect to a monomial order > if Lt(G) = Lt(I).

The name basis suggests that G generates I. Indeed, the following property holds.

Proposition 3.3.10. Let G be a Gröbner basis of I w.r.t. a monomial order >,
then G is a set of generators of I.

Proof. Let f ∈ I and G = {g1, . . . , gt}. The polynomial f can be written as

f = a1g1 + · · ·+ atgt + r

where r = 0 or r is reduced modulo G. Then r = f − a1g1 + · · ·+ atgt ∈ I. This
implies that lt(r) ∈ Lt(I). But Lt(I) = Lt(G), so we conclude that r = 0 and
f ∈ 〈G〉.

Corollary 3.3.11. If G is a Gröbner basis of I with respect to a monomial order
>, every non–zero element of I is reducible modulo G.

Proof. It is a direct corollary of the last proposition.

Moreover, the remainder of a polynomial on division by a Gröbner basis is always
unique.

Proposition 3.3.12. Let I ⊆ k[x] be an ideal and let G be a Gröbner basis of I
with respect to an ordering >. Given f ∈ k[x], the remainder of f on division by
G is uniquely determined.

Proof. We assume that there are two different remainders r1 and r2. That is,
f =

∑
aigi+r1 =

∑
bigi+r2. Then r1−r2 ∈ I. But the monomials of r1−r2 are

not divisible by any of the leading monomials of g1 or g2. Therefore, we conclude
that r1 − r2 = 0.

Definition 3.3.13. If G is a Gröbner basis of an ideal, we write f
G

for the
remainder of f on division by G.

Every ideal in a ring of polynomials over a field has a Gröbner basis.

Proposition 3.3.14. Let I ⊆ k[x] be an ideal and > a monomial order. There
exists G = {g1, . . . , gt}, a Gröbner basis of I with respect to >.

Proof. Since k[x] is Noetherian, there exists a finite set of generators of Lt(I).
By definition, Lt(I) is the set of the leading monomials of the polynomials in I.
Therefore, there exist g1, . . . , gt ∈ I such that Lt(I) = 〈lt(g1), . . . , lt(gt)〉. The set
G = {g1, . . . , gt} is a Gröbner basis of I.

42

However, in practice, computing the Gröbner basis of a given ideal is a much
more difficult task. The first solution to this problem was given by Buchberger
in 1965 in his doctoral thesis.

Proposition 3.3.15. Given any set of generators of an ideal I ⊆ k[x], it is
possible to algorithmically compute a Gröbner basis of it.

The original algorithm for computing Gröbner bases, proposed by Buchberger,
can be found in his works (Buchberger, 1970) and (Buchberger, 1976).

In general, the Gröbner bases of an ideal are not unique, not even for a fixed
monomial order. However, under certain hypotheses, we can get uniqueness re-
sults.

Definition 3.3.16. Let I ⊆ k[x] and let > be a monomial order. A Gröbner
basis G of I is called reduced if

• lc(g) = 1 for all g ∈ G.

• For all g ∈ G, no monomial of g belongs to Lt(G− {g}).

We get the following theorem of uniqueness (Cox et al., 1996, Proposition 2.7.6).

Theorem 3.3.17. Let I ⊆ k[x], I 6= {0}, and let > be a monomial order. Then
I has a unique reduced Gröbner basis with respect to that ordering.

We state now an important property of Gröbner bases, which is a corollary of
Buchberger’s algorithm for computing Gröbner bases. It will be of great impor-
tance in the proofs of several theorems.

Proposition 3.3.18. Let I = 〈f1, . . . , fs〉 ⊆ k[x]. Let k′ ⊆ k be a subfield of k
such that all fi have all their coefficients in k′. Let G be a reduced Gröbner basis
of I. Then, all the coefficients of the polynomials in G are actually in k′.

3.4 Applications of Gröbner bases

The following applications of Gröbner bases are extensively used in the algorithms
we propose in the next chapters.

3.4.1 Ideal membership

This is certainly one of the most important applications of Gröbner bases.

We want to know if a given polynomial belongs to some ideal. The following
property holds.

Proposition 3.4.1. Let I ⊆ k[x] be an ideal and let f ∈ k[x]. Let G be a
Gröbner basis of I with respect to a monomial order >. Then

f ∈ I ⇐⇒ f
G

= 0.

43

Proof. Given f ∈ I, since G generates I, f =
∑s

i=1 aigi + 0, with ai ∈ k[x],
1 ≤ i ≤ s. This means that 0 is a remainder of f on division by G. But G is a

Gröbner basis and therefore the remainder is unique, so f
G

= 0. The converse is
immediate.

This means that we can solve the ideal membership problem by using the division
algorithm we have mentioned in Theorem 3.3.6.

3.4.2 Elimination of variables

Given I ⊆ k[x], we want to compute I ′ = I ∩ k[xs+1, . . . , xn] (the polynomials in
I in the variables xs+1, . . . , xn). The problem is reduced to compute a Gröbner
basis of I with respect to an appropriate monomial order.

Definition 3.4.2. We say that a monomial order > in k[x] is an elimination
order for x1, . . . , xs (s < n) if any monomial that contains some of the vari-
ables x1, . . . , xs is bigger than any monomial that does not contain any of them.
Equivalently,

∀f ∈ k[x], lt(f) ∈ k[xs+1, . . . , xn]⇒ f ∈ k[xs+1, . . . , xn].

Note that the lexicographical order with x1 > . . . > xn is an elimination order
for x1, . . . , xs, s < n, hence elimination orders exist.

Lemma 3.4.3. Let I ⊆ k[x] be an ideal and > an elimination order for x1, . . . , xs.
If G = {g1, . . . , gt} is a Gröbner basis of I, then

G′ = {g ∈ G | g ∈ k[xs+1, . . . , xn]}

is a Gröbner basis of I ′ = I ∩ k[xs+1, . . . , xn] in the order induced by >.

Proof. Given f ∈ I ′, since I ′ ⊆ I, there exists gi ∈ G such that lt(gi) | lt(f).
Since lt(f) ∈ k[xs+1, . . . , xn], also lt(gi) ∈ k[xs+1, . . . , xn] and gi ∈ G′. Therefore
Lt(G′) = Lt(I ′) and G′ is a Gröbner basis of I ′.

When > is an elimination order for a set u of variables (u ⊂ {x1, . . . , xn}), we
use the notation u� xr u.

3.4.3 Intersection of ideals

We explain now how to compute the intersection of ideals.

Lemma 3.4.4. Let I1 = 〈f1, . . . , fs〉 and I2 = 〈g1, . . . , gr〉 be ideals in k[x]. Let

J = 〈tf1, . . . , tfs, (1− t)g1, . . . , (1− t)gr〉 = tI1 + (1− t)I2 ⊆ k[x, t],

where t is a new variable.

Then, I1 ∩ I2 = J ∩ k[x].

44

Proof. If f ∈ I1∩I2, then tf+(1−t)f ∈ J and hence f ∈ J∩k[x]. For the reverse
inclusion, let h ∈ J ∩ k[x]. Then h = tq1(x, t)h1 + (1− t)q2(x, t)h2, with h1 ∈ I1

and h2 ∈ I2. Since t does not appear in h, taking t = 1, h = q1(x, 1)h1 ∈ I1 and
taking t = 0, h = q2(x, 0)h2 ∈ I2.

We can therefore compute the intersection of ideals by computing a Gröbner basis
of tI1 + (1− t)I2 ⊆ k[x, t] with respect to an elimination order for t.

3.4.4 Quotient and saturation of ideals

The following lemma shows that computing the quotient of and ideal and a poly-
nomial can be done by computing intersections.

Lemma 3.4.5. Let I ⊆ k[x], and let h ∈ k[x], h 6= 0. Let f1, . . . , fs ∈ k[x] be
such that I ∩ 〈h〉 = 〈f1h, . . . , fsh〉. Then I : h = 〈f1, . . . , fs〉.

Proof. If f ∈ 〈f1, . . . , fs〉, then hf ∈ I and therefore f ∈ I : h.

Conversely, let f ∈ I : h. Then hf ∈ I ∩ 〈h〉. Therefore, hf =
∑s

i=1 αihfi.
Dividing out h, f ∈ 〈f1, . . . , fs〉, as wanted.

We see next how to compute the quotient of two ideals.

Lemma 3.4.6. Let I and H be ideals in k[x]. If H = 〈h1, . . . , hr〉, then

I : H =
r⋂
i=1

(I : hi).

Proof. If f ∈ I : H, clearly hif ∈ I because hi ∈ H for all 1 ≤ i ≤ r. Conversely,
if f ∈

⋂r
i=i(I : hi) and h ∈ H, writing h =

∑r
i=1 αihi we get that hf ∈ I.

To compute the saturation I : h∞, we can use two different methods. The first
one relies on the observation we made in Section 3.2.4.

Let I and H be ideals in k[x]. We can compute

I : H ⊆ I : H2 ⊆ . . .

until we find m such that I : Hm = I : Hm+1. For this value of m, we know that
I : Hm = I : H∞.

A more efficient algorithm to find m can be obtained from the next lemma.

Lemma 3.4.7. Let I, H1 and H2 be ideals in k[x]. Then I : (H1 · H2) = (I :
H1) : H2.

Proof. Let f ∈ I : (H1 · H2) and let h1 ∈ H1 and h2 ∈ H2. Then fh2h1 ∈ I.
Therefore, fh2 ∈ I : H1 and we conclude that f ∈ (I : H1) : H2.

Conversely, let f ∈ (I : H1) : H2 and h = h1h2 ∈ H1 · H2. Then fh2 ∈ I : H1.
Therefore fh2h1 ∈ I and we conclude that f ∈ I : (H1 ·H2).

45

Based on this lemma, we take I0 = I and compute Ij = Ij−1 : H until we find m
such that Im = Im+1.

In this way we avoid computing powers of H, which can grow very fast.

A drawback of the above method is that we do not have an a priori bound for m.

For the special case of a principal ideal H = 〈h〉, we can compute I : h∞ directly.

Proposition 3.4.8. Let I ⊆ k[x] and h ∈ k[x]. Then

I : h∞ = 〈I, ht− 1〉k[x, t] ∩ k[x],

where t is a new variable.

Proof. We note first that (ht)j−1 ∈ 〈I, ht−1〉k[x, t] for all j, because (ht)j−1 =
(ht− 1) ((ht)j−1 + (ht)j−2 + · · ·+ 1).

Let f ∈ I : h∞. There exists m ∈ N such that fhm = g, with g ∈ I. We get

fhmtm = gtm ⇒ f · ((ht)m − 1) = gtm − f ⇒ f = gtm − f · ((ht)m − 1).

Therefore, f ∈ 〈I, ht− 1〉k[x, t] ∩ k[x].

Conversely, let f ∈ 〈I, ht − 1〉k[x, t] ∩ k[x]. Then f = α1g + α2(ht − 1) with
α1, α2 ∈ k[x, t] and g ∈ I. Since f ∈ k[x], we can take t = 1/h and get

f = α1(x, 1/h)g(x).

Taking m large enough, hmα1(x, 1/h) ∈ k[x]. Therefore hmf ∈ I : h∞.

46

Chapter 4

Radical and Minimal Associated
Primes

In this chapter we propose new algorithms for computing the radical and minimal
associated primes of polynomial ideals.

4.1 Preliminaries

4.1.1 Irreducible varieties and prime ideals

Definition 4.1.1. An affine variety V ⊆ kn is called irreducible if given V1 and
V2 such that V = V1 ∪ V2 then V1 = V or V2 = V .

Proposition 4.1.2. Let V ⊆ kn be an affine variety. Then V can be written as
a finite union

V = V1 ∪ · · · ∪ Vt,

where each Vi is an irreducible variety.

Proof. We assume that there exists a variety V that cannot be decomposed as
the union of irreducible varieties. This implies that V is not irreducible and it
can be decomposed as V1 ∪ V ′1 , (V1 6= V and V ′1 6= V). If we could decompose V1

and V ′1 as union of irreducible varieties, this would give us a decomposition of V
into irreducible varieties. Therefore, we can assume that V1 is not the union of
irreducible varieties. That is, V1 = V2 ∪ V ′2 (V2 6= V y V ′2 6= V), and by the same
argument, we can assume that V2 is not a union of irreducible varieties. Carrying
on with this process, we would get an infinite sequence of varieties

V) V1) V2) . . .

Since the inclusions are strict, this contradicts the Descending Chain condition
(Proposition 3.1.18).

47

Figure 4.1: U = V1 ∪ V2

Example 4.1.3. Carrying on with Example 3.1.2, U = V((x2 + y2 − z)z2) is not
irreducible because it can be decomposed as the union of the paraboloid and the
plane. To prove this, we take V1 = V(x2 +y2−z) and V2 = V(z2) whose pictures
are shown in figure 4.1.1. We have U = V1 ∪ V2.

We focus now on decomposing ideals. Our goal is to write the ideal I as inter-
section of ideals I1, . . . , It, so that each of I1, . . . , It corresponds to an irreducible
component of the variety of I.

In the previous example, we can write I = 〈x2+y2−z〉∩〈z2〉. This decomposition
of the ideal I separates V(I) into its irreducible varieties.

The algebraic analogous of irreducible varieties are prime ideals. The relation is
given in next proposition.

We use the following lemma.

Lemma 4.1.4. Let I ⊆ k[x] be an ideal and f, g ∈ k[x] polynomials. Then

V(〈I, f〉) ∪V(〈I, g〉) = V(〈I, fg〉).

Proof. Let p ∈ V(〈I, f〉) ∪V(〈I, g〉). We can assume p ∈ V(〈I, f〉). Therefore
f(p) = 0 and the polynomials in I also vanish at p. Then, p ∈ V(〈I, fg〉).

Conversely, let p ∈ V(〈I, fg〉). Then f(p) = 0 or g(p) = 0. Assuming f(p) = 0,
we have p ∈ V(〈I, f〉) and then, p ∈ V(〈I, f〉) ∪V(〈I, g〉).

Proposition 4.1.5. Let V ⊆ kn be an affine variety. Then V is irreducible if
and only if I(V) is a prime ideal.

Proof. We assume that I(V) is not prime. There exist f and g in k[x] such that
fg ∈ I(V) but f /∈ I(V) and g /∈ I(V). This means that there exist points p and
q in V such that f(p) 6= 0 and g(q) 6= 0.

48

From the previous lemma, we have

V = V(〈I(V), f〉) ∪V(〈I(V), g〉),

but V is not equal to any of the two varieties, then V is not irreducible.

For the reverse statement, we assume that V is not irreducible. Then V = V1∪V2,
with V1 (V and V2 (V . This implies I(V) (I(V1) and I(V) (I(V2). Let
f ∈ I(V1) \ I(V) and let g ∈ I(V2) \ I(V). If we consider fg, we see that fg
vanishes at all the points of V , because f vanishes at V1 and g vanishes at V2.
Then fg ∈ I(V), but f /∈ I(V) and g /∈ I(V). Therefore, I(V) is not prime.

By what we have seen, given V ⊆ kn and a decomposition into irreducible varieties
V = V1 ∪ · · · ∪ Vt, we have the following decomposition of I(V):

I(V) = I(V1) ∩ · · · ∩ I(Vt),

where I(Vi) are prime ideals.

Example 4.1.6. Carrying on with Example 4.1.3, I(V1) = 〈x2+y2−z〉 and I(V2) =
〈z〉. These ideals are prime and give a decomposition of I(U) as intersection of
prime ideals.

4.1.2 Primary decomposition and associated primes

When we work with integer numbers, every number can be written as a product
of prime numbers. We will see next how to extend this to ideals. We can think
of the integer numbers as ideals in Z, associating to each integer a the ideal 〈a〉,
and replacing the product of numbers by the intersection of ideals. Then, for
example, the identity 6 = 2.3 in translated into 〈6〉 = 〈2〉 ∩ 〈3〉.

The ideal 〈9〉 cannot be written as intersection of prime ideals, because the only
prime ideals that contain it are 〈1〉 and 〈3〉, but 〈3〉∩ 〈3〉 = 〈3〉. However, we can
write it as the square of the prime ideal 〈3〉 (using the product of ideals we have
defined before).

As in the case of varieties, an ideal is called irreducible if whenever I = I1 ∩ I2,
then I = I1 or I = I2. Every ideal can be decomposed as a finite intersection of
irreducible ideals, by the ascending chain condition.

Prime ideals are always irreducible, but the converse is not true in general. We
have just seen that the irreducible ideals in Z are the prime ideals and the powers
of prime ideals. The ideal 〈pm1

1 · · · pmss 〉 can be decomposed as 〈p1〉m1∩· · ·∩〈ps〉ms .

To generalize this to the ring of polynomials, a natural question is whether any
ideal can be written as the intersection of prime ideals or powers of prime ideals.

Unfortunately, this is not true, as we see in the following example.

Example 4.1.7. Let I = 〈x, y2〉 ⊂ k[x, y]. To write it as intersection of ideals, we
look for ideals that contain it. The only possible ideals are 〈1〉 and 〈x, y〉, but I
cannot be written as intersection of those ideals. Then I is irreducible, but it is

49

not prime (because y2 ∈ I and y 6∈ I) and it is not a power of a prime (because
〈x, y〉2 = 〈x2, xy, y2〉, which does not contain I).

To decompose any ideal, we have to work with a broader class of ideals than the
powers of prime ideals.

Definition 4.1.8. An ideal I ⊆ k[x] is called primary if given two polynomials
f and g such that fg ∈ I, then f ∈ I or gm ∈ I for some m > 0.

Before studying further these ideals, we come back to the radical ideals. We recall
that the radical of an ideal I is the set

√
I = {f ∈ k[x] | fm ∈ I for some m ∈ N}.

Lemma 4.1.9. Let I ⊆ k[x]. Then
√
I is a radical ideal.

Proof. We show first that
√
I is an ideal.

(1) 0 ∈
√
I.

(2) Let f ∈
√
I and g ∈ k[x]. There exists m > 0 such that fm ∈ I. Then

gmfm ∈ I and therefore gf ∈
√
I.

(3) Let f, g ∈
√
I. There exist m1 and m2 such that fm1 ∈ I and gm2 ∈ I. We

consider (f + g)m1+m2 = fm1+m2 + fm1+m2−1g+ · · ·+ gm1+m2 . All the terms
of this sum are in I, then (f + g)m1+m2 ∈ I and f + g ∈

√
I.

To prove that it is radical, let f be such that fm ∈
√
I. Then (fm)l ∈ I for some

l ∈ N and f ∈
√
I, as required.

Proposition 4.1.10. Let I1, . . . , It be ideals in k[x] and let I = I1 ∩ · · · ∩ It.
Then √

I =
√
I1 ∩ · · · ∩

√
It.

Proof. Let f ∈
√
I. There exists m ∈ N such that fm ∈ I. Then fm ∈ Ii ∀i,

1 ≤ i ≤ t, and therefore f ∈
√
Ii ∀i, 1 ≤ i ≤ t.

Conversely, if f ∈
√
Ii, 1 ≤ i ≤ t, there exist mi such that fmi ∈

√
Ii. Taking m

the maximum of all mi, 1 ≤ i ≤ t, we conclude that f ∈
√
I.

The following corollary is immediate.

Proposition 4.1.11. Let I1, . . . , It be radical ideals and let I = I1∩· · ·∩It. Then
I is a radical ideal.

Clearly, a prime ideal is radical. Moreover,

Lemma 4.1.12. If I is a primary ideal, then
√
I is prime and it is the smallest

prime ideal containing I.

50

Proof. We assume fg ∈
√
I. Then (fg)m ∈ I for some m. Since I is primary,

fm ∈ I or (gm)l ∈ I for some l ∈ N. Then f ∈
√
I or g ∈

√
I. Therefore,

√
I is

prime.

To prove the second part, let J be a prime ideal such that I ⊆ J . We want to
show that

√
I ⊆ J . Let f ∈

√
I. By definition fm ∈ I for some m ∈ N. Then

fm ∈ J because I ⊆ J . Since J is prime, we conclude that f ∈ J , which proves
the inclusion.

Definition 4.1.13. If I is primary and
√
I = P , we say that I is P -primary.

In general, checking if a given ideal is primary is not easy, but the following
special case is sometimes useful.

Proposition 4.1.14. Let I ⊆ k[x] be an ideal such that
√
I is maximal. Then I

is primary.

Proof. Let f, g ∈ k[x] be such that fg ∈ I. We assume that gm 6∈ I for any m > 0.
We want to prove that f ∈ I. Since g 6∈

√
I and

√
I is maximal, 〈

√
I, g〉 = 〈1〉.

Therefore, there exist p ∈
√
I and q ∈ k[x] such that 1 = p + qg. Let l ∈ N be

such that pl ∈ I. Taking powers in the last identity, 1 = pl + lpl−1qg+ · · ·+ (qg)l.
Multiplying by f , we get f = fpl + lpl−1qgf + · · · + (qg)lf , where all the terms
in the right side are in I. Therefore, f ∈ I.

Example 4.1.15. The ideal I = 〈x, y2〉 ⊂ k[x, y] is not prime (y2 ∈ I but y 6∈ I),
but it is primary because the radical of I is 〈x, y〉, that is maximal. The ideal I
is 〈x, y〉-primary.

Example 4.1.16. The ideal I = 〈xy, y2〉 ⊂ k[x, y] is not primary, because xy ∈ I,
but y /∈ I and xm /∈ I for any m ∈ N.

Primary ideals allow us to decompose any ideal in k[x].

Proposition 4.1.17. Let I ⊆ k[x] be an ideal. Then I admits a primary decom-
position. That is, there exist primary ideals Q1, . . . , Qt such that

I =
t⋂
i=1

Qi

Proof. Since every ideal can be written as the intersection of irreducible ideals,
it is enough to show that an irreducible ideal is primary.

We assume that I is irreducible and that fg ∈ I with f /∈ I. We have to prove
that some power of g is in I. We consider the ideals I : gm, m ≥ 1. We have the
following chain of ideals:

I : g ⊆ I : g2 ⊆ . . .

By the ascending chain condition, there exists N ≥ 1 such that I : gN = I :
gN+1 = . . . We claim that 〈I, gN〉∩〈I, f〉 = I. The inclusion ⊇ is clear. To prove
⊆, let h ∈ 〈I, gN〉∩〈I, f〉. Then h = i+αgN = j+βf , with i, j ∈ I y α, β ∈ k[x].

51

Multiplying by g, ig + αgN+1 = jg + βfg, where fg ∈ I. Thus ig + αgN+1 ∈ I
and αgN+1 ∈ I. Now I : gN = I : gN+1 implies that αgN ∈ I and therefore h ∈ I.

Since I is irreducible, then I = 〈I, gN〉 or I = 〈I, f〉. But the later is impossible
because f /∈ I. Therefore I = 〈I, gN〉 and we conclude that gN ∈ I.

Example 4.1.18. A primary decomposition of I = 〈xy, y2〉 is

I = 〈y〉 ∩ 〈x, y2〉.

Example 4.1.19. The ideal I = 〈(x2 + y2− z)z2〉 can be decomposed as I = 〈x2 +
y2−z〉∩〈z2〉. We have seen that the variety of I is the union of a paraboloid and
the plane. These varieties correspond to the varieties of the ideals 〈x2+y2−z〉 and
〈z2〉 respectively. Therefore, from the primary decomposition of I, we obtained
the components of I corresponding to irreducible varieties.

Let I ⊆ k[x] be an ideal and let I = Q1 ∩ · · · ∩Qt, be its primary decomposition.
Taking radicals, √

I =
√
Q1 ∩ · · · ∩

√
Qt.

If Qi is Pi-primary, we get the decomposition

√
I = P1 ∩ · · · ∩ Pt.

If we consider the corresponding varieties, we get

V(I) = V(P1) ∪ · · · ∪V(Pt),

where we have used that V(
√
I) = V(I). Since Pi, 1 ≤ i ≤ t, are prime ideals,

we obtain a decomposition of V(I) into irreducible varieties.

Now that we know that ideals and varieties can be decomposed into irreducible
components, a natural question is how to obtain their decompositions algorith-
mically. This problem will be studied in the following sections.

We need to study first some properties of the primary decomposition.

Definition 4.1.20. Let I = Q1 ∩ · · · ∩Qt be a primary decomposition of I. The
decomposition is called irredundant if

(1)
√
Qi 6=

√
Qj for 1 ≤ i, j ≤ t and i 6= j.

(2) Qi 6⊇ ∩j 6=iQj for 1 ≤ i ≤ t.

Given any primary decomposition of an ideal, we can obtain from it a primary
decomposition satisfying the second property by simply removing the redundant
components.

To fulfill the first condition, we use the following lemma.

Lemma 4.1.21. Let P be a prime ideal and let Q1, . . . , Qt be P -primary ideals.
Let Q = Q1 ∩ · · · ∩Qt. Then Q is a P -primary ideal.

52

Proof. Clearly
√
Q =

√
Q1 ∩ · · · ∩Qt =

√
Q1 ∩ · · · ∩

√
Qt = P . Let f g ∈ Q,

with f 6∈ Q. We need to show that gm ∈ Q for some m ∈ N. There exists k,
1 ≤ k ≤ t, such that f 6∈ Qk and therefore, gu ∈ Qk, for some u ∈ N. Then g ∈ P
and gm ∈ Q for some m ∈ N, as required.

Hence, when for some prime ideal P the decomposition has more than one P -
primary ideal we take the intersection of all of them and get a new P -primary
ideal.

In this way, any primary decomposition can be transformed into an irredundant
primary decomposition. We conclude that every ideal I ⊆ k[x] has an irredundant
primary decomposition.

Example 4.1.22. We have seen that a primary decomposition of I = 〈xy, y2〉 is
I = 〈y〉 ∩ 〈x, y2〉. Another primary decomposition of I is I = 〈y〉 ∩ 〈x2, xy, y2〉.
This means that there is no uniqueness in the primary decomposition, not even
when considering irredundant primary decompositions.

If we take radicals, we get
√
〈x, y2〉 =

√
〈x2, xy, y2〉 = 〈x, y〉. That is, the

corresponding prime ideals are equal.

The property of the later example always holds and we prove it next. We use the
following lemmas.

Lemma 4.1.23. Let I1, . . . , It be ideals in k[x] and let P be a prime ideal such
that I1 ∩ · · · ∩ It ⊆ P . Then there exists i, 1 ≤ i ≤ t, such that Ii ⊆ P . If
P = I1 ∩ · · · ∩ It, then P = Ii for some i, 1 ≤ i ≤ t.

Proof. We assume Ii 6⊆ P for any i, 1 ≤ i ≤ t. Then for all i, 1 ≤ i ≤ t, there
exists fi ∈ Ii such that fi 6∈ P . Taking f = f1f2 · · · ft, we get f ∈ I1 ∩ · · · ∩ It,
but f 6∈ P because P is prime. This contradicts the hypothesis I1 ∩ · · · ∩ It ⊆ P .

For the second part, if P = I1 ∩ · · · ∩ It, P ⊆ Ii for all i, 1 ≤ i ≤ t. If Ij ⊆ P ,
then P = Ij.

Lemma 4.1.24. Let Q ⊆ k[x] be a P -primary ideal and let f ∈ k[x]. Then

(1) If f ∈ Q, Q : f = 〈1〉.

(2) If f 6∈ Q, Q : f is P -primary.

(3) If f 6∈ P , Q : f = Q.

Proof. (1) If f ∈ Q, gf ∈ Q for all g ∈ k[x], then Q : f = 〈1〉.

(2) If f 6∈ Q and gf ∈ Q, g ∈
√
Q = P . Then Q ⊆ Q : f ⊆ P . Taking radicals,

we get that
√
Q : f = P . To see that it is a primary ideal, let gh ∈ Q : f , such

that gm 6∈ Q : f for any m ∈ N. Then gm 6∈ Q for any m ∈ N. But ghf ∈ Q and
since Q is primary, we get that hf ∈ Q. Therefore, h ∈ Q : f as required.

(3) If f 6∈ P and g ∈ Q : f we get that gf ∈ Q. Since fm 6∈ Q for any
m ∈ N, g ∈ Q. For the other inclusion, let g ∈ Q. Then, gf ∈ Q and therefore
g ∈ Q : f .

53

We obtain the following uniqueness theorem:

Theorem 4.1.25. Let I ⊆ k[x] be an ideal and let I = Q1 ∩ · · · ∩ Qt be an
irredundant primary decomposition of I. Let Pi =

√
Qi, 1 ≤ i ≤ t. The number

of primary components and the prime ideals Pi, 1 ≤ i ≤ t, do not depend on the
chosen primary decomposition.

Proof. To prove the theorem, we will prove that the prime ideals Pi, 1 ≤ i ≤ t
are exactly the prime ideals that appear in the set of ideals

√
I : f , f ∈ k[x].

If f ∈ k[x], I : f = (
⋂
Qi) : f =

⋂
(Qi : f). Then

√
I : f =

⋂t
i=1

√
Qi : f =⋂

f 6∈Qj Pj by Lemma 4.1.24.

Since the primary decomposition is irredundant, for any i, 1 ≤ i ≤ t, ∃ gi ∈⋂
j 6=iQj \Qi. For these gi,

√
I : gi = Pi. Then, all the prime ideals Pi, 1 ≤ i ≤ t,

appear in the set of ideals
√
I : f .

Conversely, let P be a prime ideal such that P =
√
I : f for some f ∈ k[x]. Then

P =
⋂
f 6∈Qj Pj. By Lemma 4.1.23, it holds P = Pj for some j, 1 ≤ j ≤ t.

Definition 4.1.26. Let I ⊆ k[x] and let I = Q1 ∩ · · · ∩ Qt be an irredundant
primary decomposition. The prime ideals Pi =

√
Qi are called associated primes

of I. The minimal elements (with respect to inclusion) of the set of associated
primes are called minimal or isolated associated primes. The other associated
primes are called embedded.

