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Estructura y propiedades de espacios
invariantes por traslaciones en grupos abelianos

localmente compactos
Resumen

En esta tesis se estudian los espacios invariantes por traslaciones en el contexto de grupos
localmente compactos y abelianos (grupos LCA). Para un grupo LCA G y un subgrupo
cerradoH ⊆ G, se introduce la noción de espacioH-invarianteo espacioinvariante por
traslaciones en H.

En el caso en queH es un subgrupo discreto y numerable deG, se muestra que el con-
cepto de función rango y las técnicas de fibración son válidos en este contexto. Combi-
nando estas dos herramientas, se prueba una caracterizaci´on de los espaciosH-invariantes
en término de las fibras de sus elementos. Como consecuencia, se obtienen caracteriza-
ciones de marcos y bases de Riesz de estos espacios, extendiendo ası́ resultados previos y
conocidos para el casoRd y el reticuladoZd.

Por otro lado, se estudia el problema de laextra invarianciade los espaciosH-
invariantes. Los resultados obtenidos de la extra invariancia establecen condiciones nece-
sarias y suficientes para que un espacioH-invariante sea además invariante por trasla-
ciones en un subgrupo cerradoM deG que contiene aH. También, se prueba que dado
un subgrupo cerradoM deG que contiene aH existe un espacioH-invarianteV que es
exactamenteM-invariante. Es decir,V no es invariante por traslaciones en ningún otro
subgrupoM′ que contiene aM. Además, se obtienen estimaciones de los tamaños de los
soportes de la transformada de Fourier de los generadores delos espaciosH-invariantes
en relación a suM-invariancia.

Finalmente, se investigan los subespacios deL2(G) que son invariantes por traslaciones
en un subgrupoK deG y también invariantes por modulaciones enΛ, siendoΛ un sub-
grupo del grupo dual deG. Se prueba una caracterización de estos espacio para el caso
en queK y Λ son discretos.

Palabras Claves:Espacios invariantes por traslaciones enteras; Espacios invariante por
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traslaciones; grupos LCA; Funciones rango; fibras; Espacios invariantes por modula-
ciones y traslaciones.



Structure and properties of shift invariant
spaces on locally compact abelian groups

Abstract

In this thesis we study shift invariant spaces in the contextof locally compact abelian
(LCA) groups. ForG an LCA group andH ⊆ G a closed subgroup ofG we introduce the
notion ofH-invariant spaceor shift invariant space under translations in H.

In case whenH is a countable discrete subgroup ofG, we show that the concept of
range functions and the techniques of fiberization are validin this context. Combining
these tools, we provide a characterization forH-invariant spaces in terms of the fibers of
its elements. As a consequence, we prove characterizationsof frames and Riesz bases of
these spaces extending previous results that were known forthe classical case ofRd and
the latticeZd.

On the other hand, we study the problem ofextra invarianceof H-invariant spaces.
Our results of extra invariance state several necessary andsufficient conditions for anH-
invariant spaces to be invariant along translations in a closed subgroup ofG, M, containing
H. In addition we show that for each closed subgroupM of G which containsH there
exists anH-invariant spaceV that is exactlyM-invariant. That is,V is not invariant under
any other subgroupM′ containingM. We also obtain estimates on the support of the
Fourier transform of the generators of theH-invariant spaces, related to itsM-invariance.

Lastly, we investigate the structure of those closed subspace ofL2(G) which are invari-
ant by translations alongK and also invariant under modulations inΛ, beginK andΛ
closed subgroups ofG and the dual group ofG respectively. We obtain a characterization
of these spaces whenK andΛ are discrete.

Key words: Shift-invariant space; Translation invariant space; LCA groups; Range func-
tion; Fibers; Shift-modulation invariant space.
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Introduction

A shift invariant space(SIS) is a closed subspace ofL2(R) that is invariant under trans-
lations by integers. The Fourier transform of a shift invariant space is a closed subspace
that is invariant under integer modulations (multiplications by complex exponentials of
integer frequency). Spaces that are invariant under integer modulations are calleddoubly
invariant spaces. Every result on doubly invariant spaces can be translated to an equiva-
lent result in shift invariant spaces via the Fourier transform. Doubly invariant spaces have
been studied in the sixties by Helson [Hel64] and also by Srinivasan [Sri64], [HS64], in
the context of operators related to harmonic analysis.

Shift invariant spaces are very important in applications and the theory had a great
development in the last twenty years, mainly in approximation theory, sampling, wavelets,
and frames. In particular they serve as models in many problems in signal and image
processing.

In order to understand the structure of doubly invariant spaces, Helson introduced the
notion ofrange function. This became an essential tool in the modern development of the
theory. See [dBDR94a], [dBDR94b], [RS95] and [Bow00].

Range functions characterize completely shift invariant spaces and provide a series of
techniques known in the literature asfiberizationthat allow to have a different view and a
deeper insight of these spaces.

Fiberization techniques are very important in the class offinitely generatedshift in-
variant spaces. A key feature of these spaces is that they canbe generated by the integer
translations of a finite number of functions. Using range functions allows us to translate
problems on finitely generated shift invariant spaces, intoproblems of linear algebra (i.e.
finite dimensional problems).

Shift invariant spaces generalize very well to several variables where the invariance is
understood to be under the latticeZd.

When looking carefully at the theory it becomes apparent that it is strongly based on
the additive group operation ofRd and the action of the subgroupZd.

It is therefore interesting to see if the theory can be set in acontext of generallocally
compact abeliangroups (LCA groups). The locally compact abelian group framework has
several advantages. First because it is important to have a valid theory for the classical
groups such asZd,Td andZn. This will be crucial particularly in applications, as in the
case of the generalization of the Fourier Transform to LCA groups and also Kluvanek’s
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theorem, where the Classical Sampling theorem is extended to this general context, (see
[Klu65], [Dod07]).

On the other side, the LCA groups setting, unifies a number of different results into a
general framework with a concise and elegant notation. Thisfact enables us to visualize
hidden relationships between the different components of the theory, what, as a conse-
quence, will translate in a deeper and better understandingof shift invariant spaces, even
in the case of the real line.

In this thesis we develop the theory of shift invariant spaces on LCA groups. We begin
by introducing the concept ofK-invariant spaces or shift invariant spaces under translation
in K, for K being a closed subgroup of a fixed LCA groupG. Then, we turn our attention
for the case when the translates are in anuniform latticein G. That is, a discrete subgroup
H of G for which the quotientG/H is compact. In this context, our emphasis will be
on range functions and fiberization techniques. With these tools we will investigate the
structure ofH-invariant spaces. The order of the subjects follows mainlythe treatment
of Bownik in Rd, [Bow00]. In [KR08] the authors study, in the context of LCA groups,
principal shift invariant spaces, that is, shift invariant spaces generated by one single
function. However they don’t develop the general theory.

With the description ofH-invariant spaces that we obtain, we are able to study different
problems about them.

First, we are interested in a problem concerning to frames and Riesz bases onH-
invariant spaces.

In Rd, SIS are separable Hilbert spaces in themselves and the sameoccurs for shift
invariant spaces on LCA groups.

As it is well known, each separable Hilbert space has an orthonormal basis. In addition
to the mere existence, for the particular case of shift invariant spaces, it is useful to have
bases with elements having a common structure. But these requirements on the basis can
not always be satisfied.

Fortunately, the concept of frames provides an alternativeto orthonormal bases. Work-
ing with a frame{ fn}n allows us to represent each element of the Hilbert space (shift-
invariant spaces in our case) asf =

∑
n cn fn. In general, the scalars{cn}n are not unique

and the elements{ fn}n are not required to be orthogonal. Nevertheless, frame’s definition
still retains good control on the behavior on the coefficients{cn}n.

An important property about frames on shift invariant spaces is that they always exist
and moreover, we can always find frames of a very specific type,frames of translates.
By frames of translates we mean frames in which their elements are translations of a
fixed set of functions. This particular structure, which is essential for applications, is
quite compatible with the Fourier transform. As a consequence, fiberization techniques
become a very well-adapted tool for studying frames of translates of shift invariant spaces
(seeChapter 3).

The concrete problem concerning frames of translates forH-invariant spaces that we
consider in this thesis is the following. LetV ⊆ L2(G) be theH-invariant space given
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by V = span{Thϕ : ϕ ∈ A, h ∈ H} with A being a (countable) set of functions inL2(G)
and withH being an uniform lattice inG. Here,Th denotes the translation operator byh
defined asTh f (x) = f (x − h) for a.e. x ∈ G and f ∈ L2(G). We want to know when the
set{Thϕ : ϕ ∈ A, h ∈ H} constitutes a frame forV. In addition, we study the analogous
problem for, instead of frames, Riesz bases. These bases arean interesting generalization
of orthonormal bases. Therefore, we analyze under which conditions {Thϕ : ϕ ∈ A, h ∈
H} is a frame or a Riesz basis forV.

Another question which is relevant for this thesis, is whetherH-invariant spaces, withH
being an uniform lattice inG, have the property to be invariant under any other translation
than those that are inH. A limit case is when the space is invariant under translations
by all x ∈ G. In this case the space is calledtranslation invariant. However, there
exist H-invariant spaces with someextra invariance that are not necessarily translation
invariant. That is, there are some intermediate cases betweenH-invariance and translation
invariance. The question is then, how can we identify them?

Recently, Hogan and Lakey defined thediscrepancyof a shift invariant space as a way
to quantify thenon-translation invarianceof the subspace, (see [HL05]). The discrepancy
measures how far a unitary norm function of the subspace, canmove away from it, when
translated by non integers. A translation invariant space has discrepancy zero.

In another direction, Aldroubi et al, see [ACHKM10], studied shift invariant spaces of
L2(R) that have some extra invariance. They show that ifV is a shift invariant space, then
its invariance setis a closed additive subgroup ofR containingZ. The invariance set asso-
ciated to a shift invariant space is the setM of real numbers satisfying that for eachp ∈ M
the translations byp of every function inV, belongs toV. As a consequence, since every
additive subgroup ofR is either discrete or dense, there are only two possibilities left for
the extra invariance. That is, eitherV is invariant under translations by the group1

nZ, for
some positive integern (and not invariant under any bigger subgroup) or it is translation
invariant. They found different characterizations, in terms of the Fourier transform, of
when a shift invariant space is1nZ-invariant.

A natural question arises in this context. Are the characterizations of extra invariance
that hold on the line, still valid in the context of LCA groups?

The invariance setM ⊆ G associated to anH-invariant spaceV, that is, the set of
elements ofG that leaveV invariant when translated by its elements, is again, as in theR
case, a closed subgroup ofG which containsH (see Proposition4.1.1). The problem of the
extra invariance can then be reformulated as finding necessary and sufficient conditions
for anH-invariant space to be invariant under a closed subgroupM ⊆ G containingH.

The main difference with theR case studied in [ACHKM10], is that the structure of the
closed subgroups ofG containing uniform lattices is not as simple.

The results obtained for theR case translate very well in the case in which the invariance
set M is a discrete subgroup or whenM is dense, that isM = G. However, there are
subgroups ofG that are neither discrete nor dense. So, can there existH-invariant spaces
which areM-invariant for such a subgroupM and are not translation invariant?
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Our approach in this work is to study the extra invariance ofH-invariant spaces on LCA
groups. We were able to obtain several characterizations paralleling the 1-dimensional
results. In addition our results show the existence ofH-invariant spaces that areexactly
M-invariant for every closed subgroupM ⊆ G containingH. By ‘exactly M-invariant’
we mean that they are not invariant under any other subgroup containingM. We apply
our results to obtain estimates on the size of the support of the Fourier transform of the
generators of the space.

The particular caseG = Rd can be treated in a slightly different way thanH-invariant
spaces, in which the general context of LCA groups can be omitted. The characterization
of extra invariance of shift invariant spaces onL2(Rd) with d > 1 is studied using an
appropriated description of the closed subgroups ofRd that containZd. For this, we
review the structure of closed subgroups ofRd.

Finally in this work, we consider a problem related to shift-modulation invariant spaces.
Shift-modulation invariant (SMI) spaces are shift invariant spaces that have the extra con-
dition to be also invariant under some group of modulations.These shift invariant spaces
with the extra assumption of modulation invariance are of particular interest and are usu-
ally known as Gabor or Weyl-Heisenberg spaces. They have been intensively studied in
[Bow07], [CC01b], [CC01a], [Chr03], [Dau92], [GD04], [GD01], [Gro01].

A very deep and detailed study of the structure of shift-modulation invariant spaces
of L2(Rd), was given by Bownik (see [Bow07]). In that work, the author provides a
characterization of SMI spaces based on fiberization techniques and range functions.

Since modulations become translations in the Fourier domain, shift-modulations invari-
ant spaces are spaces that are shift invariant in time and frequency. As a consequence the
techniques of shift invariant spaces can be applied to studythe structure of SMI spaces.
Having at hand a theory of SIS on LCA groups it is natural to askwhether a general theory
of SMI spaces could be developed in this more general context.

We define and study the structure of SMI spaces on the context of LCA groups. First
we introduce the concept of shift-modulation spaces where translations are on a closed
subgroup of an LCA groupG and modulations are on a closed subgroup of the dual group
of G. Next we investigate the case where both, translations and modulations, are along
uniform lattices ofG and the dual group ofG respectively, with some minor hypotheses.
Using previous result for shift invariant spaces on LCA groups, we are able to develop a
fiberization isometry and range functions well adapted to this more complicated structure
which combines translations and modulations. Then, we prove a characterization of shift-
modulation invariance spaces, extending to LCA groups the result obtained by Bownik in
[Bow07] for the case ofL2(Rd). While some properties are a simple generalizations of the
known case, there are others that do not translate easily at this very abstract context and
whose validity it is not clear a priori.
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Thesis outline

The rest of the thesis is organized as follows.

Chapter 1includes a review about LCA groups background to make this thesis self-
contained. Mainly, we summarize results concerning to basic facts about generalities of
LCA groups , Haar measures and the Fourier transform.

In addition, we develop a fundamental tool for this work called fiberization isometry
and we introduce the precise definition ofK-invariant spaces on LCA groups.

In Chapter 2we present a characterization of shift invariant spaces along uniform lat-
tices on LCA groups. First we provide a description of shift invariant spaces generated
by a single function in terms of the Fourier transform of its generator. In order to charac-
terize general shift invariant spaces along uniform lattices, we introduces range functions.
Then, we state necessary and sufficient condition for a closed subspace ofL2(G) to be a
shift invariant space combining range functions with fiberizatons techniques.

We devoteChapter 3to study frames and Riesz bases of translates of shift invariant
spaces on LCA groups. For an uniform latticeH in an LCA groupG andA ⊆ L2(G) a
subset of functions, we want to determine when the set{Thϕ : ϕ ∈ A, h ∈ H} is a frame
or a Riez basis forV = span{Thϕ : ϕ ∈ A, h ∈ H}. Our analysis will be based on the
results obtained inChapter 2.

In Chapter 4we study the problem of the extra invariance. Given a shift invariant space
under an uniform lattice ofG, our purpose is to determine precisely when the space is also
invariant under translations on a closed subgroup ofG, M, which contains the original
uniform lattice. The results included in this chapter are anextension of those stated in
[ACHKM10]. We want to remark that our generalization is not straightforward. Our
main difficulty lies in the fact that we do not know a priori the structure of the subgroup
M.

Finally, we devoteChapter 5to investigate shift-modulation invariant spaces in the
context of LCA groups. A (K,Λ) shift-modulation invariant space is a subspace ofL2(G),
that is invariant by translations along elements inK and modulations by elements inΛ,
with K andΛ being closed subgroups ofG and the dual group ofG respectively. We
provide a characterization of shift-modulation invariantspaces in this general context
whenK andΛ are uniform lattices. For getting the desired characterization, we develop
fiberization techniques and suitable range functions adapted to this new structure.

Included publications

Most of the results of this thesis have been published, or submitted for publication, as
research articles in different journals.

The papers included in the thesis are:
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1

Preliminaries

This chapter compiles some preliminary facts and the notation that will be used in this
thesis. It is our intention to make the exposition the more self-contained possible. How-
ever, we omit the proof of those result that we believe are notan essential contribution for
this thesis. In each case, we indicate the corresponding literature.

The known material of this chapter can be probably found in the literature in a more
general form. Here, it will be exposed in an appropriated wayto our purpose.

The chapter is organized as follows.Section 1.1is divided in three subsections. In the
first one we summarize without proofs the relevant material on locally compact abelian
groups. The second one contains results concerning to Haar measures. We also discuss
there the existence and properties of Borel-sections whichplay a key role in most of the
main arguments in this thesis. In the last part ofSection 1.1we present some properties
of the Fourier transform on locally compact abelian groups.In Section 1.2we introduce
the concept ofK-invariant spaces and we give some relevant examples. A brief summary
about vector-valued functions is given inSection 1.3. Finally in Section 1.4we develop
the fiberization isometry, one of the most important tools used in this work.

1.1 Background on LCA Groups

In this section we review some basic known results from the theory of LCA groups, that
we need for the remainder of the thesis. For details and proofs see [Rud62], [Fol95],
[HR79], [HR70].

1.1.1 LCA Groups

Throughout this thesis,G will denote a locally compact abelian, Hausdorff group
(LCA) andΓ or Ĝ its dual group. That is,

Γ =
{
γ : G→ C : γ is a continuous character ofG

}
,



2 Preliminaries

where a character is a function such that:

(a) |γ(x)| = 1, ∀ x ∈ G.

(b) γ(x+ y) = γ(x)γ(y), ∀ x, y ∈ G.

Thus, characters generalize the exponential functionsγt(y) = e2πity, from the caseG =
(R,+).

Since in this context, both the algebraic and topological structures coexist, we will say
that two groupsG andG′ aretopologically isomorphicand we will writeG ≈ G′, if there
exists a topological isomorphism fromG onto G′. That is, an algebraic isomorphism
which is an homeomorphism as well.

The groupΓ, with the operation (γ + γ′)(x) = γ(x)γ′(x), is an LCA group. Moreover,

Theorem 1.1.1.Let G be an LCA group andΓ its dual. Then, the dual group ofΓ is
topologically isomorphic to G.

Therefore, every LCA group is the dual of its own dual group, with the identification

x ∈ G↔ φx ∈ Γ̂,

whereφx(γ) := γ(x). According to this, it is convenient to use the notation (x, γ) for the
complex numberγ(x), representing the characterγ applied tox or the characterx applied
to γ.

Note that from properties (a) and (b) of the elements ofΓ, the following equalities are
obtained:

(0, γ) = 1 = (x, 0) and (x, γ)−1
= (x,−γ) = (−x, γ) = (x, γ),

∀ x ∈ G and∀ γ ∈ Γ.

Theorem 1.1.2.Let G be an LCA group andΓ its dual group. Then, if G is discrete,Γ is
compact and if G is compact,Γ is discrete.

As a consequence of Theorem1.1.1and Theorem1.1.2, it holds that an LCA group is
compact if an only if its dual is discrete.

Next we list the most basic examples that are relevant to Fourier analysis. The details
are left to the reader. As usual, we identify the interval [0, 1) with the torusT = {z ∈ C :
|z| = 1} ≈ R/Z.

Example 1.1.3.

(I) In case thatG = (Rd,+), the dual groupΓ is also (Rd,+), with the identification
x ∈ Rd ↔ γx ∈ Γ, whereγx(y) = e2πi〈x,y〉. (See [Rud62, Section 1.2.7])
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(II) In case thatG = T its dual group is topologically isomorphic toZ, identifying each
k ∈ Z with γk ∈ Γ, beingγk(ω) = e2πikω. This is due to, sinceT ≈ R/Z, characters
of R can be defined fromT to C under the condition of being 1-periodic. As it is
point out in item (I), characters onR are of the formγx(y) = e2πixy with x ∈ R and
then,γx is 1-periodic if and only ifx ∈ Z.

(III) Let G = Z. If γ ∈ Γ, then (1, γ) = e2πiα for sameα ∈ R. Therefore, (k, γ) = e2πiαk.
Thus, the complex numbere2πiα identifies the characterγ. This proves thatΓ is T.

(IV) Finally, in case thatG = Zn, we can identifyΓ with {0, 1
n,

2
n, · · · ,

n−1
n }. Indeed.

According to item (III), Ẑ = {e2πiα · : Z → C : α ∈ [0, 1)}. SinceZn = Z/nZ,
characters in̂Zn will be those in̂Z that are constant in the cosets ofZn. This happens
exactly whenα ∈ {0, 1

n,
2
n, · · · ,

n−1
n }. This argument also shows that the dual group

of Zn is Zn as well.

Let us now considerK ⊆ G, a closed subgroup of an LCA groupG. Then, the quotient
G/K is a regular (T3) topological group. Moreover, with the quotient topology,G/K is
an LCA group and ifG is second countable, the quotientG/K is also second countable.

For an LCA groupG andK ⊆ G a subgroup ofG, we define the subgroupK∗ of Γ as
follows:

K∗ =
{
γ ∈ Γ : (k, γ) = 1, ∀ k ∈ K

}
.

This subgroup is called theannihilator of K. Since each character inΓ is a continuous
function onG, K∗ is a closed subgroup ofΓ.

The next result establishes duality relationships among the groupsK, K∗, G/K and
Γ/K∗.

Theorem 1.1.4.If G is an LCA group and K⊆ G is a closed subgroup of G, then:

(i) K ∗ is topologically isomorphic to the dual group of G/K, i.e: K∗ ≈ ̂(G/K).

(ii) Γ/K∗ is topologically isomorphic to the dual group of K, i.e:Γ/K∗ ≈ K̂.

Note that item(ii) of the previous theorem can be obtained combining the results in
item (i) of Theorem1.1.4, Theorem1.1.1and the following lemma, the proof of which
can be read in [Rud62, Lemma 2.1.3.].

Lemma 1.1.5. Let G be an LCA group and K⊆ G a closed subgroup. If K∗ is the
annihilator of K, then K is the annihilator of K∗.

Remark1.1.6. According to Theorem1.1.1, each element ofG induces one character in
Γ̂. In particular, ifK is a closed subgroup ofG, eachk ∈ K induces a character that has
the additional property of beingK∗-periodic. That is, for everyδ ∈ K∗, (k, γ + δ) = (k, γ)
for all γ ∈ Γ.
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In this thesis, we work with periodic functions several times. Then, we want the specify
what a periodic function is. IfK is a subgroup ofG, we say thatf : G −→ C is K-periodic
if f (x+ k) = f (x) for all x ∈ G andk ∈ K.

The following definition will be useful throughout this thesis. It agrees with the one
given in [KK98].

Definition 1.1.7. GivenG an LCA group, auniform lattice K in Gis a discrete subgroup
of G such that the quotient groupG/K is compact.

Example 1.1.8.

(I) In case thatG = Rd, subgroups of the formK = AZd with A being a invertible
matrix with integer entries are uniform lattices inRd.

(II) When G = T, K = Gn whereGn denotes the set{z ∈ C : zn
= 1}, is an uniform

lattices inT for eachn ∈ N.

(III) Every subgroup ofZ is a uniform lattices since all of them are of the formmZ for
somem∈ N.

There exist LCA groups which do not contain uniform lattices. For a discussion about
this, we refer to [KK98], where an example of an LCA group without a uniform lattice is
given.

The next theorem points out a number of relationships which occur amongG, K, Γ, K∗

and their respective quotients. The properties stated in itwill be crucial on the remainder
of this work.

Theorem 1.1.9.Let G be a second countable LCA group. If K⊆ G is a countable (finite
or countably infinite) uniform lattice, the following properties hold.

(1) G is separable

(2) K ⊆ G is closed.

(3) G/K is second countable and metrizable.

(4) K∗ ⊆ Γ, the annihilator of K, is closed, discrete and countable.

(5) Ĥ ≈ Γ/K∗ and ̂(G/K) ≈ K∗.

(6) Γ/K∗ is a compact group.

Note that in particular, this theorem states thatK∗ is a countable uniform lattice inΓ.
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1.1.2 Haar Measure on LCA groups

On every LCA groupG, there exists aHaar measure. That is, a non-negative, regu-
lar Borel measuremG, which is not identically zero andtranslation-invariant. This last
property means that,

mG(E + x) = mG(E)

for every elementx ∈ G and every Borel setE ⊆ G. This measure is unique up to
constants, in the following sense: ifmG andm′G are two Haar measures onG, then there
exists a positive constantλ such thatmG = λm′G. For a thorough proof of the existence and
uniqueness of Haar measures we refer the reader to [Fol95, Theorem 2.10 and Theorem
2.20].

We say that a functionf : G −→ C is mG-measurableif it is Borel-measurable respect
to the Haar measuremG onG.

Given a Haar measuremG on an LCA groupG, the integral overG is translation-
invariant in the sense that,

∫

G
f (x+ y) dmG(x) =

∫

G
f (x) dmG(x)

for each elementy ∈ G and for eachmG-measurable functionf onG.

As in the case of the Lebesgue measure, we can define the spacesLp(G,mG), that we
will denote asLp(G), in the following way

Lp(G) =
{
f : G→ C : f is measurable and‖ f ‖pp :=

∫

G
| f (x)|p dmG(x) < ∞}.

We call‖ f ‖p theLp-normof f .

If G is a second countable LCA group,Lp(G) is separable, for all 1≤ p < ∞. We will
focus here on the casesp = 1 andp = 2. Forp = ∞ the spaceL∞(G) is given by

L∞(G) =
{
f : G→ C : f is measurable and‖ f ‖∞ := esssupx∈G| f (x)| < ∞},

where by esssupx∈G| f (x)| we mean theessencial supremumof f defined by inf{c : | f (x)| ≤
c a.e. x ∈ G}.

In case whereG is discrete, we noteℓp(G) instead ofLp(G) for all 1 ≤ p ≤ ∞.

The next theorem is a generalization of a periodization argument usually applied in
caseG = R (for details see [HR70, Theorem 28.54]).

