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Estructura y propiedades de espacios
Invariantes por traslaciones en grupos abelianos
localmente compactos

Resumen

En esta tesis se estudian los espacios invariantes p@di@asts en el contexto de grupos
localmente compactos y abelianos (grupos LCA). Para unoglt@fA G y un subgrupo
cerradoH C G, se introduce la nocion de espat¢ieinvarianteo espacidnvariante por
traslaciones en H

En el caso en quE es un subgrupo discreto y numerableGjese muestra que el con-
cepto de funcion rango y las técnicas de fibracion someglen este contexto. Combi-
nando estas dos herramientas, se prueba una caractanidedos espacidd-invariantes
en termino de las fibras de sus elementos. Como consecuse®atienen caracteriza-
ciones de marcos y bases de Riesz de estos espacios, extienalsé resultados previos y
conocidos para el ca&f' y el reticuladaz®.

Por otro lado, se estudia el problema deebkdra invarianciade los espacio$i-
invariantes. Los resultados obtenidos de la extra inveidagstablecen condiciones nece-
sarias y suficientes para que un espddimvariante sea ademas invariante por trasla-
ciones en un subgrupo cerralbde G que contiene &. También, se prueba que dado
un subgrupo cerrad®M de G que contiene &l existe un espacibl-invarianteV que es
exactamenté-invariante. Es decity no es invariante por traslaciones en ningn otro
subgrupoM’ que contiene &. Ademas, se obtienen estimaciones de los tamafos de los
soportes de la transformada de Fourier de los generadotes depacio$i-invariantes
en relacion a sM-invariancia.

Finalmente, se investigan los subespaciok&) que son invariantes por traslaciones
en un subgrup& de G y también invariantes por modulaciones/gnsiendoA un sub-
grupo del grupo dual d&. Se prueba una caracterizacion de estos espacio parael cas
en queK y A son discretos.

Palabras Claves:Espacios invariantes por traslaciones enteras; Espamsiasante por
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traslaciones; grupos LCA; Funciones rango; fibras; Espaitieariantes por modula-
ciones y traslaciones.



Structure and properties of shift invariant
spaces on locally compact abelian groups
Abstract

In this thesis we study shift invariant spaces in the contéxbcally compact abelian
(LCA) groups. FoiG an LCA group andH ¢ G a closed subgroup @ we introduce the
notion of H-invariant spaceor shift invariant space under translations in. H

In case wherH is a countable discrete subgroup®f we show that the concept of
range functions and the techniques of fiberization are \mlithis context. Combining
these tools, we provide a characterizationHomvariant spaces in terms of the fibers of
its elements. As a consequence, we prove characterizatidresnes and Riesz bases of
these spaces extending previous results that were knovthdarlassical case @ and
the latticezd.

On the other hand, we study the problemeatra invarianceof H-invariant spaces.
Our results of extra invariance state several necessarguiicient conditions for af-
invariant spaces to be invariant along translations in sedsubgroup db, M, containing
H. In addition we show that for each closed subgrédimf G which containsH there
exists arH-invariant spac# that is exactlyM-invariant. That isV is not invariant under
any other subgroup’ containingM. We also obtain estimates on the support of the
Fourier transform of the generators of tHeinvariant spaces, related to ¥&-invariance.

Lastly, we investigate the structure of those closed sutespfl_2(G) which are invari-
ant by translations aloni and also invariant under modulationsAn beginK and A
closed subgroups @ and the dual group db respectively. We obtain a characterization
of these spaces whéfiandA are discrete.

Key words: Shift-invariant space; Translation invariant space; LGAups; Range func-
tion; Fibers; Shift-modulation invariant space.
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Introduction

A shift invariant spacgSIS) is a closed subspace Iof(R) that is invariant under trans-
lations by integers. The Fourier transform of a shift inaatispace is a closed subspace
that is invariant under integer modulations (multiplicat by complex exponentials of
integer frequency). Spaces that are invariant under integeulations are calledoubly
invariant spacesEvery result on doubly invariant spaces can be translated equiva-
lent result in shift invariant spaces via the Fourier transf. Doubly invariant spaces have
been studied in the sixties by Helsandl64] and also by Srinivasarsfi64], [HS64, in

the context of operators related to harmonic analysis.

Shift invariant spaces are very important in applicationd ¢he theory had a great
developmentin the last twenty years, mainly in approxioratheory, sampling, wavelets,
and frames. In particular they serve as models in many pmubie signal and image
processing.

In order to understand the structure of doubly invariantepaHelson introduced the
notion ofrange function This became an essential tool in the modern developmeheof t
theory. SeedBDR944, [dBDR944, [RS9] and [Bow0(.

Range functions characterize completely shift invarig@ices and provide a series of
technigues known in the literature fiserizationthat allow to have a dierent view and a
deeper insight of these spaces.

Fiberization techniques are very important in the clasrotfely generatedhift in-
variant spaces. A key feature of these spaces is that thelyecganerated by the integer
translations of a finite number of functions. Using rangecfions allows us to translate
problems on finitely generated shift invariant spaces, pmtdlems of linear algebra (i.e.
finite dimensional problems).

Shift invariant spaces generalize very well to severalaldeis where the invariance is
understood to be under the lattizé.

When looking carefully at the theory it becomes apparerttitha strongly based on
the additive group operation & and the action of the subgroa.

It is therefore interesting to see if the theory can be setaordext of generdocally
compact abeliagroups (LCA groups). The locally compact abelian group fauork has
several advantages. First because it is important to haadichthieory for the classical
groups such ag9, T andZ,. This will be crucial particularly in applications, as ineth
case of the generalization of the Fourier Transform to LCAugs and also Kluvanek’s
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theorem, where the Classical Sampling theorem is exteral#dst general context, (see
[Klu65], [Dod07).

On the other side, the LCA groups setting, unifies a numbeifédrént results into a
general framework with a concise and elegant notation. fHgisenables us to visualize
hidden relationships between thdfdrent components of the theory, what, as a conse-
guence, will translate in a deeper and better understaradiskift invariant spaces, even
in the case of the real line.

In this thesis we develop the theory of shift invariant sgame LCA groups. We begin
by introducing the concept ¢f-invariant spaces or shift invariant spaces under trainslat
in K, for K being a closed subgroup of a fixed LCA grd@pThen, we turn our attention
for the case when the translates are iuarform latticein G. That s, a discrete subgroup
H of G for which the quotientG/H is compact. In this context, our emphasis will be
on range functions and fiberization techniques. With theststwe will investigate the
structure ofH-invariant spaces. The order of the subjects follows maimytreatment
of Bownik in RY, [Bow0(. In [KROEg] the authors study, in the context of LCA groups,
principal shift invariant spaces, that is, shift invariant spacesegatied by one single
function. However they don’'t develop the general theory.

With the description oH-invariant spaces that we obtain, we are able to stufiigreint
problems about them.

First, we are interested in a problem concerning to framek Riesz bases ohi-
invariant spaces.

In RY, SIS are separable Hilbert spaces in themselves and the @zoues for shift
invariant spaces on LCA groups.

As it is well known, each separable Hilbert space has an ndimal basis. In addition
to the mere existence, for the particular case of shift iavdispaces, it is useful to have
bases with elements having a common structure. But thes@eetents on the basis can
not always be satisfied.

Fortunately, the concept of frames provides an altern&ivethonormal bases. Work-
ing with a frame{f,}, allows us to represent each element of the Hilbert spacé-(shi
invariant spaces in our case) hs= ', c,f,. In general, the scalags,},, are not unique
and the elementd,}, are not required to be orthogonal. Nevertheless, framdisitien
still retains good control on the behavior on the fi@eents{c,}.

An important property about frames on shift invariant sgasehat they always exist
and moreover, we can always find frames of a very specific tiypmes of translates
By frames of translates we mean frames in which their elesnarg translations of a
fixed set of functions. This particular structure, which ssential for applications, is
quite compatible with the Fourier transform. As a consegaefiberization techniques
become a very well-adapted tool for studying frames of {edas of shift invariant spaces
(seeChapter 3.

The concrete problem concerning frames of translatesiforvariant spaces that we
consider in this thesis is the following. L&t C L?(G) be theH-invariant space given
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by V = SpaiThe : ¢ € A, h € H} with A being a (countable) set of functions iA(G)
and withH being an uniform lattice 5. Here, T, denotes the translation operator by
defined asT,f(x) = f(x—h) for a.e.x € Gandf € L?(G). We want to know when the
set{Thp : ¢ € A, h € H} constitutes a frame fov. In addition, we study the analogous
problem for, instead of frames, Riesz bases. These basan argeresting generalization
of orthonormal bases. Therefore, we analyze under whicHitons{Th¢ : ¢ € A,h €
H} is a frame or a Riesz basis ot

Another question which is relevant for this thesis, is wieti-invariant spaces, withl
being an uniform lattice i, have the property to be invariant under any other trarsiati
than those that are iH. A limit case is when the space is invariant under tranghatio
by all x € G. In this case the space is call&@nslation invariant However, there
exist H-invariant spaces with sonmextra invariance that are not necessarily translation
invariant. Thatis, there are some intermediate cases bati«nvariance and translation
invariance. The question is then, how can we identify them?

Recently, Hogan and Lakey defined tiscrepancyof a shift invariant space as a way
to quantify thenon-translation invariancef the subspace, (seel[05]). The discrepancy
measures how far a unitary norm function of the subspacemncae away from it, when
translated by non integers. A translation invariant spasediscrepancy zero.

In another direction, Aldroubi et al, seeCHKM10], studied shift invariant spaces of
L2(R) that have some extra invariance. They show th¥tig a shift invariant space, then
its invariance sets a closed additive subgroupRfcontainingZ. The invariance set asso-
ciated to a shift invariant space is the b&bf real numbers satisfying that for eapte M
the translations by of every function inVv, belongs td/. As a consequence, since every
additive subgroup oR is either discrete or dense, there are only two possitsllaé for
the extra invariance. That is, eith€ris invariant under translations by the groﬁm, for
some positive integan (and not invariant under any bigger subgroup) or it is traimnsh
invariant. They found dierent characterizations, in terms of the Fourier transfaymn
when a shift invariant space ﬁ%-invariant.

A natural question arises in this context. Are the char&agons of extra invariance
that hold on the line, still valid in the context of LCA groups

The invariance seM C G associated to ahl-invariant spacé/, that is, the set of
elements of5 that leaveV invariant when translated by its elements, is again, asdikth
case, a closed subgroup®fvhich containdd (see Propositios.1.1). The problem of the
extra invariance can then be reformulated as finding negeasa stficient conditions
for anH-invariant space to be invariant under a closed subghMupG containingH.

The main diference with th& case studied irJCHKM10], is that the structure of the
closed subgroups @ containing uniform lattices is not as simple.

The results obtained for tiRecase translate very well in the case in which the invariance
setM is a discrete subgroup or whévi is dense, that iM = G. However, there are
subgroups o6 that are neither discrete nor dense. So, can thereldxistariant spaces
which areM-invariant for such a subgroud and are not translation invariant?
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Our approach in this work is to study the extra invariance ofvariant spaces on LCA
groups. We were able to obtain several characterizatioralging the 1-dimensional
results. In addition our results show the existencélahvariant spaces that aexactly
M-invariant for every closed subgrol C G containingH. By ‘exactly M-invariant’
we mean that they are not invariant under any other subgronfaimingM. We apply
our results to obtain estimates on the size of the suppohefourier transform of the
generators of the space.

The particular cas& = RY can be treated in a slightly fierent way tharH-invariant
spaces, in which the general context of LCA groups can betethiThe characterization
of extra invariance of shift invariant spaces bf(R%) with d > 1 is studied using an
appropriated description of the closed subgroup®bthat containz?. For this, we
review the structure of closed subgroupRéf

Finally in this work, we consider a problem related to shitddulation invariant spaces.
Shift-modulation invariant (SMI) spaces are shift invatigpaces that have the extra con-
dition to be also invariant under some group of modulatidiese shift invariant spaces
with the extra assumption of modulation invariance are ofipaar interest and are usu-
ally known as Gabor or Weyl-Heisenberg spaces. They have ingensively studied in
[Bow07], [CCO14, [CC01]3, [Chr0], [Dau9], [GD04], [GDO01], [Gro0]].

A very deep and detailed study of the structure of shift-niatilon invariant spaces
of L?(RY), was given by Bownik (seeBow07]). In that work, the author provides a
characterization of SMI spaces based on fiberization teci®si and range functions.

Since modulations become translations in the Fourier doysaift-modulations invari-
ant spaces are spaces that are shift invariant in time aqddrey. As a consequence the
techniques of shift invariant spaces can be applied to dfuelgtructure of SMI spaces.
Having at hand a theory of SIS on LCA groups it is natural towkkther a general theory
of SMI spaces could be developed in this more general cantext

We define and study the structure of SMI spaces on the conté&x@A groups. First
we introduce the concept of shift-modulation spaces wharestations are on a closed
subgroup of an LCA grou@® and modulations are on a closed subgroup of the dual group
of G. Next we investigate the case where both, translations astutations, are along
uniform lattices ofG and the dual group db respectively, with some minor hypotheses.
Using previous result for shift invariant spaces on LCA greuwe are able to develop a
fiberization isometry and range functions well adapted i®riore complicated structure
which combines translations and modulations. Then, wegacsharacterization of shift-
modulation invariance spaces, extending to LCA groupsehelt obtained by Bownik in
[Bow07] for the case of 2(RY). While some properties are a simple generalizations of the
known case, there are others that do not translate easlitysatdry abstract context and
whose validity it is not clear a priori.
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Thesis outline
The rest of the thesis is organized as follows.

Chapter lincludes a review about LCA groups background to make thesishself-
contained. Mainly, we summarize results concerning todsasits about generalities of
LCA groups , Haar measures and the Fourier transform.

In addition, we develop a fundamental tool for this work edlFiberization isometry
and we introduce the precise definitionkinvariant spaces on LCA groups.

In Chapter 2ve present a characterization of shift invariant spacesgalmiform lat-
tices on LCA groups. First we provide a description of shftariant spaces generated
by a single function in terms of the Fourier transform of iemgrator. In order to charac-
terize general shift invariant spaces along uniform lagtjave introduces range functions.
Then, we state necessary andfisient condition for a closed subspacel3{G) to be a
shift invariant space combining range functions with fibatons techniques.

We devoteChapter 3to study frames and Riesz bases of translates of shift ewvari
spaces on LCA groups. For an uniform lattidein an LCA groupG andA ¢ L%(G) a
subset of functions, we want to determine when thg¢Bgt : ¢ € A, h € H} is a frame
or a Riez basis foW = SpanThy : ¢ € A,h € H}. Our analysis will be based on the
results obtained i€hapter 2

In Chapter 4ve study the problem of the extra invariance. Given a shitiilant space
under an uniform lattice db, our purpose is to determine precisely when the space is also
invariant under translations on a closed subgrou®,oM, which contains the original
uniform lattice. The results included in this chapter aresatension of those stated in
[ACHKM10]. We want to remark that our generalization is not straightbrd. Our
main dfficulty lies in the fact that we do not know a priori the struetof the subgroup
M.

Finally, we devoteChapter 5to investigate shift-modulation invariant spaces in the
context of LCA groups. AK, A) shift-modulation invariant space is a subspackG),
that is invariant by translations along element¥Kimnd modulations by elements in
with K and A being closed subgroups & and the dual group o& respectively. We
provide a characterization of shift-modulation invariapiaces in this general context
whenK andA are uniform lattices. For getting the desired charactédmawe develop
fiberization techniques and suitable range functions adéotthis new structure.

Included publications

Most of the results of this thesis have been published, omstdd for publication, as
research articles in flerent journals.

The papers included in the thesis are:
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Preliminaries

This chapter compiles some preliminary facts and the rwidtiat will be used in this
thesis. Itis our intention to make the exposition the motegmtained possible. How-
ever, we omit the proof of those result that we believe arenassential contribution for
this thesis. In each case, we indicate the correspondergditre.

The known material of this chapter can be probably found aliierature in a more
general form. Here, it will be exposed in an appropriated t@ayur purpose.

The chapter is organized as followSection 1.1is divided in three subsections. In the
first one we summarize without proofs the relevant matemalogally compact abelian
groups. The second one contains results concerning to Haasures. We also discuss
there the existence and properties of Borel-sections wpleha key role in most of the
main arguments in this thesis. In the last parSettion 1.lwe present some properties
of the Fourier transform on locally compact abelian grodpsSection 1.2ve introduce
the concept oK-invariant spaces and we give some relevant examples. Aduemary
about vector-valued functions is given3ection 1.3 Finally in Section 1.4ve develop
the fiberization isometry, one of the most important tooksdlis this work.

1.1 Background on LCA Groups

In this section we review some basic known results from teemy of LCA groups, that
we need for the remainder of the thesis. For details and pree¢ Rud63, [Fol95,
[HR79, [HR7Q.

1.1.1 LCA Groups

Throughout this thesisG will denote a locally compact abelian, Hausfiogroup
(LCA) andT or G its dual group. That is,

I'={y:G — C: vy isacontinuous character &},
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where a character is a function such that:
@ ly(¥)l =1V xeG.
(b) y(x+y) =y(X¥r(y), ¥ xyeG.

Thus, characters generalize the exponential functigfyy = €V, from the cases =
(R, +).

Since in this context, both the algebraic and topologicalcstires coexist, we will say
that two groupss andG’ aretopologically isomorphi@and we will writeG ~ G, if there
exists a topological isomorphism frofd onto G’. That is, an algebraic isomorphism
which is an homeomorphism as well.

The groug’, with the operationy + v")(X) = y(X)y’(X), is an LCA group. Moreover,

Theorem 1.1.1.Let G be an LCA group antl its dual. Then, the dual group &f is
topologically isomorphic to G.

Therefore, every LCA group is the dual of its own dual groufthwhe identification
XeG e ¢y € i:,

wheregy(y) := y(X). According to this, it is convenient to use the notatiany for the
complex numbet(X), representing the characteapplied tox or the charactex applied
tovy.

Note that from properties (a) and (b) of the elementE,dhe following equalities are
obtained:

(0’ 7) =1= (X’ O) and é(’ 7)_1 = (X’ _7) = (_X’ 7) = m,
¥ xe GandV¥ y eT.

Theorem 1.1.2.Let G be an LCA group and its dual group. Then, if G is discretE,is
compact and if G is compadi,is discrete.

As a consequence of Theoreiml.1and Theoreni.1.2 it holds that an LCA group is
compact if an only if its dual is discrete.

Next we list the most basic examples that are relevant toi€oanalysis. The details
are left to the reader. As usual, we identify the intervall)Owith the torusl = {z€ C :
|7 =1} = R/Z.

Example 1.1.3.

() In case thaG = (RY, +), the dual groud is also RY, +), with the identification
x € RY & y, € T, wherey,(y) = Y. (See Rud62 Section 1.2.7])
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(I In case thaG = T its dual group is topologically isomorphic % identifying each
k € Z with y, € T, beingy(w) = €. This is due to, Sinc& ~ R/Z, characters
of R can be defined frori to C under the condition of being 1-periodic. As it is
point out in item (1), characters dh are of the formy,(y) = €™ with x € R and
then,y, is 1-periodic if and only ifx € Z.

() Let G = Z. If y € T, then (1) = € for samex € R. Therefore, K, y) = 7.
Thus, the complex numbef™® identifies the character. This proves thal is T.

(IV) Finally, in case thaG = Z,, we can identifyl’ with {0,,2,... ™1} Indeed.
According to item (III)Z ={e :Z - C: ac[0,1)). Sincez, = Z/nZ,
characters itZ,, will be those irZ that are constant in the cosetsZaf This happens
exactly wherw € {0, %, 2, ..., =1}, This argument also shows that the dual group

> e ﬁa
of Z, is Z, as well.

Let us now consideK C G, a closed subgroup of an LCA gro@ Then, the quotient
G/K is a regular (T3) topological group. Moreover, with the geot topology,G/K is
an LCA group and if5 is second countable, the quoti€atK is also second countable.

For an LCA groupG andK < G a subgroup of5, we define the subgroug* of I' as
follows:
K'={yel:(ky)=1 V keK}
This subgroup is called th@nnihilator of K Since each character Ihis a continuous
function onG, K* is a closed subgroup &f.
The next result establishes duality relationships amoeggtioupsk, K*, G/K and
/K.

