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Series Aleatorias en Espacios de Funciones y Algunas Aplicaciones

Resumen. El objeto de este trabajo es el estudio de ciertas series aleatorias
∑
i
Xi, con Xi

variables aleatorias que toman valores en un espacio de funciones apropiado. Se le dará parti-
cular importancia al caso en que Xi = aifi, donde {fi}i es un conjunto de funciones �jas, por
ejemplo una base de algún espacio apropiado, y los coe�cientes ai's son variables aleatorias.
Este tipo de resultados está relacionado con la posible representación de procesos estocásticos
mediante series. Por ejemplo, si los ai's son ciertas variables aleatorias independientes y {fi}i
es un conjunto apropiado de funciones en L2[0, 1], Itô de esta manera dió una construcción
del proceso Browniano sobre el intervalo [0, 1] [39]. Se estudiarán los casos de series aleatorias
con valores en espacios Lp separables y también se estudiará el caso de series convergentes
en el espacio de distribuciones D′(Rd). En el caso de los espacios Lp separable, se estudiarán
algunas relaciones entre los distintos tipos de convergencia, casi segura con respecto a la norma
del espacio subyacente que estamos considerando, convergencia en media y en casi todo punto
respecto al espacio producto, que surge de considerar a la variable aleatoria que toma valores
en Lp como una función de dos variables. La elección de estos espacios está motivada por al-
gunas aplicaciones. Si lo deseado es utilizar este tipo de desarrollos para construir un proceso
estocástico, puede ser que para algunos casos �patológicos�, sea mas conveniente considerar
por ejemplo series convergentes en D′(Rd). Por ejemplo esto, �nalmente, nos permitirá dar un
desarrollo en serie para la familia de procesos 1

f , que en los últimos años han recibido cierto
interés en las aplicaciones. De alguna manera estas representaciones tienen una similitud con
el clásico teorema de Karhunen-Loève [27]. Una propiedad del desarrollo de Karhunen-Loève
es que se obtiene una base ortonormal del espacio lineal generado por el proceso. Esto per-
mite escribir ciertas aproximaciones en forma de series incondicionalmente convergentes. Esta
útil propiedad se puede obtener bajo otras condiciones. Para resolver éste problema, al �nal,
estudiaremos condiciones para las cuales una sucesión estacionaria forma un frame o una base
de Riesz.

Keywords: Series aleatorias de funciones, procesos estocásticos, convergencia.



Random Series in Function Spaces and some Applications

Abstract. In this thesis we study certain random series of the form
∑
i
Xi, where the Xi's

are random variables taking values in an appropriate function space. We will give particular
importance to the case when Xi = aifi, where {fi}i is an appropriate set of functions,for ex-
ample a basis of some function space, and the coe�cients ai's are random variables. This type
of result is related to the possible representation of random processes by series. For example, if
the ai's are suitable independent random variables and {fi}i is an appropriate set of functions
in L2[0, 1], Itô in this way, gave a series representation of the Brownian process on the interval
[0, 1] [39]. We will study the cases of random series taking values in separable Lp spaces, we
will also study random series in D′(Rd). In the case of the separable Lp spaces, we will study
several relationships between di�erent types of convergence: almost sure with respect to the
norm of the underlying function space, convergence in the mean and convergence in the product
space, as a consequence of considering Lp valued random variables as two variable functions.
The election of these particular spaces was motivated by some applications. If we want to use
these type of series expansion to construct random processes, for some �pathological� cases it
could be more appropriate to consider convergent series in D′(Rd). For example, this allows
us to give a series representation of the 1

f family of stochastic processes, which in recent time
has received special interest from the applications. In some way, this representations resemble
the classic Karhunen-Loève theorem [27]. A property of the Karhunen-Loève expansion of a
random process is that one obtains an orthonormal basis of the closed linear span of the whole
process. This allows to write certain approximations as unconditional convergent series. This
useful property could be obtained under other conditions. To solve this problem, �nally, we
study conditions under which a stationary sequence forms a frame or a Riesz basis of its closed
linear span.

Keywords: Random series of functions, stochastic processes, convergence.
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Chapter 1

Prelude-Introduction

�Cuando se tiene algo que decir, se escribe en cualquier parte. Sobre una bobina de papel o en
un cuarto infernal. Dios o el diablo están junto a uno dictándole inefables palabras (...)�.

Roberto Arlt. Los Lanzallamas, 1932.

In order to give to the reader an impression of the problems which are going to be treated here,
we are going to describe at a very informal level how these problems were chosen. Roughly
speaking, it is possible to say that this work deals with the following problem: Let {fn(t)}n∈N
be a set of functions and let {Yn}n∈N be a sequence of random variables. We would like to �nd
conditions under which

X(t) =
∑
n∈N

Ynfn(t)

converges, in some sense to be speci�ed.
To tackle this problem we can begin to consider the whole process, {Xt}t as a unique ran-
dom variable taking values in an appropriate function space. The consideration of a random
process as a random element (or a random variable taking values in some function space) by
Doob, Phrohorov, Billingsley, Paley, Zygmund and Wiener and other has inspired the study
of stochastic convergence properties for random elements. However, as we will see later a
careful construction of the appropriate framework is needed in these considerations. One of
the problems arising, is measurability. For example, as we will see, is easy to construct an
example of a non measurable mapping from a probability space to RT , where T is a non
countable parameter space. One way of solving this problem is by placing constrains on the
parameter space. For example, a random process with a countable parameter space can be
shown that it is a random element (i.e. a measurable mapping) in the space of sequences.
Often the stochastic process will take values only in a �small� subspace of RT . Recall that
a separable stochastic process may have sample paths which are Borel measurable functions
from T into R (Loève 1963) and hence are restricted a.s. to a subspace of RT . Thus, the
random processes may have properties that reduce the ranges of the mappings from Ω to
interesting subspaces of RT where di�erent topological structures can be employed. In this
thesis we will be concerned with the convergence problem of sums of certain classes of these

9
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random elements. The function spaces employed in these approaches are strongly in�uenced
by the particular application which has inspired the problem. In the case of this work, it was
in�uenced in some way by several results used in the applications, specially in engineering.
The following are classic illustrative examples:

Theorem 1.0.1. (Stochastic version of the Shannon- Kotelnikov sampling theorem.) Let
{Xt}t∈R be a wide sense stationary random process, with spectral measure supported on [−B,B]
a Then {Xt}t∈R admits the following series expansion

Xt =
∑
n∈Z

Xtnfn(t) . (1.0.1)

With fn(t) =
sin(Bt−πn)
Bt−πn and tn = πn

B , n ∈ Z, and the convergence is in the mean square sense.

Theorem 1.0.2. [27](Karhunen -Loève) Let {Xt}t∈[a,b] be a measurable process, of �nite vari-
ance and mean square continuous, then {Xt}t∈[a,b] admits a series expansion

Xt =
∑
k∈N

χkfk(t)

where the convergence is in the mean square sense. In this expansion the random variables
χk are orthogonal and E|χk|2 = λk, where λk and fk are the eigenvalues and eigenfunctions,
respectively, of the covariance operator.

The �rst one is a corner stone in communication theory. It allows the analogic-digital
convertion of signals. The second one is also known in other contexts. These results admit
several generalizations and variants, other type of convergence may be proven under other
conditions. For example, an interesting generalization of theorem 1.0.1 is given in [45], for non
stationary processes. There, some similar tools to those which we are going to use in chapter 5
are introduced. The idea in some way is to use the theory of generalized functions and certain
Sobolev spaces as auxiliary tools to deal with some processes which have an spectral behaviour
(i.e. in terms of the Fourier transform, in some sense, of a certain magnitude related to the
problem which we are modelling) that falls out of the ordinary theory of stationary processes.
In our case, in Chapter 5 treating a di�erent problem, we are going to give a construction
which allows to give a series expansion representation of certain processes, such as the self-
similar 1

f family of random processes. This type of process was �rst proposed by Kolmogorov
in the context of turbulence [44]. In recent times, Karhunen-Loève like expansions for such
processes have received special attention in many applications [82] [1]. There has been several
attempts to represent 1

f and related processes in terms of a Karhunen- Loève like expansion,
especially in the one dimensional case and using wavelet basis [82] [22] [36] [53] [60]. Here we
shall prove that is possible to represent a d-dimensional 1

f processes by a series expansion using
an arbitrary orthonormal basis. The proposed construction will converge with probability one
to an element in D′(Rd). Another, common fact between these representations is the use of
basis of some functional space. In these examples, orthonormal basis. Orthonormal basis are
particular cases of unconditional basis, this is related to stability and sometimes, in practice

aIn some literature this hypothesis is called that the signal is band limited.
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Figure 1.1: Two turbulent �ows obtained from a uniform grid. Compare with �gs. 5.1 and
5.2. Photographs by Thomas Corke and Hassan Nagib.

this could be the only condition required. Today, thanks to the advance of the theory and to
the existence of more sophisticated devices, we have a wide range of tools to represent signals.
Wavelets provide an example of a now widely used mathematical tool in this context. An
important property of them, is that under mild conditions, they are unconditional basis of the
Lp(Rd) spaces. Other systems also have this property. So, it would be interesting to study
random series using unconditional basis. In Chapter 4 we study random series in Lp(X,Σ, µ),
with independent terms and/or using unconditional basis.

On the other hand, we will also study random �weighted� sums of vectors which have some
structure, such as forming a basis of a subspace. This is also interesting, from the point of
view of some applications. Since, it is a key problem in engineering to represent a signal
(the random process) using the less information as possible. In mathematical language, this
information is captured in the coordinate coe�cients with respect to a �xed basis (or other
set of vector with �good� properties) The prescribed basis is generally �xed. On the other
hand, once we have recorded the information, captured in the coe�cients, we would like to
reconstruct the original signal. This operation, corresponds to writing the signal as a series
using the coordinate coe�cients. Naturally, at this point, is where some convergence problems
could arise.
We will take special attention to sums of independent random elements. A typical example, is
the Karhunen-Loève expansion of Gaussian processes. From an information theoretical point
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of view, to describe a signal with independent (or decorrelated, at least) random coe�cients is
very e�cient. Some of the results resemble this original result. Additionally, Karhunen-Loève
like expansions have, in general, proven to useful in development and interpretation of classical
detection theory [77].
In Chapter 6 we will consider a related topic to theorems 1.0.1 and 1.0.2. One could note
that this interpolation formula implies the weaker condition Xt ∈ span{Xk}k∈Z , ∀ t ∈ R (with
respect to the L2(Ω,F ,P) norm) . In other circumstances, given a wide sense stationary
process {Xt}t also appears the problem of approximating a random variable from span{Xt}t
by means of an element h of a closed subspace of S ⊆ span{Xt}t. It is interesting to �nd
conditions under which there exists a basis or a "good" subset which permit us to write h as a
convergent series. On the other hand, looking at theorem 1.0.2, a desirable property could be
to have orthogonal random coe�cients, i.e. they are an orthonormal basis of the closed linear
span of the whole process. One would like to have at least another weaker condition which also
assures unconditional convergence. This problem was �rst considered by Kolmogorov, Rozanov
(e.g. [69]) among others. They studied conditions under which a wide sense stationary process
{Xt}t is minimal, forms a basis, or even a Riesz basis. This conditions are generally given in
terms of the spectral measure of the process. However, unconditional convergence could be
also obtained if the stationary sequence is a frame of its closed linear span. In this chapter we
will study this problem.
From, a practical point of view this could correspond to reconstructing in a stable form a
continuous parameter process from discrete samples of a "�ltered" or "measured" version of
the original process.