Example 4.1.27. In the example I = 〈xy, y2〉 = 〈y〉∩ 〈x, y2〉, the associated prime
ideals are P1 = 〈y〉 y P2 = 〈x, y〉. P1 is isolated and P2 is embedded because
P1 ⊆ P2. If we look at the varieties, V(P1) is the line {y = 0} and V(P2) is the
point {(0, 0)}. We observe that V(P2) is included in V(P1), and that is where
the name embedded comes from.

Remark 4.1.28. If we take an irredundant primary decomposition I = Q1∩· · ·∩Qt

(with Qi Pi-primary, 1 ≤ i ≤ t) and take radicals, we obtain
√
I = P1 ∩ · · · ∩ Pt.

If there are embedded primes, some of the components Pi are redundant. By
removing them, we get a decomposition of

√
I as intersection of prime ideals.

These are exactly the minimal associated primes, which by Theorem 4.1.25, are
uniquely determined. Since the variety of a prime ideal is irreducible, and V(I) =
V(
√
I), this gives a decomposition of V(I) into its irreducible components.

That is, when we are only interested in decomposing the set of solutions of a
system of polynomial equations into its irreducible components, it is enough to
compute the minimal associated primes of the corresponding ideal, instead of
computing the full primary decomposition, which is usually slower.

In the last example, we have seen that there is no uniqueness for the general
primary decomposition. However, the primary components associated to isolated
prime ideals are uniquely determined.

Theorem 4.1.29. Let I ⊆ k[x] and let P1, . . . , Pt be the associated prime ideals
of I. Let I = Q1 ∩ · · · ∩Qt be a primary decomposition of I such that

√
Qi = Pi,

1 ≤ i ≤ t. If Pi is a minimal prime ideal of I, then Qi is independent of the
chosen primary decomposition.

54

The proof of this theorem can be found in (Atiyah and Macdonald, 1969).

In the next section, we will see that for zero–dimensional ideals, all the associated
prime ideals are minimal, and therefore the primary decomposition is unique.

We conclude this section with a property of minimal prime ideals.

Proposition 4.1.30. Let I ⊆ k[x] be an ideal and let P be a prime ideal such
that I ⊆ P . Then P contains a minimal associated prime ideal of I.

Proof. If P ⊇ I = Q1∩· · ·∩Qt, then P =
√
P ⊇

√
Q1∩· · ·∩

√
Qt = P1∩· · ·∩Pt.

By Lemma 4.1.23, P ⊇ Pi for some i, 1 ≤ i ≤ s, and therefore P contains a
minimal prime associated to I.

Observation 4.1.31. By this property, all the minimal prime ideals in the set of
ideals that contain an ideal I are always associated prime ideals of I.

4.2 Computation of the radical of an ideal

In this section we study an algorithm for computing the radical based on the
ideas of Gianni et al. (1988) and Krick and Logar (1991b), compare an imple-
mentation of it with the implementations of other known algorithms, and analyze
its theoretical complexity.

4.2.1 Theoretical aspects

We state some results that will be used as splitting tools in the algorithms.

Proposition 4.2.1. Let I ⊂ R be an ideal, and f, g, h ∈ R polynomials. Then

(1)
√
〈I, fg〉 =

√
〈I, f〉 ∩

√
〈I, g〉.

(2) If 〈f, g〉 = 〈1〉, then 〈I, fg〉 = 〈I, f〉 ∩ 〈I, g〉.

(3) For m ∈ N such that I : h∞ = I : hm, I = 〈I, hm〉 ∩ (I : hm).

Proof. (1) The inclusion
√
〈I, fg〉 ⊆

√
〈I, f〉 ∩

√
〈I, g〉 is clear. For the reverse

inclusion, let h ∈
√
〈I, f〉 ∩

√
〈I, g〉. There exist u, v ∈ N such that hu = p+ αf

and hv ∈ q+βg, where p, q ∈ I and α, β ∈ R. Therefore hu+v = pq+βgp+αfq+
αβfg ∈ 〈I, fg〉 and hence h ∈

√
〈I, fg〉.

(2) The inclusion 〈I, fg〉 ⊆ 〈I, f〉 ∩ 〈I, g〉 is clear. For the reverse inclusion, let
h ∈ 〈I, f〉 ∩ 〈I, g〉 and r, s ∈ R be such that rf + sg = 1. There exist p, q ∈ I
and α, β ∈ R such that h = p + αf = q + βg. Therefore h = (sg + rf)h =
sgp+ αsgf + rfq + βrfg and hence h ∈ 〈I, fg〉.

(3) The inclusion I ⊆ 〈I, hm〉 ∩ (I : hm) is clear. For the reverse inclusion, let
g ∈ 〈I, hm〉 ∩ (I : hm). Then g = p + αhm, for some p ∈ I and α ∈ R, and
hmg ∈ I. Hence phm + αh2m ∈ I and therefore αh2m ∈ I. Since I : h∞ = I : hm,
αhm ∈ I and we conclude that g ∈ I, as wanted.

55

Although computing the radical of an ideal requires complex algorithms, deciding
whether a given polynomial belongs to the radical of an ideal requires only one
Gröbner basis computation, as we see in the next lemma.

Lemma 4.2.2 (Radical membership). Let I ⊆ k[x] be an ideal and f ∈ k[x].
Then

f ∈
√
I ⇐⇒ 1 ∈ 〈I, tf − 1〉k[x1,...,xn,t],

where t is a new variable.

Proof. Since (tf)N − 1 ∈ 〈tf − 1〉 for all N ∈ N, if fm ∈ I then clearly 1 ∈
〈I, tf − 1〉.

Conversely, if 1 = αp+ β(tf − 1), with α, β ∈ k[x1, . . . , xn, t], replacing t by 1/f ,
we get 1 = α(x1, . . . , xn, 1/f)p(x1, . . . , xn). Multiplying by a large enough power
of f , fm, we conclude that fm ∈ I as wanted.

We study first the computation of the radical of zero–dimensional ideals, which
correspond to ideals such that Vk̄(I) has only a finite number of points.

The following is an important characterization of zero–dimensional ideals, that
will be used in the algorithms.

Proposition 4.2.3. An ideal I ⊂ k[x1, . . . , xn] is zero–dimensional if and only
if for every i, 1 ≤ i ≤ n, the set I ∩ k[xi] contains non–zero elements.

Proof. If I is zero–dimensional, V = V(I) is finite. For 1 ≤ i ≤ n, the polynomial
fi =

∏
p∈V (xi − pi), with pi the i-th coordinate of p, is in I(V) and therefore

fmi ∈ I for some m ∈ N. For the converse, let fi ∈ I ∩ k[xi]. Then V(I) ⊆
{(α1, . . . , αn) | αi a root of fi}.

In particular, since k[xi] is a principal ideal domain, if I is zero–dimensional, for
every i, 1 ≤ i ≤ n, there exists fi ∈ k[xi] \ {0} such that I ∩ k[xi] = 〈fi〉.

We show next that all associated primes of a zero–dimensional ideal are minimal,
as mentioned in Section 4.1.2.

Proposition 4.2.4. Let I ⊂ k[x] be a zero–dimensional ideal and let P be an
associated prime of I. Then P is a maximal ideal of k[x], and is therefore a
minimal associated prime of I.

Proof. If Q ⊂ k[x] is a maximal ideal (and therefore, prime) such that P ⊆ Q,
we obtain the chain I ⊆ P ⊆ Q. Since I is zero–dimensional, it must be P = Q.
Therefore P is maximal, and a minimal associated prime of I.

In (Gianni et al., 1988) and (Krick and Logar, 1991b) the computation of the
radical of a general ideal is reduced to the zero–dimensional case. For the com-
putation of the radical of a zero–dimensional ideal, a special algorithm is used.

Before stating the algorithm, we make the following definitions.

56

Definition 4.2.5. Given a field k, an irreducible polynomial f = anx
n + · · · +

a1x+ a0 is called separable if all the roots of f in k̄ are simple. A field k is called
perfect if every irreducible polynomial f ∈ k[x] is separable.

Example 4.2.6. The polynomial g = x3 − t ∈ Q(t)[x] is separable, because it has
three different roots in Q(t), but h = x3 − t ∈ Z3(t)[x] is not separable, it can be
factorized as (x−α)3 in Z3(t)[x], where we can think of α as 3

√
t. The field Z3(t)

is not perfect.

It is a classical result that finite fields, fields of characteristic 0 and algebraically
closed fields are perfect.

When k is perfect, there exists a simple algorithm to compute the radical of a
zero–dimensional ideal.

Proposition 4.2.7. (Seidenberg Lemma, 1974) Let I ⊂ k[x] (with k a perfect
field) be a zero–dimensional ideal and I ∩ k[xi] = 〈fi〉, 1 ≤ i ≤ n. Let gi =

√
fi =

fi/ gcd(fi, f
′
i), the square free part of fi. Then

√
I = 〈I, g1, . . . , gn〉.

We will need to compute the radical of zero–dimensional ideals over k(u), with
u a set of variables. When k has characteristic 0, k(u) is still perfect, and we
can use this lemma. However, if the characteristic of k is not 0, we have seen
in Example 4.2.6 that k(u) might not be perfect. In that case, more elaborated
algorithms (Kemper, 2002; Matsumoto, 2001) can be used. We will restrict to
the case of characteristic 0.

The general algorithm is based on the following well–known properties (see, for
example, Greuel and Pfister, 2008, Chapters 3 and 4).

Lemma 4.2.8. Let I = Q1 ∩ · · · ∩Qt ⊂ k[x] be a primary decomposition of the
ideal I, and J ⊂ k[x] another ideal. Then I : J∞ =

⋂
J 6⊂Pi Qi, where Pi =

√
Qi.

Proof. If Q is a P -primary ideal, and g ∈ P then Q : g∞ = 〈1〉. If g 6∈ P , then
Q : g∞ = Q. Hence I : J∞ = (Q1∩· · ·∩Qt) : J∞ = (Q1 : J∞)∩· · ·∩ (Qt : J∞) =⋂
J 6⊂Pi Qi

We say that a set of variables u ⊂ x is independent (with respect to I) if I∩k[u] =
{0}. If I is zero–dimensional, for all 1 ≤ i ≤ n there exists a polynomial fi ∈ I
such that fi ∈ k[xi], and hence the only independent set is the empty set. In
general, if u is independent, then Ik(u)[x r u] is not the whole ring and has
dimension at most dim(I)−#u. Therefore #u can be at most equal to dim(I).
We say that an independent set is maximal if it has dim(I) elements.

Using maximal independent sets we can reduce the problem of computing the
radical of an ideal to the zero–dimensional case.

Lemma 4.2.9. Let I ⊂ k[x] be a proper ideal and u ⊂ x a maximal independent
set of variables with respect to I. Then Ik(u)[x r u] ⊂ k(u)[x r u] is a zero–
dimensional ideal.

57

Proof. If Ik(u)[xr u] is not zero–dimensional, there exists a variable t ∈ xr u
such that Ik(u)[x r u] contains no non–zero polynomial in t. Hence u ∪ {t} is
also independent, which contradicts the maximality of u.

For the proof of the next proposition, we use the following lemmas.

Lemma 4.2.10. Let Q ⊂ k[x] be a primary ideal and u a set of variables such
that Q ∩ k[u] = {0}. Then Qk(u)[xr u] ∩ k[x] = Q.

Proof. Clearly Q ⊆ Qk(u)[x r u] ∩ k[x]. For the reverse inclusion, let f ∈
Qk(u)[x r u] ∩ k[x], f = g(x)/h(u), with g ∈ Q and h 6= 0. Then hf ∈ Q
and, since Q is primary and h(u) 6∈

√
Q (because Q ∩ k[u] = {0}), f ∈ Q as

wanted.

Lemma 4.2.11. Let Q ⊂ k[x] be a primary ideal and u a set of variables such
that Q ∩ k[u] = {0}. Then Qk(u)[xr u] is a primary ideal.

Proof. We assume first that Q is prime. If f ∈ Qk(u)[xru] and f = g1(x)
h1(u)

g2(x)
h2(u)

,

with g1, g2 ∈ k[x], h1, h2 ∈ k[u], then by the previous lemma, h1h2f = g1g2 ∈ Q.

Hence either g1 or g2 belong to Q, and therefore either g1(x)
h1(u)

or g2(x)
h2(u)

belong to

Qk(u)[xr u].

If Q is primary, then
√
Qk(u)[xr u] =

√
Qk(u)[x r u] is prime and therefore

maximal (because it is zero–dimensional). This proves that Qk(u)[x r u] is
primary.

Proposition 4.2.12. Let I ⊆ k[x] be an ideal and u ⊆ x a maximal independent
set of variables with respect to I. Let I = Q1∩· · ·∩Qt be an irredundant primary
decomposition of I, such that Qi ∩ k[u] = {0} for 1 ≤ i ≤ s and Qi ∩ k[u] 6= {0}
for s+ 1 ≤ i ≤ t. Then, for 1 ≤ i ≤ s, Qi is an isolated primary component of I
(that is, it corresponds to a minimal prime) and is therefore uniquely determined.

Moreover Ik(u)[xr u] = (Q1k(u)[xr u]) ∩ · · · ∩ (Qsk(u)[xr u]) is the unique
irredundant primary decomposition of the zero–dimensional ideal Ik(u)[x r u]
and

√
Ik(u)[xr u] ∩ k[x] = P1 ∩ · · · ∩ Ps, with Pi =

√
Qi.

Proof. For the first claim, fix Qi, 1 ≤ i ≤ s. Clearly, u is a maximal independent
set with respect to Qi since if u (u′ with Qi ∩ k[u′] = {0}, u would not be
independent maximal with respect to I. Therefore Qik(u)[x r u] is a zero–
dimensional ideal.

Suppose now that there exist 1 ≤ i < j ≤ s such that
√
Qi =: Pi (Pj :=

√
Qj.

This would imply the strict inclusion Pik(u)[x r u] (Pjk(u)[x r u], of prime
ideals, which is a contradiction since they are both zero–dimensional.

For the second claim,

Ik(u)[xr u] = (Q1 ∩ · · · ∩Qt)k(u)[xr u]

= (Q1k(u)[xr u]) ∩ · · · ∩ (Qsk(u)[xr u])

58

is an irredundant primary decomposition by the previous lemma.

Finally, since
√
Ik(u)[xr u] ∩ k[x] =

√
Ik(u)[xr u] ∩ k[x] =

√
Q1 ∩ · · · ∩Qs,

the last claim is clear.

To apply the ideas above in the algorithms, we need to study the computational
aspects of contractions and extensions.

Proposition 4.2.13. Let u ⊂ x be a set of variables and J ⊂ k(u)[x r u] an
ideal. Let {g1, . . . , gs} be a Gröbner basis of J with respect to a monomial order
> in k(u)[xr u] consisting of polynomials in k[x]. Let

h = gcd{lc(gi), 1 ≤ i ≤ s} ∈ k[u],

where lc(gi) denotes the leading coefficient of gi regarded as a polynomial in
k[u][xr u].

Then
J ∩ k[x] = 〈g1, . . . , gs〉 : h∞,

where 〈g1, . . . , gs〉 is the ideal generated in k[x].

Proof. Let I = 〈g1, . . . , gs〉 in k[x] and f ∈ I : h∞. There exists m ∈ N such
that hmf ∈ I. Since h ∈ k[u], f ∈ Ik(u)[x r u] ∩ k[x] = J ∩ k[x]. Therefore,
I : h∞ ⊂ J ∩ k[x].

For the reverse inclusion, let f ∈ J ∩ k[x]. Since {g1, . . . , gs} is a Gröbner basis
of J , f =

∑s
i=1 αigi, with αi ∈ k(u)[x r u]. In Buchberger’s algorithm for

computing Gröbner bases, the coefficients αi are obtained by divisions only by
the coefficients lc(gi) of gi, 1 ≤ i ≤ s. Therefore, we can write αi = βi

hmi
, with

βi ∈ k[x]. Taking m the maximum mi, 1 ≤ i ≤ s, we get hmf ∈ k[x] and
therefore, f ∈ I : h∞.

Remark 4.2.14. Recall from Property 3.4.8 that the saturation ideal 〈g1, . . . , gs〉 :
h∞ can be computed by the formula I : h∞ = 〈I, th− 1〉 ∩ k[x], t a new variable.

Remark 4.2.15. A Gröbner basis of Jk(u)[xru] can be obtained by computations
in k[x] taking {f1, . . . , fs}, a set of generators of J consisting of polynomials in
k[x], and computing a basis of 〈f1, . . . , fs〉k[x] with respect to an elimination
order with xr u� u.

The generators of J in k[x] can be obtained from any set of generators of J simply
by multiplying the polynomials by its denominators in k[u].

4.2.2 Algorithms

Our new algorithm is stated in Algorithm 4.2.1. Correctness of the algorithm is
given by the following proposition.

Proposition 4.2.16. Let I ⊂ k[x] be a proper ideal, let P be a subset of the
minimal primes of I and let P̃ :=

⋂
P∈P P be the intersection of these minimal

primes.

59

Algorithm 4.2.1 Radical1, radical of an ideal

Input: I ⊂ k[x].
Output:

√
I, the radical of I.

1: P̃ ← 〈1〉.
2: loop
3: Look for g ∈ P̃ \

√
I. To find it, search over the generators of P̃ and check

if they are in
√
I. (Lemma 4.2.2.)

4: If there does not exist such g, it means that P̃ ⊂
√
I. Since we always have√

I ⊂ P̃ , we conclude that P̃ =
√
I. Exit the cycle.

5: If there exists g ∈ P̃ \
√
I, this means that there exists at least one minimal

prime P associated to I such that g 6∈ P .
J ← I : g∞.

6: Reduction to the zero–dimensional case:
Take a maximal independent set u with respect to J and compute the
radical of the zero–dimensional ideal Jk(u)[xr u] (Proposition 4.2.7).

7: Contract
√
Jk(u)[xr u] to k[x].

8: P̃ ← P̃ ∩ (
√
Jk(u)[xr u] ∩ k[x]).

9: end loop
10: return P̃ .

We assume that there exists g ∈ P̃ \
√
I. If I : g∞ = ∩si=1Qi is an irredundant

primary decomposition and u is a maximal independent set with respect to I : g∞

then, for all 1 ≤ i ≤ s such that Qi ∩ k[u] = {0},
√
Qi is a minimal prime of I,

and moreover
√
Qi /∈ P.

Proof. Let Qi be a primary component of I : g∞ such that Qi ∩ k[u] = {0}. By
Lemma 4.2.8, Qi is a primary component of I and Pi =

√
Qi 6∈ P .

Since u is a maximal independent set with respect to I : g∞ and Qi ∩ k[u] =
{0}, Qik(u)[x r u] is a primary component of the zero–dimensional ideal (I :
g∞)k(u)[x r u] and therefore Pik(u)[x r u] is a minimal prime. Hence Pi is a
minimal prime of I : g∞. (Clearly, Pi cannot contain any prime ideal P such that
P ∩ k[u] 6= {0}.)

To prove that Pi is a minimal prime of I, suppose that there exists a component
Q of I with

√
Q (Pi. We would have g /∈

√
Q and therefore Q would appear in

the primary decomposition of I : g∞, contradicting the fact that Pi is a minimal
prime of I : g∞.

Remark 4.2.17. The algorithm terminates because, in each iteration, we add to
P̃ at least one new minimal prime ideal associated to I.

Remark 4.2.18. In this algorithm there is no redundancy. All the ideals that we
intersect in P̃ are intersection of minimal prime ideals associated to I.

Example 4.2.19. As an example, we apply the algorithm to the ideal

I = 〈y + z, x z2w, x2z2〉 ⊂ Q[x, y, z, w].

60

In the first iteration, we take g := 1 and J := I : 1∞ = I. We find that u = {x,w}
is a maximal independent set with respect to J . Making the reduction step, we
obtain that

√
J(u)[xr u] ∩ k[x] = 〈y, z〉. We take P̃ := 〈y, z〉.

In the second iteration, we look for g ∈ P̃ such that g 6∈
√
I. We obtain that

z 6∈
√
I and compute J = I : z∞ = 〈y+ z, xw, x2〉. Now u = {z, w} is a maximal

independent set with respect to J . We compute
√
Jk(u)[xr u]∩k[x] = 〈y+z, x〉.

We take P̃ := 〈y, z〉 ∩ 〈y + z, x〉 = 〈y + z, xz〉.

If we search for g ∈ P̃ such that g 6∈
√
I, we obtain that y + z and xz are both

in
√
I. Therefore, the algorithm terminates. We obtain that

√
I = 〈y + z, xz〉.

We now apply Krick-Logar algorithm to the same ideal, to compare it with ours.
We start with I = 〈y+z, x z2w, x2z2〉 and we take the independent set u = {x,w}.
Making the reduction step, we obtain that

√
I(u)[xr u] ∩ k[x] = 〈y, z〉. Up to

now, there is no difference with the algorithm we propose.

The next step is different. We look for h such that
√
I = (

√
I(u)[xr u] ∩

k[x]) ∩ 〈I, h〉. We can take h = xz. Now,
√
I = 〈y, z〉 ∩

√
〈I, xz〉. So it remains

to be computed the radical of 〈I, xz〉. Carrying on with the algorithm, we get√
〈I, xz〉 =

√
〈y + z, x〉 ∩

√
〈w, y + z, z2〉 = 〈y + z, x〉 ∩ 〈w, y, z〉.

The last component is redundant, it contains the component 〈y, z〉 that was
already obtained. This redundant component is not an embedded component of
I, it is a new component that appeared when we added xz to I.

This is a situation that repeats often in the examples. The polynomials that the
algorithm adds to I make it more and more complex. The polynomials added
are usually large, since they are the product of coefficients of polynomials in a
Gröbner basis and the size of the Gröbner basis of the new ideal can increase
drastically.

This does not happen in our proposed algorithm. We compute instead the sat-
uration with respect to polynomials that are usually simple, and this saturation
does not increase the complexity of the ideal since it only takes some components
away from it. No new components can appear.

4.2.3 Complexity analysis

We shall now compute the theoretical complexity of the algorithm. We remark
that we will be analyzing the worst-case-complexity. In the applications, the
bounds that we will get are usually not achieved and this is what gives the
algorithm practical interest. The modifications to the algorithm that we will
introduce in this section (such as random coordinate changes) are only for the
purpose of improving the worst-case complexity but are not good in practice.

As presented in the last section, in each step of the algorithm we intersect P̃ with
at least one new prime component of

√
I. Therefore, the number of iterations is

bounded by the number of prime components of
√
I, which is in time bounded

by the Bézout number dn (see, for example, Heintz, 1983). Since the degrees of

61

the polynomials in a Gröbner basis can be doubly exponential in the number of
variables, if we carry out the complexity estimate with the previous algorithm,
we would obtain an estimate triply exponential in the number of variables.

To get a better theoretical complexity, we introduce some modifications in the
algorithm that will allow us to reduce the dimension of the ideal in each iteration
and therefore perform at most n iterations. This will lead to a doubly exponen-
tial complexity bound. We insist that although this modifications improve the
theoretical complexity, in practice they are not efficient, since they destroy the
good properties, such as sparsity, that the ideal might have.

Definition 4.2.20. We say that an ideal I ⊂ k[x] of dimension e is in Noether
position if the set u = {x1, . . . , xe} is a maximal independent set with respect
to I and for each i, e + 1 ≤ i ≤ n, there exists a non–zero polynomial p ∈
I ∩ k[x1, . . . , xe, xi], monic as a polynomial in k[x1, . . . , xe][xi].

If the ideal I is not in Noether position, we can put it in Noether position by
a linear coordinate change. We can use a random coordinate change (Krick
et al., 2001, Proposition 4.5), or we can do it deterministically with complexity
s5dO(n2), where s is the number of polynomials of I and d the maximum degree
of the polynomials (Dickenstein et al., 1991).

When the ideal I is in Noether position, we have the following lemma.

Lemma 4.2.21. (Krick and Logar, 1991b, Lemma 2.3) Let I be an ideal of
dimension e in Noether position, and

I = (Qe11 ∩ . . . Qe1a1) ∩ · · · ∩ (Qet1 ∩ · · · ∩Qetat)

the primary decomposition of I, where Qeij are primary ideals of dimension ei
and 0 ≤ e1 < . . . < et = e. Let Peij be the associated primes. Then

k[x1, . . . , xe] ∩ Petj = (0), 1 ≤ j ≤ at.

If we take u := {x1, . . . , xe}, we obtain that Ik(u)[xru]∩k[x] = Qet1∩· · ·∩Qetat .

Therefore, in Step 5, when we take J = I : g∞ with g ∈ (Pet1 ∩ · · · ∩ Petat) \
√
I,

all the primary components of I of dimension e are killed.

To get a good complexity bound we want to kill only the prime components of√
I of maximal dimension. We can use a random combination of the polynomials

in P̃ as g or we can do it deterministically in the following way.

Proposition 4.2.22. Let I be an ideal of dimension e, as in Lemma 4.2.21.
Let J = Qet1 ∩ · · · ∩ Qetat. Then I : J∞ has dimension at most e − 1 and√
I =
√
J ∩
√
I : J∞.

Therefore we can bound the number of iterations of the algorithm by e.

Remark 4.2.23. The ideal I : J∞ is not exactly (Qe11 ∩ · · · ∩ Qe1a1) ∩ · · · ∩
(Qet−11 ∩ · · · ∩ Qet−1at−1), since some primary components corresponding to em-
bedded primes can also be killed.

62

The ideal I : J∞ can be computed in the following way (see Vasconcelos, 1998,
Proposition 1.2.6):

Proposition 4.2.24. Let I, J be ideals in k[x], with J generated by f1, . . . , fr.
Let

f := f1 + tf2 + · · ·+ tr−1fr ∈ k[t,x].

Then I : J∞ = (I : f∞) ∩ k[x].

Proof. Let I = Q1 ∩ · · · ∩Qs be a primary decomposition of I and Pi =
√
Qi. By

Proposition 4.2.8, I : J∞ =
⋂
J 6⊂Pi Qi and (I : f∞)∩k[x] = (

⋂
f 6∈Pik[t,x] Qik[t,x])∩

k[x]. Therefore we need to prove that J ⊂ Pi ⇐⇒ f ∈ Pik[t,x]. If J ⊂
Pi, clearly, f ∈ Pik[t,x]. For the converse, let f = a1p1 + · · · + asps, with
pj ∈ Pi and aj ∈ k[t,x]. If we replace t by r different values, we obtain that
f1 + tjf2 + · · · + tj

r−1fr ∈ Pi for t1, . . . , tr ∈ k. We deduce that fi ∈ Pi for
1 ≤ i ≤ r, and therefore J ⊂ Pi as wanted.

We get Algorithm 4.2.2.

Algorithm 4.2.2 Radical2, radical of an ideal

Input: I ⊂ k[x].
Output:

√
I = P , the radical of I.

1: Make a linear coordinate change of variables so that I is in Noether position
2: Let u := {x1, . . . , xe}, with e = dim I. Compute the radical of the zero–

dimensional ideal Ik(u)[xr u] using Proposition 4.2.7.
3: Contract

√
Ik(u)[xr u] to k[x]. J ←

√
Ik(u)[xr u] ∩ k[x].

4: return J ∩ radical2(I : J∞).

To estimate the complexity we work over k = Q. We analyze the arithmetic
complexity, that is, the number of operations performed in Q. We use the notation
CG(d, n, s), DG(d, n) and NG(d, n, s) for the complexity, maximum degree and
number of polynomials in a Gröbner basis of an ideal in n variables over Q,
generated by s polynomials of maximum degree d. In (Giusti, 1984; Krick and
Logar, 1991a; Dubé, 1990) they prove bounds for the complexity and the number
of polynomials in the general case doubly exponential in the number of variables.
The bounds are of order sO(1)d2O(n)

.

For the maximum degree, the following bound is given in (Dubé, 1990):

deg(g) ≤ 2

(
d2

2
+ d

)2n−1

.

We approximate it by d2n .

We estimate the complexity of each step of the algorithm, without considering
the intersection of the ideals in the last step. We assume that I ⊂ Q[x] is an
ideal generated by s polynomials of maximum degree d.

(1) The Noether position can be achieved by a linear coordinate change. This
does not affect the theoretical complexity.

63

(2) To compute the radical
√
Ik(u)[xr u], following Proposition 4.2.7, we

need to compute at most n Gröbner bases of I. This has complexity at
most nsO(1)d2O(n)

. The n polynomials that appear have degree at most d2n .

(3) The degree of the polynomial h used for the contraction can be bounded by
the number of polynomials in the basis times the maximum degree of the
polynomials:

sO(1)d2O(n)

d2n = sO(1)d2O(n)

,

since the degree of the lcm is bounded by the degree of the product of all
the polynomials.

Now, the complexity of the contraction is the complexity of the computation
of the Gröbner basis of 〈I, th− 1〉:

CG(sO(1)d2O(n)

, n+ 1, sO(1)d2O(n)

) =

(sO(1)d2O(n)

)O(1)(sO(1)d2O(n)

)2O(n)

= (sd)2O(n)

.

The number of polynomials in J and their degrees can also be approximated
by (sd)2O(n)

.

(4) To compute I : J∞, by Proposition 4.2.24 and Remark 4.2.14, we need to
compute a Gröbner basis of 〈I, tf − 1〉. The degree of f is bounded by

(sd)2O(n)
+ d2O(n)

= (sd)2O(n)
. This has complexity

CG((sd)2O(n)

, n+ 1, (sd)2O(n)

) = (sd)2O(n)

.

The number of polynomials and the maximum degree can also be approxi-
mated by (sd)2O(n)

.

We can estimate the complexity of the whole call by (sd)2O(n)
= (sd)2cn for some

universal constant c.

In each call, the dimension of the ideal considered decreases. Therefore we need at
most n calls, since the dimension cannot be greater than the number of variables.

In the second call we start with (sd)2cn polynomials of degree (sd)2cn . The com-
plexity of this call is

((sd)2cn , n, (sd)2cn) = ((sd)2 2cn)2cn = (sd)22cn+1

.

The same bounds are valid for the number of polynomials and their degrees.

Therefore, after n calls we get the bound

(sd)2n(cn)+n−1

= (sd)2O(n2)

,

for the complexity, the number of polynomials and their degrees in the last call.