Theorem 1.1.10.Let G be an LCA group, K⊆ G a closed subgroup and f∈ L1(G).
Then,

(i) For almost every x∈ G, the function k7→ f (x+ k) is mK-measurable and belongs
to L1(K). The function x7→

∫
K

f (x + k) dmK(k) depends only on the coset[x] =
x+ K, and therefore it can be considered as a function of the quotient G/K, that is
F([x]) =

∫
K

f (x+ k)dmK(k).
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(ii) The function F defined above is mG/K-measurable and belongs to L1(G/K). Fur-
thermore, the Haar measures mG, mK and mG/K can be chosen such that

∫

G
f (x) dmG(x) =

∫

G/K

∫

K
f (x+ k) dmK(k) dmG/K([x]). (1.1)

Equality (1.1) is usually called Wiel’s formula.

If G is a countable discrete group, the integral off ∈ L1(G) overG, is determined by
the formula ∫

G
f (x) dmG(x) = mG({0})

∑

x∈G
f (x),

since, due to the translations invariance,mG({x}) = mG({0}), for each elementx ∈ G.

Definition 1.1.11. Let G be an LCA group andK ⊆ G a closed subgroup. Asectionof
G/K is a set of representatives of this quotient. That is, a subset C of G containing exactly
one element of each coset. Thus, each elementx ∈ G has a unique expression of the form
x = c+ k with c ∈ C andk ∈ K.

We will need later in the thesis to work with Borel sections. The existence of Borel
sections is provided by the following lemma (see [KK98] and [FG64]).

Lemma 1.1.12.Let G be an LCA group and K a uniform lattice in G. Then, there exists
a section of the quotient G/K, which is Borel measurable.

Moreover, there exists a section of G/K which is relatively compact and therefore with
finite mG-measure.

A sectionC ⊆ G of G/K is in one to one correspondence withG/K by the cross-
sectionmapτ : G/K → C, [x] 7→ [x] ∩ C. Therefore, we can carry over the topological
and algebraic structure ofG/K to C. Moreover, ifC is a Borel section,τ : G/K → C is
measurable with respect to the Borelσ-algebra inG/K and the Borelσ-algebra inG (see
[FG64, Theorem 1 ]). Therefore, the set value function defined bym(E) = mG/K(τ−1(E))
is well defined on Borel subsets ofC. In the next lemma, we will prove that this measure
m is equal tomG up to a constant.

Lemma 1.1.13.Let G be an LCA group, K a countable uniform lattice in G and C a Borel
section of G/K. Fix mG, mK and mG/K such that the Weil’s formula holds. Then, for every
Borel set E⊆ C

mG(E) = mK({0})mG/K(τ−1(E)),

whereτ is the cross-section map.

In particular, mG(C) = mK({0})mG/K(G/K).
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Proof. According to Lemma1.1.12, there exists a relatively compact section ofG/K. Let
us call itC′. Therefore, ifC is any other Borel section ofG/K,

mG(C′) = mG(G∩C′) = mG(
⋃

k∈K
(C + k) ∩C′)

= mG(
⋃

k∈K
[(C′ − k) ∩C] + k) =

∑

k∈K
mG([(C′ − k) ∩C] + k)

=

∑

k∈K
mG((C′ − k) ∩C) = mG(

⋃

k∈K
(C′ − k) ∩C)

= mG(G∩C) = mG(C).

SinceC′ has finitemG measure,C must have finite measure as well.

Now, takeE ⊆ C a Borel set. Thus,mG(E) ≤ mG(C) < ∞. Hence, sing Theorem
1.1.10,

mG(E) =
∫

G
χE(x) dmG(x) =

∫

G/K

∫

K
χE(x+ k)dmK(k) dmG/K([x])

= mK({0})
∫

G/K

∑

k∈K
χE(x+ k) dmG/K([x])

= mK({0})
∫

G/K
χτ−1(E)([x]) dmG/K([x])

= mK({0})mG/K(τ−1(E)).

�

Remark1.1.14. Notice thatC, together with the LCA group structure inherited byG/K
throughτ, has the Haar measurem. We proved thatmG|C, the restriction ofmG to C, is a
multiple ofm. It follows thatmG|C is also a Haar measure onC.

In this thesis we will considerC as an LCA group with the structure inherited byG/K
and with the Haar measuremG.

A trigonometric polynomialin an LCA groupG is a function of the form

P(x) =
n∑

j=1

a j(x, γ j),

whereγ j ∈ Γ anda j ∈ C for all 1 ≤ j ≤ n.

As a consequence of Stone-Weierstrass Theorem, the following result holds, (see
[Rud62], page 24).

Lemma 1.1.15. If G is a compact LCA group, then the trigonometric polynomials are
dense inC(G), whereC(G) is the set of all continuous complex-valued functions on G.

Another important property of characters in compact groupsis the following:
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Lemma 1.1.16.Let G be a compact LCA group andΓ its dual. Then, the characters of G
verify the following orthogonality relationship:

∫

G
(x, γ)(x, γ′) dmG(x) = mG(G)δγγ′ ,

for all γ, γ′ ∈ Γ, whereδγγ′ = 1 if γ = γ′ andδγγ′ = 0 if γ , γ′.

Proof. SinceΓ is a group, we only need to see that
∫

G
(x, γ) dmG(x) = mG(G)δγ0, for all

γ ∈ Γ.
Takeγ ∈ Γ. If γ = 0, it is clear that

∫
G
(x, γ) dmG(x) = mG(G). If γ , 0, there exists

x0 ∈ G with (x0, γ) , 1. Then,
∫

G
(x, γ) dmG(x) = (x0, γ)

∫

G
(x− x0, γ) dmG(x)

= (x0, γ)
∫

G
(x, γ)dmG(x).

Therefore
∫

G
(x, γ) dmG(x) = 0. �

Let us now suppose thatK is a uniform lattice inG. If Γ is the dual group ofG andK∗

is the annihilator ofK, the following characterization of the characters of the groupΓ/K∗

will be useful to understand what follows.

For eachk ∈ K, the functionγ 7→ (k, γ) is constant on the cosets [γ] = γ + K∗.
Therefore, it defines a character onΓ/K∗. Moreover, each character onΓ/K∗ is of this
form. Thus, this correspondence betweenK and the characters ofΓ/K∗, which is actually
a topological isomorphism, shows the dual relationship established in Theorem1.1.4.

Furthermore, sinceΓ/K∗ is compact, we can apply Lemma1.1.16to Γ/K∗. Then, for
k ∈ K, we have

∫

Γ/K∗
(k, [γ]) dmΓ/K∗([γ]) =

{
mΓ/K∗(Γ/K∗) if k = 0

0 if k , 0
. (1.2)

1.1.3 The Fourier transform on LCA groups

Given a functionf ∈ L1(G) Fourier Transformof f is defined as

f̂ (γ) =
∫

G
f (x)(x,−γ) dmG(x), γ ∈ Γ. (1.3)

Theorem 1.1.17.The Fourier transform is a linear operator from L1(G) intoC0(Γ), where
C0(Γ) is the subspace ofC(Γ) of functions vanishing at infinite, that is, f∈ C0(Γ) if
f ∈ C(Γ) and for allε > 0 there exists a compact set R⊆ G with | f (x)| < ε if x ∈ Rc.

Furthermore,∧ : L1(G)→ C0(Γ) satisfies

f̂ (γ) = 0 ∀ γ ∈ Γ ⇒ f (x) = 0 a.e. x ∈ G. (1.4)
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Forϕ ∈ L1(Γ), theinverse Fourier Transformof ϕ is defined as

ϕ̌(x) =
∫

Γ

(x, γ)ϕ(γ) dmΓ(γ)

and the function ˇϕ : G 7→ C is continuous as well.

The Haar measure of the dual groupΓ of G, can be normalized so that, for a specific
class of functions, the following inversion formula holds (see [Rud62, Section 1.5]),

f (x) =
∫

Γ

f̂ (γ)(x, γ) dmΓ(γ).

In the case that the Haar measuresmG andmΓ are normalized such that the inversion
formula holds, the Fourier transform onL1(G)∩ L2(G) can be extended to a unitary oper-
ator fromL2(G) ontoL2(Γ), the so-called Plancharel transformation. We also denotethis
transformation by ”∧”.

Thus, the Parseval formula holds

〈 f , g〉 =
∫

G
f (x)g(x) dmG(x) =

∫

Γ

f̂ (γ)̂g(γ) dmΓ(γ) = 〈 f̂ , ĝ〉,

for all f , g ∈ L2(G).

Let us now suppose thatG is compact. ThenΓ is discrete. FixmG andmΓ in order that
the inversion formula holds. Thus,

1 = mΓ({0})mG(G). (1.5)

Let us prove that (1.5) holds. SinceχG =
1

mG(G)χG ∗ χG, inversion formula is valid forχG

(see [Rud62] for details). Then

1 = χG(x) =
∫

Γ

χ̂G(γ)(x, γ) dmΓ(γ) = mΓ({0})
∑

γ∈Γ
χ̂G(γ)(x, γ). (1.6)

Now, sinceχ̂G(γ) =
∫

G
(x, γ) dmG(x), Lemma1.1.16gives χ̂G(γ) = δγ0mG(G). From

this fact and equation (1.6), equality (1.5) is obtained.

The following lemma is a straightforward consequence of Lemma1.1.16and statement
(1.4).

Lemma 1.1.18.If G is a compact LCA group and its dualΓ is countable, then the char-
acters{γ : γ ∈ Γ} form an orthogonal basis for L2(G).

For an LCA groupG and a countable uniform latticeK in G, we will denote byΩK∗ a
Borel section ofΓ/K∗. In the remainder of this thesis we will identifyLp(ΩK∗) with the
set {ϕ ∈ Lp(Γ) : ϕ = 0 a.e. Γ \ ΩK∗} for p = 1 andp = 2, andL∞(ΩK∗) with the set
{ϕ ∈ L∞(Γ) : ϕ = 0 a.e. Γ \ΩK∗}.

Let us now define the functionsηk : Γ 7→ C, asηk(γ) = (k,−γ)χΩK∗ (γ).

Then we have:
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Proposition 1.1.19.Let G be an LCA group and K a countable uniform lattice in G.
Then,{ηk}k∈K is an orthogonal basis for L2(ΩK∗). Moreover, if mΓ(ΩK∗) = 1 then,{ηk}k∈K
is an orthonormal basis for L2(ΩK∗)

Proof. SinceΓ/K∗ is compact and equality (1.2) holds, applying Theorem1.1.10we
obtain,

∫

Γ

ηk(γ) dmΓ(γ) =
∫

Γ

(k,−γ)χΩK∗ (γ) dmΓ(γ)

= mK∗({0})
∫

Γ/K∗
(k,−[γ])

(∑

δ∈K∗
χΩK∗ (γ + δ)

)
dmΓ/K∗([γ])

= mK∗({0})
∫

Γ/K∗
(k,−[γ]) dmΓ/K∗([γ])

= mK∗({0}) mΓ/K∗(Γ/K
∗) δk0 = mΓ(ΩK∗) δk0.

Then,{ηk}k∈K is an orthogonal set inL2(ΩK∗).

Let us see completeness. Eachϕ ∈ L2(ΩK∗) induces a functionϕ′ defined inΓ/K∗ as
ϕ′([γ]) =

∑
δ∈K∗ ϕ(γ + δ). Note thatϕ′([γ]) = 1

mK∗ ({0})

∫
K∗
ϕ(γ + δ) dmK∗(δ). Then, as a

consequence of Theorem1.1.10, ϕ′([γ]) is amΓ/K∗-measurable function and we have that
ϕ′ ∈ L2(Γ/K∗).

Now let ϕ ∈ L2(ΩK∗) be a function such that
∫
Γ
ϕ(γ)ηk(γ)dmΓ(γ) = 0, for all k ∈ K.

Then,

0 =
∫

Γ

ϕ(γ)(k,−γ)χΩK∗ (γ) dmΓ(γ)

=mK∗({0})
∫

Γ/K∗

∑

δ∈K∗
ϕ(γ + δ)(k,−γ + δ)χΩK∗ (γ + δ) dmΓ/K∗([γ])

=mK∗({0})
∫

Γ/K∗
ϕ′([γ])(k,−[γ]) dmΓ/K∗([γ]),

for all k ∈ K. Therefore, sinceΓ/K∗ is compact, by Lemma1.1.18we obtain thatϕ′ = 0.
This proves thatϕ = 0 a.e. inΩK∗ . So{ηk}k∈K is complete system inL2(ΩK∗). �

Remark1.1.20. As we have done in Proposition1.1.19, we can associate to eachϕ ∈
L2(ΩK∗), a functionϕ′ defined onΓ/K∗ asϕ′([γ]) =

∑
δ∈K∗ ϕ(γ + δ). Since

‖ϕ‖2L2(ΩK∗ )
= mK∗({0})‖ϕ′‖2L2(Γ/K∗),

the correspondenceϕ 7→ ϕ′ is an isometric isomorphism up to a constant betweenL2(ΩK∗)
andL2(Γ/K∗).

Combining the above remark, Proposition1.1.19, and the relationships established in
Theorem1.1.4, we obtain the following proposition, which will be very important on the
remainder of the thesis.
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Proposition 1.1.21.Let G be an LCA group, K countable uniform lattice in G,Γ = Ĝ
and K∗ the annihilator of K. FixΩK∗ a Borel section ofΓ/K∗ and choose mK and mΓ/K∗
such that the inversion formula holds. Then

‖a‖ℓ2(K) =
mK({0})1/2

mΓ(ΩK∗)1/2
‖
∑

k∈K
akηk‖L2(ΩK∗ ),

for each a= {ak}k∈K ∈ ℓ2(K).

Proof. Let a ∈ ℓ2(K). Thus,

‖a‖ℓ2(K) = ‖̂a‖L2(Γ/K∗), (1.7)

sinceK̂ ≈ Γ/K∗ and therefore∧ : K → Γ/K∗.
Takeϕ(γ) =

∑
k∈K ak(k,−γ)χΩK∗ (γ). Then, by Proposition1.1.19, ϕ ∈ L2(ΩK∗). Fur-

thermore,ϕ′([γ]) = ϕ(γ), a.e. γ ∈ ΩK∗. So, as a consequence of Remark1.1.20, we
have

‖ϕ′‖2L2(Γ/K∗) =
1

mK∗({0})
‖ϕ‖2L2(ΩK∗ )

. (1.8)

Now, â([γ]) = mK({0})∑k∈K ak(k,−[γ]). Therefore, substituting in equations (1.7) and
(1.8),

‖a‖ℓ2(K) =
mK({0})

mK∗({0})1/2
‖ϕ‖L2(ΩK∗ ).

Finally, sincemΓ(ΩK∗) = mK∗({0}) mΓ/K∗(Γ/K∗), using (1.5) we have that

mK({0})
mK∗({0})1/2

=
mK({0})1/2

mΓ(ΩK∗)1/2
,

which completes the proof. �

We finish this section with a result which is a consequence of statement (1.4) and The-
orem1.1.10.

Proposition 1.1.22.Let G, K andΩK∗ as in Proposition1.1.21and fix mΓ, mK∗ and mΓ/K∗
such that Theorem1.1.10holds. Ifφ ∈ L1(ΩK∗) and φ̂(k) = 0 for all k ∈ K, thenφ(ω) = 0
a.e.ω ∈ ΩK∗.

Proof. Takeφ ∈ L1(ΩK∗). Then, in the same way as in Remark1.1.20, we can associate
to φ a functionφ′ defined overΓ/K∗ asφ′([γ]) =

∑
δ∈K∗ φ(γ + δ). Sinceφ ∈ L1(ΩK∗), it

holds holds thatφ′ ∈ L1(Γ/K∗).
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Now, letk ∈ K. Then, by Theorem1.1.10

φ̂(k) =
∫

Γ

φ(γ)χΩK∗ (γ)(−k, γ) dmΓ(γ)

=

∫

Γ/K∗

∫

K∗
φ(γ + δ)χΩK∗ (γ + δ)(−k, γ + δ) dmK∗(δ) dmΓ/K∗([γ])

= mK∗({0})
∫

Γ/K∗
(−k, [γ])

∑

δ∈K∗
φ(γ + δ)χΩK∗ (γ + δ) dmΓ/K∗([γ])

= mK∗({0})
∫

Γ/K∗
(−k, [γ])φ′([γ]) dmΓ/K∗([γ])

= mK∗({0})φ̂′(k).

Therefore,̂φ′(k) = 0 for all k ∈ K and according to (1.4) we can conclude thatφ′ = 0 a.e.
[γ] ∈ Γ/K∗. Thus,φ = 0 a.e.ω ∈ ΩK∗. �

1.2 K-invariant Spaces

This section is devoted to introduce the definition ofK-invariant spaces on LCA groups.
This notion generalizes the usual definition of shift invariant spaces (SIS) onRd, where
the translations are inZd. The theory of SIS has been mainly developed by [dBDR94a],
[dBDR94b], [Bow00], [Hel64], [RS95] in the last twenty years. It has an important role
in approximation theory, wavelets, frames and it is useful to shape problems about signal
processing.

For everyy ∈ G and f ∈ L2(G) we denote byTy f the translation off by the elementy
defined asTy f (x) = f (x− y) a.e.x ∈ G.

Definition 1.2.1. Let K ⊆ G be a closed subgroup ofG. We say that a closed subspace
V ⊆ L2(G) is K-invariant or shift invariant under translations in Kif

f ∈ V ⇒ Tk f ∈ V ∀ k ∈ K.

For a subsetA ⊆ L2(G), we define

EK(A) = {Tkϕ : ϕ ∈ A, k ∈ K} and SK(A) = spanEK(A).

A straightforward computation shows that the spaceSK(A) is aK-invariant space. Thus,
we will call SK(A) theK-invariant space generated byA. In case thatA = {ϕ}, we simply
write EK(ϕ) andSK(ϕ) instead ofEK({ϕ}) andSK({ϕ}). We callSK(ϕ) the principal K-
invariant spacegenerated byϕ. WhenA is a finite set we say thatSK(A) is a finitely
generated K-invariant space.

EachK-invariant spaceV can be describe asSK(A) for some subsetA ⊆ L2(G). In-
deed,V = SK(V).
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An important fact is that, whenG is a second countable LCA group, everyK-invariant
spaceV is generated by a countable (finite or countably infinite) set. That is, there exists
a countable subsetA of L2(G) such thatV = SK(A). This fact is due to, ifG is second
countable, thenL2(G) is a separable Hilbert space.

We now give some examples ofK-invariant spaces.

Example 1.2.2.

(I) ForG = R andK = Z consider the principalZ-invariant space generated byϕwhere
ϕ̂ = χ[− 1

2 ,
1
2 ] . This is the classicalZ-invariant space called the Paley-Wiener space

and it is usually noted asPW(R). The Paley-Wiener space can be described as

PW(R) = { f ∈ L2(R) : supp(̂f ) ⊆ [−1
2
,
1
2

]}

and it also known as the space of bandlimited functions.

This space has an important roll for both theory and applications. For instance, it
is involved in the Shannon sampling Theorem which states that each functionf ∈
PW(R) can be reconstructed from the set{ f (k)}k∈Z. More precisely, iff ∈ PW(R)
then

f (x) =
∑

k∈Z
f (k)Tkϕ(x),

with the series converging uniformly onR, as well as inL2(R). The Sampling
Theorem was generalized to the context of LCA groups by Kluv´anek. For details
see [Dod07], [Klu65]. For further results concerning The Sampling Theorem on
LCA groups, we also refer to [FG07], [FP03a] and [FP03b].

Another important property about the spacePW(R) is that ifα ∈ R and f ∈ PW(R),
thenTα f ∈ PW(R). That is,PW(R) is invariant under any translation inR.

(II) Consider the functionφ = χ[− 1
2 ,

1
2 ] ∈ L2(R). Then,SZ(φ) ⊆ L2(R) is aZ-invariant

space and, in contrast to the above example, one can easily check thatSZ(φ) is
invariant only under translations inZ. In other words, it holds that iff ∈ SZ(φ),
α ∈ R andTα f ∈ SZ(φ) thenα must belong toZ.

(III) Suppose now thatG = Zn = {0, 1, 2, · · · , n−1} for a fixedn ∈ N. Takek, d ∈ N such
thatn = k.d and letK ⊆ G the subgroup ofG defined asK = {0, d, 2d, · · · , d(n−1)}
(i.e. K ≈ Zk).

If ϕ ∈ L2(Zn) is the functionϕ = (1, 0, · · · , 0) = e0 then,

SK(ϕ) = span{e0, ed, e2d, · · · , ed(n−1)}

where for j ∈ {0, 1, 2, · · · , n− 1}, ej is such thatej(i) = 0 for i , j andej( j) = 1.
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1.3 Spaces of Vector-valued Functions

This section deal with some basic and known definitions and properties of vector-valued
functions. It is not our purpose to get into details. We will only state here the results that
will be needed in this thesis and they will be described in a way suitable for our purpose
of concrete applications. For details about this theme see [DU77] and [Muj86].

The basis of this material is (X,
∑
, λ) a finite measure space andH a Hilbert space with

inner product〈·, ·〉H and norm‖ · ‖H .

We begin with the notion of measurability of vector-valued functions.

Definition 1.3.1.

(1) A function F : X → H is calledsimple if there existx1, x2, · · · , xn ∈ H and
E1,E2, · · · ,En ∈

∑
such thatF(ω) =

∑n
i=1 xiχEi (ω).

(2) We say that a functionF : X→ H is strongly measurableif there exists a sequence
of simple functions{Fn}n∈N with limn→+∞ ‖Fn(ω) − F(ω)‖H = 0 for a.e.ω ∈ X.

(3) If F : X→ H , we say thatF is weakly measurableif for eachx∗ ∈ H∗, the function
x∗F from X to C is measurable in the usual sense. HereH∗ denotes the dual space
ofH .

The usual facts concerning to the stability of weakly and strongly measurable functions
under sum, scalar multiplication and pointwise (almost everywhere) limits are valid.

As is expected, strongly measurability implies weakly measurability. Indeed. LetF :
X → H be a strongly measurable function. Then, there exists a sequence of simple
functions{Fn}n∈N with limn→+∞ ‖Fn(ω) − F(ω)‖H = 0 for a.e.ω ∈ X. For eachx∗ ∈ H∗,
x∗Fn is a simple function in the usual sense for alln ∈ N and, since|x∗Fn(ω) − x∗F(ω)| ≤
‖x∗‖op‖Fn(ω) − F(ω)‖H , we have thatx∗F can be approximated by simple functions from
X toC. Then,x∗F is measurable in the usual sense.

The relationship between strong and weak measurability is given by the following re-
sult, known as Pettis’ theorem or Pettis measurability theorem.

Theorem 1.3.2(Pettis’ Measurability Theorem). A function F : X → H is strongly
measurable if and only the following two conditions hold:

(i) There exists E∈ ∑ with λ(E) = 0 such that F(X \ E) is a separable subset ofH .

(ii) F is weakly measurable.

Remark1.3.3. If the Hilbert spaceH is a separable space, as a consequence of Pettis’
Theorem, the concepts of weak and strong measurability agree. Therefore, in separable
Hilbert spaces there is only one measurability notion. According to Riesz representation
theorem we can state that, ifH is a separable Hilbert spaces, thenF : X→ H is measur-
able if and only if for eacha ∈ H the functionω 7→ 〈F(ω), a〉H is a measurable function
from X intoC.
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We now state a definition that will be used later for a specific choice ofX andH .

Definition 1.3.4. Let (X,
∑
, λ) be a finite measure space andH a separable Hilbert space

with inner product〈·, ·〉H . We define the spaceL2(X,H) as the space of all measurable
functionsΦ : X→H such that

‖Φ‖22 :=
∫

X
‖Φ(ω)‖2H dλ(ω) < ∞.

The spaceL2(X,H), with the inner product

〈Φ,Ψ〉 :=
∫

X
〈Φ(ω),Ψ(ω)〉H dλ(ω)

is a complex Hilbert space.

We will also need to deal with spaces likeL2(X,H) whenX has not finite measure. In
this case we have the following definition.

Definition 1.3.5. Let (Y,
∑
, ν) be aσ-finite measure space. That isY =

⋃
n∈N Yn with

ν(Yn) < +∞. If H is a separable Hilbert space, the spaceL2(Y,H) consists of all vector-
valued strongly measurable functionsΦ : Y→ H with

‖Φ‖22 :=
∫

Y
‖Φ(ω)‖2H dν(ω) < ∞.

Herestrongly measurableis defined in the same way as in Definition1.3.1, item (1).

With the inner product〈Φ,Ψ〉 :=
∫

Y
〈Φ(ω),Ψ(ω)〉H dν(ω), L2(Y,H) is a Hilbert space.

1.4 Fiberization Isometry

In this section we develop the fiberization isometry needed for the next chapter where
shift invariant spaces under uniform lattices are characterized. The treatment will follow
the lines of [Bow00]. In that work, the author states the fiberization isometry for the case
whereG = Rd andH = Zd.

First we will fix some notation and set the assumptions that will be in force for the
remainder of this section.

Assumptions 1.4.1.We will assume throughout this section that:

• G is a second countable LCA group.

• H is a countable uniform lattice onG.
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We denote byΓ the dual group ofG, by ∆ the annihilator ofH (i.e. H∗ = ∆), and by
Ω∆ a fixed Borel section ofΓ/∆.

In order to avoid carrying over constants through the thesis, we choose the Haar mea-
surem∆ such thatm∆({0}) = 1. We also fixmG andmΓ such that the inversion formula
holds. This particular choice does not affect the validity of the results included here.

Note that under our Assumptions1.4.1, Theorem1.1.9 applies. So we will use the
properties ofG, H, Γ and∆ stated in that theorem.

As we have seen inSection 1.1and according to our hypotheses,∆ is a countable
uniform lattice onΓ. Therefore,ℓ2(∆) is a separable Hilbert space. Besides, sinceΩ∆ has
finite mΓ-measure (see Lemma1.1.13) we have the spaceL2(Ω∆, ℓ2(∆)) defined according
to Definition1.3.4.