Additional Comments.

This work in the beginning was inspired by this applications in mind. However, it is important
to mention, that these topics on the convergence of Lp- valued, or sums of generalized random
processes, are closely related to other problems, such as the existence of certain stochastic
integrals [15],[42]. On the other hand, some of these tools have been used, with some success,
in the study of the geometry of Banach spaces [73] [13].
Moreover, from other point of view, to study some of these problems may be interesting per
sé. Some of the �rst problems on random series of functions were treated by Paley, Zygmund
and Wiener. In particular, in [61] [62] [63], Paley and Zygmund posed a series of questions
about the following random Fourier series:

∞∑
n=0

Xncos(nt+Φn) ,

where {Xn}n and {Φn}n are sequences of real random variables such that the Xne
iΦn 's are in-

dependent random variables . They give conditions under one of these series, with probability
one: i) is a Fourier-Stieltjes series ii) represent an Lp(T) function. iii) Converges for almost all
t ∈ T with respect to the Lebesgue measure. The idea behind this, in part, was the following
[40]: Sometimes is di�cult to exhibit a concrete function which full �lls certain requirements,
but it could become relatively easier, using a �randomization device� to prove the almost sure
existence of such function. On the other hand, the study of these random series is also related
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to the study of series representations of stationary and related processes [51], [41], [39]. Then
it would be interesting to study random weighted sums using other systems di�erent of the
trigonometric.
The results exposed in this work, in my opinion, in some way lay somewhere between these
motivations, as a consequence the series that we are going to study take values in Lp(X,Σ, µ)
or the space of distributions D′(Rd). However, is worth mention that other examples are the
spaces D[0, 1] and C[0, 1] used in statistics (Billingsley 1968 [10]), which we are not going to
treat here. From the point of view of these applications, other contrast with usual statistics is
the following: one may ask the practical value of a result such as theorem 1.0.1, and the main
doubt could come from the way on how such random coe�cients are calculated or estimated.
In general, the practical value of such a result relies on that, at some level, one assumes the
existence of certain device (an A/D converter for example) which allows to capture the actual
measurement of the random signal or a �ltered version of it. So, this makes unnecessary to
consider any estimation problems, at least up to certain level of the processing. So following
this line of work, we will not make any direct mention of these sort of estimation problems.
On the other hand to have a series representation of a process may provide a useful tool for
modelling some problems.

Thesis organization.

In Chapter 2 we review some basic characterizations of stochastic processes as random
variables taking values in vector spaces. In particular we will be interested in normed and
metric spaces. On the other hand we will make a brief review of some basic probability results
and we will introduce most of the necessary analytical results which we are going to use. The
great majority of these results are exposed without proof since most of them are more or less
known or are mainly accessible when looking for a reference. We will give proofs for the few
exceptions which are not in these cases.

In Chapter 3 we review general results on the sum of independent random elements which
are going to be used in the development of our results. In order to make this work as self-
contained as possible in this case we prefer to give a complete proof or a sketch of it, at least.
The majority of these results are spread in a variety of research articles and specialized liter-
ature of arguable accessibility and no uni�ed appropriate source of reference was found. On
the other hand, some of the results were adapted to the necessities of this work.

In Chapter 4 we study the particular case of random variables with values in Lp spaces.
We begin with some technical discussions which could arise when beginning to study this
topic. For example, if (Ω,F ,P) is a probability space and Y :−→ Lp(X,Σ, µ) a random vari-
able, then given ω ∈ Ω, Y ( . , ω) represents an element of Lp(X,Σ, µ) thus a Σ-measurable
function. So some technical questions about Y could arise when we want to treat Y as a two
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variables function de�ned over the product space X × Ω. This is related to the problem of
treating Y as Lp valued random variable or as {Yx}x scalar valued random variable indexed by
x ∈ X. After this we introduce sums of independent random variables

∑
i
Xi where the Xi's

take values in Lp(X,Σ, µ). Then we study the case when Xi = aifi, with the ai's being scalar
valued random variables and the fi's are �xed. We will study several conditions on the ai's
and on the fi's, such as when the fi's constitute an unconditional basis of Lp(X,Σ, µ). We
study relationships between the a.s. convergence en Lp(X,Σ, µ) norm and the convergence
in the p-th mean, i.e. respect to the norm (E ∥ . ∥p)1/p. The almost everywhere convergence
with respect to the product space (X × Ω,Σ ⊗ F , µ × P) is also studied. Finally, we discuss
the application of some of these results to the construction of random process with a certain
prescribed structure. An example of this is fractional Brownian Motion over a �nite interval.
The particular choice of this process, is related, to the spacial place which has taken in some
applications in recent years. However, in other contexts this type of construction is no longer
possible. For example, some problems may arise if we want to construct in this way some
related processes, such as 1

f processes on the whole space Rd.

In Chapter 5, we consider again the latter problems, but in this case we consider series
taking values in the space of distributions. First we intruduce the class of generalized random
processes, which play a similar role to that of the generalized functions. We discuss brie�y
some properties of the covariance functional of these processes. Then we introduced as an
auxiliar tool the Sobolev spaces Hs(Rd). Then we study the construction of generalized ran-
dom processes, with a prescribed covariance, by means of series. This approach seems to be
more appropriate when dealing, for example, with some random process, such as �fractional�
random �elds, which exhibit long range dependence, and are de�ned over the whole space Rd.
As a �nal application we shall give a series expansion of these spatial processes or �elds.

In Chapter 6 we study necessary and su�cient conditions for a stationary sequence to form a
Riesz basis or a frame, then these results are related to the problem reconstructing a stationary
random process by means of a convergent series using its samples.

1.1 Included Publications

Several results contained in this thesis have appeared as research articles in refereed journals
and have been presented as individual contributions in conferences. Chapters 4, 5 and 6 in-
clude the following papers:
1) Medina J.M. Cernuschi-Frías B. �Random Series in Lp(X,Σ, µ) using unconditional basic
sequences and lp stable sequences: A result on almost sure almost everywhere convergence�.
Proceedings of the American Mathematical Society, 135(11), pp. 3561-3569. 2007.
Part of this work was also presented at the 2006 IEEE Information Theory Workshop, ITW
2006, held at Punta del Este, Uruguay. Pages 342-344 of the conference proceedings.

2) Medina J.M. Cernuschi-Frías B. �On the a.s. convergence of certain random series to a
fractional random �eld in D′(Rd)�. Statistics and Probability Letters, 74(2005), pp. 39-49.
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3) Medina J.M. Cernuschi-Frías B. �Wide Sense Stationary Processes forming Frames�, To
appear, accepted for publication in the IEEE Transactions on Information Theory. Part of
this work was presented at the International Symposium on Information Theory and its Ap-
plications 2010 as �Stationary Sequences and Stable Sampling� (pp.94-99 of the conference
proceedings), and at the 2009 IEEE Statistical Signal Processing Workshop.



Chapter 2

Preliminaries

�Prove all things; hold fast that which is good�.

St. Paul in The Bible, 1 Thess 5:21.

In this chapter we review some mathematical tools which are going to be used throughout
this thesis. The exposition given in this chapter is far from complete. Most of the results are
presented without proof since many of them are more or less known results or are accessible
in many textbooks. We will give proofs for the few exceptions which do not fall in this case.
On the other hand, our intention is just to �x some notation and de�nitions. It aims to make
the exposition of this work as self contained as possible for the reader. However, many impor-
tant (and classic) results which are omitted in this chapter and are used in this work, will be
introduced throughout the following chapters. Sometimes, we will just recall a result giving
an appropriate reference.

2.1 Some Concepts of Probability Theory

The results, de�nitions and exposition of the theory in this section mainly follows [33], [16],
[43], [9].

2.1.1 First de�nitions and basic properties

A probability space (Ω,F ,P) is a measure space, with a measure P de�ned over a σ-algebra
F , of subsets of Ω. Such that P(Ω) = 1. This measure P is called a probability measure or
just a probability. A random variable, is a measurable function X : Ω −→ R (or C). That is,
for every Borelian subset A, X−1(A) ∈ F . Sometimes the subsets belonging to F are referred
as �events�. When a property holds a.e. [P] we say that this property holds almost surely
(a.s.). Another important concept arising in probability is independence:

De�nition 1. Let A be a collection of subsets in F , we say the sets in the collection A are
independent if

P

(
n∩
i=1

Ai

)
=

n∏
i=1

P(Ai) ,

16
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for every �nite sub collection {Ai}i=1...,n of di�erent sets in A.

In a similar manner is possible to de�ne:

De�nition 2. Let D be a collection of random variables, we say that the random variables of
D are independent if

P

(
n∩
i=1

X−1
i (Ai)

)
=

n∏
i=1

P(X−1
i (Ai)) ,

for every �nite subset of D, {Xi}i=1...,n of di�erent random variables and every �nite collection
of Borel subsets {Ai}i=1...,n.

Given a random variable X we de�ne its Law or distribution function by

FX(x) = P(X−1(−∞, x]) .

In this way a probability measure is induced over (R,B(R)), for every Borelian set A given by
µX(A) = P(X−1(A)). Sometimes, we will denote L (X) the law of X. In the same manner,
considering several random variables it is possible to de�ne a probability measure over Rn.
As usual, for every measurable function-random variable we introduce the Lebesgue integral
respect to the probability P, which in the context of probability is called expected value of the
random variable X and is denoted as E(X) or EX. Then:

E(X) =

∫
Ω

XdP .

Note, that the value of E(X) can be obtained as an integral over R, that is

E(X) =

∫
Ω

XdP =

∫
R

xdµX ,

moreover for every real Borel measurable function g, whenever this expressions exists, we have

E(g(X)) =

∫
Ω

g ◦XdP =

∫
R

g(x)dµX .

Having de�ned the integral, as usual, for 0 < p < ∞ we introduce the Lebesgue spaces
of random variables Lp(Ω,F ,P) = {X : E|X|p < ∞}. De�ning for p = ∞, L∞(Ω,F ,P)
as the space of essentially bounded functions with respect to the measure P. For p ≥ 1
the Lp spaces are Banach spaces considering the norm ∥X∥Lp = (E|X|p)1/p. For p < 1 this
expression it is not a norm, however the Lp spaces are complete metric spaces with the distance
d(X,Y ) = E|X − Y |p.
A consequence of independence, is the following:

Theorem 2.1.1. If X, Y are independent random functions, neither of which vanishes a.s.
then a necessary and su�cient condition that both X and Y be integrable is that their product
XY be integrable, if this condition is satis�ed then E(XY ) = E(X)E(Y ).
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2.1.2 Some results on convergence of sequences and series of independent

random variables

First, let us give some de�nitions:

De�nition 3. Let Xn, X be real random variables, then:
i) {Xn}n converges to X in law (Xn −→L X) if L (Xn) −→w L (X).
ii) {Xn}n converges toX in probability (Xn −→pr X) if for every ϵ > 0, P(|Xn−X| > ϵ) −→ 0.
i.e. {Xn}n converges to X in P measure.
iii) {Xn}n converges to X in Lp (Xn −→Lp X) or in the p-th mean if E|Xn −X|p −→ 0. i.e.
{Xn}n converges to X in the Lp norm.
iv) {Xn}n converges to X almost surely (Xn −→ X a.s.) if Xn(ω) −→ X(ω) for almost all
ω ∈ Ω [P]. i.e. the sequence converges a.e. with respect to the measure P.