Finally, to compute the intersection of the outputs in each call, we use that
I1 ∩ I2 = 〈I1 · t, I2 · (1 − t)〉 ∩ k[x], which can be done by a Gröbner basis
computation. This does not modify the obtained estimates.

We have shown that the theoretical complexity of the algorithm is doubly expo-
nential in the number of variables.

64

4.2.4 Performance evaluation

In this section, we apply the proposed algorithm to several examples given in
(Decker et al., 1999b; Caboara et al., 1997) and evaluate its performance. (We
only consider those ideals that are not zero–dimensional.) We implemented the
algorithm in Singular (Decker et al., 2011). Our routine uses the subroutine
for the reduction to the zero–dimensional case that was already implemented
in the library primdec (Decker et al., 2006) for the computation of the radical
by Krick-Logar-Kemper algorithm (Krick and Logar, 1991b; Kemper, 2002). We
compare the times obtained by our algorithm with the algorithms implemented in
primdec: Krick-Logar-Kemper (KLK) and Eisenbud-Huneke-Vasconcelos (EHV)
(Eisenbud et al., 1992).

The results are shown in Table 4.1. All the computations are done over Q. The
ordering of the monomials is always the degree reverse lexicographical ordering
with the underlying ordering of the alphabet.

The codes for the examples in the first column are the ones given in (Decker et al.,
1999b) and (Caboara et al., 1997). The second column indicates the dimension
of the ideal, the third column the total number of primary components and the
fourth column the number of primary components corresponding to embedded
primes. Timing is measured in hundredth of seconds. The entry * means that
after one day of computations, the algorithm did not terminate.

In the implementation of KLK in Singular, the original ideal is first decomposed
using factorizing Gröbner bases algorithm and then the radical of each component
is computed. We do the same decomposition in our algorithm.

We see that for time consuming computations, our proposed algorithm is always
faster. We explain briefly the differences that appear.

In example DGP-29, both KLK and our algorithm obtain the radical in the first
step. Because of the structure of them, our algorithm stops after that step,
but KLK algorithm goes on computing redundant components. In examples
DGP-16, CCT-83 and CCT-C, after the first step, the saturations computed by
our algorithm are simple and the algorithm terminates quickly, while in KLK
algorithm, the polynomials added are large, and the resulting Gröbner bases are
huge and impossible to handle.

4.3 Minimal Associated Primes

In this section we show how the ideas presented in last section can be applied
to the computation of the minimal associated primes of an ideal. We show some
time comparisons using an implementation in Singular (Decker et al., 2011).

65

Table 4.1: Timing results

Code Dim
Prim.
comps.

Emb.
comps.

EHV KLK new algorithm

DGP-1 3 4 0 * 104 90
DGP-2 3 16 1 * 86 158
DGP-3 2 11 7 240 8 13
DGP-4 6 4 1 53 23 21
DGP-5 3 9 2 * 4271 627
DGP-6 3 3 0 * 158 185
DGP-7 3 6 0 * 45 153
DGP-9 1 12 0 11 * 229
DGP-12 1 25 0 329 5597 247
DGP-14 1 8 6 5 7 10
DGP-16 8 4 0 * 3214 3402
DGP-20 4 2 1 589 74 38
DGP-21 9 9 8 4 39 13
DGP-22 2 9 2 * 63 84
DGP-23 2 18 6 * 111 157
DGP-24 8 6 1 * 14 29
DGP-25 5 7 2 * 225 273
DGP-27 4 3 0 199 5 9
DGP-28 7 2 0 2380 46 56
DGP-29 2 12 11 * 61714 3598
DGP-30 1 14 0 * 132 163
DGP-31 1 1 0 1 6 8
DGP-32 2 17 9 25814 66 265
DGP-33 2 3 0 2 11 16
CCT-M 5 3 0 * 119 129
CCT-83 5 3 0 * * 250
CCT-C 5 4 0 * * 326
CCT-O 2 5 0 1 217 29

4.3.1 Algorithms

As in the case of the computation of the radical of an ideal, the computation
of the minimal associated primes of a general ideal can be reduced to the zero
dimensional case. For the computation of the minimal associated primes of a zero–
dimensional ideals, the following algorithm, also based in an algorithm proposed
in (Gianni et al., 1988), can be used.

Given a zero–dimensional ideal I ⊂ k[x], we say that a polynomial f ∈ k[x]
separates points of Vk̄(I) if f(p) is different for every p ∈ Vk̄(I).

Proposition 4.3.1. Let 〈g〉 = I ∩ k[xn] and g = gm1
1 . . . gmtt , the factorization.

Then

I = ∩ti=1〈I, g
mi
i 〉.

66

If xn separates points of Vk̄(I), then

• 〈I, gmii 〉 is primary

•
√
〈I, gmii 〉 = 〈I, gi〉, and these are the minimal associated primes of I.

For radical zero–dimensional ideals, a classical result called the Shape lemma
gives a criterion to check if xn separates points.

Proposition 4.3.2 (Shape lemma). Let I ⊆ k[x] be a zero–dimensional ideal.
Let G be a reduced Gröbner basis of

√
I under a lexicographical ordering xrxn �

xn. Then xn separates points of Vk̄(I) if and only if G has the following shape:

G = {x1 − g1(xn), . . . , xn−1 − gn−1(xn), gn(xn)}

with gn containing no multiple roots in k.

Proof. (⇒) We assume first k = k. Let gn ∈ k[xn] be the monic generator of√
I ∩ k[xn]. Let V = Vk̄(I) = Vk̄(

√
I) and let p = (p1, . . . , pn) ∈ V . Then

V ⊂ V(gn) implies g(pn) = 0. Since the last coordinates pn of each p ∈ V are all
different,

∏
p∈V (xn−pn) | gn. On the other hand,

∏
p∈V (xn−pn) ∈ I(V)∩k[xn] =√

I ∩ k[xn] = 〈gn〉, which implies that gn |
∏

p∈V (xn − pn). Therefore the two

polynomials are equal (and, since
√
I is radical, gn has no multiple roots).

Now, let gi(xn) be the unique polynomial of degree smaller than #V satisfying
gi(pn) = pi for all p = (p1, . . . , pn) ∈ V . Then xi − gi(xn) ∈ I(V) =

√
I. We

conclude that

〈x1 − g1(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉 ⊆
√
I.

Since the corresponding varieties have the same number of points, equality holds.
Moreover, it is clear that the generators form a reduced Gröbner basis of

√
I with

respect to >.

If k is not algebraically closed, the conclusion still holds, since all the computa-
tions used for computing the Gröbner basis are done over the base field k.

(⇐) Conversely, ifG = {x1−g1(xn), . . . , xn−1−gn−1(xn), gn(xn)}, let V = Vk(
√
I).

Hence

V = {p = (p1, . . . , pn) ∈ kn | gn(pn) = 0, pi = gi(pn), 1 ≤ i ≤ n− 1},

and clearly xn separates points of V since gn has no multiple roots.

When the ideal is not radical, in (Greuel and Pfister, 2008) [Criterion 4.2.4], an
algorithm is given for checking if xn separates points, by looking at the shape
that the ideals 〈I, gmii 〉 must have in that case.

We give a slightly modified version of the criterion.

Proposition 4.3.3. Let I ⊂ k[x] be a proper ideal. The following conditions are
equivalent.

67

(1) I is zero–dimensional, primary and xn separates points of V(I).

(2) Let G be a reduced Gröbner basis of I with respect to the lexicographical
ordering x1 > . . . > xn. There exist

g1(x1, . . . , xn), g2(x2, . . . , xn), . . . , gn(xn) ∈ G,

g̃1(xn), g̃2(xn), . . . , g̃n(xn) ∈ k[xn],

with g̃n irreducible, and m1, . . . ,mn ∈ N such that

(a) gn(xn) = g̃n(xn)mn,

(b) For 1 ≤ j ≤ n− 1,

gj(xj, . . . , xn) ≡ (xj − g̃j)mj (mod Mj+1k[xj, . . . , xn]),

where Mj+1 = 〈xj+1 − g̃j+1, . . . , xn−1 − g̃n−1, g̃n〉.

Proof. (1) ⇒ (2) The conditions in (2) imply inductively that the polynomials
g̃n, xn−1 − g̃n−1, . . . , x1 − g̃1 belong to

√
I. Therefore, since I is proper,

√
I = 〈x1 − g̃1, . . . , xn−1 − g̃n−1, g̃n〉

is a maximal zero–dimensional ideal, and xn separates points of V(
√
I).

Hence, by Proposition 4.1.14, I is primary. Moreover, since V(
√
I) = V(I), I is

zero–dimensional and xn separates points of V(I).

(2) ⇒ (1) Since I is zero–dimensional, primary, and xn separates points of V(I),√
I is maximal and, by the Shape Lemma, we can find generators

√
I = 〈x1 − g̃1(xn), . . . , , xn−1 − g̃n−1(xn), g̃n(xn)〉,

with gn irreducible.

For 1 ≤ j ≤ n, we define Ij := I ∩ k[xj, . . . , xn] and Mj :=
√
Ij ⊆ k[xj, . . . , xn].

We observe that Mj = 〈xj − g̃j(xn), . . . , xn−1 − g̃n−1(xn), g̃n(xn)〉 since the latter
is a maximal ideal contained in Mj. Hence, Ij is zero–dimensional, primary and
xn separates points of V(Ij).

Now, In = I ∩ k[xn] = 〈gn(xn)〉 for some gn ∈ G, since In is principal and
G ∩ k[xn] is a Gröbner basis of In by the ordering we are using. Moreover, since
Mn is maximal,

√
In = Mn = 〈g̃n〉 for some g̃n irreducible. Hence, gn = g̃mnn

for some mn ∈ N (since the radical is generated by the square free part), which
proves the first claim.

We prove now that for j < n and once Mj+1 is defined, there exist gj(xj, . . . , xn) ∈
G, g̃j(xn) ∈ k[xn] and mj ∈ N such that

gj(xj, . . . , xn) ≡ (xj − g̃j)mj (mod Mj+1k[xj, . . . , xn]).

Since Ij is zero–dimensional in k[xj, . . . , xn] and G ∩ k[xj, . . . , xn] is a reduced
Gröbner basis of Ij, there exist a unique polynomial gj ∈ G with leading term
pure in xj.

68

We claim that

Ij +Mj+1k[xj, . . . , xn] = 〈gj〉+Mj+1k[xj, . . . , xn]. (4.1)

The inclusion ⊇ is trivial. For ⊆ it is enough to prove that any g ∈ G ∩
k[xj, . . . , xn], g 6= gj, belongs to Mj+1k[xj, . . . , xn]. We prove something the
stronger result that if g = psx

s
j + · · · + p0 with pi ∈ k[xj+1, . . . , xn], then pi ∈

Mj+1, 0 ≤ i ≤ s.

We observe that since G is reduced, s ≤ mj := degxj gj. We prove first that
ps ∈Mj+1:

Let J be the set of all the leading coefficients with respect to xj (lcxj) of poly-
nomials in Ij with degree xj smaller than mj, together with the 0 element. That
is,

J := { p ∈ k[xj+1, . . . , xn] : ∃ f ∈ Ij with degxj f < mj s.t. lcxjf = p } ∪ {0}.

The set J is a proper ideal of k[xj+1, . . . , xn], and Ij+1 ⊆ J since Ij+1 ⊆ Ij. This
implies that Mj+1 ⊆

√
J , that is

√
J = Mj+1, and therefore J ⊆Mj+1.

Hence, since for g = psxsj + · · · + p0 ∈ G, g 6= gj, it holds s < mj, therefore
ps ∈ J ⊆Mj+1.

Looking at the polynomial x
mj−s
j g−psgj, the leading terms vanish and the result

is in Ij, hence its leading coefficient belongs to J ⊆ Mj+1. But this coefficient is
of the form ps−1 − psp′ where p′ is a coefficient of gj, and we deduce that ps−1

also belongs to J . We apply the reasoning successively for ps−2, etc. We conclude
that for 0 ≤ i ≤ s, ps ∈ Mj+1 and therefore g ∈ Mj+1k[xj, . . . , xn] as claimed.
This proves the equality (4.1).

Let now k′ be the field k′ := k[xj+1, . . . , xn]/Mj+1 and the natural projection
morphism:

Φ : k[xj, . . . , xn] −→ k′[xj].

First, Φ(Ij) = Φ(Ij + Mj+1k[xj, . . . , xn]) = Φ(〈gj〉) = 〈Φ(gj)〉 and second, as√
Φ(Ij) = Φ(

√
Ij) = Φ(Mj) since Mj+1 ⊆ Mj, we conclude that

√
Φ(Ij) =

〈Φ(xj − g̃j(xn))〉.

Therefore, there exists r ∈ N such that Φ(gj) = Φ(xj − g̃j(xn))r, that is

gj(xj, . . . , xn) ≡ (xj − g̃j(xn))r (mod Mj+1k[xj, . . . , xn]).

Here, clearly r = mj since both polynomials are monic in xj.

If xn does not separate points, a random coordinate change must be performed.
If k is infinite a suitable coordinate change always exists.

In (Gianni et al., 1988), the authors use the splitting tool I = (I : h∞) ∩ 〈I, h〉
(for h such that I : h = I : h2). They find h such that the minimal associated
primes of I : h can be obtained by reduction to the zero–dimensional case and
the ones corresponding to 〈I, h〉 can be obtained by induction.

69

As in the computation of the radical, when taking 〈I, h〉 there may appear redun-
dant components (that is, components that were not part of the original ideal)
that slow down the algorithm performance.

In the algorithm that we proposed for computing the radical of an ideal, we
avoided using 〈I, h〉 and instead we used repeatedly the saturation I : h∞ for
appropriate h, yielding in some cases a more efficient algorithm.

The same ideas can be used for computing the minimal associated primes of an
ideal, obtaining Algorithm 4.3.1

Algorithm 4.3.1 minAssPrimes, minimal associated primes of an ideal

Input: I ⊂ k[x].
Output: P1, . . . , Pt, the minimal associated primes of I.
1: P̃ ← 〈1〉 (P̃ will be the intersection of the minimal associated primes already

obtained).
2: loop
3: Look for g ∈ P̃ \

√
I. To find it, search over the generators of P̃ and check

if they are in
√
I.

4: If there does not exist such g, it means that P̃ ⊂
√
I. Since we always have√

I ⊂ P̃ , we conclude that P̃ =
√
I. Exit the cycle.

5: If there exists g ∈ P̃ \
√
I, this means that there exists at least one minimal

prime P associated to I such that g 6∈ P .
J ← I : g∞.

6: Reduction to the zero–dimensional case:
Take a maximal independent set u with respect to J and compute P ′1, . . . ,
P ′s, the minimal associated primes of the zero–dimensional ideal Jk(u)[xr
u].

7: Contract the ideals P ′i ⊂ k(u)[xr u] to Pi ⊂ k[x], 1 ≤ i ≤ s.
8: P̃ ← P̃ ∩ P1 ∩ · · · ∩ Ps.
9: P ← P ∪ {P1, . . . , Ps}.

10: end loop
11: return P , the minimal associated primes of I.

The correctness and termination of the algorithm can be proven in exactly the
same way as for the radical.

Remark 4.3.4. As before, in this algorithm there is no redundancy. All the ideals
that we add to P are minimal associated primes of I.

Example 4.3.5. We apply the algorithm to the ideal

I = 〈y + z, xz2w, x2z2〉 ⊂ Q[x, y, z, w].

In the first iteration, we take g := 1 and J := I : 1∞ = I. We find that u = {x,w}
is a maximal independent set with respect to J . Making the reduction step, we
obtain that the only minimal associated prime of J(u)[x r u] is 〈y, z〉, which
contracted to k[x] is P1 = 〈y, z〉. We take P̃ := P1 and P := {P1}.

In the second iteration, we look for g ∈ P̃ such that g 6∈
√
I. We obtain that

z 6∈
√
I and compute J = I : z∞ = 〈y + z, xw, x2〉. Now u = {z, w} is a

70

maximal independent set with respect to J . The only minimal associated prime
of Jk(u)[xr u] is 〈y + z, x〉, which contracted to k[x] gives P1 = 〈y + z, x〉. We
take P̃ := 〈y, z〉 ∩ 〈y + z, x〉 = 〈y + z, xz〉 and P = {〈y, z〉, 〈y + z, x〉}.

If we search for g ∈ P̃ such that g 6∈
√
I, we obtain that y+ z and xz are both in√

I. Therefore, the algorithm terminates. We obtain that the minimal associated
primes of I are 〈y, z〉 and 〈y + z, xz〉.

We now apply GTZ algorithm (Gianni et al., 1988) to the same ideal, to compare
it with ours. We start with I = 〈y + z, x z2w, x2z2〉. The first step is the same,
we obtain P1 = 〈y, z〉 P̃ := P1 and P = {P1}.

The next step is different. We look for h such that I = (I(u)[xru]∩k[x])∩〈I, h〉.
We can take h = xz. Now,

√
I = 〈y, z〉 ∩

√
〈I, xz〉. So it remains to compute

the minimal associated primes of 〈I, xz〉. Carrying on with the algorithm, we get
that they are 〈y + z, x〉 and 〈w, y, z〉.

The last prime is not a minimal associated prime of I (not even an associated
prime of I). It is a new component that appeared when we added xz to I.

This is a situation that repeats often in the examples. The polynomials that the
algorithm adds to I make it more and more complex. The polynomials added
are usually large, since they are the product of coefficients of polynomials in a
Gröbner basis and the size of the Gröbner basis of the new ideal can increase
drastically.

This does not happen in our proposed algorithm. We compute instead the sat-
uration with respect to polynomials that are usually simple, and this saturation
does not increase the complexity of the ideal since it only takes some components
away from it. No new components can appear.

4.3.2 Performance evaluation

In this section, we evaluate the performance of our proposed algorithm using
several examples given in (Decker et al., 1999b; Caboara et al., 1997) and other
new examples. (We only consider ideals that are not zero–dimensional.) We
implemented the algorithm in Singular (Decker et al., 2011). We compare it
with other algorithms implemented in the Singular library primdec: Gianni-
Trager-Zacharias (GTZ) (Gianni et al., 1988) and via Characteristic Sets (Char).

We created some new examples where the differences are more significant, which
we detail below.

p1 = a+ c+ d+ e+ f + g+ h+ j− 1, p2 = −b+ c+ e+ g+ j, q1 = 59ad+ 59ah+
59dh− 705d− 1199h, q2 = −54acf − 54adf + a+ d, q3 = adfg + a+ d
I1 = 〈p1, p2〉 ∩ 〈q1, q2, q3〉 (polynomials taken from DGP25 and DGP28)

p1 = x2 + y2 + z2 − t2, p2 = xy + z2 − 1, q1 = w2xy + w2xz + w2z2, q2 = tx2y +
x2yz + x2z2, q3 = twy2 + ty2z + y2z2, q4 = t2wx+ t2wz + t2z2

I2 = 〈p1, p2〉∩〈q2, q3, q4〉, I3 = 〈p1, p2〉∩〈q1, q3, q4〉 (polynomials taken from DGP31
and DGP32)

71

The results are shown in Table 4.2. All the computations are done over Q. The
ordering of the monomials is always the degree reverse lexicographical ordering
with the underlying ordering of the alphabet.

Table 4.2: Timing results

Source Code Dim
Prim.
comps.

Min.
ass.

Emb.
comps.

Equidim? new GTZ Char

DGP 1 3 4 4 0 Yes 39 37 1037
DGP 2 3 16 15 1 No 57 40 86
DGP 3 2 11 4 7 No 6 4 2
DGP 4 6 4 3 1 No 18 17 14
DGP 7 3 6 6 0 Yes 26 20 76
DGP 14 1 8 2 6 No 9 7 5
DGP 20 4 2 1 1 No 15 14 3185
DGP 21 9 9 1 8 No 3 2 1
DGP 22 2 9 7 2 No 33 25 370
DGP 23 2 18 12 6 No 91 71 22750
DGP 24 8 6 5 1 No 14 9 12
DGP 25 5 7 5 2 No 101 81 1615
DGP 27 4 3 3 0 Yes 13 9 11
DGP 28 7 2 2 0 Yes 30 27 18
DGP 29 2 12 1 11 No 4 2 9
DGP 30 1 14 14 0 Yes 283 259 12145
DGP 31 1 1 1 0 Yes 10 10 3
DGP 32 2 17 8 9 No 21 15 34
DGP 33 2 3 3 0 No 10 8 5
CCT M 5 3 3 0 No 58 48 2268
CCT 83 5 3 3 0 No 133 603 98
CCT O 2 5 5 0 Yes 26 209 3
New 1 9 4 4 0 No 281 * 2383
New 2 3 11 8 3 No 120 * 32065
New 3 3 11 8 3 No 69 * 27088

The codes for the examples in the firsts columns are the ones given in (Decker
et al., 1999b) and (Caboara et al., 1997). “Dim” indicates the dimension of
the ideal; “Prim. comps.”, the total number of primary components; “Min.
ass.”, the number of minimal associated primes; “Emb. comps.”, the number of
embedded components and “Equidim?” if the ideal is equidimensional (i.e., all the
components have the same dimension). The last three columns show the timings.
Column “new” stands for the new algorithm and the other two columns for the
existing algorithms, as explained before. Timing is measured in hundredths of
seconds. The entry * means that after one day of computations, the algorithm
did not terminate.

In the implementation of GTZ in Singular, the original ideal is first decom-
posed using factorizing Gröbner bases algorithm and then the minimal associated
primes of each component are computed. We do the same decomposition in our
algorithm.

We see that for time consuming computations, our proposed algorithm is always
faster than GTZ algorithm.

72

Chapter 5

Normalization of rings

The content of Sections 5.1 to 5.5 is a joint work with Gert-Martin Greuel and
Frank Seelisch. It is published in (Greuel et al., 2010). The local approach pro-
posed in Section 5.6 is a joint work with Janko Böhm, Wolfram Decker, Gerhard
Pfister, Andreas Steenpaßand Stefan Steidel, and is presented in a more general
version in Böhm et al. (2011a).

5.1 Basic definitions and tools

In this section we assume that A is a commutative Noetherian ring. We recall
the definitions from Section 2.2 and state some basic properties.

Definition 5.1.1. Let A ⊆ B be a ring extension. We say that b ∈ B is integral
over A if there exist ai ∈ A, 1 ≤ i ≤ s, such that

bs + a1b
s−1 + · · ·+ as−1b+ as = 0.

The integral closure of A in B is the set of all elements of B that are integral
over A.

Proposition 5.1.2. If B is a finitely generated A-algebra of the form B =
A[b1, . . . , bt], with bi integral over A, then B is module–finite over A (i.e., B
is a finitely generated A–module).

Proof. We proceed by induction in the number of elements considering

A[b1, . . . , bt] = A[b1, . . . , bt−1][bt]

and using the transitivity of the finiteness condition.

Suppose now that B is generated by only one element, B = A[b1], and that this
element satisfies an integral equation of degree s. Then for any s′ ≥ s, bs

′
1 is a

linear combination of b0
1, . . . , b

s−1
1 . Hence B is generated as an A-module by these

s elements, and is therefore finitely generated.

73

Definition 5.1.3. The ring S−1A, with S the set of non–zerodivisors of A, is
called the total ring of fractions of A and denoted Q(A). The normalization Ā
of A is the integral closure of A in Q(A). A ring A is called normal if A = Ā.

Observation 5.1.4. Every element of A is integral over A, and therefore A ⊆ A.

The normalization A is a subalgebra of Q(A), but it is not in general module–
finite over A. The following theorem by Emmy Noether proves finiteness in an
important case. (For the proof, see for example, Greuel and Pfister 2008, Theorem
3.5.10.)

Theorem 5.1.5. Let P ⊂ k[x1, . . . , xn] be a prime ideal and A = k[x1, . . . , xn]/P .
Then A is a finite A-module.

The finiteness of A is equivalent to the existence of a common denominator for
all its elements, as we will show in the next lemma. We need first a definition.

Definition 5.1.6. The conductor of A in Ā is C = {a ∈ Q(A) | aĀ ⊆ A} =
AnnQ(A)(Ā/A).

Since 1 ∈ A, it turns out that C ⊆ A. If c ∈ C, then any element b ∈ A can be
written as b = f/c, for some f ∈ A. That is, C is the set of common denominators
of the normalization.

Lemma 5.1.7. Ā is module–finite over A if and only if C contains a non–
zerodivisor of A.

Proof. If p ∈ C is a non–zerodivisor then Ā ∼= pĀ ⊆ A is module-finite over A,
since A is Noetherian. Conversely, if Ā is module-finite over A then any common
multiple of the denominators of a finite set of generators is a non–zerodivisor of
A contained in C.

As a first ingredient for the normalization algorithms, we need to be able to
check whether a given ring is normal or not. We observe that normality is a local
property, in the following sense.

Lemma 5.1.8. Let A be an integral domain. The following conditions are equiv-
alent

(1) A is normal;

(2) AP is normal for every prime ideal P ;

(3) Am is normal for every maximal ideal m.

Proof. See, for example, (Greuel and Pfister, 2008, Proposition 3.2.5).

74

This motivates the next definition. We call spectrum of A, Spec(A), the set of
prime ideals of the ring A and the variety of I, V (I) = {P ∈ SpecA | P ⊇ I},
the set of prime ideals containing I. This definition is common in Algebraic
Geometry, and is more general than our previous definition. Note that when k
is algebraically closed, maximal ideals containing I correspond to points in the
variety, so we are now looking at all the prime ideals instead of only the maximal
ones.

Definition 5.1.9. The non-normal locus of A is defined as

N(A) = {P ∈ SpecA | AP is not normal}.

By the previous lemma, a ring is normal if and only if the non-normal locus is
empty.

There is a close relation between the non–normal locus and the conductor ideal.

Lemma 5.1.10. If A is module-finite over A then N(A) = V (C).

Proof. If P ∈ N(A), then AP (AP and CP = AnnAP (AP/AP) (AP . This
implies that 1 6∈ CP and therefore P ⊇ C. For the converse inclusion, if A is
generated by H = {h1, . . . , hs} and we set Ch := {a ∈ A | ah ∈ A} for h ∈ A then
C = ∩h∈HCh. We show that V (Ch) ⊆ N(A), for any h ∈ A. Let P 6∈ N(A). Since
A ⊂ AP = AP , there exist f ∈ A and g ∈ A \ P such that h ≡ f/g in AP and
therefore also in Q(A). This implies gh ∈ A, that is, g ∈ Ch. Therefore Ch 6⊆ P
and P 6∈ V (CH).

Another notion closely related to normality is that of regularity.

Definition 5.1.11. Let A = k[x1, . . . , xn]/I, with I = 〈f1, . . . , fs〉 equidimen-
sional radical of dimension d. We say that a point p ∈ V (I) is regular (or

smooth or non-singular) if rank
(
∂fi
∂xj

)
1≤i≤s
1≤j≤n

= n − d, that is, if the tangent

space has the expected dimension. More generally, a Noetherian local ring A
is regular if the minimal number of generators of its maximal ideal is equal
to its dimension, and an arbitrary Noetherian ring A is regular if AP is reg-
ular for every prime ideal P . We define the singular locus of A as the set
Sing(A) := {P ∈ Spec(A) | AP is not regular }.

The relation between normality and regularity is given by the following theorem.

Theorem 5.1.12. Let A be a regular local ring, then A is normal.

Proof. See, for example, (Greuel and Pfister, 2008, Theorem 5.7.14).

We say that a ring A is reduced if it contains no nilpotent elements. When
A = k[x]/I, A is reduced if and only if I is a radical ideal.

We can now give a normality criterion proved by Grauert and Remmert (1971).

75

Proposition 5.1.13. Let A be a Noetherian reduced ring and J ⊆ A an ideal
satisfying the following conditions:

(1) J contains a non–zerodivisor of A,

(2) J is a radical ideal,

(3) N(A) ⊆ V (J).

Then A is normal if and only if A ∼= HomA(J, J), via the canonical map which
maps a ∈ A to the multiplication by a.

Definition 5.1.14. An ideal J ⊆ A satisfying properties (1)–(3) is called a test
ideal (for the normalization) of A. A pair (J, p) with J a test ideal and p ∈ J a
non–zerodivisor of A is called a test pair for A.

By Lemmas 5.1.7 and 5.1.10, test pairs exist if and only if Ā is module-finite over
A. Theoretically, we can take any non–zerodivisor p of A in C and any radical
ideal J such that p ∈ J ⊆

√
C, but the conductor ideal is not known a priori.

Our algorithm computes the normalization of A when a test pair for A is known.
If A is a reduced, finitely generated k-algebra with k a perfect field, a non–
zerodivisor can be computed by using the Jacobian ideal and J can be taken,
following Theorem 5.1.12, as the radical of the Jacobian ideal or any radical ideal
included in it containing a non–zerodivisor (cf. Lemma 5.3.1 and Remark 5.3.7).

If A is not normal, we get a proper ring extension A (HomA(J, J) =: A1.

If A1 is not normal, which is checked by applying Proposition 5.1.13 to A1, we
obtain a new ring A2 by that same proposition, which then has to be tested for
normality, and so on. That is, we get a chain of inclusions of rings

A ⊆ A1 ⊆ A2 ⊆ . . .

(with Ai = A[t1, . . . , tsi]/Ii, Ii ideal in Ai, and natural maps ψi : A ↪→ Ai).

If at some point, we get a normal ring AN , since this ring is integral over A and
isomorphic to a subring of Q(A), the next lemma proves that AN ∼= A. This
guarantees that if Ā is module–finite over A, the chain will become stationary
with AN normal, giving an algorithm to compute the normalization.

Lemma 5.1.15. Let ψ : A → B be a map between reduced Noetherian rings
satisfying the following conditions:

(1) ψ is injective,

(2) B is integral over A,

(3) B is contained in Q(ψ(A)).

Then ψ induces isomorphisms Q(A)
∼=−−→ Q(B) and A

∼=−−→ B. In particular, if B
is integrally closed, then A is isomorphic to B.