Note that forΦ ∈ L2(Ω∆, ℓ2(∆)) andω ∈ Ω∆

‖Φ(ω)‖ℓ2(∆) =

(∑

δ∈∆
|(Φ(ω))δ|2

)1/2
,

where (Φ(ω))δ denotes the value of the sequenceΦ(ω) in δ. If Φ ∈ L2(Ω, ℓ2(∆)), the
sequenceΦ(ω) is thefiber ofΦ atω.

The following proposition shows that the spaceL2(Ω∆, ℓ2(∆)) is isometric toL2(G).

Proposition 1.4.2.The mappingTH : L2(G) −→ L2(Ω∆, ℓ2(∆)) defined as

TH f (ω) = { f̂ (ω + δ)}δ∈∆,

is an isomorphism that satisfies‖TH f ‖2 = ‖ f ‖L2(G). Therefore we will usually refer toTH

as the fiberization isometry.

The next periodization lemma will be necessary for the proofof Proposition1.4.2.

Lemma 1.4.3.Let g ∈ L2(Γ). Define the functionG(ω) =
∑
δ∈∆ |g(ω + δ)|2. Then,G ∈

L1(Ω∆) and moreover
‖g‖L2(Γ) = ‖G‖L1(Ω∆).

Proof. SinceΩ∆ is a section ofΓ/∆, we have thatΓ =
⋃

δ∈∆Ω∆ − δ, where the union is
disjoint. Therefore,

∫

Γ

|g(γ)|2 dmΓ(γ) =
∑

δ∈∆

∫

Ω∆−δ
|g(ω)|2 dmΓ(ω)

=

∑

δ∈∆

∫

Ω∆

|g(ω + δ)|2 dmΓ(ω)

=

∫

Ω∆

∑

δ∈∆
|g(ω + δ)|2 dmΓ(ω).

This proves thatG ∈ L1(Ω∆) and‖g‖L2(Γ) = ‖G‖L1(Ω∆). �
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Proof of Proposition1.4.2. First we prove thatTH is well defined. For this we must show
that,∀ f ∈ L2(G), the vector-valued functionTH f is measurable and‖TH f ‖2 < ∞.

According to Lemma1.4.3, the sequence{ f̂ (ω+ δ)}δ∈∆ ∈ ℓ2(∆), a.e.ω ∈ Ω∆, for all f ∈
L2(G). Then, givena = {aδ}δ∈∆ ∈ ℓ2(∆), the product〈TH f (ω), a〉ℓ2(∆) =

∑
δ∈∆ f̂ (ω + δ)aδ is

finite a.e.ω ∈ Ω∆. From here the measurability off implies thatω 7→ 〈TH f (ω), a〉ℓ2(∆) is
a measurable function in the usual sense. This proves the measurability ofTH f .

If f ∈ L2(G), as a consequence of Lemma1.4.3, we have

‖TH f ‖22 =
∫

Ω∆

‖TH f (ω)‖2
ℓ2(∆) dmΓ(ω)

=

∫

Ω∆

∑

δ∈∆
| f̂ (ω + δ)|2 dmΓ(ω)

=

∫

Γ

| f̂ (γ)|2 dmΓ(γ)

=

∫

G
| f (x)|2 dmG(x).

Thus,‖TH f ‖2 < ∞ and this also proves that‖TH f ‖2 = ‖ f ‖L2(G).

What is left is to show thatTH is onto. So, givenΦ ∈ L2(Ω∆, ℓ2(∆)) let us see that there
exists a functionf ∈ L2(G) such thatTH f = Φ. Using that the Fourier transform is an
isometric isomorphism betweenL2(G) andL2(Γ), it will be sufficient to findg ∈ L2(Γ)
such that{g(ω + δ)}δ∈∆ = Φ(ω) a.e.ω ∈ Ω∆ and then takef ∈ L2(G) such that̂f = g.

Givenγ ∈ Γ, there exist uniqueω ∈ Ω∆ andδ ∈ ∆ such thatγ = ω + δ. So, we define
g(γ) asg(γ) =

(
Φ(ω)

)
δ.

Let us see thatg is measurable. For this, we will prove that its real and imaginary parts
are measurable. Letα ∈ R and fixδ ∈ ∆. Then,

{γ ∈ Γ : Re(g(γ)) > α} ∩ (Ω∆ + δ) = {ω + δ : ω ∈ Ω∆ y Re(g(ω + δ)) > α}
= {ω ∈ Ω∆ : Re(g(ω + δ)) > α} + δ
= {ω ∈ Ω∆ : Re(

(
Φ(ω)

)
δ) > α} + δ

= {ω ∈ Ω∆ : Re(〈Φ(ω), eδ〉) > α} + δ,

whereeδ is the sequence inℓ2(∆) which has value one inδ place and value zero in the
rest. Thus, sinceΦ is measurable, we have that{γ ∈ Γ : Re(g(γ)) > α} ∩ (Ω∆ + δ) is a
measurable set and then, so is{γ ∈ Γ : Re(g(γ)) > α}.

Proceeding in the same way for the imaginary part ofg, it results thatg is a measurable
function and it remains to be proved thatg belongs toL2(Γ).
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Once again, according to Lemma1.4.3,

∫

Γ

|g(γ)|2 dmΓ(γ) =
∫

Ω∆

∑

δ∈∆
|g(ω + δ)|2 dmΓ(ω)

=

∫

Ω∆

∑

δ∈∆
|(Φ(ω)δ

)|2 dmΓ(ω)

=

∫

Ω∆

‖Φ(ω)‖2
ℓ2(∆) dmΓ(ω)

= ‖Φ‖22 < +∞.

Thus,g ∈ L2(Γ) and this completes the proof. �

The mappingTH will be important to study the properties of functions ofL2(G) in
terms of their fibers, (i.e. in terms of the fibersTH f (ω)).

Since the Haar measure is translation-invariant, we can compute

T̂y f (γ) =
∫

G
f (x− y)(x,−γ) dmg(x) =

∫

G
f (x)(x+ y,−γ) dmg(x) = (y,−γ) f̂ (γ).

This property combined with Remark1.1.6 implies a very important property ofTH

that will be crucial for what follows.

Remark1.4.4. For f ∈ L2(G) andh ∈ H, it holds that

THTh f (ω) = (h,−ω)TH f (ω).

To finish this section, we present some examples to illustrated the fiberization isometry
TH.

Example 1.4.5.

(I) When G = Rd andH = Zd thenTZd : L2(Rd) → L2([0, 1)d, ℓ2(Zd)) is given by
TH f (ω) = { f̂ (ω + k)}k∈Zd. This map was introduced by Bownik in [Bow00] where
the author followed an idea from Helson’s book, [Hel64].

(II) In case thatG = Z andH = mZ for a fixedm ∈ N, we have thatΓ = T and a trivial
verification shows that∆ = 1

mZm = {0, 1
m,

2
m, · · · ,

m−1
m }. Therefore, a measurable

section for the quotientT/ 1
mZm is [0, 1

m). Then,TmZ : ℓ2(Z) → L2([0, 1
m), ℓ2( 1

mZm))
and ifa ∈ ℓ2(Z) it holds that

TmZa(ω) = (̂a(ω), â(ω +
1
m

), · · · , â(ω +
m− 1

m
)).
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(III) Suppose now thatG = T andH = 1
mZm = {0, 1

m,
2
m, · · · ,

m−1
m }. Thus, as we have seen

in Example1.1.3item (II), Γ = Z and it can be proved that∆ = mZ. Thus,

T 1
mZm

: L2(T)→ L2({0, 1, · · · ,m− 1}, ℓ2(mZ))

and for f ∈ L2(T) we obtain that for eachk ∈ {0, 1, · · · ,m− 1}, T 1
mZm

f (k) is the

subsequence{akj } j∈Z of f̂ ∈ ℓ2(Z) given byakj = f̂k+m j.

(IV) The last example is the finite case, whenG = Zn andH = {0, k, 2k, · · · , (d − 1)k} ≈
Zd with n = k.d. According to Example1.1.3 item (IV), we can identifyΓ with
{0, 1

n,
2
n, · · · ,

n−1
n }. Moreover, it holds that∆ = {0, d

n,
2d
n , · · · ,

(k−1)d
n } ≈ Zk and then,

we can consider{0, 1
n,

2
n, · · · ,

(d−1)
n } as a section for the quotientΓ/∆. Thus, for each

v ∈ ℓ2(Zn) ≈ Cn and j ∈ {0, 1
n,

2
n, · · · ,

(d−1)
n } we have

THv( j) = (̂v( j), v̂( j +
d
n

), · · · , v̂( j +
(k− 1)d

n
)).



2

Shift Invariant Spaces under Uniform Lattices
in LCA Groups

The theory of shift invariant spaces inL2(Rd) (SIS) has been intensive studied by [Hel64],
[Bow00], [dBDR94a], [dBDR94b], [RS95] in the last twenty years. Its importance lies in
the fact that SIS have many applications in numerical analysis, multiresolution analysis,
wavelets theory, frames and signal processing.

Since most properties about SIS is based on the action ofZd as an additive subgroup
of Rd, we are interested in knowing if the theory if shift invariant spaces inRd can be
extended to general LCA groups. This is precisely our purpose in this chapter.

In order to generalize the notion of shift invariant spaces inRd to LCA groups, we have
introduced the concept ofK-invariant spaces for a closed subgroupK of G (seeSection
1.2of Chapter 1). In this chapter we will investigate the structure ofH-invariant spaces,
with H being a countable uniform lattice in an LCA groupG.

We have divided our analysis in two cases, principal and general H-invariant spaces.
We will characterize principalH-invariant spaces in terms of the Fourier transform of
its generator and the treatment for generalH-invariant spaces will use range functions,
following the ideas stated in [Hel64] and [Bow00].

Then, throughout this chapter,H will be a countable uniform lattice in an LCA group
G. The dual group ofG will be denoted byΓ and∆ will be the annihilator ofH. By
Ω∆ we will denote a fixed Borel section for the quotientΓ/∆. We will also assume that
Assumptions1.4.1are valid.

The choice of particular Haar measure in each of the groups considered in this work
does not affect the validity of the results. However, different constants will appear in the
formulas.

Since we have the freedom to choose the Haar measures, we fix a particular normal-
ization in order to avoid carrying over constants and to simplify the statements of the
results.

In this chapter we fix the constants of the Haar measures. Since we will use the fiber-
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ization isometry defined inSection 1.4we fix m∆ such thatm∆({0}) = 1. Then we choose
mΓ andmΓ/∆ in order that Theorem1.1.10holds formΓ, mΓ/∆ andm∆.

The rest of the chapter is organized in the following way. InSection 2.1we study the
structure of principalH-invariant spaces. Then, inSection 2.2we consider the general
case. For analyze generalH-invariant spaces we introduce inSection 2.2.1the concept
of range functions. Finally, inSection 2.2.2we provide a characterization ofH-invariant
spaces in terms of fibers.

2.1 Principal H-invariant spaces

We recall that a principalH-invariant space is anH-invariant space generated by a
single function. Obviously, they can be characterized as generalH-invariant spaces using
the result that we will prove in the next section. However, wewill show here that these
particularH-invariant spaces, denoted asSH(ϕ), can be described in an elegant and simply
way in terms of the Fourier transform of its generatorϕ. This is stated in the following
theorem.

Theorem 2.1.1.Let ϕ ∈ L2(G). If f ∈ SH(ϕ), then there exists a measurebla∆-periodic
functionη such thatf̂ = ηϕ̂.

Conversely, ifη is a measurable∆-periodic function such thatηϕ̂ ∈ L2(Γ), then the
function f defined bŷf = ηϕ̂ belongs to SH(ϕ).

For the proof of the above theorem we need some previous lemmas and statements.

To begin with we give a description of the orthogonal complement ofSH(ϕ) in terms
of the fiberization isometryTH.

Proposition 2.1.2.Letϕ ∈ L2(G). Then, the orthogonal complement of SH(ϕ) in L2(G) is
given by

SH(ϕ)⊥ = { f ∈ L2(G) : 〈TH f (ω),THϕ(ω)〉ℓ2(∆) = 0 a.e.ω ∈ Ω∆}.

Proof. Let f ∈ SH(ϕ)⊥. In particular, it holds that〈 f ,Thϕ〉L2(G) = 0 for all h ∈ H. Then,
〈TH f ,THThϕ〉 = 0 for all h ∈ H.

Since〈TH f (·),THϕ(·)〉ℓ2(∆) ∈ L1(Ω∆) and

0 = 〈TH f ,THThϕ〉 =
∫

Ω∆

(−h, ω)〈TH f (ω),THϕ(ω)〉ℓ2(∆) dmΓ(ω)

for all h ∈ H, Proposition1.1.22gives us〈TH f (ω),THϕ(ω)〉ℓ2(∆) = 0 a.e. ω ∈ Ω∆.
Therefore,SH(ϕ)⊥ ⊆ { f ∈ L2(G) : 〈TH f (ω),THϕ(ω)〉ℓ2(∆) = 0 a.e.ω ∈ Ω∆}.

On the other hand, iff ∈ L2(G) satisfies〈TH f (ω),THϕ(ω)〉ℓ2(∆) = 0 a.e.ω ∈ Ω∆, then
in the same way as above we can prove that〈TH f ,THThϕ〉 = 0 for all h ∈ H. Thus,
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using thatTH is an isometry, we obtain〈 f ,Thϕ〉L2(G) = for all h ∈ H. Therefore, since
{Thϕ : h ∈ H} is a dense set inSH(ϕ) it follows that f ∈ SH(ϕ)⊥ and this finishes the
proof. �

We define now themΓ-measurable setEϕ ⊆ Ω∆ as

Eϕ = {ω ∈ Ω∆ : ‖THϕ(ω)‖2
ℓ2(∆) , 0}. (2.1)

Then, for af ∈ L2(G) we consider the functionη f defined overΩ∆ as

η f (ω) =



〈TH f (ω),THϕ(ω)〉ℓ2(∆)

‖THϕ(ω)‖2
ℓ2(∆)

if ω ∈ Eϕ
0 if ω ∈ Ω∆ \ Eϕ.

(2.2)

To defineη f over all Γ we extend it in a∆-periodic way. This extension will be also
denoted byη f .

Lemma 2.1.3.The functionη f defined in (2.2) satisfies:

(a) |η f (ω)|2‖THϕ(ω)‖2
ℓ2(∆)
≤ ‖TH f (ω)‖2

ℓ2(∆)
a.e.ω ∈ Ω∆

(b) η f ϕ̂ ∈ L2(Γ). Moreover,‖η f ϕ̂‖L2(Γ) ≤ ‖ f ‖L2(G)

Proof. Item (a) is a straightforward consequence of the Cauchy Schwartz inequality.

Let us prove now item (b). Using the∆-periodicity ofη f and item (a), we obtain
∫

Γ

|η f (γ)ϕ̂(γ)|2 dmΓ(γ) =
∫

Ω∆

∑

δ∈∆
|η f (ω + δ)ϕ̂(ω + δ)|2 dmΓ(ω)

=

∫

Ω∆

|η f (ω)|2‖THϕ(ω)‖ℓ2(∆)
2
dmΓ(ω)

≤
∫

Ω∆

||TH f (ω)‖ℓ2(∆)
2
dmΓ(ω)

= ‖TH f ‖22 = ‖ f ‖2L2(G).

Then, it holds thatη f ϕ̂ ∈ L2(Γ) and that‖η f ϕ̂‖L2(Γ) ≤ ‖ f ‖L2(G) as we wanted to prove. �

An important consequence of Lemma2.1.3is that the operatorQ : L2(Γ) −→ L2(Γ)
given by

Q f̂ = η f ϕ̂, (2.3)

is well-defined and bounded.

We will denote byP the orthogonal projection ontoSH(ϕ) and byP̂ the orthogonal
projection ontoŜH(ϕ), where the subspacêSH(ϕ) is given by

ŜH(ϕ) = {̂g : g ∈ SH(ϕ)}.

An easy computation shows that

P̂ f = P̂ f̂ for all f ∈ L2(G). (2.4)
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Lemma 2.1.4. If Q is the operator defined in (2.3), thenQ = P̂.

Proof. We begin by provingQ |ŜH (ϕ)= P̂ |ŜH (ϕ), whereQ |ŜH (ϕ) andP̂ |ŜH(ϕ) are the restric-

tions ofQ andP̂ to ŜH(ϕ).

Let h ∈ H. SinceThϕ ∈ SH(ϕ), T̂hϕ ∈ ŜH(ϕ) and then we have that̂P(T̂hϕ) = T̂hϕ =
(−h, ·)ϕ̂.

On the other handQ(T̂hϕ) = ηThϕϕ̂.

Note that, using Remark1.4.4

ηThϕ(ω) =


(−h, ω) if ω ∈ Eϕ

0 if ω ∈ Ω∆ \ Eϕ.

Therefore, sincêϕ = 0 on
(⋃

δ∈∆(Eϕ + δ)
)c, it holds thatηThϕϕ̂ = (−h, ·)ϕ̂.

Then P̂(T̂hϕ) = Q(T̂hϕ) and this is valid for allh ∈ H. SinceQ and P̂ are bounded
operators and{Thϕ : h ∈ H} is dense inSH(ϕ) we obtainQ |ŜH (ϕ)= P̂ |ŜH(ϕ).

We now want to show that the restrictions ofQ andP̂ to ŜH(ϕ)
⊥

also agree.

Let f̂ ∈ ŜH(ϕ)
⊥
. Thus, sinceŜH(ϕ)

⊥
= ̂SH(ϕ)⊥, we have that̂f ∈ ̂SH(ϕ)⊥ and then

f ∈ SH(ϕ)⊥.

Therefore, according to Proposition2.1.2, 〈TH f (ω),THϕ(ω)〉 = 0 a.e.ω ∈ Ω∆. Thus,
η f = 0 a.e.ω ∈ Ω∆ and thenQ f̂ = 0. HenceQ |ŜH (ϕ)

⊥= P̂ |ŜH (ϕ)
⊥.

SinceL2(Γ) is the orthogonal sum of̂SH(ϕ) andŜH(ϕ)
⊥
, that isL2(Γ) = ŜH(ϕ)⊕ŜH(ϕ)

⊥
,

we have thatQ = P̂. �

Now, we are able to prove Theorem2.1.1.

Proof of Theorem2.1.1. Let f ∈ SH(ϕ). Then, sinceP f = f , by (2.4) it holds that
P̂ f̂ = f̂ . Therefore, according to Lemma2.1.4, we havef̂ = η f ϕ̂.

Conversely. Letf ∈ L2(G) such that f̂ = ηϕ̂ being η a ∆-periodic function with
ηϕ̂ ∈ L2(Γ).

Then,

η f (ω) = χEϕ(ω)
〈TH f (ω),THϕ(ω)〉ℓ2(∆)

‖THϕ(ω)‖2
ℓ2(∆)

= χEϕ(ω)
η(ω)〈THϕ(ω),THϕ(ω)〉ℓ2(∆)

‖THϕ(ω)‖ℓ2(∆)2

= χEϕ(ω)η(ω),

for a.e.ω ∈ Ω∆. Thus, sinceη andη f are∆-periodic functions, it holds thatη(γ) = η f (γ)
for a.e.γ ∈ ⋃δ∈∆(Eϕ + δ).

On the other hand,̂ϕ = 0 on
(⋃

δ∈∆(Eϕ + δ)
)c. Henceηϕ̂ = η f ϕ̂.

Thus,P̂ f = f̂ and thereforef ∈ SH(ϕ). �
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Remark2.1.5. Observe that ifη1ϕ̂ = η2ϕ̂ onΓ for η1 andη2 ∆-periodic functions we can
conclude thatη1 = η2 on

⋃
δ∈∆(Eϕ + δ). Then,η f in Theorem2.1.1 is, in general, not

unique.

Corollary 2.1.6. Letϕ, φ ∈ L2(G) with SH(ϕ) = SH(φ). ThenEϕ = Eφ up to a set of zero
mΓ-measure.

Proof. Sinceϕ ∈ SH(φ), by Theorem2.1.1there existsη a measurable∆-periodic func-
tion such that̂ϕ = ηφ̂. Hence,‖THϕ(ω)‖2

ℓ2(∆)
= |η(ω)|2‖THφ(ω)‖2

ℓ2(∆)
for a.e. ω ∈ Ω∆.

From this we obtainEϕ ⊆ Eφ up to a set of zeromΓ-measure. In the same way it can be
proved the other inclusion. �

2.2 GeneralH-invariant spaces

In this section we give a characterization of generalH-invariant spaces. This particular
description ofH-invariant spaces is done using a very deep tool called rangefunction.

The concept of range function was first introduced by Helson in [Hel64]. Then,
it became an essential tool for the treatment of shift invariant spaces (see [Bow00],
[dBDR94a], [dBDR94b], [RS95]).

We prove here, that using range functions,H-invariant spaces can be described in terms
of the fibers of their elements. This is particularly important in the class of finitely gen-
eratedH-invariant spaces, since we can translate problems about these spaces (infinite
dimensional problems) into finite dimensional problems.

2.2.1 Range Functions

We start this section with the concept of range function.

Definition 2.2.1. A range functionis a mapping

J : Ω∆ −→ {closed subspaces ofℓ2(∆)}.

The subspaceJ(ω) is called thefiber spaceassociated toω.

For a given range functionJ, we associate to eachω ∈ Ω∆ the orthogonal projection
ontoJ(ω), Pω : ℓ2(∆) → J(ω).

A range functionJ is measurableif for eacha ∈ ℓ2(∆) the functionω 7→ Pωa, fromΩ∆
into ℓ2(∆), is measurable. Recall that, sinceℓ2(∆) is a separable Hilbert space, by Remark
1.3.3, we have only one measurability notion for a functionΨ : Ω∆ → ℓ2(∆). Moreover,
Remark1.3.3gives us thatω 7→ Pωa, fromΩ∆ into ℓ2(∆), is measurable if and only if, for
eacha, b ∈ ℓ2(∆), ω 7→ 〈Pωa, b〉 is measurable in the usual sense.
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Lemma 2.2.2.Let J be a range function . Then, J is a measurable range function if and
only if for all Φ ∈ L2(Ω∆, ℓ2(∆)), the functionω 7→ Pω

(
Φ(ω)

)
is measurable.

Proof. Suppose first thatJ is measurable. Then,ω 7→ Pωa, fromΩ∆ into ℓ2(∆), is measur-
able for alla ∈ ℓ2(∆). LetΦ be a simple function. That is,Φ(ω) =

∑n
i=1 aiχEi (ω) with ai ∈

ℓ2(∆) andEi ⊆ Ω∆ measurable sets fori = 1, · · · , n. Then,Pω

(
Φ(ω)

)
=
∑n

i=1 PωaiχEi (ω).
Sinceω 7→ Pωai is measurable for alli = 1, · · · , n, we can conclude thatω 7→ Pω(Φ(ω))
is measurable as well.

Let us consider nowΦ ∈ L2(Ω∆, ℓ2(∆)). Then, according to Definition1.3.1, there exists
{Φn}n∈N ⊆ L2(Ω∆, ℓ2(∆)) a sequence of simple functions such that‖Φn(ω)−Φ(ω)‖2

ℓ2(∆)
→ 0

whenn→ ∞, a.e.ω ∈ Ω∆.
SincePω is an orthogonal projection, we have that

‖Pω(Φn(ω)) − Pω(Φ(ω))‖2
ℓ2(∆) ≤ ‖Φn(ω) −Φ(ω)‖2

ℓ2(∆)

for a.e. ω ∈ Ω∆. Thus,‖Pω(Φn(ω)) − Pω(Φ(ω))‖2
ℓ2(∆)
→ 0 whenn → ∞, a.e.ω ∈ Ω∆.

This shows thatω 7→ Pω(Φ(ω)) is an almost everywhere point-wise limit of measurable
functions. Then,ω 7→ Pω(Φ(ω)) is measurable as well.

The other implication is straightforward.

�

Given a range functionJ (not necessarily measurable) we associated toJ the subsetMJ

defined as
MJ =

{
Φ ∈ L2(Ω∆, ℓ

2(∆)) : Φ(ω) ∈ J(ω) a.e. ω ∈ Ω∆
}
.

Lemma 2.2.3.The subset MJ is closed in L2(Ω∆, ℓ2(∆)).

Proof. Let {Φ j} j∈N ⊆ MJ such thatΦ j → Φ when j → ∞ in L2(Ω∆, ℓ2(∆)). Let us
consider the functionsg j : Ω∆ → R≥0 defined asg j(ω) := ‖Φ j(ω)−Φ(ω)‖2

ℓ2(∆)
. Then,g j is

measurable for allj ∈ N and∀ α > 0 it holds that

mΓ({g j > α}) ≤
1
α

∫

Ω∆

g j(ω) dmΓ(ω) =
1
α

∫

Ω∆

‖Φ j(ω) − Φ(ω)‖2
ℓ2(∆) dmΓ(ω)→ 0,

when j → ∞. So,g j → 0 in measure and therefore, there exists a subsequence{g jk}k∈N of
{g j} j∈N which goes to zero a.e.ω ∈ Ω∆. Then,Φ jk(ω) → Φ(ω) in ℓ2(∆) a.e.ω ∈ Ω∆ and
hence, sinceΦ jk(ω) ∈ J(ω) a.e.ω ∈ Ω∆ andJ(ω) is closed,Φ(ω) ∈ J(ω) a.e.ω ∈ Ω∆.
ThereforeΦ ∈ MJ. �

The following proposition is a generalization to the context of groups of a lemma of
Helson, (see [Hel64] and also [Bow00]).

Proposition 2.2.4.Let J be a measurable range function and Pω the associated orthogo-
nal projections. Denote byP the orthogonal projection onto MJ. Then,

(PΦ)(ω) = Pω

(
Φ(ω)

)
, a.e. ω ∈ Ω∆, ∀ Φ ∈ L2(Ω∆, ℓ

2(∆)).
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Proof. LetQ : L2(Ω∆, ℓ2(∆))→ L2(Ω∆, ℓ2(∆)) be the linear mappingΦ 7→ QΦ, where

(QΦ)(ω) := Pω

(
Φ(ω)

)
.