Theorem 1.1.4.1f G is an LCA group and KZ G is a closed subgroup of G, then:

(i) K* is topologically isomorphic to the dual group of/&, i.e: K* ~ (G/K).

(i) T'/K* is topologically isomorphic to the dual group of K, iEB/K* ~ K.

Note that item(ii) of the previous theorem can be obtained combining the sesult
item (i) of Theoreml.1.4 Theoreml.1.1and the following lemma, the proof of which
can be read inRud62 Lemma 2.1.3.].

Lemma 1.1.5.Let G be an LCA group and K- G a closed subgroup. If Kis the
annihilator of K, then K is the annihilator of K

Remarkl.1.6 According to Theoreni.1.1 each element d& induces one character in
I'. In particular, ifK is a closed subgroup @, eachk € K induces a character that has
the additional property of beinig*-periodic. That is, for every € K*, (k,y + 8) = (K, y)
forally eT.
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In this thesis, we work with periodic functions several tsn€hen, we want the specify
what a periodic function is. KK is a subgroup o6, we say thaf : G — C is K-periodic
if f(x+ k)= f(x)forall xe Gandk € K.

The following definition will be useful throughout this thes It agrees with the one
given in [KK98].

Definition 1.1.7. GivenG an LCA group, auniform lattice K in Gis a discrete subgroup
of G such that the quotient group/K is compact.

Example 1.1.8.

() In case thalG = RY, subgroups of the fornk = AZY with A being a invertible
matrix with integer entries are uniform latticesRA.

(I WhenG = T, K = G, whereG, denotes the sdz € C : Z' = 1}, is an uniform
lattices InT for eachn € N.

(Il1) Every subgroup ofZ is a uniform lattices since all of them are of the fon for
somem e N.

There exist LCA groups which do not contain uniform latticEer a discussion about
this, we refer to KK98], where an example of an LCA group without a uniform lattise i
given.

The next theorem points out a number of relationships whoduoamonds, K, I', K*
and their respective quotients. The properties statedwtilibe crucial on the remainder
of this work.

Theorem 1.1.9.Let G be a second countable LCA group. IfKG is a countable (finite
or countably infinite) uniform lattice, the following progies hold.

(1) G is separable

(2) Kc Gisclosed.

(3) G/K is second countable and metrizable.

(4) K* C T, the annihilator of K, is closed, discrete and countable.
(5) H ~ I'/K* and(G/K) ~ K*.

(6) I'/K* is a compact group.

Note that in particular, this theorem states tkais a countable uniform lattice i.
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1.1.2 Haar Measure on LCA groups

On every LCA groupG, there exists d&daar measure That is, a non-negative, regu-
lar Borel measureng, which is not identically zero anttanslation-invariant This last
property means that,

mMe(E + %) = mg(E)
for every elemenik € G and every Borel seE € G. This measure is unique up to
constants, in the following sense:nf; andny; are two Haar measures &) then there
exists a positive constantsuch thatmg = A ny,. For a thorough proof of the existence and
uniqueness of Haar measures we refer the readérat®9, Theorem 2.10 and Theorem
2.20].

We say that a functiori : G — C is mg-measurabléf it is Borel-measurable respect
to the Haar measumeg on G.

Given a Haar measum on an LCA groupG, the integral ovelG is translation-
invariant in the sense that,

ff(X+Y)d”b(X)=ff(X)d”b(X)
G G

for each element € G and for eachmg-measurable functioh on G.

As in the case of the Lebesgue measure, we can define the 4péGesy), that we
will denote ad_P(G), in the following way

LP(G) = {f : G — C: f is measurable an{f||J := flf(x)|pdm;(x) < oo}
G

We call|| f||, the LP-normof f.
If Gis a second countable LCA group?(G) is separable, for all ¥ p < co. We will
focus here on the cases= 1 andp = 2. Forp = ~ the spacé.*(G) is given by
L¥(G) = {f : G — C: f is measurable anff||., := esssupg|f(X)| < oo},
where by esssyg;|f (x)| we mean thessencial supremuaof f defined by infc : |f(X)| <
c ae xeG}.
In case wher& is discrete, we noté®(G) instead ofLP(G) forall 1 < p < .

The next theorem is a generalization of a periodization raeyu usually applied in
caseG = R (for details seeHiR70, Theorem 28.54]).

Theorem 1.1.10.Let G be an LCA group, K& G a closed subgroup and € L(G).
Then,

() For almost every x G, the function k— f(x + k) is mc-measurable and belongs
to LY(K). The function x— fK f(x + K) dmy (k) depends only on the cosef =
X + K, and therefore it can be considered as a function of theignbG/K, that is

FIX) = f fOx+Kydmy(K).
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(i) The function F defined above isg-measurable and belongs td(G/K). Fur-
thermore, the Haar measuresmmg and ng, can be chosen such that

[ oame = [ . [ 1o dme dmeye((. (L.1)

Equality (1.1) is usually called Wiel's formula.

If G is a countable discrete group, the integrafof L*(G) overG, is determined by
the formula

fG F(3) dms(x) = ma((0) D f(),

xeG

since, due to the translations invariangg({x}) = mg({0}), for each element € G.

Definition 1.1.11. Let G be an LCA group and&k € G a closed subgroup. &ectionof
G/K is a set of representatives of this quotient. That is, a $eéG containing exactly
one element of each coset. Thus, each elemern® has a unique expression of the form
x=c+ kwith ce Candk € K.

We will need later in the thesis to work with Borel sectiondheTexistence of Borel
sections is provided by the following lemma (s&&Pp8] and [FG64).

Lemma 1.1.12.Let G be an LCA group and K a uniform lattice in G. Then, theiistex
a section of the quotient &, which is Borel measurable.

Moreover, there exists a section of K which is relatively compact and therefore with
finite ms-measure.

A sectionC ¢ G of G/K is in one to one correspondence WK by the cross-
sectionmapr : G/K — C, [X] = [X] n C. Therefore, we can carry over the topological
and algebraic structure @&/K to C. Moreover, ifC is a Borel sectiont : G/K — C is
measurable with respect to the Bosehlgebra inG/K and the Boreb-algebra inG (see
[FG64 Theorem 1 ]). Therefore, the set value function definedht) = mg/k (r~X(E))
is well defined on Borel subsets Gf In the next lemma, we will prove that this measure
mis equal tomg up to a constant.

Lemma 1.1.13.Let G be an LCA group, K a countable uniform lattice in G and CoaelB
section of GK. Fix mg, mx and ng,« such that the Weil’s formula holds. Then, for every
Borel set EC C

me(E) = mc({0)mgx (7 (E)),
wherer is the cross-section map.
In particular, m;(C) = mg({0})mg/k (G/K).
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Proof. According to Lemmad..1.12 there exists a relatively compact sectiorGgK. Let
us call itC’. Therefore, ifC is any other Borel section @&/K,

ms(C) = mg(GNC)=mg( JC+KNC)
keK

me((JI(C' - nCl+k) = 3 me(I(C ~ K NC] +K)

keK keK
= > me(([€ -k NC)=me(|_J€-KknC)
keK keK

= mg(GNC) =m(C).

SinceC’ has finitemg measureC must have finite measure as well.

Now, takeE C C a Borel set. Thusmg(E) < mg(C) < oo. Hence, sing Theorem
1.1.1Q

me(E) = f xe(¥) dms (9 f } f xe(x+ Kdme(K) dme ([X)

K

m0) [ > velx 9 dmee(i)

keK

mk ({0}) G/KXT‘l(E)([X])d”b/K([X])

Mk ({0})me k(77 (E)).

O

Remarkl.1.14 Notice thatC, together with the LCA group structure inherited ByK
throughr, has the Haar measune We proved thaing|c, the restriction oing to C, is a
multiple of m. It follows thatmg|c is also a Haar measure @n

In this thesis we will consideC as an LCA group with the structure inherited ByK
and with the Haar measuna;.

A trigonometric polynomiain an LCA groupG is a function of the form
n
P(¥) = > aj(x.7)),
=1

wherey; eI'anda; e Cforall1<j<n.

As a consequence of Stone-Weierstrass Theorem, the faljpvasult holds, (see
[Rud63, page 24).

Lemma 1.1.15.1f G is a compact LCA group, then the trigonometric polyndmaxre
dense inC(G), whereC(G) is the set of all continuous complex-valued functions on G.

Another important property of characters in compact grasipise following:
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Lemma 1.1.16.Let G be a compact LCA group aiidts dual. Then, the characters of G
verify the following orthogonality relationship:

fG (%706 7) dms(x) = Me(G)5,.
forall y,y €TI', wheres,,, = 1if y =" andé,,, =0if y #y'.

Proof. Sincel is a group, we only need to see tk}@(x, y)dmg(X) = mg(G)d, 0, for all
vel.

Takey e I'. If y = 0, itis clear thath(x, y)dms(X) = mg(G). If y # 0, there exists
Xo € G with (Xo,y) # 1. Then,

f (x.7) dms(¥)
G

(%0.7) fG (X Xou ) (%)
(%0.7) fG (% y)dms(¥).

Therefore [ (x, ) dms(x) = 0. u

Let us now suppose th&t is a uniform lattice irG. If T is the dual group o5 andK*
is the annihilator oK, the following characterization of the characters of theugd /K*
will be useful to understand what follows.

For eachk € K, the functiony — (k,y) is constant on the cosetg][ = v + K*.
Therefore, it defines a character bypK*. Moreover, each character anK* is of this
form. Thus, this correspondence betwéeand the characters &f K*, which is actually
a topological isomorphism, shows the dual relationshiplgsthed in Theorer.1.4

Furthermore, sinc€/K* is compact, we can apply Lemnial.16to I'/K*. Then, for
k € K, we have

[ wopamemy={ ™G ST

{nhwavKﬂ if k=0 1.2)
/

1.1.3 The Fourier transform on LCA groups

Given a functionf € LY(G) Fourier Transfornof f is defined as
)= [ 109 -ndms9, yer. (1.3)

Theorem 1.1.17.The Fourier transformis a linear operator front(G) into Co(I'), where
Co(I) is the subspace af(I') of functions vanishing at infinite, that is, € Co(I') if
f € C(I') and for alle > 0 there exists a compact setdRG with|f(X)| < ¢ if X € R°.

Furthermore A : LY(G) — Co(I') satisfies

fy)=0Vyel => f(X)=0ae xeG. (1.4)
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Fory e LY(I'), theinverse Fourier Transforrof ¢ is defined as

(%) = f (% 7)¢0() dm ()

and the functiorp ™ G +— C is continuous as well.

The Haar measure of the dual grolpf G, can be normalized so that, for a specific
class of functions, the following inversion formula holdgeé Rud62 Section 1.5]),

f(x) = f )% y) dmG).

In the case that the Haar measumg@sand my are normalized such that the inversion
formula holds, the Fourier transform &4A(G) N L?(G) can be extended to a unitary oper-
ator fromL?(G) ontoL?(I'), the so-called Plancharel transformation. We also dethige
transformation by A”.

Thus, the Parseval formula holds
(f.g) = fG FRIRI dm(9 = [ TG0)dm) = (9.

for all f,ge L%G).
Let us now suppose th& is compact. Them' is discrete. Fixng andm in order that
the inversion formula holds. Thus,

1 =mr({0)mg(G). (1.5)

Let us prove thatX(.5) holds. Sinceg = ﬁ)(@ * Y, iInversion formula is valid foxg
(see Rud6q for details). Then

1= xad = [ 760X dm) = m(i0) Y )k ) (1.6)

yel

Now, sinceyg(y) = fG(x, ¥) dms(X), Lemmal.1.16givesyc(y) = 6,0ms(G). From
this fact and equatiori(6), equality (L.5) is obtained.

The following lemma is a straightforward consequence of inerh. 1. 16and statement
(1.4).

Lemma 1.1.18.1f G is a compact LCA group and its duBlis countable, then the char-
acters{y : y € I'} form an orthogonal basis fori(G).

For an LCA groupG and a countable uniform lattide in G, we will denote byQy- a
Borel section of’/K*. In the remainder of this thesis we will identify’(Qx-) with the
set{p € LP(I') : ¢ = 0ae I'\ Qk:} for p = 1 andp = 2, andL>*(Qk-) with the set
{pel*[):¢=0ae I'\Qk}.

Let us now define the functiong : T — C, asn(y) = (K, —y)xa.. (¥)-
Then we have:
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Proposition 1.1.19.Let G be an LCA group and K a countable uniform lattice in G.
Then,{nkek is an orthogonal basis fori(Q-). Moreover, if m(Qk-) = 1 then, {ndkex
is an orthonormal basis for4(Qx.-)

Proof. SinceI'/K* is compact and equalityl(2) holds, applying Theorem.1.10we
obtain,

fr ny) dm(y) = f (K. ). () A ()
=m0 [ (=T xa (r+ ) im0

/ seK*

=me(io) | Ge-b) dmc ()
= Mk~ ({0}) M- (T'/K*) Sko = Mp(Qk-) Sio.

Then,{nkek is an orthogonal set ih?(Q-).

Let us see completeness. Eack L?(Qk-) induces a functiory’ defined inl/K* as
¢'([¥]) = Zsex- ¢(y +6). Note thaty'([¥]) = 7=y J- ¢ + 6)dme-(6). Then, as a
consequence of Theoreinl.1Q ¢'([y]) is amr,x--measurable function and we have that
¢ € L2(I'/K¥).

Now let ¢ € L2(Q-) be a function such thaﬁ o(yY)m(y)dme(y) = 0, for allk € K.
Then,

0= f o)k~ () dM ()

=me-(10) | D el +8)(k =y + 6)xay. (y + 8) Ay ([¥])

T/K* sek*

=mk-({0}) fr " ¢ (YD =[y]) dmyyic- ([¥]).

for all k € K. Therefore, sinc&€/K* is compact, by Lemma.1.18we obtain thaty’ = 0.
This proves thap = 0 a.e. iNQx-. So{ndiek is complete system ib?(Qk-). O

Remark1.1.2Q0 As we have done in Propositiagh1.19 we can associate to eaghe
L2(Qx-), a functiony’ defined orl/K* as¢’([y]) = Ysek- ©(y + 6). Since

||"D”i2(QK*) = M- ({O})”SO/HEZ(F/K*)’

the correspondencge— ¢’ is an isometric isomorphism up to a constant betweg€-)
andL?(I"/K*).

Combining the above remark, Propositibri.19 and the relationships established in
Theoreml.1.4 we obtain the following proposition, which will be very irmgant on the
remainder of the thesis.
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Proposition 1.1.21.Let G be an LCA group, K countable uniform lattice inIG= G
and K* the annihilator of K. FixQg- a Borel section offl /K* and choose mand ny k-
such that the inversion formula holds. Then

mi ({0p)*

lallzky = —~—5ll A2 pe)»
K Me(Qx- )22 ; (Qk~)

for each a= {a ik € £3(K).

Proof. Leta € ¢£2(K). Thus,
llall 2y = a2k (1.7)

sinceK ~ I'/K* and thereforen : K — I'/K*,

Takep(y) = Yrek (K —¥)xva.. (¥). Then, by Propositiod.1.19 ¢ € L3(Q-). Fur-
thermore, ¢’ ([y]) = ¢(y), a.e. y € Qk-. So, as a consequence of Remark.2Q we
have

1
m2 _ 2

Now, a([y]) = mk({0}) ek ax(k, —[y]). Therefore, substituting in equationk.7) and
(1.9),

_ M ({0})
llallezky = WH‘P”LZ(QK*)-

Finally, sincemp(Qx:) = mk-({0}) mr/k-(I'/K*), using (L.5) we have that

me({0) _ mk({on*
mi-((0NY2 — me(Q-)1?’

which completes the proof. m|

We finish this section with a result which is a consequenceéadément {.4) and The-
orem1.1.1Q

Proposition 1.1.22.Let G, K andQ- as in Propos/i}iorfl.l.Zland fix m, mc- and k-
such that Theorerh.1.10holds. If¢ € L}(Qx-) and¢(k) = 0 for all k € K, theng(w) = 0
a.e.w € QK*'

Proof. Take¢ € L(Qk-). Then, in the same way as in RemdrKk.2Q we can associate
to ¢ a functiong’ defined ovel’/K* as¢’([y]) = Ysek- (¥ + 6). Sinceg € L1(Qk-), it
holds holds thap’ € LY(I'/K*).
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Now, letk € K. Then, by Theorem.1.10

#(K)

fr 6o ()(—k 7) dm(7)

f f oy + 6o (v + 6)(—k. v + 8) dme-(6) dm s (04])
I'/K* JK*

me(0) [ (kDD 3 00+ O b+ ) dmc ()

seK*

me-({0) | (k. [¥D)¢"([v]) dmpyk-([I¥])

Ir/K*

mk- ({0} ¢’ (K).

Therefore’(k) = 0 for allk € K and according tol(.4) we can conclude that = 0 a.e.
[y] € T/K*. Thus,p = 0 a.e.w € Q-. O

1.2 K-invariant Spaces

This section is devoted to introduce the definitiorkeinvariant spaces on LCA groups.
This notion generalizes the usual definition of shift insatispaces (SIS) dR?, where
the translations are Y. The theory of SIS has been mainly developed diypR944,
[dBDR94H, [Bow0d, [Hel64], [RS9] in the last twenty years. It has an important role
in approximation theory, wavelets, frames and it is usefidhtape problems about signal
processing.

For everyy € G and f € L?(G) we denote byl f the translation of by the elemeny
defined adyf(x) = f(x-y) a.e.xe G.

Definition 1.2.1. Let K € G be a closed subgroup &. We say that a closed subspace
V C L%(G) is K-invariant or shift invariant under translations in K

feVoTfeV Vkek

For a subsefd c L%(G), we define
Ex(A) = {Tkp : p e A, ke K} and Sk(A) = SpanEg(A).

A straightforward computation shows that the sp&@géA) is aK-invariant space. Thus,
we will call Sk (A) theK-invariant space generated l# In case thaiAd = {¢}, we simply
write Ex(¢) and Sk () instead ofEx ({¢}) and Sk ({¢}). We call Sk(¢) the principal K-
invariant spacegenerated by. WhenA is a finite set we say th&y (A) is afinitely
generated K-invariant space

EachK-invariant spac&/ can be describe & (A) for some subsef € L%(G). In-
deed)V = Sk(V).
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An important fact is that, whe@ is a second countable LCA group, evdtyinvariant
spaceV is generated by a countable (finite or countably infinite) $eat is, there exists
a countable subsefl of L?(G) such thatv = Sk (A). This fact is due to, if5 is second
countable, theh?(G) is a separable Hilbert space.

We now give some examples Kfinvariant spaces.

Example 1.2.2.

() ForG = RandK = Z consider the principal-invariant space generated pyvhere

v = Xi-1.4- This is the classicdl-invariant space called the Paley-Wiener space
and it is usually noted aBBW(R). The Paley-Wiener space can be described as

PW(R) = {f € L3(R) : SUpp(F) c [—%, %]}

and it also known as the space of bandlimited functions.

This space has an important roll for both theory and appiinat For instance, it
is involved in the Shannon sampling Theorem which statetseteh functionf e
PW(R) can be reconstructed from the $&{k)}«.z. More precisely, iff € PW(R)
then

109 = > FTup(¥),

keZ

with the series converging uniformly di, as well as inL?(R). The Sampling
Theorem was generalized to the context of LCA groups by &heK. For details
see Pod07, [KIu65]. For further results concerning The Sampling Theorem on

LCA groups, we also refer td-{507, [FP033 and [FPO34.
Another important property about the sp&&/(R) is that ifa € R andf € PW(R),
thenT,f € PW(R). That is,PW(R) is invariant under any translation ik

(I) Consider the functiorp = x_3 3 € L*R). Then,Sz(¢) < L*(R) is aZ-invariant
space and, in contrast to the above example, one can easitk thatSz(¢) is
invariant only under translations iA. In other words, it holds that if € Sz(¢),
a € RandT,f € Sz(¢) thena must belong t&.

() Suppose now thab = Z, ={0,1,2,--- ,n-1} for a fixedn € N. Takek, d € N such

thatn = k.d and letk € G the subgroup ot defined aK = {0,d,2d,--- ,d(n-1)}
(i.,e. K =~ Z)).