76

Proof. Since A ↪→ B is injective, so is Q(A) ↪→ Q(B) and hence A ↪→ B. The
isomorphism Q(A)→ Q(B) is clear by (3). Since A ↪→ B is integral, also A ↪→ B̄
is integral. Since ψ(A) ⊆ B ⊆ B̄ ⊆ Q(B) = Q(ψ(A)), we conclude that B̄ is the
normalization of ψ(A), which immediately implies the isomorphism A→ B̄.

The fact which makes the whole algorithm practicable is the isomorphism

HomA(J, J) ∼= 1/p · (pJ :A J),

allowing us to compute HomA(J, J). This fact, not contained in (de Jong, 1998),
was first published in (Decker et al., 1999a) (see also Greuel and Pfister 2008,
Lemma 3.6.1 and Gianni and Trager 1997 for related statements). We prove a
generalization of this isomorphism -which will be needed in the new algorithm-
in 5.2.1 below.

Finally, to compute the normalization of A recursively, we describe the A-algebra
structure of 1/p · (pJ :A J). We need to compute the ideal of relations among a
system of A-module generators of it. Given s elements f1, . . . , fs of an A-module,
an s-tupple (g1, . . . , gs) ∈ As satisfying g1f1 + · · · + gsfs = 0 is called a syzygy
or linear relation. The set of all syzygies between f1, . . . , fs is a submodule of
As, which is finitely generated since A is Noetherian. A system of generators of
this module can be computed using Gröbner bases for modules (see, for example,
Greuel and Pfister, 2008, Algorithm 2.5.4). For higher degree relations, note
that the A-module structure of 1/p · (pJ :A J) implies that the product of two
elements u1/p · u2/p can also be written in the form u/p, with u ∈ (pJ :A J).
This implies that no relations of degree higher than 2 are needed to generate the
ideal of relations, as we show in the following lemma (Greuel and Pfister, 2008,
Lemma 3.6.7).

Lemma 5.1.16. Let A be a reduced Noetherian ring, and (J, p) a test pair for A.
Let {u0 = p, u1, . . . , us} be a system of generators for the A-module pJ :A J . Let
{(ηk0 , . . . , ηks) ∈ As+1, 1 ≤ k ≤ m} generate the module of syzygies of u0, . . . , us
and let ξijk ∈ A, 0 ≤ k ≤ s, 1 ≤ i ≤ j ≤ s be such that

(ui/p) · (uj/p) =
s∑

k=0

ξijk (uk/p), 1 ≤ i ≤ j ≤ s.

Let t1, . . . , ts denote new variables. The map φ : tj 7→ uj/p, 1 ≤ j ≤ s defines an
isomorphism of A-algebras

A1 := A[t1, . . . , ts]/I1

∼=−→ 1

p
(pJ :A J),

where I1 = 〈{
∑s

ν=0 η
k
ν tν}1≤k≤m, {titj −

∑s
k=0 ξ

ij
k tk}1≤i≤j≤s〉 is the ideal of linear

and quadratic relations.

Proof. By construction, I1 ⊆ ker(φ). For the reverse inclusion, let h ∈ ker(φ).
Using the relations titj −

∑s
k=0 ξ

ij
k tk, 1 ≤ i ≤ j ≤ s, we can write h ≡ h0 +

77

∑s
i=1 hiti mod I1, for some h0, h1, . . . , hs ∈ A[t1, . . . , ts]. Now φ(h) = 0 implies

h0 +
∑s

i=1 hi · (ui/p) = 0, hence (h0, . . . , hs) is s syzygy of u0, . . . , us and therefore
h ∈ I.

Example 5.1.17. Let I = 〈x2 − y3〉 ⊂ k[x, y] and A = k[x, y]/I. We take the test
pair (J, p), with J := 〈x, y〉A (the radical of the singular locus of A) and p := x (see
Algorithm 5.3.1). Then pJ :A J = 〈x, y2〉A and 1/p · (pJ :A J) = 1/x · 〈x, y2〉A ∼=
A1 := A[t]/I1 where I1 = 〈t2 − y, yt − x, y2 − xt〉A[t]. The isomorphism is given
by t 7→ y2/x.

5.2 Computing over the original ring

It has already been noticed by many authors (see for example the comments
preceding Vasconcelos 2005, Prop. 6.65) that algorithms relying on the chain
of rings mentioned in last section, or similar constructions where the number of
variables and relations increase in each step, behave poorly in practice. (See also
Remark 5.4.1.)

There has been therefore a search for algorithms carrying out most of the com-
putations in the original ring. In (Vasconcelos, 2000) the author proposes to
use

B =
⋃
n≥1

HomS(In, In),

where S is a hypersurface ring over which A is finite and birational and I is the
annihilator of the S-module A/S. However, as mentioned in that same paper,
computing B is still the hard part of the algorithm and there is no indication on
how to do it.

In this section we show that a chain of rings as used in (Decker et al., 1999a) can
be constructed doing most of the computations in the original ring. In this way
we obtain an algorithm that is usually much faster in practice.

The purpose of this section is not only to show that computations in the original
ring are possible. The proofs that we provide also show how these computations
can be done and thus prepare the algorithms presented in the next section.

We start with a generalization of the isomorphism from the previous section,
expressing HomA(J, J) as an ideal quotient, to be used later. We formulate a
more general version than needed. For a related statement see (Swanson and
Huneke, 2006).

Lemma 5.2.1. Let A be a reduced (not necessarily Noetherian) ring, Q(A) its to-
tal ring of fractions, and I, J two A-submodules of Q(A). Assume that I contains
a non–zerodivisor p of Q(A).

(1) The map

Φ : HomA(I, J)→ 1

p
(pJ :Q(A) I) = J :Q(A) I, ϕ 7→ ϕ(p)

p
,

78

is independent of the choice of p and is an isomorphism of A-modules.

(2) If J ⊆ A then
pJ :Q(A) I = pJ :A I.

Proof. (1) Let q ∈ I be another non–zerodivisor of Q(A). Write p = p1/p0 and
q = q1/q0, with p0, q0, p1, q1 ∈ A and p0, q0 non–zerodivisors of A.

Also c := p0q0 ∈ A is a non–zerodivisor, and cp, cq ∈ A with cpq ∈ I. Since
ϕ ∈ HomA(I, J) is A-linear, we can write

cpϕ(q) = ϕ(cpq) = cqϕ(p),

hence ϕ(p)/p = ϕ(q)/q in Q(A), showing that Φ is independent of p.

Note that p1 must also be a non–zerodivisor ofQ(A). Then, for any f = f1/f0 ∈ I,
with f0, f1 ∈ A and f0 a non–zerodivisor of A, we have

ϕ(p)

p
· f1

f0

=
ϕ(p1)

p1

· f1

f0

=
ϕ(p1f1)

p1f0

=
ϕ(p1f0f1/f0)

p1f0

= ϕ(f1/f0) = ϕ(f) ∈ J,

in particular ϕ(p) ·f ∈ pJ . This shows that the image Φ(ϕ) is in 1/p ·(pJ :Q(A) I).
It also shows that ϕ(p) = 0 ⇔ ϕ(f) = 0,∀f ∈ I ⇔ ϕ = 0, and hence that Φ is
injective.

To see that Φ is surjective, let q ∈ Q(A) satisfy qI ⊆ J . Denote by mq ∈
HomA(I, J) the multiplication by q. Then Φ(mq) = qp/p = q showing that Φ is
surjective.

(2) During the proof of (1) we saw that

pJ :Q(A) I = {ϕ(p) | ϕ ∈ HomA(I, J)}.

Hence, the claimed equality holds if and only if ϕ(p) ∈ A for all ϕ ∈ HomA(I, J),
which is clearly true if J ⊆ A.

Recall the chain of extension rings from last section A ⊆ A1 ⊆ A2 ⊆ . . . We have
seen that we can compute the normalization of A by computing the normalization
of Ai (Lemma 5.1.15). The next proposition explains how to obtain a test pair
in Ai from a given test pair in A. This is the only computation to be carried out
in Ai.

Proposition 5.2.2. Let A be a reduced Noetherian ring, A′ = A[t1, . . . , ts]/I
′ a

finite extension ring, with natural inclusion ψ : A ↪→ A′. If (J, p) is a test pair
for A then (J ′, ψ(p)) is a test pair for A′, where J ′ =

√
〈ψ(J)〉A′.

Proof. Clearly, every non–zerodivisor of A is also a non–zerodivisor of Q(A). In
particular, it is a non–zerodivisor of A′. Furthermore, if CA′ is the conductor of A′

in A′ = A, then CA′ ⊇ CA. It follows that every prime ideal Q ∈ N(A′) = V (CA′)
contracts to a prime ideal P ∈ N(A) = V (CA). Hence, if (J, p) is a test pair for
A, then P ⊇ J , which implies that Q ⊇

√
JA′ = J ′. We conclude that (J ′, p) is

a test pair for A′.

79

Example 5.2.3. Recall Example 5.1.17. We started with A = k[x, y]/〈x2 − y3〉
and test pair (J, p) = (〈x, y〉, x) and obtained A1 := A[t]/I1

∼= 1/d1 · U1 where
I1 = 〈t2 − y, yt− x, y2 − xt〉, d1 = x and U1 = 〈x, y2〉A.

We now compute J1 =
√
〈ψ1(J)〉A1 =

√
〈x, y〉A1 = 〈x, y, t〉A1 = 〈t〉A1 (since

t2 = y and t3 = x in A1). Therefore (〈t〉, x) is a test pair for A1.

For the rest of this section, let R be a Noetherian ring, I ⊆ R a radical ideal and
A = R/I. We are mainly interested in R = k[x] = k[x1, . . . , xn] with k a field
(which the reader may assume in the following). However, as mentioned before,
the proposed method works quite generally, whenever a test pair is known.

In the new algorithm, we will compute ideals U1, U2, . . . , UN of A and non–
zerodivisors di ∈ Ui, 1 ≤ i ≤ N , of A such that

A ⊆ 1

d1

U1 ⊆
1

d2

U2 ⊆ · · · ⊆
1

dN
UN = Ā.

From the construction we know that 1/di · Ui is a finitely generated R-algebra
and hence there is a surjection

Ri := R[t1, . . . , tsi] �
1

di
Ui, tj 7→ uj,

where {di, u1, . . . , usi} is a set of R-module generators of Ui. If Ii denotes the
kernel of this map, we get a ring map

ϕi : Ai := Ri/Ii
∼=−→ 1

di
Ui ⊆ Q(A).

Example 5.2.4. Carrying on with Example 5.2.3, we compute ϕ1(J1) = ϕ1(〈t〉).

Note that ϕ1(t) = y2/x. However the A-module 〈y2/x〉A (ϕ1(〈t〉). For example,
we have seen that y ∈ 〈t〉A1 and clearly ϕ1(y) = yx/x, but yx 6∈ 〈y2〉A.

This shows that in order to obtain A-module generators of ϕi(Ji) it is not enough
to compute the images of the generators of Ji. In Algorithm 5.3.2 we will show
how to compute the generators. In this example, it turns out that ϕ1(〈t〉) =
〈yx/x, y2/x〉 as A-module.

Once we have computed a test pair (Ji, pi) in Ai, the next step is to compute the
quotient pJi :Ai Ji. The following theorem shows that this computation can be
carried out in the original ring A.

Theorem 5.2.5. Let A = R/I, A′ = A[t1, . . . , ts]/I
′ a finite ring extension and

maps ψ : A ↪→ A′, ϕ : A′ ↪→ Q(A). Let (J, p) be a test pair for A and (J ′, p′)
a test pair for A′, with p′ = ψ(p). Let U,H be ideals of A and d ∈ A such that

ϕ(A′) =
1

d
U and ϕ(J ′) =

1

d
H. Then

(p′J ′) :A′ J
′ =

1

d
(dpH :A H).

80

Proof. The proof is an easy consequence of Lemma 5.2.1. Omitting ϕ and ψ in
the following notations and applying Lemma 5.2.1 to p ∈ J ⊆ A we get

(p′J ′) :A′ J
′ = (p′J ′) :Q(A) J

′ = pH :Q(A) H,

since Q(A′) = Q(A) and J ′ = 1/d ·H.

On the other hand, we can apply Lemma 5.2.1 to dp ∈ H ⊆ A and get

1

d
(dpH :A H) =

1

d
(dpH :Q(A) H) = pH :Q(A) H.

Using Theorem 5.2.5 together with the previous results, once we have computed
an intermediate ring Ai, we can compute Ai+1, the next ring in the chain. If
Ai = Ai+1, we have finished and Ai is the normalization of the original ring A,
by Lemma 5.1.15. If not, we proceed by induction to compute the normalization.

We continue with the example.

Example 5.2.6. We have p = d1 = x and H1 = 〈xy, y2〉A. We compute d1pH1 :A
H1 = x2〈xy, y2〉 :A 〈xy, y2〉 = 〈x2, xy2〉.

Then

HomA1(J1, J1) ∼=
1

x2
〈x2, xy2〉 =

1

x
〈x, y2〉.

This is equal to A1. Therefore, the ring A1 was already normal, and hence equal
to the normalization of A.

Modification 5.2.7. We have seen that the only computation performed in Ai is
the radical of ψi(J). However, when the characteristic of the base field is q > 0
it is possible to compute also this radical over the original ring. For this, we use
the Frobenius map, as described in (Matsumoto, 2001).

Let G = ψi(J) ⊆ Ai. By definition,

Ji =
√
G = {f ∈ Ai | f m ∈ G for some m ∈ N}.

Mapping to Q(A), we obtain

ϕi(Ji) =

{
f̃/di

∣∣∣∣ f̃ ∈ Ui, (f̃/di)m ∈ ϕi(G) for some m ∈ N
}

=
⋃
m≥1

Gm,

where Gm :=

{
f̃/di

∣∣∣∣ f̃ ∈ Ui, (f̃/di)m ∈ ϕi(G)

}
. Then

diGq = {f̃ ∈ Ui | f̃ q ∈ d qi ϕi(G)}.

Now d qi ϕi(G) is an ideal of A and diGq is the so-called q-th root of d qi ϕi(G). This
ideal can be computed over A using the Frobenius map (see Matsumoto, 2001).

By iteratively computing the q-th root of the output, until no new polynomials
are added, we obtain ϕi(Ji) as desired.

81

Computing the radical in this way, we get another algorithm (in positive charac-
teristic) which is similar to the one proposed in (Singh and Swanson, 2009). In
their algorithm they start with the inclusion Ā ⊆ 1

c
A, where c is an element of

the conductor and compute a decreasing chain of A-modules

1

c
A =

1

c
U ′0 ⊇

1

c
U ′1 ⊇ · · · ⊇

1

c
U ′N = Ā.

In our algorithm we compute an increasing chain

A ⊆ 1

d1

U1 ⊆ · · · ⊆
1

dN
UN = Ā.

The most difficult computational task for both algorithms is the Frobenius map.
However, in our algorithm we start with a small denominator d1 and therefore
the computations might be in some cases easier. This modification has not yet
been tested.

5.3 Algorithms

We describe the algorithm in general terms. Since we compute an increasing se-
quence of subrings of the integral closure the algorithm terminates, for a Noethe-
rian ring A, if and only if Ā is module–finite over A. By Lemma 5.1.7 this is
equivalent to the existence of a test pair. We now deal with the problem of
constructing an initial test pair.

Lemma 5.3.1. Let k be a perfect field, and A = k[x1, . . . , xn]/I a reduced equidi-
mensional ring of dimension r (that is, I is radical and all the associated primes
have dimension r). Let M be the Jacobian ideal of I = 〈f1, . . . , ft〉, defined as the
ideal in A generated by the images of the (n− r)× (n− r)-minors of the Jacobian
matrix (∂fi/∂xj)i,j. Then M is contained in the conductor of A and contains a
non–zerodivisor of A.

Proof. Let I = P1 ∩ . . . ∩ Ps with P1, . . . , Ps the minimal associated primes of I.
Since A is equidimensional, dim(A) = height(Pi) = r for 1 ≤ i ≤ s. Hence, the
image of M in Ai = k[x1, . . . , xn]/Pi is contained in the Jacobian ideal Mi of Pi.
By the Lipman-Sathaye theorem (see Swanson and Huneke 2006 and Singh and
Swanson 2009, Remark 1.5) Mi and hence M is contained in the conductor of
Ai. Since Ā = Ā1 ⊕ · · · ⊕ Ās, M is then also contained in the conductor of A.
Moreover, the image of M in Ai is not zero since Ai is reduced. This follows from
the Jacobian criterion and by Serre’s condition for reducedness (see Greuel and
Pfister, 2008, Section 5.7). As a consequence, M is not contained in the union of
the minimal primes of A and hence contains a non–zerodivisor of A.

Note that both the Lipman-Sathaye theorem and the Jacobian criterion require
k to be perfect.

82

The ideal J :=
√
M from last lemma can be used as an initial test ideal. To

construct a test pair, we need to find in addition a non–zerodivisor of A in J .
An element p ∈ A is a non–zerodivisor if and only if 0 :A p = 0, hence the
non–zerodivisor test is effective. However, it is not sufficient to apply the test
to the generators of J . (E.g., if I = 〈xy〉, the polynomials x, y generate J and
are zerodivisors of A, but x + y is not.) Since we cannot test all elements of J
there seems to be a problem to find a test pair if I is not prime. We address
this problem as well as the perfectness and the equidimensionality assumptions
in Remark 5.3.7.

We first describe in Algorithm 5.3.1 how to compute the initial test pair (J, p) in
A, assuming that we are able to find a non–zerodivisor.

Remark 5.3.2. Only for this step we need the assumption that R = k[x] with
k perfect and that I is equidimensional. All further steps do not require this
assumption.
If, by whatever means, an initial test pair (J, p) for A is known, we can start
with the computation of U1 and then all further steps are correct, and the loop
terminates with the computation of Ā. Hence, for any reduced ring A = R/I
with given test pair (J, p), the algorithm is effective when Gröbner bases, ideal
quotients, and radicals can be computed in rings of the form R[t1, . . . , ts].

Algorithm 5.3.1 Initial test pair (J, p)

Input: I ⊆ R, an equidimensional radical ideal, with R = k[x1, . . . , xn]> and k
a perfect field.

Output: (J, p) a test pair for A := R/I.
1: r := dim(I)
2: M ′ := the Jacobian ideal of I, i.e., the ideal in R generated by the (n− r)×

(n− r)-minors of the Jacobian matrix of I
3: M := the image of M ′ in A
4: J :=

√
M ⊆ A

5: choose p ∈ J such that p is a non–zerodivisor of A
6: return (J, p).

We now explain how to perform some auxiliary tasks, that will be needed in the
main algorithm.

We have seen in the previous section that if A = R/I and A′ = R[t1, . . . , tn]/I ′

is a finite extension ring with I ⊆ I ′, then there exist a non–zerodivisor d ∈ A,

an ideal U ⊆ A and a map ϕ : A′ → 1/d · U such that A′
∼=−→ 1/d · U . For

computations, we need to know how to move from one representation to the
other.

Remark 5.3.3. If we know d and generators {d, u1, . . . , us} of U , we can explicitly
compute ϕ(q) for any q ∈ A′. Let q̃ ∈ R′ be a representative, and substitute all
the variables tj in q̃ by the corresponding fraction uj/d. This gives an element
f/d e ∈ Q(A) for some f ∈ A and e ∈ Z≥0. Now we need to find f ′ ∈ A such that
f/d e = f ′/d in Q(A), which is equivalent to f = f ′d e−1 + g in R, with g ∈ I. We
can find f ′ by solving the (extended) ideal membership problem f ∈ I + 〈d e−1〉

83

in R, e.g. by using the Singular command lift (see Greuel and Pfister, 2008,
Example 1.8.2).

More generally, if f/c is an element of 1/d ·U ⊆ Q(A), with c a non–zerodivisor,
we can find f ′ such that f/c = f ′/d by solving the ideal membership problem
df ∈ 〈I, c〉.

We will need also to compute A-module generators of ideals J ′ ⊆ A′ given by
generators in A′. It is clear that for any such J ′ there exists an ideal H ⊆ A such
that ϕ(J ′) = 1/d ·H. So the problem is equivalent to finding elements h1, . . . , hl
in A that generate H as an A-ideal. In Algorithm 5.3.2 we explain how to do it.

Algorithm 5.3.2 A-module generators

Input: A = R/I, with R = k[x1, . . . , xn] and I ⊆ R ideal; A′ = R′/I ′ a ring
extension of A, with R′ = R[t1, . . . , ts] and I ′ ⊆ R′ an ideal, d ∈ A′ a

non–zerodivisor and U ′ = 〈u0 = d, u1, . . . , us〉A such that A′
ϕ∼= 1

d
U , J ′ =

〈f1, . . . , fm〉A′ an ideal of A′.
Output: H = 〈h1, . . . , hl〉A such that ϕ(J ′) = 1/d ·H.
1: for j = 1, . . . ,m do
2: compute hj such that ϕi(fj) = hj/d (cf. Remark 5.3.3)
3: end for
4: set S = {h1, . . . , hm}
5: for j = 1, . . . ,m; k = 1, . . . , s do

6: compute hj,k ∈ A such that
hj,k
d

=
uk
d

hj
d

in Q(A) (again by Remark 5.3.3)

7: if hj,k 6∈ 〈S〉A then
8: S = S ∪ {hj,k}
9: end if

10: end for
11: return H := 〈S〉.

Lemma 5.3.4. Let A = R/I, with R = k[x1, . . . , xn] and I ⊆ R ideal; A′ = R′/I ′

a ring extension of A, with R′ = R[t1, . . . , ts] and I ′ ⊆ R′ an ideal, d ∈ A′ a non–

zerodivisor and U ′ = 〈u0 = d, u1, . . . , us〉A such that A′
ϕ∼= 1

d
U , J ′ = 〈f1, . . . , fm〉A′

an ideal of A′. The output ideal H = 〈h1, . . . , hl〉A of Algorithm 5.3.2 satisfies
ϕ(J ′) = 1/d ·H.

Proof. This follows since the A-module 〈1 = u0/d, u1/di, . . . , us/d〉A = ϕ(A′) and
the A′-module 〈h1/d, h2/d, . . . , hm/d〉A′ = ϕ(J ′) (h1, . . . , hm as in the algorithm).
Therefore the products (uk/d)(hj/d), 0 ≤ k ≤ s, 1 ≤ j ≤ m, generate ϕ(J ′)
as A-module. Hence {hj}1≤j≤l generates H as A-module, or equivalently as A-
ideal.

Example 5.3.5. We apply the algorithm to compute the A-module generators of
ϕ1(J1) from Example 5.2.4. Recall that J1 = 〈t〉A1 , U1 = 〈x, y2〉A and d = x.
We start with h1 = ϕ1(t) = y2/x and S = {h1}. In the first step, we compute

84

(x/x)(y2/x) = y2/x, therefore h1,0 = y2. Since y2 ∈ 〈y2〉, we do not do anything.
In the second step we compute (y2/x)(y2/x) = y4/x2 = x2y/x2 = xy/x, therefore
h1,1 = xy. Since xy 6∈ 〈y2〉, we add it to S. We finish with H = 〈xy, y2〉, as
mentioned in Example 5.2.4.

We are now ready to present in Algorithm 5.3.3 the main algorithm to compute
the normalization.

Termination follows from Lemma 5.1.7 and the discussion after Definition 5.1.14,
correctness follows from Lemma 5.1.15.

Algorithm 5.3.3 Normalization of R/I

Input: I ⊆ R, an equidimensional radical ideal.

Output: generators of an ideal U ⊆ R, and d ∈ R such that A =
1

d
U ⊆ Q(A),

with A := R/I.
1: compute (J, p), an initial test ideal
2: U1 := (pJ :A J) ⊆ A
3: d1 := p
4: if 〈d1〉 = U1 then
5: return (〈1〉, 1)
6: end if
7: i := 1
8: loop

9: write Ui =
〈
di, u

(i)
1 , u

(i)
2 , . . . , u

(i)
s

〉
A

10: set Ri := R[t1, . . . , ts], πi : Ri → 1
di
Ui ⊆ 1

di
A the map tj 7→ u

(i)
j /di

11: Ii := ker(πi) (cf. Lemma 5.1.16)
12: set Ai = Ri/Ii
13: Ji :=

√
ψi(J) ⊆ Ai, with ψi : A ↪→ Ai

14: compute {f1, . . . , fk} ⊆ A such that Hi := 〈f1, . . . , fk〉A = diϕi(Ji), with

ϕi : Ai
∼=−→ 1

di
Ui (cf. Lemma 5.3.4)

15: compute generators of Ui+1 := (pdiHi) :A Hi

16: if diUi ⊆ Ui+1 then
17: return (Ui, di)
18: end if
19: di+1 := pdi
20: i := i+ 1
21: end loop

We give another complete example, applying the given algorithm.

Example 5.3.6. For
A = k[x, y]/〈x5 − y2 (y − 1)3〉,

the radical of the Jacobian ideal is

J := 〈x, y (y − 1)〉A ,

and we can take p := x ∈ J as a non–zerodivisor of A. In its first step, starting
with the initial test pair (J, x), the normalization algorithm produces the following

85

data:

U (1) := xJ :A J =
〈
x, y(y − 1)2

〉
A

and

A1 := A[t1]/I1
∼=

1

x
U (1) ,

with relations and isomorphism given by

I1 =
〈
−t1x+ y(y − 1)2,−t1y(y − 1) + x4, t21 − x3(y − 1)

〉
and

t1 7→
y(y − 1)2

x
, respectively.

In the next step, since t21 = x3(y − 1) and t1x = y(y − 1)2, we find

J1 :=
√
〈x, y(y − 1)〉A1

= 〈x, y(y − 1), t1〉A1

=
1

x

〈
x2, xy(y − 1), y(y − 1)2

〉
A

=:
1

x
H1.

Using the test pair (J1, x), in the next step we compute

1

x
(xJ1 :A1 J1) =

1

x2
(x2H1 :A H1)

=
1

x2

〈
x2, xy(y − 1), y(y − 1)2

〉
A

=:
1

x2
U (2)

and

A2 = A[t2, t3]/I2
∼=

1

x2
U (2) ,

with relations and isomorphism given by

I2 =
〈
t2x− t3(y − 1),−t3x+ y(y − 1),−t2y(y − 1) + x3,

−t2y3(y − 1)2 + t3x
4, t22 − x(y − 1), t2t3 − x2, t23 − t2y

〉
and

t2 7→
y(y − 1)

x
, t3 7→

y(y − 1)2

x2
,

respectively. Now,

J2 :=
√
〈x, y(y − 1)〉A2

= 〈x, y(y − 1), t2, t3〉 = 〈x, t2, t3〉

=
1

x2

〈
x3, xy(y − 1), y(y − 1)2

〉
A

=:
1

x2
H2.

Continuing with the test pair (J2, x), we get

1

x
(xJ2 :A2 J2) =

1

x3
(x3H2 :A H2)

=
1

x3

〈
x3, x2y(y − 1), xy(y − 1)2, y2(y − 1)2

〉
A

=:
1

x3
U (3)

86

and

A3 := A[t4, t5, t6]/I3
∼=

1

x3
U (3),

where I3 is generated by 11 relations. In the final step, we find that A3 is normal
and, hence, equal to A.

Remark 5.3.7. Let us comment on some variations and generalizations of Algo-
rithm 5.3.3. We let k be any field, R = k[x1, . . . , xn]>, and I ⊆ R a radical ideal.
(1) If I is not (or not known to be) equidimensional we can start with an
algorithm to compute its minimal associated primes (see Greuel and Pfister,
2008, Algorithm 4.3.4, Algorithm 4.4.3)) or its equidimensional decomposition
(see Greuel and Pfister, 2008, Algorithm 4.4.9), where the latter is often faster.
The corresponding ideals I1, I2, . . . , Ir are equidimensional and we have R/I ∼=
R/I1 ⊕ R/I2 ⊕ · · · ⊕ R/Ir. Hence the problem is reduced to the case of I being
prime or equidimensional.
(2) If I is equidimensional, we let M be its Jacobian ideal. Since regular rings
are normal, it follows from the Jacobian criterion that N(R/I) ⊆ V (M). Let us
assume that M 6= 0 and choose p ∈M \ {0}.
a) If I1 := I :R 〈p〉 ⊆ I then p is a non–zerodivisor of A and J =

√
M is a test

ideal. This is always the case if I is prime.
b) If I1 6⊆ I we compute I2 := I :R I1 and obtain a splitting I = I1 ∩ I2 (see
Greuel and Pfister, 2008, Lemma 1.8.14(3)) and R/I ∼= R/I1 ⊕ R/I2. Hence we
can continue with the ideals I1 and I2 separately which have both fewer minimal
associated primes than I. Consequently, after finitely many splittings, the cor-
responding ideal is prime or we have found a non–zerodivisor. This provides us
with test ideals as in case a).
(3) The above arguments show that (even if k is not perfect) Algorithm 5.3.3
works for prime ideals if and only if the Jacobian ideal M is not zero. This is
always the case for k perfect. However, if k is not perfect, M = 0 may occur. For
example, consider k = (Z/q)(t) with q a prime number, and I = 〈xq + yq + t〉 ⊂
k[x, y]. For a method to compute a non–zero element in the conductor of R/I
if I is prime and if Q(R/I) is separable over k, see (Swanson and Huneke, 2006,
Exercise 12.12).