Remark 2.1.1. The notion of convergence in probability is compatible with the metric given
by d(X,Y ) = E |X−Y |

1+|X−Y | i.e. Xn −→pr X if and only if d(Xn, X) −→ 0 whenever n −→ ∞.
However a.s. convergence it is not compatible with any metric, moreover is not compatible
with any topological notion. For further comments on this see section 2.5 at the end of this
chapter.

Let us review the relationships between this types of convergence:
Convergence in Lp =⇒ convergence in probability (by Chevychev�s inequality) =⇒ Conver-
gence in Law. But not conversely. Almost sure convergence =⇒ convergence in probability
and hence in Law or in distribution. But not conversely.
In �nite measure spaces there is a basic relationship between almost everywhere (almost sure)
convergence and convergence in norm (mean convergence). For this purpose we need the
following de�nition:

De�nition 4. Let {Xn}n be a sequence of random variables, we say that {Xn}n is uniformly
integrable if

lim
α→∞

sup
n

∫
{|Xn|>α}

|Xn| dP = 0 . (2.1.1)

Then, it can be proved the following :

Theorem 2.1.2. Let p ≥ 1 and {Xn}n ⊂ Lp(Ω,F ,P) be a sequence, such that Xn −→ X a.s.
as n −→ ∞ then: E|Xn −X|p −→ 0 when n −→ ∞ ⇐⇒ {|Xn|p}n is uniformly integrable.

It is easy to prove, that a su�cient condition for {Xn}n to be uniformly integrable is:

∃ ϵ > 0 ,K > 0 such that E|Xn|1+ϵ ≤ K ∀n. (2.1.2)

Now we are going to study the convergence of sums of independent random variables.
Almost all of the results in this section are, more or less classics, so many of them are stated
without proof. Nevertheless, in the following chapter we will give a proof for some of these
results in a more abstract setting. Then, the reader might notice that many times, the proofs of
the in�nite dimensional versions of the results of this section, will not defer from the general
idea of their real valued versions. Now, we give a result for sums of independent random
variables, known as Kolmogorov inequality.
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Theorem 2.1.3. [43] (generalized Kolmogorov inequality) Let X1, X2, ... be independent ran-
dom variables with EXi = 0 ∀ i, and let p ≥ 1, λ > 0 then

P

(
max

j=1,...,n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > λ

)
≤ 1

λp
E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

.

With this inequality it is possible to prove the following:

Theorem 2.1.4. [43] Let X1, X2, ... be independent random variables with EXi = 0 ∀ i, and
let p ≥ 1. Suppose that

∞∑
i=1

Xi converges in L
p(Ω,F ,P). Then

∞∑
i=1

Xi converges a.s.

In particular, we have seen that if a series of independent random variables converges en
p-mean then it converges a.s.. In the L2 case this can be written as:

Theorem 2.1.5. [43], [16], [9] Let X1, X2, ... be independent random variables with EXi =

0 ∀ i. Suppose that
∞∑
i=1

V ar(Xi) <∞. Then
∞∑
i=1

Xi converges a.s.

Now, let us state a partial converse of this result:

Theorem 2.1.6. [41] If {Xn}n is a sequence of independent random variables and c is a

positive constant such that E(Xn) = 0 and |Xn| ≤ c a.s. , n = 1, . . . ., and if
∞∑
i=1

Xi converges

a.s. then
∞∑
i=1

V ar(Xi) <∞.

All the preceding results on series are included in the following very general assertion,
known as Kolmogorov�s three series theorem:

Theorem 2.1.7. [43], [16], [9] If {Xn}n is a sequence of independent random variables and
c is a positive constant, and if En = {|Xn| ≤ c}, n = 1, . . . , then a necessary and su�cient

condition for the a.s. convergence of the series
∞∑
i=1

Xi is the convergence of all the three series:

i)
∞∑
n=1

P(Ec
n). ii)

∞∑
n=1

EXn1En. iii)
∞∑
n=1

V ar(Xn1En)

Theorem 2.1.3 is an example, of a general phenomenon: For sums of independent random
variables, if max

1≤k≤n
|Sk| is large, then |Sn| is probably large as well. The previous theorem is

an instance of this, and so is the following result :

Theorem 2.1.8. [9], [16] Suppose that X1, . . . , Xn are independent. For λ > 0:
a)

P

(
max
1≤k≤n

|
k∑
i=1

Xi| > 3λ

)
≤ 3 max

1≤k≤n
P

(
|
k∑
i=1

Xi| > λ

)
.

b) Additionally if the Xi's are symmetric then,

P

(
max
1≤k≤n

|
k∑
i=1

Xi| > λ

)
≤ 2P

(
|
n∑
i=1

Xi| > λ

)
.



CHAPTER 2. PRELIMINARIES 20

With this result, one can prove the following:

Theorem 2.1.9. [9], [16] For an independent sequence {Xn}n:
∞∑
i=1

Xi converges a.s. if and

only if it converges in probability.

Remark 2.1.2. Moreover, under this hypothesis, these modes of convergence are equivalent to
convergence in law.

Let us prove another similar result to theorem 2.1.8:

Proposition 2.1.1. Suppose that X1, . . . , n are independent random variables. Then:
a) For λ1, λ2 ≥ 0,

P

(
max
1≤k≤n

|Xk| > λ2 + λ1

)
≤

P

(
max
1≤k≤n

|
k∑
i=1

Xi| > λ1

)
P

(
max
1≤k≤n

|
k∑
i=1

Xi| ≤ λ2

) ,

b) and if the Xi's are symmetric, then,

P

(
max
1≤k≤n

|Xk| > λ

)
≤ 2P(|Sn| > λ) .

Proof. The proof is analogous to theorem 2.1.8. For �xed λ1, λ2 ≥ 0, and i = 1, . . . , n, let
us denote Ai = {|Xi| > λ1 + λ2, |Xj | ≤ λ1 + λ2, ∀ i < j ≤ n}. Then for i ̸= j the Ai's are

disjoint, and
n∪
i=1

Ai = { max
1≤k≤n

|Xk| > λ2 + λ1} and Ai are independent of X1, . . . , Xn−1. Now,

if i = 1, . . . , n,

Ai
∩

{|Si−1| ≤ λ2} ⊂ {|Si| > λ1} ⊂
{

max
1≤k≤n

|Sk| > λ1

}
,

we have

P

(
max
1≤k≤n

|Xk| > λ2 + λ1

)
min
1≤i≤n

P(|Si| ≤ λ2) ≤ P

(
max
1≤k≤n

|Sk| > λ1

)
this minimum is equal or greater than P( max

1≤k≤n
|Sk| ≤ λ2), then a) follows from this.

If the Xi's are symmetric, take the same Ai's as in part a), and write λ1 + λ2 = λ. Then

Ai ⊂
(
Ai
∩

{|Sn| > λ}
)∪(

Ai
∩

{|Sn − 2Xi| > λ}
)
,

so that
P(Ai) ≤ P

(
Ai
∩

{|Sn| > λ}
)
+P

(
Ai
∩

{|Sn − 2Xi| > λ}
)
.

Since the Xi's are independent and symmetric, the last two probabilities are equal. Then

P(Ai) ≤ 2P
(
Ai
∩

{|Sn| > λ}
)
,

then summing over i, we get the desired result.
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Finally, let us discuss to results which are also a consequence of 2.1.8:

Proposition 2.1.2. Let X1, . . . , Xn be independent and symmetric random variables, Then:
a) For any a1, . . . , an ∈ R and λ > 0:

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ > λ

)
≤ 2P

(
max
1≤i≤n

|ai||Sn| > λ

)
.

b) If in addition, we have a sequence Y1, . . . , Yn of random variables such that |Yi| ≤ 1 a.s.
and such that X1Y1, . . . , XnYn is a sequence of independent and symmetric random variables.
Then

P

(∣∣∣∣∣
n∑
i=1

YiXi

∣∣∣∣∣ > λ

)
≤ 2P(|Sn| > λ) .

Proof. a) Without loss of generality, suppose that 1 = a1 ≥ a2 . . . ,≥ an ≥ 0. And writing
an+1 = 0, we have:

n∑
i=1

aiXi =
n∑
i=1

ai(Si − Si−1) =
n∑
i=1

(ai − ai+1)Si .

Since
n∑
i=1

(ai − ai+1) = 1,

{
|
n∑
i=1

(ai − ai+1)Si| > λ

}
⊂
{

max
1≤k≤n

|Sk| > λ

}
,

now the result follows from proposition 2.1.8.
b) Let (Bi)i be a Bernoulli sequence, which is independent of the sequences (YiXi)i and (Xi)i.
In view of the symmetry, the sequence (XiYiBi)i has the same distribution as (XiYi)i. The
sequences (Xi)i and (XiBi)i also have identical distributions, then

P

(∣∣∣∣∣
n∑
i=1

YiXi

∣∣∣∣∣ > λ

)
= P

(∣∣∣∣∣
n∑
i=1

BiYiXi

∣∣∣∣∣ > λ

)
.

Now, the result follows from applying part a) conditionally for ai = Yi and X
′
i = XiBi.

Khinchine�s inequalities and Rademacher functions

In the study of sums of independent random variables it is useful to introduce the Rademacher
functions [41]. The investigation of the convergence problem of a series of Rademacher func-
tions made by Khinchine and Kolmogorov motivated Kolmogorov to the further development
of the theory of series of independent random variables. On the other hand, these functions
provide a bridge between probability theory and some problems related to the study of Banach
spaces [46].
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De�nition 5. De�ne the Rademacher functions rn(t), n = 0, 1, . . . over [0, 1] by

rn(t) =

{
sgn(sin(2nπt)) if t ̸= k

2n

0 if t = k
2n

where k = 0, . . . , 2n.

The following properties are easy to show:
1) {rn(t)}∞n=0 is an orthonormal system, and,
2)

∫
[0,1]

rn(t)dt = 0.

3) The Rademacher system is not complete in L2[0, 1].
4) Now if we take Ω = [0, 1] for a probability space in which the σ-�eld of all measurable sets
is considered and the Lebesgue measure is taken to be the probability, then each rn(t) is a
sequence of independent random variables, with Ern = 0 and V ar(rn) = 1. A fundamental
property of the Rademacher functions is the following:

Theorem 2.1.10. (Khinchine�s inequality for Rademacher functions) For p > 1, there exists
positive constants Ap, Bp, such that

Ap

(
N∑
n=1

|an|2
)1/2

≤

∫
[0,1]

∣∣∣∣∣
N∑
n=1

anrn(t)

∣∣∣∣∣
p

dt


1/p

≤ Bp

(
N∑
n=1

|an|2
)1/2

.

Using a symmetrization argument and the the previous theorem, this can be generalized
to the following result for general random variables:

Theorem 2.1.11. Let {Xk}nk=1 be a subset of independent random variables. Let p ≥ 1 .
Suppose that Xk ∈ Lp(Ω,F ,P) and E(Xk) = 0, for k = 1, . . . , n. Then there exist positive
constants Ap, Bp depending only on p, such that

ApE

(
n∑
k=1

|Xk|2
)p/2

≤ E

∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣
p

≤ BpE

(
n∑
k=1

|Xk|2
)p/2

.

Corollary 2.1.1. Let {Xk}k∈N be a sequence of independent random variables. Let p ≥ 1 .
Suppose that Xk ∈ Lp(Ω,F ,P) and E(Xk) = 0, for k = 1, . . . . If

∑
k∈N

Xk converges a.s. , end

if the sum is in Lp(Ω,F ,P), then

ApE

(∑
k∈N

|Xk|2
)p/2

≤ E

∣∣∣∣∣∑
k∈N

Xk

∣∣∣∣∣
p

≤ BpE

(∑
k∈N

|Xk|2
)p/2

.