If ¢ € L2(Z,) is the functiony = (1,0, -- -, 0) = g then,

SK(SO) = Spar{a)’ €d> €d, """, aj(n—l)}

where forj € {0,1,2,--- ,n— 1}, g is such thag;(i) = 0 fori # j ande;(j) = 1.
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1.3 Spaces of Vector-valued Functions

This section deal with some basic and known definitions angeties of vector-valued
functions. It is not our purpose to get into details. We willyostate here the results that
will be needed in this thesis and they will be described in @ s#table for our purpose
of concrete applications. For details about this themeB&& ] and [Muj86].

The basis of this material i%(}., 1) a finite measure space afifla Hilbert space with
inner produck:-, -)¢; and norml| - ||4.

We begin with the notion of measurability of vector-valuaddtions.

Definition 1.3.1.

(1) A functionF : X — H is calledsimpleif there existxy, X, -+, X%, € H and
Ei, Ez, -+, En € Y, such thaF(w) = YL, XxE (w).

(2) We say that a functiok : X — H is strongly measurabl#é there exists a sequence
of simple functiongFp}ney With limp_ ;o [|[Fn(w) — F(w)ll4r = 0 for a.e.w € X.

(3) If F: X — H, we say thaF is weakly measurabléfor eachx" € H*, the function
x*F from X to C is measurable in the usual sense. Hafedenotes the dual space
of H.

The usual facts concerning to the stability of weakly andrgjty measurable functions
under sum, scalar multiplication and pointwise (almostgwiere) limits are valid.

As is expected, strongly measurability implies weakly noealsility. Indeed. LeF :
X — H be a strongly measurable function. Then, there exists aeseguof simple
functions{F}neny With limp, ;. [|Fn(w) — F(w)llr = O for a.e.w € X. For eachx* € H*,
x*Fy is a simple function in the usual sense forrat N and, sincéx Fp(w) — X*F(w)| <
X lopllFn(w) — F(w)ll#, we have thak*F can be approximated by simple functions from
Xto C. Then,x'F is measurable in the usual sense.

The relationship between strong and weak measurabilitivendoy the following re-
sult, known as Pettis’ theorem or Pettis measurability theo

Theorem 1.3.2(Pettis’ Measurability Theorem)A function F: X — H is strongly
measurable if and only the following two conditions hold:

(i) There exists Ee . with A(E) = 0 such that KX \ E) is a separable subset @{.

(i) F is weakly measurable.

Remark1.3.3 If the Hilbert spaceH is a separable space, as a consequence of Pettis’
Theorem, the concepts of weak and strong measurabilityeadreerefore, in separable
Hilbert spaces there is only one measurability notion. Adtw to Riesz representation
theorem we can state that#f is a separable Hilbert spaces, tHen X — H is measur-
able if and only if for eacla € H the functionw — (F(w), a)4 IS a measurable function
from X into C.
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We now state a definition that will be used later for a specHigice of X and#.

Definition 1.3.4. Let (X, >, 1) be a finite measure space aida separable Hilbert space
with inner produck-, -)4;. We define the spade?(X, H) as the space of all measurable
functions® : X — H such that

1913 = [ IR, 1) < .
X
The spacé?(X, H), with the inner product

@&wzﬁ@wwmmwmw)

is a complex Hilbert space.

We will also need to deal with spaces lik&(X, H) whenX has not finite measure. In
this case we have the following definition.

Definition 1.3.5. Let (Y, X, v) be aco-finite measure space. ThatYs= [Jay Yn With
v(Y,) < +oo. If H is a separable Hilbert space, the spadg, ) consists of all vector-
valued strongly measurable functiobs Y — H with

013 := [ 105, dv(w) < .
Y
Herestrongly measurables defined in the same way as in Definitidr8.1, item (1).

With the inner product®, ¥) := [ (®(w), ¥(w))s dv(w), LAY, H) is a Hilbert space.

1.4 Fiberization Isometry

In this section we develop the fiberization isometry neededte next chapter where
shift invariant spaces under uniform lattices are charexetd. The treatment will follow
the lines of Bow0(. In that work, the author states the fiberization isomebnthe case
whereG = RY andH = Z¢.

First we will fix some notation and set the assumptions thé#ltlve in force for the
remainder of this section.

Assumptions 1.4.1.We will assume throughout this section that:

e Gis asecond countable LCA group.

e H is a countable uniform lattice dB.
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We denote by the dual group of5, by A the annihilator oH (i.e. H* = A), and by
Q, a fixed Borel section df'/A.

In order to avoid carrying over constants through the thegischoose the Haar mea-
surem, such thatm({0}) = 1. We also fixmg andmr such that the inversion formula
holds. This particular choice does ndiiexct the validity of the results included here.

Note that under our Assumptioris4.l, Theoreml.1.9 applies. So we will use the
properties of5, H, I' andA stated in that theorem.

As we have seen isection 1.1and according to our hypotheses,is a countable
uniform lattice onl". Therefore/?(A) is a separable Hilbert space. Besides, sidgdas
finite m-measure (see Lemnial.13 we have the spade?(Qa, £2(A)) defined according
to Definition1.3.4

Note that for® € L?(Q,, £2(A)) andw € Q4
1/2
1Rl = ( D N @@))sP)

deA

where (P(w))s denotes the value of the sequenigy) in 5. If ® € L%(Q, £3(A)), the
sequenc®(w) is thefiber of ® at w.

The following proposition shows that the spac€Q,, £2(A)) is isometric toL?(G).
Proposition 1.4.2. The mappin@ 4 : L2(G) — L?(Qa, £2(A)) defined as
Trf(w) = {ﬂw +0)}seas

is an isomorphism that satisfi§®, f|l> = |||l 2. Therefore we will usually refer t@
as the fiberization isometry.

The next periodization lemma will be necessary for the poddfropositionl.4.2

Lemma 1.4.3.Let g € L%(I'). Define the functio(w) = Y scr 19w + 6)|%. Then,G €
L(Q,) and moreover

I9llL2qry = [1GlILyq,)-

Proof. SinceQ, is a section of'/A, we have thal” = | s, Qa — 8, Where the union is
disjoint. Therefore,

[lomFame) = Y [ ig)idm

> [ o+ o) dm)

0eA

[ Y latw+ ok dme)

A SeA

This proves thag € L*(Qx) andligllizry = 11GlILyqy)- O
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Proof of PropositioriL.4.2 First we prove thaf  is well defined. For this we must show
that,Vf € L2(G), the vector-valued functiofy, f is measurable an{y f|l, < co.

According to Lemmad..4.3 the sequenc{a"\(w+5)}5eA € (?(A), a.e.w € Qy, forall f €
L2(G). Then, givera = {a;}sea € ¢3(A), the productT f(w), @)y = Ysea fw + 6)as is
finite a.e.w € Q5. From here the measurability éfimplies thatw — (T f(w), @) IS
a measurable function in the usual sense. This proves theuradality of 7 f.

If f e L2(G), as a consequence of Lemrh&.3 we have

1T 112

[ Wt @I dmi@)
Qp

[ 3w o dm)

A GeA

frlfA(V)lzdmr(V)
f [P dms ().
G

Thus,||7+ fll2 < co and this also proves thidy fll> = [ fll 2c)-

What is left is to show thal is onto. So, giverd € L%(Q,, £?(A)) let us see that there
exists a functionf € L2(G) such thatr'y f = ®. Using that the Fourier transform is an
isometric isomorphism betwedrf(G) and L*(T'), it will be sufficient to findg € L*(I')
such thafg(w + 6)}sea = ©(w) a.e.w € Q, and then takd € L2(G) such thatf = g.

Giveny €T, there exist unique» € Q, andé € A such thaty = w + 6. So, we define
9(y) asg(y) = (®(w));.

Let us see thay is measurable. For this, we will prove that its real and imagy parts
are measurable. Lete R and fixé € A. Then,

{yeT :Rg(y)) >a}N(Qx+06) = {w+d:weQy Yy R{Y(w + 0)) > a}
{weQy:REY(w +0)) > a}+6
{we Qp: RY(P(w));) > a} + 6

{w e Qp : R(D(w), €5)) > a} + 6,

wheree; is the sequence iff(A) which has value one i place and value zero in the
rest. Thus, sinc® is measurable, we have thiat e I' : R€g(y)) > a} N (Qx + ) is a
measurable set and then, séyss I' : R€g(y)) > a}.

Proceeding in the same way for the imaginary padg,df results thag is a measurable
function and it remains to be proved thliabelongs td_?(I).
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Once again, according to Lemrat.3

[lamamo) = [ oo+ o dme)

[ Y @) ame)

A geA

D) AMH(w)
Qp

2
|D|5 < +oo.

Thus,g € L?(I') and this completes the proof. O

The mapping7y will be important to study the properties of functionsIof(G) in
terms of their fibers, (i.e. in terms of the fibefg f (w)).

Since the Haar measure is translation-invariant, we carpaten
T = [ 0 Dx-n) dm9 = [ 190+, dmy) = 6. -) ).

This property combined with Remadk1.6implies a very important property ofy
that will be crucial for what follows.

Remarkl.4.4 For f € L?(G) andh € H, it holds that

TuTnf(w) = (h, —w)THf ().

To finish this section, we present some examples to illuedrtte fiberization isometry
Th.

Example 1.4.5.

() WhenG = R? andH = Z° then74s : L3R — L*([0,1), £4(Z7)) is given by
Tuf(w) = {f(w + K)}keze. This map was introduced by Bownik iBpwO0d where
the author followed an idea from Helson’s bookg]64].

(1) In case thatG = Z andH = mZ for a fixedm € N, we have thal’ = T and a trivial
verification shows that = 17, = {0,1,2 ... ™1} Therefore, a measurable

section for the quotier/1Zy is [0, 2). Then,Twe @ (3(Z) — L2([0, ), *(2Z))
and ifa € ¢?(z) it holds that

m

-1
—))

Trza(w) = @Q(w), a(w + %), L alw +
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() Suppose now tha = T andH = = {0, % R M1 " Thus, as we have seen

in Examplel.1.3item (II), ' = Z and it can be proved that = mZ. Thus,

T, o LX(T) - L*({0,1,- - ,m— 1}, £A(mz))
and for f € L?(T) we obtain that for eack € {0,1,---,m— 1}, T%me(k) is the
subsequencgy }jcz of f e £(2) given byay, = ﬂmj.

(IV) The last example is the finite case, whén= Z, andH = {0, k, 2k, - - - , (d — 1)k} ~
Zq With n = k.d. According to Exampldl..1.3item (IV), we can identifyl” with

(0,%,2... oty Moreover it holds than = {0,4,2,... &4y & 7, and then,
we can consrde{rO, 12 ... @) a5 a section for the quotieAtA. Thus, for each
ve (3(Z,) ~Chandj € {0, 1, % -+, &y we have

(k- 1)d

Tuv(j) = (M(j), (] + ) V() +

))-



2

Shift Invariant Spaces under Uniform Lattices
In LCA Groups

The theory of shift invariant spacesliA(R?) (SIS) has been intensive studied bie]64],
[Bow0(d, [dBDR944, [dBDR94K, [RS9] in the last twenty years. Its importance lies in
the fact that SIS have many applications in numerical armglysultiresolution analysis,
wavelets theory, frames and signal processing.

Since most properties about SIS is based on the acti@ ek an additive subgroup
of RY, we are interested in knowing if the theory if shift invatimpaces irR? can be
extended to general LCA groups. This is precisely our puposhis chapter.

In order to generalize the notion of shift invariant space&’ito LCA groups, we have
introduced the concept &f-invariant spaces for a closed subgrdamf G (seeSection
1.2 of Chapter ). In this chapter we will investigate the structureHbfinvariant spaces,
with H being a countable uniform lattice in an LCA groGp

We have divided our analysis in two cases, principal and igéheinvariant spaces.
We will characterize principaH-invariant spaces in terms of the Fourier transform of
its generator and the treatment for geneflainvariant spaces will use range functions,
following the ideas stated irHel64 and [Bow0d.

Then, throughout this chaptét, will be a countable uniform lattice in an LCA group
G. The dual group ofs will be denoted by" and A will be the annihilator ofH. By
Q, we will denote a fixed Borel section for the quotiditA. We will also assume that
Assumptiondl.4.1are valid.

The choice of particular Haar measure in each of the groupsidered in this work
does not &ect the validity of the results. However fidirent constants will appear in the
formulas.

Since we have the freedom to choose the Haar measures, wediti@ufar normal-
ization in order to avoid carrying over constants and to diimphe statements of the
results.

In this chapter we fix the constants of the Haar measurese Sveawill use the fiber-
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ization isometry defined i®ection 1.4ve fix my such tham,({0}) = 1. Then we choose
mr andmy, in order that Theorert.1.10holds formy, mr,, andm.

The rest of the chapter is organized in the following waySkttion 2.lwe study the
structure of principaH-invariant spaces. Then, fBection 2.2ve consider the general
case. For analyze genetdtinvariant spaces we introduce 8ection 2.2.1the concept
of range functions. Finally, isection 2.2.2ve provide a characterization bi-invariant
spaces in terms of fibers.

2.1 Principal H-invariant spaces

We recall that a principaH-invariant space is ahl-invariant space generated by a
single function. Obviously, they can be characterized aggdH-invariant spaces using
the result that we will prove in the next section. However,wikt show here that these
particularH-invariant spaces, denoted%s(y), can be described in an elegant and simply
way in terms of the Fourier transform of its generagorThis is stated in the following
theorem.

Theorem 2.1.1.Letyp € L2(G). If f € Sn(yp), then there exists a measureeperiodic
functionn such thatf = .

Conversely, if7 is a measurable\-periodic function such thajy € L*(I'), then the
function f defined by = 5o belongs to $(y).

For the proof of the above theorem we need some previous lsranthstatements.
To begin with we give a description of the orthogonal compatof Sy (¢) in terms
of the fiberization isometry .

Proposition 2.1.2.Lety € L?(G). Then, the orthogonal complement gf(%) in L2(G) is
given by

Sh(p): ={f € L%G) : (Tuf(w), The(w))ep = 0a.e.0 € Qu}.

Proof. Let f € Su(p)*. In particular, it holds thatf, The) 2y = O for allh € H. Then,
(Tuf,TuThe) =0forallh e H.

Since(Th f(-), The(-)) e € LH(Q4) and

O0=(Tuf, TuThe) = f (=h, w)TH (W), The(w)) ) dMr(w)
Qp

for all h € H, Propositionl.1.22gives us(7H f(w), The(w))rpn = 0 a.e. w € Q,.
Therefore Sp(¢)* € {f € L%(G) : (Thf(w), The(w))ezp = 0 a.e.w € Q).

On the other hand, if € L*(G) satisfieS 7T f(w), The(w))rp) = 0 a.e.w € Qa, then
in the same way as above we can prove {1aif, 74 The) = O for all h € H. Thus,
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using that7 is an isometry, we obtaiff, Thp) 2 = for all h € H. Therefore, since
{The : h e H} is a dense set iBy(y) it follows that f € Sy(e)*" and this finishes the
proof. |

We define now then--measurable s&t, C Q, as
Ep = lw € Qy  [1Tuep(w)liZyy # O} (2.1)
Then, for af € L?(G) we consider the function; defined ove, as

<THf(w)aTH90(w)>/2(A) |f W E 8
12
ni(w) = {

IITHw(w)IIfZ(A) (2.2)
if we Qp\ S

To definen; over allT" we extend it in aA-periodic way. This extension will be also
denoted byy;.

Lemma 2.1.3. The functiom; defined in 2.2) satisfies:

@ 71 (@)PIUT a2 < 171 (@)I2,,) a.e.0 € Q4
(A) (A)

(b) nrg € LA(I). Moreover/in:@llizm < IIfllizg)

Proof. Item (@) is a straightforward consequence of the Cauchy Schwastpiality.
Let us prove now itemk). Using theA-periodicity ofns and item &), we obtain

[mwrmidme = [ 3+ o+ o dn)

A SeA

7t (@)ITue(@)IIE2(A)” dmy(w)

Qp

14 f (@)I2(A)° dy(w)

Qp
ITw I = 112y

IA

Then, it holds thatsg € L?(I") and thal|n¢@ll.zry < Il fllzc) as we wanted to prove. O

An important consequence of Lemridl.3is that the operato® : L2(I') — L2(I")
given by _
Qf = nfa, (23)
is well-defined and bounded.

We will denote by® the orthogonal projection ontSy(¢) and by$ the orthogonal
projection ontcSy(¢), where the subspa&; (¢) is given by
Su(e) = (@ : g€ Sn(e))-

An easy computation shows that

—_—

Pf =Pt forall f e LXG). (2.4)
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Lemma 2.1.4.If Q is the operator defined ir2(3), thenQ = P.

Proof. We begin by provin® |s;z;)= P lso)» WhereQ |sp) andP |s;i) are the restric-
tions ofQ and® to Sy ().

Leth € H. SinceThg € Su(p), Tne € Su(g) and then we have thﬁ(m) = The =
(=h.)e.

On the other han@(Thy) = 77,,¢-

Note that, using Remark 4.4
(-hw) fweg,

() = { 0 fweQs\&,

Therefore, sinc@ = 0 on( s (&, + 6))°, it holds thatyr, @ = (=h, -)g.
ThenP(Trhg) = Q(The) and this is valid for alh € H. SinceQ and® are bounded
operators andiThy : h € H} is dense irSy(p) we obtainQ |s;;;)= P ls;)-

We now want to show that the restrictions@&nd?® to Sy (¢) ~ also agree.

Let T € Sa(@) . Thus, sinceéSu(g) = Sn(g)*, we have thaff € Sy(g)* and then
f e Shp)*.

Therefore, according to Propositi@nl.2 (7 f(w), The(w)) = 0 a.e.w € Qu. Thus,

=0a.e.w e Q) and themf = 0. HencaR Im): P IW)L.

SinceL2(T") is the orthogonal sum & (g) andSr(g) , thatisLA(T) = Sh(9)@Sn(e)
we have thaQ = P. O

Now, we are able to prove Theore2ril. 1

Proof of Theoren2.1.1 Let f € Sp(p). Then, sincePf = f, by (2.4) it holds that
Pf = . Therefore, according to Lemnzal.4 we havef = ni .

Conversely. Letf € L%G) such thatf = 7g beingn a A-periodic function with
ne € L2(I).
Then,
(Thf(w), The(w)) e
||7~H‘)0(w)||[2(A)
N The(w), The(w)) e
1T Hp(@)lIE(8)*

X&, (w)

nt(w)

XE&, (w)

xe,(@n(w),

for a.e.w € Q4. Thus, since andn; areA-periodic functions, it holds thaf(y) = n¢(y)
for a.e.y € Usea(Ey + 9).

On the other handg = 0 on(Uss (&, + 6))°. Henceng = n¢e.
Thus,Pf = f and thereforef € Sy (). O
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Remark2.1.5 Observe that ifj;¢ = ¢ onT for n; andn, A-periodic functions we can
conclude thaty; = 72 on Usea(E, + 8). Then,n; in Theorem2.1.1is, in general, not
unique.

Corollary 2.1.6. Lety, ¢ € L%(G) with Sy(¢) = Su(¢). ThenE, = &, up to a set of zero
mp-measure.

Proof. Sincey € Sy(¢), by Theoren.1.1there exists; a measurablé-periodic func-
tion such thaty = n¢. Hence,||The(w)ll5 N = |n(w)|2||7‘H¢(w)||§2(A) for a.e. w € Q,.
From this we obtait&, C &, up to a set o% zeron-measure. In the same way it can be

proved the other inclusion. |

2.2 GeneralH-invariant spaces

In this section we give a characterization of genéfahvariant spaces. This particular
description oH-invariant spaces is done using a very deep tool called ramgion.

The concept of range function was first introduced by HelsoijHel64]. Then,
it became an essential tool for the treatment of shift imrarispaces (see3pw0(,
[dBDR944, [dBDR94K, [RS99).

We prove here, that using range functioHsinvariant spaces can be described in terms
of the fibers of their elements. This is particularly impattan the class of finitely gen-
eratedH-invariant spaces, since we can translate problems abesé thpaces (infinite
dimensional problems) into finite dimensional problems.

2.2.1 Range Functions

We start this section with the concept of range function.
Definition 2.2.1. A range functioris a mapping

J: Q, —> {closed subspaces 6f(A)}.

The subspacé(w) is called thefiber spaceassociated ta.

For a given range functiod, we associate to eaeh € Q, the orthogonal projection
onto J(w), P,, : £?(A) — J(w).