5.4 Examples and comparisons

In Table 5.1 we present a comparison of the implementations in Singular of
the new algorithm normal and other existing algorithms. normalC is an imple-
mentation based on the algorithm (Decker et al., 1999a) (see also Greuel and
Pfister, 2008, Section 3.6) and normalP is an implementation of the algorithm in
(Leonard and Pellikaan, 2003; Singh and Swanson, 2009) for positive characteris-
tic. All these implementations are now available in the Singular library normal

(Greuel et al., 2009). Computations were performed on a compute server running
a 1.60GHz Dual AMD Opteron 242 with 8GB ram.
∗ indicates that the algorithm had not finished after 20 minutes,

87

Table 5.1: Timings

No. char
normal data seconds

non–zerodivisor steps normal normalP normalC

1 0 y 7 0 - 72
1 2 y 7 0 0 0
1 5 y 7 1 73 0
1 11 x− 2y 7 1 12 ∗
1 32003 y 7 0 ∗ 1

2 0 y 7 1 - ∗
2 3 y 8 0 0 3
2 13 y 7 0 ∗ 10
2 32003 y 7 0 ∗ 10

3 0 y 6 2 - ∗
3 2 y 13 1 0 ∗
3 5 y 6 1 7 ∗
3 11 x+ 4y 6 1 ∗ ∗
3 32003 y 6 1 ∗ ∗
4 0 2x2y − y3 + y 1 0 - 0
4 5 x2y + 2y3 − 2y 1 0 3 0
4 11 x2y + 5y3 − 5y 1 0 ∗ 0
4 32003 x2y + 16001y3 −

16001y
1 0 ∗ 0

5 0 y 1 0 - 0
5 5 x3y + xy 3 1 ∗ ∗
5 11 y 1 0 0 0
5 32003 y 1 1 ∗ 0

6 2 v 2 6 24 172

7 0 y 6 12 - 582
7 2 y 6 11 0 35
7 5 y 6 12 3 358
7 11 y 6 11 43 503
7 32003 y 6 11 ∗ 617

88

- indicates that the algorithm is not applicable (i.e., using normalP in character-
istic 0).

We show the timings for several examples over the fields k = Q and k = Zp, p ∈
{2, 3, 5, 11, 13, 32003}, when the ideal is prime in the corresponding ring. We see
that the new algorithm is extremely fast compared to the other algorithms. Only
the algorithm normalP is sometimes faster for very small characteristic.

In columns 3 and 4 we give additional information on how the new algorithm
works. The column “non–zerodivisor” indicates which non–zerodivisor is chosen.
The column “steps” indicates how many loop steps are needed to compute the
normalization. We see that our new algorithm performs well compared to the
classic algorithm especially when the number of steps needed is large.

We used the following examples:

• I1 = 〈(x− y)x(y + x2)3 − y3(x3 + xy − y2)〉 ⊂ k[x, y],

• I2 = 〈55x8 + 66y2x9 + 837x2y6 − 75y4x2 − 70y6 − 97y7x2〉 ⊂ k[x, y],

• I3 = 〈y9 + y8x+ y8 + y5 + y4x+ y3x2 + y2x3 + yx8 + x9〉 ⊂ k[x, y],

• I4 = 〈(x2 + y2 − 1)3 + 27x2y2〉 ⊂ k[x, y],

• I5 = 〈−x10 + x8y2 − x6y4 − x2y8 + 2y10 − x8 + 2x6y2 + x4y4 − x2y6 − y8 + 2x6 −
x4y2 + x2y4 + 2x4 + 2x2y2 − y4 − x2 + y2 − 1〉 ⊂ k[x, y],

• I6 = 〈z3 + zyx+ y3x2 + y2x3, uyx+ z2, uz+ z+ y2x+ yx2, u2 + u+ zy+ zx, v3 +
vux+ vz2 + vzyx+ vzx+ uz3 + uz2y + z3 + z2yx2〉 ⊂ k[x, y, z, u, v].

• I7 = 〈x2 + zw, y3 +xwt, xw3 + z3t+ ywt2, y2w4−xy2z2t−w3t3〉 ⊂ k[x, y, z, w, t].

Remark 5.4.1. As mentioned before, the main drawback of the algorithm (Decker
et al., 1999a) is the increasing complexity of computing the intermediate rings.
A direct implementation of the algorithm turns out to be so slow that it does
not even finish for most of the examples analyzed in this paper (after 1 hour).
For example, in the second example, I2, over Z3, the fifth ring constructed in the
chain has 12 variables and 76 generators for the ideal of relations. The sixth ring
could not be computed using this direct approach.

A partial solution to this problem, used in implementations, is to eliminate as far
as possible redundant variables, that is, variables than can be expressed in term of
the others through the relations in the ring. This is what is done in normalC, and
it is sometimes a good improvement. However detecting the redundant variables
becomes more and more difficult as the relations get more and more complex,
adding a new expensive task to the computation, that does not always succeeds
in detecting all the relations.

The algorithm proposed in this paper avoids this problem in a natural way.

We have also compared our implementation with the normalization procedures
in Macaulay2 (they use the algorithms (Decker et al., 1999a) and (Singh and
Swanson, 2009)) and in Magma (they say that they use (Decker et al., 1999a)

89

for the general case; however it seems to work only in characteristic 0 and the
code is not accessible). Our new algorithm is always faster and succeeds where
the other implementations do not finish. We do not know of implementations in
other computer algebra systems.

5.5 Normalization of local rings

In this section, let I ⊆ R = k[x] be an equidimensional radical ideal and P a
prime ideal of A = R/I. We want to compute the normalization of the local ring
AP .

Note that since normalization commutes with localization (see, for example,
Eisenbud, 1995, Proposition 4.13), the normalization of the ring AP is module–
finite over AP .

We can extend Algorithm 5.3.3 from Section 5.3 to this general situation in two
different ways.

The first method is to do all computations locally. This can be done by using an
appropriate non-global monomial ordering. (See Greuel and Pfister 2008, where
the theory of standard basis for such monomial orders is developed.)

This algorithm is correct (by applying Proposition 5.1.15 to AP) and terminates
because AP is module–finite over AP .

The second method is to compute the normalization of A as in the previous
section, and then mapping the result to AP . The method is also correct since
normalization commutes with localization.

If we start with an equidimensional decomposition I =
⋂r
i=1 Ii, then of course

we only need to compute the normalization for those ideals Ii for which the
localization (R/Ii)P is not 〈1〉.
Example 5.5.1. To see the difference between both methods, let

I = 〈y2 − x2(x+ 1)2(x+ 2)〉 ⊂ R = k[x, y]

In Figure 5.1 we can see the real part of the curve V(I). This curve has two
singularities, at the points P1 = (0, 0) and P2 = (−1, 0).

We want to compute the normalization of A′ = (R/I)〈x,y〉.

We carry out the first method, setting I ′ = IA′. The singular locus of I ′ is
J = 〈x, y〉, which is radical. This is the first test ideal. We take as non–zerodivisor
p := y and compute the quotient

U1 := yJ :A′ J = 〈x, y〉.

Since U1 6= 〈y〉 we go on. The ring structure of 1/y ·U1 is A1 = (k[t, x, y]/I1)〈x,y〉,
with I1 = 〈tx4 + 4tx3 + 5tx2 + 2tx− y,−ty + x, t2(x+ 1)2(x+ 2)− 1, x5 + 4x4 +
5x3 + 2x2 − y2〉.

90

-3

-2

-1

0

1

2

3

-2 -1.5 -1 -0.5 0 0.5 1
-3

-2

-1

0

1

2

3

-2 -1.5 -1 -0.5 0 0.5 1

Figure 5.1: y2 − x2(x+ 1)2(x+ 2) = 0

We compute J1 :=
√
ϕ1(〈x, y〉) = 〈x, y, 2t2 − 1〉A1 .

Mapping J1 to Q(A′) using d1 = y as denominator, we get J1
∼= 1/y · H1, with

H1 := 〈yx, y2〉. (The image of 2t2−1 in Q(A′) is (−10xy−8x2y−2x3y)/y, which
is already in 1/y · 〈yx, y2〉.) We compute the quotient

U2 := y2〈yx, y2〉 :A′ 〈yx, y2〉 = 〈xy, y2〉.

We see that yU1 = U2. This means that A1 was already normal and isomorphic
to the normalization of A′, which is therefore 1/y · 〈x, y〉A′ .
Let us now apply the second method. The singular locus of I is J = 〈x2 + x, y〉,
which is radical. J serves as first test ideal. As non–zerodivisor we choose p := y
and compute the quotient

U1 := yJ :A J = 〈y, x3 + 3x2 + 2x〉.

As U1 6= 〈y〉, we continue. We compute A1, the ring structure of 1/y · U1,
A1 = k[t, x, y]/〈tx2+tx−y,−ty+x3+3x2+2x, t2−x−2, x5+4x4+5x3+2x2−y2〉,
and J1 =

√
ϕ1(〈x2 + x, y〉) = 〈x2 + x, y〉.

Mapping J1 to Q(A) using d1 = y as denominator, we obtain J1
∼= 1/y ·H1, with

H1 := 〈y(x2 + x), y2〉. We compute the quotient

U2 := y2〈y(x2 + x), y2〉 :A 〈y(x2 + x), y2〉 = 〈y2, y(x3 + 3x2 + 2x)〉.

Now we have yU1 = U2, and thus A1 was already normal and isomorphic to the
normalization of A. Therefore, the normalization A′ equals 1/y · 〈y, x3 + 3x2 +
2x〉A′ = 1/y · 〈y, x〉A′ , as before.

Remark 5.5.2. In the previous example, using the first method yields simpler test
ideals and quotients. However, our experience is that in general, computations
with non-global orderings are often slower than computations with global order-
ings, and therefore the second method should be preferred at least if the input
ideal is prime. On the other hand the computation should be faster with the first
method if the ideal, or its Jacobian ideal, has complicated components which
vanish in the localization.

91

5.6 Normalization via localization

As suggested in last section, local computations can sometimes reduce the prob-
lem to a simpler one. This motivates a local-global approach for computing the
normalization of a ring that we propose in this section. Our starting point for
combining local results is the following result:

Proposition 5.6.1. Let A be a reduced Noetherian ring and set Sing(A) =
{P1, . . . , Ps} the singular locus. Let Si = A \ Pi, 1 ≤ i ≤ s, and suppose that an

intermediate ring A ⊆ A(i) ⊂ A is given such that S−1
i A(i) = S−1

i A for 1 ≤ i ≤ s.
Then

s∑
i=1

A(i) = A.

Proof. By construction, B :=
∑s

i=1A
(i) ⊂ A. We wish to show equality. It

suffices to show that if P ∈ Spec(A) is a prime ideal and S = A \ P , then
S−1B = S−1A. If P ∈ Sing(A), then P = Pi for some i, and the local equality is
obtained from the chain of inclusions

S−1
i A(i) ⊆ S−1

i B ⊆ S−1
i A = S−1

i A.

Indeed, S−1
i A(i) = S−1

i A by assumption. If P 6∈ Sing(A), then S−1A is normal,
and the local equality follows likewise from the chain of inclusions

S−1A ⊆ S−1B ⊆ S−1A = S−1A.

Definition 5.6.2. We call any ring A(i) as in Proposition 5.6.1 a local contribution
to A at Pi.

If P ∈ Sing(A) is minimal with respect to inclusion, the modification of the
Grauert and Remmert criterion below will allow us to find a local contribution
to A at P along the lines of the global algorithm.

Proposition 5.6.3. Let A be a reduced Noetherian ring, let A ⊆ A′ be a module-
finite ring extension, let P ∈ Sing(A) be minimal with respect to inclusion, and
let J ′ =

√
PA′. Suppose that P contains a non–zerodivisor p of A. If

A′ ∼= HomA′(J
′, J ′)

via the map which sends a′ to multiplication by a′, then the localization S−1A′ is
normal.

Proof. Since localization commutes with taking homomorphisms (see Eisenbud,
1995, Proposition 2.10), we get

S−1A′ ∼= S−1(HomA′(J
′, J ′)) ∼= HomS−1A′(S

−1J ′, S−1J ′).

92

Hence, the result will follow from the Grauert and Remmert Criterion 5.1.13
applied to S−1A′ once we show that the localized ideal S−1J ′ satisfies the three
conditions of the criterion.

First, since taking radicals commutes with localization, S−1J ′ is a radical ideal.
Second, the image of p in S−1A′ is a non–zerodivisor on S−1A′ contained in S−1J ′.
Third, we show that V (CS−1A′) = N(S−1A′) ⊆ V (S−1J ′P). For this, we first
note that by the minimality assumption on P , we have V (CS−1A) = N(S−1A) =
{S−1P} since prime ideals in S−1A correspond to prime ideals in A contained in
P . Let now Q ∈ N(S−1A′). Then, as mentioned in the proof of Lemma 5.2.2, Q
contracts to P in A. This implies that

Q ⊇
√

(S−1P)(S−1A′) =
√
S−1(PA′) = S−1(

√
PA′) = S−1J ′,

as desired.

In the situation of the proposition, suppose that we know a non–zerodivisor of A,
p ∈ P . Then, we may use P together with p instead of a test pair as in Definition
5.1.14. Proceeding as in Section 5.3, we get a chain of rings

A ⊆ A1 ⊂ · · · ⊆ Am ⊂ A

such that S−1(Am) is normal and, hence, equal to S−1A = S−1A.

Adding up, we are lead to Algorithms 5.6.1 and 5.6.2 below.

Algorithm 5.6.1 Local contribution to the normalization

Input: An affine domain A = k[x1, . . . , xn]/I over a perfect field k and a prime
ideal P ∈ Sing(A) which is minimal with respect to inclusion.

Output: U ⊆ A ideal and d ∈ A with 1/d · U ⊂ A and S−1(1/d · U) = S−1A.
1: Choose 0 6= p ∈ P
2: return the result of Algorithm 5.3.3 applied to (P, p).

Algorithm 5.6.2 Normalization via localization

Input: An affine domain A = k[x1, . . . , xn]/I over a perfect field k such that
there are no strict inclusions between the prime ideals in Sing(A).

Output: U ⊆ A ideal and d ∈ A such that A = 1/d · U ⊆ Q(A).
1: J :=

√
M , where M is the Jacobian ideal of I

2: Choose 0 6= p ∈ J
3: Compute Sing(A) = {P1, . . . , Ps} by decomposing J
4: for all Pi do
5: Apply Algorithm 5.6.1 using the test pair (Pi, p) to find ideals Ui ⊆ A and

powers di = pmi with A ⊆ 1/di · Ui ⊂ A and S−1 (1/di · Ui) = S−1A
6: end for
7: m := max{m1, . . . ,ms}, d := pm, U :=

∑
i p

m−miUi
8: return (U, d).

93

Remark 5.6.4. In Algorithm 5.6.2, it may be more efficient to choose test pairs
(Pi, pi), with possibly different non–zero elements pi ∈ Pi. The algorithm com-
putes, then, pairs (U ′i , di) with ideals U ′i ⊆ A and powers di = pmii . As explained
in Remark 5.3.3, we can always find a denominator d ∈ M and ideals Ui ⊆ A
such that 1/d · Ui = 1/di · U ′i for all i. Hence, the desired result is (

∑
i Ui, d).

Example 5.6.5. We come back to the coordinate ring A of the curve C defined
by f(X, Y) = X5 − Y 2(Y − 1)3 from Example 5.3.6 to discuss normalization via
localization. The curve C has a double point of type A4 at (0, 0) and a triple
point of type E8 at (0, 1). We illustrate Algorithm 5.6.2 in two ways:

(1) First, we use for both singular points the non–zerodivisor p = x. For the
A4-singularity, consider

P1 = 〈x, y〉A and S1 = A \ P1.

The local normalization algorithm yields S−1
1 A = S−1

1

(
1
d1
U1

)
, where

d1 = x2 and U1 =
〈
x2, y(y − 1)3

〉
A

.

For the E8 singularity, considering

P2 = 〈x, y − 1〉A and S2 = A \ P2,

we get S−1
2 A = S−1

2

(
1
d2
U2

)
, where

d2 = x3 and U2 =
〈
x3, x2y2 (y − 1) , y2 (y − 1)2〉

A
.

Combining the local contributions, we get

1

d
U =

1

d1

U1 +
1

d2

U2

with d = x3 and

U =
〈
x3, xy(y − 1)3, x2y2 (y − 1) , y2 (y − 1)2〉

A
.

A moments thought shows that U coincides with the ideal U (3) computed
in Example 5.3.6.

(2) Now we choose p1 = y ∈ P1 and p2 = y − 1 ∈ P2. Then the normalization
algorithm yields APi = 1

di
(Ui)Pi , with

d1 = y and U1 = 〈y, x3〉A,

d2 = (y − 1)2 and U2 =
〈
(y − 1)2 , x2 (y − 1) , x4

〉
A

.

Combining the local contributions, we get A = 1
d
U with

d = y (y − 1)2 and

U =
〈
y (y − 1)2 , x2y (y − 1) , x3 (y − 1)2 , x4y

〉
A
.

94

One easily checks that both representations describe the same ring.

The approach presented in this section implies a big improvement in the normal-
ization algorithm for the special case of curves in the plane. Moreover, in this
case we can combine the local approach with a special algorithm for computing
the normalization of curves which we present in Chapter 7. The performance of
this approach will be analyzed in that chapter.

95

Chapter 6

Applications of the normalization
and related tasks

6.1 Integral closure of ideals

A direct application of the normalization of rings is the computation of the inte-
gral closure of an ideal, which we explain in this section.

6.1.1 Preliminaries

Let I be an ideal in a ring R. Recall from Section 2.2.3 that an element r ∈ R is
called integral if it satisfies an integral dependence equation rs+a1r

s−1 +a2r
s−2 +

· · · + as−1r + as = 0, with ai ∈ I i, 1 ≤ i ≤ s. The integral closure of I, Ī, is the
set of all integral elements of R over I.

Example 6.1.1. Let I = 〈x3, y3〉 ⊂ Q[x, y]. The polynomial xy2 satisfies the
integral dependence equation

(xy2)3 − x3y6 = 0,

where x3y6 = x3y3y3 ∈ I3, and therefore xy2 is integral over I.

Note that computing the integral closure of I is not equivalent to computing the
normalization of the ring R/I. For example, a radical ideal is always integrally
closed.

Lemma 6.1.2. If r ∈ Ī, then r ∈
√
I.

Proof. If rn + a1r
n−1 + a2r

n−2 + · · ·+ an−1r + an = 0, with ai ∈ I i, 1 ≤ i ≤ n, in
particular ai ∈ I for all 1 ≤ i ≤ n. Therefore rn ∈ I and r ∈

√
I.

However, there is a relation between the integral closure of ideals and the nor-
malization of rings, via the Rees algebra of I,

R[It] =
⊕
n≥0

Intn =

{
n∑
i=0

ait
i | n ∈ N, ai ∈ I i

}
⊂ R[t].

97

Proposition 6.1.3. Let R be a ring and t a free variable over R. For any ideal
I in R, the integral closure of R[It] in R[t] equals the graded ring

R⊕ Īt⊕ I2t2 ⊕ I3t3 ⊕ . . .

That is, the integral closure of I is the component of degree 1 of the integral
closure of R[It] in R[t]. We are interested in the case R = k[x1, . . . , xn]. In this
situation, R[t] is integrally closed in Q(R[t]) and since Q(R[t]) = Q(R[It]), we
conclude that the integral closure of R[It] in R[t] is exactly the normalization of
R[It]. We can therefore apply the normalization algorithms studied in Chapter
5 to compute the integral closure of an ideal.

6.1.2 Algorithm

Given an ideal I ⊂ R, to compute the normalization of the Rees algebra R[It] we
must first present it as a ring of the form S/J , S a polynomial ring and J ⊂ S
an ideal.

We use the following general result:

Proposition 6.1.4. Let R be a ring and p1, . . . , ps elements of R. Let t1, . . . , ts
be new free variables. Consider the morphism ϕ : R[t1, . . . , ts] → R, ϕ(ti) = pi.
Then

R[p1, . . . , ps] ∼= R[t1, . . . , ts]/ ker(ϕ).

In our case, given I = 〈f1, . . . , fs〉, we take ϕ : R[t1, . . . , ts] → R[t], ϕ(ti) = fit,
1 ≤ i ≤ s. Let S = R[t1, . . . , ts] and K = ker(ϕ). We can apply Algorithm 5.3.3
to compute the normalization of R[It] ∼= S/K. We obtain d ∈ S and U ⊂ S such

that S/K =
1

d
U ⊂ Q(S/K).

That is, if U = 〈u1, . . . , um〉, then uj/d, 1 ≤ j ≤ m, generate the normalization of
S/K and ũj = uj(f1t, . . . , fst)/d(f1t, . . . , fst), 1 ≤ j ≤ m, generate the integral
closure of R[It] in Q(R[t]) as an R[It]-ring. Recall that the integral closure of
R[It] in Q(R[t]) is actually included in R[t]. This means that U = {ũ1, . . . , ũm} ⊂
R[t].

Example 6.1.5. The Rees algebra of I = 〈x3, y3〉 ⊂ Q[x, y] is

Q[x, y][x3t, y3t] ∼= Q[x, y, z1, z2]/〈y3z1 − x3z2〉.

Here, z1 represents x3t and z2 represents y3t.

The last step is to compute the component of t–degree 1 of the integral closure.
It is generated by all the elements of t–degree 1 in U and all the elements ũp
where ũ ∈ U is an element of t–degree 0 and p ∈ {f1t, . . . , fst}. However, since
the component of degree 0 is R, we always add {f1t, . . . , fst} to the generators.

Example 6.1.6. The normalization of Q[x, y, z1, z2]/〈y3z1 − x3z2〉 is

1

y2
〈xyz2, x

2z2, y
2〉.

98

Replacing z2 by y3t and simplifying the denominator, we get the ring generators
{xy2t, x2yt, 1}. The component of degree 1 is 〈xy2t, x2yt, x3t, y3t〉 and therefore,
the integral closure of I is 〈x3, x2y, xy2, y3〉.

In Algorithm 6.1.1 we summarize the steps for computing the integral closure of
an ideal.

Algorithm 6.1.1 Integral closure of an ideal

Input: I = 〈f1, . . . , fs〉 ⊂ R, an ideal, with R = k[x1, . . . , xn], with k a perfect
field.

Output: Ī, the integral closure of I.
1: Set S = R[t1, . . . , ts]
2: Compute K, the kernel of the map ϕ : S → R[t], ti 7→ fit
3: Using Algorithm 5.3.3, compute d ∈ S and U = 〈u1, . . . , um〉 ⊂ S such that

S/K =
1

d
U ⊂ Q(S/K)

4: Compute U = {ũ1, . . . , ũm}, where ũj = uj(f1t, . . . , fst)/d(f1t, . . . , fst) ∈
R[t], 1 ≤ j ≤ m

5: Set U0 = {ũ ∈ U s.t. degt(ũ) = 0} and U1 = {ũ ∈ U s.t. degt(ũ) = 1}
6: Set N = {ũfi : ũ ∈ U0, 1 ≤ i ≤ s} ∪ {ũ/t : ũ ∈ U1}
7: return N .

6.1.3 Performance evaluation

We apply the proposed algorithm to several examples. The algorithm is imple-
mented in Singular. We compare the timings with the procedure available in
the Singular library reesclos (Hirsch, 2001), that uses an independent imple-
mentation of (Decker et al., 1999a) algorithm.

We use the following examples:

• I1 = 〈x12, y12〉 ⊂ k[x, y].

• I2 = 〈x5, y5, z5〉 ⊂ k[x, y, z].

• I3 = 〈x2 + xy3 − 5z, z3 + y2 − xzy, x2y3z5 + y3 − y5〉 ⊂ k[x, y, z].

• I4 = 〈yz2, y3 + z3 − z2, xz2, xy2 + z2〉 ⊂ k[x, y, z].

• I5 = 〈x4, y2 + x2, z3 + x3〉 ⊂ k[x, y, z].

• I6 = 〈x4, y2 + x3, z5 + x3〉 ⊂ k[x, y, z].

The results are shown in Table 4.1. All the computations are done over Q. The
ordering of the monomials is always the degree reverse lexicographical ordering
with the underlying ordering of the alphabet.

Timing is measured in seconds. The entry * means that after three hours of
computations, the algorithm did not terminate.

99

Table 6.1: Timing results
Code New Old
I1 182 459
I2 1 5
I3 20 *
I4 0 0
I5 3 1
I6 68 *

We see that for time consuming computations, our proposed algorithm is always
faster.

Although the simple examples shown here were feasible for the new algorithm,
computing the integral closure of an ideal is usually very hard, since the ideal
of relations appearing in the construction of the Rees algebra can be quite big.
There is a need to find direct algorithms that do not use the Rees algebra as
an intermediate step. However, no such algorithm is known for the general case.
For the case of monomial ideals, the problem is much easier and very fast and
simple algorithms are known, based on combinatorial techniques, see for example
(Swanson and Huneke, 2006, Section 1.4).

6.2 Integral bases via normalization

Another important application of the normalization algorithms is to compute
integral bases. The content of this section is part of a joint work (in progress)
with Janko Böhm, Wolfram Decker and Frank Seelisch, presented in (Böhm et al.,
2012a).

6.2.1 Basic definitions

As usual, given a ring A, we write A for the normalization and call A normal
if A = A. In this section, we are mainly interested in the case where A is the
coordinate ring of an algebraic curve defined over a field k of characteristic zero.
More precisely, let f ∈ k[x, y] be an irreducible polynomial in two variables, let
C ⊂ A2(k̄) be the affine plane curve defined by f , and let

A = k[C] = k[x, y]/〈f(x, y)〉

be the coordinate ring of C. We write x̄ and ȳ for the residue classes of x and y
in A. Throughout the paper, we suppose that f is monic in y (due to Noether
normalization, this can always be achieved by a linear change of coordinates).
Then the function field of C is of type

k(C) = Q(A) = k(x̄, ȳ) = k(x)[y]/〈f(x, y)〉,

100

x̄ is a separating transcendence basis of k(C) over k, and ȳ is integral over k[x̄],
with integral equation f(x̄, ȳ) = 0.

From now on we will use x and y instead of x̄ and ȳ, as no confusion will arise.

The ring A is integral over k[x], which implies that A coincides with the integral
closure k[x] of k[x] in k(C). Furthermore, A = k[x] is a free k[x]-module of rank

n := deg(f) = [k(C) : k(x)].

Definition 6.2.1. An integral basis for A is a set b0, . . . , bn−1 of free generators
of A over k[x]:

A = k[x]b0 ⊕ · · · ⊕ k[x]bn−1.

Remark 6.2.2. Viewing the elements of k(C) as polynomials in y of degree < n,
there always exists an integral basis b0, . . . , bn−1 such that deg(bi) = i for all i. In
fact, as pointed out in (van Hoeij, 1994), such a basis can be obtained from any
given integral basis by means of Gaussian elimination.

6.2.2 Algorithm

Given A = k[x, y]/〈f〉, with f ∈ k[x, y] irreducible, we explain how to obtain an
integral basis of A from the output of the normalization algorithms.

The basic idea is to multiply the generators of the normalization A by suitable
powers of y to get a system of generators of A over k[x], and then eliminate the
redundant elements.

Applying to A the normalization algorithm described in Chapter 5, we can com-
pute f1, . . . , fs ∈ Q(A) such that

A = Af1 + · · ·+ Afs.

with f1 =
p1

q
, . . . , fs−1 =

ps−1

q
, fs =

q

q
= 1 and q a power of a polynomial in the

radical of the singular locus of 〈f〉.

We need to compute an integral basis of k[x] from the elements f1, . . . , fs.

Without further requirements, we can use as basis yifj(x, y), 0 ≤ i ≤ n− 1, 1 ≤
j ≤ s. To get an integral basis as described earlier (one generator of each degree
in y), we need to reduce the system of generator and eliminate the redundant
elements.

Before giving the details of the algorithm, we show an example.

Example 6.2.3. Let A = k[x, y]/〈y3 − x2〉. The output of the normalization

algorithm is A = A
y2

x
+ A.

If we want to generate A as a k[x]-module, we get

A = k[x]
y2

x
+ k[x]

y3

x
+ k[x]

y4

x
+ k[x] + k[x]y + k[x]y2.

101

Note that y3 = x2, and k[x]y2 ⊂ k[x]
y2

x
. Therefore

A = k[x]
y2

x
+ k[x] + k[x]y,

and 1, y,
y2

x
is the integral basis.

Note that since the singular locus is 0–dimensional, we can always take q as a
polynomial in x.

To do the reduction systematically, let A be a ring as before and p1, . . . , ps
the numerators of a system of generators of the normalization. We write pi =
ai,n−1y

n−1 + · · · + ai,1y + ai,0, ai,j ∈ k[x], 1 ≤ i ≤ s, and construct the matrix of
coefficients

M =

 a1,n−1 . . . a1,0
...

. . .
...

as,n−1 . . . as,0

 .

The entries of M are polynomials in k[x], a principal ideal domain (PID). By
the same algorithm used to compute the Smith normal form of a matrix (Smith,
1861), we can triangulate the matrix M in such a way that the rows of the output
matrix generate the same space as the rows of M . (The algorithm to compute the
Smith normal form is a generalization of Gaussian elimination.) The non–zero
rows of the output matrix are therefore the coefficients of the basis we are looking
for. We get Algorithm 6.2.1.

Algorithm 6.2.1 Integral basis from normalization

Input: f ∈ k[x, y], an irreducible polynomial of degree n in y.
Output: b0, . . . , bn−1, an integral basis of k[x, y]/〈f〉.
1: Applying Algorithm 5.3.3, compute polynomials p1, . . . , ps, q ∈ k[x, y] such

that A = 1
q
〈p1, . . . , ps〉A

2: Write pi = ai,n−1y
n−1 + · · ·+ ai,1y + ai,0, 1 ≤ i ≤ s) and define

A =

 a1,n−1 . . . a1,0
...

. . .
...

as,n−1 . . . as,0

3: Apply Smith normal form algorithm to compute an upper triangular matrix
B such that the rows of B generate the same module as the rows of A

4: return bn−1, . . . , b1, b0, the rows of 1
q
B[yn−1 . . . y 1]t.

We note that in general the polynomials in the output of the normalization algo-
rithm are already monic as polynomials in y. In that case we can apply Gaussian
elimination directly.

In Chapter 7 we will compare this algorithm with a special method for computing
integral bases.

102

6.3 Criteria for integral dependence

Computing the normalization of a ring or an ideal is not always feasible using the
known algorithms. In many cases, however, we are only interested in deciding
whether a given element belongs to the normalization of a ring or the integral
closure of an ideal, and in that case, to know an integral dependence equation.
In this section, we propose algorithms for that tasks.