We want to show thatQ = P.

SinceJ is a measurable range function, due to Lemma2.2.2,QΦ is measurable for each
Φ ∈ L2(Ω∆, ℓ2(∆)). Furthermore, sincePω is an orthogonal projection, it has norm one,
and therefore

‖QΦ‖22 =
∫

Ω∆

‖(QΦ)(ω)‖2
ℓ2(∆) dmΓ(ω)

=

∫

Ω∆

‖Pω

(
Φ(ω)

)‖2
ℓ2(∆) dmΓ(ω)

≤
∫

Ω∆

‖Φ(ω)‖2
ℓ2(∆) dmΓ(ω) = ‖Φ‖22 < ∞.

Then,Q is well defined and it has norm less or equal to 1.

From the fact thatPω is an orthogonal projection, it follows thatQ2
= Q andQ∗ = Q,

where byQ∗ we denote the adjoint operator ofQ. Thus,Q is also an orthogonal projection.
To complete our proof we must see thatM = MJ, whereM := Ran(Q).

By definition ofQ, M ⊆ MJ.

If we suppose thatM is properly included inMJ,then there existsΨ ∈ MJ such that
Ψ , 0 andΨ ⊥ M. Then,∀ Φ ∈ L2(Ω∆, ℓ2(∆)), 0= 〈QΦ,Ψ〉. SinceQ∗ = Q, 0 = 〈Φ,QΨ〉
∀ Φ ∈ L2(Ω∆, ℓ2(∆)).

Hence,QΨ = 0 and thereforePω

(
Ψ(ω)

)
= 0 a.e.ω ∈ Ω∆. SinceΨ ∈ MJ, Ψ(ω) ∈ J(ω)

a.e.ω ∈ Ω∆, thusPω

(
Ψ(ω)

)
= Ψ(ω) a.e.ω ∈ Ω∆. Finally,Ψ = 0 a.e.ω ∈ Ω∆ and this is a

contradiction. �

2.2.2 The Characterization

We now give a characterization ofH-invariant spaces using range functions.

Theorem 2.2.5.Let V⊆ L2(G) be a closed subspace andTH the map defined in Proposi-
tion 1.4.2. Then, V is H-invariant if and only if there exists a measurable range function
J such that

V =
{
f ∈ L2(G) : TH f (ω) ∈ J(ω) a.e.ω ∈ Ω∆

}
.

Identifying range functions which are equal almost everywhere, the correspondence
between H-invariant spaces and measurable range functionsis one to one and onto.

Moreover, if V= SH(A) for some countable subsetA of L2(G), the measurable range
function J associated to V is given by

J(ω) = span{THϕ(ω) : ϕ ∈ A}, a.e.ω ∈ Ω∆. (2.5)
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For the proof, we need the following result.

Lemma 2.2.6. If J and J′ are two measurable range functions such that MJ = MJ′ , then
J(ω) = J′(ω) a.e.ω ∈ Ω∆. That is, J and J′ are equal almost everywhere.

Proof. Let Pω andQω be the projections associate toJ and J′ respectively. IfP is the
orthogonal projection ontoMJ = MJ′ , by Proposition2.2.4we have that, for eachΦ ∈
L2(Ω, ℓ2(∆))

(PΦ)(ω) = Pω

(
Φ(ω)

)
and

(PΦ)(ω) = Qω

(
Φ(ω)

)
a.e.ω ∈ Ω∆.

Then,Pω

(
Φ(ω)

)
= Qω

(
Φ(ω)

)
a.e.ω ∈ Ω∆, for all Φ ∈ L2(Ω∆, ℓ2(∆)). In particular, if

eλ ∈ ℓ2(∆) is defined by (eλ)δ = 1 if δ = λ and (eλ)δ = 0 otherwise,Pω(eλ) = Qω(eλ) a.e.
ω ∈ Ω∆, for all λ ∈ ∆. Hence, since{eλ}λ∈∆ is a basis forℓ2(∆), it follows thatPω = Qω

a.e.ω ∈ Ω∆. ThusJ(ω) = J′(ω) a.e.ω ∈ Ω∆. �

Proof of Theorem2.2.5. Let us first suppose thatV is H-invariant. SinceL2(G) is separa-
ble,V = SH(A) for some countable subsetA of L2(G).

We define the range functionJ asJ(ω) = span{THϕ(ω) : ϕ ∈ A}. Note that sinceA is
a countable set,J is well defined a.e.ω ∈ Ω∆. We will prove thatJ satisfies:

(i) V =
{
f ∈ L2(G) : TH f (ω) ∈ J(ω) a.e.ω ∈ Ω∆

}
,

(ii) J is measurable.

To show (i) it is sufficient to prove thatM = MJ, whereM := THV. Let Φ ∈ M.
Then,T −1

H Φ ∈ V = span{Thϕ : h ∈ H, ϕ ∈ A}. Therefore, there exists a sequence
{g j} j∈N ⊆ span{Thϕ : h ∈ H, ϕ ∈ A} such thatTHg j := Φ j converges inL2(Ω∆, ℓ2(∆)) to
Φ, when j → ∞ .

Due to the definition ofJ and Remark1.4.4,Φ j(ω) ∈ J(ω) a.e.ω ∈ Ω∆. Thus,Φ j ∈ MJ

for all j ∈ N. SinceMJ is closed andΦ j → Φ when j → ∞ in L2(Ω∆, ℓ2(∆)) , it follows
thatΦ ∈ MJ. Then,M ⊆ MJ.

Let us suppose now that there existsΨ ∈ L2(Ω∆, ℓ2(∆)), such thatΨ , 0 andΨ is
orthogonal toM. Then, for eachΦ ∈ M, 〈Φ,Ψ〉 = 0. In particular, ifΦ ∈ THA ⊆
THV = M andh ∈ H, we have that, since (h, .)Φ(.) = TH(T−hT −1

H Φ)(.) andT−hT −1
H Φ ∈ V,

(h, .)Φ(.) ∈ THV = M.

Therefore, as (h, .) is∆-periodic,

0 = 〈(h, .)Φ(.),Ψ〉 =
∫

Ω∆

(h, ω)〈Φ(ω),Ψ(ω)〉ℓ2(∆)dmΓ(ω).

Hence, by Proposition1.1.22, 〈Φ(ω),Ψ(ω)〉ℓ2(∆) = 0 a.e.ω ∈ Ω∆, and this holds∀ Φ ∈
THA. ThereforeΨ(ω) ∈ J(ω)⊥ a.e.ω ∈ Ω∆.
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Now, if M is properly included inMJ, there existsΨ ∈ MJ, withΨ , 0 and orthogonal
to M. Hence,Ψ(ω) ∈ J(ω)⊥ a.e.ω ∈ Ω∆. On the other hand sinceΨ ∈ MJ, Ψ(ω) ∈ J(ω)
a.e.ω ∈ Ω∆. Thus,Ψ(ω) = 0 a.e.ω ∈ Ω∆ and this is a contradiction. ThusM = MJ.

It remains to prove that the range functionJ is measurable. LetPω : ℓ2(∆) → J(ω) be
the orthogonal projections associated toJ(ω).

Let I be the identity mapping inL2(Ω∆, ℓ2(∆)) andP : L2(Ω∆, ℓ2(∆))→ M the orthog-
onal projection associated toM. Then, ifΨ ∈ L2(Ω∆, ℓ2(∆)), the function (I − P)Ψ is
orthogonal toM and, by the above reasoning, (I − P)Ψ(ω) ∈ J(ω)⊥, a.e.ω ∈ Ω∆. Then,

Pω((I − P)Ψ(ω)) = Pω(Ψ(ω) − PΨ(ω)) = 0

a.e. ω ∈ Ω∆ and thereforePω(Ψ(ω)) = Pω(PΨ(ω)) = PΨ(ω) a.eω ∈ Ω∆. Thus we
have that the functionω 7→ Pω(Ψ(ω)) from Ω∆ to ℓ2(∆) agrees withPΨ a.e. ω ∈ Ω∆.
Consequently,ω 7→ Pω(Ψ(ω)) is measurable and then, Lemma2.2.2implies thatJ is a
measurable range function.

Conversely. IfJ is a measurable range function, let us see that the closed subspace in
L2(G), defined byV := T −1

H MJ is H-invariant. For this, let us considerf ∈ V andh ∈ H
and let us prove thatTh f ∈ V.

SinceTH(Th f )(ω) = (h,−ω)TH f (ω) a.e. ω ∈ Ω∆ andTH f ∈ MJ, we have that
(h,−ω)TH f (ω) ∈ J(ω) a.e.ω ∈ Ω∆. Then,TH(Th f ) ∈ MJ and thereforeTh f ∈ V.

Furthermore,V = SH(A) for some countable setA of L2(G). Then, we have proved
that

J′(ω) = span{THϕ(ω) : ϕ ∈ A} a.e.ω ∈ Ω∆,
defines a measurable range function which satisfiesV = T −1

H MJ′ . Thus,MJ′ = THV =
MJ. SinceJ andJ′ are both measurable range functions, Lemma2.2.6implies thatJ = J′

a.eω ∈ Ω∆.
This also shows that the correspondence betweenV andJ is onto and one to one. �
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Frames and Riesz Bases forH-invariant Spaces

The concept of frame was first introduced by Duffin and Schaeffer in [DS52] as a tool to
study non-harmonic Fourier series. About 30 years after that, Daubechies, Grossmann and
Meyer [DGM86] realized that frames were very useful to obtain expansionsof functions
of L2(Rd) similar to those given by orthonormal bases. Since then, frames became a
fundamental tool in harmonic and functional analysis.

On the other hand, Riesz bases showed up as a natural generalization of the concept of
orthonormal bases.

We will work here with frames and Riesz sequences ofL2(G) with the property that
each of their elements is obtained by the translation of a fixed set of functions (frames
or Riesz sequence of translates). This particular structure simplifies manipulations on the
frame or Riesz sequence and makes it easier to store information about them.

The concrete problem of interest for us is to decide whether or not {Thϕ}h∈H,ϕ∈A is
a frame or a Riesz basis for theH-invariant spaceSH(A). The characterization ofH-
invariant spaces that we have given in Theorem2.2.5of Chapter 2will allow us to describe
the problem in terms of fibers. We will give necessary and sufficient conditions on the
fiber set{THϕ(ω)}ϕ∈A for {Thϕ}h∈H,ϕ∈A being a frame or Riesz basis forSH(A).

Then, we will show that everyH-invariant space can be decomposed in an orthogonal
sum of principalH-invariant spaces. From this result we will conclude that each H-
invariant space has a frame of translations.

Throughout this chapterG, H, Γ, ∆ andΩ∆ will be as in Chapter2 with the following
normalization for the Haar measures. First we choosem∆ andmH such thatm∆({0}) =
mH({0}) = 1. Then, we fixmΓ/∆ such the inversion formula holds betweenH andΓ/∆.
Therefore, by formula (1.5) it holds thatmΓ/∆(Γ/∆) = 1. Next, we setmΓ such that
Theorem1.1.10holds for mΓ, mΓ/∆ and m∆. Finally, we normalizemG such that the
inversion formula holds formΓ andmG.

As a consequence of the normalization given above and Lemma1.1.13, it follows that
mΓ(Ω∆) = 1.

The chapter is organized as follows. InSection 3.1we set some known material on
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frames and Riesz families. InSection 3.2we give necessary and sufficient conditions for
{Thϕ}h∈H,ϕ∈A being a frame or Riesz basis forSH(A) in terms of fibers. Finilly we devote
Section 3.3to show an orthogonal decomposition forH-invariant spaces and to prove the
existence of frames of translates inH-invariant spaces.

3.1 General Frames and Riesz Families

In this section we summarize without proof the relevant material on frames and Riesz
bases and sequences. From now onI will be a finite or countably infinite index set,H
will denote a Hilbert space and{ui}i∈I a sequence inH .

Definition 3.1.1. Let {ei}i∈I be an orthonormal basis forH . The sequence{ui}i∈I is called
Riesz basisif ui = Uei for all i ∈ I whereU : H −→ H is a bounded bijective operator.

It is well known that if{ei}i∈I is a fixed orthonormal basis forH , any other orthonormal
basis forH is of the form{Uei}i∈I whereU : H −→ H is unitary operator (see [Chr03,
Theorem 3.6.6]). According to this, it is clear in what senseRiesz bases generalize or-
thonormal bases.

The following proposition gives an equivalent condition for {ui}i∈I being a Riesz basis.
For its proof see [Chr03, Theorem 3.4.7].

Proposition 3.1.2. The sequence{ui}i∈I is a Riesz basis forH if and only if {ui}i∈I is
complete inH and there exist positive constants A and B such that

A
∑

i∈I
|ai |2 ≤ ||

∑

i∈I
aiui ||2H ≤ B

∑

i∈I
|ai |2 (3.1)

holds for all{ai}i∈I with finite support.

A sequence{ui}i∈I satisfying condition (3.1) for all {ai}i∈I with finite support is called a
Riesz sequence. Therefore, a Riesz sequence{ui}i∈I is a Riesz basis for the subspace ofH
given byspan{ui}i∈I .

Since the set{{ai}i∈I : {ai}i∈I has finite support} is a dense inℓ2(I ), if (3.1) holds for all
{ai}i∈I with finite support, then it immediately holds for all{ci}i∈I ∈ ℓ2(I ).

Observe that orthonormal bases are exactly those Riesz bases which satisfy condition
(3.1) with A = B = 1. This is another way to see Riesz bases as a generalization of
orthonormal bases.

Definition 3.1.3. The sequence{ui}i∈I is aBessel sequenceinH with constantB > 0 if
∑

i∈I
|〈 f , ui〉|2 ≤ B‖ f ‖2, for all f ∈ H .

The constantB is called aBessel boundfor {ui}i∈I .
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The proof of the next result can be found in [Chr03, Theorem 3.2.3].

Lemma 3.1.4. Let {ui}i∈I be a sequence ofH . Then,{ui}i∈I is a Bessel sequence with
Bessel bound B if and only if

T : ℓ2(I ) −→ H , T({ci}i∈I ) =
∑

i∈I
ciui

is a well-defined bounded operator and‖T‖op ≤
√

B.

Definition 3.1.5. The sequence{ui}i∈I is aframeforH with constantsA andB if

A‖ f ‖2 ≤
∑

i∈I
|〈 f , ui〉|2 ≤ B‖ f ‖2, for all f ∈ H .

The frame{ui}i∈I is a tight frameif A = B, and the frame{ui}i∈I is a Parseval frameif
A = B = 1.

The numbersA andB are calledframe bounds. We say that{ui}i∈I is a frame sequence
if it is a frame forspan{ui}i∈I .

If {ui}i∈I is a frame forH , it is, in particular, a Bessel sequence. Then, by Lemma3.1.4
the operator

T : ℓ2(I ) −→ H , T({ci}i∈I ) =
∑

i∈I
ciui

is well-defined and bounded. The operatorT is calledpre-frame or synthesis operator.
The adjoint of the pre-frame operator is given by

T∗ : H −→ ℓ2(I ), T( f ) = {〈 f , ui〉}i∈I ,

and it is usually calledthe analysis operator.

By composingT andT∗ we obtain the bounded, invertible, self-adjoint and positive
operator

S : H −→ H , S f = TT∗ f =
∑

i∈I
〈 f , ui〉ui.

We will call S theframe operator.

In [Chr03] it is proven that, if{ui}i∈I is a frame forH , the sequence{S−1ui}i∈I is a frame
for H as well. Moreover, the frame operator associated to{S−1ui}i∈I is S−1. This allows
us to obtain the following frame decomposition

f =
∑

i∈I
〈 f ,S−1ui〉ui =

∑

i∈I
〈 f , ui〉S−1ui , (3.2)

where the series converges unconditionally for allf ∈ H .

Despite that the frame{ui}i∈I is a set of non-independent vectors, formula (3.2) gives
a straightforward and completely explicit expansion for every vector ofH in terms of
{ui}i∈I .
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3.2 Characterization of Frames and Riesz basis forH-
invariant spaces

We now prove the result which characterizes whenEH(A) is a frame forSH(A) in terms
of the fibers{THϕ(ω) : ϕ ∈ A}. It generalizes Theorem 2.3 of [Bow00] to the context of
groups. Recall that we can associate to eachH-invariant spaceV an unique measurable
range functionJ which characterizesV according to Theorem2.2.5.

Theorem 3.2.1.LetA be a countable subset of L2(G), J the measurable range function
associated to SH(A) and A≤ B positive constants. Then, the following propositions are
equivalent:

(i) The set EH(A) is a frame for SH(A) with constants A and B.

(ii) For almost everyω ∈ Ω∆, the set{THϕ(ω) : ϕ ∈ A} ⊆ ℓ2(∆) is a frame for J(ω)
with constants A and B.

Proof. Since〈 f , g〉L2(G) = 〈TH f ,THg〉L2(Ω∆,ℓ2(∆)), by Remark1.4.4we have that
∑

h∈H

∑

ϕ∈A
|〈Thϕ, f 〉L2(G)|2 =

∑

h∈H

∑

ϕ∈A
|〈TH(Thϕ),TH f 〉L2(Ω∆,ℓ2(∆))|2

=

∑

ϕ∈A

∑

h∈H
|
∫

Ω∆

(h,−ω)〈THϕ(ω),TH f (ω)〉ℓ2(∆)dmΓ(ω)|2.

Let us define for eachϕ ∈ A,

R(ϕ) =
∑

h∈H
|
∫

Ω∆

(h,−ω)〈THϕ(ω),TH f (ω)〉ℓ2(∆)dmΓ(ω)|2

and

T(ϕ) =
∫

Ω∆

|〈THϕ(ω),TH f (ω)〉ℓ2(∆)|2dmΓ(ω).

(i) ⇒ (ii ) If EH(A) is a frame forSH(A), in particular it holds that∀ f ∈ SH(A),∑
h∈H ϕ∈A |〈Thϕ, f 〉|2 < ∞.
Then, for eachϕ ∈ A, we have thatR(ϕ) < ∞. Therefore, the sequence{ch}h∈H, with

ch :=
∫

Ω

(h, ω)〈THϕ(ω),TH f (ω)〉ℓ2(∆)dmΓ(ω),

belongs toℓ2(H).

Let us consider the functionF(ω) :=
∑

h∈H chηh(ω), whereηh are the functions defined
in Proposition1.1.19. Then, since{ch}h∈H ∈ ℓ2(H) and{ηh}h∈H is an orthonormal basis of
L2(Ω∆), we have thatF ∈ L2(Ω∆) ⊆ L1(Ω∆) (recall thatmΓ(Ω∆) < ∞).
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On the other hand, the functionψ(ω) := 〈THϕ(ω),TH f (ω)〉ℓ2(∆) belongs toL1(Ω∆). So,
ψ − F ∈ L1(Ω∆) and moreover

∫

Ω∆

(h,−ω)(ψ(ω) − F(ω))dmΓ(ω) = c−h − c−h = 0

for all h ∈ H. Thus, Proposition1.1.22yields thatF = ψ a.e. ω ∈ Ω∆. Therefore
ψ ∈ L2(Ω∆) and

ψ(ω) =
∑

h∈H
chηh(ω),

a.e.ω ∈ Ω∆.
As a consequence of Proposition1.1.21, we obtain thatR(ϕ) = T(ϕ) holds for all

ϕ ∈ A.

We will now prove that, for almost everyω ∈ Ω∆, {THϕ(ω) : ϕ ∈ A} is a frame with
constantsA andB for J(ω).

Let us suppose that

A‖Pωd‖2
ℓ2(∆) ≤

∑

ϕ∈A
|〈THϕ(ω),Pωd〉|2

ℓ2(∆) ≤ B‖Pωd‖2
ℓ2(∆) (3.3)

a.e.ω ∈ Ω∆, for eachd ∈ D, whereD is a dense countable subset ofℓ2(∆) andPω are the
orthogonal projections associated toJ. Then, for eachd ∈ D, letZd ⊆ Ω∆ be a measurable
set withmΓ(Zd) = 0 such that (3.3) holds for allω ∈ Ω∆ \ Zd. So the setZ =

⋃
d∈D Zd

has nullmΓ-measure. Therefore forω ∈ Ω∆ \ Z anda ∈ J(ω), using a density argument it
follows from (3.3) that

A‖a‖2
ℓ2(∆) ≤

∑

ϕ∈A
|〈THϕ(ω), a〉|2

ℓ2(∆) ≤ B‖a‖2
ℓ2(∆).

Thus, it is sufficient to show that (3.3) holds. For this, we will suppose that this is not
so and we will prove that there existd0 ∈ D, a measurable setW ⊆ Ω∆ with mΓ(W) > 0,
andε > 0 such that

∑

ϕ∈A
|〈THϕ(ω),Pωd0〉|2ℓ2(∆) > (B+ ε)‖Pωd0‖2ℓ2(∆), ∀ ω ∈W

or ∑

ϕ∈A
|〈THϕ(ω),Pωd0〉|2ℓ2(∆) < (A− ε)‖Pωd0‖2ℓ2(∆), ∀ ω ∈W.

So, let us taked0 ∈ D for which (3.3) fails. Then at least one of this sets

{ω ∈ Ω∆ : K(ω) − B‖Pωd0‖2ℓ2(∆) > 0} , {ω ∈ Ω∆ : K(ω) − A‖Pωd0‖2ℓ2(∆) < 0}

has positive measure, whereK(ω) :=
∑
ϕ∈A |〈THϕ(ω),Pωd0〉|2ℓ2(∆)

. Let us suppose, without
loss of generality, that

mΓ({ω ∈ Ω∆ : K(ω) − B‖Pωd0‖2ℓ2(∆) > 0}) > 0.
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Since

{ω ∈ Ω∆ : K(ω) − B‖Pωd0‖2ℓ2(∆) > 0} =
⋃

j∈N
{ω ∈ Ω∆ : K(ω) − (B+

1
j
)‖Pωd0‖2ℓ2(∆) > 0},

there exists at least one set in the union, in the right hand side of this equality, with positive
measure and this proves our claim.

Then, we can suppose that
∑

ϕ∈A
|〈THϕ(ω),Pωd0〉|2ℓ2(∆) > (B+ ε)‖Pωd0‖2ℓ2(∆), ∀ ω ∈W (3.4)

holds. Now takef ∈ SH(A) such thatTH f (ω) = χW(ω)Pωd0. Note that this is possible
since, by Theorem2.2.5, χE(ω)Pωd0 is a measurable function.

As EH(A) is a frame forSH(A) and
∑

h∈H

∑

ϕ∈A
|〈Thϕ, f 〉L2(G)|2 =

∑

ϕ∈A

∫

Ω∆

|〈THϕ(ω),TH f (ω)〉ℓ2(∆)|2dmΓ(ω),

we have that

A‖ f ‖2L2(G) ≤
∑

ϕ∈A

∫

Ω∆

|〈THϕ(ω),TH f (ω)〉ℓ2(∆)|2dmΓ(ω) ≤ B‖ f ‖2L2(G). (3.5)

Using Proposition1.4.2, we can rewrite (3.5) as

A‖TH f ‖2 ≤
∑

ϕ∈A

∫

Ω∆

|〈THϕ(ω),TH f (ω)〉ℓ2(∆)|2dmΓ(ω) ≤ B‖TH f ‖2. (3.6)

Now,

‖TH f ‖2 =
∫

Ω∆

χW(ω)‖Pωd0‖2ℓ2(∆)dmΓ(ω)

and if we integrate in (3.4) overW, we obtain
∑

ϕ∈A

∫

Ω∆

|〈THϕ(ω), χW(ω)Pωd0〉ℓ2(∆)|2 dmΓ(ω) ≥ (B+ ε)‖TH f ‖2.

This is a contradiction with inequality (3.6). Therefore, we proved inequality (3.3).

(ii )⇒ (i) If now {THϕ(ω) : ϕ ∈ A} is a frame forJ(ω) a.eω ∈ Ω∆ with frame bounds
A andB, we have that

A‖a‖2
ℓ2(∆) ≤

∑

ϕ∈A
|〈THϕ(ω), a〉ℓ2(∆)|2 ≤ B‖a‖2

ℓ2(∆)

for all a ∈ J(ω). In particular, if f ∈ SH(A), by Theorem2.2.5, TH f (ω) ∈ J(ω) a.e.
ω ∈ Ω∆ and then,

A‖TH f (ω)‖2
ℓ2(∆) ≤

∑

ϕ∈A
|〈THϕ(ω),TH f (ω)〉ℓ2(∆)|2 ≤ B‖TH f (ω)‖2

ℓ2(∆) (3.7)
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a.e.ω ∈ Ω∆.
Thus, integrating (3.7) overΩ∆, we obtain

A‖TH f ‖2 ≤
∫

Ω∆

∑

ϕ∈A
|〈THϕ(ω),TH f (ω)〉ℓ2(∆)|2dmΓ(ω) ≤ B‖TH f ‖2. (3.8)

So,〈THϕ(.),TH f (.)〉ℓ2(∆) belongs toL2(Ω∆) for eachϕ ∈ A and the equalityR(ϕ) = T(ϕ)
can be obtained in a similar way as we did before.

Finally, since‖TH f ‖22 = ‖ f ‖2L2(G)
and

∑

h∈H

∑

ϕ∈A
|〈Thϕ, f 〉L2(G)|2 =

∑

ϕ∈A

∫

Ω∆

|〈THϕ(ω),TH f (ω)〉ℓ2(∆)|2dmΓ(ω),

inequality (3.8) implies thatEH(A) is a frame forSH(A) with frame boundsA andB. �

Theorem3.2.1reduces the problem of whenEH(A) is a frame forSH(A) to when the
fibers{THϕ(ω) : ϕ ∈ A} form a frame forJ(ω). The advantage of this reduction is that, for
example, whenA is a finite set, the fiber spaces{THϕ(ω) : ϕ ∈ A} are finite dimensional
while SH(A) has infinite dimension.