2.1.3 Conditional Expectation and Discrete Martingales

Recall that if G is a sub σ-algebra of F , given X ∈ L1(Ω,F ,P), we de�ne the conditional
expectation E[X|G] of X relative G to the equivalence class of random variables satisfying:
1)
∫
A

E[X|G]dP =
∫
A

XdP, ∀A ∈ G. In particular E[X|G] is integrable.

2) E[X|G] is G-measurable, i.e. E[X|G]−1(A) ∈ G, ∀ A in the Borel σ-algebra.
Using the Radon-Nykodym theorem it is possible to prove:



CHAPTER 2. PRELIMINARIES 23

Theorem 2.1.12. If X is integrable and G is a sub σ-algebra of F , then there exists a unique
equivalence class of integrable, G-measurable, random variables E[X|G], such that

∫
A

E[X|G]dP =∫
A

XdP, ∀A ∈ G.

The conditional expectation de�nes a linear operator E[ . |G] : Lp −→ Lp, and has the
following properties:

Theorem 2.1.13. Let G be a sub σ-algebra of F , and let p ≥ 1. Then, given X ∈ Lp(Ω,F ,P):
1) E[E[X|G]|G] = E[X|G].
2) E|E[X|G]|p ≤ E|X|p.
3) If G ⊆ H, then E[E[X|H]|G] = E[X|G].

Now, let us introduce a particular type of sequences. Let {Xn}n∈N be a sequence of inte-
grable random variables , and let G1 ⊆ G2 ⊂ . . . be an increasing sequence of sub σ-algebras of
F . Assuming that each Xn is Gn-measurable, the sequence {Xn}n is said to be a martingale
relative to the {Gn}n if for all n = 1, . . . E[Xn+1|Gn] = Xn. Martingales are the natural
extension of sequences of partial sums of independent random variables.

Example. Let {Xn}n be a sequence of independent random variables, with E(Xn) = 0. Then,

Sn =
n∑
k=1

Xk, {Sn}n is a martingale relative to Gn = σ(X1, . . . , Xn), the σ-algebra generated

by X1, . . . , Xn.

Some inequalities and convergence

We will use some basic results on martingales. The following is a generalization of theorem
2.1.3

Proposition 2.1.3. [32] Let {Xn}n be a martingale relative to {Gn}n, then for p ≥ 1, and
λ > 0,

P

(
max
1≤k≤n

|Xk|
)

≤ E|Xn|p

λp
.

Another important result is the following:

Theorem 2.1.14. (Doob�s inequality)[32] Let {Xn}n be a martingale relative to {Gn}n, then
for p > 1,

E|Xn|p ≤ E
(

max
1≤k≤n

|Xk|
)p

≤ qpE|Xn|p

where 1
p +

1
q = 1.

The following result due to Lévy, was historically the �rst of the martingale convergence
theorems.

Theorem 2.1.15. [32] Let {Gn}n be an increasing sequence of sub σ-algebras of F , and let G∞
be the σ-�eld generated by

∪
n
Gn . If Y is integrable, and Xn = E[Y |Gn], then Xn −→ E[Y |G∞]

a.s. and in L1(Ω,F ,P).

For further references on this topic, read the end of this chapter.
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2.2 Random Variables taking values on vector spaces

The main reference for this section is [76]. The idea of this section is to set a framework
which among other things, will enable us to treat stochastic processes as random variables
with values in an appropriate function space.

2.2.1 Basic results.

Here we will be concerned with the de�nition of random variables with values in linear spaces
(or random elements in some literature). When possible the de�nitions and results will be
given for topological spaces and linear spaces, which, of course, include linear metric spaces
and Banach spaces. In this section, if a particular de�nition or result requires certain types of
linear topological spaces such as separable Banach spaces, it will be stated. However, in the
following chapters the results are mainly focused on separable Banach spaces. Throughout
this chapter T will denote a topological space and d will denote a semimetric a. The class
of Borel subsets of T will be denoted by B(T ); that is, B(T ) will be the smallest σ-algebra
containing the open subsets of T . In the following, let (Ω,F ,P) be a probability space. In an
analogous way for real valued random variables, we de�ne:

De�nition 6. A function X : Ω −→ T is said to be a random variable (or random element)
in T if X−1(A) ∈ F for every A ∈ B(T ).

As in the real variable case a T valued random variable, induces a probability measure
over T , given by µX(A) = P(X ∈ A) for every A ∈ B(T ). This measure will be called the
Law of X, and sometimes is denoted by L (X).
Given an stochastic process say {Xt}t one could think it as a family of real random variables
indexed by t, or as mapping X : Ω −→ RR. However, the following example illustrates that a
careful construction is needed in this considerations.

2.2.2 A Counter Example.

Let us consider RR, with the product topology, and consider the Borel σ-algebra B(RR)
generated by its open sets. On the other hand let us consider an stochastic process {Xt}t∈R
with respect to a probability space (Ω,F ,P). Then for each ω ∈ Ω, the sample path Xt(ω)
can be regarded as a real valued function of t. But, considering {Xt}t as a mapping from Ω
into RR some measurability problems may occur. De�ne an identity function X = {Xt}t∈R
from Ω = RR to RR by

X(ω) = ω ; ∀ω ∈ Ω = RR .

Let A = ⊗
t∈R

B(R), the product space, and let P be the probability measure degenerate at the

origin. Then Xt(ω) = ω(t) for each t ∈ R and is a random variable since

{ω : Xt(ω) ≤ α} =
∏
R\{t}

R× (−∞, α]

aA non empty set E is called semimetric space if there is a real-valued function d de�ned on M ×M with
the following properties: 1) d(x, y) = d(y, x) ≥ 0 for all (x, y) ∈ M × M . 2) d(x, x) = 0 for all x ∈ M . 3)
d(x, z) ≤ d(x, y) + d(y, z).
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for each α ∈ R. however,
⊗
t∈R

B(R) ( B(RR)

because R is uncountable [27]. Thus X : Ω −→ RR may not be a measurable function.

Now, we list some basic properties and lemmas about T -valued random variables. Most
of them, are generalizations of properties for real valued random variables.

Lemma 2.2.1. If X is a T -valued random variable, and Y is a Borel Measurable function
from T into a topological space T ′, then Y ◦X is a T ′-valued random variable.

Lemma 2.2.2. Let T =M be a semimetric space with semimetric d. Let {Xn}n be a sequence
of random variables in a semimetric space (M,d) such that Xn(ω) −→ X(ω) when n→ ∞ for
each ω ∈ Ω. Then X is a M -valued random variable.

The previous lemmas can be used to prove that every T -valued random variable in a
separable semimetric space T = M is the uniform limit of a sequence of countably valued
random variables.

Proposition 2.2.1. Let M be a separable semimetric space. A mapping X : Ω −→ M is a
random variable ⇐⇒ ∃ {Xn}n a sequence of countably valued random variables which converge
uniformly to X.

Proof. (This proof follows closely [76].) =⇒) For each λ > 0 there exists a countably valued
Borel measurable function fλ : M −→ M such that ∀x ∈ M , d(fλ(x), x) < λ. Indeed, since
M is separable, choose a countable dense subset {x1, x2, . . . }. For λ > 0 form a countable
collection of λ-neighbourhoods Bλ(xi) = {x : d(x, xi) < λ} that covers M . De�ne the
countably valued Borel measurable function fλ by

fλ(x) = x1 ifx ∈ Bλ(x1)

and

fλ(x) = xn ifx ∈ Bλ(xn) \

(
n∪
i=1

Bλ(xi)

)
for n = 2, 3, . . . .
Now, let Xn = fn ◦X where fn is the the previous fλ with λ = 1

n . Then by lemma 6.3.4, Xn is
a random variable in M . Moreover, by construction it is countably valued, and d(Xn, X) < 1

n
uniformly. Thus Xn converges to X uniformly.
⇐= ) Is immediate from lemma 2.2.2.

Many authors de�ne a random variable in a Banach space T = E as a strongly measurable
function from a probability space (Ω,F ,P) to the Banach space. A function X : Ω −→ E
is said to be strongly measurable if there exists a sequence of countably valued measurable
functions Xn such that Xn −→ X in the norm topology a.s. . For a separable Banach space,
the previous lemma shows that the two de�nitions are (a.s.) the same. For nonseparable
Banach spaces the range of a strongly measurable function must be (a.s.) a separable subset.
Taking in account, the previous discussion, as in the following chapters we will restrain to
separable Banach spaces, we can use one de�nition or the other.
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Lemma 2.2.3. If X is a random variable in a topological space T and A is a (scalar valued)
random variable, then AX is a T valued random variable.

Proof. See [76].

Let us discuss, some topological properties of random variables in topological spaces. Not
all of the properties of scalar valued random variables can be extended to random variables
taking values in topological spaces. For example sums of random variables are random vari-
ables, but sums of T -valued random variables may no be de�ned. Even when considering linear
spaces , separability is often needed to extend the basic properties of random variables. Given
a semimetric space (M,d), many of the results concerning random variables taking values in
M depend on the fact, that given X,Y random variables, then d(X,Y ) is a real valued random
variable.

Lemma 2.2.4. For a separable semimetric space (M,d), if X and Y are M -valued random
variables, then d(X,Y ) is a scalar valued random variable.

Proof. See [76].

If M is not separable, then d(X,Y ) may not be a random variable [76].
Now, ifM is a seminormed vector space with a seminorm ∥ . ∥, then, by the previous argument
∥X∥ is a random variable, if X is a random variable. Moreover, if X is a random variable in
a linear topological space M , then f(X) is a random variable for each f ∈M∗. In a separable
seminormed linear space, the converse is also true:

Lemma 2.2.5. If (M, ∥ . ∥) is a separable seminormed linear space, then a function X : Ω −→
M is a random variable ⇐⇒ f(X) is a random variable for each f ∈M∗.

Proof. See [76].

Remark. Since f(X+Y ) = f(X)+ f(Y ) is a random variable, whenever X,Y are random
variables in a seminormed linear space and f ∈ M∗, then the sum of two M -valued random
variables is again a random variable. Now, let us de�ne several modes of convergence:

De�nition 7. Let (M,d) be a semimetric space, and let {Xn}n be a sequence of M -valued
random variables. Then {Xn}n converges to a random variable X,
i) With probability one, or almost surely (a.s.) (Xn −→ X a.s.) if

P( lim
n→∞

d(Xn, X) = 0) = 1 .

ii) In probability (Xn −→Pr X), if for every ϵ > 0,

P(d(Xn, X) > ϵ) −→
n→∞

0 .

iii) In Lp or in the p-th mean, if for some p > 0,

E(d(Xn, X)p) −→
n→∞

0 ,

where E(d(Xn, X)p) is assumed to exist.
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Other modes of convergence can be de�ned such as convergence in law, but we will be
mostly concerned on results using these three types of convergence. Finally, for d(X,Y ), given
ϵ > 0, one obtains the following form of Chevychev�s inequality:

P(d(X,Y ) > ϵ) ≤ E(d(X,Y )p)

ϵp
,

whenever E(d(x, y)p) exists. Most of the relationships between the di�erent modes of con-
vergence of scalar valued random variables are also valid for random variables in semimetric
spaces. Again we have: Convergence in Lp =⇒ convergence in probability (by Chevychev�s
inequality) =⇒ Convergence in Law. But not conversely. Almost sure convergence =⇒ con-
vergence in probability and hence in Law or in distribution. But not conversely.

De�nition 8. Two T -valued random variables X,Y are said to be identically distributed if
P(X ∈ B) = P(Y ∈ B), for all B ∈ B(T ).