6.3.1 Integral dependence over rings

As usual, we take R = k[x1, . . . , xn], I ⊆ R an ideal and A = R/I. We note
Q(A) the total ring of fractions of A, Q(A) = S−1A, where S is the set of non–
zerodivisors of A. For an element p ∈ R, we denote also by p its image in A.

We first mention a criterion of integral dependence given in (Decker et al., 2011,
Section 3.1).

Lemma 6.3.1. Let b, g1, . . . , gr ∈ R, I = 〈f1, . . . , fs〉 ⊂ R and t, y1, . . . , yr new
variables. Consider the ideal

J = 〈t− b, y1 − g1, . . . , yr − gr, f1, . . . , fs〉 ⊂ k[x1, . . . , xn, t, y1, . . . , yr].

Let > be an ordering in k[x1, . . . , xn, t, y1, . . . , yr] with xi � t � yj, 1 ≤ i ≤ n,
1 ≤ j ≤ r, and let G be a Gröbner basis of J with respect to this ordering. Then b
is integral over k[g1, . . . , gr]/I if and only if G contains an element g with leading
monomial lm(g) = tp for some p > 0.

That is, given the ring extension k[g1, . . . , gs]/I ↪→ k[x]/I, we can check whether
an element of the second ring is integral over the first one.

Since Q(A) is not a finitely generated A-algebra, this criterion cannot be used
directly to check whether an element of Q(A) belongs to the normalization of A.
In the next lemma, we propose a criterion for that task.

Lemma 6.3.2. Let I = 〈f1, . . . , fs〉 ⊂ R = k[x] and A = R/I. Let r = p/q ∈
Q(A), with p, q ∈ R and R′ = k[x, t], t a new variable. Then

r ∈ A ⇐⇒ 1 ∈ (〈I, pt− q〉 : p∞) + 〈t〉 ⊂ R′

Proof. Assume r ∈ A. Then r satisfies an equation

rm + a1r
m−1 + · · ·+ am = 0, ai ∈ R

in Q(A). Hence qm(pm + a1p
m−1q + · · · + amq

m) = 0 in A. Since q is a non–
zerodivisor, we obtain

pm + a1p
m−1q + · · ·+ amq

m ∈ I.

Therefore,
pm + a1p

mt+ · · ·+ amp
mtm ∈ 〈I, pt− q〉,

103

which implies
1 + a1t+ · · ·+ amt

m ∈ 〈I, pt− q〉 : p∞.

This proves that 1 ∈ (〈I, pt− q〉 : p∞) + 〈t〉.

Conversely, assume 1 = g + αt, with g ∈ 〈I, pt − q〉 : p∞ and α ∈ R′. Then
pm = h+ αpmt, for m ∈ N large enough and h ∈ 〈I, pt− q〉.

Replacing t by q/p, we obtain

pm =

(
s∑
i=1

βi(x, q/p)fi(x)

)
+ α(x, q/p)pm−1q,

for some βi ∈ R′. Assuming m greater than the degrees in t of α and βi, 1 ≤ i ≤ s,
so that the denominators cancel,

pm =

(
s∑
i=1

β′i(x, q)fi(x)

)
+ α(x, q/p)pm−1q,

and therefore

pm − α(x, q/p)pm−1q =
s∑
i=1

β′i(x, q)fi(x) ∈ I.

Expanding α, we conclude that

pm + a1p
m−1q + · · ·+ amq

m ∈ I,

for some ai ∈ R, as needed.

Example 6.3.3. Let I = 〈x2 − y3〉 ⊂ R = k[x, y], and A = R/I. We check if
x
y
∈ A. Computing the saturation S = 〈I, xt− y〉 : x∞, we find that yt2 − 1 ∈ S

and (yt2 − 1)x2 ∈ 〈I, xt − y〉. Therefore x
y
∈ A, and replacing t by y/x, we get

the equation (x
y
)2 − y = 0 in A.

Since there are no other implementations of integral dependence criteria, instead
of showing timings comparisons, we show how this criterion can be used to find
integral elements, when the normalization algorithm is too slow.

Example 6.3.4. Let f = (y2 + x2y2 + 2x5)(y3 + 7z5)(z3 + 2x4) + x3y3z3 ∈ R =
Q[x, y, z]. If we apply the normalization algorithm to R/〈f〉, it does not finish
after two hours of computation. A common technique is to consider the problem
in the ring of polynomials over a prime field. For example, if we consider S =
Z32003[x, y, z], the normalization of S/〈f〉 takes 2 seconds, and gives the output〈

1,
2x7y + x4y3 + x2y3

z
,
2x7z2 + x3z5

y
,
2x8y2 + x5y4 + x3y4

z2
,
2x9y2 + x6y4 + x4y4

z3

〉
S/〈f〉

In principle, these elements considered as elements of Q(R/〈f〉) need not be
integral over R/〈f〉, but we can test it using the criterion. In this example, the
test is fast, giving a positive answer for all the generators in a few seconds.

104

6.3.2 Integral dependence over ideals

The same idea can be used to check if a polynomial r belongs to the integral
closure of an ideal I ⊂ R = k[x1, . . . , xn].

The criterion is based on the next lemma, which can be deduced from the proof
of (Swanson and Huneke, 2006, Proposition 6.8.2).

Lemma 6.3.5. Let I ⊂ R be an ideal and r ∈ I a polynomial. Then r ∈ Ī iff
1 ∈ I

r
R[I

r
], where R[I

r
] is the ring generated over R by the elements x

r
, x ∈ I.

Proof. If 1 ∈ I
r
R[I

r
], we can write

1 =
m∑
i=1

ai
ri

,

for some ai ∈ I i. Multiplying this equation by rm yields an equation of integral
dependence of r over I of degree m, so that r is integral over I.

Conversely, if r ∈ Ī, r satisfies an equation

rm = a1r
m−1 + · · ·+ am−1r + am, ai ∈ I i.

Dividing by rm,

1 =
a1

r
+ · · ·+ am−1

rm−1
+
am
rm
, ai ∈ I i.

Writing each ai as polynomial combination of the generators of I i, we obtain that
each ai

ri
∈ I

r
R[I

r
]. Therefore, 1 ∈ I

r
R[I

r
].

We obtain the following criterion.

Lemma 6.3.6. Let I = 〈f1, . . . , fs〉 ⊂ R be an ideal and R′ = R[t1, . . . , ts], with
tj, 1 ≤ j ≤ s, new variables. For r ∈ R, set J = 〈t1r − f1, . . . , tsr − fs〉. Then

r ∈ Ī ⇐⇒ 1 ∈ (J : r∞) + 〈t1, . . . , ts〉.

Proof. Assume r ∈ Ī. Then r satisfies a relation

rm + a1r
m−1 + · · ·+ am = 0, ai ∈ I i.

We can consider each ai as an homogeneous polynomial Ai ∈ R[z1, . . . , zs] of
degree i, evaluated in (f1, . . . , fs). Since tjr − fj ∈ J for all j, 1 ≤ j ≤ s,

rm + A1(t1r, . . . , tsr)r
m−1 + · · ·+ Am−1(t1r, . . . , tsr)r + Am(t1r, . . . , tsr) ∈ J .

Then

rm + A1(t1, . . . , ts)r
m + · · ·+ Am−1(t1, . . . , ts)r

m + Am(t1, . . . , ts)r
m ∈ J ,

and

1 + A1(t1, . . . , ts) + · · ·+ Am−1(t1, . . . , ts) + Am(t1, . . . , ts) ∈ J : r∞.

105

This implies
1 ∈ (J : r∞) + 〈t1, . . . , ts〉

as claimed.

Conversely, assume 1 = g +
∑s

j=1 αjtj with αj ∈ R′ and g ∈ J : r∞. Then, there
exists m0 such that grm ∈ J for m ≥ m0. For any such m, rm = h+

∑s
i=j αjtjr

m,
for m ∈ N large enough and some h ∈ J .

Replacing tj by fj/r, the polynomial h vanishes and we obtain

rm =
s∑
j=1

αj(x, f1/r, . . . , fs/r)fjr
m−1.

We can always take m greater than the degree in the variables {t1, . . . , ts} of the
polynomials αj, and so

αj(x, f1/r, . . . , fs/r)fjr
m−1 =

m−1∑
i=1

α̃ij(x)rm−i,

for some α̃ij ∈ I i

Grouping together all the powers of r with the same exponent, we obtain an
equation of integral dependence of r over I,

rm = a1r
m−1 + · · ·+ am, ai ∈ I i.

Observation 6.3.7. The first criterion can be seen as a special case of the second.
Indeed, p/q belongs to the normalization of R/I iff p ∈ 〈q〉 in R.

Example 6.3.8. Let I = 〈x2, y2, z2 − xy〉. We can easily compute
√
I = 〈x, y, z〉

and we want to find elements in
√
I which are integral over I. We use the criterion

to check if r = zx ∈ Ī. We set J = 〈t1xz − x2, t2xz − y2, t3xz − (z2 − xy)〉.
Computing J : r∞, we find that p = t31t2− t21t23 + 2t1t3− 1 ∈ J : r∞, and pr4 ∈ J .
Therefore, r ∈ Ī, with integral equation

r4 − 2(x2)(z2 − xy)r2 + ((x2)2(z2 − xy)2 − (x2)3(y2)) = 0

106

Chapter 7

Integral bases via Hensel’s lemma

The content of this chapter is a joint work (in progress) with Janko Böhm, Wol-
fram Decker and Frank Seelisch, presented in (Böhm et al., 2012a).

In this section, we consider the coordinate ring

A = k[x, y]/〈f(x, y)〉

of an irreducible plane curve C. We present a new algorithm to compute an
integral basis of A via Puiseux expansions and Hensel’s lemma. To simplify our
presentation, we suppose first that C has only one singularity, located at the
origin. At the end of the chapter, we will show how to handle the case of several
singularities.

From a theoretical point of view, our approach is similar to (van Hoeij, 1994),
where the Puiseux expansions of f over all the x-coordinates of singular points are
computed, including those that do not pass through the singular point. However,
the use of Hensel’s lemma allows us to handle, in particular, groups of conjugate
Puiseux expansions simultaneously without computing each individual expansion
explicitly. In this way, we obtain a much faster algorithm.

7.1 Basic Remarks on Puiseux Series

We fix our notation and recall a few results in the context of Puiseux series.

7.1.1 Puiseux Series

As usual, let k be a field. We write k[[x]] for the ring of formal power series in
x over k and k((x)) = Q(k[[x]]), the field of formal Laurent series. The field of
Puiseux series over k is the field

k{{x}} =
∞⋃
m=1

k((x1/m)).

107

Example 7.1.1. Let γ, δ ∈ Q{{x}}, γ(x) = 3x−1/3 − 2x4/3 + . . . , δ = x1/2 +
2x2/2 + . . . To compute the sum γ + δ we use a common denominator γ + δ =
3x−2/6 + x3/6 + 2x6/6 − 2x8/6 + . . .

If L is the algebraic closure of k, then L{{x}} is the algebraic closure of k((x))
and L[[x1/m]] is the integral closure of k[[x]] in L((x1/m)) (see Eisenbud, 1995,
Corollary 13.15).

We have a canonical valuation map

v : L{{x}} \ {0} → Q, γ 7→ v(γ),

where v(γ) is the smallest exponent appearing in a term of γ. By convention,
v(0) = ∞. If p ∈ L{{x}}[y] is any polynomial in y with coefficients in L{{x}},
the valuation of p at γ ∈ L{{x}} is defined to be vγ(p) := v(p(γ)).

Since L{{x}} is algebraically closed, a polynomial f ∈ k[x, y] = k[x][y] has
n = degy(f) roots γ1, . . . , γn in L{{x}}. These roots are called the Puiseux
expansions of f (at x = 0). We are interested in the case f monic in y, for which
we have a factorization

f = (y − γ1) · · · (y − γn) ∈ L{{x}}[y].

It follows, that each γi is integral over L[[x]] and, thus, contained in some
L[[x1/m]]. In other words, the terms of γi have only non–negative exponents.
We denote Px the subring of L{{x}} of Puiseux series with non-negative valua-
tion.

Definition 7.1.2 (Conjugate Puiseux series). Two Puiseux series in Px are called
conjugate if they are conjugate as field elements over k((x)).

Definition 7.1.3 (Rational Part). Let γ = a1x
t1+a2x

t2+· · ·+alxtl+al+1x
tl+1+. . .

be a Puiseux series in Px, with 0 ≤ t1 < t2 < For 1 ≤ i ≤ l, suppose that
ai ∈ k and ti ∈ Z≥0. Furthermore, suppose that either al+1 6∈ k or tl+1 6∈ Z. We
call a1x

t1 + · · · + alx
tl the rational part of γ, and al+1x

tl+1 the first nonrational
term of γ.

Definition 7.1.4 (Characteristic exponents). For γ ∈ Px, let m ∈ N be minimal
with γ ∈ L[[x1/m]], and write γ =

∑
i≥0 bix

i/m, with coefficients bi ∈ L. If m ≥ 2,
the characteristic exponents of γ are defined inductively by

e1 := min{i | bi 6= 0 and m - i} and

eν := min{i | bi 6= 0, gcd(e1, . . . , eν−1) - i} for ν > 1.

Then e1 < e2 < . . . , there are only finitely eν , and they are coprime (but not
necessarily pairwise coprime).

(If m = 1, there is no characteristic exponent.)

Example 7.1.5. If γ = 2x1/2 + x3/4 + 6x5/4 − 5x17/8, the common denominator is
m = 8. Writing γ = 2x4/8 + x6/8 + 6x10/8 − 5x17/8, we see that the characteristic
exponents are e1 = 4, e2 = 6, and e3 = 17.

108

Figure 7.1: Newton polygon of f = y3 + xy + x4

Definition 7.1.6 (Regularity Index and Singular Part). If γ = a1x
t1 +a2x

t2 + . . .
is a Puiseux expansion of f , with 0 ≤ t1 < t2 < . . . , we define the regularity index
of γ to be the smallest exponent tj such that no other Puiseux expansion of f has
the same initial part a1x

t1 + · · · + ajx
tj . This initial part is called the singular

part of γ.

7.1.2 The Newton-Puiseux Algorithm

The Puiseux expansions of f can be computed recursively up to any given or-
der using the Newton-Puiseux algorithm. A detailed description of the method,
together with historical notes, can be found in (Brieskorn and Knorrer, 1986,
Section 8.3). To present the basic ideas, we apply the method to an example.

Example 7.1.7. Let f = y3 + xy + x4. Since f has degree 3 in y, we can find
Puiseux series γ, η, µ such that f = (y−γ)(y−η)(y−µ). We construct recursively
a solution γ ∈ Px, which must verify the equation f(x, γ(x)) = 0. Taking x = 0
in the factorization, we see that γ has no constant term. We write

γ(x) = c1x
t1 + c2x

t2 + . . . = c1x
t1 + γ1(x).

with cj 6= 0, tj ∈ Q, tj < tj+1 for all j, and γ1(x) ∈ Px. After substitution, we
get the equation

f(x, γ(x)) = x4 + x(c1x
t1 + γ1(x)) + (c1x

t1 + γ1(x))3 = 0.

We want the term of lowest degree to vanish, so we must choose t1 such that at
least two terms in the sum have the same initial exponent. To find the possible
values of t1 we consider the Newton polygon of the monomials of f and look
at the faces for which all the other points of the polygon lie on or above the
corresponding line (Figure 7.1).

If the slope of a face is s, a simple verification shows that −1/s is a possible
value of t1. In our case, the slopes of the faces are −2 and −1/3 and therefore

109

the possible values of t1 are 1/2 and 3. We choose t1 = 1/3 and replace it in the
equation

f(x, γ(x)) = x4 + x(c1x
1/2 + γ1(x)) + (c1x

1/2 + γ1(x))3 = 0.

The term of lowest degree is (c1 + c3
1)x3/2. We want the coefficient to be 0. Since

c1 6= 0, we get c1 = ±i. If we choose c1 = i, we get γ = ix1/2 + γ1, and γ1 can be
computed recursively substituting y by this last expression in f . The Newton-
Puiseux theorem (see Walker, 1950), guarantees that any initial part obtained by
the Newton polygon method can be extended to a solution of f(x, γ(x)) = 0.

If we carry on the method for the different values of t1 and c1, we get the three
solutions

γ = ix1/2 + 1/2x3 + . . .

η = −ix1/2 + 1/2x3 + . . .

µ = −x3 + x8 + . . .

We note that in the process of building the solution, we need to extend the base
field. Most computer algebra systems can handle field extensions, although it can
be sometimes time-consuming.

7.1.3 Puiseux Blocks

We partition the set of all Puiseux expansions of f into Puiseux blocks. A Puiseux
block represented by an expansion γ with γ (0) = 0 is obtained by collecting all
expansions whose rational part agrees with that of γ and whose first nonrational
term is conjugate to that of γ over k((x)). A Puiseux segment is by definition
the union of all blocks having the same initial exponent. That is, we have one
Puiseux segment for each face of the Newton polygon of f . In addition, all Puiseux
expansions γ of f with γ (0) 6= 0 are grouped together to a single Puiseux block of
an extra Puiseux segment. In this way, the Puiseux expansions of f are divided
into Puiseux segments, each segment consists of Puiseux blocks, and each block
is the union of classes of conjugate expansions.

Example 7.1.8. Let the Puiseux expansions of a given polynomial in k[x][y] be

γ1 = 1 + x2 + . . . ,

γ2 = −1 + 3x+ . . . ,

γ3 = a1x
3/2 + 2x2 + . . . ,

γ4 = a2x
3/2 + 2x2 + . . . ,

γ5 = x+ 3x2 + . . . ,

γ6 = x+ b1x
5/2 + x3 + . . . ,

γ7 = x+ b2x
5/2 + x3 + . . . ,

γ8 = x+ b1x
5/2 + x4 + . . . ,

γ9 = x+ b2x
5/2 + x4 + . . . ,

where ai and bi satisfy a2
i = 2 and b2

i = −1, i = 1, 2. Then {γ1, γ2} is the segment
of expansions γ with γ (0) 6= 0. Another segment is {γ3, γ4} (which consists of one
block containing a single class of conjugate expansions). All the other expansions
form a single segment, consisting of the blocks {γ5} and {γ6, γ7, γ8, γ9}. The last
block contains two classes of conjugate expansions, namely {γ6, γ7} and {γ8, γ9}.

110

7.1.4 Maximal Integrality Exponents

Let Γ = {γ1, . . . , γn} be the set of Puiseux expansions of f at x = 0 and let
p ∈ Px[y] be a polynomial in y with coefficients in the integrally closed field Px.
The valuation of p at f is defined to be vf (p) = min1≤i≤n vγi(p). Note that if p is
monic of degree 1 ≤ d := deg(p) ≤ n− 1, and

p = (y − η1(x)) · · · (y − ηd(x)), ηi ∈ Px

is the factorization of p over Px[y], then

vf (p) = min
1≤i≤n

d∑
j=1

v(γi − ηj).

Lemma 7.1.9. Let p ∈ k[x, y] = k[x][y] be monic in y of degree d. Then bvf (p)c
is the maximal exponent e such p(x, y)/xe is integral over A = k[x, y]. We call
bvf (p)c the integrality exponent of p, written

e(p) = bvf (p)c.

Proof. See (van Hoeij, 1994, Section 2.4).

To construct an integral basis, we can look for polynomials with maximal inte-
grality exponent in each y-degree.

Lemma 7.1.10. For 1 ≤ i ≤ n − 1, let pi ∈ k[x, y] = k[x][y] be monic in y of
degree i. For each i, suppose that e(pi) is maximal among all e(p), p ∈ k[x][y]
monic of degree i. Then {1, p1(x, y)/xe(p1), . . . , pn−1(x, y)/xe(pn−1)} is an integral
basis of A.

Proof. Let Ã = 〈1, p1(x, y)/xe(p1), . . . , pn−1(x, y)/xe(pn−1)〉k[x]. By Lemma 7.1.9,

A ⊆ Ã ⊆ Ā. Any element of A can be represented by an element of the form
q(x, y)/xe ∈ A with q ∈ k[x, y], since we are assuming that the origin is the only
singular point and hence some power of x is in the Jacobian ideal. We prove by
induction on j that if

Ãj = 〈1, p1(x, y)/xe(p1), . . . , pj(x, y)/xe(pj)〉

and q(x, y)/xe ∈ A is monic of degree j in y, then q(x, y)/xe ∈ Ãj. (Note that it
is enough to consider monic polynomials q since, as shown in (van Hoeij, 1994),
there exists an integral basis consisting of monic polynomials in each degree.) The
claim is trivial for j = 0. We fix j > 0. By definition of pj, e ≤ e(pj) and therefore
pj(x, y)/xe ∈ Ãj. The difference q/xe − pj(x, y)/xe is integral and has degree at
most j − 1 in y, hence it belongs to Ãj−1 ⊂ Ãj. Therefore, q(x, y)/xe ∈ Ãj as
wanted.

If we consider the broader class of polynomials in Px[y], maximal integrality
exponents can be computed by exhaustive search.

111

Lemma 7.1.11. With notation as above, if A ⊆ {1, . . . , n} is a subset of cardi-
nality d, then set

IntA = min
j 6∈A

(∑
i∈A

v(γi − γj)

)
.

Choose Ã ⊆ {1, . . . , n} of cardinality d such that IntÃ is maximal among all
IntA as above, and set p̃ =

∏
i∈A(y − γi). Then vf (p̃) = IntÃ, and this number

is the maximal valuation vf (p), for all p ∈ Px[y] monic of degree d. We write
o(Γ, d) = vf (p̃).

Proof. It is clear from the definitions that vf (p̃) = IntÃ. The claim that this
number is maximal among all p ∈ Px[y] monic of degree d is a direct generalization
of (van Hoeij, 1994, Theorem 5.1).

In the case where d = n− 1, we also use the notation

Inti = Int{1,...,i−1,i+1,n} =
∑
j 6=i

v(γi − γj).

and call E(f) := o(Γ, n− 1) the maximal integrality exponent of f . We will see
in the next section that for f ∈ k[x][y], the maximal integrality over polynomials
of any degree d in k[x][y] is the same as the maximal integrality exponent over
polynomials of degree d in Px[y].

We compute the maximal integrality exponent of polynomials in two examples.

Example 7.1.12. Let f = (y2 + 2x3) + y3 ∈ Q[x, y]. The Puiseux expansions of f
are

γ1 = a1x
3/2 + x3 + . . . ,

γ2 = a2x
3/2 + x3 + . . . ,

γ3 = −1− 2x3 + . . . ,

where the ai satisfy a2
i = −2. Then Int1 = 3/2 + 0 = 3/2, Int2 = 3/2 + 0 = 3/2,

and Int3 = 0 + 0 = 0, so that both i = 1 and i = 2 are valid choices. For i = 1,
we have p̃ = (y − γ2)(y − γ3), which gives e(p̃) = b3/2c = 1.

Example 7.1.13. Let f = (y3−x7)(y2−x3)+y6 ∈ Q[x, y]. The Puiseux expansions
of f at x = 0 are

γ1 = x7/3 + . . . ,

γ2 = ξ1x
7/3 + . . . ,

γ3 = ξ2x
7/3 + . . . ,

γ4 = x3/2 + . . . ,

γ5 = −x3/2 + . . . ,

γ6 = −1 + x3 + . . . ,

where ξ1, ξ2 are the complex roots of x3 − 1 = 0.

Now Int1 = Int2 = Int3 = 7/3 + 7/3 + 3/2 + 3/2 + 0 = 23/3, Int4 = Int5 =
3/2 + 3/2 + 3/2 + 3/2 + 0 = 6 and Int6 = 0. Therefore, the maximum integrality
exponent is e = b23/3c = 7.

112

7.2 Sketch of the algorithm

Let f ∈ k[x, y] be monic of y–degree n. We describe how to compute an integral
basis of A = k[x, y]/〈f〉, assuming that f has only a singularity at the origin.

The basis will have the form b0, . . . , bn−1, where bi = pi/x
ei , with pi monic of

y–degree i.

We focus on computing the last element b = bn−1 = p/xe. For the other elements
the procedure is similar and will be explained afterwards. The problem is then
to find p ∈ k[x, y] monic of y–degree n− 1 such that its integrality exponent e(p)
is maximal. By Lemma 7.1.10, for such p, p/xe(p) is valid as the last element b of
the integral basis of A.

For p ∈ k[x, y] of degree n− 1 in y, write

p = (y − η1(x)) · · · (y − ηn−1(x)) (7.1)

with ηi, 1 ≤ i ≤ n−1, the Puiseux expansions of p at x = 0. We want to compute
η1(x), . . . , ηn−1(x) such that the integrality exponent e(p) of p is maximal.

Denote by γ1(x), . . . , γn(x) the Puiseux expansions of f at x = 0. As we explained
in Section 7.1.4, if we allow a more general p̃ ∈ Px[y], the maximal integrality
exponent can be obtained by choosing {η1(x), . . . , ηn−1(x)} to be an appropriate
subset of {γ1(x), . . . , γn(x)}.

The coefficients of p̃ may not lie in the ground field k, and furthermore p̃ may
contain fractional exponents. By using the trace map, van Hoeij proves that there
exists p ∈ k[x, y] monic of y–degree n− 1 with e(p) = e(p̃).

In (van Hoeij, 1994) these ideas are only used to fix bounds for the algorithm but
not for constructing p. In this work, we show that p can be easily constructed,
using Hensel’s Lemma to efficiently compute the product (y − η1(x)) · · · (y −
ηn−1(x)), or more precisely, the product of the truncated expansions of these
factors up to appropriate degrees.

Our new algorithm can be sketched as follows:

(1) We determine p̃ of y–degree n − 1 such that e := e(p̃) is maximal, by
considering the singular parts of the Puiseux expansions of f . This step is
usually fast.

(2) We determine how to truncate the expansions of p̃ to get a polynomial
p ∈ k[x, y] with e(p) = e.

(3) We use Hensel’s Lemma to compute the product of the Puiseux expansions
that do not vanish at the origin, up to x–degree e. (All these expansions
must appear in p or otherwise the integrality exponent e will be zero.) Com-
pared to van Hoeij’s algorithm, this step is already a major improvement
as we do not need to compute the different Puiseux expansions outside the
origin separately.

113

(4) We apply a transformation to the polynomials such that Hensel’s Lemma
can be used to compute products of conjugate Puiseux expansions that
vanish at the origin.

(5) We compute p by multiplying the appropriate factors obtained in steps 3
and 4.

Compared to van Hoeij’s algorithm, we are predicting the elements of the integral
basis instead of computing them by solving systems of linear equations.

In the following sections we explain these steps in more detail and how to extend
this to compute the integral elements of lower y–degrees.

7.3 The element of largest degree of the integral

basis

As explained in Section 7.1.4, to find an element p̃ ∈ Px[y] of degree n − 1 in y
with maximal integrality exponent e(p̃), we choose j, 1 ≤ j ≤ n, such that Intj
is maximal among all Intl, 1 ≤ l ≤ n. Then we can take p̃ =

∏
i 6=j(y − γi), for

which e(p̃) = bIntjc. However, the element p̃ may not be an element of k[x, y].

We explain how the expansions γ of p̃ can be truncated to γ̄ so that p =
∏

i 6=j(y−
γ̄i) ∈ k[x, y] is a polynomial over the ground field with e(p) = e(p̃) = e. Then we
can take b = p

xe
as the highest degree element of the integral basis.

Suppose that Int1 is maximal among all Intk, 1 ≤ k ≤ n. We discard γ1, and set
e = bInt1c. Denote by γ2, . . . , γs the conjugate expansions of γ1. For s < i ≤ n,
let γ̄i be the truncation of γi after order e and

h =
n∏

i=s+1

(y − γ̄i) ∈ k[x, y].

(In Section 7.4 we will explain how to use Hensel’s lemma to compute h in an
efficient way by avoiding to compute all expansions.)

In the following paragraphs we show how to truncate the expansions γ2, . . . , γs to
compute g ∈ k[x, y] such that p = gh is the desired numerator of the last element
of the integral basis. It is clear that the truncation to order e of the expansions
appearing in h does not reduce the integrality exponent of p.

7.3.1 Expansions with one or no characteristic exponents

We assume that γ1, . . . , γs are conjugate over k((x)) and that they have one or
no characteristic exponents.

Note that for any p ∈ k [x, y]we have

vγi (p) = vγj (p)

114

for all 1 ≤ i, j ≤ s.

Example 7.3.1. We carry on Example 7.1.12, p̃ = (y − γ2)(y − γ3), where the
conjugacy class {γ1, γ2} has one characteristic exponent. The factor y − γ3 is
already in k[x, y], so we do not need to truncate it. However, as e(p̃) = 1, we can
truncate γ3 up to order 1, that is, γ̄3 = −1. For γ2 = a2 · x3/2 + x3 + . . . the only
truncation leading to an element over Q is γ̄2 = 0. For p = (y − γ̄2)(y − γ̄3) =
y(y − 1) we have vf (p) = 3/2 = vf (p̃), hence e(p) = e(p̃) and

b =
y(y − 1)

x

In general, the expansions γk will agree in the terms of degree lower than t ∈ Q,
and have conjugate coefficients ci ∈ k at the monomial xt, that is, for 1 ≤ i ≤ s,

γi = a1x
d1 + a2x

d2 + · · ·+ akx
dk + cix

t + . . .

where ai ∈ k, di ∈ N. Truncating γi to γ̄i for 2 ≤ i ≤ s after order dk we obtain

g = (y − γ̄2) · · · (y − γ̄s) ∈ k[x, y]

Lemma 7.3.2. For p = gh it holds e (p) = e.

Proof. We have by construction

e = Int1 =
n∑
j=2

v (γ1 − γj) =
n∑
j=2

v(γ1 − γ̄j) = vγ1(p).

Since γ1, . . . , γs are conjugate and p ∈ k[x, y], vγj(p) = vγ1(p) = e for 2 ≤ j ≤ s.
For s < j ≤ n, v(γi − γ̄i) ≥ e, so vγj(p) ≥ e.

Recall that e(p) = min1≤j≤n vγj(p). So e(p) = e, as wanted.