If A = {ϕ}, Theorem3.2.1generalizes a known result for the caseG = Rd to the context
of groups. This is stated in the next corollary, which was proved in [KR08]. We give here
a different proof.

Corollary 3.2.2. Let ϕ ∈ L2(Ω∆) and Eϕ defined as in (2.1). Then, the following are
equivalent:

(i) The set EH(ϕ) is a frame for SH(ϕ) with frame bounds A and B.

(ii) A ≤ ∑δ∈∆ |̂ϕ(ω + δ)|2 ≤ B, a.e.ω ∈ Eϕ.

Proof. Let J be the measurable range function associated toSH(ϕ). Then, by Theorem
2.2.5, J(ω) = span{THϕ(ω)} a.eω ∈ Ω∆. Thus, eacha ∈ J(ω) can be written asa =
λTHϕ(ω) for someλ ∈ C.

Therefore, by Theorem3.2.1, (i) holds if and only if, for almost everyω ∈ Ω∆ and for
all λ ∈ C,

A‖λTHϕ(ω)‖2
ℓ2(∆) ≤ |λ|

2‖THϕ(ω)‖4
ℓ2(∆) ≤ B‖λTHϕ(ω)‖2

ℓ2(∆). (3.9)

Then, since‖THϕ(ω)‖2
ℓ2(∆)
=
∑
δ∈∆ |̂ϕ(ω + δ)|2, (3.9) holds if and only if

A ≤
∑

δ∈∆
|̂ϕ(ω + δ)|2 ≤ B, a.e. ω ∈ Eϕ.

�

For the case of Riesz basis, we have an analogue result to Theorem3.2.1.
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Theorem 3.2.3.LetA be a countable subset of L2(G), J the measurable range function
associated to SH(A) and A≤ B positive constants. Then, they are equivalent:

(i) The set EH(A) is a Riesz basis for SH(A) with constants A and B.

(ii) For almost everyω ∈ Ω∆, the set{THϕ(ω) : ϕ ∈ A} ⊆ ℓ2(∆) is a Riesz basis for
J(ω) with constants A and B.

For the proof we will need the next lemma.

Lemma 3.2.4.For each m∈ L∞(Ω∆) there exists a sequence of trigonometric polynomials
{Pk}k∈N such that:

(i) Pk(ω)→ m(ω), a.e.ω ∈ Ω∆,

(ii) There exists C> 0, such that‖Pk‖∞ ≤ C, for all k ∈ N.

Proof. By Lemma1.1.15, taking into account Remark1.1.14, we have that the trigono-
metric polynomials are dense inC(Ω∆).

By Lusin’s Theorem ([WZ77, Theorem 4.20]), for eachk ∈ N, there exists a closed
setEk ⊆ Ω∆ such thatmΓ(Ω∆ \ Ek) < 2−k andm|Ek is a continuous function wherem|Ek

denotes the functionm restricted toEk.

SinceΩ∆ is compact,Ek is compact as well. Therefore,m|Ek is bounded.

Let m1,m2 : Ek → R be continuous function such thatm|Ek = m1 + im2. As a conse-
quence of Tietze’s Extension Theorem (see [Mun75]), it is possible to extendm1 andm2,
continuously to allΩ∆ keeping their norms inL∞(Ek). Let us call the extensionsm1 and
m2 and letmk = m1 + im2. Then, we have:

(1) mk|Ek = m|Ek,

(2) ‖mk‖∞ ≤ ‖m1‖∞ + ‖m2‖∞ ≤ ‖m1‖∞ + ‖m2‖∞ ≤ 2‖m‖∞.

Now, by Lemma1.1.15, there exists a trigonometric polynomialPk such that‖Pk −
mk‖∞ < 2−k. So,

(a) |Pk(ω) −m(ω)| < 2−k, for all ω ∈ Ek,

(b) ‖Pk‖∞ ≤ ‖Pk −mk‖∞ + ‖mk‖∞ ≤ 2−k
+ 2‖m‖∞ ≤ 1+ 2‖m‖∞.

Repeating this argument for eachk ∈ N, we obtain a sequence{Pk}k∈N of trigonometric
polynomials and a sequence{Ek}k∈N of sets, which satisfy conditions (a) and (b).

Let E = ∪∞j=1 ∩∞k= j Ek. It is a straightforward to see thatmΓ(Ω∆ \ E) = 0. Let us prove
that if ω ∈ E, Pk(ω) → m(ω), for k → ∞. Sinceω ∈ E, there existsk0 ∈ N for which
ω ∈ Ek, ∀ k ≥ k0. Then, for allk ≥ k0, we obtain that|Pk(ω)−m(ω)| = |Pk(ω)−mk(ω)| <
2−k → 0, whenk→ ∞. This proves part (i) of this lemma and takingC := 1+ 2‖m‖∞ we
have that (ii ) holds. �
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Proof of Theorem3.2.3. SinceSH(A) = spanEH(A) and, by Theorem2.2.5, J(ω) =
span{THϕ(ω) : ϕ ∈ A}, we only need to show thatEH(A) is a Riesz sequence forSH(A)
with constantsA andB if and only if for almost everyω ∈ Ω∆, the set{THϕ(ω) : ϕ ∈
A} ⊆ ℓ2(∆) is a Riesz sequence forJ(ω) with constantsA andB.

For the proof of the equivalence in the theorem, we will use the following reasoning.

Let {aϕ,h}(ϕ,h)∈A×H be a sequence of finite support and letPϕ be the trigonometric poly-
nomials defined by

Pϕ(ω) =
∑

h∈H
aϕ,hηh(ω),

with ω ∈ Ω∆ andηh as in Proposition1.1.19.

Note that, since{aϕ,h}(ϕ,h)∈A×H has finite support, only a finite number of the polynomials
Pϕ are not zero.

Now, as a consequence of Proposition1.4.2we have

‖
∑

(ϕ,h)∈A×H

aϕ,hThϕ‖2L2(G) = ‖
∑

(ϕ,h)∈A×H

aϕ,hTHThϕ‖2L2(Ω∆,ℓ2(∆))

=

∫

Ω∆

‖
∑

(ϕ,h)∈A×H

aϕ,h(−h, ω)THϕ(ω)‖2
ℓ2(∆) dmΓ(ω)

=

∫

Ω∆

‖
∑

ϕ∈A
Pϕ(ω)THϕ(ω)‖2

ℓ2(∆) dmΓ(ω).

(3.10)

Furthermore, by Lemma1.1.21,
∑

h∈H
|aϕ,h|2 = ‖{aϕ,h}h∈H‖2ℓ2(H) = ‖Pϕ‖2L2(Ω∆),

and adding overA, we obtain
∑

(ϕ,h)∈A×H

|aϕ,h|2 =
∑

ϕ∈A
‖Pϕ‖2L2(Ω∆). (3.11)

(ii )⇒ (i) If we suppose that for almost everyω ∈ Ω∆, {THϕ(ω) : ϕ ∈ A} ⊆ ℓ2(∆) is a
Riesz sequence forJ(ω) with constantsA andB,

A
∑

ϕ∈A
|aϕ|2 ≤ ‖

∑

ϕ∈A
aϕTHϕ(ω)‖2

ℓ2(∆) ≤ B
∑

ϕ∈A
|aϕ|2 (3.12)

for all {aϕ}ϕ∈A with finite support.

In particular, the above inequality holds for{aϕ}ϕ∈A = {Pϕ(ω)}ϕ∈A. Now, in (3.12), we
can integrate overΩ∆ with {aϕ}ϕ∈A = {Pϕ(ω)}ϕ∈A, in order to obtain

A
∑

ϕ∈A
‖Pϕ‖2L2(Ω∆) ≤

∫

Ω∆

‖
∑

ϕ∈A
Pϕ(ω)THϕ(ω)‖2

ℓ2(∆) dmΓ(ω)

≤ B
∑

ϕ∈A
‖Pϕ‖2L2(Ω∆).

(3.13)
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Using equations (3.10) and (3.11) we can rewrite (3.13) as

A
∑

(ϕ,h)∈A×H

|aϕ,h|2 ≤ ‖
∑

(ϕ,h)∈A×H

aϕ,hThϕ‖2L2(G) ≤ B
∑

(ϕ,h)∈A×H

|aϕ,h|2.

ThereforeEH(A) is a Riesz sequence ofSH(A) with constantsA andB.

(i)⇒ (ii ) We want to prove that, for everya = {aϕ}ϕ∈A ∈ ℓ2(A) with finite support, we
have a.e.ω ∈ Ω∆

A
∑

ϕ∈A
|aϕ|2 ≤ ‖

∑

ϕ∈A
aϕTHϕ(ω)‖2

ℓ2(∆) ≤ B
∑

ϕ∈A
|aϕ|2. (3.14)

Let us suppose that (3.14) fails. Then, using a similar argument as in Theorem3.2.1,
we can see that there exista = {aϕ}ϕ∈A ∈ ℓ2(A) with finite support, a measurable set
W ⊆ Ω∆ with mΓ(W) > 0 andε > 0 such that

‖
∑

ϕ∈A
aϕTHϕ(ω)‖2

ℓ2(∆) > (B+ ε)
∑

ϕ∈A
|aϕ|2, ∀ ω ∈W (3.15)

or
‖
∑

ϕ∈A
aϕTHϕ(ω)‖2

ℓ2(∆) < (A− ε)
∑

ϕ∈A
|aϕ|2, ∀ ω ∈W. (3.16)

With a = {aϕ}ϕ∈A andW, we define for eachϕ ∈ A, mϕ := aϕχW. Thus,mϕ ∈ L∞(Ω∆)
and only finitely many of these functions are not null.

By Lemma3.2.4, for eachϕ ∈ A there exists a trigonometric polynomial sequence
{Pϕ

k}k∈N such that

(i) Pϕ

k → mϕ,

(ii) ‖Pϕ
k‖∞ ≤ 1+ 2‖mϕ‖∞, ∀ k ∈ N.

SinceEH(A) is a Riesz sequence forSH(A) with constantsA andB,

A
∑

(ϕ,h)∈A×H

|aϕ,h|2 ≤ ‖
∑

(ϕ,h)∈A×H

aϕ,hThϕ‖2L2(G)

≤ B
∑

(ϕ,h)∈A×H

|aϕ,h|2,

for each sequence{aϕ,h}(ϕ,h)∈A×H with finite support.

Now, for eachk ∈ N take{aϕ,h}(ϕ,h)∈A×H to be the sequence formed with the coefficients
of the polynomials{Pϕ

k}ϕ∈A.

Then, using (3.10) and (3.11), we have for eachk ∈ N

A
∑

ϕ∈A
‖Pϕ

k‖
2
L2(Ω∆) ≤

∫

Ω∆

‖
∑

ϕ∈A
Pϕ

k(ω)THϕ(ω)‖2
ℓ2(∆) dmΓ(ω) ≤ B

∑

ϕ∈A
‖Pϕ

k‖
2
L2(Ω∆). (3.17)
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Therefore, sincemΓ(Ω∆) < ∞ and by the Dominated Convergence Theorem ([WZ77,
Theorem 5.36]), inequality (3.17) can be extended tomϕ as

A
∑

ϕ∈A
‖mϕ‖2L2(Ω∆) ≤

∫

Ω∆

‖
∑

ϕ∈A
mϕ(ω)THϕ(ω)‖2

ℓ2(∆) dmΓ(ω) ≤ B
∑

ϕ∈A
‖mϕ‖2L2(Ω∆). (3.18)

So, if (3.15) occurs, integrating overΩ∆ we obtain
∫

Ω∆

‖
∑

ϕ∈A
mϕ(ω)THϕ(ω)‖2

ℓ2(∆)|
2 dmΓ(ω) > (B+ ε)

∫

Ω∆

∑

ϕ∈A
|mϕ(ω)|2 dmΓ,

which contradicts inequality (3.18). We can proceed analogously if (3.16) occurs. Hence,
(3.14) holds.

�

For the case of principalH-invariant spaces we have the following corollary.

Corollary 3.2.5. Letϕ ∈ L2(Ω∆). Then, the following are equivalent:

(i) The set EH(ϕ) is a Riesz basis for SH(ϕ) with constants A and B.

(ii) A ≤ ∑δ∈∆ |̂ϕ(ω + δ)|2 ≤ B, a.e.ω ∈ Ω∆.

Proof. The proof is a straightforward consequence of Theorem3.2.3and Theorem2.2.5.
�

We now want to give another characterization of when the setEH(A) is a frame (Riesz
sequence) forSH(A) with constantsA andB. For this we will work with the synthesis
and analysis operators introduced inSection 3.1.

Let us consider a subsetA = {ϕi : i ∈ I } of L2(G) whereI is a countable set.

Fix ω ∈ Ω∆. Then, we can formally define the synthesis operator associated toA atω,
KA(ω) : ℓ2(I ) → ℓ2(∆) as

KA(ω)c =
∑

i∈I
ciTHϕi(ω),

and the analysis operatorK∗A(ω), K∗A(ω) : ℓ2(∆)→ ℓ2(I ) as

K∗A(ω)a = (〈THϕi(ω), a〉ℓ2(∆))i∈I .

Recall that, as we have said inSection 3.1, KA(ω) and K∗A(ω) are well defined and
bounded if and only if{THϕi(ω) : i ∈ I } is a Bessel sequence.

Definition 3.2.6. Let A = {ϕi : i ∈ I } ⊆ L2(G) be a countable subset andKA(ω) and
K∗A(ω) the synthesis and analysis operators. We define theGramian of A atω ∈ Ω∆ as
the operatorGA(ω) : ℓ2(I ) → ℓ2(I ) given byGA(ω) = K∗A(ω)KA(ω), and we also define
the dual Gramian of A at ω ∈ Ω∆ as the operator̃GA(ω) : ℓ2(∆) → ℓ2(∆) given by
G̃A(ω) = KA(ω)K∗A(ω).
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Note that, when{THϕi(ω) : i ∈ I } is a frame,GA(ω) is precisely the frame operator
associated to{THϕi(ω) : i ∈ I }.

The GramianGA(ω) can be associated with the (possible) infinite matrix

GA(ω) =
(∑

δ∈∆
ϕ̂i(ω + δ)ϕ̂ j(ω + δ)

)
i, j∈I

since〈GA(ω)ei , ej〉 = 〈THϕi(ω),THϕ j(ω)〉, where{ei}i∈I is the standard basis forℓ2(I ). In
a similar way, considering the canonical basis{eδ}δ∈∆ for ℓ2(∆), we can associate the dual
GramianG̃A(ω) with the matrix

G̃A(ω) =
(∑

i∈I
ϕ̂i(ω + δ)ϕ̂i(ω + δ′)

)
δ,δ′∈∆

.

Remark3.2.7. The operatorKA(ω) (K∗A(ω)) is bounded if and only ifGA(ω) (G̃A(ω)) is
bounded. In that case we have‖KA(ω)‖2 = ‖K∗A(ω)‖2 = ‖GA(ω)‖ = ‖G̃A(ω)‖.

Now we will give a characterization of whenEH(A) is a frame (Riesz sequence) for
SH(A) in terms of the GramianGA(ω) and the dual GramiañGA(ω).

Proposition 3.2.8.LetA = {ϕi : i ∈ I } ⊆ L2(G) be a countable set. Then,

(1) The following are equivalent:

(a1) EH(A) is a Bessel sequence with constant B.

(b1) esssupω∈Ω∆‖GA(ω)‖ ≤ B.

(c1) esssupω∈Ω∆‖G̃A(ω)‖ ≤ B.

(2) The following are equivalent:

(a2) EH(A) is a frame for SH(A) with constants A and B.

(b2) For almost everyω ∈ Ω∆,

A‖a‖2 ≤ 〈G̃A(ω)a, a〉 ≤ B‖a‖2,

for all a ∈ span{THϕi(ω) : i ∈ I }.
(c2) For almost everyω ∈ Ω∆,

σ(G̃A(ω)) ⊆ {0} ∪ [A, B].

(3) The following are equivalent:

(a3) EH(A) is a Riesz sequence for SH(A) with constants A and B.

(b3) For almost everyω ∈ Ω∆,

A‖c‖2 ≤ 〈GA(ω)c, c〉 ≤ B‖c‖2,

for all c ∈ ℓ2(I ).
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(c3) For almost everyω ∈ Ω∆

σ(GA(ω)) ⊆ [A, B].

Proof. Taking into account that a version of Theorem3.2.1holds for Bessel sequence,
item (1) follows easily from Lemma3.1.4and Remark3.2.7.

In order to prove equivalences in (2), note that, for almostω ∈ Ω∆

〈G̃A(ω)a, a〉 = 〈K∗A(ω)a,K∗A(ω)a〉 =
∑

i∈I
|〈THϕi(ω), a〉|2 (3.19)

for all a ∈ ℓ2(∆). Then, equivalence between (a2) and (b2) is consequence of Theorem
3.2.1.

Let us prove now that (b2) holds in and only if (c2) holds. SinceG̃A(ω) is a self-

adjoint operator,ℓ2(∆) = Ker(G̃A(ω)) ⊕ Ran(G̃A(ω)). Furthermore, according to (3.19),
Ker(G̃A(ω)) = Ker(K∗A(ω)) and it is easy to see thatKer(K∗A(ω)) = J(ω)⊥, whereJ is the

measurable range function associated withSH(A). Consequently,J(ω) = Ran(G̃A(ω)).
We consider nowG̃A(ω)

∣∣∣
J(ω)

: J(ω)→ J(ω), the operator̃GA(ω) restricted toJ(ω). Then,
it can be proved that

σ(G̃A(ω)
∣∣∣
J(ω)

) ⊆ σ(G̃A(ω)) and σ(G̃A(ω)) \ {0} ⊆ σ(G̃A(ω)
∣∣∣
J(ω)

). (3.20)

On the other hand, if

M = sup
‖a‖=1,a∈J(ω)

〈G̃A(ω)
∣∣∣
J(ω)

a, a〉 and m= inf
‖a‖=1,a∈J(ω)

〈G̃A(ω)
∣∣∣
J(ω)

a, a〉,

it is well known thatσ(G̃A(ω)
∣∣∣
J(ω)

) ⊆ [m,M]. From this and (3.20) it follows that (b2)
implies (c2).

Let us suppose now thatσ(G̃A(ω)) ⊆ {0} ∪ [A, B]. Thus, by (3.20),

σ(G̃A(ω)
∣∣∣
J(ω)

) ⊆ {0} ∪ [A, B].

The statement (b2) will be proved once we prove that 0< σ(G̃A(ω)
∣∣∣
J(ω)

).

Since G̃A(ω)
∣∣∣
J(ω)

is self-adjoint operator, every isolated point of its spectrum is an
eigenvalue (this can be proved using continuous function calculus). Therefore, if 0∈
σ(G̃A(ω)

∣∣∣
J(ω)

), 0 must be an eigenvalue ofG̃A(ω)
∣∣∣
J(ω)

. Hence,Ker(G̃A(ω)
∣∣∣
J(ω)

) , 0 which

is a contradiction becauseKer(G̃A(ω)) = J(ω)⊥.

To prove equivalences in (3), let us observe that, for almostω ∈ Ω∆,

〈GA(ω)c, c〉 = 〈KA(ω)c,KA(ω)c〉 = ‖
∑

i∈I
ciTHϕi(ω)‖2. (3.21)

Thus, by Theorem3.2.3, we have that (a3) holds if an only if (b3) holds.



42 Frames and Riesz Bases forH-invariant Spaces

SinceGA(ω) is a self-adjoint operator,σ(GA(ω)) ⊆ [m′,M′] where

M′ = sup
‖c‖=1
〈GA(ω)c, c〉 and m′ = inf

‖c‖=1
〈GA(ω)c, c〉.

Therefore, it follows that (b3) holds if an only if (c3) holds and this finishes the proof.�

Note that Corollary3.2.2and Corollary3.2.5can also be obtained from the previous
proposition.

3.3 Decomposition ofH-invariant spaces

In this section, we show that everyH-invariant space can be decomposed into an orthog-
onal sum of principalH-invariant spaces. This can be easily obtained as a consequence
of Zorn’s Lemma as in [KR08]. The theorem that we present here, establishes a decom-
position ofH-invariant space with additional properties as in [Bow00].

We first need the following definition.

Definition 3.3.1. For anH-invariant spaceV ⊆ L2(G) we define thedimension function
of V as the map dimV : Ω∆ → N0 given by dimV(ω) = dim J(ω), whereJ is the range
function associated toV. We also define thespectrum of Vass(V) = {ω ∈ Ω∆ : J(ω) ,
0}.

Now we state the theorem which gives the orthogonal decomposition for H-invariant
spaces. We do not include its proof since it follows readily from theRd case (see [Bow00,
Theorem 3.3]).

Theorem 3.3.2.Let us suppose that V is an H-invariant space of L2(G). Then V can be
decomposed as an orthogonal sum

V =
⊕

n∈N
SH(ϕn),

where EH(ϕn) is a Parseval frame for SH(ϕn) and s(SH(ϕn+1)) ⊆ s(SH(ϕn)) for all n ∈ N.

Moreover,dimSH (ϕn)(ω) = ‖THϕn(ω)‖ℓ2(∆) for all n ∈ N, and

dimV(ω) =
∑

n∈N
‖THϕn(ω)‖ℓ2(∆), a.e.ω ∈ Ω∆.

The next example shows that there existH-invariant spaces without an orthonormal
basis of translates. However, we will deduce from Theorem3.3.2thatH-invariant spaces
have always frames of translates.

Example 3.3.3.Let ϕ ∈ L2(R) defined via the Fourier transform aŝϕ(ω) = χ[0, 12 ](ω) and
consider theZ-invariant space generated byϕ, SZ(ϕ).
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Suppose that there existsφ ∈ SZ(ϕ) with EZ(φ) = {Tkφ}k∈Z being an orthonormal basis
for SZ(ϕ). ThenSZ(ϕ) = SZ(φ), and by Corollary2.1.6, Eϕ = Eφ up to a set of zero
measure.

On the other hand, taking into account thatΩZ = [0, 1), from Corollary3.2.5we obtain
thatEφ = [0, 1).

Now, it is easy to check that

‖TZϕ(ω)‖2
ℓ2(Z) =


1 if ω ∈ [0, 1

2]

0 if ω ∈ (1
2, 1).

Thus,Eϕ = [0, 1
2] which is a contradiction. ThenSZ(ϕ) can not have an orthonormal basis

of the formEZ(φ) = {Tkφ}k∈Z for anyφ ∈ SZ(ϕ). �

We now present a result which shows that eachH-invariant space has a frame of trans-
lates. This result is well-known whenG = Rd and it was proved for the case whenV
is finitely generated by Ron and Shen in [RS95]. In that work they also provided a way
to construct a Parseval frame forSZd( f1, · · · , fn) ⊆ L2(Rd) in terms of the Gramian of
{ f1, · · · , fn}. This construction can be translated to the context of LCA groups using the
material that we have developed in this thesis. Here, we willgive a proof for the count-
ably generated case, which obviously includes the finitely generated case, based on the
decomposition ofH-invariant spaces stated in Theorem3.3.2.

Theorem 3.3.4.Let V be an H-invariant spaces of L2(G). Then, there existsA ⊆ G a
countable set such that{Thϕ : ϕ ∈ A, , h ∈ H} is a Parseval frame for V.

Proof. By Theorem3.3.2, V =
⊕

n∈N SH(ϕn), where EH(ϕn) is a Parseval frame for
SH(ϕn) for all n ∈ N. We will show that{Thϕn : n ∈ N, , h ∈ H} is a Parseval frame
for V.

Let f ∈ V and write f =
∑

n∈N fn where eachfn is the orthogonal projection off on
SH(ϕn). Then, sinceSH(ϕn) is orthogonal toSH(ϕm) if n , m, it follows that

‖ f ‖2L2(G) =

∑

n∈N
‖ fn‖2L2(G). (3.22)

On the other hand, sinceEH(ϕn) is a Parseval frame forSH(ϕn) for eachn ∈ N, we have
∑

h∈H
|〈 f ,Thϕn〉L2(G)|2 =

∑

h∈H
|〈 fn,Thϕn〉L2(G)|2 = ‖ fn‖2L2(G). (3.23)

Thus, adding over alln ∈ N in (3.23) and using (3.22) we have

‖ f ‖2L2(G) =

∑

n∈N

∑

h∈H
|〈 f ,Thϕn〉L2(G)|2,

and this proves that{Thϕn : n ∈ N, , h ∈ H} is a Parseval frame forV. �
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Extra invariance of H-invariant spaces

If φ(x) = χ[− 1
2 ,

1
2 ](x), thenSZ(φ) ⊆ L2(R) is a shift invariant space (SIS) with the property

of being invariant only under integer translations. In contrast to this SIS, the Paley-Wiener
space of functions that are bandlimited to [−1

2,
1
2] (see Example1.2.2) a is shift invariant

space which is invariant under every real translation. Moreover, there exist SIS with some
extra invariance that are not necessarily invariant under all real translations.

Shift invariant spaces in the real line with extra invariance have been characterized
by Aldroubi et al [ACHKM10]. First, they show that ifV is a SIS that is invariant under
translations other than integers, it holds that eitherV is invariant under any real translation
or V is invariant under translation on1nZ for somen ∈ N and it is not invariant under any
bigger subgroup. Then, they give several characterizations of those SIS that are also1

nZ-
invariant.

In this chapter, we want to study the problem of the extra invariance in the context
of general LCA groups. More precisely, ifH is a countable uniform lattice inG, we
investigate thoseH-invariant spaces ofL2(G), that are invariant under a closed subgroup
M of G containingH.

The difficulty here lies in the fact that we do not have an explicit structure of the sub-
group M, as the authors do have in [ACHKM10] (in that work, M is of the form 1

nZ).
However, we are able to show necessary and sufficient condition for anH-invariant space
to beM-invariant.