A range function] is measurabléf for eacha € ¢?(A) the functionw — P,a, fromQ,
into £2(A), is measurable. Recall that, sin%¢A) is a separable Hilbert space, by Remark
1.3.3 we have only one measurability notion for a functln Q, — ¢?(A). Moreover,
Remarkl.3.3gives us that — P,a, from Q, into £?(A), is measurable if and only if, for
eacha, b € £?(A), w — (P,a, b is measurable in the usual sense.
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Lemma 2.2.2.Let J be a range function . Then, J is a measurable range fomdtiand
only if for all ® € L2(Q,, £3(A)), the functionw — P, (®(w)) is measurable.

Proof. Suppose first thatis measurable. Then, — P,a, fromQ, into £?(A), is measur-
able for alla € £2(A). Let ® be a simple function. That if(w) = 3", ayxe (w) with & €
£%(A) andE; € Q, measurable sets for= 1,--- ,n. Then,P,(®(w)) = Y11, Poaye (w).
Sincew — P,a is measurable for all=1,---,n, we can conclude that — P,(®(w))
is measurable as well.

Let us consider now € L2(Q,, £2(A)). Then, according to Definitioh.3.1, there exists
{Dn)nen € L2(Q4, £?(A)) a sequence of simple functions such ﬂlﬂt(w)—q)(w)llﬁzm) -0
whenn — o0, a.e.w € Q4.

SinceP, is an orthogonal projection, we have that
1P, (@n(w)) = Po (@)l < 1Pn(w) = D)%y

for a.e. w € Qa. Thus,||P,(Pn(w)) — Pw(®(w))||§2(A) — 0 whenn — o, a.e.w € Q.
This shows thatv — P, (®(w)) is an almost everywhere point-wise limit of measurable

functions. Thenw — P, (®(w)) is measurable as well.
The other implication is straightforward.

O

Given a range functiod (not necessarily measurable) we associatelthe subseM,
defined as
Mj; = {® € L2(Qa, £2(A)) : P(w) € J(w) ae we Q).

Lemma 2.2.3. The subset Mis closed in B(Qx, £?(A)).

Proof. Let {®j}jay € M; such thatd; — @ whenj — oo in L3(Q,, £3(A)). Let us

consider the functiong; : Qx — Ry defined ag)j(w) := [|Pj(w) —®(w)||§2(A)- Then,g; is
measurable for alj e N andVY « > 0 it holds that

1
mr({g; > a}) < —f
o

1
gim) = | 10,0) = O dm () - 0,

whenj — . So,g; — 0 in measure and therefore, there exists a subseqigpke; of
{0j}jar Which goes to zero a.ev € Q. Then, @ (w) — P(w) in £3(A) a.e.w € Q, and
hence, sinc®;, (v) € J(w) a.e.w € Q4 andJ(w) is closedP(w) € J(w) a.e.w € Q4.
Therefored € M;. O

The following proposition is a generalization to the contekgroups of a lemma of
Helson, (seeHel64 and also Bow0().

Proposition 2.2.4.Let J be a measurable range function angtRe associated orthogo-
nal projections. Denote bf? the orthogonal projection onto M Then,

(PD)(w) = Po(P(w)), ae weQx Y D elL2(Qy, 2(A)).
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Proof. LetQ : L2(Qya, £2(A)) — L%(Q4, £2(A)) be the linear mapping — Q®, where
(QD)(w) = P, (P(w)).

We want to show tha® = P.

SinceJ is a measurable range function, due to Leni#a2 Qd is measurable for each
® € L?(Qa, £?(A)). Furthermore, sinc®,, is an orthogonal projection, it has norm one,
and therefore

QD2

| @)@ dmw)

Qp

IA

[P(@)y) AMH@) = DI < oo,
Qa

Then,Q is well defined and it has norm less or equal to 1.

From the fact thaP,, is an orthogonal projection, it follows thé® = Q andQ* = Q,
where by@Q* we denote the adjoint operator@f Thus,Q is also an orthogonal projection.
To complete our proof we must see tit= M;, whereM := RanQ).

By definition ofQ, M C M.

If we suppose thaM is properly included inM;,then there exist¥ € M; such that
¥ £ 0and¥ L M. Then,Y @ e L2(Q,, £2(A)), 0 = (QD, ¥). Since@* = Q, 0 = (O, QY)
V @ € L2(Qq, £3(A)).

Hence QY = 0 and therefor®,,(¥(w)) = 0 a.e.w € Q,. Since¥ € M;, ¥(w) € J(w)

a.e.w € Q,, thusP,(¥(w)) = Y(w) a.e.w € Q,. Finally, ¥ =0 a.e.w € Q, and thisis a
contradiction. O

2.2.2 The Characterization

We now give a characterization bi-invariant spaces using range functions.

Theorem 2.2.5.Let V C L%(G) be a closed subspace afig, the map defined in Proposi-
tion 1.4.2 Then, V is H-invariant if and only if there exists a measlgabnge function
J such that

V={fel?G): Tuf(w)e J(w) a.e.we Q).

Identifying range functions which are equal almost evemsmghthe correspondence
between H-invariant spaces and measurable range funcisomse to one and onto.

Moreover, if V= Sy (A) for some countable subsgt of L?(G), the measurable range
function J associated to V is given by

J(w) = SpantThe(w) : ¢ € A}, a.e.w € Qq. (2.5)
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For the proof, we need the following result.

Lemma 2.2.6.1f J and J are two measurable range functions such that¥M;, then
J(w) = J(w) a.e.w € Q,. Thatis, J and Jare equal almost everywhere.

Proof. Let P, andQ,, be the projections associate dJcand J’ respectively. IfP is the
orthogonal projection ontM; = My, by Proposition2.2.4we have that, for eacth
L2(Q, £3(A))

(PO)(w) = P,(®(w)) and (PP)(w) = Q,(P(w)) a.e.w € Qa.

Then,P,(®(w)) = Q,(P(w)) a.e.w € Qy, for all ® € L?(Q,, £2(A)). In particular, if
e, € (?(A) is defined by ¢,); = 1if § = 1 and g,)s = 0 otherwiseP,(e)) = Q.(e,) a.e.
w € Qu, for all 2 € A. Hence, sincée,} . is a basis for?(A), it follows thatP, = Q,,
a.e.w € Q. Thusd(w) = J(w) a.e.w € Q,. O

Proof of Theoren2.2.5 Let us first suppose thatis H-invariant. Since.?(G) is separa-
ble,V = Sy(A) for some countable subsét of L(G).

We define the range functiahasJ(w) = Spaf7 we(w) : ¢ € A}. Note that sinceA is
a countable set] is well defined a.ew € Q5. We will prove that] satisfies:

() V=1{f el2G): Tuf(w)e I(w) ae.we),

(i) Jis measurable.

To show (i) it is sdficient to prove thaM = M;, whereM = 7yV. Let® € M.
Then,7,'® € V = SpadThy : h € H, ¢ € A}. Therefore, there exists a sequence
{0j}jar € SPaniThe : h € H, ¢ € A} such thatrg; := @; converges ilL2(Qa, £3(A)) to
®, whenj — oo

Due to the definition o8 and Remark..4.4 ®;(w) € J(w) a.e.w € Q,. Thus,®; € M,

for all j € N. SinceM; is closed andb; — ® whenj — oo in L2(Q,, £2(A)) , it follows
that® € M;. Then,M C M.

Let us suppose now that there exiditse L?(Q,, £2(A)), such that? # 0 and¥ is
orthogonal toM. Then, for eachd € M, (®,¥) = 0. In particular, if® € TyA C
TuV = M andh € H, we have that, sincé(.)®(.) = Th(T-n7 ;*®)(.) andT_,7 ;'@ € V,
(h, )D() € TyV = M.

Therefore, ash .) is A-periodic,

0= ((h, )O(). ¥) = f (h, W)(®(w). V() iy dM ().

A

Hence, by Propositioh.1.22 (®(w), ¥(w)) ) = 0 a.e.w € Q,, and this holdy @ €
ThA. Therefore?(w) € J(w)* a.e.w € Qq.
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Now, if M is properly included irM}, there exist® € M;, with ¥ # 0 and orthogonal
to M. Hence¥(w) € J(w)* a.e.w € Q. On the other hand sin¢k € M;, Y(w) € J(w)
a.e.w € Q. Thus,¥(w) = 0 a.e.w € Q, and this is a contradiction. Thid = M.

It remains to prove that the range functidiis measurable. LeR,, : £2(A) — J(w) be
the orthogonal projections associated(w).

Let T be the identity mapping ib?(Q,, £2(A)) and®P : L2(Qa, £2(A)) — M the orthog-
onal projection associated #d. Then, if ¥ € L2(Q,, £?(A)), the function § — P)¥ is
orthogonal taM and, by the above reasonind, £ P)¥(w) € J(w)*, a.e.w € Q,. Then,

P.(Z - P)¥(w)) = P,(¥(w) - P¥(w)) =0

a.e. w € Q, and thereforeP,(¥(w)) = P,(P¥Y(w)) = P¥(w) a.ew € Q,. Thus we
have that the function — P, (¥(w)) from Q, to £?(A) agrees withP¥ a.e. w € Q,.
Consequentlyw — P, (¥(w)) is measurable and then, LemrB2.2implies thatJ is a
measurable range function.

Conversely. IfJ is a measurable range function, let us see that the closepacd in
L2(G), defined by := 7;1M; is H-invariant. For this, let us considdre V andh € H
and let us prove thal,f € V.

SinceT{(Thf)(w) = (h,—w)Thf(w) ae. w € Qy and7yf € M;, we have that
(h, —w)ThT(w) € J(w) a.e.w € Qp. Then, Ty (Thf) € M; and thereford,f € V.

FurthermoreV = Sy (A) for some countable sefl of L?(G). Then, we have proved
that
J(w) = SpantThe(w) : ¢ € A} a.e.w € Q,,

defines a measurable range function which satisfies 7;*My. Thus,M; = TpV =
M;. SinceJ andJ’ are both measurable range functions, Len22a6implies that) = J'
a.ew € Q,.

This also shows that the correspondence betweandJ is onto and one to one. O
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Frames and Riesz Bases foH-invariant Spaces

The concept of frame was first introduced byfuand Scha@er in [DS57 as a tool to
study non-harmonic Fourier series. About 30 years aftéy Bwubechies, Grossmann and
Meyer [DGM86] realized that frames were very useful to obtain expansidrisnctions

of L?(RY) similar to those given by orthonormal bases. Since theaaméis became a
fundamental tool in harmonic and functional analysis.

On the other hand, Riesz bases showed up as a natural geagoaliof the concept of
orthonormal bases.

We will work here with frames and Riesz sequences () with the property that
each of their elements is obtained by the translation of alfset of functions (frames
or Riesz sequence of translates). This particular stracunplifies manipulations on the
frame or Riesz sequence and makes it easier to store infometiout them.

The concrete problem of interest for us is to decide whetharod {Thp}her gea IS
a frame or a Riesz basis for thé-invariant space&s,(A). The characterization dfi-
invariant spaces that we have given in Theo&i5of Chapter 2will allow us to describe
the problem in terms of fibers. We will give necessary anigant conditions on the
fiber sef{T1e(w)}pen fOr {Thelhen e DEING @ frame or Riesz basis By (A).

Then, we will show that everii-invariant space can be decomposed in an orthogonal
sum of principalH-invariant spaces. From this result we will conclude thatheld-
invariant space has a frame of translations.

Throughout this chaptés, H, I', A andQ, will be as in Chapte® with the following
normalization for the Haar measures. First we changseandmy such thatm,({0}) =
my({0}) = 1. Then, we fixmr,, such the inversion formula holds betweldnandI'/A.
Therefore, by formulal(5) it holds thatmq,(I'/A) = 1. Next, we seimr such that
Theorem1.1.10holds formy, mr;, andm,. Finally, we normalizemg such that the
inversion formula holds fom: andmg.

As a consequence of the normalization given above and Leinina3 it follows that
mp(Q,) = 1.
The chapter is organized as follows. $ection 3.1we set some known material on
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frames and Riesz families. Bection 3.2ve give necessary andffigcient conditions for
{The}hen e DEING @ frame or Riesz basis 8 (A) in terms of fibers. Finilly we devote
Section 3.30 show an orthogonal decomposition féfinvariant spaces and to prove the
existence of frames of translatesHhinvariant spaces.

3.1 General Frames and Riesz Families

In this section we summarize without proof the relevant miait®n frames and Riesz
bases and sequences. From nowl amill be a finite or countably infinite index sef(
will denote a Hilbert space afdi}ic; a sequence ift.

Definition 3.1.1. Let {e }ic; be an orthonormal basis f@. The sequencgi}ic, is called
Riesz basi# u; = Ug for alli € | whereU : H — H is a bounded bijective operator.

It is well known that if{e }i¢, is a fixed orthonormal basis fétf, any other orthonormal
basis forH is of the form{Ue}ic; whereU : H — H is unitary operator (see€_hr03
Theorem 3.6.6]). According to this, it is clear in what seRsesz bases generalize or-
thonormal bases.

The following proposition gives an equivalent conditionm fa;}ic; being a Riesz basis.
For its proof seeChr03 Theorem 3.4.7].

Proposition 3.1.2. The sequencéu }ic; is a Riesz basis fo#H if and only if {u;}ic, is
complete inH and there exist positive constants A and B such that

Ad Al <) aull, <B) laf (3.1)
il iel iel

holds for all{a;}ic; with finite support.

A sequenceéu;ic; satisfying condition3.1) for all {a;}ic, with finite support is called a
Riesz sequencé&herefore, a Riesz sequencs., is a Riesz basis for the subspacefof
given byspanui}ic; .

Since the sef{a;}ic; : {al}ie has finite suppoytis a dense if?(1), if (3.1) holds for all
{a}ie) With finite support, then it immediately holds for &t }ic, € £2(1).

Observe that orthonormal bases are exactly those Riesg bémeh satisfy condition
(3.1) with A = B = 1. This is another way to see Riesz bases as a generalizdtion o
orthonormal bases.

Definition 3.1.3. The sequencgy;}ic| is aBessel sequende H with constanB > 0 if

D KE P < BIfI, forall feH.

i€l

The constanB is called aBessel bounébr {u;}ic.
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The proof of the next result can be found Hr03 Theorem 3.2.3].

Lemma 3.1.4.Let {uj}iy be a sequence off. Then,{u}ic is a Bessel sequence with
Bessel bound B if and only if

T:6() —H, T(che) =) 6u

i€l
is a well-defined bounded operator alfii|jop < VB.

Definition 3.1.5. The sequencgy }i¢, is aframefor H with constant#A andB if

AIFIZ < > KE w2 < BIfIZ forall fe .

iel

The frame{u;}ic, is atight frameif A = B, and the framdui}ic, is a Parseval framaf
A=B=1.

The number#\ andB are calledrame boundsWe say thatu}i, is aframe sequence
if it is a frame forspanui}ic; .

If {u}ic) Is a frame forH, it is, in particular, a Bessel sequence. Then, by LerBrat
the operator
T:6() —H, T(che) =) 6u
il
is well-defined and bounded. The operatois calledpre-frame or synthesis operator
The adjoint of the pre-frame operator is given by

T H — (1), T(f) = KF, Ui,

and it is usually calledhe analysis operator

By composingT andT* we obtain the bounded, invertible, self-adjoint and pesiti
operator

S:H—H, ST=TT'f=>(fuu.
i€l

We will call S theframe operator

In [ChrO3 itis proven that, if{u;}ic, is a frame forH, the sequencgs—ui}i. is a frame
for H as well. Moreover, the frame operator associatefstou;}ic; is S~*. This allows
us to obtain the following frame decomposition

f= Z(f, S tuy = Z(f, u)S™u;, (3.2)
i€l i€l
where the series converges unconditionally forfadl 7.

Despite that the framéu;}ic; is a set of non-independent vectors, forma2) gives
a straightforward and completely explicit expansion foergwector ofH in terms of

{ui}iel-
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3.2 Characterization of Frames and Riesz basis foH-
invariant spaces

We now prove the result which characterizes whgiiA) is a frame forSy (A) in terms
of the fibers{7Tho(w) : ¢ € A}. It generalizes Theorem 2.3 ddwO( to the context of
groups. Recall that we can associate to edeinvariant spacd/ an unique measurable
range functionJ which characterize¥ according to Theorer.2.5

Theorem 3.2.1.Let A be a countable subset of(G), J the measurable range function

associated to §(A) and A< B positive constants. Then, the following propositions are
equivalent:

(i) The set [ (A) is a frame for $(A) with constants A and B.

(i) For almost everyw € Q,, the sef{The(w) : ¢ € A} C £2(A) is a frame for Jw)
with constants A and B.

Proof. Since(f, @)2c) = (Thf, THD L2, 2(1)), Dy Remarkl.4.4we have that

DD Ko Dzl = > D KT u(Tog), Tu i, 2oyl

heH geA heH geA

= Z Z || (h—o)}The(w), Th f(w))epdm(w)l.

peA heH Qa

Let us define for each € A,

R =1 [

heH Q

(h, —w)(Tue(w), T f ()} 2y dm(w)l?

and
T() = fg (Tr(@), T f (@) PAME (@)

(i) = (i) If Ex(A) is a frame forSy(A), in particular it holds thav f € Sy(A),
Shertgea [(Thep, FHI? < oo

Then, for eacly € A, we have thaR(p) < . Therefore, the sequené& }n.q, With

Ch = L (h, T he(w), T T (w))epdmr(w),

belongs ta’?(H).

Let us consider the functiof(w) = Yy Chiin(w), Wheren, are the functions defined
in Proposition1.1.19 Then, sincdch}hen € £2(H) and{nn}nen is an orthonormal basis of
L2(Q,), we have thaF € L?(Q,) C L1(Q,) (recall thatmp(Q,) < o).
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On the other hand, the functigr{w) := (The(w), Th f (w)) ) belongs ta1(Q,). So,
¥ — F € L}(Q,) and moreover

fg (h, )W) — F(@))dM (@) = C.n— cp = 0

for all h € H. Thus, Propositiori.1.22yields thatF = ¢ a.e. w € Q). Therefore
W € L2(Q,) and

Y(w) = Z Chizh(w),

heH
a.e.w € Q,.

As a consequence of Propositidnl.21 we obtain thatR(¢) = T(y) holds for all
p € A.

We will now prove that, for almost every € Q,, {The(w) : ¢ € A} is a frame with
constant® andB for J(w).

Let us suppose that

AIPLAIZ ) < D KT (@), Pud)y < BIPLAIZ (3.3)

pEA

a.e.w € Qu, for eachd € D, whereD is a dense countable subset®fA) andP,, are the
orthogonal projections associateditorhen, for eacldl € D, letZy C Q) be a measurable
set withmp(Zg) = 0 such that3.3) holds for allw € Q) \ Z3. So the seZ = (Jgep Zd
has nullm--measure. Therefore fas € Q, \ Z anda € J(w), using a density argument it
follows from (3.3) that

Al < D KT (@), )l < Bllaly.
peA

Thus, it is stficient to show that3.3) holds. For this, we will suppose that this is not
so and we will prove that there exidg € D, a measurable s& C Q, with m(W) > 0,
ande > 0 such that

D KT (@), PudodZyy > (B+ &)lIPu ol ¥ @ € W

QpeA

or
Z |<TH§0((U), Pwd0>|§2(A) < (A - 8)||Pwd0”§2(A)a VweW

peA
So, let us takely € O for which (3.3) fails. Then at least one of this sets
(@€ Q1 K@) - BIPdolly > 0} . {w € Q4 1 K(w) = AllP, 0ol < O}

has positive measure, Whefgw) = 3 c 7 (The(w), Pwdo>|§2(A). Let us suppose, without
loss of generality, that

rnI“({('U € QA : K((,()) - B”Pwd0”§2(A) > O}) > 0.
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Since
. 2 . 1 2
{w €Q,: K((U) - B||Pwd0||g2(A) > O} = U{w €y K(w) - (B + T)Hpu)dO”gZ(A) > O},
jeN
there exists at least one set in the union, in the right hateddithis equality, with positive
measure and this proves our claim.
Then, we can suppose that
D KT (@), Pubo)leyyy > (B + &)IIPGoll% y, ¥ w € W (3.4)
QpeA

holds. Now takef € Sy(A) such thatry f(w) = yw(w)P,do. Note that this is possible
since, by Theorerd.2.5 ye(w)P,do is @ measurable function.