De�nition 9. A �nite collection of random variables is {X1, . . . , Xn} is said to be independent
if

P(X1 ∈ B1, . . . , Xn ∈ Bn) = P(X1 ∈ B1) . . .P(Xn ∈ Bn)

for every B1, . . . , Bn ∈ B(T ). An arbitrary collection of random variables is said to be
independent if every �nite subcollection is independent.

Now we state the following results on the action of linear functionals over independent
random variables.

Lemma 2.2.6. Let (M, ∥ . ∥) be a separable seminormed linear space. The random variables
X,Y are identically distributed ⇐⇒ f(X), f(Y ) are identically distributed random variables
for each f ∈M∗.

Proof. See[76]

Lemma 2.2.7. Let (M, ∥ . ∥) be a separable seminormed linear space. The random variables
X,Y are independent ⇐⇒ f(X), f(Y ) are independent random variables for each f ∈M∗.

Proof. See[76]

Expected Value, The Bochner and Pettis Integrals

Let (E, ∥ . ∥) be a separable Banach space. Here we introduce two concepts of expected value
for E-valued random variables.

De�nition 10. [34], [4] Let (E, ∥ . ∥) be a separable Banach space. A random variable X,
has an expected value in the sense of Pettis if there exists an element EX ∈ E such that
Ef(X) = f(EX), ∀ f ∈ E∗.

It is simple to check that the Pettis expected value is well de�ned.

De�nition 11. [34] [4] Let (E, ∥ . ∥) be a separable Banach space. And let X be a random
variable with expected value EX. Then we de�ne the variance as E ∥X − EX∥2.
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De�nition 12. Let X be an E-valued random variable with Pettis expected value EX. Sup-
pose that for each f ∈ E∗, E(f(X − EX))2 <∞. Then the non negative bilinear form on E∗

de�ned by C(f, g) = (CovX)(f, g) = Ef(X − EX)g(X − EX) is called the covariance of X.

It can be proved that the covariance operator is a continuous bilinear form on E∗. Also,
the covariance operator can be thought as a linear map from E∗ to E∗∗ the topological dual of
E∗.: (CovX)(f)(g) = (CovX)(f, g). It can be shown, that Cov = A∗A where A is a bounded
operator from E∗ into a dense subset of a Hilbert space H.

De�nition 13. For countably valued random variables in a separable Banach space, the

Bochner integral or expected value, is de�ned as follows: if X =
∞∑
i=1

fi1Ai , then EX =∫
Ω

XdP =
∞∑
i=1

fiP(Ai), when
∞∑
i=1

∥fi∥P(Ai) < ∞. Let X be an arbitrary E-valued random

variable. We say that X is Bochner integrable if there exists a sequence {Xn}n of countably
valued random random variables, such that: 1) ∥X −Xn∥ −→ 0 a.s. whenever n → ∞. 2)
E ∥X −Xn∥ −→ 0 whenever n → ∞. Then we de�ne the Bochner expected value or integral
of X as:

EX =

∫
Ω

XdP = lim
n→∞

∫
Ω

XndP .

The following theorem gives a necessary and su�cient condition for the existence of the
Bochner integral.

Theorem 2.2.1. A E-valued random variable has a Bochner expected value ⇐⇒ E ∥X∥ <∞,
and in this case ∥EX∥ ≤ E ∥X∥.

Proof. [34]

Remarks.[34] 1) An important fact is that the Bochner expected value is linear and com-
mutes with linear continuous operators.
2) The existence of the Bochner integral implies the existence of the Pettis expected value,
and both coincide. The converse is not true.
3) The Pettis expected value is also linear and commutes with linear continuous operators.
Finally, let us prove the following simple result,

Lemma 2.2.8. Let X,Y be independent E-valued random variables, such that E ∥X∥p <∞,
E ∥Y ∥p <∞, p ≥ 1 and EX = EY = 0 then E ∥Y ∥p ≤ E ∥Y +X∥p.

Proof. By the independence and as a consequence of theorem 2.2.1

E ∥Y +X∥p = EX
∫
R

∥y +X∥p dL (y) =

∫
R

EX ∥y +X∥p dL (y) ≥
∫
R

∥y∥p dL (y)
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2.3 Some concepts from the theory of Banach spaces

2.3.1 Bases and Unconditional Bases

The notion of a Schauder basis is due to S. Banach. Banach spaces with bases are presented in
a natural way as sequences spaces and are the simplest among all Banach spaces. All results of
this subsection are due to S. Banach. They can be found in the classic book of Lindenstrauss
and Tzafriri [46].

De�nition 14. Let (E, ∥ . ∥) be a Banach space.
1) A sequence {fn}n∈N is a basic sequence if for all f ∈ span{fn}n∈N there exists a unique

sequence {an}n∈N of real numbers such that f =
∞∑
n=1

anfn.

2) {fn}n∈N is a Schauder basis of E if it is a basic sequence and if E = span{fn}n∈N.

Here, we will not consider other type of bases for in�nite dimensional spaces . So we
we shall omit the word Schauder. Obviously, for the �nite dimensional case the notions of
algebraic bases and Schauder bases agree. A very useful class of bases with more precise
properties is the class of unconditional bases.

De�nition 15. A basic sequence {fn}n∈N is unconditional if any convergent series
∞∑
i=1

aifi

converges unconditionally, that is, the series
∞∑
i=1

aπ(i)fπ(i) converges to the same limit for all

permutations π in N.

The following theorem gives several characterizations of unconditional basis,

Theorem 2.3.1. [25], [46] Let {fn}n∈N be a basic sequence in a Banach space E. Then the
following are equivalent:
1) {fn}n∈N is unconditional.

2) If
∞∑
i=1

aifi converges, then for all ϵn = ∓1, the series
∞∑
i=1

ϵiaifi converges.

3) There exists K1 > 0 such that, for all ϵn = ∓1 and {an}n∈N in RN,∥∥∥∥∥
∞∑
i=1

ϵiaifi

∥∥∥∥∥ ≤ K1

∥∥∥∥∥
∞∑
i=1

aifi

∥∥∥∥∥ .
4) If a series

∞∑
i=1

aifi converges, then for all A ⊂ N, the series,
∑
i∈A

ϵiaifi converges.

5) There exists K2 > 0 such that, for all A ∈ N and all {an}n∈N in RN,∥∥∥∥∥∑
i∈A

aifi

∥∥∥∥∥ ≤ K2

∥∥∥∥∥
∞∑
i=1

aifi

∥∥∥∥∥ .
Unconditional basis in Lp spaces.

Since we shall deal with the Lebesgue Lp spaces, there is a simple and useful characterization
of unconditional basis when we are dealing with σ-�nite Lp(X,Σ, µ) spaces. In chapter 4 we
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will, sometimes, use this equivalence without referring to it, but it will become clear from the
context.

Theorem 2.3.2. {fn}n∈N is an unconditional basic sequence in Lp(X,Σ, µ) ⇐⇒ there exists
positive constants A, B, such that for every sequence (an)n ∈ RN,

∑
n
anfn ∈ Lp(X):

A

∥∥∥∥∥∑
n∈N

anfn

∥∥∥∥∥ ≤

∥∥∥∥∥∥
(∑
n∈N

|anfn|2
)1/2

∥∥∥∥∥∥ ≤ B

∥∥∥∥∥∑
n∈N

anfn

∥∥∥∥∥ .
Proof. ⇐) Is immediate.
⇒) It su�ces to prove the result for �nite sequences. If rn(t) are the Rademacher functions
over [0, 1], recall theorem 2.1.10, then there exists positive constants A′, B′ such that

A′

(
N∑
n=1

|anfn|2
)1/2

≤

∫
[0,1]

∣∣∣∣∣
N∑
n=1

anrn(t)fn

∣∣∣∣∣
p

dt


1/p

≤ B′

(
N∑
n=1

|anfn|2
)1/2

, (2.3.1)

now integrating on X and then applying Fubini's theorem we get,∫
X

∫
[0,1]

∣∣∣∣∣
N∑
n=1

anrn(t)fn

∣∣∣∣∣
p

dtdµ =

∫
[0,1]

∫
X

∣∣∣∣∣
N∑
n=1

anrn(t)fn

∣∣∣∣∣
p

dµdt

=

∫
[0,1]

∥∥∥∥∥
N∑
n=1

anrn(t)fn

∥∥∥∥∥
p

Lp(X)

dt .

But since {fn}n is an unconditional basic sequence, by theorem 2.3.1 there exists positive

constants K1,K2 such that K1

∥∥∥∥ N∑
n=1

anfn

∥∥∥∥ ≤
∥∥∥∥ N∑
n=1

anrn(t)fn

∥∥∥∥ ≤ K2

∥∥∥∥ N∑
n=1

anfn

∥∥∥∥ uniformly in

t. Now, by equation 2.3.1, integrating in X we get:

K1

B′

∥∥∥∥∥
N∑
n=1

anfn

∥∥∥∥∥ ≤

∥∥∥∥∥∥
(

N∑
n=1

|anfn|2
)1/2

∥∥∥∥∥∥ ≤ K2

A′

∥∥∥∥∥
N∑
n=1

anfn

∥∥∥∥∥ .

We shall not use any other results about unconditional bases in Lp spaces, but we refer
the reader to [46] [83] for further results on this interesting topic.

2.3.2 Frames and Hilbert Spaces.

Let us review some of the basic results about frames and Hilbert spaces which will be used
here. The main reference is [17]. Let H be a Hilbert space.

De�nition 16. A Riesz basis for H is a family of the form {Uek}k∈N, where {ek}k∈N is an
orthonormal basis for H and U : H −→ H is a bounded bijective operator.
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There is a very useful characterization of Riesz bases, we will use it in Chapter 6 several
times without recalling it explicitly.

Theorem 2.3.3. For a sequence {fk}k∈Z in H, the following conditions are equivalent:
i) {fk}k∈Z is a Riesz basis.
ii) {fk}k∈Z is complete in H, and there exists constants, A,B > 0 such that for every �nite
scalar sequence {ck}k one has:

A
∑
k

|ck|2 ≤

∥∥∥∥∥∑
k

ckfk

∥∥∥∥∥
2

≤ B
∑
k

|ck|2 .

The main feature of a basis is that any vector of the space admits a unique a unique repre-
sentation as a linear combination of the elements of the basis. A frame, is also a sequence {fk}k
such that every f ∈ H admits a representation f =

∑
k

ck(f)fk. However , the corresponding

coe�cients are not necessarily unique. Thus a frame might not be a basis.

De�nition 17. A sequence {fk}k∈Z of elements in H is a frame for H if there exists constants
A,B > 0 such that

A ∥f∥2 ≤
∑
k

|⟨f, fk⟩|2 ≤ B ∥f∥2 .

Theorem 2.3.4. ([17], Chapter 5) If {gk}k is a Riesz basis of its span then it is a frame.

We recall the following de�nition:

De�nition 18. Let {gk}k be a sequence in a Hilbert space H, we say that {gk}k is minimal
if for each j: gj /∈ span{gk}k ̸=j .

There is an interesting relationship between, minimal sequences and frames:

Theorem 2.3.5. ([17], Chapter 5) Let {gk}k be a frame in a Hilbert space H, then the
following are equivalent:
i) {gk}k is a Riesz basis of H.
ii) If

∑
k

ckgk = 0 for (ck)k ∈ l2 then ck = 0 for all k.

iii) {gk}k is minimal.