We illustrate this process with another example:

Example 7.3.3. Let f = y6− (y2 + 2x3)((y+ 2x2)2 +x5). The Puiseux expansions
at 0 are

γ1 = a1x
3/2 − a1x

9/2 + 4x5 + . . .

γ2 = a2x
3/2 − a2x

9/2 + 4x5 + . . .

γ3 = −2x2 + b1x
5/2 − 16b1x

13/2 + . . .

γ4 = −2x2 + b2x
5/2 − 16b2x

13/2 + . . .

γ5 = 1 + 2x2 + x3 − 4x4 − 7/2x5 + . . .

γ6 = −1 + 2x2 − x3 + 4x4 − 9/2x5 + . . .

with a1, a2 the roots of x2 + 8 and b1, b2 the roots of x2 + 1.

The maximum of Inti, 1 ≤ i ≤ s is attained for Int3 = Int4 = 3/2+3/2+5/2+0+
0 = 11/2. We choose i = 3. Then p̃ = (y−γ1)(y−γ2)(y−γ4)(y−γ5)(y−γ6) and

115

e(p̃) = e(p) = 5. The expansions γ1 and γ2 are conjugate, so (y − γ1)(y − γ2) ∈
k((x))[y]. Since e(p̃) = 5, we can truncate them after order 5 to get a product
in k[x, y]. Similarly, γ5 and γ6 can be truncated after order 5. To obtain a
polynomial over the ground field, we have to truncate γ4 to γ̄4 = −2x2.

We get p = (y − γ̄1)(y − γ̄2)(y − γ̄4)(y − γ̄5)(y − γ̄6) ∈ k[x, y], with

γ̄1 = a1x
3/2 − a1x

9/2 + 4x5

γ̄2 = a2x
3/2 − a2x

9/2 + 4x5

γ̄4 = −2x2

γ̄5 = 1 + 2x2 + x3 − 4x4 − 7/2x5

γ̄6 = −1 + 2x2 − x3 + 4x4 − 9/2x5

We observe that e(p̃) = e(p).

7.3.2 Expansions with several characteristic exponents

Now suppose that the Puiseux expansions of the conjugacy class have several
characteristic exponents. In this case the truncation has to be done iteratively.
We describe a recursive process to obtain g, starting from g0 =

∏n
j=1(y − γj).

The singular parts

γsing
j = aj1x

t1 + · · ·+ ajkx
tk , t1 < . . . < tk

of the expansions γj, 1 ≤ j ≤ s, are pairwise different and conjugate over k((x)).

Since γsing
1 6= γsing

j , if we truncate the expansions γj after order tk−1 to

γ1,j = aj1x
t1 + · · ·+ ajk−1x

tk−1

(1 ≤ j ≤ s) and define
p1 =

∏s
j=2(y − γ1,j),

we have
vγ1(p1) = vγ1(p̃).

That is, the valuation at γ1 does not decrease.

We define g0 =
∏n

j=1(y− γ1,j). Some of the expansions γ1,j will coincide. Denote
by η̄1, . . . , η̄r the mutually distinct expansions, and set g1 =

∏r
j=1(y−η̄j) ∈ k[x, y].

By construction g0 = gu11 , with u1 = s/r ∈ N.

We start the i-th step by applying the whole procedure inductively to gi−1, com-
puting gi−1, gi and ui such that gi−1 = guii and gi−1 comes from truncating the
expansions of gi−1. In each step the degree of gi (and the number of characteristic
exponents in the expansions) drops, hence the process terminates after a finite
number of steps with us = 1 (that is, all the truncated expansions are different
and hence si = ri). The following lemma shows that

g = gu1−1
1 gu2−1

2 · · · gs ∈ k[x, y]

has the desired properties:

116

Lemma 7.3.4. For p = gh it holds e (p) = e.

Proof. Since g ∈ k[x, y], by the same arguments of Lemma 7.3.2, we only need to
show that vγ1(p) = e. However, since all the truncations occur in terms that are
different from the terms of γ1, it is clear that vγ1(p) = vγ1(p̃) = e.

We summarize our observations in Algorithm 7.3.1.

Algorithm 7.3.1 Truncated Factor

Input: {γ̄i = ai1x
t1 + · · · + aikx

tk}1≤i≤s, a conjugacy class of Puiseux series with
a finite number of terms.

Output: p ∈ k[x, y] of degree s − 1 in y such that vf (p) = vf (p̃), with p̃ =
(y − γ2) · · · (y − γs).

1: Set η1, . . . , ηr the different expansions in the set {γ1
tk−1 , . . . , γs

tk−1}
2: g0 = (y − η1) · · · (y − ηr)
3: u = s/r
4: if u > 1 then
5: g1 = TruncatedFactor({η1, . . . , ηr})
6: return gu−1

0 g1.
7: else
8: return g0.
9: end if

The following example illustrates the algorithm:

Example 7.3.5. Consider the polynomial

f = y8 + (−4x3 + 4x5)y7 + (4x3 − 4x5 − 10x6)y6 + (4x5 − 6x6)y5+

+ (6x6 − 8x8)y4 + (8x8 − 4x9)y3 + (4x9 + 4x10)y2 + 4x11y + x12

∈ Q(x, y)

The singular parts of the Puiseux expansions of f are

γsing
1 = ix3/2 + (−1/2i− 1/2)x7/4 + 1/4ix2

γsing
2 = ix3/2 + (−1/2i− 1/2)x7/4 − 1/4ix2

γsing
3 = ix3/2 + (1/2i+ 1/2)x7/4 + 1/4ix2

γsing
4 = ix3/2 + (1/2i+ 1/2)x7/4 − 1/4ix2

γsing
5 = −ix3/2 + (1/2i− 1/2)x7/4 + 1/4ix2

γsing
6 = −ix3/2 + (1/2i− 1/2)x7/4 − 1/4ix2

γsing
7 = −ix3/2 + (−1/2i+ 1/2)x7/4 + 1/4ix2

γsing
8 = −ix3/2 + (−1/2i+ 1/2)x7/4 − 1/4ix2

with i2 = −1.

Truncating γsing
i after order 7/4 we obtain

γ1
7/4 = γ2

7/4 = ix3/2 + (−1/2i− 1/2)x7/4

117

γ3
7/4 = γ4

7/4 = ix3/2 + (1/2i+ 1/2)x7/4

γ5
7/4 = γ6

7/4 = −ix3/2 + (1/2i− 1/2)x7/4

γ7
7/4 = γ8

7/4 = −ix3/2 + (−1/2i+ 1/2)x7/4,

hence u1 = 2 and

g1 = (y − γ1
7/4)(y − γ3

7/4)(y − γ5
7/4)(y − γ7

7/4)

= y4 + 2x3y2 + 2x5y + x6 + 1/4x7.

Applying the whole procedure inductively to g1 we drop the Puiseux expansion
γ1

7/4 and truncation yields g2 = y(y2 + x3). Combining the factors, we get

g = gu1−1
1 g2 = y(y2 + x3)(y4 + 2x3y2 + 2x5y + x6 + 1/4x7).

7.4 Hensel’s Lemma

In this section and the following, we explain how to use Hensel’s lemma to com-
pute the products (y−γ1) · · · (y−γs) up to any x–degree, with γ1, . . . , γs conjugate
expansions belonging to a Puiseux segment or block, without computing each in-
dividual expansion. Computing all the expansions separately and then computing
the product of the corresponding factors is usually much slower.

We recall Hensel’s Lemma.

Lemma 7.4.1. Let f ∈ k[[x]][y] be a monic polynomial over the power series
ring, and assume that f(0, y) = g0h0 for monic polynomials g0, h0 ∈ k[y] such
that 〈g0, h0〉 = k[y]. Then there exist monic polynomials g, h ∈ k[[x]][y] such that

(1) f = gh

(2) g(0, y) = g0, h(0, y) = h0.

Moreover, for each m ∈ N, there exist unique gm, hm ∈ k[x, y] of x–degree m such
that

(1) f ≡ gmhm in (k[[x]]/〈xm+1〉)[y]

(2) gm ≡ gi, hm ≡ hi in (k[[x]]/〈xi+1〉)[y], 0 ≤ i ≤ m− 1.

These last conditions imply that the polynomials gm and hm can be computed
inductively along the x–degree, solving for each m a determined system of n linear
equations on n unknowns, where n is the y–degree of f . (For each i, 0 ≤ i ≤ n−1,
we get an equation by comparing the coefficients of xmyi in f and in gmhm.) For
further reference in the paper, we present this well–known procedure as Algorithm
7.4.1, omitting the actual computation steps. (This algorithm has been made
available in Singular since version 3.1.3 via the command factmodd.)

118

Algorithm 7.4.1 Hensel’s lifting

Input: f ∈ k[x, y] irreducible polynomial, monic in y; g0, h0 ∈ k[y] such that
f(0, y) = g0h0 and 〈g0, h0〉 = k[y]; d ∈ Z≥0.

Output: g, h ∈ k[x, y] such that g(0, y) = g0, h(0, y) = h0 and f ≡ gh in
(k[[x]]/〈xd+1〉)[y].

We will usually use Hensel’s lifting to separate the component that vanishes at
the origin from the component that vanishes outside. Alternatively, we could
perform this decomposition by means of the Weierstrass Division Theorem. (See
for example, de Jong and Pfister 2000, Theorem 3.2.3.) However, the use of
Hensel’s Lemma allows for more generality, since we do not need to move the
singularity to the origin. This is particularly useful when the singularity has
no rational coordinates, as we avoid to move to an algebraic extension. Also
the linear algebra techniques involved in Hensel’s Lemma are usually faster than
computing division with remainders of polynomials.

In the following example, we show how to use the lemma to decompose a poly-
nomial and compute the integral basis in a simple case.

Example 7.4.2. Let f = (y−x)(y+x)(y+2x)+y7. There are 3 Puiseux expansions
at y = 0 and 4 expansions outside y = 0. (The degree of f in y is 7, so there must
be a total of 7 expansions.) We call γ1 = x+ . . . , γ2 = −x+ . . . , γ3 = −2x+ . . .
the expansions at the origin and γ4, . . . , γ7 the expansions outside the origin. We
want to compute (y− γ4) · · · (y− γ7) up to a given order in x without computing
each expansion separately.

Here Inti = 2 for i = 1, 2, 3 and this is maximum. So e(g̃) = 2 and we need to
compute the product up to degree 2 in x. Since f(0, y) = y3 +y7, we take g0 = y3,
h0 = 1 + y4, and apply Hensel’s lemma to lift these factors up to degree 2. We
obtain g2 = y3 + 2xy2 − 2x2y and h2 = 5x2y2 − 2xy3 + y4 + 1, and we conclude
that (y − γ4) · · · (y − γ7) ≡ 5x2y2 − 2xy3 + y4 + 1 modulo x3.

Taking i = 1, to compute p, we still have to compute γ2 and γ3 up to degree
2. We obtain γ̄2 = −x and γ̄3 = −2x. Combining all this we compute p =∏7

i=2(y − γ̄i) = (y + x)(y + 2x)(5x2y2 − 2xy3 + y4 + 1).

7.5 A local version of Hensel’s Lemma

When we want to lift two factors g, h that vanish at y = 0 (for example, to
compute (y−γ1)(y−γ2) as in Example 7.3.3 up to any given order), the condition
〈g(0, y), h(0, y)〉 = k[y] is not satisfied.

We explain how to transform the polynomials so that Hensel’s lemma can still be
applied.

Let f have the following Puiseux expansions at 0:

γ1 = a1
1x

t11 + a1
2x

t12 + . . .

119

γ2 = a2
1x

t21 + a2
2x

t22 + . . .

...

γs = as1x
ts1 + as2x

ts2 + . . .

and assume t = t11 = min1≤i≤s t
i
1. We define f0 = (y−γ1) · · · (y−γs), f0 ∈ k[[x]][y].

We would like to replace y by xty, so that we can factor out xt in all factors. But
this will introduce fractional exponents in f0, so we write t = u/v and replace
instead x by xv and y by xuy. We define

f̃0(x, y) = f0(xv, xuy) =
(
xuy − (a1

1x
vt11 + . . .)

)
· · ·
(
xuy − (as1x

vts1 + . . .)
)

= xsu
(
y − (a1

1 + . . .)
)
· · ·
(
y − (as1x

t̃s1 + . . .)
)

and

F (x, y) = f̃0(x, y)/xsu =
(
y − (a1

1 + . . .)
)
· · ·
(
y − (as1x

t̃s1 + . . .)
)

,

with F (x, y) ∈ k[[x]][y].

So we can first use Hensel’s lemma to compute the factor f0 up to the required
degree, and then compute F as defined above.

Now F has factors that do not vanish at the origin. So we can use again Hensel’s
lemma to separate the factors that vanish at the origin from the factors that
do not. We get F = GH. We obtain the factors g and h by reversing the
transformations, g(x, y) = G(x1/v, y/xu/v), and likewise for h.

We thus obtain Algorithm 7.5.1.

Algorithm 7.5.1 Segment splitting

Input: f ∈ k[x, y] irreducible polynomial, monic of degree s in y, with no Puiseux
expansions vanishing outside the origin; d ∈ Z≥0.

Output: g1, . . . , gk ∈ k[x, y] such that the expansions of gi correspond to the
i-th Puiseux segment of f , developed up to degree d.

1: t1, . . . , tk the different initial exponents of the Puiseux expansions of f (which
are obtained from the Newton polygon of f)

2: if l = 1 then
3: return f
4: end if
5: t = u/v = min{t1, . . . , tk}, with u, v ∈ N
6: f̃(x, y) = f(xv, xuy)
7: F = f̃/xsu

8: Compute G0, H0 ∈ k[y] such that F (0, y) = G0H0, G0 = yw, for some w ∈ N
and y - H0

9: (G,H) = Hensel(F,G0, H0, vd)
10: g1 = G(x1/v, y/xu/v), h = G(x1/v, y/xu/v)
11: return {g1} ∪ SegmentSplitting(h).

See also (de Jong and Pfister, 2000, Theorem W) for an alternative approach
extending the Weierstrass Division Theorem.

120

Example 7.5.1. We return to Example 7.3.3, f = y6− (y2 + 2x3)((y+ 2x2)2 +x5).
We want to compute (y− γ1)(y− γ2) up to order 5. We first use Hensel’s lemma
to lift the factors y4 and 1 + y2 up to degree 8 (we must lift up to this degree so
that no information from f is lost). We obtain

f0 = 48x8y3 + 46x8y2 − 8x7y3 − 16x8y − 8x7y2 + 32x6y3 + 2x8 − 4x6y2

− 8x5y3 + 8x7 + x5y2 + 8x5y + 4x4y2 + 2x3y2 + 4x2y3 + y4,

f1 = −48x8y + 210x8 + 8x7y − 56x7 − 32x6y + 4x6 + 8x5y − x5 + 12x4 − 2x3 − 4x2y + y2 − 1.

(Note that f1 = (y− γ5)(y− γ6) up to order 8, so we can truncate it up to order
5 to get the product of the expansions outside the origin.)

The smallest t is t = u/v = 3/2. We compute f̃0 = f0(x2, x3y) = x12(48x13y3 −
8x11y3 + 46x10y2 + 32x9y3− 8x8y2− 8x7y3− 16x7y− 4x6y2 +x4y2 + 2x4 + 4x2y2 +
4xy3 + y4 + 8x2 + 8xy + 2y2) = x12F (x, y).

Now, F (0, y) = (y2 + 2)y2 and we use Hensel’s lemma to lift the factors y2 + 2
and y2. After lifting and mapping the factors back to the original x and y, we
obtain

g = −4x6 − 8x5y + 2x3 + y2,

h = x5 + 4x4 + 4x2y + y2.

Note that g = (y2 + 2x3)− 8x5y − 4x6 and h = (y + 2x2)2 + x5 are equal in the
low degree terms to the factors appearing in f .

We can now compute p = (y− γ̄1)(y− γ̄2)(y− γ̄4)(y− γ̄5)(y− γ̄6) = ((y2 + 2x3)−
8x5y − 4x6)y(8x5y − x5 + 12x4 − 2x3 − 4x2y + y2 − 1).

To separate all the Puiseux segments, we can use this method iteratively. In
each step we separate the segment with smallest initial exponent from the rest.
Now consider blocks inside a segment which have the same initial exponents but
whose initial terms are not conjugate. In this case we can also use Hensel’s
lemma to split the blocks after applying the above transformation, hence we can
still proceed in the same way.

To be able to separate all blocks, it remains to consider the separation of blocks
that have the same initial rational term (and therefore the same initial exponent).
Suppose that f1 is a factor of f containing some Puiseux blocks of f such that
they all have the same initial terms η = a1x

m1 + · · · + alx
ml , ai ∈ k,mi ∈ Z≥0,

1 ≤ i ≤ l. (There can be fewer terms than in the rational part of the expansions.)
In this case, we first apply the transformation y = y1+η, and compute f2(x, y1) =
f1(x, y1 + η). Then f2 will contain the same expansions as f1 but without the
initial terms η. We can now proceed as before to separate the blocks. After
computing the factors corresponding to each block, we replace y1 by y− η, to get
the factor we were looking for.

Algorithm 7.5.2 summarizes these ideas.

The ideas from (de Jong and Pfister, 2000, Theorem 5.1.20) can in some cases
also be used for our purpose. However, the cited theorem is not as general as we
require, and the details on how to initiate the algorithm are not given.

121

Algorithm 7.5.2 Block splitting

Input: f ∈ k[x, y] irreducible polynomial, monic of y–degree n; d ∈ Z≥0.
Output: f0, f1, . . . , fr such that the expansions of each fi are the same as the

i-th Puiseux block of f up to order d in x.
1: compute g0, h0 ∈ k[y] such that g0h0 = f(0, y), g0 = yl for some l ∈ Z≥0 and
〈g0, h0〉 = k[y]

2: (f0, g) = Hensel(f, g0, h0, d), where f0 is the lifting of h0 and g is the lifting
of g0, up to order d in x

3: {g1, . . . , gs} = SegmentSplitting(g, d), the factors corresponding to the differ-
ent Puiseux segments of g

4: for all gi, i = 1, . . . , s do
5: ηi := the common rational part of all expansions in gi
6: g̃i = gi(x, y + ηi)
7: {g̃i,1, . . . , g̃i,ri} = BlockSplitting(g̃i, d)
8: gi,j(x, y) = g̃i,j(x, y − ηi), j = 1, . . . , ri
9: end for

10: {f1, . . . , fr} = ∪si=1{gi,1, . . . , gi,ri}
11: return {f0, f1, . . . , fr}.

Our final goal is to separate all factors corresponding to different groups of con-
jugate expansions. In this case, we do not know of any algorithm to do it
without working in algebraic extensions. We compute the conjugate Puiseux
expansions γ̄1, . . . , γ̄s up to the desired degree and then compute the product
(y− γ̄1) · · · (y− γ̄s). This last step is only needed when a Puiseux block contains
more than one conjugacy class of expansions.

We combine all the contents of this section in a general splitting algorithm.

7.6 Local integral basis

To compute all the elements of the integral basis, we first show how to compute a
local integral basis at the origin, that is, an integral basis for the local ring A〈x,y〉.
We can ignore the Puiseux expansions of f that do not vanish at the origin, since
these expansions are units in the local ring. Hence, we assume f ∈ k[[x]][y], with
all the expansions of f vanishing at the origin. By Lemma 7.1.10, for each d,
0 ≤ d ≤ n − 1, where n = deg(f), we look for a polynomial p of y–degree d
with maximum valuation at f . (The case d = n− 1 was in fact already analyzed
in Section 7.3.) Let Γ be the set of Puiseux, expansions of f . We have seen
that if we allow for a more general p̃ ∈ Px[y], whose Puiseux expansions are
N = {η1, . . . , ηd}, we can assume N ⊂ Γ .

We could therefore proceed as before. For each subset A ⊆ {1, . . . , n} of d
elements, we define

IntA = min
j 6∈A

(∑
i∈A

v(γi − γj)

)

122

Algorithm 7.5.3 Splitting

Input: f ∈ k[x, y] irreducible polynomial, monic of y–degree n; e ∈ Z≥0.
Output: L = {f0, f1, . . . , fr} such that the expansions of each fi are the same

as the i-th conjugacy class of Puiseux expansions of f up to order e in x.
1: Compute {g0, g1, . . . , gs} = BlockSplitting(f, e)
2: L = {g0}
3: for i = 1, . . . , s do
4: Compute Γ = {γ1, . . . , γl}, the singular part of the expansions of gi.
5: l = number of conjugacy classes in Γ
6: if l > 1 then
7: for j = 1, . . . , l do
8: Compute Γj = {γj,1, . . . , γj,sj}, the expansions of the j-th conjugacy

class of Γ , up to order e in x
9: hj = (y − γj,1) · · · (y − γj,sj)
10: end for
11: L = L ∪ {h1, . . . , hk}
12: else
13: L = L ∪ {gi}
14: end if
15: end for
16: return L.

and takeA for which IntA is maximum. Then, p̃ =
∏

i 6∈A(y−γi) and vf (p̃) = IntA.
We define o(Γ, d) = vf (p̃), the maximal valuation at f for all elements of Px[y] of
y–degree d. From p̃, we construct p ∈ k[x, y] such that vf (p̃) = vf (p) in a similar
way as we did in Algorithm 7.3.1.

However, computing the maximum in this way can be quite time-consuming, as
the number of subsets can be large. To do this more efficiently, we group the
expansions in conjugacy classes.

Extending the previous definitions, for any subset ∆ of expansions of f of s
elements, and any c ∈ Z≥0, 0 ≤ c < s, we set f∆ =

∏
δ∈∆(y − δ) and define

o(∆, c) = max
N⊆∆

vf∆

(∏
η∈N

(y − η)

)
,

where the maximum is taken over all subsets N ⊆ ∆ of c elements, and assume
that for p̃∆(c) ∈ Px[y] the maximum is attained.

Recall that for a given N ⊆ ∆, we have the formula

vf∆

(∏
η∈N

(y − η)

)
= min

δ∈∆\N

(∑
η∈N

v(δ − η)

)
.

We explain first the case where all the expansions of f at the origin are conjugate.

123

7.6.1 One conjugacy class of expansions

Let Γ = {γ1, . . . , γs} be the expansions of f at the origin, corresponding all to
the same conjugacy class.

To compute o(Γ, c), we do not apply the above formulas but we compute a
polynomial p ∈ k[x, y] of y–degree c such that vf (p) = o(Γ, c), truncating the
expansions in the conjugacy class. The algorithm to compute the factor is a
generalization of Algorithm 7.3.1 and is given in Algorithm 7.6.1. As in the
case of Algorithm 7.3.1, it gives the best possible truncation in the sense that if
p = TruncatedFactorGeneral(Γ, c), then for any γ ∈ Γ , vγ(p) is maximal over all
polynomials in k[x, y] of y–degree c. This implies that vf (p) = o(Γ, c).

Hence we can compute o(Γ, c) by the formula

o(Γ, c) =
∑
η∈N

v(γ − η),

where N = {η1, . . . ηc} is the set of expansions appearing in p. (For any expansion
γ ∈ Γ the result of the sum is the same, because conjugating the above expression
does not modify N .)

Algorithm 7.6.1 Truncated Factor General

Input: {γ̄i = ai1x
t1 + · · · + aikx

tk , 1 ≤ i ≤ d}, the singular parts of a conjugacy
class Γ of Puiseux expansions of f , c ∈ N, c < d.

Output: p ∈ k[x, y] of y–degree c such that vf (p) = vf (p̃), with p̃ the element of
Px[y] of degree c with maximal valuation at f .

1: Set η1, . . . , ηr the different expansions in the set {γ1
tk−1 , . . . , γd

tk−1}
2: u = bc/rc, c′ = c− ur
3: g1 = TruncatedFactorGeneral({η1, . . . , ηr}, c′)
4: if u > 0 then
5: g = (y − γ1

tk−1) · · · (y − γdtk−1)
6: return p = gug1.
7: else
8: return p = g1.
9: end if

7.6.2 The general case

The main result for constructing p in the general case is given in the following
theorem, which generalizes the results in (van Hoeij, 1994).

Theorem 7.6.1. Let f ∈ k[x, y] and p̃ ∈ Px[y] of y–degree d with maximal
valuation at f . Then there exists p ∈ k[x, y] of y–degree d such that vf (p̃) = vf (p)
and such that the Puiseux expansions of p are all truncations of expansions of f .

Proof. In (van Hoeij, 1994) it is proved that there exists q ∈ k[x, y] of y–degree d
such that vf (p̃) = vf (q). To construct p we truncate the expansions appearing in

124

q, removing all the terms that do not coincide with the initial parts of Puiseux
expansions of f . By doing this, the valuation does not decrease, vf (p) = vf (q) =
vf (p̃), and p ∈ k[x, y].

Based on this result, instead of starting with p̃ and then building p from it in such
a way that the valuation at f does not decrease, we can directly build a polynomial
p of maximal valuation among all polynomials coming from truncating expansions
of f .

Moreover, the choice and truncation of a given number of expansions in a conju-
gacy class can be done independently of the choice and truncation of expansions
in other classes, as we see in the next lemma.

Lemma 7.6.2. Let f ∈ k[x, y] and v the maximal valuation at f among all
polynomials in k[x, y] of y–degree d. Let Γ1, . . . , Γr be the conjugacy classes of
expansions of f . There exist q1, . . . , qr ∈ k[x, y] such that p = q1 · · · qr has y–
degree d, vf (p) = v and qi has maximal valuation at fi =

∏
γ∈Γi

(y−γ), 1 ≤ i ≤ r,
among all the polynomials of the same y–degree as qi.

Proof. For a given d ∈ N, let p̃ ∈ Px[y] and p ∈ k[x, y] be as in Theorem
7.6.1. That is vf (p) = vf (p̃) and p is obtained from p̃ by truncating its Puiseux
expansions. If different choices of expansions in Γ give the maximal valuation,
for each possibility we define w = (c1, . . . , cr), ci the number of expansions in Γi
and take p̃ with largest w under the lexicographical ordering.

Let N be the expansions appearing in p̃ and for a given j (1 ≤ j ≤ r) let
Nj = N ∩ Γj. Let p̃j =

∏
η∈Nj(y − η) and pj the minimum truncation of the

expansions in p̃j to get an element in k[x, y].

We first show that p = p1 · · · pr (that is, the truncation in each class can be done
independently from the truncation in other classes). If N1 6= ∅, take η1 ∈ N1. We
want to prove that the truncation of η1 to build p (which we note t(η1)) is the
same as the truncation of η1 to build p1 (which we note t1(η1)).

If not, this means that there exists η2 in some Ni, i > 1, such that t(η1) and t(η2)
are conjugate elements in the extension k[x] ↪→ Px and such that no expansion
in N1 is truncated to t(η2). (Note that since p is over the ground field, all the
conjugates of t(η1) must also be expansions of p.)

Let G = G(k[x] ↪→ Px) be the Galois group of the extension, and let g ∈ G be
such that g(t(η1)) = t(η2). Then g(η1) ∈ Γ1 but is not in N1. But then, to build
p̃, we could have taken g(η1) instead of η2 and vf (p̃) would remain equal (if for
t(η1) the best continuation is η1, then for g(t(η1)) the best continuation must be
g(η1)). This contradicts the fact that, because of the lexicographical ordering
used, we were taking the largest possible number of expansions in Γ1.

Therefore, all the conjugates of t(η1) come from truncating expansions in N1.
Now, proceeding inductively, we prove that the truncation of any expansion can
be done inside each conjugacy class Γi, independently of the expansions chosen
in other conjugacy classes.

125

The lemma says that we can compute the optimal p restricting to products of
polynomials qi which only depend on the number of expansions chosen in each
conjugacy class, and therefore we only have to decide optimally how many ex-
pansions to choose in each conjugacy class. We explain this in more detail.

We now explain how to build the element of the integral basis.

Let Γ1, . . . , Γr be the different conjugacy classes of expansions of f and ni be the
number of expansions in the i-th conjugacy class, 1 ≤ i ≤ r. For 0 ≤ c < ni,
we define pi(c) = TruncatedFactorGeneral(Γi, c) and pi(ni) = fi developed up to
degree e in x (which can be done by Algorithm 7.5.3). We call Ni(c) the Puiseux
expansions appearing in pi(c).

Next, we consider the set of tuples Td = {(c1, . . . , cr), ci ∈ Z≥0, 0 ≤ ci ≤ ni, c1 +
· · · + cr = d}. For w = (c1, . . . , cr) ∈ Td, the polynomial of maximal valuation
at f containing ci expansions in the i-th conjugacy class is pw = p1(c1) · · · pr(cr).
The valuation of pw at f can be computed by the formula

vf (pw) = min
1≤i≤r

{
o(Γi, ci) +

∑
j 6=i

vγ(i,1)(pj(cj))

}
.

We look for the vector w = (c1, . . . , cr) for which vf (pw) is maximal, and for such
w we set pd := pw. The numerator of the element of degree d in the integral basis
is pd and the denominator is xbvf (pd)c.

Algorithm 7.6.2 Integral element

Input: (Γ1, fΓ1), . . . , (Γr, fΓr), the singular parts of some conjugacy classes of
expansions of f and their corresponding factors developed up to x–degree e;
d ∈ Z≥0 (0 ≤ c ≤ degy(g), where g = fΓ1 · · · fΓr).

Output: p ∈ k[x, y] of y–degree d of maximal valuation at g = fΓ1 · · · fΓr ; o ∈
Q≥0, the valuation of p at g.

1: mi = #Γi for 1 ≤ i ≤ r
2: T = {(c1, . . . , cr) : ci ∈ Z≥0, 0 ≤ ci ≤ mi for 1 ≤ i ≤ r; c1 + · · ·+ cr = d}
3: for w = (c1, . . . , cr) ∈ T do
4: if 0 ≤ ci < mi then
5: pi(ci) = TruncatedFactorGeneral(Γi, ci)
6: else
7: pi(ci) = fΓi
8: end if
9: pw = p1(c1) · · · pr(cr)

10: vg(pw) = min1≤i≤r

{
o(Γi, ci) +

∑
j 6=i vγi(pj(cj))

}
, where γi is any expansion

of Γi.
11: end for
12: p = pw for w such that vg(pw) is maximal
13: return (p, vg(p)).