As Ey(A) is a frame forSy (A) and
D0 Ko, Dzgl’ = ) f (T (@), Th f (@) PAMH(w),
heH peA peA Y
we have that

At < Y, [ 1T0pl@) Tuf@eofdm@) < Biflg: (39
Qp

peA

Using Propositiori.4.2 we can rewrite3.5) as

ATu R < > f (Te(@), T f (@)ewldm(w) < BITufIZ. (3.6)
peA Q4

Now,
TP = [ en@IP ol ydm )
Qa

and if we integrate in3.4) overW, we obtain

Z fg KT (), xw(w)Pubodeza)l* dmi(w) > (B + &)l|Tw .

QpeA
This is a contradiction with inequalityd(6). Therefore, we proved inequalit@.Q).
(i) = (i) If now {The(w) : ¢ € A} is a frame forJ(w) a.ew € Q, with frame bounds
A andB, we have that
AlallZy < D KTHp(w), ) ewl? < Bllal,
peA
for all a € J(w). In particular, if f € Sy(A), by Theorem2.2.5 7y f(w) € J(w) a.e.
w € Q4 and then,

AlTw f(w)||§z(A) < Z KThe(w), Th f(w))ew)l® < BITH f(w)||?2(A) (3.7)

peA
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a.e.w € Q,.
Thus, integrating3.7) overQ,, we obtain

AITwfI? < Z KT (), Th f (@) "dmy(w) < BlITwW I (3.8)

Qp peA
So,(Tue(.), Tu f () belongs td 2(Q,) for eachy € A and the equalityR(y) = T ()
can be obtained in a similar way as we did before.
Finally, since||Ty f||3 = ||f||fz(G) and

D KT, gl =) fg (T (@), Th F (@) Pdm-(w),

heH peA peA

inequality 3.8) implies thatEy (A) is a frame foISy (A) with frame bound#\ andB. O

Theorem3.2.1reduces the problem of whéfy, (A) is a frame forSy (A) to when the
fibers{7Tho(w) : ¢ € A} form a frame forJ(w). The advantage of this reduction is that, for
example, wherA is a finite set, the fiber spac&byp(w) : ¢ € A} are finite dimensional
while Sy (A) has infinite dimension.

If A = {¢}, TheorenB.2.1generalizes a known result for the c&e: R to the context
of groups. This is stated in the next corollary, which was/pbin [KR08]. We give here
a different proof.

Corollary 3.2.2. Let ¢ € L?(Q,) and &, defined as inZ.1). Then, the following are
equivalent:

() The set E(y) is a frame for $(¢) with frame bounds A and B.

(i) A< Ysnlplw+0)? <Baewes,.

Proof. Let J be the measurable range function associateéshi@). Then, by Theorem
2.2.5 J(w) = spafTyep(w)} a.ew € Q. Thus, eacla € J(w) can be written ag =
AT wep(w) for somen € C.

Therefore, by Theorer8.2.], (i) holds if and only if, for almost every € Q, and for
all 1 € C,

Then, sincelT1e(w)|%, . = Ysea [@(w + 6)1?, (3.9 holds if and only if

(8)

A<Y Bw+o)P<B acwes,

oeA

For the case of Riesz basis, we have an analogue result taerh8®. 1
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Theorem 3.2.3.Let A be a countable subset of(G), J the measurable range function
associated to §(A) and A< B positive constants. Then, they are equivalent:

(i) The set E(A) is a Riesz basis for §A) with constants A and B.

(i) For almost everyw € Q,, the sef{The(w) : ¢ € A} C £?(A) is a Riesz basis for
J(w) with constants A and B.

For the proof we will need the next lemma.

Lemma 3.2.4.For each me L*(Q2,) there exists a sequence of trigonometric polynomials
{Pi}karr Such that:

() Px(w) » mw), a.e.w € Qy,

(ii) There exists C> 0, such thaf|P||.. < C, forall k € N.

Proof. By Lemmal.1.15 taking into account Remark 1.14 we have that the trigono-
metric polynomials are dense @{Q2,).

By Lusin’s Theorem ((VZ77, Theorem 4.20]), for eack € N, there exists a closed
setEx € Q, such thaimq(Q, \ Ex) < 27X andmlg, is a continuous function wherg|g,
denotes the functiom restricted toEy.

SinceQ, is compactEy is compact as well. Thereforeyg, is bounded.

Let my, m, : Ex — R be continuous function such thag, = my + im,. As a conse-
quence of Tietze’s Extension Theorem (seeIfi79), it is possible to extendy andnmy,
continuously to alQ, keeping their norms ih*(Ey). Let us call the extensiorig; and
m, and letm, = my + im,. Then, we have:

(1) WlEk = mlEkl
2) IMdleo < [Malleo + [Melleo < [1Mylleo + [IMellee < 2/M]co.

Now, by Lemmal.1.15 there exists a trigonometric polynomig} such thaf|Py —
Ml < 27%. So,

(@) |P(w) — m(w)| < 27%, for all w € E,

(0) IPleo < 1Pk = Mdleo + MU0 < 27+ 2/l < 1+ 2/

Repeating this argument for eakle N, we obtain a sequen¢®y}x of trigonometric
polynomials and a sequen{g}y Of sets, which satisfy conditiona)and ).

LetE = U2 Nigj Ex. It is a straightforward to see that-(Q, \ E) = 0. Let us prove
that if w € E, Py(w) —» m(w), for k — oo. Sincew € E, there existky € N for which
w € Ey, VY k= ky. Then, for allk > kg, we obtain thatPy(w) - M(w)| = |Px(w) — mg(w)| <
27K = 0, whenk — co. This proves parti) of this lemma and takin@ := 1 + 2||m|., we
have thatif) holds. |
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Proof of Theoren8.2.3 Since Sy (A) = SpanEy(A) and, by Theoren2.2.5 J(w) =
Span7 pe(w) : ¢ € A}, we only need to show th&i (A) is a Riesz sequence 8 (A)
with constantsA and B if and only if for almost everyw € Q,, the set{7Thp(w) : ¢ €
A} C £?(A) is a Riesz sequence fdfw) with constantsA andB.

For the proof of the equivalence in the theorem, we will ugsfttlowing reasoning.

Let {a, n}.neaxH D€ @ sequence of finite support andRgtbe the trigonometric poly-
nomials defined by

Py(w) = Z a.nith(w),

heH
with w € Q, andn, as in Propositiori.1.19

Note that, sincg¢a, n}(, neaxq has finite support, only a finite number of the polynomials
P, are not zero.

Now, as a consequence of PropositioA.2we have

I anTuelZag =1l D A uTogliZg, ey

(p,h)eAxH (p,h)eAxH

_ f 1> aun(-h o) Tue@)lZ, dm(w) (3.10)

Qa  (ph)eAxH
= [ 1Y P Trg@) g dme)
Qa peA
Furthermore, by Lemma.1.2],
D 1agnl? = lHag nhnerliZgy = 1P,
heH
and adding overA, we obtain

Z |a¢,h|2 = Z ||P¢”52(QA)' (311)

(p.heAxH @EA

(i) = (i) If we suppose that for almost evewye Q,, (The(w) : ¢ € A} C £2(A) is a
Riesz sequence fal{w) with constantA andB,

A 18 <11 a,Tupw)lky, < B lal? (3.12)
pEA pEA peA
for all {a,},c# With finite support.

In particular, the above inequality holds f@,},cx = {Py(w)}een. Now, in 3.12), we
can integrate ove®R, with {a,},ca = {Py(w)}sea, iN Order to obtain

AY Py < [ 1Y Pe@Tugl@lEy dmi(w)
PpeEA Qa QpeEA
(3.13)

<B Y IPIZ 0,

peA
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Using equations3.10 and @.11) we can rewrite 3.13 as

A D Bl D) auTllg <B D gl

(p,h)eAxH (p,h)eAxH (p,h)eAxH

ThereforeEy (A) is a Riesz sequence 8f;(A) with constantA andB.

(i) = (i) We want to prove that, for evey= {a,},ca € (3(A) with finite support, we
have a.ew € Q,

A Il <) aTup@)l, <B Y a? (3.14)

peA peA peA

Let us suppose thaB(14) fails. Then, using a similar argument as in Theor@2. ],
we can see that there exist= {a,},cqa € €*(A) with finite support, a measurable set
W C Q4 with mp(W) > 0 ande > 0 such that

1Y aTug(@)iZy > (B+2) Y la v weW (3.15)
peA peA
or
1Y aThe@)ly, < (A-2) >l ¥ o e W (3.16)
peA peA

With a = {a,},c# andW, we define for eaclp € A, m, := a,yw. Thus,m, € L¥(Q,)
and only finitely many of these functions are not null.

By Lemma3.2.4 for eachy € A there exists a trigonometric polynomial sequence
{P?}ker such that

(i) Pg—m,
(i) 1Pl < 1+ 2Mlle, V¥ K €N,

SinceEy(A) is a Riesz sequence 8 (A) with constantA andB,

A D Bl < D anTellg
(

p,h)eAxH (p,h)eAxH

B Z la,nl%,

(p,h)eAxH

IA

for each sequend@y h} (. neaxn With finite support.

Now, for eachk € N take{a, n},neaxn to be the sequence formed with the fiments
of the polynomialgP},c .

Then, using3.10 and 3.11), we have for eack e N

A P2, < f 1> PU@)Tp(@)lZ dMr(w) < B Y IR q,  (3.17)

QeEA Qa peA QeEA
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Therefore, sincen-(Q2,) < c and by the Dominated Convergence TheoreWw4[7,
Theorem 5.36]), inequality3(17) can be extended tm, as

A Mg, < f 1> M (@) T (@)l dMH() < B IMyI%, . (3.18)

peA Qa peA peA

So, if (3.15 occurs, integrating oveR, we obtain

[ 1Y Mol dme(e) > @+ e) [ Im )i dm

Q4 peA Q4 peA

which contradicts inequality3(18. We can proceed analogously & .16 occurs. Hence,
(3.14) holds.

For the case of principai-invariant spaces we have the following corollary.

Corollary 3.2.5. Lety € L?(Q,). Then, the following are equivalent:

() The set E(p) is a Riesz basis for, ) with constants A and B.

(i) A< Dscnlp(w+0)? <B,a.e.weQ,.

Proof. The proof is a straightforward consequence of TheodezrBand Theoren2.2.5
O

We now want to give another characterization of when th&géfd) is a frame (Riesz
sequence) foBy(A) with constantsA andB. For this we will work with the synthesis
and analysis operators introducedSaction 3.1

Let us consider a subsét = {¢; : i € |} of L?(G) wherel is a countable set.

Fix w € Q4. Then, we can formally define the synthesis operator ageaciaA at w,
Ka(w) : €2(1) — €3(A) as

Ka(w)c = Z CTHei(w),
iel

and the analysis operathi, (w), Kj(w) : £3(A) — £3(1) as
Ka(w)a = (Thei(w), @) e -

Recall that, as we have said 8ection 3.1 K4(w) andK} (w) are well defined and
bounded if and only if7wei(w) : i € 1} is a Bessel sequence.

Definition 3.2.6. Let A = {p; : i € I} € L?(G) be a countable subset akg(w) and
K’ (w) the synthesis and analysis operators. We definé&tlaenian of A atw € Q, as
the operatoG4(w) : €2(1) — €3(1) given byGa(w) = K (w)Ka(w), and we also define
the dual Gramian of A atw € Q, as the operatog»(w) : (*(A) — (*(A) given by
Gnlw) = Konlw)Kip(w).
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Note that, when7w¢i(w) : i € 1} is a frame,Ga(w) is precisely the frame operator
associated t¢7 ei(w) 11 € 1}.

The Gramiarg #(w) can be associated with the (possible) infinite matrix

Ga() = (D éi(w +0)§j(w +9))

i,jel
0eA

since(Ga(w)e, ) = (Thei(w), Thej(w)), where{e}i is the standard basis fét(1). In
a similar way, considering the canonical bggigsca for £?(A), we can associate the dual
GramianGg 4(w) with the matrix

Ga(w) = (D ¢w+0)@(w+0))

£ 5,07en
i€l

Remark3.2.7. The operatoK »(w) (K7 (w)) is bounded if and only i& »(w) (Ga(w)) is
bounded. In that case we haiéx(w)|I* = K (w)II* = IGa(w)ll = IGa(w)II.

Now we will give a characterization of whe,(A) is a frame (Riesz sequence) for
SH(A) in terms of the Gramiag #(w) and the dual Gramiag 4(w).

Proposition 3.2.8.LetA = {¢; : i € I} C L?%(G) be a countable set. Then,

(1) The following are equivalent:

(a1) En(A) is a Bessel sequence with constant B.
(b1) esssup.q,llGa(w)ll < B.
(c1) esssUp.g, Ga(w)ll < B.

(2) The following are equivalent:

(az2) En(A) is a frame for $;(A) with constants A and B.
(bp) For almost everyw € Q,,

Allal? < (Ga(w)a, a) < Bllal?,

for all a € spaf7 hyi(w) 1€ l}.
(c;) For almost everyw € Q,,

o(Ga()) € {0} U[A B].
(3) The following are equivalent:

(as) En(A) is a Riesz sequence fog§A) with constants A and B.
(bs) For almost every € Q,,

Aldl? < (Ga(w)e, ©) < Bllcl?,

for all ¢ € £2(1).
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(c3) For almost everyw € Q4

o(Ga(w)) < [A B

Proof. Taking into account that a version of Theoré&2.1holds for Bessel sequence,
item (1) follows easily from Lemma.1.4and Remari3.2.7.

In order to prove equivalences in (2), note that, for alnaostQ,

(Gaw)a a) = (Ky(w)a Ky(@)a) = " KTugi(w), (3.19)

i€l

for all a € £2(A). Then, equivalence betweea,) and ) is consequence of Theorem
3.2.1

Let us prove now thatkg) holds in and only if ;) holds. Since{’;ﬂ(w) is a self-

adjoint operatorf2(A) = Ker(G a(w)) ® RanGa(w)). Furthermore, according t8(19,
Ker(Ga(w)) = Ker(K7(w)) and itis easy to see thKer(K?, (w)) = J(w)*, wherelJ is the

measurable range function associated \@i{A). Consequently)(w) = RanGa(w)).
We consider novgﬂ(w)h( ) : J(w) - J(w), the operatogﬂ(w) restricted taJ(w). Then,
it can be proved that

r(Gaw),,,) Co@aw)  and  o(GaW)\ (0} C o(Galw),,)  (3.20)
On the other hand, if

M= sup (gﬂ(w)h( aa and m=

(Galw)|, ,a a),
lall=1.ae3(w) =LA J( ) |J(w)

it is well known thato-(gﬂ(w)h( )) C [m, M]. From this and 8.20) it follows that (,)
implies ().

Let us suppose now that(G(w)) C {0} U[A, B]. Thus, by 8.20),
7 (Ga(w)]y,,) €10} U A BJ.

The statementx) will be proved once we prove thata)o-(éﬂ(wﬂ J(w)).

Slncegﬂ(a))|J is self-adjoint operator, every isolated point of its spact is an
eigenvalue (thls can be proved using continuous functidcutizs). Therefore, if O
o-(gﬂ(w)h( ), 0 must be an elgenvalue%(w)u - Hence Ker(gg{(w)h( ) # 0 which

is a contradiction becaus&r(G4(w)) = J(w)*.
To prove equivalences in (3), let us observe that, for almosiQ,,

(Ga(w)C, ©) = (Ka(w), Ka(@)o) = | Y aTue(w)I? (3.21)

i€l

Thus, by Theoren3.2.3 we have thatdsz) holds if an only if 3) holds.



42 Frames and Riesz Bases fdt-invariant Spaces

SinceG #(w) is a self-adjoint operatoe; (G 4(w)) € [M, M’] where

M’ = suXGa(w)c,cy and ' = inf (Ga(w)c,C).

llgl=1 llcli=1

Therefore, it follows thatlgs) holds if an only if €3) holds and this finishes the proofo

Note that Corollary3.2.2and Corollary3.2.5can also be obtained from the previous
proposition.

3.3 Decomposition oH-invariant spaces

In this section, we show that eveHrinvariant space can be decomposed into an orthog-
onal sum of principaH-invariant spaces. This can be easily obtained as a consegue
of Zorn’s Lemma as in{R0§]. The theorem that we present here, establishes a decom-
position ofH-invariant space with additional properties asko{v0Q.

We first need the following definition.
Definition 3.3.1. For anH-invariant spac&/ c L?(G) we define thedimension function
of V as the map dim : Q, — Ny given by dimy(w) = dimJ(w), whereJ is the range

function associated td. We also define thepectrum of Vass(V) = {w € Q) : J(w) #
0}.

Now we state the theorem which gives the orthogonal decoitpo$or H-invariant
spaces. We do not include its proof since it follows readiyrf theR® case (seefow00,
Theorem 3.3)).

Theorem 3.3.2.Let us suppose that V is an H-invariant space #3). Then V can be
decomposed as an orthogonal sum

V = Sn(en).

neN

where E;(¢y) is a Parseval frame for $(¢n) and €SH(¢ni1)) € S(SH(¢n)) for all n € N.
Moreoverdims,, ) (@) = [[THen(w)ll2n) foralln € N, and

dimy(w) = Z 1T Hen(W)le2(a)s a.e.w € Q.

neN

The next example shows that there exisinvariant spaces without an orthonormal
basis of translates. However, we will deduce from TheoBeBn2that H-invariant spaces
have always frames of translates.

Example 3.3.3.Let ¢ € L?(R) defined via the Fourier transform agw) = X[o,%](w) and
consider thez-invariant space generated bySz(y).
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Suppose that there existss Sy (¢) with Ez(¢) = {Tkolkez being an orthonormal basis
for Sz(¢). ThenSz(¢) = Sz(¢), and by Corollary2.1.6 &, = &, up to a set of zero
measure.

On the other hand, taking into account ttet= [0, 1), from Corollary3.2.5we obtain
that8¢ = [O, l)
Now, it is easy to check that

1 ifwel0,3]

T 22 =
ITzp()lizg) {o if we (3,1).

Thus,E, = [0, %] which is a contradiction. The8;(¢) can not have an orthonormal basis
of the form&z(p) = {Tkdlkez fOr anyg € Sz(¢). O

We now present a result which shows that edleimvariant space has a frame of trans-
lates. This result is well-known whe@ = RY and it was proved for the case wh¥n
is finitely generated by Ron and Shen Rg93. In that work they also provided a way
to construct a Parseval frame 8g4(fy,-- -, f,) € L2(RY) in terms of the Gramian of
{fy,---, f,}. This construction can be translated to the context of LCédugs using the
material that we have developed in this thesis. Here, wegii# a proof for the count-
ably generated case, which obviously includes the finitelyegated case, based on the
decomposition oH-invariant spaces stated in Theor&8.2

Theorem 3.3.4.Let V be an H-invariant spaces of(G). Then, there existfl c G a
countable set such théll,¢ : ¢ € A,,h e H} is a Parseval frame for V.

Proof. By Theorem3.3.2 V = @, Su(en), where Ey(¢n) is a Parseval frame for
Sh(en) for all n € N. We will show that{Tn¢, : n € N,,h € H} is a Parseval frame
for V.

Let f € V and writef = . fn where eachf, is the orthogonal projection of on
Sh(en). Then, sinceSy(¢y) is orthogonal tdSH (¢m) if N # m, it follows that

17122y = D IallP2iq)- (3.22)

neN

On the other hand, sind&,(¢;) is a Parseval frame f@y(¢y) for eachn € N, we have

D K Togadee? = D Kin Trgadizel? = IallZz)- (3.23)
heH heH
Thus, adding over al € N in (3.23 and using 8.22 we have
116 = > D KE Trpie

neN heH

and this proves thdll¢, : ne N,,h e H} is a Parseval frame for. O
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Extra invariance of H-invariant spaces

If ¢(X) = X[_%’%](x), thenS;(¢) € L2(R) is a shift invariant space (SIS) with the property
of being invariant only under integer translations. In castto this SIS, the Paley-Wiener
space of functions that are bandlimited tel[ 3] (see Examplé..2.9 a is shift invariant
space which is invariant under every real translation. Meeg, there exist SIS with some
extra invariance that are not necessarily invariant unilieea translations.