As a consequence of our results we prove that for each closed subgroupM of G con-
taining the latticeH, there exists anH-invariant spaceV that is exactlyM-invariant. That
is,V is not invariant under any other subgroupM′ containingM. We also obtain estimates
on the support of the Fourier transform of the generators of theH-invariant space, related
to its M-invariance.

Here and subsequentlyG will be an LCA group,H a countable uniform lattice inG
with ∆ its annihilator,Γ the dual group ofG andΩ∆ a measurable section of the quotient
Γ/∆. We choose the Haar measure of the groups involved here as follows. We setm∆ such
thatm∆({0}) = 1. Then we fixmΓ/∆ andmΓ in order to Weil’s formula of Theorem1.1.10
holds amongmΓ/∆, mΓ adm∆. Finally, we choosemG such that inversion formula holds
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for mG andmΓ.

The chapter is organized in the following way. InSection 4.1we prove that the set of
parametersx ∈ G that leave theH-invariant space invariant under translation byx forms
a closed subgroup ofG which containsH. Then, inSection 4.2we study the structure of
principal M-invariant spaces.Section 4.3contains the characterizations ofM-invariance
for generalH-invariant spaces. Some relevant applications of the results of Section 4.3
are given inSection 4.4. In Section 4.5we show how the result about extra invariance for
SIS inL2(Rd) with d > 1 can be obtained using the structure of the closed subgroupsof
Rd that containZd.

4.1 The invariance set

Let V ⊆ L2(G) be anH-invariant space, we define theinvariance setas

M = {x ∈ G : Tx f ∈ V, ∀ f ∈ V}. (4.1)

If A is a set of generators forV, it is easy to check thatm ∈ M if and only if Tmϕ ∈ V for
all ϕ ∈ A.

In case thatM = G, Wiener’s theorem (see [Hel64], [Sri64] and [HS64]) states that
there exists a measurable setE ⊆ Γ satisfying

V = { f ∈ L2(G) : sup(̂f ) ⊆ E}.

We are interested in describingV whenM is not allG. We will first study the structure of
the setM.

Proposition 4.1.1. Let V be an H-invariant space of L2(G) and let M be defined as in
(4.1). Then M is a closed subgroup of G containing H.

For the proof of this proposition we will need the following lemma. Recall that a
semigroup is a nonempty set with an associative additive operation.

Lemma 4.1.2.Let K be a closed semigroup of G containing H, then K is a group.

Proof. Let π be the quotient map fromG ontoG/H. SinceK is a semigroup containing
H, we have thatK + H = K, thus

π−1(π(K)) =
⋃

k∈K
k+ H = K + H = K. (4.2)

This shows thatπ(K) is closed inG/H and therefore compact.

By [HR79, Theorem 9.16], we have that a compact semigroup ofG/H is necessarily a
group, thusπ(K) is a group and consequentlyK is a group.

�
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Proof of Proposition4.1.1. SinceV is anH-invariant space,H ⊆ M.

We first proceed to show thatM is closed. Letx0 ∈ G and{xλ}λ∈Λ a net inM converging
to x0. Then

lim
λ
‖Txλ f − Tx0 f ‖L2(G) = 0.

SinceV is closed, it follows thatTx0 f ∈ V, thusx0 ∈ M.

It is easy to check thatM is a semigroup ofG, hence we conclude from Lemma4.1.2
thatM is a group.

�

4.2 The structure of principal M-invariant spaces

In this section we will use fiberization techniques and rangefunctions for a more general
setting than inChapter 2, since the subspaces will be invariant under a closed subgroup
which is not necessarily discrete.

The results fromSection 1.4of Chapter 1and fromChapter 2can be extended straight-
forwardly to the case in which the spaces are invariant undera closed subgroupM of G
containingH as follows.

First, we consider the following normalization for the HaarmeasuresmM∗ andmΓ/M∗ .
Note that, sinceH ⊆ M, M∗ ⊆ ∆ and, in particular,M∗ is discrete. Then, we fixmM∗ such
thatmM∗({0}) = 1 andmΓ/M∗ such that Weil’s formula of Theorem1.1.10holds amongmΓ,
mM∗ andmΓ/M∗ .

As M∗ ⊆ ∆ andM∗ is discrete, there exists a countable sectionN of ∆/M∗. Then, the
set given by

ΩM∗ =

⋃

σ∈N
Ω∆ + σ (4.3)

is aσ-finite measurable section for the quotientΓ/M∗. Using this section forΓ/M∗ it is
possible to defineL2(ΩM∗ , ℓ

2(M∗)), according to Definition1.3.5. We can also use this
section to define what a range function with respect toM is.

Definition 4.2.1. Let H be a uniform lattice onG andM a closed subgroup ofG contain-
ing H. A range function with respect to Mis any application

J : ΩM∗ −→ {closed subspaces ofℓ2(M∗)}.

The subspaceJ(ξ) is called thefiber spaceassociated toξ.

For a given range function with respect toM J, we associate to eachξ ∈ ΩM∗ the
orthogonal projection ontoJ(ξ), Pξ : ℓ2(M∗)→ J(ξ).

A range function with respect toM J is measurableif for eacha ∈ ℓ2(M∗) the function
ξ 7→ Pξa, fromΩM∗ into ℓ2(M∗) is strongly measurable.
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With the normalization of the Haar measures that we have stated, it can be proved the
following proposition which compiles extensions of Proposition 1.4.2, Proposition2.2.4
and Theorem2.2.5.

Proposition 4.2.2.

i) The mappingTM : L2(G) −→ L2(ΩM∗ , ℓ
2(M∗)) defined as

TM f (ξ) = { f̂ (ξ +m∗)}m∗∈M∗

is an isomorphism that satisfies‖TM f ‖2 = ‖ f ‖L2(G).

ii) Let V be a closed subspace of L2(G). Then V is an M-invariant space if and only if
there exists J a measurable range function with respect to M such that

V = { f ∈ L2(G) : TM f (ξ) ∈ J(ξ) for a.e.ξ ∈ ΩM∗}.

Moreover, if V is an M-invariant space generated by a countable setA, the mea-
surable range function with respect to M J associated with V is given by

J(ξ) = span{TMϕ(ξ) : ϕ ∈ A}.

iii) Let V be an M-invariant space and letPV and Pξ be the orthogonal projections
onto V and J(ξ) respectively, where J is the measurable range function withrespect
to M associated to V. Then, for every g∈ L2(G),

TM(PVg)(ξ) = Pξ(TMg(ξ)) a.e.ξ ∈ ΩM∗ .

Remark4.2.3. Since in this context coexistH-invariance andM-invariance we need to
distinguish fibers with respect toH form fibers with respect toM. For this, we will refer
toTH f (ω) asH-fiber and toTM f (ξ) asM-fiber.

4.2.1 Principal M-invariant Spaces

We prove now the following characterization of principalM-invariant spaces. This
result extends Theorem2.1.1to the non-discrete case.

Theorem 4.2.4.Let f ∈ L2(G) and M a closed subgroup of G containing H. If g∈ SM( f ),
then there exists an M∗-periodic functionη such that̂g = η f̂ .

Conversely, ifη is an M∗-periodic function such thatη f̂ ∈ L2(Γ), then the function g
defined bŷg = η f̂ belongs to SM( f ).

Proof. Let us callV = SM( f ) and letPV andPξ be the orthogonal projections ontoV and
J(ξ) respectively. Giveng ∈ V, we first defineηg in ΩM∗ as

ηg(ξ) =



〈TMg(ξ),TM f (ξ)〉
ℓ2(M∗)

‖TM f (ξ)‖2
ℓ2(M∗)

if ξ ∈ Ẽ f

0 otherwise,
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whereẼ f is the set{ξ ∈ ΩM∗ : ‖TM f (ξ)‖2
ℓ2(M∗)

, 0}. Then, since{ΩM∗ +m∗}m∗∈M∗ forms a
partition ofΓ, we can extendηg to all Γ in anM∗-periodic way.

Now, by Proposition4.2.2we have that

TMg(ξ) = TM(PVg)(ξ) = Pξ(TMg(ξ)) = ηg(ξ)TM f (ξ).

Sinceηg is anM∗-periodic function,̂g = ηg f̂ as we wanted to prove.

Conversely, if̂g = η f̂ , with η anM∗-periodic function, thenTMg(ξ) = η(ξ)TM f (ξ). By
Proposition4.2.2, g ∈ V. �

Remark4.2.5. Observe that Theorem4.2.4has been proved using Proposition4.2.2. In
the same way, Theorem2.1.1can be obtained from Theorem2.2.5. However, in Section
2.1 we have given a proof of Theorem2.1.1similar to the one given for Theorem4.2.4
which does not use the characterization ofH-invariant spaces stated in Theorem2.2.5.

4.3 Characterization of M-invariance

If H ⊆ M ⊆ G, whereH is a countable uniform lattice inG andM is a closed subgroup
of G, we are interested in describing when anH-invariant spaceV is alsoM-invariant.

LetΩ∆ be a measurable section ofΓ/∆ andN a countable section of∆/M∗. Forσ ∈ N
we define the setBσ as

Bσ = Ω∆ + σ + M∗ =
⋃

m∗∈M∗
(Ω∆ + σ) +m∗. (4.4)

Therefore, eachBσ is an M∗-periodic set. Here, byM∗-periodic set we mean a set for
which its characteristic function is anM∗-periodic function.

SinceΩ∆ tiles Γ by ∆ translations andN tiles ∆ by M∗ translations, it follows that
{Bσ}σ∈N is a partition ofΓ.

In order to understand this construction we give two basic examples of the partition
{Bσ}σ∈N .

Example 4.3.1.

(1) Let H = Z andM = 1
nZ ⊆ R, thenM∗ = nZ, Ω∆ = [0, 1) andN = {0, . . . , n− 1}.

Givenσ ∈ {0, . . . , n− 1}, we have

Bσ =

⋃

m∗∈nZ
([0, 1)+ σ) +m∗ =

⋃

j∈Z
[σ, σ + 1)+ n j.

Figure4.1 illustrates the partition forn = 4. In the picture, the black dots represent the
setN . The setB2 is the one which appears in gray.

(2) Let H = Z2 and M =
1
2Z × R ⊆ R2, thenΩ∆ = [0, 1)2, M∗ = 2Z × {0} and

N = {0, 1} × Z.
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| | | | ||||||||

0 1 2 3 4 5 6 7 8-1-2-3-4-5-6-7

Ω∆
b b b b

Figure 4.1:Partition of the real line forM = 1
4Z.

So, the setsB(i, j) are

B(i, j) =

⋃

k∈Z

(
[0, 1)2 + (i, j)

)
+ (2k, 0)

where (i, j) ∈ N . See Figure4.2, where the setsB(0,0), B(1,1) andB(−1,−1) are represented
by the squares painted in light gray, gray and dark gray respectively. As in the previous
figure, the setN is represented by the black dots.
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b b
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b b

Figure 4.2:Partition of the plane forM = 1
2Z × R.

4.3.1 Characterization ofM-invariance in terms of subspaces

Let V ⊆ L2(G) be anH-invariant space. Now, for eachσ ∈ N , we define, using the
partition{Bσ}σ∈N , the subspaces

Uσ = { f ∈ L2(G) : f̂ = χBσĝ, with g ∈ V}. (4.5)

The main theorem of this section characterizes theM-invariance ofV in terms of the
subspacesUσ.

Theorem 4.3.2.If V ⊆ L2(G) is an H-invariant space and M is a closed subgroup of G
containing H, then the following are equivalent.
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i) V is M-invariant.

ii) Uσ ⊆ V for all σ ∈ N .

Moreover, in case any of these hold we have that V is the orthogonal direct sum

V =
⊕̇

σ∈N
Uσ.

Now we state a lemma that we need to prove Theorem4.3.2.

Lemma 4.3.3.Let V be an H-invariant space andσ ∈ N . Assume that the subspace Uσ

defined in (4.5.15) satisfies Uσ ⊆ V. Then, Uσ is an M-invariant space and in particular
is H-invariant.

Proof. Let us prove first thatUσ is closed. Suppose thatf j ∈ Uσ and f j → f in L2(G).
SinceUσ ⊆ V andV is closed,f must be inV. Further,

‖ f̂ j − f̂ ‖22 = ‖( f̂ j − f̂ )χBσ‖22 + ‖( f̂ j − f̂ )χBc
σ
‖22 = ‖ f̂ j − f̂χBσ‖22 + ‖ f̂χBc

σ
‖22.

Since the left-hand side converges to zero, we must have thatf̂χBc
σ
= 0 a.e. γ ∈ Γ.

Then, f̂ = f̂χBσ . Consequentlyf ∈ Uσ, soUσ is closed.

Now we show thatUσ is M-invariant. Givenm ∈ M and f ∈ Uσ, we will prove that
(m, ·) f̂ (·) ∈ Ûσ.

Since f ∈ Uσ, there existsg ∈ V such that̂f = χBσĝ. Hence,

(m, ·) f̂ (·) = (m, ·)(χBσĝ)(·) = χBσ(·)((m, ·)̂g(·)). (4.6)

If we were able to find an∆-periodic functionℓm verifying

(m, γ) = ℓm(γ) a.e.γ ∈ Bσ, (4.7)

then, we can rewrite (4.6) as

(m, ·) f̂ (·) = χBσ(·)(ℓm̂g)(·).

Thus, sinceℓm is∆-periodic, Theorem2.1.1gives usℓm̂g ∈ ŜH(g) ⊆ V̂ and so, (m, ·) f̂ (·) ∈
Ûσ.

Now we define the functionℓm as follows. For eachδ ∈ ∆, set

ℓm(ω + δ) = (m, ω + σ) a.e.ω ∈ Ω∆. (4.8)

It is clear thatℓm is ∆-periodic.

Since (m, ·) is M∗-periodic,

(m, ω + σ) = (m, ω + σ +m∗) a.e.ω ∈ Ω∆, ∀m∗ ∈ M∗.

Thus, (4.7) holds.

Note that, sinceH ⊆ M, theH-invariance ofUσ is a consequence of theM-invariance.

�
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Proof of Theorem4.3.2. i)⇒ ii): Fix σ ∈ N and f ∈ Uσ. Then f̂ = χBσĝ for someg ∈ V.
SinceχBσ is anM∗-periodic function, by Theorem4.2.4, we have thatf ∈ SM(g) ⊆ V, as
we wanted to prove.

ii)⇒ i): Suppose thatUσ ⊆ V for all σ ∈ N . Note that Lemma4.3.3 implies that
Uσ is M-invariant, and that, since the setsBσ are disjoint, the subspacesUσ are mutually
orthogonal.

Suppose thatf ∈ V. Then, since{Bσ}σ∈N is a partition ofΓ, it follows that f̂ =∑
σ∈N f̂χBσ. Then f ∈

⊕̇
σ∈N Uσ and consequently,V is the orthogonal direct sum

V =
⊕̇

σ∈N
Uσ.

As eachUσ is M-invariant, so isV. �

To finish this section we want to point out that the subspacesUσ are not necessarily
closed. To see this we need to introduce some useful notationthat we will also use in the
remainder of this chapter.

If f ∈ L2(G) andσ ∈ N , we define the functionf σ as

f̂ σ = f̂χBσ .

LetPσ be the orthogonal projection ontoSσ, where

Sσ = { f ∈ L2(G) : supp(̂f ) ⊆ Bσ}. (4.9)

Observe that the subspacesSσ defined above are invariant under any translation inG. In
particular they areH-invariant spaces.

It is easy to see thatf σ = Pσ f . Then, it follows from the definition ofUσ that

Uσ = Pσ(V) = { f σ : f ∈ V}. (4.10)

It is a general result that ifM and N are closed subspaces of a Hilbert spacesH ,
then,M + N is closed if and only ifPN⊥(M) is closed, where as usual,PN⊥ denotes the
orthogonal projection ontoN⊥ andN⊥ denotes the orthogonal complement ofN in H
(see [Kat95]).

Using this result, we have thatUσ = Pσ(V) is closed if and only ifV + S⊥σ is closed.

In order to understand whenV+S⊥σ is closed we introduce the notion of angle between
closed subspaces (for details see [Deu95]).

Let U andV be closed subspaces of a Hilbert spacesH . TheFriedrichs anglebetween
U andV is the angle in [0, π2] whose cosine is

c[U,V] := sup{|〈u, v〉| : u ∈ U ⊖ V, v ∈ V ⊖ U and‖u‖ ≤ 1, ‖v‖ ≤ 1}.

Here,U⊖V means the orthogonal complement ofU∩V in U. That isU⊖V = U∩(U∩V)⊥.
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Then, it is known thatU + V is closed if and only ifc[U,V] < 1.

In case whenH = L2(G) andU andV are H-invariant spaces the Friedrichs angle
betweenU andV can be formulated in terms ofH-fibers as follows (see [AC09, Lemma
6.8]). If JU andJV denote the measurable range functions associated toU andV respec-
tively then

c[U,V] = esssup{c[JU(ω), JV(ω)] : ω ∈ Ω∆}.

Now we are able to give an example which shows that the spacesUσ can be not closed.

Example 4.3.4.Let us consider theZ-invariant space generated byφ(x) = χ[− 1
2 ,

1
2 ](x),

V := SZ(φ) and letM =
1
2Z. We will see that the subspaceU0 = { f ∈ L2(R) : f̂ =

χB0̂g, with g ∈ V}, whereB0 = [0, 1) + 2Z, is not closed. For this, we will prove that
c[V,S⊥0 ] = 1.

First, note thatS⊥0 = S1 = { f ∈ L2(R) : supp(̂f ) ⊆ B1}, with B1 being the set
[0, 1)+ 1+ 2Z.

Now, if JV is the measurable range function associated toV, then JV(ω) =
span{TZφ(w)} for a.e. ω ∈ [0, 1). Since φ̂(ω) = sin(πω)

πω
:= sinc(ω), we rewrite

JV(ω) = span{{sinc(ω + j)} j∈Z}.
On the other hand, ifJS1 is the measurable range function associated toS1, one can

easily check thatJS1(ω) = span{e2k+1 : k ∈ Z}.
Then, for eachω ∈ [0, 1) fixed, we have

c[JV(ω), JS1(ω)] = sup
k∈Z
|〈TZφ(ω), e2k+1〉| = sup

k∈Z
|sinc(ω + 2k+ 1)| ≥ |sinc(ω − 1)|. (4.11)

Thus, taking essential supreme overω ∈ [0, 1) in equation (4.11) it follows

c[V,S1] = 1.

4.3.2 Characterization ofM-invariance in terms of H-fibers

In this section we will first express the conditions of Theorem 4.3.2in terms ofH-fibers.
Then, we will give a useful characterization of theM-invariance for a finitely generated
H-invariant space in terms of the Gramian.

As we have say in the last section, the subspacesSσ defined in (4.9) areH-invariant
spaces. Then, we will denote byPσ

ω the orthogonal projections associated to the range
function ofSσ.

Lemma 4.3.5. If V = SH(A) withA a countable subset of L2(G), then

{TH f (ω) : f ∈ Uσ} = span{TH(ϕσ)(ω) : ϕ ∈ A},

for a.e.ω ∈ Ω∆.
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Proof. Sinceϕσ ∈ Uσ for all ϕ ∈ A, it holds thatspan{TH(ϕσ)(ω) : ϕ ∈ A} ⊆
{TH f (ω) : f ∈ Uσ}.

To prove the other inclusion, observe that, sinceUσ = Pσ(V),

{TH f (ω) : f ∈ Uσ} = {TH(Pσ f )(ω) : f ∈ V}.

Now, by Proposition4.2.2, we haveTH(Pσ f )(ω) = Pσ
ω(TH f (ω)) for a.e.ω ∈ Ω∆. Thus,

{TH(Pσ f )(ω) : f ∈ V} = {Pσ
ω(TH f (ω)) : f ∈ V} = Pσ

ω{TH f (ω) : f ∈ V}

If J is the measurable range function associated withV as anH-invariant spaces, using
(2.5), it follows that

Pσ
ω{TH f (ω) : f ∈ V} ⊆ Pσ

ω(span{THϕ(ω) : ϕ ∈ A}) ⊆ span{Pσ
ω(THϕ(ω)) : ϕ ∈ A}),

where the last inclusion is due to the continuity and linearity of Pσ
ω.

Then, using once again Proposition4.2.2, we obtain

span{Pσ
ω(THϕ(ω)) : ϕ ∈ A}) = span{TH(Pσϕ)(ω) : ϕ ∈ A})

which finishes the proof. �

An important thing to point out is, sinceUσ = Pσ(V), Uσ is invariant under trans-
lations alongH. Nevertheless, it is not necessarily closed (see Example4.3.4). Then,
in general, it is not anH-invariant space. On the other hand, the mappingJUσ

from Ω∆
to {closed subspaces ofℓ2(∆)} which assigns to eachω the subspace defined in Lemma
4.3.5is a measurable range function. As a comment we want to remarkthat, whenUσ is
an H-invariant space, the range functionJUσ

is precisely the measurable range function
associated withUσ through Theorem2.2.5.

Combining Theorems4.3.2and2.2.5with Lemma4.3.5we obtain the following result.

Proposition 4.3.6. Let V be an H-invariant space generated by a countable setA ⊆
L2(G) and denote by JV the measurable range function associated to V through Theorem
2.2.5. The following statements are equivalent.

i) V is M-invariant.

ii) TH(ϕσ)(ω) ∈ JV(ω) a.e.ω ∈ Ω∆ for all ϕ ∈ A andσ ∈ N .

Proof. i)⇒ ii): Since V is M-invariant , Theorem4.3.2givesUσ ⊆ V for all σ ∈ N .
Using (4.10), we obtain thatϕσ ∈ V for all σ ∈ N . Then ii) follows from Theorem2.2.5.

ii)⇒ i): By the hypothesis and Lemma4.3.5 it follows that {TH f (ω) : f ∈ Uσ} ⊆
JV(ω) for a.e.ω ∈ Ω∆. Hence, using Theorem2.2.5, Uσ ⊆ V. Thus,V is M-invariant as a
consequence of Theorem4.3.2. �
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Let us now turn our attention to the finitely generated case. LetΦ = {ϕ1, . . . , ϕℓ} be a
finite collection of functions inL2(G). Then, according to Definition3.2.6, the Gramian
of Φ is theℓ × ℓ matrix of∆-periodic functions

[GΦ(ω)] i j =

〈
THϕi(ω),THϕ j(ω)

〉

=

∑

δ∈∆
ϕ̂i(ω + δ) ϕ̂ j(ω + δ) (4.12)

for ω ∈ Ω∆.
Now we give a slightly simpler characterization ofM-invariance for the finitely gener-

ated case. Here we use the notation dimUσ
(ω) for dim(span{TH(ϕσ)(ω) : ϕ ∈ Φ}).

Theorem 4.3.7.If V is an H-invariant space, finitely generated byΦ, then the following
statements are equivalent.

i) V is M-invariant.

ii) For almost everyω ∈ Ω∆, dimV(ω) =
∑
σ∈N dimUσ

(ω).

iii) For almost everyω ∈ Ω∆, rank[GΦ(ω)] =
∑
σ∈N rank[GΦσ(ω)], whereΦσ = {ϕσ :

ϕ ∈ Φ}.

For the proof of this theorem we need the following result which is a straightforward
consequence of Theorem2.2.5.

Proposition 4.3.8.Let V1 and V2 be H-invariant spaces. If V= V1 ⊕̇V2, and JV, JV1, JV2

denote the measurable range functions associated to V, V1 and V2 respectively, then

JV(ω) = JV1(ω) ⊕̇ JV2(ω), a.e.ω ∈ Ω∆.

The converse of this proposition is also true, but it will notbe needed.

Remark4.3.9. Note that the fibers

TH(ϕσ)(ω) = {χBσ(ω + δ)ϕ̂(ω + δ)}δ∈∆

can be described in a simple way as

χBσ(ω + δ)ϕ̂(ω + δ) =


ϕ̂(ω + δ) if δ ∈ σ + M∗

0 otherwise.

Therefore, ifσ , σ′, span{TH(ϕσ)(ω) : ϕ ∈ A} andspan{TH(ϕσ
′
)(ω) : ϕ ∈ A} are

orthogonal subspaces for a.e.ω ∈ Ω∆.
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Proof. i)⇒ ii): By Theorem4.3.2, V = ⊕̇σ∈N Uσ andUσ is anH-invariant space for all
σ ∈ N . Then, ii) follows from Proposition4.3.8.

ii)⇒ i): Let JV be the measurable range function associated toV. Since{Bσ}σ∈N is a
partition ofΓ, V ⊆ ⊕̇σ∈N Uσ. Then, by Remarks4.3.9we have that

JV(ω) ⊆ ⊕̇
σ∈N

span{TH(ϕσ)(ω) : ϕ ∈ Φ}.

Due toV is finitely generated, we use ii) to obtain thatJV(ω) = ⊕̇σ∈N span{TH(ϕσ)(ω) :
ϕ ∈ Φ}. The proof follows as a consequence of Proposition4.3.6.

The equivalence between ii) and iii) follows from the straightforward equality
dimV(ω) = rank[GΦ(ω)]. �

4.4 Applications of M-invariance

In this section we estimate the size of the supports of the Fourier transforms of the gen-
erators of a finitely generatedH-invariant space which is alsoM-invariant. Finally, given
M a closed subgroup ofG containingH, we will construct anH-invariant spaceV which
is exactlyM-invariant. That is,V is not invariant under any other closed subgroup ofG
containingH.

Theorem 4.4.1.Let V be an H-invariant space finitely generated by the set{ϕ1, . . . , ϕℓ},
and define

E j = {ω ∈ Ω∆ : dimV(ω) = j}, j = 0, . . . , ℓ.

If V is M-invariant andΩ′M∗ is any measurable section ofΓ/M∗, then

mΓ
({γ ∈ Ω′M∗ : ϕ̂i(γ) , 0}) ≤

ℓ∑

j=0

mΓ(E j) j ≤ ℓ,

for each i= 1, . . . , ℓ.

Proof. The measurability of the setsE j follows from the results of Helson [Hel64], e.g.,
see [BK06] for an argument of this type.