Given a frame {gk}k in H, we can de�ne the associated frame operator S de�ned for every
f ∈ H by: Sf =

∑
k

⟨f, gk⟩gk, which is a bounded invertible operator. Frames provide stable

representations by means of series expansions. However to do this it is necessary to calculate
the dual frame explicitly. Given a frame in a Hilbert space H with norm ∥.∥ often it is more
convenient and more e�cient to employ an iterative reconstruction method:
Algorithm. ([31], Chapter 5 ) Given a relaxation parameter 0 < λ < 2

B , set δ = max{|1 −
λA|, |1−λB|}. Let f0 = 0 and de�ne recursively: fn+1 = fn+λS(f − fn). Then lim

n→∞
fn = f ,

with a geometric rate of convergence, that is, ∥f − fn∥ ≤ δn ∥f∥.
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Some remarks on Basis and Banach space valued random variables

Let (E, ∥ . ∥) be a Banach space with a basis {fn}n∈N with biorthogonal - coordinate functionals
[46] f∗n. Random variables in E can be easily characterized in terms of the basis and the
coordinate functionals. Let X be a E-valued random variable, then

X =

∞∑
i=1

f∗i (X)fi .

Thus, for the sequences spaces c0, and l
p p ≥ 1, each random variable X is expressable as a

sequence of scalar random variables {f∗n(X)}n. These are random variables, as a consequence
of lemma 6.3.4 since the f∗n are continuous and hence Borel measurable. A random variable
may be constructed by the use of a Schauder basis. Let {Yk}k be a sequence of scalar valued
random variables such that,

lim
n→∞

n∑
i=1

Yifi

exists for each ω ∈ Ω then by lemma 2.2.2, the limit is an E-valued random variable. We
will use this fact in the forthcoming chapters 4 and 5. There is also a characterization of
independence in terms of the coordinate functionals.

Lemma 2.3.1. (E, ∥ . ∥) be a Banach space with a basis {fn}n∈N and coordinate functionals
f∗n. The random variables X,Y are independent ⇐⇒ the vectors (f∗1 (X), . . . , f∗n(X)) and
(f∗1 (Y ), . . . , f∗n(Y )) are independent, for each n = 1, 2, . . .

Proof. See [76]

2.4 A review of Real and Harmonic Analysis

2.4.1 Some de�nitions

Remark: On the following, if x ∈ Cd (d ≥ 1) we will denote its usual norm by |x| and
Supp(f) = {x : f(x) = 0}.

The Schwartz class of functions S(Rd) is de�ned as the linear space of smooth functions
rapidly decreasing at in�nity, together with its derivatives, this means that ϕ ∈ S(Rd) when-
ever ϕ ∈ C∞ (Rd) and

sup
(x1,...xd)∈Rd

d∏
i=1

|xi|αi

∣∣∣∣∣ ∂

∂xβ11
...

∂

∂xβdd
ϕ(x1, ...xd)

∣∣∣∣∣ <∞ ∀ αj βj ∈ N ,

endowed with its usual topology. We will denote D(Rd) the space of functions which are in
C∞ (Rd) and have compact support. Both spaces are topological vector spaces (For more
details see [75]), and their duals are denoted as: S ′(Rd) (Tempered distributions) and D′(Rd)
(distributions) respectively.
Clearly: D(Rd) ⊂ S(Rd) and then S ′(Rd) ⊂ D′(Rd).
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2.4.2 Fourier transforms.

The Fourier Transform f̂ of f ∈ S(Rd) is de�ned as

F(f)(λ) = f̂ (λ) =

∫
Rd

f (x)e−2πiλ.xdx .

It is a known fact that f̂ also belongs to the space S(Rd). F can be de�ned, as usual as a
linear map F : L1(Rd) −→ L∞(Rd) b, or as an isometry on L2(Rd) and by duality over the
class of tempered distributions, that is F : S ′(Rd) −→ S ′(Rd). For more references about
Fourier transforms and series we refer the reader, for example, to [75] or [30].
Later, we will need a variant of the classic sampling theorem of Shannon, Nyquist and Kotel-
nikov for L2 functions c:

Theorem 2.4.1. (Variant of the Shannon-Kotelnikov theorem) If f ∈ L2(Rd) is such that
Supp(f) ⊂ [−λo, λo]d with λo <

1
2 . Then there exists θ ∈ S(Rd) such that

f̂(λ) =
∑
k∈Zd

f̂(k)θ(λ− k) (2.4.1)

Proof. Let f̃(x) =
∑
k∈Zd

f(x+ k) be the periodization of f .The identi�cation f̃ with the torus

veri�es f̃ ∈ L2(Td) ⊂ L1(Td), and, if f̃ ∼
∑
k∈Zd

ake
−2πix.k then lim

R→∞

∑
k∈DR

ake
−2πix.k = f̃

a.e. and in L1(Td) (and in L2) norm for a suitable domain DR ∈ Rd. Now, we can take
θ(x) ∈ S(Rd) such that d

θ̂(λ) =

{
1, |λi| < λ0
0, |λi| ≥ 1 − λ0

and de�ne SR(x) = θ̂(x)
∑

k∈DR

ake
−2πix.k on the other hand f = f̃ θ̂, then, is easy to show

that lim
R→∞

∥SR − f∥L1(Rd) = 0. This implies lim
R→∞

sup
λ∈Rd

∣∣∣ŜR(λ)− f̂(λ)
∣∣∣ = 0, but (see [75]):

ak = f̂(k), then

ŜR(λ) =
∑
k∈DR

f̂(k)θ(λ− k) .

Then (2.4.1) follows immediately from this.

2.4.3 Some linear operators on Lp: Fractional integration.

In our examples we will sometimes use some fractional integration operators, let us review
some of their properties.

bIndeed, the Fourier transform of an integrable function is continuous and tends to 0 as |λ| −→ ∞, by the
Riemann-Lebesgue lemma.

cThe original result can be found in some Harmonic Analysis books such as [30], or in the engineering
literature related to signal analysis.

dIn some literature more related to applications, such θ is called a low-pass or anti aliasing �lter.
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Let us consider the usual Laplacian of f [74]: ∆f =
d∑

j=1

∂2 f
∂x2

j
. Then, at least formally: ∆̂f (λ) =

−(2π)2 |λ|2 f̂(λ). From this we could de�ne the operators (−∆)−
α
2 as:

(−∆)−
α
2 f = F−1(2π)−α | . |−αFf. (2.4.2)

The formal manipulations have a precise meaning [74]:

De�nition 19. Let 0 < α < d. For f ∈ S(Rd) we can de�ne its Riesz Potential :

((−∆)−
α
2 f)(x) =

1

γ(α)

∫
Rd

f(y)

|x− y|d−α
dy (2.4.3)

where γ(α) =
π

d
2 2αΓ(α

2 )
Γ( d

2
−α

2 )
.

This linear operator has the following properties [74]:

Proposition 2.4.1. Let 0 < α < d. Then: (a) The Fourier Transform of |x|−d+α is
γ(α)(2π)−α |λ|−α in the sense :∫

Rd

|x|−d+α φ(x)dx =

∫
Rd

γ(α)(2π)−α |λ|−α φ̂(λ)dλ

for all φ ∈ S(Rd).
(b) The Fourier Transform of ((−∆)−

α
2 f)(x) is (2π)−α |λ|−α f̂(λ) in the sense:∫

Rd

((−∆)−
α
2 f)(x)g(x)dx =

∫
Rd

f̂(λ)(2π)−α |λ|−α ĝ(λ)dλ

for all f, g ∈ S(Rd).

It is easy to check that ∀f ∈ S(Rd): If α+β < d then (−∆)−
α
2 ((−∆)−

β
2 f) = (−∆)−

(α+β)
2 (f);

and ∆((−∆)−
α
2 f) = (−∆)1−

α
2 (f).

We recall the following bound for these operators acting in Lp(Rd) [30], [74].

Theorem 2.4.2. (Hardy,Littlewood and Sobolev) Let 0 < α < d, 1 ≤ p < q < ∞ and
1
q = 1

p −
α
d then:

(a) ∀f ∈ Lp(Rd), the integral that de�nes (−∆)−
α
2 f converges a.e.

(b)If p > 1 then ∥∥∥(−∆)−
α
2 f
∥∥∥
Lq

≤ Cpq ∥f∥Lp . (2.4.4)
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Remark. These operators are the inverses of the (positive) fractional powers of the Laplacian

operator. On the class S(Rd), (−∆)
α
2 is given by

− (−∆)
α
2 f(x) = c

∫
Rd

f(y)− f(x)− ∇f(x).(y − x)

1 + |y − x|2
dy

|y − x|d+α
. (2.4.5)

This expression follows from [74] section 6.10.
Now, introduce another fractional integration operator de�ned formally as:

(I −∆)s/2f = F−1(1 + | .|2)s/2Ff . (2.4.6)

Theorem 2.4.3. [30] If s < 0 and p ≥ 1, (I−∆)s/2 : Lp(Rd) −→ Lp(Rd) de�nes a continuous
linear operator i.e. there exists Cp > 0 such that∥∥∥(I −∆)

s
2 f
∥∥∥
Lp

≤ Cp ∥f∥Lp .

Fractional integral operators, as the Riesz integral operators can also be de�ned over a �nite
interval. In this case, they have similar properties to their Rd counterparts. This operators, for
suitable parameters maps the Lp classes into the Lispschitz spaces Λβ. For further references
about this, see for example Zygmund's book ([85], chapter 12). We will use these properties
brie�y in chapter 4.

2.4.4 Fourier transform of measures. Applications to Probability Theory:

Characteristic functions and stable distributions.

Let µ be a �nite Borel measure on Rd, We de�ne its Fourier transform as:

µ̂(λ) =

∫
Rd

eix.λdµ(x) .

This is the usual convention in Probability theory, this de�nition di�ers from the previous one
by a conjugation operation and a multiplicative constant. This carries no problem. Let X be
a random variable, then we de�ne its characteristic function as ϕX(λ) = E(eiλX). Then, this
can be written as

ϕX(λ) =

∫
R

eix.λdµX(x) .

Then the characteristic function is the Fourier transform of the measure µX . The de�nition
can be extended for random vectors. One important fact about the characteristic function is
that it de�nes uniquely a distribution function. For further references see for example [16].
Now, let us de�ne an important class of distributions, we say that a random variable is
symmetric α-stable [71], if for some 0 < α ≤ 2, and some σX > 0:

ϕX(λ) = e−σ
α
X |λ|α .

The parameters α and σX are unique. In this case we write X ∼ Sα(σX , 0, 0). This de�nition
can be extended to the non-symmetric case by introducing some additional parameters. Note
that when α = 2 this corresponds to the gaussian case.
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Some properties of stable distributions.

Let us list some properties of stable distributions, generally they can be obtained using the
properties of characteristic functions. For more references see [71].

1) If X1, . . . , Xn are independent and Xi ∼ Sα(σXi , 0, 0), then
n∑
i=1

Xi ∼ Sα(σ
′, 0, 0), with

σ′ = ∥(σXi)i∥lα .
2) Let α < 2. If X ∼ Sα(σX , 0, 0) then, if 0 < p < α: (E|X|p)1/p = Cp σX . Where
Cp

p = E|Y |p, with Y ∼ Sα(1, 0, 0).
3) Let α < 2, if X ∼ Sα(σX , 0, 0), then for every 0 < p < α: X ∈ Lp(Ω,F ,P). But
X /∈ Lα(Ω,F ,P).
4) Let α < 2, if X ∼ Sα(σX , 0, 0), then there exists positive constants x0, A and B, such that:

Ax−α ≤ P(|X| > x) ≤ B x−α ,

for all x > x0.
5) Let α < 2, if X ∼ Sα(σX , 0, 0), then there exists positive constants x0, A and B, such that:

A log+
x

y
≤ E|X|α1{y≤|X|≤x} ≤ B log+

x

y
,

for all y, x > x0.
6) Let α < 2 and p > α, if X ∼ Sα(σX , 0, 0), then there exists positive constants x0, A and
B, such that:

Axp−α ≤ E|X|p1{|X|≤x} ≤ B xp−α ,

for all x > x0.
For further references about stable random variables and processes, see [71].