Shift invariant spaces in the real line with extra invariarave been characterized
by Aldroubi et al ARCHKM10]. First, they show that i¥/ is a SIS that is invariant under
translations other than integers, it holds that eithés invariant under any real translation
orV is invariant under translation oﬁ% for somen € N and it is not invariant under any
bigger subgroup. Then, they give several characterizatiéthose SIS that are als@-
invariant.

In this chapter, we want to study the problem of the extrariavee in the context
of general LCA groups. More precisely, i is a countable uniform lattice i®, we
investigate thosel-invariant spaces df?(G), that are invariant under a closed subgroup
M of G containingH.

The dificulty here lies in the fact that we do not have an explicitctite of the sub-
group M, as the authors do have iIACHKM10] (in that work, M is of the form3Zz).
However, we are able to show necessary articsent condition for arH-invariant space
to beM-invariant.

As a consequence of our results we prove that for each clagegt@upM of G con-
taining the latticeH, there exists ahl-invariant spac#/ that is exactlyM-invariant. That
is, V is not invariant under any other subgroMip containingM. We also obtain estimates
on the support of the Fourier transform of the generatorb@lfitinvariant space, related
to its M-invariance.

Here and subsequenty will be an LCA group,H a countable uniform lattice i®
with A its annihilatorI" the dual group oG andQ, a measurable section of the quotient
I'/A. We choose the Haar measure of the groups involved herelaw$oMe setm, such
thatm,({0}) = 1. Then we fixmr,, andmy in order to Weil’'s formula of Theorerh.1.10
holds amongn,», mr adm,. Finally, we chooséns such that inversion formula holds
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for mg andn.

The chapter is organized in the following way. $ection 4.1we prove that the set of
parameterx € G that leave théH-invariant space invariant under translationxoforms
a closed subgroup @ which containdH. Then, inSection 4.2ve study the structure of
principal M-invariant spacesSection 4.3ontains the characterizations Mfinvariance
for generalH-invariant spaces. Some relevant applications of the tesfiSection 4.3
are given inSection 4.4 In Section 4.5ve show how the result about extra invariance for
SIS inL?(RY) with d > 1 can be obtained using the structure of the closed subgafups
RY that contairz®,

4.1 The invariance set

LetV c L%(G) be anH-invariant space, we define thevariance setas
M={xeG:TifeV,VfeV}L (4.1)

If Ais a set of generators f4, it is easy to check thah € M if and only if T, € V for
all p € A.
In case thaM = G, Wiener’s theorem (seéHgl64], [Sri64] and [HS64) states that
there exists a measurable &€ I satisfying
V = {f € LAG) : sup(f) c EJ.

We are interested in describivgwhenM is not allG. We will first study the structure of
the setM.

Proposition 4.1.1.Let V be an H-invariant space of(G) and let M be defined as in
(4.2). Then M is a closed subgroup of G containing H.

For the proof of this proposition we will need the followingrhma. Recall that a
semigroup is a nonempty set with an associative additiveabipa.

Lemma 4.1.2.Let K be a closed semigroup of G containing H, then K is a group.

Proof. Let = be the quotient map froi® ontoG/H. SinceK is a semigroup containing
H, we have thaK + H = K, thus

7 Hx(K)) = U k+H=K+H =K (4.2)
keK

This shows that(K) is closed inG/H and therefore compact.

By [HR79 Theorem 9.16], we have that a compact semigroup/t is necessarily a
group, thusr(K) is a group and consequentyis a group.
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Proof of Propositiort.1.1 SinceV is anH-invariant spacetd € M.

We first proceed to show thst is closed. Lelky € G and{x,}.cA @ netinM converging
to Xg. Then

SinceV is closed, it follows thaTy, f € V, thusx, € M.

It is easy to check thatl is a semigroup o€, hence we conclude from Lemmdal.2
thatM is a group.

4.2 The structure of principal M-invariant spaces

In this section we will use fiberization techniques and rafugetions for a more general
setting than inChapter 2 since the subspaces will be invariant under a closed supgro
which is not necessarily discrete.

The results fronsection 1.4f Chapter land fromChapter Zan be extended straight-
forwardly to the case in which the spaces are invariant uaddosed subgroum of G
containingH as follows.

First, we consider the following normalization for the Haaeasuresny- andmgy-.
Note that, sincéd € M, M* C A and, in particularM* is discrete. Then, we figy,- such
thatmy:({0}) = 1 andm,y- such that Weil's formula of Theoret1.10holds amongny,
My- andmpy-.

As M* € A andM* is discrete, there exists a countable secfioof A/M*. Then, the
set given by

QM* = U QA + o (43)
ogeN

is ao-finite measurable section for the quoti€éiitM*. Using this section fof’/M* it is
possible to defing.?(Qy-, £2(M*)), according to Definitiorl.3.5 We can also use this
section to define what a range function with respedltcs.

Definition 4.2.1. Let H be a uniform lattice o6 andM a closed subgroup @ contain-
ing H. A range function with respect to i any application

J: Qu- — {closed subspaces 6f(M*)}.

The subspacé(¢) is called thdiber spaceassociated tg.

For a given range function with respect kb J, we associate to each e Qy- the
orthogonal projection ontd(¢), P, : £2(M*) — J(¢).

A range function with respect vl J is measurabléf for eacha € £2(M*) the function
& - Pga, from Qu- into ¢2(M*) is strongly measurable.
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With the normalization of the Haar measures that we havedtétcan be proved the
following proposition which compiles extensions of Projpios 1.4.2 Proposition2.2.4
and Theoren2.2.5

Proposition 4.2.2.
i) The mapping’y : L2(G) — L%(Qu-, £2(M*)) defined as
T f(€) = (FE + M)hpwem
is an isomorphism that satisfig®y f|l> = || f]l 2c)-

i) LetV be a closed subspace of(G). Then V is an M-invariant space if and only if
there exists J a measurable range function with respect tadh that

V ={f e L]G): Tuf(€) e J¢) fora.e.£ € Q).

Moreover, if V is an M-invariant space generated by a coulgaet A, the mea-
surable range function with respect to M J associated witls given by

J() =spanTme(§) : ¢ € A}

iif) Let V be an M-invariant space and Igt, and P: be the orthogonal projections
onto V and {¢) respectively, where J is the measurable range functionmegpect
to M associated to V. Then, for everygd ?(G),

Tm(PvO)(E) = P:(Tma()) a.e.le Q..

Remark4.2.3 Since in this context coexid¢i-invariance andM-invariance we need to
distinguish fibers with respect té form fibers with respect tivl. For this, we will refer
to 7w f(w) asH-fiberand to7y f (£) asM-fiber.

4.2.1 Principal M-invariant Spaces

We prove now the following characterization of princigdtinvariant spaces. This
result extends Theoreéhl1.1to the non-discrete case.

Theorem 4.2.4.Let f € L>(G) and M a closed subgroup of G containing H. [EBu(f),
then there exists an Mperiodic functiorn; such thag = nf.

Conversely, ify is an M*-periodic function such thapf e L2(I), then the function g
defined byg = nf belongs to &(f).

Proof. Let us callvV = Sy(f) and letPy andP, be the orthogonal projections orNoand
J(¢) respectively. Givery € V, we first defineyy in Q- as

(TmIE)Tm Doy ~
_ T @R if & € &
Ug(f ) =

(,’2(M*)

otherwise
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where&; is the sefé € Qu- : 1Twm f(é:)”?z(M*) # 0}. Then, sincdQy- + N} em- forms a

partition ofI', we can exteng to allI" in an M*-periodic way.
Now, by Propositiort.2.2we have that

Tma(E) = Tm(Pv)(é) = Pe(Tma()) = ng(£)Tm f(£)-

Sincernyg is anM*-periodic functiong = 74 f as we wanted to prove.

Conversely, ifg = nT, with n an M*-periodic function, themyg(¢) = n(¢)Twm f(£). By
Propositiod.2.2 g € V. O

Remark4.2.5 Observe that Theoredh.2.4has been proved using Propositié2.2 In
the same way, Theoreghl.1can be obtained from Theore2.5 However, in Section
2.1 we have given a proof of Theorefl.1similar to the one given for Theorem?2.4
which does not use the characterizatiorHeinvariant spaces stated in Theor@rd.5

4.3 Characterization of M-invariance

If HC M C G, whereH is a countable uniform lattice i6 andM is a closed subgroup
of G, we are interested in describing whenkdfnvariant spac®/ is alsoM-invariant.

Let Q, be a measurable sectionIlofA and N a countable section &/M*. Foro e N
we define the seB, as

Br =Qp+0+M" = U(QA+0-)+m*. (4.4)

meM*
Therefore, eaclB,, is an M*-periodic set. Here, byv*-periodic set we mean a set for
which its characteristic function is avi*-periodic function.

SinceQ, tilesT" by A translations anaV tiles A by M* translations, it follows that
{B,}oen IS @ partition off".

In order to understand this construction we give two basangdes of the partition
{BO'}(J'EN'
Example 4.3.1.

(1) LetH = Z andM = 1Z C R, thenM* = nZ, Q4 = [0,1) andN = {0,...,n— 1},
Giveno € {0,...,n- 1}, we have

B, = U ([0,1)+o')+m*:U[o',o'+l)+nj.

mfenz jez
Figure4.lillustrates the partition fon = 4. In the picture, the black dots represent the
setN. The setB, is the one which appears in gray.

(2) LetH = z2andM = 3Z xR C R? thenQ, = [0,1)? M* = 2Z x {0} and
N ={0,1} x Z.



4.3 Characterization of M-invariance 49

Figure 4.1:Partition of the real line foM = 3Z.

So, the set8 j, are

Bi.p = () (10,17 + (i, j)) + (2, 0)

kezZ

where (, j) € N. See Figuret.2, where the setB ), B1) andB_1_1) are represented
by the squares painted in light gray, gray and dark gray msedy. As in the previous
figure, the selV is represented by the black dots.

3
°

2

l. . .
0
—l. . .

Qn

Figure 4.2:Partition of the plane foM = 3Z x R.

4.3.1 Characterization ofM-invariance in terms of subspaces
Let V C L%(G) be anH-invariant space. Now, for each € N, we define, using the
partition{B,},<y, the subspaces
U, = {f e L3(G): f = xg,T, With geV}. (4.5)
The main theorem of this section characterizesNhawvariance ofV in terms of the
subspaceb,,.

Theorem 4.3.2.1f V C L?(G) is an H-invariant space and M is a closed subgroup of G
containing H, then the following are equivalent.
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1) V is M-invariant.
i) U, cVforalloeN.

Moreover, in case any of these hold we have that V is the ootalgdirect sum

V:@UU.

ogeN

Now we state a lemma that we need to prove Thecteh

Lemma 4.3.3.Let V be an H-invariant space ande N. Assume that the subspacg U
defined in 4.5.19 satisfies U C V. Then, U is an M-invariant space and in particular
Is H-invariant.

Proof. Let us prove first that,, is closed. Suppose thét € U, andf; — f in L%(G).
SinceU, € V andV is closed,f must be inV. Further,

I = 115 = 1ICF = Foxe, 15+ 1CF = Fxesllz = 1F5 = fxs 15 + Il a3

Since the left-hand side converges to zero, we must havefthat= 0 a.e.y € T.
Then,f = fyg,. Consequentlyf € U,, soU, is closed.

Now we Ehow thatJ,. is M-invariant. Giverme M andf € U, we will prove that
(m,)f(-) € U,.

Sincef € U, there existg € V such thatf = X8, 0. Hence,

(M) = (M) (s, 8)() = xe, ()M )G())- (4.6)
If we were able to find an-periodic functiont,, verifying
(m,y) = tn(y) a.ey e B, 4.7)

then, we can rewrite4(6) as
(M) = xs, OEG).

Thus, sincéy is A-periodic, Theoren2.1.1gives Usld € Su(g) € V and so, i, ) f(-) €
U,

Now we define the functiofi, as follows. For each € A, set
l(lw+06)=(Mw+0) aeweQ,. (4.8)
It is clear thatt, is A-periodic.
Since (n, -) is M*-periodic,
(Mw+o)=Mw+o+mMm) aewe, VYm eM".
Thus, @.7) holds.

Note that, sincéd € M, theH-invariance ofJ,, is a consequence of théd-invariance.

O
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Proof of Theorend.3.2 i) = ii): Fix o € N andf € U,,. Thenf = xs, g for someg € V.
Sinceysg, is anM*-periodic function, by Theorem.2.4 we have thaf € Sy(g) € V, as
we wanted to prove.

i) =1i): Suppose that), C V for all o € N. Note that Lemmat.3.3implies that
U, is M-invariant, and that, since the sds are disjoint, the subspackl. are mutually
orthogonal.

Suppose thaf € V. Then, sincg{B,},cy is a partition ofT’, it follows that f =
Yoen Txs,. Thenf e @%N U, and consequently/ is the orthogonal direct sum

V:@UU.

ogeN

As eachU,, is M-invariant, so isV. O

To finish this section we want to point out that the subspa&esire not necessarily
closed. To see this we need to introduce some useful notiduainve will also use in the
remainder of this chapter.

If f € L2(G)ando € N, we define the functiori“ as

7 = Tre,.

Let#, be the orthogonal projection on8)., where
S, = {f € L3G) : suppf) c B,}. (4.9)
Observe that the subspac®sdefined above are invariant under any translatio8.ifnn

particular they aréd-invariant spaces.
It is easy to see th&dt” = £, f. Then, it follows from the definition of), that

U, = P (V) = {f7 : feV) (4.10)

It is a general result that iM and N are closed subspaces of a Hilbert spagés
then,M + N is closed if and only ifPy.(M) is closed, where as usudy. denotes the
orthogonal projection ontdl* and N+ denotes the orthogonal complementMNfin #H
(see Kat9g).

Using this result, we have thak, = #,(V) is closed if and only iV + SZ is closed.

In order to understand whan+ S is closed we introduce the notion of angle between
closed subspaces (for details sBe(199).

LetU andV be closed subspaces of a Hilbert spaesTheFriedrichs anglebetween
U andV is the angle in [07] whose cosine is

c[U,V] :=suglKu,v)| : ueUeV,veVeUand|u| <1Vl <1}

Here,UsV means the orthogonal complementbfiV in U. ThatisUeV = UN(UNV)* .
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Then, itis known thatl + V is closed if and only it[U, V] < 1.

In case wher{ = L?(G) andU andV are H-invariant spaces the Friedrichs angle
betweenJ andV can be formulated in terms éf-fibers as follows (seeC09, Lemma
6.8]). If Jy andJy denote the measurable range functions associatddaiodV respec-
tively then

c[U, V] = esssufr[Jy(w), Jv(w)] : w e Qu}.

Now we are able to give an example which shows that the spacean be not closed.

Example 4.3.4.Let us consider th&-invariant space generated yx) = X[_%’%](x),

V = Sz(¢) and letM = %Z. We will see that the subspatk = {f € L?(R) : f =
x8,0, With g € V}, whereB, = [0, 1) + 2Z, is not closed. For this, we will prove that
c[V,S;] = 1.

First, note thatS§ = S; = {f € L*R) : supp(fA) C By}, with B; being the set
[0,1)+ 1+ 27Z.

Now, if Jy is the measurable range function associatedViothen Jy(w) =
spai7zp(w)} for a.e. w € [0,1). Sinceg(w) = 2 = sinqw), we rewrite
Jv(w) = spart{sindw + ])}jez}-

On the other hand, ifs, is the measurable range function associatef;toone can
easily check thals, (w) = Spafex.1 : ke Z}.

Then, for eaclw € [0, 1) fixed, we have
c[Iv(w), Is,(w)] = SKU|OI<‘/~ z¢(w), Ex1)| = skUDlsinO(w +2k+ 1) > [sindw - 1)I. (4.11)
c€Z c€Z

Thus, taking essential supreme ouee [0, 1) in equation4.11) it follows

[V, Sy = 1.

4.3.2 Characterization ofM-invariance in terms of H-fibers

In this section we will first express the conditions of Theore3.2in terms ofH-fibers.
Then, we will give a useful characterization of thkinvariance for a finitely generated
H-invariant space in terms of the Gramian.

As we have say in the last section, the subsp&;edefined in 4.9) are H-invariant
spaces. Then, we will denote I/ the orthogonal projections associated to the range
function of S,,.

Lemma 4.3.5.1f V = Sy, (A) with A a countable subset of(G), then

{Thf(w) : feU,} =spanTu(¢”)(w) : ¢ € A},

fora.e.w € Q,.
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Proof. Since¢” € U, for all ¢ € A, it holds thatSpai71(¢”)(w) : ¢ € A} C
{(Thf(w) : feU,}

To prove the other inclusion, observe that, sibige= £, (V),

{(Tuf(w) : TeUy} ={Th(P,f)(w) : eV}

Now, by Propositior.2.2 we havel (P, f)(w) = P (T f(w)) for a.e.w € Q4. Thus,

TP (@) : FeV)= (P (Taf(w) : feV]=P({Taf(w) : feV)

If Jis the measurable range function associated Wi#ls anH-invariant spaces, using
(2.5), it follows that

PolThT(w) : T eV} CPI(SpanTne(w) : ¢ € A)) C spanPi(The(w)) : ¢ € A)),

where the last inclusion is due to the continuity and lingaof PJ.
Then, using once again Propositibr2.2 we obtain

spanPy(The(w)) ¢ € A}) = spanTw(Pop)(w) : ¢ € A})

which finishes the proof. O

An important thing to point out is, sindd, = ?,(V), U, is invariant under trans-
lations alongH. Nevertheless, it is not necessarily closed (see Exadgle). Then,
in general, it is not aH-invariant space. On the other hand, the mapgingfrom Q,
to {closed subspaces 6f(A)} which assigns to each the subspace defined in Lemma
4.3.5is a measurable range function. As a comment we want to rethatkwhenU,, is
an H-invariant space, the range functidp, is precisely the measurable range function
associated withJ,, through Theoren2.2.5

Combining Theorem4.3.2and2.2.5with Lemmad4.3.5we obtain the following result.
Proposition 4.3.6.Let V be an H-invariant space generated by a countable/&et

L%(G) and denote by\Jthe measurable range function associated to V through Emeor
2.2.5 The following statements are equivalent.

1) V is M-invariant.
i) The)(w) € v(w) a.e.weQ, forall g e Aando € N.

Proof. i) =ii): SinceV is M-invariant , Theorem.3.2givesU, C V for all o € N.
Using @.10, we obtain thap” € V for all o € N. Then ii) follows from Theoren2.2.5

i) =1i): By the hypothesis and Lemm&3.5it follows that {7 f(w) : f € U,} C
Jv(w) for a.e.w € Q5. Hence, using Theoreth2.5 U, C V. Thus,V is M-invariant as a
consequence of Theorefn3.2 O
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Let us now turn our attention to the finitely generated casg. L= {¢,,..., ¢} be a
finite collection of functions irL?(G). Then, according to Definitio.2.6 the Gramian
of @ is the x ¢ matrix of A-periodic functions

[Go(@)]ij = (Thei(w). Thej(w))
:Z{o\i(w+6)m (4.12)

oeA

for w € Q.

Now we give a slightly simpler characterization Mfinvariance for the finitely gener-
ated case. Here we use the notationgi() for dimSpani7(¢”)(w) : ¢ € ©}).

Theorem 4.3.7.1f V is an H-invariant space, finitely generated dythen the following
statements are equivalent.

1) V is M-invariant.
i) For almost everyw € Q,, dimy(w) = 3 ,cp dimy, (w).

iif) For almost everyw € Q,, ranklGo(w)] = Y epn rank[Gor (w)], where®? = {¢”
p € O},

For the proof of this theorem we need the following resultekhis a straightforward
consequence of Theore?2.5

Proposition 4.3.8.Let V; and \, be H-invariant spaces. If = V, & V,, and J;, Jv,, Jv,
denote the measurable range functions associated tq ¥n® \4 respectively, then

Jv(w) = Iy, () ® Iy, (w), a.e.we Q.