Fix any i ∈ {0, . . . , ℓ} and denote byJUσ
the measurable range function associated to

theH-invariant spacesUσ. Note that, as a consequence of Remark4.3.9, if JUσ
(ω) = {0},

thenϕ̂i(ω + σ +m∗) = 0 for all m∗ ∈ M∗.

On the other hand, since{Ω∆+σ+m∗}σ∈N ,m∗∈M∗ is a partition ofΓ, if ω ∈ Ω∆ andσ ∈ N
are fixed, there exists a uniquem∗(ω,σ) ∈ M∗ such thatω + σ +m∗(ω,σ) ∈ Ω′M∗ .

So,

{σ ∈ N : ϕ̂i(ω + σ +m∗(ω,σ)) , 0} ⊆ {σ ∈ N : dimUσ
(ω) , 0}.



56 Extra invariance of H-invariant spaces

Therefore

#{σ ∈ N : ϕ̂i(ω + σ +m∗(ω,σ)) , 0} ≤ #{σ ∈ N : dimUσ
(ω) , 0}

≤
∑

σ∈N
dimUσ

(ω)

= dimV(ω).

Consequently, by Fubini’s Theorem,

mΓ({γ ∈ Ω′M∗ : ϕ̂i(γ) , 0}) =
∑

σ∈N
mΓ({ω ∈ Ω∆ : ϕ̂i(ω + σ +m∗(ω,σ)) , 0})

= (mΓ × #)({(ω,σ) ∈ Ω∆ × N : ϕ̂i(ω + σ +m∗(ω,σ)) , 0})

=

∫

Ω∆

#{σ ∈ N : ϕ̂i(ω + σ +m∗(ω,σ)) , 0} dmΓ(ω)

≤
∫

Ω∆

dimV(ω) dmΓ(ω) =
ℓ∑

j=0

j mΓ(E j) ≤ ℓ.

�

Corollary 4.4.2. Let ϕ ∈ L2(G) be given. If SH(ϕ) is M-invariant for some closed sub-
group M of G such that H$ M, thenϕ̂ must vanish on a set of positive mΓ-measure.

Furthermore, if mΓ(Γ) = +∞, ϕ̂ must vanish on a set of infinite mΓ-measure.

Proof. LetΩM∗ be the section of the quotientΓ/M∗ defined in (4.3). Then,

mΓ
({γ ∈ Γ : ϕ̂(γ) = 0}) =

∑

m∗∈M∗
mΓ
({γ ∈ ΩM∗ +m∗ : ϕ̂(γ) = 0}). (4.13)

By Theorem4.4.1, we have that, for eachm∗ ∈ M∗,

mΓ
({γ ∈ ΩM∗ +m∗ : ϕ̂(y) , 0}) ≤ 1,

which implies
mΓ
({γ ∈ ΩM∗ +m∗ : ϕ̂(y) = 0}) ≥ #N − 1.

Combining this with equality (4.13), we obtain

mΓ
({γ ∈ Γ : ϕ̂(γ) ≥ #(M∗)(#N − 1). (4.14)

SinceH $ M, it follows that #N > 1, somΓ
({γ ∈ Γ : ϕ̂(γ) = 0}) > 0.

If mΓ(Γ) = +∞, then eithermΓ(ΩM∗) = +∞ or #M∗ = +∞. In case that #M∗ = +∞, by
(4.14), ϕ̂ must vanish on a set of infinitemΓ-measure. IfmΓ(ΩM∗) = +∞, sincemΓ(Ω∆) =
1, it follows that #N = +∞. Then, using again (4.14), we can conclude the same as
before.

�
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As a consequence of Theorem4.4.1, in case thatM = G, we obtain the following
corollary.

Corollary 4.4.3. If ϕ ∈ L2(G) and SH(ϕ) is G-invariant, then

mΓ
(
supp(̂ϕ)

) ≤ 1.

The next theorem states that there exists an M-invariant space V that isnot invariant
under any vector outsideM. We will say in this case thatV is exactly M-invariant.

Note that because of Proposition4.1.1, an M-invariant space is exactlyM-invariant if
and only if it is not invariant under any closed subgroupM′ containingM.

Theorem 4.4.4.For each closed subgroup M of G containing a countable uniform lattice
H, there exists an H-invariant space of L2(G) which is exactly M-invariant.

Proof. Suppose that 0∈ N and takeϕ ∈ L2(G) satisfying esssup(̂ϕ) = B0, whereB0 is
defined as in (4.24). Let V = SH(ϕ).

Then,U0 = V andUσ = {0} for σ ∈ N , σ , 0. So, as a consequence of Theorem4.3.2,
it follows thatV is M-invariant.

Now, if M′ is a closed subgroup such thatM $ M′, we will show thatV can not be
M′-invariant.

SinceM ⊆ M′, (M′)∗ ⊆ M∗. Consider a sectionC of the quotientM∗/(M′)∗ containing
the neutral element ofΓ. Then, the set given by

N ′ := {σ + c : σ ∈ N , c ∈ C},

is a section ofH∗/(M′)∗ and 0∈ N ′.
If {B′σ′}σ′∈N ′ is the partition defined in (4.24) associated toM′, for eachσ ∈ N it holds

that{B′σ+c}c∈C is a partition ofBσ, since

Bσ = Ω∆ + σ + M∗ =
⋃

c∈C
Ω∆ + σ + c+ (M′)∗ =

⋃

c∈C
B′σ+c. (4.15)

In particular,B′0 $ B0. Moreover, the setB0 \ B′0 contains a measurable section ofΓ/∆
which is a translation ofΩ∆.

We will show now thatU′0 * V, whereU′0 is the subspace defined in (4.5.15) for M′.
Let g ∈ L2(G) such that̂g = ϕ̂χB′0

. Theng ∈ U′0. Moreover, since esssup(ϕ̂) = B0, by
(4.15), ĝ , 0.

Suppose thatg ∈ V, then, by Theorem2.1.1, ĝ = ηϕ̂ whereη is an∆-periodic function.
Thus,η must vanish inB0 \ B′0. Therefore, the∆-periodicity ofη implies thatη(γ) = 0
a.e.γ ∈ Γ. Soĝ = 0, which is a contradiction.

This shows thatU′0 * V. Hence,V is notM′-invariant. �
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4.5 Extra invariance: a particular case

We will devote this section to study the extra invariances ofa shift invariant space (SIS)
in L2(Rd) with d > 1. Obviously, this case is included in the more general context of LCA
groups developed in the above sections. However, we are interested in showing how the
results about extra invariance of a SIS inL2(Rd) can be stated using the structure of closed
subgroups ofRd.

For this, we begin by given some characterizations concerning closed subgroups ofRd.

4.5.1 Closed subgroups ofRd

Throughout this section we describe the additive closed subgroups ofRd containingZd.
We first study closed subgroups ofRd in general.

General case

Here, we will state some basic definitions and properties of closed subgroups ofRd, for
a detailed treatment and proofs we refer the reader to [Bou74].

Definition 4.5.1. Given M a subgroup ofRd, the rangeof M, denoted byr (M), is the
dimension of the subspace generated byM as a real vector space.

It is known that every closed subgroup ofRd is either discrete or contains a subspace
of at least dimension one (see [Bou74, Proposition 3]).

Definition 4.5.2. Given M a closed subgroup ofRd, there exists a subspaceW whose
dimension is the largest of the dimensions of all the subspaces contained inM. We will
denote byd(M) the dimension ofW. Note thatd(M) can be zero.

Observe that 0≤ d(M) ≤ r (M) ≤ d.

The next theorem establishes that every closed subgroup ofRd is the direct sum of a
subspace and a discrete group.

Theorem 4.5.3.Let M be a closed subgroup ofRd such thatr (M) = r and d(M) =
p. Let W be the subspace contained in M as in Definition4.5.2. Then, there exists a
basis{u1, . . . , ud} for Rd such that{u1, . . . , ur} ⊆ M and {u1, . . . , up} is a basis for W.
Furthermore,

M =
{ p∑

i=1

tiui +

r∑

j=p+1

n ju j : ti ∈ R, n j ∈ Z
}
.

Corollary 4.5.4. If M is a closed subgroup ofRd such thatr (M) = r andd(M) = p, then

M ≈ Rp × Zr−p.
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Closed subgroups ofRd containing Zd

We are interested in closed subgroups ofRd containingZd. For their understanding, we
identify the dual group ofM, M∗, with the subgroup ofRd {x ∈ Rd : 〈x,m〉 ∈ Z ∀m ∈
M}. Then, in particular, (Zd)∗ = Zd.

Now we will list some properties of the dual group.

Proposition 4.5.5.Let M,N be subgroups ofRd.

i) If N ⊆ M, then M∗ ⊆ N∗.

ii) If M is closed, thenr (M∗) = d − d(M) andd(M∗) = d − r (M).

iii) (M∗)∗ = M.

Let K be a subgroup ofZd with r (K) = q, we will say that a set{v1, . . . , vq} ⊆ K is a
basisfor K if for every x ∈ K there exist uniquek1, . . . , kq ∈ Z such that

x =
q∑

i=1

kivi .

Note that{v1, . . . , vd} ⊆ Zd is a basis forZd if and only if the determinant of the matrix
A which has{v1, . . . , vd} as columns is 1 or−1.

GivenB = {v1, . . . , vd} a basis forZd, we will call B̃ = {w1, . . . ,wd} adual basisfor B if
〈vi ,wj〉 = δi, j for all 1 ≤ i, j ≤ d.

If we denote bỹA the matrix with columns{w1, . . . ,wd}, the relation betweenB andB̃
can be expressed in terms of matrices asÃ = (A∗)−1.

The closed subgroupsM of Rd containingZd, can be described with the help of the dual
relations. SinceZd ⊆ M, we have thatM∗ ⊆ Zd. So, we need first the characterization of
the subgroups ofZd. This is stated in the following theorem.

Theorem 4.5.6.Let K be a subgroup ofZd with r (K) = q, then there exist a basis
{w1, . . . ,wd} for Zd and unique integers a1, . . . , aq satisfying ai+1 ≡ 0 (mod. ai) for all
1 ≤ i ≤ q − 1, such that{a1w1, . . . , aqwq} is a basis for K. The integers a1, . . . , aq are
called invariant factors.

The proof of the previous result can be found in [Bou81].

Remark4.5.7. Under the assumptions of the above theorem we obtain

Zd/K ≈ Za1 × . . . × Zaq × Zd−q.

We are now able to characterize the closed subgroups ofRd containingZd. The proof
of the following theorem can be found in [Bou74], but we include it here for the sake of
completeness.
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Theorem 4.5.8.Let M ⊆ Rd. The following conditions are equivalent:

i) M is a closed subgroup ofRd containingZd andd(M) = d − q.

ii) There exist a basis{v1, . . . , vd} for Zd and integers a1, . . . , aq satisfying ai+1 ≡
0 (mod. ai) for all 1 ≤ i ≤ q− 1, such that

M =
{ q∑

i=1

ki
1
ai

vi +

d∑

j=q+1

t jvj : ki ∈ Z, t j ∈ R
}
.

Furthermore, the integers q and a1, . . . , aq are uniquely determined by M.

Proof. Suppose i) is true. SinceZd ⊆ M andd(M) = d − q, we have thatM∗ ⊆ Zd and
r (M∗) = q. By Theorem4.5.6, there exist invariant factorsa1, . . . , aq and{w1, . . . ,wd} a
basis forZd such that{a1w1, . . . , aqwq} is a basis forM∗.

Let {v1, . . . , vd} be the dual basis for{w1, . . . ,wd}.
SinceM is closed, it follows from item iii) of Proposition4.5.5that M = (M∗)∗. So,

m∈ M if and only if
〈m, a jwj〉 ∈ Z ∀ 1 ≤ j ≤ q. (4.16)

As {v1, . . . , vd} is a basis, givenu ∈ Rd, there existui ∈ R such thatu =
∑d

i=1 uivi. Thus, by
(4.16), u ∈ M if and only if uiai ∈ Z for all 1 ≤ i ≤ q.

We finally obtain thatu ∈ M if and only if there existki ∈ Z andu j ∈ R such that

u =
q∑

i=1

ki
1
ai

vi +

d∑

j=q+1

u jvj .

The proof of the other implication is straightforward.

The integersq anda1, . . . , aq are uniquely determined byM sinceq = d − d(M) and
a1, . . . , aq are the invariant factors ofM∗.

�

As a consequence of the proof given above we obtain the following corollary.

Corollary 4.5.9. LetZd ⊆ M ⊆ Rd be a closed subgroup withd(M) = d−q. If {v1, . . . , vd}
and a1, . . . , aq are as in Theorem4.5.8, then

M∗ =
{ q∑

i=1

niaiwi : ni ∈ Z
}
,

where{w1, . . . ,wd} is the dual basis of{v1, . . . , vd}.

Example 4.5.10.Assume thatd = 3. If M = 1
2Z×

1
3Z×R, thenv1 = (1, 1, 0),v2 = (3, 2, 0)

andv3 = (0, 0, 1) verify the conditions of Theorem4.5.8with the invariant factorsa1 = 1
anda2 = 6. On the other handv′1 = (1, 1, 0), v′2 = (3, 2, 1) andv′3 = (0, 0, 1) verify the
same conditions. This shows that the basis in Theorem4.5.8is not unique.
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Remark4.5.11. If {v1, . . . , vd} anda1, . . . , aq are as in Theorem4.5.8, let us define the
linear transformationT as

T : Rd → Rd, T(ei) = vi ∀1 ≤ i ≤ d,

where{e1, . . . , ed} denotes the canonical basis forRd.

ThenT is an invertible transformation that satisfies

M = T
( 1
a1
Z × · · · × 1

aq
Z × Rd−q).

If {w1, . . . ,wd} is the dual basis for{v1, . . . , vd}, the inverse of the adjoint ofT is defined
by

(T∗)−1 : Rd → Rd, (T∗)−1(ei) = wi ∀1 ≤ i ≤ d.

By Corollary4.5.9, it is true that

M∗ = (T∗)−1(a1Z × · · · × aqZ × {0}d−q).

4.5.2 M-invariance of a SIS inL2(Rd).

Let M be a closed subgroup ofRd containingZd. In order to characterize theM-
invariance of a SIS, we first want to give a slight idea about how Theorem4.2.4 for
G = Rd can be proved using the structure ofM stated in the above section. For this
we will follow the arguments used to prove Theorem2.1.1. Most of the reasonings can
be readily obtained fromSection 2.1. Hence, we do not include their proofs. The point
that deserves to be carefully explored is the extension of Proposition2.1.2, (see Lemma
4.5.12).

We will first need some definitions and properties.

By Remark4.5.11, there exists a linear transformationT : Rd → Rd such thatM =
T
( 1

a1
Z× · · · × 1

aq
Z×Rd−q) andM∗ = (T∗)−1(a1Z× · · · ×aqZ× {0}d−q), whereq = d−d(M).

We will denote byD the section of the quotientRd/M∗ defined as

D = (T∗)−1([0, a1) × · · · × [0, aq) × Rd−q). (4.17)

Therefore,{D +m∗}m∗∈M∗ forms a partition ofRd.

Lemma 4.5.12.Let f ∈ L2(Rd), M a closed subgroup ofRd containingZd andD defined
as in (4.17). Then,

SM( f )⊥ = {g ∈ L2(Rd) :
∑

m∗∈M∗
f̂ (ω +m∗)̂g(ω +m∗) = 0 a.e.ω ∈ D}.
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Proof. Since the span of the set{Tm f : m ∈ M} is dense inSM( f ), we have thatg ∈
SM( f )⊥ if and only if 〈̂g, em f̂ 〉 = 0 for all m ∈ M, whereem(ω) := e−2πi〈ω,m〉. As em is
anM∗-periodic function and{D +m∗}m∗∈M∗ forms a partition ofRd, using a periodization
argument, we obtain thatg ∈ SM( f )⊥ if and only if

∫

D
em(ω)

( ∑

m∗∈M∗
f̂ (ω +m∗)̂g(ω +m∗)

)
dω = 0, (4.18)

for all m ∈ M.

At this point, what is left to show is that if (4.18) holds then
∑

m∗∈M∗ f̂ (ω +
m∗)̂g(ω +m∗) = 0 a.e. ω ∈ D. For this, taking into account that

∑
m∗∈M∗ f̂ (· +

m∗)̂g(· +m∗) ∈ L1(D), it is enough to prove that ifh ∈ L1(D) and
∫
D hem = 0 for all

m∈ M thenh = 0 a.eω ∈ D.

We will prove the preceding property for the caseM = Zq × Rd−q. The general case
will follow from a change of variables using the descriptionof M andD given in Remark
4.5.11and (4.17).

Suppose nowM = Zq × Rd−q, thenD = [0, 1)q × Rn−q. Takeh ∈ L1(D), such that
"

[0,1)q×Rn−q
h(x, y)e−2πi(kx+ty) dxdy= 0 ∀ k ∈ Zq, t ∈ Rd−q. (4.19)

Given k ∈ Zq, defineαk(y) :=
∫

[0,1)q
h(x, y)e−2πikx dx for a.e. y ∈ Rd−q. It follows from

(4.19) that ∫

Rd−q

αk(y)e−2πity dy= 0 ∀ t ∈ Rd−q. (4.20)

Sinceh ∈ L1(D), by Fubini’s Theorem,αk ∈ L1([0, 1)q). Thus, using (4.20), αk(y) = 0
a.e.y ∈ Rd−q. That is ∫

[0,1)q
h(x, y)e−2πikx dx= 0 (4.21)

for a.e.y ∈ Rd−q. Define nowβy(x) := h(x, y). By (4.21), for a.e.y ∈ Rd−q we have that
βy(x) = 0 for a.e. x ∈ [0, 1)q. Therefore,h(x, y) = 0 a.e. (x, y) ∈ [0, 1)q × Rd−q and this
completes the proof. �

Now we will give a formula for the orthogonal projection ontoSM( f ).

Lemma 4.5.13.Let P be the orthogonal projection onto SM( f ). Then, for each g∈
L2(Rd), we havêPg = ηg f̂ , whereηg is the M∗-periodic function defined by

ηg :=



∑
m∗∈M∗ f̂ (ω+m∗ )̂g(ω+m∗)
∑

m∗∈M∗ f̂ (ω+m∗) f̂ (ω+m∗)
onE f + M∗

0 otherwise,

andE f is the set{ω ∈ D :
∑

m∗∈M∗ f̂ (ω +m∗) f̂ (ω +m∗) , 0}.
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With these results Theorem4.5.14can be proved. This theorem provides a non-discrete
version of a result of [dBDR94a] (see also [dBDR94b],[RS95]).

Theorem 4.5.14.Let f ∈ L2(Rd) and M a closed subgroup ofRd containingZd. If
g ∈ SM( f ), then there exists an M∗-periodic functionη such that̂g = η f̂ .

Conversely, ifη is an M∗-periodic function such thatη f̂ ∈ L2(Rd), then the function g
defined bŷg = η f̂ belongs to SM( f ).

We will focus now in characterizing theM-invariance of a general SIS inL2(Rd). Then,
fix M a closed subgroup ofRd containingZd. Let T be the linear transformation stated in
Remark4.5.11. Using the mappingT we defineΩ, a the section of the quotientRd/Zd, as

Ω = (T∗)−1([0, 1)d), (4.22)

andN , a section of the quotientZd/M∗, as

N = (T∗)−1({0, . . . , a1 − 1} × . . . × {0, . . . , aq − 1} × Zd−q), (4.23)

wherea1, . . . , aq are the invariant factors ofM.

Hence, givenσ ∈ N we define

Bσ = Ω + σ + M∗ =
⋃

m∗∈M∗
(Ω + σ) +m∗. (4.24)

Therefore,{Bσ}σ∈N forms a partition fRd and eachBσ is anM∗-periodic set. An exam-
ple of this construction is given below.

Example 4.5.15.Let M = {k1
3v1 + tv2 : k ∈ Z and t ∈ R}, wherev1 = (1, 0) and

v2 = (−1, 1). Then,{v1, v2} satisfy conditions in Theorem4.5.8. By Corollary 4.5.9,
M∗ = {k3w1 : k ∈ Z}, wherew1 = (1, 1) andw2 = (0, 1). Note that the setsΩ andN can
be expressed in terms ofw1 andw2 as

Ω = {tw1 + sw2 : t, s ∈ [0, 1)} and N = {aw1 + kw2 : a ∈ {0, 1, 2}, k ∈ Z}.

This is illustrated in Figure4.3. In this case the setsB(0,0), B(1,0) andB(1,2) correspond to
the light gray, gray and dark gray regions respectively. Theblack dots represent the set
N .

Let V be a SIS. Then, using the partition{Bσ}σ∈N we define for eachσ ∈ N

Uσ = { f ∈ L2(Rd) : f̂ = χBσĝ, with g ∈ V}.

The next theorem characterizes theM-invariance ofV in terms of the subspacesUσ.
The proof of this result can be done in the same way as Theorem4.3.2

Theorem 4.5.16.If V ⊆ L2(Rd) is a SIS and M is a closed subgroup ofRd containingZd,
then the following are equivalent.
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i) V is M-invariant.

ii) Uσ ⊆ V for all σ ∈ N .

Moreover, in case any of the above holds, we have that V is the orthogonal direct sum

V =
⊕̇

σ∈N
Uσ.

It is known that on the real line, the SIS generated by a functionϕwith compact support
can only be invariant under integer translations. That is,Txϕ < SZ(ϕ) for all x ∈ R\Z. The
following proposition extends this result toRd. Thus, a shift invariant spaces inL2(Rd)
generated by a compactly supported function is exactlyZd-invariant.

Proposition 4.5.17.If a nonzero functionϕ ∈ L2(Rd) has compact support, then SZd(ϕ)
is not M-invariant for any M closed subgroup ofRd such thatZd $ M. In particular,

Txϕ < SZd(ϕ) ∀ x ∈ Rd \ Zd. (4.25)

Proof. The first part of the proposition is a straightforward consequence of Corollary
4.4.2with G = Rd and H = Zd. To show (4.25), take x ∈ Rd \ Zd and suppose that
Txϕ ∈ S(ϕ). If M is the closed subgroup generated byx andZd, thenSZd(ϕ) must be
M-invariant, which is a contradiction. �
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Figure 4.3:Partition forM = {k1
3(1, 0)+ t(−1, 1) : k ∈ Z and t ∈ R}.
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Shift-Modulation Invariant Spaces

In this chapter, we will deal with subspaces ofL2(G), with G being an LCA group, that are
invariant under translations and also under modulations. For this we will first introduce
the concept of shift-modulation invariant spaces under thepair (K,Λ) in L2(G), K is a
closed subgroup ofG andΛ is closed subgroup the dual group ofG. These spaces are
the extension to the LCA setting of the well-known shift-modulation invariant spaces
in L2(Rd), (SMI spaces). SMI spaces, also called Gabor or Weyl-Heinsenberg spaces,
have been studied in [Bow07], [CC01b], [CC01a], [Chr03], [Dau92], [GD04], [GD01],
[Gro01], [Fei02] among others, and they become fundamental in time-frequency analysis.

Here, we restrict our attention to shift-modulation invariant spaces under the pair (K,Λ)
in L2(G) with K andΛ being uniform lattices. The aim will be get a description of these
spaces in terms of the fiber of its elements. In order to obtainsuch characterization, we
develop fiberization techniques and suitable range functions adapted to this more compli-
cated structure which involves translations and modulations. As in theL2(Rd) case, the
Zak transform and its properties will be essential in our analysis.

The result that we obtain, generalizes a result concerned shift-modulation invariant
spaces inL2(Rd) due to Bownik [Bow07].

We organize the chapter as follows. First, we fix our work setting in Section 5.1. In
Section 5.2, we first develop fiberization techniques (Section 5.2.1) and then suitable
range functions well adapted to this context (Section 5.2.2). Finally, in Section 5.3, the
main result of this chapter is stated and proved.

5.1 Shift-Modulation Setting

In this section, we will introduce the notion of shift-modulation invariant spaces on LCA
groups and we will fix our work setting.

Definition 5.1.1. Let G be an LCA group andΓ its dual group. IfK ⊆ G andΛ ⊆ Γ
are subgroups, we will say that a closed subspaceV ⊆ L2(G) is (K,Λ)-invariant or shift-
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modulation invariant under(K,Λ) if

f ∈ V ⇒ MλTk f ∈ V ∀ k ∈ K andλ ∈ Λ,

whereMλ f (x) = (x, λ) f (x) andTk f (x) = f (x− k).

For a subsetA ⊆ L2(G), define

E(K,Λ)(A) = {MλTkϕ : ϕ ∈ A, k ∈ K, λ ∈ Λ}

and
S(K,Λ)(A) = spanE(K,Λ)(A).

A straightforward computation shows that the spaceS(K,Λ)(A) is shift-modulation invari-
ant under the pair (K,Λ). Then, we callS(K,Λ)(A) the (K,Λ)-invariant space generated by
A. Note that, whenG is second countable, for every shift-modulation invariantspaceV,
there exists a countable set of generatorsA ⊆ L2(G) such thatV = S(K,Λ)(A).

Here we want to characterize (F,∆)-invariant spaces forF and∆ being uniform lattices
in G andΓ respectively such thatF ∩ ∆∗ is an uniform lattice inG.

As we have done in the shift invariant case (seeChapter 2), the characterization of shift-
modulation invariant spaces will be established in terms ofappropriate range functions
and fiberization techniques.

Remark5.1.2. If K1 ⊆ K2 are lattices inG, thenK2/K1 is finite. To prove this, observe
that, sinceK∗2 ⊆ K∗1, K̂∗1/K̂

∗
2 ≈ K2/K1 due to the duality relationships stated in Theorem

1.1.4. Therefore,K2/K1 is both compact and discrete. HenceK2/K1 must be finite. This
fact will be important in what follows.

We now fix our setting which will be in effect throughout the next sections.

• G is a second countable LCA group andΓ its dual group.

• F is a countable uniform lattice onG.