2.4.5 Wide sense stationary random processes

Now, let us review some basic facts about this important class of random processes. This
brief introduction is mainly motivational, since we shall deal later, in chapter 5 with a more
general, but closely related, class of random processes. Also, in chapter 6 we shall introduce
a variant of this de�nition. This results are mainly from ([69], chapter I). Let (Ω,F ,P) be a
probability space, let Y = {Yx}x∈A be a wide sense stationary random process, where A = Rn
or Zn. By this we mean a family of random variables in L2(Ω,F ,P) stationary correlated in
the index x, i.e. R(t, s) = E(YtY s) = R(t− s), for all t, s. We will also assume that EYx = 0
for all x, and that the process is measurable in the wide sense, i.e. for any Z ∈ span{Yx}x
the numerical valued function E(YxZ) is Lebesgue measurable. In the following, G = Rn if
A = Rn, or G = [0, 1)n if A = Zn.

Harmonic analysis of stationary processes:

Every stationary wide sense stationary random process Y = {Yx}x∈A admits a spectral rep-
resentation:

Yx =

∫
G

ei2πλ.xdΦ
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in the form of an stochastic integral with respect to a random spectral measure Φ. Moreover
for each x ∈ Rn or Zn, Yx can be written as the result of the action of the (unitary) shift
operator T on Y0:

Yx = T xY0 where by Stone's spectral theorem: T x =

∫
G

ei2πλ.xdE(λ) , (2.4.7)

where the E(λ)'s are orthogonal projection operators over H(Y ), the closed linear span of
Y = {Yx}x∈A.
Set µ(A) = E(|Φ(A)|2), then µ is a �nite Borel measure called the spectral measure of the
process Y . On the other hand the spectral measures µ are also related by the following
Fourier transform pairing

E(YxY 0) =

∫
G

ei2πλ.xdµ (2.4.8)

In the case that µ is absolutely continuous with respect to the Lebesgue measure, the Radon-
Nykodym derivative of µ, ϕ(λ)dλ = dµ, ϕ is called the spectral density of the process. In this
case the correlation function is the ordinary Fourier transform of the spectral density.
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2.5 Miscelanea: Additional comments, bibliographical and his-

torical notes

2.5.1 On Remark 2.1.1. Almost sure convergence is not a topological no-

tion.

Let us suppose that almost sure convergence is a topological notion and see what it would
happen in this case. Let (X,Σ, µ) be a non trivial measure space, such that convergence in
probability is not equivalent to a.e. convergence, for example X = [0, 1], Σ = B[0, 1] the
Borel sigma algebra and µ the Lebesgue measure. Then there exists a sequence of measurable
functions {fn}n and a measurable function f , such that fn −→ f in measure but not a.e.
If a.e. convergence is a topological notion then there should exists a neighbourhood of f :
U(f) and in�nitely many n's, say {nk}k, such that ∀ k : fnk

/∈ U(f). But the subsequence
fnk

−→ f in measure, and by Riesz�s theorem there exists a subsubsequence {fnkj
}j such

that fnkj
−→ f a.e. and then there must exists j0 such that fnkj

∈ U(f), for all j ≥ j0, which

is a contradiction.

2.5.2 Martingales.

For more advance results about martingales we refer the reader to [32] and [23]. There is
possible to �nd several classical results on convergence and their generalizations. Also, several
generalizations of the Khinchine's inequalities are given there for martingale di�erences.

2.5.3 Construction of probability measures.

We will always assume that we have an underlying probability space (Ω,F ,P). Under the
hypothesis that we are assuming in this work, the existence of a probability measure on the
spaces where we are going to use is granted. However, the construction of a probability measure
over a linear topological space is not a trivial topic. For further references see [27] and [26].



Chapter 3

Random Series in Banach Spaces

�Nanos gigantium humeris insidentes�.

�[Dwarfs] Standing on the shoulders of giants�.

Metaphor attributed to Bernard of Chartres, also used by Isaac Newton. Inscription bear
by the British two pound coin on its edge.

3.1 Introduction.

In this chapter we study random series with values in Banach spaces. We study the a.s. conver-
gence and convergence in the p-mean of these series. We begin with a review of some existing
inequalities which will be useful during the development of this work. This inequalities are
useful on its own. Then we will use this results to state general conditions for the convergence
of random series in Banach spaces.
This chapter mainly contains some existing results on the convergence of Banach space valued
random series which will be used in the forthcoming chapters. So it may be regarded also
as a summary of them. The proofs have been included in order to make the exposition as
self contained as possible, since no uni�ed source of reference was found. Also some auxiliary
results will be presented. Many of these results, in a form or another, are spread in di�erent
textbooks and research papers. The proofs, of existing results, have been chosen or adapted
to be as close as possible to our necessities. The exposition of the proofs, also have three
purposes: Some of them may serve as a review of the proof of the original scalar valued case.
Also, at one point one may get the intuition of how some of these results have been developed
from their scalar valued cousins. Finally, directly or indirectly, many of the ideas behind the
results of this chapter will appear further. And sometimes a complete proof of a previous
lemma will later �be worth more than a thousand words�, since the idea of the forthcoming
results will become clearer looking at the previous ones. The main references are [35], [39],
[28], [42], [4], [40] and [51].

39
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3.1.1 Basic Inequalities.

This section contains general basic inequalities for sums of independent random variables with
values in a separable Banach space (E, ∥.∥). These inequalities will be used through out the
reminder of this work. In the forthcoming we will denote Lp(E) = Lp(Ω,F ,P, E) to the space
of all E valued random variables X, such that E ∥X∥p <∞.

Proposition 3.1.1. Let {Xi}∞i=1 be a sequence of non negative random variables and let ci,
i = 0, 1, . . . , be a sequence of non negative numbers. If for each t ∈ R+,

∞∑
i=1

ciP(Xi > t) ≤ c0P(X0 > t) ,

then, for any non decreasing function ϕ : R+ −→ R+ with ϕ(0) = 0,

∞∑
i=1

ciEϕ(Xi) ≤ c0Eϕ(X0) ,

moreover, if
∞∑
i=1

ci ≤ c0 then the above is true for all non decreasing functions ϕ : R+ −→ R+ .

The following simple result will be very useful:

Lemma 3.1.1. Let 0 < λ < 1, p > 1, X ∈ Lp(Ω,F ,P) and X ≥ 0 a.s. then

P (X ≥ λE(X)) ≥ (1− λ)q
(E(X))q

(E(Xp))
q
p

,

where 1
p +

1
q = 1.

Proof. De�ne Y = X1{X>λE(X)}. By Hölder's inequality:

(E(Y ))p ≤ E(Y p)(P(Y ̸= 0))p−1 ≤ E(Y p) (P(X > λE(X)))p−1 .

Moreover E(X) ≤ E(Y ) + λE(X), then as E(Xp) ≥ E(Y p),

(1− λ)p(E(X))p ≤ E(Xp) (P(X > λE(X)))p−1 .

The result follows noting that p
p−1 = q.

This type of condition appear also in [40] [41] dealing with random series. With this, if we
suppose now that E = H is a separable Hilbert space, we can prove the following inequality
which plays a fundamental role in the work of Paley and Zygmund on random Fourier series:

Proposition 3.1.2. Let X1, . . . , Xn ∈ L4(Ω,F ,P, E), E(Xn) = 0 and E(∥Xk∥4) ≤ CV ar2(Xk),
for k = 1, . . . , n. Then ∃ C0(λ) > 0 independent of n, such that:

P

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
2

> λ
n∑
i=1

V ar(Xi)

 > C0
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Proof. Let U =

∥∥∥∥ n∑
i=1

Xi

∥∥∥∥2, then E(U) =
n∑
i=1

V ar(Xi), and

E(U2) =
∑
i j k l

E(⟨Xi, Xj⟩⟨XkXl⟩)

If one of the indexes is di�erent from the other: E(⟨Xi, Xj⟩⟨XkXl⟩) = 0. Thus

E(U2) ≤
n∑
k=1

E(∥Xn∥4) + 6
∑

1≤k<l≤n
V ar(Xn)V ar(Xm)

C

n∑
i=1

V ar2(Xi) + 6
∑

1≤k<l≤n
V ar(Xn)V ar(Xm) ≤ sup(3, C)

(
n∑
i=1

V ar(Xi)

)2

.

And then apply the previous lemma 3.1.1 with p = 2.

Very similarly to the real valued case, one can proves:

Proposition 3.1.3. If {Xi}ni=1 are independent random variables in E, then for each λ ≤ 0,

P

(
max
1≤k≤n

∥Sk∥ > λ

)
≤ 3 max

1≤k≤n
P

(
∥Sk∥ >

λ

3

)
and if the Xi�s are symmetric then

P

(
max
1≤k≤n

∥Sk∥ > λ

)
≤ 2P (∥Sn∥ > λ)

Proof. for �xed t, s ≥ 0 and k = 1, 2, . . . , n, de�ne:

Ak = {∥S1∥ ≤ s+ t; . . . , ∥Sk−1∥ ≤ s+ t, ∥Sk∥ > s+ t} ,

then the Ak's are disjoint and A =

{
max
1≤k≤n

∥Sk∥ > t+ s

}
=

n∪
k=1

Ak. And for each i = 1, . . . , n,

the Ai's are independent of Xi+1, . . . , Xn, and

Ai
∩

{∥Sn − Si∥ ≤ s} ⊆ Ai
∩

{∥Sn∥ > t} ;

so that

P (∥Sn∥ > t) ≥
n∑
i=1

P(Ai)P (∥Sn − Si∥ ≤ s) ≥ min
1≤i≤n

P (∥Sn − Si∥ ≤ s)P

(
max
1≤k≤n

∥Sk∥ > t+ s

)
,

then

P

(
max
1≤k≤n

∥Sk∥ > t+ s

)
≤ P (∥Sn∥ > t)

1− max
1≤i≤n

P (∥Sn − Si∥ > s)
,



CHAPTER 3. RANDOM SERIES IN BANACH SPACES 42

in particular, if max
1≤i≤n

P
(
∥Si∥ > t

3

)
< 1

3 then,

P

(
max
1≤k≤n

∥Sk∥ > t

)
≤

P
(
∥Sn∥ > t

3

)
1− max

1≤i≤n
P
(
∥Sn − Si∥ > 2t

3

)

≤
max
1≤i≤n

P
(
∥Si∥ > t

3

)
1− 2 max

1≤i≤n
P
(
∥Si∥ > t

3

) ≤ 3 max
1≤i≤n

P

(
∥Si∥ >

t

3

)
,

which proves the �rst part of the theorem since, in the case when

max
1≤i≤n

P

(
∥Si∥ >

t

3

)
≥ 1

3
,

is automatically satis�ed. To prove the second statement of the theorem, denoting Ai =
{∥Sj∥ ≤ t ∀ j < i , ∥Si∥ > t}, for i = 1, . . . , n, and observe that

Ai ⊆ (Ai ∩ {∥Sn∥ > t})
∪

(Ai ∩ {∥2Si − Sn∥ > t}) ,

so that
P(Ai) ≤ P (Ai ∩ {∥Sn∥ > t}) +P (Ai ∩ {∥2Si − Sn∥ > t}) .