The converse of this proposition is also true, but it will betneeded.
Remark4.3.9 Note that the fibers

Th(¢")(w) = {8, (w + )p(w + 6)}sea
can be described in a simple way as

. o(w+06) foeoc+ M
XB, (W + 6)p(w +6) = 2 ) .
0 otherwise

Therefore, ifo # o, SpaiTu(p”)(w) : ¢ € A} andSpanTu(¢” )(w) : ¢ € A} are
orthogonal subspaces for ae e Q4.
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Proof. i) = ii): By Theorem4.3.2 V = @,y U, andU,, is anH-invariant space for all
o € N. Then, ii) follows from Propositiod.3.8

i) =1i): Let Jy be the measurable range function associatéd. t&ince{B,},<y IS a
partition of", V C @,.n U,.. Then, by Remarks.3.9we have that

Jv(w) € UiGN spaf71(¢”)(w) : ¢ € O}

Due toV is finitely generated, we use ii) to obtain thit(w) = ®,cn SPai7 1(¢”)(w) :
¢ € ®}. The proof follows as a consequence of Proposiicha

The equivalence between ii) and iii) follows from the strdafgrward equality
dimy(w) = rank|Ge(w)]. O

4.4 Applications of M-invariance

In this section we estimate the size of the supports of thei€otmansforms of the gen-
erators of a finitely generatdd-invariant space which is aldd-invariant. Finally, given
M a closed subgroup @ containingH, we will construct arH-invariant spac& which
is exactlyM-invariant. That isV is not invariant under any other closed subgrousof
containingH.

Theorem 4.4.1.Let V be an H-invariant space finitely generated by theget . ., ¢/},
and define

Ej:{weQA :dimv(w):j}, j:O,...,{’.

If V is M-invariant andQ},. is any measurable section 6fM*, then

4
me(ly € Qe 1 G0 #0) < > me(E)) j <,
j=0
foreachi=1,...,¢.

Proof. The measurability of the seks; follows from the results of HelsorHel64], e.g.,
see BKOG6] for an argument of this type.

Fix anyi € {0,..., ¢} and denote byly, the measurable range function associated to
theH-invariant spacell,.. Note that, as a consequence of Remai9 if Jy (w) = {0},
thenyi(w + o+ m*) = 0 for allm* € M*.

On the other hand, sin¢@, + o + M}, cn.mem- IS @ partition ofl, if w € Q) ando e N
are fixed, there exists a uniqo®, , € M* such thaw + o+, , € Q..

So,
lceN plw+to+m,,) 0 Cl{oceN  dimy,(w)# 0}
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Therefore

HoeN @ plwto+m,,)#0 < #oeN :dimy, (v) %0}

Z dimy, (w)

ogeN
dimy ().

IA

Consequently, by Fubini’s Theorem,

me(ly € Q. 1 GO) #0) = > Me(lw € Q4 1 Gi(w+ 0 + M) # 0)
ogeN

= (M X #)({(w,0) e U XN : gi(w+ 0+, ) #0})

= f #Hoe N @ pi(w+o+m,,) # 0 dm(w)
Qa
{
< [ dimi@)dm@) =Y im(E) <
Qa =y

O

Corollary 4.4.2. Letp € L%G) be given. If $(¢) is M-invariant for some closed sub-
group M of G such that Hz M, theng must vanish on a set of positivg/measure.

Furthermore, if m(I') = +o0, » must vanish on a set of infinitecAneasure.
Proof. Let Qy- be the section of the quotiefifM* defined in 4.3). Then,

me(ly €T G0)=0)= > m(fyeQu +m :3()=0). (413

mreM*
By Theorem4.4.1, we have that, for eaalm* € M*,

mMr({y € Qu- + M 1 g(y) # 0}) < 1,
which implies
Me(ly € Que + M 1 G(y) = 0)) = #N - 1
Combining this with equality4.13, we obtain

mr({y €T @ @(y) = #(M")#N - 1). (4.14)

SinceH ¢ M, it follows that #V > 1, somr({y € T : p(y) = 0}) > 0.

If mp(I') = +00, then eithemp(Qy+) = +00 Oor #M* = +c0. In case that M* = +o0, by
(4.14),  must vanish on a set of infiniter--measure. I (Qy:) = +oo, sincemp(Q,) =
1, it follows that #V = +oco. Then, using again4(14), we can conclude the same as
before.
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As a consequence of Theorett.], in case thatM = G, we obtain the following
corollary.

Corollary 4.4.3. If ¢ € L%(G) and S4(¢) is G-invariant, then
mr(suppf)) < 1.

The next theorem states that there exists an M-invariargesypahat isnot invariant
under any vector outsidd. We will say in this case that is exactly Minvariant.

Note that because of Propositidrl.1, an M-invariant space is exactM-invariant if
and only if it is not invariant under any closed subgradpcontainingM.

Theorem 4.4.4.For each closed subgroup M of G containing a countable uniftattice
H, there exists an H-invariant space of(G) which is exactly M-invariant.

Proof. Suppose that @ N and takep € L?(G) satisfying esssupj = By, whereBy is
defined as in4.24). LetV = Sy(y).

Then,Uy = V andU,. = {0} for o € N, o # 0. So, as a consequence of Theoref2
it follows thatV is M-invariant.

Now, if M’ is a closed subgroup such thdt & M’, we will show thatV can not be
M’-invariant.

SinceM ¢ M’, (M’)* € M*. Consider a sectio@ of the quotientM*/(M’)* containing
the neutral element df. Then, the set given by

N ={c+c:oceN,ceC}

is a section oH*/(M’)* and O N’.

If {B/.}sen is the partition defined ind(24) associated td/’, for eacho € N it holds
that{B/_, .}« iS a partition ofB,, since

o+C

BU:QA+0-+M*:UQA+0-+C+(M’)*:UB;,+C. (4.15)
ceC ceC

In particular,B; & Bo. Moreover, the seB, \ Bj contains a measurable sectionlgiA
which is a translation of,.

We will show now thatJ ¢ V, whereU| is the subspace defined iA.5.19 for M".
Let g € L%(G) such thay = ¢xe,- Theng € U Moreover, since esssuyg(= B, by
(4.15,9+0.

Suppose thag € V, then, by Theoremd.1.1, g = 5o wheren is anA-periodic function.

Thus,n must vanish inBy \ B;. Therefore, the\-periodicity of; implies thaty(y) = 0
a.e.y e I'. Sog = 0, which is a contradiction.

This shows tha ¢ V. Hence )V is notM’-invariant. m|
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4.5 Extra invariance: a particular case

We will devote this section to study the extra invariancea shift invariant space (SIS)
in L2(RY) with d > 1. Obviously, this case is included in the more general caifd CA
groups developed in the above sections. However, we anegtéel in showing how the
results about extra invariance of a SIS.A{RY) can be stated using the structure of closed
subgroups oRY.

For this, we begin by given some characterizations conegreiopsed subgroups &f.

4.5.1 Closed subgroups dk¢

Throughout this section we describe the additive closedsulps ofR® containingZzd.
We first study closed subgroupskf in general.

General case

Here, we will state some basic definitions and propertiesosiec subgroups @9, for
a detailed treatment and proofs we refer the readeBaoT4.

Definition 4.5.1. Given M a subgroup oY, therangeof M, denoted byr (M), is the
dimension of the subspace generatedvbgs a real vector space.

It is known that every closed subgroupkf is either discrete or contains a subspace
of at least dimension one (se&du74 Proposition 3]).

Definition 4.5.2. Given M a closed subgroup &tY, there exists a subspat# whose
dimension is the largest of the dimensions of all the sulEpaontained iM. We will
denote byd(M) the dimension oW. Note thatd(M) can be zero.

Observe that & d(M) <r(M) < d.

The next theorem establishes that every closed subgroBf isfthe direct sum of a
subspace and a discrete group.

Theorem 4.5.3.Let M be a closed subgroup & such thatr(M) = r and d(M) =
p. Let W be the subspace contained in M as in Definiidn2 Then, there exists a
basis{uy, ..., ug} for RY such that{u;,...,u,} € M and {U1,...,up} is @ basis for W.

Furthermore,
p r
M:{Ztiui+2njuj :tieR,njeZ}.
i=1 j=p+1

Corollary 4.5.4. If M is a closed subgroup @ such thatr (M) = r andd(M) = p, then
M=~ RPxZP
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Closed subgroups ofR? containing Z¢

We are interested in closed subgroup&btontainingz®. For their understanding, we
identify the dual group oM, M*, with the subgroup oR {x e R4 : (x M) € Z ¥Yme
M}. Then, in particular,Z%)* = Z¢.

Now we will list some properties of the dual group.

Proposition 4.5.5.Let M, N be subgroups dt°.

1) If N € M, then M C N*.
i) If M is closed, therr(M*) = d - d(M) andd(M*) =d —r(M).
i) (M*)* = M.

Let K be a subgroup dt® with r(K) = g, we will say that a setvi,...,vg} € Kis a
basisfor K if for every x € K there exist uniqué, ..., k; € Z such that

q
x:;k.-vi.

Note that{vy, ..., vy} € Z%is a basis foz® if and only if the determinant of the matrix
A which has{vy, ..., vy} as columnsis 1 or1.

GivenB = {v, ..., Va} & basis foz?, we will call B = {w, ..., W} adual basisfor B if
(vi,wpy =6 forall1<i, j <d.

If we denote byﬂthe matrix with columngwy, ..., wq}, the relation betweeB andB
can be expressed in terms of matriced\as (A*) L.

The closed subgroupd of RY containingz?, can be described with the help of the dual
relations. Sinc&d ¢ M, we have thaM* c Z9. So, we need first the characterization of
the subgroups dt’. This is stated in the following theorem.

Theorem 4.5.6.Let K be a subgroup of? with r(K) = ¢, then there exist a basis
(Wi, ..., Wy} for Z¢ and unique integersa. ..,8q satisfying @1 = 0(mod. &) for all

1 <i < q-1, such thatfaywy,...,azW,} is a basis for K. The integers;a.., a, are
calledinvariant factors

The proof of the previous result can be found@o[181]].
Remark4.5.7. Under the assumptions of the above theorem we obtain

ZYK % Zay X ... X Loy X 2O

We are now able to characterize the closed subgroup$ obntainingz. The proof
of the following theorem can be found iBpu74), but we include it here for the sake of
completeness.
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Theorem 4.5.8.Let M c RY. The following conditions are equivalent:
i) M is a closed subgroup @ containingz® andd(M) = d —q.

i) There exist a basigvi, ..., vy} for Z% and integers &...,8q satisfying a1 =
O0(mod. @ forall 1 <i < qg- 1, such that

g d
M :{Zk.évm Z tivj : k € Zt; GR}.
i=1

j=q+1
Furthermore, the integers q and.a. ., aq are uniquely determined by M.

Proof. Suppose i) is true. Sinc&® ¢ M andd(M) = d - g, we have thaM* c Z% and
r(M*) = g. By Theorem4.5.6 there exist invariant factom, . .., ag and{w, ..., Wy} a
basis forz? such thafa;w, . . ., agWy} is a basis foM*.

Let{vy,...,Vvq} be the dual basis fdw, ..., Wy}.

SinceM is closed, it follows from item iii) of Propositiod.5.5thatM = (M*)*. So,
me M if and only if
mawp)ezZ V1<j<aq (4.16)

As {vi,...,Vy} is a basis, given € RY, there exist); € R such thatu = Zid=1 uVv;. Thus, by
(4.169,ue Mifandonly ifua € Zforall1<i <q.

We finally obtain thati € M if and only if there exisk; € Z andu; € R such that

The proof of the other implication is straightforward.

The integersy anday, . . ., aq are uniquely determined byl sinceq = d — d(M) and
ay, ..., 8q are the invariant factors dl*.

O

As a consequence of the proof given above we obtain the foitpaorollary.

Corollary 4.5.9. LetZ% ¢ M c RY be a closed subgroup with(M) = d—q. If {va, ..., Vqg}
and a,...,aq are as in Theorem.5.§ then

q
M* = {Zniaiwi LN eZ},
i=1

where{w,, ..., Wy} is the dual basis ofvy, . . ., v4}.

Example 4.5.10.Assume thatl = 3. If M = 1Zx $ZxR, thenv; = (1,1,0),V, = (3,2,0)
andvs = (0,0, 1) verify the conditions of Theoredh.5.8with the invariant factorg; = 1
anda; = 6. On the other hand, = (1,1,0), v, = (3,2,1) andv; = (0,0, 1) verify the
same conditions. This shows that the basis in Theatén8is not unique.
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Remark4.5.11 If {vi,...,vy} anday,...,aq are as in Theorem.5.8 let us define the
linear transformatio as

T:RISRY TE)=v Vi<ic<d,

where{e,, . . ., e} denotes the canonical basis &f.
ThenT is an invertible transformation that satisfies

1 1
M=T(=Zx---x =ZxR¥9).
a1 dg

If {wi,...,Wq} is the dual basis fofvi, ..., vg}, the inverse of the adjoint oF is defined
by
(TY*:RISRY (T He)=w Vi<i<d

By Corollary4.5.9 it is true that

M* = (T*) H@Z x - - - X agZ x {0}°79).

4.5.2 M-invariance of a SIS inL?(RY).

Let M be a closed subgroup & containingZ®. In order to characterize thil-
invariance of a SIS, we first want to give a slight idea abow Adheorem4.2.4 for
G = RY can be proved using the structure Mf stated in the above section. For this
we will follow the arguments used to prove Theor@m.1l Most of the reasonings can
be readily obtained fronbection 2.1 Hence, we do not include their proofs. The point
that deserves to be carefully explored is the extension @pdxition2.1.2 (see Lemma
4.5.19.

We will first need some definitions and properties.

By Remark4.5.1] there exists a linear transformation: RY — RY such thatM =
T(ZZX - x ZZxR™9) andM* = (T*) H(@Z x - - x 84Z x {0}9), whereq = d — d(M).

We will denote byD the section of the quotie®?/M* defined as
D= (T)0,a) x - - - x [0, 8g) x R*). (4.17)
Therefore{D + M} rew- forms a partition ofRY.

Lemma 4.5.12.Let f € L?(RY), M a closed subgroup @ containingz® and D defined
asin @.17. Then,

Su(f)* ={ge L’(RY : > flw+m)gw+m)=0aewe D)

mreM*
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Proof. Since the span of the sgf,f : m € M} is dense inSy(f), we have thag €
Sw(f)* if and only if (G, e,f) = O for all m € M, wheregy(w) := e @M  Asg, is
an M*-periodic function and®D + m*}rem- forms a partition oR?, using a periodization
argument, we obtain thate Sy(f)* if and only if

f@ em(w)( Z fw + M)gw + nr)) dw = 0, (4.18)

mreM*

forallme M.

At this point, what is left to show is that if4(18 holds thenY oy f(w +
MYgw+m) = 0 ae. w € D. For this, taking into account thaf ;. cu- ﬂ +
m)g(- + mr) € LY(D), it is enough to prove that ifi € L}(D) and f@ he, = 0O for all
me M thenh=0a.ew € D.

We will prove the preceding property for the cage= Z9 x R%9. The general case
will follow from a change of variables using the descriptarM and® given in Remark
4.5.11and @.17).

Suppose novivl = Z9 x R%-9, thenD = [0, 1) x R™9. Takeh € LY(D), such that
ff h(x, y)eZ & dxdy=0 Vke Z9 t e R4, (4.19)
[0,1)9xRN-4

Givenk € 79, defineax(y) = [, h(x y)e>™*dx for a.e.y € R%9. It follows from

(4.19 that o
fR . a()eZdy=0 VteRIT, (4.20)

Sinceh € LY(D), by Fubini’s Theoremg, € L([0,1)%). Thus, using4.20), ax(y) = 0
a.e.y e R%9. Thatis

L N h(x, y)e 2™ dx =0 (4.21)

for a.e.y € R%9. Define nows,(x) := h(x,y). By (4.21), for a.e.y € R%9 we have that
By(X) = 0 for a.e.x € [0,1)4. Thereforeh(x,y) = 0 a.e. &Y) € [0,1)% x R%9 and this
completes the proof. |

Now we will give a formula for the orthogonal projection orgée (f).

Lemma 4.5.13.Let # be the orthogonal projection ontoyf). Then, for each ge
L2(RY), we havePg = n4f, whereryg is the M-periodic function defined by

Smrems flw+m) fw+mr)

Siremt Fw+m?)glw+m) on&s + M*
Mg .= .
0 otherwise

and&; isthe sefw € D : Y reme Flw + M) Fw + ) # 0},
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With these results Theorefin5.14can be proved. This theorem provides a non-discrete
version of a result offBDR944 (see also(BDR944,[RS99).

Theorem 4.5.14.Let f € L%(R") and M a closed subgroup &t¢ containingz?. If
g € Su(f), then there exists an Mperiodic functiory such thag = 5 f.

Conversely, if7 is an M*-periodic function such thaﬁ\e L2(RY), then the function g
defined byg = nf belongs to & (f).

We will focus now in characterizing thd-invariance of a general SIS irf(RY). Then,
fix M a closed subgroup @& containingzd. LetT be the linear transformation stated in
Remark4.5.11 Using the mappind@ we defineQ, a the section of the quotieRf/Z9, as

Q = (T")7([0,1)%, (4.22)
andN, a section of the quotiet®/M*, as
N =(T70,...,as -1} x...x{0,...,aq— 1} x 29, (4.23)
whereay, . . ., a4 are the invariant factors dfl.

Hence, giverrr e N we define

B, =Q+0+M = U(Q+o-)+m*. (4.24)

meM*

Therefore{B,} ., forms a partition iR and eactB,, is anM*-periodic set. An exam-
ple of this construction is given below.

Example 4.5.15.Let M = {k%vl +tv, : k € Zandt € R}, wherev; = (1,0) and
Vo, = (-1,1). Then,{vy, V,} satisfy conditions in Theorem.5.8 By Corollary 4.5.9
M* = {k3w; : ke Z}, wherew; = (1,1) andw, = (0, 1). Note that the sefQ and N can
be expressed in terms of andw, as

Q={tw;+sw: t,se€[0,1)} and N={awy +kw : a€{0,1,2}, ke Z}.

This is illustrated in Figuré.3. In this case the seBg), B10) andB 2 correspond to
the light gray, gray and dark gray regions respectively. Blaek dots represent the set
N.

LetV be a SIS. Then, using the patrtiti¢B, },, We define for eachr e N
U, = {f € L’(RY) : f = yg, T, with ge V}.
The next theorem characterizes theinvariance ofV in terms of the subspacés,.

The proof of this result can be done in the same way as Thedrarh

Theorem 4.5.16.1f V c L?(RY) is a SIS and M is a closed subgroupRsfcontainingZd,
then the following are equivalent.



64 Extra invariance of H-invariant spaces

1) V is M-invariant.

i) U, cVforalloeN.

Moreover, in case any of the above holds, we have that V isrthegonal direct sum

v-@u.

geN

Itis known that on the real line, the SIS generated by a fongtiwith compact support
can only be invariant under integer translations. Thak,g,¢ Sz(¢) for all x e R\Z. The
following proposition extends this result Rf'. Thus, a shift invariant spaces if(RY)
generated by a compactly supported function is exatinvariant.

Proposition 4.5.17.1f a nonzero functionp € L2(RY) has compact support, then,&p)
is not M-invariant for any M closed subgroupRf such thaZ® ¢ M. In particular,

Tep & Sza(p) VxeRY\Z (4.25)

Proof. The first part of the proposition is a straightforward consege of Corollary
4.4.2with G = RY andH = 7% To show 4.25, takex € RY \ Z¢ and suppose that
Tw € S(p). If M is the closed subgroup generated>bgndZ, thenS;qi(¢) must be
M-invariant, which is a contradiction. O

6

p ] . '
5

p ] °

: Vlis

Figure 4.3:Partition forM = {k3(1,0) + t(-1,1) : ke Z andt € R}.
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Shift-Modulation Invariant Spaces

In this chapter, we will deal with subspaced 8(G), with G being an LCA group, that are
invariant under translations and also under modulatiowns.ttis we will first introduce
the concept of shift-modulation invariant spaces underptiie (K, A) in L2(G), K is a
closed subgroup o andA is closed subgroup the dual group®f These spaces are
the extension to the LCA setting of the well-known shift-médion invariant spaces
in L2(RY), (SMI spaces). SMI spaces, also called Gabor or Weyl-Hgiberg spaces,
have been studied iBpw07], [CCO1H, [CCO0143, [Chr0], [Dau9], [GD04, [GDO01],
[Gro01]], [Fei0] among others, and they become fundamental in time-frezyuamalysis.