126

7.6.3 The optimization problem

To apply the algorithm described above, we must run over all the elements of
Td and compute the corresponding valuations. This can still be slow when Td is
large.

In this section, we explain how to find the optimal (c1, . . . , cr) ∈ Td in an efficient
way. Instead of considering tuples of r elements, we will always consider tuples
of 2 elements and proceed iteratively.

For each Puiseux block Πi, 1 ≤ i ≤ a, we define

Li = {(Γ(i,1), fΓ(i,1)
), . . . , (Γ(i,ri), fΓ(i,ri)

)},

where Γ(i,j) is the set of singular parts of the j-th conjugacy classes of the i-th
block and fΓ(i,j)

is the corresponding factor of f developed up to x–degree e.

For a list L of this kind, we define fL =
∏

(Γ,fΓ)∈L fΓ and we show how to compute

pL(c), the polynomial in k[x, y] of y–degree c of maximal valuation at fL, 0 ≤ c ≤
m, where m is the degree of fL. For a Puiseux series γ, the notation γ ∈ L will
mean that there exists (Γ, fΓ) ∈ L such that γ ∈ Γ.

We group the lists in new lists Λ1, . . . , Λu such that all the expansions in the
same list Λi have the same initial term (or conjugate initial terms). We order
them in increasing order by the initial exponent. (The order among groups with
the same initial exponent is not important.) Since v(γi) is the same for any
γi ∈ Λi, we define v(i) = v(γi). The key property is that if 1 ≤ i < j ≤ u, then
v(γi − γj) = v(i) for any γi ∈ Λi and γj ∈ Λj.

Let mi be the number of expansions in Λi, 1 ≤ i ≤ u. We define Θi = Λi+· · ·+Λu
and we want to compute inductively pΘi(c), for 0 ≤ c ≤ mi + · · ·+mu.

We start by computing pΘu(c) = pΛu(c) for 0 ≤ c ≤ mu. For any 1 ≤ i ≤ u
and 1 ≤ c ≤ mu we can compute pΛi(c) using Algorithm 7.6.2, or applying this
new algorithm recursively as we will see below. Next, we proceed recursively to
compute {pΘi(c)}0≤c≤mi+···+mu from {pΘi+1(c)}0≤c≤mi+1+···+mu , for 1 ≤ i < u.

The property mentioned above implies that v(γi − γi+1) = v(i) for any γi ∈ Λi
and γi+1 ∈ Θi+1.

Hence for any set N1 of c1 expansions of Λi and any set N2 of c2 expansions of
Θi+1, if q1 =

∏
η∈N1

(y − η), q2 =
∏

η∈N2
(y − η) and q = q1q2, then

vγi(q2) = c2v(i)

Since vfΛi (q1) is the minimum of vγi(q1) for γi ∈ Λi, we obtain that

min
γ∈Λi

vγ(q) = vfΛi (q1) + c2v(i).

Similarly,
min
γ∈Θi+1

vγ(q) = c1v(i) + vfΘi+1
(q2).

127

We conclude that

vfΘi (q) = min{vfΛi (q1) + c2v(i), c1v(i) + vfΘi+1
(q2)}.

This allows us to compute inductively

o(Θi, c) = max
c1+c2=c

vfΘi (pΛi(c1)pΘi+1
(c2))

and define pΘi(c) as the polynomial for which the maximum is obtained.

The numerator of the element of degree d in the integral basis is

pd = pΘ1(d)

and the denominator is xbvf (pd)c.

For computing the best polynomials in each block, we can use this strategy re-
cursively. We summarize the method in Algorithm 7.6.3.

Algorithm 7.6.3 Local Integral Basis

Input: L = {L1, . . . , Lr}, where Li = {(Γ(i,1), fΓ(i,1)
), . . . , (Γ(i,ui), fΓ(i,ui)

)}, the
singular parts of the conjugacy classes of some Puiseux blocks of f and their
corresponding factors developed up to x–degree e.

Output: {(p0, o0), . . . , (pm, om)} such that pi ∈ k[x, y] (0 ≤ i ≤ m) has y–degree
i and maximal valuation at g = fΓ(1,1)

· · · fΓ(r,ur)
; oi ∈ Q≥0, oi = vg(pi), where

m = degy(g).
1: if r = 1 then
2: return {IntegralElement(L1, c)}0≤c≤m.
3: else
4: fLi =

∏ui
j=1 fΓ(i,j)

, for 1 ≤ i ≤ r
5: Group the lists L1, . . . , Lr in lists Λ1, . . . , Λu such that all the expansions

in the same list Λi have the same or conjugate initial terms (without con-
sidering the common rational part of all expansions, if any), ordered by the
initial exponent in increasing order

6: fΛi =
∏

Lj∈Λi fLj and mi = deg(fΛi), for 1 ≤ i ≤ u
7: Θu = Λu, fΘu = fΛu
8: {(pΘu(c), o(Θu, c))}0≤c≤mu = LocalIntegralBasis(Θu)
9: for i = u− 1, . . . , 1 do

10: Θi = Λi +Θi+1, fΘi = fΛifΘi+1

11: {(pΛi(c), o(Λi, c))}0≤c≤mi = LocalIntegralBasis(Λi)
12: for c = 0, . . . ,mi + · · ·+mr do
13: o(Θi, c) = maxc1+c2=c vfΘi (pΛi(c1)pΘi+1

(c2))
14: pΘi(c) = the polynomial for which the maximum is obtained
15: end for
16: end for
17: return {(pΘ1(c), o(Θ1, c))}0≤c≤m.
18: end if

We apply this algorithm to Example 7.1.13.

128

Example 7.6.3. Let f = (y3 − x7)(y2 − x3) + y6 ∈ Q[x, y]. As we have seen in
Example 7.1.13, the maximum integrality exponent is e = 7.

We take Γ1 = {γ1, γ2, γ3} and Γ2 = {γ3, γ4} from 7.1.13. Computing the devel-
opment of (y − γ1)(y − γ2)(y − γ3) up to degree 7 we get f1 = y3. Similarly, the
development of (y−γ4)(y−γ5) up to order 7, is f2 = y2 +x3y+2x6y−x3−x6 (we
omit the details of this computations which can be done using Hensel’s lemma).

The input for Algorithm 7.6.3 is L = {L1, L2} = {{(Γ1, f1)}, {(Γ2, f2)}}.

We have Λ1 = L1, Λ2 = L2 and u = 2. Also fΛ1 = f1, fΛ2 = f2, m1 = 3 and
m2 = 2.

Hence Θ2 = Λ2, fΘ2 = fΛ2 and the local integral basis corresponding to Θ2 is

{(1, 0), (y, 1), (f2,∞)}.

For i = 1, Θ1 = L and fΘ1 = f1f2. The local integral basis corresponding to Λ1

is

{(1, 0), (y, 2), (y2, 4), (f1,∞)}.

Now we have to choose the best combinations for each c = 0, . . . ,m. For example,
for c = 3, we try the pairs (c1, c2) ∈ {(1, 2), (2, 1), (3, 0)} and find that the best
choice is (c1, c2) = (1, 2), for which vfϑ1 (pΛ1(2)pΘ2(0)) = vfϑ1 (yf2) = 16/3.

Applying the formulas for all c, 0 ≤ c ≤ 5, we get the output

{(1, 0), (y, 1), (f2, 3), (yf2, 16/3), (y2f2, 23/3), (f1f2,∞)}.

The first five elements define the integral basis
〈

1, y
x
, f2
x3
, f2y
x5
, f2y

2

x7

〉
k[x]

.

7.7 Integral bases algorithm

We are now ready to give the complete algorithm for computing integral bases.

7.7.1 One singularity at the origin

When f has only one singularity at the origin, for computing the (global) integral
basis we have to multiply the numerators of the local integral basis at the origin
by the factor corresponding to the expansions that do not vanish at the origin.
As noted in the sketch of the algorithm (Section 7.2), for the terms of degree
smaller than the degree of that factor, the integrality exponent will be 0.

Combining the results of the previous sections we obtain Algorithm 7.7.1 for
computing the integral basis, for the case of an isolated singularity at the origin.

129

Algorithm 7.7.1 Integral basis

Input: f ∈ k[x, y] irreducible polynomial, monic of y–degree n, with an isolated
singularity at the origin.

Output: b0, . . . , bn−1, an integral basis of k[x, y]/〈f〉.
1: Compute Γ = {γ̄1, . . . , γ̄s}, the singular part of the Puiseux expansions
{γ1, . . . , γs} of f that vanish at y = 0

2: Compute the maximal integrality exponent e = E(f) as indicated in Section
7.1.4

3: {h, f1, . . . , fr} = Splitting(f, e), where fi, 1 ≤ i ≤ r, are the factors corre-
sponding to the conjugacy classes of expansions of f that vanish at the origin
and h is the factor of the expansions that vanishes outside, both developed
up to degree e

4: Set L = {L1, . . . , Ls}, where Li = {(Γ(i,1), fΓ(i,1)
), . . . , (Γ(i,ui), fΓ(i,ui)

)}, the
singular parts of the conjugacy classes of the i-th Puiseux block of f and
their corresponding factors developed up to x–degree e

5: m = n− deg(h)
6: {(p0, o0), . . . , (pm, om)} = LocalIntegralBasis(L)
7: for i = 0, . . . , deg(h)− 1 do
8: bi = yi

9: end for
10: for i = 0, . . . ,m− 1 do
11: bdeg(h)+i = h · pi/xbo(i)c
12: end for
13: return {b0, . . . , bn−1}.

130

7.7.2 The general algorithm

To compute an integral basis in the general setting, we apply the results from
Section 5.6 to put together the local results.

In the presence of several singularities, Algorithm 7.7.1 computes the local con-
tribution to the normalization at the origin (see Definition 5.6.2). The reason
is that the proof given in (van Hoeij, 1994, Section 2.4) of Lemma 7.1.9 is still
valid when there are other singularities outside the line x = 0. (If there are other
singularities at the line x = 0, we can always apply a linear coordinate change
so that all the singularities have a different x-coordinate.) Therefore, Algorithm
7.7.1 will compute an integral extension of A such that its localization at the
origin generates the normalization of the local ring, as required in Proposition
5.6.1.

For computing the local contributions at singularities outside the origin, we first
apply a translation to move the singularity to the origin, compute the local con-
tribution at the origin, and apply the inverse translation to the output.

Remark 7.7.1. Note that our local algorithm can handle groups of conjugate
singularities simultaneously, in a similar way as in (van Hoeij, 1994, Section 4).
If I ⊂ k[x, y] is an associated prime of the singular locus, corresponding to a
group of conjugate singularities, we apply a linear coordinate change if necessary,
so that no two of these singularities have the same y-coordinate. Then we can
find polynomials q1, q2 ∈ K[x] such that I = 〈q1(x), y − q2(x)〉. We take α a root
of q1(x) and traslate the singularity (α, q2(α)) to the origin. We compute the
local integral basis at the origin and apply the inverse traslation to the output.
The common denominator of the resulting generators will be a power of x − α.
We replace (x − α) by q1(x) in the denominators and we eliminate α from the
numerators by considering α as a new variable and reducing each numerator by
the numerators of smaller degree, using an elimination order α� y � x.

Finally, we put all the local results together applying Algorithm 5.6.2. (Note that
the integral basis consists of k[x]-module generators, which are also A-module
generators.)

Once we compute generators of the normalization, we can compute the (global)
integral basis applying the results in Section 6.2.

In the next section we analyze the performance of this approach.

7.8 Timings

We present some timings which compare the implementation of our algorithm in
Singular with that of van Hoeij’s algorithm in Maple. We compute the inte-
gral basis for A = Q[x, y]/〈f〉 with the specified polynomials f . All computations
were done on a compute server running a 1.60GHz Dual AMD Opteron 242 with
8GB ram. For the cases when f has only one singular point, it is given as part
of the input to both algorithms. That is, no computation or decomposition of

131

the singular locus is done. When the singular locus has more than one point,
the timings involve decomposing the singular locus, computing the local contri-
butions, and combining them. We remark that for obtaining the integral basis,
singularities at infinity of the curve {f = 0} do not matter.

7.8.1 Ak-singularity

The plane curves with defining equation f(x, y) = y2 + xk+1 + yd, k ≥ 1, d ≥ 3
have exactly one singularity at the origin, which is of type Ak.

k d Singular Maple
5 10 0 0
5 100 0 2.4
5 500 14 262

50 60 0 2.6
50 100 0 7
50 500 16 385
90 100 0 12
90 500 13 509

400 500 16 1689

7.8.2 Dk-singularity

The plane curves with defining equation f(x, y) = x(xk−1 +y2)+yd, k ≥ 2, d ≥ 3
have exactly one Dk-singularity at the origin:

k d Singular Maple
5 10 0 0
5 100 2 2.6
5 500 51 206

50 60 1 14
50 100 2 45
50 500 49 2114
90 100 2 142
90 500 50 5918

400 500 50 > 6000

7.8.3 Ordinary multiple points

We consider random curves of degree d with an ordinary k-fold point at the
origin. The defining polynomials were generated by the function polyDK from
the Singular library integralbasis (Böhm et al., 2011b) (using the random
seed 1231).

132

k d Singular Maple
5 10 0 0
15 20 0 3
15 30 1 1095
20 25 0 13
20 30 1 352

7.8.4 Curves with many Ak singularities

The curves defined by the equation

f =
(
xk+1 + yk+1 + zk+1

)2 − 4
(
xk+1yk+1 + yk+1zk+1 + zk+1xk+1

)
with z = 2x − y + 1 (to have all singularities of the projective curve in the
affine chart) were constructed in (Hirano, 1992) by Hirano, and have 3 (k + 1)
singularities of type Ak.

n Singular Maple
6 2 11
8 18 109

10 240 4756

The curves

f = x2n + y2n + z2n + 2(xnzn − xnyn + ynzn)

with z = x−2y+1 given by Cogolludo in (Cogolludo, 1999) have 3n singularities
of type An−1 if n is odd.

n Singular Maple
5 1 3
7 2 37
9 27 478

11 53 > 6000

7.8.5 More general singularities

We now consider some examples of curves which have singularities of type other
than ADE or ordinary multiple points:

(1) f = −x15 + 21x14 − 8x13y + 6x13 + 16x12y − 20x11y2 + x12 − 8x11y + 36x10y2 − 24x9y3 − 4x9y2 +

16x8y3 − 26x7y4 + 6x6y4 − 8x5y5 − 4x3y6 + y8: one singularity at the origin with multiplicity m = 8

and delta invariant δ = 42, a node, and a set of 6 conjugate nodes. [Pfister]

(2) f = (y4 + 2x3y2 + x6 + x5y)3 + x11y11: one singularity at the origin with m = 12 and δ = 133. [Pfister]

133

(3) f = (y5 +y4x7 + 2x8)(y3 + 7x4)(y7 + 2x12)(y11 + 2x18) +y30: one singularity at the origin with m = 26

and δ = 523.

(4) f = (y15 + 2x38)(y19 + 7x52) + y36: one singularity at the origin with m = 34 and δ = 1440.

(5) f = (y15 + 2x38)(y19 + 7x52) + y100: higher degree, but same type of singularity.

(6) f = y40 + xy13 + x4y5 + x5 + 2x4 + x3: one double point with δ = 2 and one triple point with δ = 19

(see van Hoeij, 1994, Section 6.1).

(7) f = y200 + xy13 + x4y5 + x5 + 2x4 + x3: higher degree, but same type of singularity.

(8) f = (y35 + y34x7 + 2x38)(y33 + 7x44)(y37 + 2x52) + y110: one singularity at the origin with m = 105

and δ = 6528.

Although some of the examples have only one singularity at the origin, we apply
the local and the global algorithm in all cases. That is, in the columns labeled
Origin, we compute the timings for the local contribution to the integral basis
at the origin, which does not involve the decomposition of the singular locus. In
the columns labeled Global, we decompose the singular locus, compute the local
contributions, and combine them.

Origin Global
No. Singular Maple Singular Singular∗ Maple y–degree
1 0 0 0 5 1 8
2 36 2 37 37 2 12
3 2 6 > 6000 41 16 30
4 1 10 1 > 6000 12 36
5 0 47 1 > 6000 115 100
6 1 0 1 1 1 40
7 9 12 35 10 50 200
8 154 5708 > 6000 > 6000 > 6000 110

For column Singular∗ we use modular techniques for computing the decompo-
sition of the singular locus. In this table, the computations in Singular that did
not finish are all due to the computation of the decomposition of the singular
locus (although we know that these examples have only one singularity at the
origin).

We note that in most cases our proposed algorithm is much faster than the
algorithm implemented in Maple. Only in the last table, there is one example
in which Singular is significantly slower than Maple. For this example, the
singular part of the Puiseux expansions involve high degree algebraic extensions,
which is at the moment, not optimally implemented in Singular. We expect
this to me improved in the future, which will improve our timings in those cases.

134

Bibliography

M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpass, and S. Steidel. Parallel
algorithms for normalization. arXiv:1110.4299v1 [math.AC], 2011a.

J. Böhm, W. Decker, S. Laplagne, and F. Seelisch. integralbasis.lib. A
Singular library for computing integral bases in algebraic function fields,
2011b.

J. Böhm, W. Decker, S. Laplagne, and F. Seelisch. paraplanecurves.lib. A
Singular library for parametrization of rational plane curves, 2011c.

J. Böhm, W. Decker, S. Laplagne, and F. Seelisch. Computing integral bases via
localization and Hensel lifting. Preprint, 2012a.

J. Böhm, W. Decker, S. Laplagne, and F. Seelisch. Local to global algorithms for
the Gorenstein adjoint ideal of a curve. Preprint, 2012b.

J. Böhm, W. Decker, S. Laplagne, and F. Seelisch. Parametrization of rational
curves. Preprint, 2012c.

W. Bosma, J. J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3–4):235–265, 1997.

J. P. Brennan and W. V. Vasconcelos. On the structure of closed ideals. Math.
Scand., 88(1):3–16, 2001.

E. Brieskorn and H. Knorrer. Plane Algebraic Curves. Birkhauser Verlag, 1986.

W. Bruns and R. Koch. Computing the integral closure of an affine semigroup.
Univ. Iagel. Acta Math., (39):59–70, 2001.

B. Buchberger. An algorithmic criterion for the solvability of algebraic system of
equations. Aequaotiones Math, (4):374–383, 1970.

B. Buchberger. A theoretical basis for the reduction of polynomials to canonical
forms. ACM SIGSAM Bull., 10(3):19–29, 1976.

M. Caboara, P. Conti, and C. Traverso. Yet another algorithm for ideal decom-
position. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,
(12):39–54, 1997.

135

J. I. Cogolludo. Fundamental group for some cuspidal curves. Bull. London Math.
Soc., 31:136–142, 1999.

H. Cohen. A course in computational algebraic number theory, volume 138 of
Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993. ISBN 3-540-
55640-0.

D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. Springer,
1996.

T. de Jong. An algorithm for computing the integral closure. J. Symbolic Comput.,
26(3):273–277, 1998.

T. de Jong and G. Pfister. Local analytic geometry. Advanced Lectures in Math-
ematics. Friedr. Vieweg & Sohn, Braunschweig, 2000. ISBN 3-528-03137-9.
Basic theory and applications.

W. Decker, T. de Jong, G.-M. Greuel, and G. Pfister. The normalization: a
new algorithm, implementation and comparisons. In Computational methods
for representations of groups and algebras (Essen, 1997), volume 173 of Progr.
Math., pages 177–185. Birkhäuser, Basel, 1999a.

W. Decker, S. Laplagne, G. Pfister, and H. Schönemann. primdec.lib. A Singu-
lar library for computing primary decomposition and radical of ideals, 2006.

W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-
1-3 — A computer algebra system for polynomial computations. 2011.
http://www.singular.uni-kl.de.

Wolfram Decker, Gert-Martin Greuel, and Gerhard Pfister. Primary decomposi-
tion: algorithms and comparisons. In Algorithmic algebra and number theory
(Heidelberg, 1997), pages 187–220. Springer, Berlin, 1999b.

A. Dickenstein, N. Fitchas, M. Giusti, and C. Sessa. The membership problem
for unmixed polynomial ideals is solvable in single exponential time. Discrete
Applied Mathematics, (33):73–94, 1991.

J. P. G. L. Dirichlet. Vorlesungen über Zahlentheorie. Herausgegeben und mit
Zusätzen versehen von R. Dedekind. Vierte, umgearbeitete und vermehrte Au-
flage. Chelsea Publishing Co., New York, 1968.

T. W. Dubé. The structure of polynomial ideals and grobner bases. SIAM J.
Comput., (19):750–773, 1990.

D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1995. ISBN 0-387-94269-6. With a view
toward algebraic geometry.

D. Eisenbud, C. Huneke, and W. Vasconcelos. Direct methods for primary de-
composition. Invent. Math., (110):207–235, 1992.

136

D. J. Ford. The construction of maximal orders over a Dedekind domain. J.
Symbolic Comput., 4(1):69–75, 1987.

P. Gianni and B. Trager. Integral closure of Noetherian rings. In Proceedings
of the 1997 International Symposium on Symbolic and Algebraic Computation
(Kihei, HI), pages 212–216 (electronic), New York, 1997. ACM.

P. Gianni, B. Trager, and G. Zacharias. Bases and primary decomposition of
ideals. J. Symbolic Computation, (6):149–167, 1988.

M. Giusti. Some effective problems in polynomial ideal theory. EUROSAM 84,
Lecture Notes in Computer Science, (174):159–171, 1984.

H. Grauert and R. Remmert. Analytische Stellenalgebren. Springer-Verlag,
Berlin, 1971. Unter Mitarbeit von O. Riemenschneider, Die Grundlehren der
mathematischen Wissenschaften, Band 176.

D. R. Grayson and M. E. Stillman. Macaulay2 1.2, a software system for research
in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/,
2009.

G.-M. Greuel and G. Pfister. A Singular introduction to commutative algebra.
Springer, Berlin, extended edition, 2008. ISBN 978-3-540-73541-0. With con-
tributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, With
1 CD-ROM (Windows, Macintosh and UNIX).

G.-M. Greuel, S. Laplagne, and G. Pfister. normal.lib. A Singular library for
computing the normalization of affine rings, 2009.

Gert-Martin Greuel, Santiago Laplagne, and Frank Seelisch. Normalization of
rings. J. Symbolic Comput., 45(9):887–901, 2010.

J. Heintz. Definability and fast quantifier elimination over algebraically closed
fields. Theor. Comp. Science, (24):239–278, 1983.

F. Hess. Computing Riemann–Roch spaces in algebraic function fields and related
topics. Journal of Symbolic Computation, 33:425–445, 2002.

A. Hirano. Construction of plane curves with cusps. Saitama Math. J, 10:21–24,
1992.

T. Hirsch. reesclos.lib. A Singular library for computing the integral closure
of ideals, 2001.

M.-D. Huang and D. Ieradi. Efficient algorithms for the Riemann–Roch problem
and for addition in the Jacobian of a curve. Journal of Symbolic Computation,
18:519–539, 1994.

G. Kemper. The calculation of radical ideals in positive characteristic. J. Symbolic
Computation, (34):229–238, 2002.

137

T. Krick and A. Logar. Membership problem, representation problem and the
computation of the radical for one-dimensional ideals. Progress in Mathematics,
(94):203–216, 1991a.

T. Krick and A. Logar. An algorithm for the computation of the radical of an
ideal in the ring of polynomials. AAECC9, Springer LNCS, (539):195–205,
1991b.

T. Krick, L. M. Pardo, and M. Sombra. Sharp estimates for the arithmetic
nullstellensatz. Duke Math J., (109):521–598, 2001.

S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag,
New York, third edition, 2002. ISBN 0-387-95385-X.

S. Laplagne. An algorithm for the computation of the radical of an ideal. In
ISSAC ’06: Proceedings of the 2006 international symposium on Symbolic and
algebraic computation, pages 191–195, New York, NY, USA, 2006a. ACM Press.

S. Laplagne. Computation of the minimal associated primes. In Wolfram Decker,
Mike Dewar, Erich Kaltofen, and Stephen Watt, editors, Challenges in Sym-
bolic Computation Software, number 06271 in Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2006b.

E. Lasker. Zur Theorie der moduln und Ideale. Math. Ann., 60(1):20–116, 1905.

D. A. Leonard and R. Pellikaan. Integral closures and weight functions over finite
fields. Finite Fields Appl., 9(4):479–504, 2003.

R. Matsumoto. Computing the radical of an ideal in positive characteristic. J.
Symbolic Computation, (32):263–271, 2001.

M. Mňuk. An algebraic approach to computing adjoint curves. J. Symbolic
Comput., 23(2-3):229–240, 1997. Parametric algebraic curves and applications
(Albuquerque, NM, 1995).

E. Noether. Idealtheorie in Ringbereichen. Math. Ann., 83(1-2):24–66, 1921.

M. Reid. Undergraduate commutative algebra, volume 29 of London Mathematical
Society Student Texts. Cambridge University Press, Cambridge, 1995. ISBN
0-521-45255-4.

A. Seidenberg. Construction of the integral closure of a finite integral domain.
Rend. Sem. Mat. Fis. Milano, 40:100–120, 1970.

A. Seidenberg. Constructions in algebra. Trans. Amer. Math. Soc., (197):273–
313, 1974.

A. Seidenberg. Construction of the integral closure of a finite integral domain.
II. Proc. Amer. Math. Soc., 52:368–372, 1975.

138

Anurag K. Singh and Irena Swanson. An algorithm for computing the integral
closure. Algebra Number Theory, 3(5):587–595, 2009.

H.J.S. Smith. On systems of linear indeterminate equations and congruences.
Philosophical Transactions of the Royal Society of London, pages 293–326,
1861.

G. Stolzenberg. Constructive normalization of an algebraic variety. Bull. Amer.
Math. Soc., 74:595–599, 1968.

I. Swanson and C. Huneke. Integral closure of ideals, rings, and modules, volume
336 of London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 2006. ISBN 0-521-68860-4.

C. Traverso. A study on algebraic algorithms: the normalization. Rend. Sem.
Mat. Univ. Politec. Torino, (Special Issue):111–130 (1987), 1986. Conference
on algebraic varieties of small dimension (Turin, 1985).

B. L. van der Waerden. Modern Algebra. Vol. I. Frederick Ungar Publishing Co.,
New York, N. Y., 1949. Translated from the second revised German edition by
Fred Blum, With revisions and additions by the author.

M. van Hoeij. An algorithm for computing an integral basis in an algebraic
function field. J. Symbolic Comput., 18(4):353–363, 1994.

M. van Hoeij. Rational parametrizations of algebraic curves using a canonical
divisor. J. Symbolic Comput., 23(2-3):209–227, 1997. Parametric algebraic
curves and applications (Albuquerque, NM, 1995).

W. V. Vasconcelos. Computing the integral closure of an affine domain. Proc.
Amer. Math. Soc., 113(3):633–638, 1991.

W. V. Vasconcelos. Computational methods in commutative algebra and algebraic
geometry, volume 2 of Algorithms and Computation in Mathematics. Springer-
Verlag, Berlin, 1998. ISBN 3-540-60520-7. With chapters by David Eisenbud,
Daniel R. Grayson, Jürgen Herzog and Michael Stillman.

W. V. Vasconcelos. Divisorial extensions and the computation of integral closures.
J. Symbolic Comput., 30(5):595–604, 2000.

W. V. Vasconcelos. Integral closure. Rees algebras, multiplicities, algorithms.
Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. ISBN
3-540-25540-0.

R. J. Walker. Algebraic Curves. Princeton Mathematical Series, vol. 13. Princeton
University Press, Princeton, N. J., 1950.

139

	Introducción (Versión en español)
	Radical y primos minimales asociados
	Normalización de anillos
	Trabajos previos
	El nuevo algoritmo
	Aplicaciones
	Criterios de dependencia entera

	Bases enteras por Lema de Hensel

	Introduction (English version)
	Radical and minimal associated primes
	Normalization of rings
	Previous work
	The new algorithm
	Applications
	Criteria for integral dependence

	Integral bases via Hensel's Lemma

	Preliminaries
	Ideals and varieties
	Localization of rings

	Operations on ideals
	Sum of ideals
	Product of ideals
	Intersection of ideals
	Quotient and saturation of ideals

	Gröbner bases
	Applications of Gröbner bases
	Ideal membership
	Elimination of variables
	Intersection of ideals
	Quotient and saturation of ideals

	Radical and Minimal Associated Primes
	Preliminaries
	Irreducible varieties and prime ideals
	Primary decomposition and associated primes

	Computation of the radical of an ideal
	Theoretical aspects
	Algorithms
	Complexity analysis
	Performance evaluation

	Minimal Associated Primes
	Algorithms
	Performance evaluation

	Normalization of rings
	Basic definitions and tools
	Computing over the original ring
	Algorithms
	Examples and comparisons
	Normalization of local rings
	Normalization via localization

	Applications of the normalization and related tasks
	Integral closure of ideals
	Preliminaries
	Algorithm
	Performance evaluation

	Integral bases via normalization
	Basic definitions
	Algorithm

	Criteria for integral dependence
	Integral dependence over rings
	Integral dependence over ideals

	Integral bases via Hensel's lemma
	Basic Remarks on Puiseux Series
	Puiseux Series
	The Newton-Puiseux Algorithm
	Puiseux Blocks
	Maximal Integrality Exponents

	Sketch of the algorithm
	The element of largest degree of the integral basis
	Expansions with one or no characteristic exponents
	Expansions with several characteristic exponents

	Hensel's Lemma
	A local version of Hensel's Lemma
	Local integral basis
	One conjugacy class of expansions
	The general case
	The optimization problem

	Integral bases algorithm
	One singularity at the origin
	The general algorithm

	Timings
	Ak-singularity
	Dk-singularity
	Ordinary multiple points
	Curves with many Ak singularities
	More general singularities