• ∆ is a countable uniform lattice onΓ.

• E := F ∩ ∆∗ is a (countable) uniform lattice onG.

As a consequence of the results stated in Theorem1.1.9and Remark5.1.2we obtain
that:

(a) E∗ is an uniform lattice inΓ and∆ ⊆ E∗.

(b) H := ∆∗ is an uniform lattice inG.

(c) The quotientE∗/∆ is finite.

(d) The quotientF/E is finite.
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According to these facts we can fixΩE∗ ⊆ Γ a measurable section for the quotientΓ/E∗

andDE∗ ⊆ E∗ a finite section forE∗/∆. Then, we can construct the measurable section
Ω∆ for the quotientΓ/∆ as

Ω∆ =

⋃

e∈DE∗

ΩE∗ + e. (5.1)

In the same way, consideringDF ⊆ F a finite section forF/E and IF+H a measurable
section forG/(F + H), we have that

IH =

⋃

d∈DF

IF+H − d (5.2)

is a section for the quotientG/H.

We are able for fixing the normalization of the Haar measures of the groups considered
in this chapter. As usual, this particular choice of the Haarmeasures does not affect the
validity of the results.

First, we choosemH such thatmH({0}) = 1. Then we fixmG andmG/H such that the
Wiel’s formula holds amongmH, mG andmG/H. Furthermore, we choosemΓ/E∗ , mE∗ in
order to getmE∗({0})mΓ/E∗(Γ/E∗) = 1

♯DE∗
where by♯DE∗ we denote the cardinal ofDE∗ .

Then, we setmΓ such that Wiel’s formula of Theorem1.1.10holds amongmΓ/E∗ , mE∗ and
mΓ.

If Ω∆ is given by (5.1), this normalization implies thatmΓ(Ω∆) = 1. This is due to
formulamΓ(ΩE∗) = mE∗({0})mΓ/E∗(Γ/E∗) proved in Lemma1.1.13.

5.2 The Fiberization Isometry and Range Functions

The goal of this section is to develop the fiberization isometry and a suitable range func-
tion required to achieve the characterization of (F,∆)-invariant spaces that we want to
prove.

The well-known property about the Fourier transform̂Mλ f = Tλ f̂ , guarantees that a
space which is invariant under modulations can be seen, via the Fourier transform, as
a shift invariant space. Therefore, we can treat the shift-modulation invariant spaces as
shift-invariant spaces on both sides, on time and on frequency. Then, our analysis will
be strongly based on the shift invariant case. The fiberization isometry for shift invariant
spaces will help us to construct the fiberization isometry for the shift-modulation setting.

5.2.1 The Isometry

Fix now F ⊆ G and∆ ⊆ Γ countable uniform lattices verifying the conditions stated in
the above section.

In order to construct the fiberization isometry, we must introduce the following isomor-
phisms.
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First, letT̃H : L2(G) −→ L2(IH, ℓ
2(H)) be the mapping defined as

T̃H f (x) = { f (x+ h)}h∈H. (5.3)

The proof thatT̃H is an isometric isomorphism is an straightforward adaptation of Propo-
sition1.4.2.

On the other hand, considerTE : ℓ2(H) −→ L2(ΩE∗ , ℓ
2(DE∗)) defined by

TEa(ξ) = {
∑

h∈H
ahηh(ξ + e)}e∈DE∗ , (5.4)

where the functionsηh are as in Proposition1.1.19anda = {ah}h∈H.

Lemma 5.2.1.The mapTE defined in (5.4) is and isometric isomorphism betweenℓ2(H)
and L2(ΩE∗ , ℓ

2(DE∗)).

Proof. SinceDE∗ is an index set, we have that

‖TEa‖22 =
∫

ΩE∗

∑

e∈DE∗

|
∑

h∈H
ahηh(ξ + e)|2 dmΓ(ξ)

=

∫

Ω∆

|
∑

h∈H
ahηh(ω)|2 dmΓ(ω)

= ‖
∑

h∈H
ahηh‖2L2(Ω∆).

Now, applying Proposition1.1.21we obtain

‖
∑

h∈H
ahηh‖2L2(Ω∆) =

mΓ(Ω∆)
mH({0})‖a‖

2
ℓ2(H).

Hence, by our normalization of the Haar measures,mΓ(Ω∆)
mH({0}) = 1 and then‖TEa‖22 =

‖a‖2
ℓ2(H)

.

LetΦ ∈ L2(ΩE∗ , ℓ
2(DE∗)). ThenΦ induces the functioñΦ ∈ L2(Ω∆) given by

Φ̃(ω) =
(
Φ(ξ)
)
e,

whereω = ξ + e ∈ Ω∆, with ξ ∈ ΩE∗ ande ∈ DE∗ . Here
(
Φ(ξ)
)
e denotes the value of the

sequenceΦ(ξ) at e. It is easy to check that‖Φ‖2 = ‖Φ̃‖L2(Ω∆).

According to Proposition1.1.19, {ηh}h∈H is an orthonormal basis forL2(Ω∆). Thus,
Φ̃ =

∑
h∈H ahηh for somea = {ah}h∈H ∈ ℓ2(H). From here, it follows thatTEa = Φ.

Therefore,TE is an isomorphism. �

Remark5.2.2. Observe thatE∗H , the annihilator ofE as a subgroup ofH, is topologically
isomorphic toE∗/∆. Then, using the dual relationship stated in Theorem1.1.4, it follows
thatĤ/E∗H ≈ Γ/E∗. This allows us to seeTE as a particular case of the map of Proposition
1.4.2.
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The isometric isomorphismTE induces another isometric isomorphism

Ψ1 : L2(IH , ℓ
2(H)) −→ L2(IH, L

2(ΩE∗ , ℓ
2(DE∗)))

defined as
Ψ1(φ)(x) = TE(φ(x)).

In addition, we can identify the Hilbert spaceL2(IH , L2(ΩE∗ , ℓ
2(DE∗))) with L2(IH ×

ΩE∗ , ℓ
2(DE∗))) using the isometric isomorphism

Ψ2 : L2(IH , L
2(ΩE∗ , ℓ

2(DE∗))) −→ L2(IH ×ΩE∗ , ℓ
2(DE∗))

given by
Ψ2(φ)(x, ξ) = φ(x)(ξ).

Definition 5.2.3. We defineT : L2(G) −→ L2(IH × ΩE∗ , ℓ
2(DE∗)) as

T = Ψ2 ◦Ψ1 ◦ T̃H.

This mappingT , which is actually an isometric isomorphism and that we callthe fiber-
ization isometry, can be explicitly defined as

T f (x, ξ) = TE(T̃H f (x))(ξ) = {
∑

h∈H
f (x− h)(h, ξ + e)}e∈DE∗ . (5.5)

For a simply way to describeT , we recallZ : L2(G) → Z the usual Zak transform
given by

Z f(x, ξ) =
∑

h∈H
f (x− h)(h, ξ),

whereZ is the set of all measurable functionsF : G× Γ→ C satisfying

(a) F(x+ h, ξ) = (h, ξ)F(x, ξ) ∀h ∈ H,

(b) F(x, ξ + δ) = F(x, ξ) ∀ δ ∈ ∆ and

(c) ‖F‖2 =
∫
Ω∆

∫
IH
|F(x, ξ)|2 dmG(x) dmΓ(ξ) < ∞.

For further information about Zak transform we refer to [Gro01], [Wei64], [Zak67],
[Jan82], [Jan88].

Then, it is clear that
T f (x, ξ) = {Z f(x, ξ + e)}e∈DE∗ .

The next lemma states an important property aboutT which will be useful in what fol-
lows. Its proof is a straightforwards consequence of properties (a), (b) and (c) formulated
above.

Lemma 5.2.4.For each f∈ L2(G) the mapT of Definition5.2.3satisfies

T (MδTy f )(x, ξ) = (x, δ)(−z, ξ)T (Td f )(x, ξ) a.e.(x, ξ) ∈ IH ×ΩE∗ ,

whereδ ∈ ∆, y ∈ F and y= z+ d with z∈ E and d∈ DF .
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5.2.2 Shift-modulation Range Functions

We are now able to define range function according to (F,∆)-invariant spaces.

Definition 5.2.5. A shift-modulation range functionwith respect to the pair (F,∆) is a
mapping

J : IH × ΩE∗ −→ {subspaces ofℓ2(DE∗)},
satisfying the following periodicity property:

J(x, ξ) = J(x− d, ξ) ∀ d ∈ DF (5.6)

for a.e. (x, ξ) ∈ IF+H × ΩE∗ .

For a shift-modulation range functionJ, we associated to each (x, ξ) ∈ IH × ΩE∗ the
orthogonal projection ontoJ(x, ξ), P(x,ξ) : ℓ2(DE∗)→ J(x, ξ).

We say that a shift-modulation range functionJ is measurable if the function (x, ξ) 7→
P(x,ξ) from IH × ΩE∗ to ℓ2(DE∗) is measurable.

For a shift-modulation range functionJ (not necessarily measurable) we define the
subsetMJ as

MJ = {Ψ ∈ L2(IH ×ΩE∗ , ℓ
2(DE∗)) : Ψ(x, ξ) ∈ J(x, ξ), a.e.(x, ξ) ∈ IH × ΩE∗} (5.7)

Remark 5.2.6. The subspaceMJ defined above is a closed subspace inL2(IH ×
ΩE∗ , ℓ

2(DE∗)). For the proof of this fact see Lemma2.2.3.

The shift-modulation invariant spaces associated to a range function

The following proposition states that ifJ is a given shift-modulation range function with
respect to the pair (F,∆), we can associate toJ an (F,∆)-invariant space.

Proposition 5.2.7.Let J be a shift-modulation range function and define V:= T −1MJ,
where MJ is as in (5.7) andT is the fiberization isometry.

Then, V is an(F,∆)-invariant space in L2(G).

Proof. To begin with, observe that, by Remark5.2.6and sinceT is an isometry,V ⊆
L2(G) is a closed subspace.

Let f ∈ V, δ ∈ ∆ andy ∈ F. We need to show thatMδTy f ∈ V.

According to Lemma5.2.4, we have that

T (MδTy f )(x, ξ) = (x, δ)(−z, ξ)T (Td f )(x, ξ) a.e. (x, ξ) ∈ IH ×ΩE∗ ,

wherey = z+ d with z ∈ E andd ∈ DF .

In particular, if x ∈ IF+H we can rewriteT (Td f )(x, ξ) asT f (x − d, ξ). Then, since
T f ∈ MJ andJ satisfies (5.6), it holds that

T (Td f )(x, ξ) = T f (x− d, ξ) ∈ J(x− d, ξ) = J(x, ξ),
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for a.e. (x, ξ) ∈ IF+H × ΩE∗ . Thus,

T (MδTy f )(x, ξ) ∈ J(x, ξ) a.e. (x, ξ) ∈ IF+H × ΩE∗ , (5.8)

and this is valid for ally ∈ F andδ ∈ ∆.

We now want to show that (5.8) holds onIH × ΩE∗ .

Let (x, ξ) ∈ IH × ΩE∗ . By (5.2) we can setx = x′ − d with x′ ∈ IF+H andd ∈ DF.

If we fix δ ∈ ∆ andy ∈ F then,T (MδTy f )(x, ξ) = T (TdMδTy f )(x′, ξ).

SinceMλTkg = (k, λ)TkMλg for all g ∈ L2(G), λ ∈ ∆ andk ∈ F, we have

T (TdMδTy f )(x′, ξ) = (−d, δ)T (MδTd+y f )(x′, ξ) ∈ J(x′, ξ) = J(x, ξ).

Then, (5.8) holds onIH × ΩE∗ . Therefore,MδTy f ∈ V for all δ ∈ ∆ andy ∈ F. �

The range function associated to an(F,∆)-invariant space

The characterization of shift invariant spaces under uniform lattices inG stated in Theo-
rem2.2.5, gives a specific way to describe the shift range function associated to each shift
invariant space. Since a shift-modulation invariant spaces is a shift invariant space in time
and frequency, we will use the results of Theorem2.2.5to construct a shift-modulation
range function from a given (F,∆)-invariant space.

Assume thatV ⊆ L2(G) is an (F,∆)-invariant space and thatV == S(F,∆)(A) for some
countable setA ⊆ L2(G). We will show now, how to associated toV a shift-modulation
range function.

First notice that̂V = { f̂ : f ∈ V} ⊆ L2(Γ) is invariant under translations in∆. Then, by
Theorem2.2.5, V can be describe as

V =
{
f ∈ L2(G) : T̃H f (x) ∈ JH(x) a.e.x ∈ IH

}
, (5.9)

whereT̃H is the isometry defined in (5.2.1) andJH is the shift range function associated
to V given by

JH : IH → {closed subspaces ofℓ2(H)}

JH(x) = span{T̃H(Tyϕ)(x) : y ∈ F, ϕ ∈ A}.

Note that this holds sinceV, as a space invariant under modulations in∆, is generated by
the set{Tyϕ : y ∈ F, ϕ ∈ A}.

Now, let us see thatJH(x) is a shift invariant space under translations inE.

SinceDF ⊆ F is a section for the quotientF/E, everyy ∈ F can be written in a unique
way asy = z+d with z ∈ E andd ∈ DF . Then, using that̃THTz f = TzT̃H f for all z ∈ E,we
can rewriteJH(x)

JH(x) = span{TzT̃H(Tdϕ)(x) : z ∈ E, d ∈ DF , ϕ ∈ A}.
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This description shows thatJH(x) is a shift invariant space under translations inE gen-
erated by the set{T̃H(Tdϕ)(x) : d ∈ DF, ϕ ∈ A}.

Using Theorem2.2.5, we can characterizeJH(x) for a.e. x ∈ IH as follows. For each
x ∈ IH \ Z, whereZ is the exceptional zeromG-measure set, there exists a range function
Jx

E : ΩE∗ −→ {subspaces ofℓ2(DE∗)} such that

JH(x) =
{
a ∈ ℓ2(H) : TEa(ξ) ∈ Jx

E(ξ) a.e.ξ ∈ ΩE∗
}
,

whereTE is the map given in (5.4).

Moreover,

Jx
E(ξ) = span{TE(T̃HTdϕ(x))(ξ) : d ∈ DF , ϕ ∈ A}

= span{T (Tdϕ)(x, ξ) : d ∈ DF , ϕ ∈ A}
= span{T (Tdϕ)(x, ξ) : d ∈ DF , ϕ ∈ A},

where in the last equality we use that dim(ℓ2(DE∗)) < ∞.

This leads to the functionJ : IH × ΩE∗ −→ {subspaces ofℓ2(DE∗)} defined as

J(x, ξ) = span{T (Tdϕ)(x, ξ) : d ∈ DF , ϕ ∈ A}, (5.10)

for a.e. (x, ξ) ∈ IH × ΩE∗ .

Lemma 5.2.8. Let A ⊆ L2(G) a countable set. Then, the map defined in (5.10) is a
shift-modulation range function.

Proof. We need to show thatJ satisfies property (5.6).

Let d0 ∈ DF. For eachd ∈ DF , we have thatT (Tdϕ)(x − d0, ξ) = T (Td+d0ϕ)(x, ξ) for
a.e. (x, ξ) ∈ IF+H × ΩE∗ .

Sinced + d0 ∈ F, it can be written asd + d0 = d′ + z′ with d′ ∈ DF andz′ ∈ E. Then,
according to Lemma5.2.4, T (Td+d0ϕ)(x, ξ) = (z′, ξ)T (Td′ϕ)(x, ξ). Thus,T (Tdϕ)(x −
d0, ξ) ∈ J(x, ξ) due toT (Td′ϕ)(x, ξ) ∈ J(x, ξ).

This shows thatJ(x− d0, ξ) ⊆ J(x, ξ) for a.e. (x, ξ) ∈ IF+H ×ΩE∗ for eachd0 ∈ DF.

With an analogous argument, it can be proved thatJ(x, ξ) ⊆ J(x−d0, ξ) for a.e. (x, ξ) ∈
IF+H ×ΩE∗ for eachd0 ∈ DF. �

As we have seen in Proposition5.2.7, each shift-modulation range function induces a
(F,∆)-invariant space. Furthermore, in the last section we associate each shift-modulation
invariant spaceV a shift-modulation range function from a system of generators ofV.

This leads to a natural question. IfV is a (F,∆)-invariant space andJ the shift-
modulation range function thatV induces, what is the relationship betweenV and the
(F,∆)-invariant space induced fromJ?

That will be the content of the following section.
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5.3 (F,∆)-Invariant Spaces

We can now state our main result which characterizes (F,∆)-invariant spaces in terms of
the fiberization isometry and shift-modulation range functions.

Theorem 5.3.1.Let V ⊆ L2(G) be a closed subspace andT the fiberization isometry
of Definition 5.2.3. Then, V is an(F,∆)-invariant space if and only if there exists a
measurable shift-modulation range function J: IH × ΩE∗ −→ {subspaces ofℓ2(DE∗)} such
that

V =
{
f ∈ L2(G) : T f (x, ξ) ∈ J(x, ξ) a.e.(x, ξ) ∈ IH × ΩE∗

}
.

Identifying shift-modulation range functions which are equal almost everywhere, the
correspondence between(F,∆)-invariant spaces and measurable shift-modulation range
functions is one to one and onto.

Moreover, if V= S(F,∆)(A) ⊆ L2(G) for some countable subsetA of L2(G), the measur-
able shift-modulation range function J associated to V is given by

J(x, ξ) = span{T (Tdϕ)(x, ξ) : d ∈ DF , ϕ ∈ A},

a.e.(x, ξ) ∈ IH × ΩE∗ .

For the proof of Theorem5.3.1we need the following previous lemma. It is an adapta-
tion of Lemma2.2.6.

Lemma 5.3.2.If J and J′ are two measurable shift-modulation range functions such that
MJ = MJ′ , where MJ and MJ′ are given by (5.7), then J(x, ξ) = J′(x, ξ) a.e. (x, ξ) ∈
IH × ΩE∗ . That is, J and J′ are equal almost everywhere.

Proof of Theorem 3.1.If V is an (F,∆)-invariant space, then, sinceL2(G) is separable, it
holds thatV = S(F,∆)(A) for some countable subsetA of L2(G).

Let us consider the functionJ defined asJ(x, ξ) = span{T (Tdϕ)(x, ξ) : d ∈ DF , ϕ ∈ A}
from IH × ΩE∗ to {subspaces ofℓ2(DE∗)}. As a consequence of Lemma5.2.8, J is a shift-
modulation range function. We must prove thatTV = MJ whereMJ is as in (5.7) and
thatJ is measurable.

We will first showTV = MJ.

Takeδ ∈ ∆, y ∈ F written asy = z+ d with z ∈ E andd ∈ DF, andϕ ∈ A. Then, by
Lemma5.2.4it holds that

T (MδTyϕ)(x, ξ) = (x, δ)(−z, ξ)T (Tdϕ)(x, ξ) a.e. (x, ξ) ∈ IH × ΩE∗ .

Thus, sinceT (Tdϕ)(x, ξ) ∈ J(x, ξ), we have thatT (MδTyϕ)(x, ξ) ∈ J(x, ξ) a.e. (x, ξ) ∈
IH × ΩE∗ . Therefore,

T (span{MδTyϕ : ϕ ∈ A, y ∈ F, δ ∈ ∆}) ⊆ MJ.
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Using thatT is a continuous function and Remark5.2.6, we can compute

TV = T (span{MδTyϕ : ϕ ∈ A, y ∈ F, δ ∈ ∆})
⊆ T (span{MδTyϕ : ϕ ∈ A, y ∈ F, δ ∈ ∆})
⊆ MJ = MJ.

Let us suppose thatTV ( MJ. Then, there existsΨ ∈ MJ \ {0} orthogonal toTV. In
particular, we have that〈Ψ,T (MδTyϕ)〉 = 0 for all ϕ ∈ A, y ∈ F andδ ∈ ∆.

Hence, if we writey = z+ d with z ∈ E andd ∈ DF , by Lemma5.2.4we obtain

0 =

∫

IH

∫

Ω∆

〈Ψ(x, ξ),T (MδTyϕ)(x, ξ)〉 dmΓ(ξ) dmG(x)

=

∫

IH

∫

Ω∆

(x, δ)(−z, ξ)〈Ψ(x, ξ),T (Tdϕ)(x, ξ)〉 dmΓ(ξ) dmG(x)

=

∫

IH

∫

Ω∆

ηδ(x)η−z(ξ)〈Ψ(x, ξ),T (Tdϕ)(x, ξ)〉 dmΓ(ξ) dmG(x),

whereηδ andη−z are as in Proposition1.1.19.

If we define ν(δ,z)(x, ξ) := ηδ(x)η−z(ξ), then, using Proposition1.1.19, it can
be shown that{ν(δ,z)}(δ,z)∈∆×E is an orthogonal basis forL2(IH × ΩE∗). Therefore,
〈Ψ(x, ξ),T (Tdϕ)(x, ξ)〉 = 0 a.e. (x, ξ) ∈ IH ×ΩE∗ for all d ∈ DF .

This shows thatΨ(x, ξ) ∈ J(x, ξ)⊥ a.e. (x, ξ) ∈ IH × ΩE∗ and, sinceΨ ∈ MJ it must be
Ψ = 0, wich is a contradiction. ThusTV = MJ.

Let us prove now thatJ is measurable. IfP is the orthogonal projection ontoMJ, I is
the identity mapping inL2(IH ×ΩE∗ , ℓ

2(DE∗)) andΨ ∈ L2(IH ×ΩE∗ , ℓ
2(DE∗)) we have that

(P − I)Ψ is orthogonal toMJ. Then, with the above reasoning (P − I)Ψ(x, ξ) ∈ J(x, ξ)⊥

for a.e. (x, ξ) ∈ IH × ΩE∗ . Thus,

P(x,ξ)
(
(P − I)Ψ(x, ξ)

)
= 0 a.e. (x, ξ) ∈ IH ×ΩE∗

and then,PΨ(x, ξ) = P(x,ξ)(Ψ(x, ξ)) for a.e. (x, ξ) ∈ IH ×ΩE∗ .

If in particularΨ(x, ξ) = a for all (x, ξ) ∈ IH × ΩE∗ , it holds thatPa(x, ξ) = P(x,ξ)(a).
Therefore, since (x, ξ) 7→ Pa(x, ξ) is measurable, (x, ξ) 7→ P(x,ξ)a is measurable as well.

Conversely. IfJ is a shift-modulation range function, by Proposition5.2.7, V :=
T −1MJ is an (F,∆)-invariant space. Then,V = S(F,∆)(A) for some countable subsetA of
L2(G) and, according to Lemma5.2.8we can define the shift-modulation range function
J′ as

J′(x, ξ) = span{T (Tdϕ)(x, ξ) : d ∈ DF , ϕ ∈ A} a.e. (x, ξ) ∈ IH × ΩE∗ .

Thus, as we have shown,J′ is measurable andMJ′ = TV = MJ. Then, Lemma5.3.2
gives usJ = J′ a.e.
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This also proves that the correspondence between (F,∆)-invariant spaces and shift-
modulation measurable range functions is one to one and onto.

�
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2003).xvii , 30, 31, 65



78 BIBLIOGRAPHY

[Dau92] I. Daubechies.Ten lectures on wavelets, CBMS-NSF Regional Conference
Series in Applied Mathematics, vol. 61 (Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1992).xvii , 65

[DGM86] I. Daubechies, A. Grossmann and Y. Meyer.Painless nonorthogonal ex-
pansions. J. Math. Phys., vol. 27 (1986), no. 5, pp. 1271–1283.29

[dBDR94a] C. de Boor, R. A. DeVore and A. Ron.Approximation from shift-invariant
subspaces of L2(Rd). Trans. Amer. Math. Soc., vol. 341 (1994), no. 2, pp.
787–806.xiv, 12, 20, 24, 63

[dBDR94b] C. de Boor, R. A. DeVore and A. Ron.The structure of finitely generated
shift-invariant spaces in L2(Rd). J. Funct. Anal., vol. 119 (1994), no. 1, pp.
37–78.xiv, 12, 20, 24, 63

[Deu95] F. Deutsch.The angle between subspaces of a Hilbert space. In Approxi-
mation theory, wavelets and applications (Maratea, 1994), NATO Adv. Sci.
Inst. Ser. C Math. Phys. Sci., vol. 454, pp. 107–130 (Kluwer Acad. Publ.,
Dordrecht, 1995).51

[DU77] J. Diestel and J. J. Uhl, Jr.Vector measures(American Mathematical Soci-
ety, Providence, R.I., 1977). With a foreword by B. J. Pettis, Mathematical
Surveys, No. 15.14

[Dod07] M. M. Dodson.Groups and the sampling theorem. Sampl. Theory Signal
Image Process., vol. 6 (2007), no. 1, pp. 1–27.xv, 13

[DS52] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series.
Trans. Amer. Math. Soc., vol. 72 (1952), pp. 341–366.29

[Fei02] H. G. Feichtinger.Spline-type spaces in Gabor analysis. In Wavelet anal-
ysis (Hong Kong, 2001), Ser. Anal., vol. 1, pp. 100–122 (World Sci. Publ.,
River Edge, NJ, 2002).65

[FP03a] H. G. Feichtinger and S. S. Pandey.Error estimates for irregular sampling
of band-limited functions on a locally compact abelian group. J. Math.
Anal. Appl., vol. 279 (2003), no. 2, pp. 380–397.13

[FP03b] H. G. Feichtinger and S. S. Pandey.Recovery of band-limited functions
on locally compact abelian groups from irregular samples. Czechoslovak
Math. J., vol. 53(128) (2003), no. 2, pp. 249–264.13

[FG64] J. Feldman and F. P. Greenleaf.Existence of Borel transversals in groups.
Pacific J. Math., vol. 25 (1968), pp. 455–461.6

[Fol95] G. B. Folland. A course in abstract harmonic analysis. Studies in Ad-
vanced Mathematics (CRC Press, Boca Raton, FL, 1995).1, 5



BIBLIOGRAPHY 79
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