Here, we restrict our attention to shift-modulation ineatispaces under the pait,(A)
in L2(G) with K andA being uniform lattices. The aim will be get a descriptiontuége
spaces in terms of the fiber of its elements. In order to olstaain characterization, we
develop fiberization techniques and suitable range funstaaapted to this more compli-
cated structure which involves translations and modulatioAs in theL?(RY) case, the
Zak transform and its properties will be essential in ourysis.

The result that we obtain, generalizes a result concernégdnsbdulation invariant
spaces ir.?(RY) due to Bownik Bow07.

We organize the chapter as follows. First, we fix our workisgtin Section 5.1 In
Section 5.2 we first develop fiberization techniqueSection 5.2.)1 and then suitable
range functions well adapted to this conteSe¢tion 5.2.2 Finally, in Section 5.3the
main result of this chapter is stated and proved.

5.1 Shift-Modulation Setting

In this section, we will introduce the notion of shift-modtibn invariant spaces on LCA
groups and we will fix our work setting.

Definition 5.1.1. Let G be an LCA group and' its dual group. IfK € GandA c T
are subgroups, we will say that a closed subspacelL?(G) is (K, A)-invariant or shift-
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modulation invariant undefK, A) if
feV=MTfeV VkeKandaeA,
whereM, f(x) = (x,4) f(X) and T f(x) = f(x—K).
For a subsef ¢ L%(G), define
Exn)(A) = IMTw: p e A ke K, 1€ A)

and
Sik.a)(A) = SpanE ay(A).

A straightforward computation shows that the sp&ge,(A) is shift-modulation invari-
ant under the pair, A). Then, we cal5« »)(A) the K, A)-invariant space generated by
A. Note that, whert is second countable, for every shift-modulation invarspdaceV,
there exists a countable set of generatérs L3(G) such thal = Sk x)(A).

Here we want to characterizE,(A)-invariant spaces fdf andA being uniform lattices
in G andI respectively such th& N A* is an uniform lattice irG.

As we have done in the shift invariant case (€&apter 2, the characterization of shift-
modulation invariant spaces will be established in termapgropriate range functions
and fiberization techniques.

Remark5.1.2 If K; C K; are lattices inG, thenK,/K; is finite. To prove this, observe

that, sinceK; < Ki, K;/K; ~ Ky/K; due to the duality relationships stated in Theorem
1.1.4 ThereforeK,/K; is both compact and discrete. Heri¢g/K; must be finite. This
fact will be important in what follows.

We now fix our setting which will be inféect throughout the next sections.

e Gis a second countable LCA group andas dual group.
e F is a countable uniform lattice dB.
e A is a countable uniform lattice dn

e E = F N A*is a(countable) uniform lattice da.

As a consequence of the results stated in Thedren®and Remarlks.1.2we obtain
that:

(@) E*is an uniform lattice if" andA C E*.
(b) H := A*is an uniform lattice irG.

(c) The quotienE*/A is finite.

(d) The quotient/E is finite.
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According to these facts we can fix. C I" a measurable section for the quotiEpE*
andDg- C E* a finite section fole*/A. Then, we can construct the measurable section
Q, for the quotient’/A as

Q=)o +e (5.1)

ecDg+

In the same way, consideriig: C F a finite section fof~/E andlg,4 a measurable
section forG/(F + H), we have that

= lrn—d (5.2)

dGDF

is a section for the quotie@/H.

We are able for fixing the normalization of the Haar measuféiseogroups considered
in this chapter. As usual, this particular choice of the Haaasures does noffact the
validity of the results.

First, we chooseny such thatmy({0}) = 1. Then we fixmg andmg,4 such that the
Wiel's formula holds amongny, mg andmg,4. Furthermore, we chooser/g:, mg: in
order to getmg: ({0})mp/e-(I'/E*) = ﬁ where byfiDe- we denote the cardinal @g-.
Then, we sein such that Wiel's formula of Theorefh1.10holds amongny/g:, mg- and
M.

If Q, is given by 6.1), this normalization implies thang(Q2,) = 1. This is due to
formulamp(Qeg-) = me-({0})mp/e-(I'/E*) proved in Lemmal.1.13

5.2 The Fiberization Isometry and Range Functions

The goal of this section is to develop the fiberization isagnahd a suitable range func-
tion required to achieve the characterization BfA)-invariant spaces that we want to
prove.

The well-known property about the Fourier transfolstI/Ec = T,f, guarantees that a
space which is invariant under modulations can be seenheid&ourier transform, as
a shift invariant space. Therefore, we can treat the shiithmation invariant spaces as
shift-invariant spaces on both sides, on time and on freqguemhen, our analysis will
be strongly based on the shift invariant case. The fibedmasometry for shift invariant
spaces will help us to construct the fiberization isometrytlie shift-modulation setting.

5.2.1 The Isometry

Fix nowF € G andA C I" countable uniform lattices verifying the conditions sthte
the above section.

In order to construct the fiberization isometry, we mustadtrce the following isomor-
phisms.
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First, letTy : LAG) — L%(1y, €4(H)) be the mapping defined as
T f(X) = {F(X+ )}her. (5.3)

The proof that/}; is an isometric isomorphism is an straightforward adapiedif Propo-
sition1.4.2

On the other hand, consid&t : ¢2(H) — L?(Qg-, £2(Dg-)) defined by

Tea(é) = 1), anm(é + &)}ene. (5.4)

heH

where the functiongy, are as in Propositioh.1.19anda = {an}neH-

Lemma 5.2.1. The map7 g defined in §.4) is and isometric isomorphism betwegiH)
and LZ(QE*, fZ(DE*))

Proof. SinceDg: is an index set, we have that

[ 331y amie + o ame

E* eeDgx heH

f | ) (@)l dm-(w)
Qx heH
1) amliZzg,)

heH

2
7 eall;

Now, applying Propositiod.1.21we obtain

2 _ mF(QA) 2
[ ; il = oo @

Hence, by our normalization of the Haar measu%% = 1and thenllTEa||§ =

[CTF.

Letd e L(Qg., £3(Dg-)). Thend induces the functio® € L2(Q,) given by
D(w) = (D)),

wherew = ¢ + e € Q,, with ¢ € Qg ande € Dg-. Here(®(¢)),, denotes the value of the
sequenc®(¢) ate. Itis easy to check thaitd||, = ||Dlf 2(q,).

__According to Propositiori.1.19 {5n}hen is an orthonormal basis fdr?(Q,). Thus,
O = Yy amn for somea = {aphhen € ¢3(H). From here, it follows thafza = ®.
ThereforeJ g is an isomorphism. O

Remark5.2.2 Observe thaE™, the annihilator oE as a subgroup dfl, is topologically
isomorphic toE*/A. Then, using the dual relationship stated in Theofet it follows
thatH/E™ ~ I'/E*. This allows us to se€¢ as a particular case of the map of Proposition
1.4.2
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The isometric isomorphismg induces another isometric isomorphism
W11 L2, £(H)) — L2(In, L*(Qe, £(De-)))
defined as
Y1(9)(X) = Te(@(X)).

In addition, we can identify the Hilbert spat&(ly, L?(Qg-, £2(Dg-))) with L2(ly x
Qe-, t?(Dg))) using the isometric isomorphism

¥, 1 L*(In, L(Qg, £*(De:))) — L2(In X Qe-, £%(Dg))
given by
Y2(9)(%. &) = (X))
Definition 5.2.3. We define7 : L2(G) — L?(ly X Qg-, £?(Dg-)) as

T:\PZO\Plo(iLH.

This mapping/, which is actually an isometric isomorphism and that we ttedlfiber-
ization isometrycan be explicitly defined as

T (X&) = Te(Tuf())E) = {Z f(x=h)(h.& + €)}ecpr.- (5.5)

heH

For a simply way to describ&, we recallZ : L?(G) — Z the usual Zak transform
given by

Zf(x&) = ), fx=h)(h.8),

heH
whereZ is the set of all measurable functioRs G x I' — C satisfying

@ F(x+hé&) =hEaF(x & YheH,
(b) F(x,£+6)=F(x,&) Ve Aand
© IIFIP = [, J IFO &P dmg(x) dmy(€) < eo.

For further information about Zak transform we refer @r¢07], [Wei64], [Zak67,
[Jan82, [Jan8§.
Then, itis clear that

The next lemma states an important property atiouthich will be useful in what fol-
lows. Its proof is a straightforwards consequence of pitge@), (b) and €) formulated
above.

Lemma 5.2.4.For each fe L?(G) the map7~ of Definition5.2.3satisfies

T(MsTyF)(%, &) = (X (-2 )T (TaF)(x &)  ae.(x.€) € Iy X Qe-,
wheres € A,y e F and y= z+ d with ze E and de D¢.
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5.2.2 Shift-modulation Range Functions

We are now able to define range function accordindg=t@aj-invariant spaces.

Definition 5.2.5. A shift-modulation range functiowith respect to the pairfi A) is a

mapping
J: Iy x Qg — {subspaces of*(Dg-)},

satisfying the following periodicity property:
J(%&) =J(x-d,&) VY deDg (5.6)
fora.e. &) € Ipn X Qp-.
For a shift-modulation range functiolh) we associated to eacR, §) € Iy x Qg the

orthogonal projection ontd(x, &), P : €%(De:) = J(X, ).

We say that a shift-modulation range functidms measurable if the functiorx(¢) —
Pig from Iy x Qe to £3(Dg:) is measurable.

For a shift-modulation range functioh (not necessarily measurable) we define the
subsetM; as

Mj = {¥ € L2(Iq X Qg-, £3(Der)) : W(X, &) € J(X, &), a.e.k &) € Iy x Qg-) (5.7)

Remark 5.2.6 The subspaceM; defined above is a closed subspacelf{ly x
Qc-, ?(Dg+)). For the proof of this fact see Lemna2.3

The shift-modulation invariant spaces associated to a rargfunction
The following proposition states thatJdfis a given shift-modulation range function with
respect to the paif{, A), we can associate tban (F, A)-invariant space.

Proposition 5.2.7.Let J be a shift-modulation range function and define2V71M;,
where My is as in 6.7) and7 is the fiberization isometry.

Then, V is ar(F, A)-invariant space in E(G).
Proof. To begin with, observe that, by Remabk?.6 and since7 is an isometryV C
L%(G) is a closed subspace.

Let f € V, 6 € A andy € F. We need to show thal;T,f € V.

According to Lemmd.2.4 we have that

T(MsTy )X &) = (%, O)(~2 ET(Taf)(x, &)  ae. &) e ly x Qe

wherey = z+ d with z€ E andd € Dg.

In particular, ifx € Ig.y we can rewrite7 (Tyf)(x, &) as7 f(x — d,&). Then, since
7 f € M; andJ satisfies %.6), it holds that

T(Taf)(x.&) =T f(x-d.&) € I(x-d.&) = I(x. &),
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fora.e. & &) € lg,q X Qg-. Thus,

T(M;Tyf)(X,. &) € I(X.€) ae. k&) € lpin X Qe (5.8)

and this is valid for ally € F andé € A.
We now want to show thab(8) holds only x Qg..
Let (X, &) € Iy x Qg-. By (5.2 we can sek = X' — d with X' € I,y andd € De.
If we fix 6 € A andy € F then, 7 (MsT, f)(X, &) = T (TaMsTy f)(X, £).
SinceM, T,g = (k, )T M,gfor all g € L%(G), 1 € A andk € F, we have

T (TaMsTy£)(X, &) = (=d, )T (MsTary F)(X, £) € I(X, &) = I(X,§).

Then, 6.8) holds only x Qg-. Therefore MsT,f € V forall § € Aandy € F. O

The range function associated to arfF, A)-invariant space

The characterization of shift invariant spaces under umiflattices inG stated in Theo-
rem2.2.5 gives a specific way to describe the shift range function@ated to each shift
invariant space. Since a shift-modulation invariant spaga shift invariant space in time
and frequency, we will use the results of Theor2ra.5to construct a shift-modulation
range function from a giverH A)-invariant space.

Assume tha¥ c L?(G) is an [, A)-invariant space and that == S »)(A) for some
countable sefA C L?(G). We will show now, how to associated Yba shift-modulation
range function.

First notice tha¥/ = {f : f e V} C L2(I') is invariant under translations in Then, by
Theorem2.2.5 V can be describe as

V={f e L?G): Tuf(x) € In(X) a.e.xe Iy}, (5.9)

where7, is the isometry defined irb(2.1) andJy is the shift range function associated
toV given by
Ju @ Iy — {closed subspaces 6f(H)}
Jn(x) = SpaHTu(Tye)(x) : Y€ F, ¢ € A).

Note that this holds sincé, as a space invariant under modulationajns generated by
the set{Typ : ye F, ¢ € AJ.

Now, let us see that,(X) is a shift invariant space under translation&in

SinceDe C F is a section for the quotiert/E, everyy € F can be written in a unique
way asy = z+d with ze E andd € Dg. Then, using thal yT,f = T,74f forall z€ E,we
can rewriteJy(X)

Ju(X) = SpadT, T u(Tap)(X) : z€ E, d € Dg, p € A}.
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This description shows thdf,(X) is a shift invariant space under translation&igen-
erated by the sé(Tqp)(X) : d € Dg, ¢ € A}.

Using Theoren®.2.5 we can characterizd,(x) for a.e. x € Iy as follows. For each
X € Iy \ Z, whereZ is the exceptional zenms-measure set, there exists a range function
JX 1 Q. —> {subspaces of?(Dg:)} such that

JH(X) = [ae 3(H) : Tea(é) € JX(¢) a.e.¢ € Qe ),

where7e is the map given ing.4).
Moreover,

JiE) = SpaRTe(TuTap(X)(€) : d € De, ¢ € A)
= SpanT (Tap)(x.£) : d € Dg, ¢ € A)
= span7 (Tqp)(X, &) : de Dg, ¢ € A,

where in the last equality we use that dif{Dg-)) < .
This leads to the functiod : Iy x Qg — {subspaces of?(Dg.)} defined as

J(x.&) = span7 (Tap)(x.£) : d € Dg, ¢ € A}, (5.10)
fora.e. K &) € Iy X Qg-.

Lemma 5.2.8.Let A C L?(G) a countable set. Then, the map defined5rl() is a
shift-modulation range function.

Proof. We need to show thak satisfies property3(6).

Letdy € De. For eachd € Dg, we have that (Tge)(X — do, &) = T (Tarap) (X, €) foOr
a.e. k&) € lpy X Qp-.

Sinced + dg € F, it can be written adl + dy = d’ + Z with d’ € Dg andZ € E. Then,
according to Lemm®.2.4 7 (Tgia,0) (X% &) = (Z,E)T (Taw)(X,&). Thus, T (Tap)(X —
do, &) € J(X, &) due toT (Tg¢)(X, &) € I(X, &).

This shows thad(x — do, &) C J(X, &) for a.e. &, &) € Ig .y X Qg for eachd, € De.

With an analogous argument, it can be proved &at¢) € J(x—do, &) fora.e. §, &) €
lerq X Q- for eaCth € Dg. a

As we have seen in Propositi@n2.7, each shift-modulation range function induces a
(F, A)-invariant space. Furthermore, in the last section weaatoeach shift-modulation
invariant spac#/ a shift-modulation range function from a system of genesatdV .

This leads to a natural question. W is a (F, A)-invariant space and the shift-
modulation range function that induces, what is the relationship betweérand the
(F, A)-invariant space induced frog?

That will be the content of the following section.
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5.3 (F, A)-Invariant Spaces

We can now state our main result which characterigea)-invariant spaces in terms of
the fiberization isometry and shift-modulation range fiorts.

Theorem 5.3.1.Let V C L?G) be a closed subspace afd the fiberization isometry
of Definition5.2.3 Then, V is an(F, A)-invariant space if and only if there exists a
measurable shift-modulation range function Il; x Qg- — {subspaces of?(Dg.)} such
that

V={fel?G): T(x¢&edxe&) ae. (x&) e lyx Qe

Identifying shift-modulation range functions which arauabjalmost everywhere, the
correspondence betweé¢h, A)-invariant spaces and measurable shift-modulation range
functions is one to one and onto.

Moreover, if V= S (A) € L%(G) for some countable subsétof L*(G), the measur-
able shift-modulation range function J associated to V \&giby

J(x, &) = span7 (Tap)(x.&) : d € Dg, ¢ € A},

a.e.(x, &) € ly X Qg-.

For the proof of Theorerh.3.1we need the following previous lemma. It is an adapta-
tion of Lemma2.2.6

Lemma 5.3.2.1f J and J are two measurable shift-modulation range functions shelh t
M; = My, where M and My are given by %.7), then Jx, &) = J (X&) a.e. (X&) €
Iy X Qg-. Thatis, J and Jare equal almost everywhere.

Proof of Theorem 3.1If V is an {, A)-invariant space, then, sint&(G) is separable, it
holds thatV = Sr)(A) for some countable subset of L%(G).

Let us consider the functiahdefined asl(x, &) = spaf7 (Tqp)(X, &) : d € Dg, ¢ € A}
from Iy x Qg to {subspaces of?(Dg-)}. As a consequence of Lemrbe2.8 J is a shift-
modulation range function. We must prove thiaf = M; whereM; is as in 6.7) and
thatJ is measurable.

We will first show7V = M.

Taked € A,y € F written asy = z+ d with z € E andd € Dg, andg € A. Then, by
Lemmab.2.4it holds that

T (MsTyp) (X, &) = (%, 0) (-2 )T (Tap)(%, &)  a.e. & &) € Iy x Qe..

Thus, sinceT (Tqp)(X, &) € J(X &), we have that (MsTyp)(X, &) € J(Xx.€) a.e. K ¢) €
Iy X Qg-. Therefore,

T (spantMsTyp : ¢ € A,y e F,6 € A}) € M.
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Using that7™ is a continuous function and Rem&k.6 we can compute

TV

T (SpantMsTyp : 9 € A,ye F,6 € A})
T (spantMsTyp : o € A,y e F,6 € A})
M_J: MJ.

N

N

Let us suppose thatV ¢ M;. Then, there exist¥ € M; \ {0} orthogonal to7 V. In
particular, we have thatt', 7 (M;Typ)) = O forallp € A,y € F ands € A.

Hence, if we writey = z+ d with ze E andd € Dg, by Lemma5.2.4we obtain

0

f f CF (X £). T (MsTyo)(x. ) dmy () dms (%)

Iy JOu

f. [ (.02 EX(x.9). T (Tap)(x ) dmy(€) dme )

f. f 1 (-2 £), T (Tug) (% £)) dm (&) dme (),

wherens andn_, are as in Propositioh.1.19

If we define vis»(X.€) = n:(X)n-(¢), then, using Propositiori.1.19 it can
be shown that{v,}seaxe IS an orthogonal basis fort?(ly x Qg.). Therefore,
(P(%8), T (Tap)(%, &)y =0a.e. k&) € ly x Qg for all d € De.

This shows tha¥'(x, &) € J(x, &)* a.e. & &) € Iy x Qg and, sinceP € M; it must be
¥ = 0, wich is a contradiction. ThugV = M.

Let us prove now thal is measurable. ¥ is the orthogonal projection ontd;, 7 is
the identity mapping in.?(ly x Qe., £3(Dg-)) and¥ € L2(ly x Qg-, £2(Dg-)) we have that
(P — I)¥ is orthogonal tdM;. Then, with the above reasoning ¢ 7)¥(x, &) € J(x, &)*
fora.e. & &) € Iy x Qg-. Thus,

Puo(P-1)¥(x.€) =0 a.e.&é)elyxQe

and thenPY(x, &) = Py (P(X &) fora.e. & &) € Iy x Qe-.
If in particular¥(x, &) = afor all (x,¢) € Iy x Qg-, it holds thatPa(x, &) = Pyg(a).
Therefore, sincex &) — Pa(x, ¢) is measurable X(¢) — P ais measurable as well.

Conversely. IfJ is a shift-modulation range function, by Propositibr2.7, V :=
7-tM; is an F, A)-invariant space. Thel, = S 4)(A) for some countable subset of
L2(G) and, according to Lemn&2.8we can define the shift-modulation range function
J’ as

Y(%¢) = spanT (Tep)(% &) : de Dr, g € A} ae. (&) € Iy X Qe-.

Thus, as we have showd, is measurable anM; = 7V = M;. Then, Lemmab.3.2
givesus] = J a.e.
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This also proves that the correspondence betw&en){invariant spaces and shift-
modulation measurable range functions is one to one and onto
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