Since X1, . . . , Xn are assumed to be symmetric and independent, the last two probabilities are
equal. Then, P(Ai) ≤ 2P(Ai ∩ {∥Sn∥ > t}), and a summation over i = 1, . . . , n gives

P( max
1≤k≤n

∥Sk∥ > t) ≤ 2P(∥Sn∥ > t) .

Proposition 3.1.4. Let {Xi}ni=1 be independent random variables with values in E, then for
any s, t, u ≥ 0 we have

P

(
max
1≤k≤n

∥Sk∥ > s+ t+ u

)

≤ P

(
max
1≤k≤n

∥Xk∥ > u

)
+P

(
max
1≤k≤n

∥Sk∥ > t

)
P

(
max
k,l≤n

∥∥∥∥∥
l∑

i=k

Xi

∥∥∥∥∥ > s

)
,

and if the Xi's are symmetric then

P

(
max
1≤k≤n

∥Sk∥ > s+ t+ u

)

≤ P

(
max
1≤k≤n

∥Xk∥ > u

)
+ 2P

(
max
1≤k≤n

∥Sk∥ > t

)
P (∥Sn∥ > s) .
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Proof. Again, as in the previous, de�ne

Ak = {∥S1∥ ≤ t; . . . , ∥Sk−1∥ ≤ t, ∥Sk∥ > t} ,

then{
max
1≤k≤n

∥Sk∥ > s+ t+ u

}∩{
max
1≤k≤n

∥Xk∥ ≤ u

}
⊆

n∪
i=1

Ai ∩
{

max
i≤k≤n

∥Sk − Si∥ > s

}

The Ai's and

{
max
i≤k≤n

∥Sk − Si∥ > s

}
are independent, then ∀ i = 1, . . . , n:

P

(
Ai ∩

{
max
i≤k≤n

∥Sk − Si∥ > s

})
≤ P(Ai) max

1≤j≤n
P

(
max
j≤k≤n

∥Sk − Sj∥ > s

)
,

then summing over i:

P

(
max
1≤k≤n

∥Sk∥ > s+ t+ u , max
1≤k≤n

∥Xk∥ ≤ u

)

≤ P

(
max
1≤k≤n

∥Sk∥ > t

)
max
1≤j≤n

P

(
max
j≤k≤n

∥Sk − Sj∥ > s

)
.

Now the proposition follows by estimating from above with

P

(
max
k,l≤n

∥∥∥∥∥
l∑

i=k

Xi

∥∥∥∥∥ > s

)
.

And for the symmetric case, recalling proposition 3.1.3, it is estimated by 2P(∥Sn∥ > s).

Some moment inequalities.

The following two results, �rst appeared in [35]. We will follow its main idea.

Lemma 3.1.2. Let {Xj}nj=1 be independent E-valued random variables with EXj = 0. Then
∀ (a1, . . . , an) ∈ Rn: E

∥∥∥∥∥∥
n∑
j=1

ajXj

∥∥∥∥∥∥
p

1
p

≤ 2 max
1≤j≤n

|aj |

E

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

1
p

Proof. Let K = {x ∈ Rn : ∥x∥∞ ≤ 1} and let f : K −→ R≥0 be de�ned by f(x) =

E

∥∥∥∥∥ n∑
j=1

xjXj

∥∥∥∥∥
p

. Then f is convex and continuous so by Caratheodory's theorem it attains its

maximum for points of the form x = ∓1, for such a point let Σ+ = {j : xj = 1} and let
Σ− = {j : xj = −1}. Then

f(x) =

E

∥∥∥∥∥∥
∑
j∈Σ+

Xj +
∑
j∈Σ−

Xj

∥∥∥∥∥∥
p

1
p

≤

E

∥∥∥∥∥∥
∑
j∈Σ+

Xj

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
j∈Σ−

Xj

∥∥∥∥∥∥
p

1
p
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≤

E

∥∥∥∥∥∥
∑
j∈Σ+

Xj

∥∥∥∥∥∥
p

1
p

+

E

∥∥∥∥∥∥
∑
j∈Σ−

Xj

∥∥∥∥∥∥
p

1
p

≤ 2

E

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

1
p

(By lemma 2.2.8)

Now, given a = (a1, . . . , an) ∈ Rn \ {0}, take x = a
∥a∥∞

, then,

f(x) = f

(
a

∥a∥∞

)
=

1

∥a∥∞

E

∥∥∥∥∥∥
n∑
j=1

ajXj

∥∥∥∥∥∥
p

1
p

≤ 2

E

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

1
p

Lemma 3.1.3. Let {Xj}nj=1 be independent E-valued random variables with EXj = 0 and
E ∥Xj∥p < ∞ and let {aj}nj=1 be independent of {Xj}j, real valued random variables in
Lp(Ω,F ,P), then:

2−pE
(

min
1≤j≤n

|aj |p
)
E

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

≤ E

∥∥∥∥∥∥
n∑
j=1

ajXj

∥∥∥∥∥∥
p

≤ 2pE
(

max
1≤j≤n

|aj |p
)
E

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

Proof. (Sketch.) Denote EX the expected value with respect to {Xj}j , and Ea to the ex-
pected value with respect to {aj}j . We can prove the right hand side of the inequality, using
independence and the previous lemma:

E

∥∥∥∥∥∥
n∑
j=1

ajXj

∥∥∥∥∥∥
p

= EaEX

∥∥∥∥∥∥
n∑
j=1

ajXj

∥∥∥∥∥∥
p

≤ Ea

2p max
1≤j≤n

|aj |EX

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p = 2pE

(
max
1≤j≤n

|aj |p
)
E

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

.

The other inequality is obtained writing, Yj = ajXj and bj =
min|aj|
aj

1R\{0}(aj). By the

independence,

E

∥∥∥∥∥∥
n∑
j=1

bjYj

∥∥∥∥∥∥
p

= E
(

min
1≤j≤n

|aj |p
)
E

∥∥∥∥∥∥
n∑
j=1

Xj

∥∥∥∥∥∥
p

.

The result follows from this.

Proposition 3.1.5. Let p > 0, let {Xi}ni=1 be independent random variables with values in E
then, for any t ≥ 0:

E
(

max
1≤k≤n

∥Sk∥
)p

≤
E
(

max
1≤k≤n

∥Xk∥
)p

+ tp

3−p −P

(
max
k,l≤n

∥∥∥∥ l∑
i=k

Xi

∥∥∥∥ > t

) .
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And if the Xi's are symmetric then and independent then,

E
(

max
1≤k≤n

∥Sk∥
)p

≤
E
(

max
1≤k≤n

∥Xk∥
)p

+ tp

3−p − 2P (∥Sn∥ > t)
.

Proof. write s = t = u in prop. 3.1.4. And let us call X = max
1≤k≤n

∥Sk∥, Y = max
1≤k≤n

∥Xk∥ and

Z = max
k,l≤n

∥∥∥∥ l∑
i=k

Xi

∥∥∥∥. Then
P(X > 3s) ≤ P(Y > s) +P(X > s)P(Z > s) .

Then for all t ≥ 0:

3−p E(Xp) =

∞∫
0

p sp−1P(X > 3s)ds

≤
∞∫
0

p sp−1(P(Y > s) +P(X > s)P(Z > s))ds

≤ E(Y p) + E(Xp)P(Z > t) +

t∫
0

p sp−1ds = E(Y p) + E(Xp)P(Z > t) + tp .

If theXi's are symmmetric then, we can proceed as above and using the last part of proposition
3.1.4 we get the last inequality.

For a variant on the proof of this result see [4].

Proposition 3.1.6. Let {Xi}ni=1 be independent random variables with values in E, then, for
any t ≥ 0:

n∑
i=1

P(∥Xi∥ > t) ≤
P

(
max
1≤k≤n

∥Xk∥ > t

)
P

(
max
1≤k≤n

∥Xk∥ ≤ t

)
Proof.

P

(
max
1≤k≤n

∥Xk∥ > t

)
= 1−

n∏
k=1

(1−P(∥Xk∥ > t)) ≥ 1− e
−

n∑
k=1

P(∥Xk∥>t)
, (3.1.1)

and since 1− e−x ≥ xe−x, then

P

(
max
1≤k≤n

∥Xk∥ > t

)
≥

n∑
k=1

P(∥Xk∥ > t)e
−

n∑
k=1

P(∥Xk∥>t)
,

on the other hand, taking in account eq. 3.1.1, the last term is estimated from below by
1−P( max

1≤k≤n
∥Xk∥ > t).
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Finally, we have Rosenthal�s inequality:

Theorem 3.1.1. Let 2 ≤ p < ∞. Then there exists constants Kp,K
′
p > 0 so that for any

sequence of independent real valued random variables {Xk}k=1...n ⊂ Lp(Ω,F ,P), and EXj = 0
for all j = 1 . . . n. Then for all n ∈ N:

K ′
pmax


 n∑
j=1

E|Xj |p
 1

p

,

 n∑
j=1

E|Xj |2
 1

2

 ≤

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

1
p

(3.1.2)

≤ Kpmax


 n∑
j=1

E|Xj |p
 1

p

,

 n∑
j=1

E|Xj |2
 1

2


Proof. First, let us prove the right hand side inequality. Take q = p

2 , and write Yi = |Xi|2,
then for i = 1, . . . , n: n∑

j=1

Yj

q−1

=

 n∑
j ̸=i

Yj + Yi

q−1

≤ 2q−1

 n∑
j ̸=i

Yj

q−1

+ (Yi)
q−1

 ,

now, by the independence:

E

 n∑
j=1

Yj

q−1

Yi

 ≤ 2q−1

E

 n∑
j ̸=i

Yj

q−1

EYi + EYiq
 .

≤ 2q−1

E

 n∑
j=1

Yj

q−1

EYi + EYiq
 .

Summing over i:

n∑
i=1

E

 n∑
j=1

Yj

q−1

Yi

 ≤ 2q−1

E

 n∑
j=1

Yj

q−1
n∑
i=1

EYi +
n∑
i=1

EYiq
 .

By Hölder�s inequality E

(
n∑
j=1

Yj

)q−1

≤

(
E

(
n∑
j=1

Yj

)q) q−1
q

, then,

E

(
n∑
i=1

Yi

)q
≤ 2q−1


E

 n∑
j=1

Yj

q
q−1
q n∑

i=1

EYi +
n∑
i=1

EYiq

 .

Write
n∑
j=1

EY q
j =

(
n∑
j=1

EY q
j

)1− 1
q
+ 1

q

≤

(
n∑
j=1

EY q
j

) 1
q (

E
(

n∑
i=1

Yi

)q)1− 1
q

, since
∑
i
Y q
i ≤

(∑
i
Yi

)q
.

Then,
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E

(
n∑
i=1

Yi

)q
≤ 2q−1


E

 n∑
j=1

Yj

q
q−1
q n∑

i=1

EYi



+2q−1


 n∑
j=1

EY q
j

 1
q (

E

(
n∑
i=1

Yi

)q)1− 1
q

 .

Thus, (
E

(
n∑
i=1

Yi

)q) 1
q

≤ 2q−1


 n∑
j=1

EY q
j

 1
q

+
n∑
i=1

EYi


Recalling that q = p

2 and |Xj |2 = Yj . since if a, b ≥ 0, (a+ b)
1
2 ≤ a

1
2 + b

1
2 :E

(
n∑
i=1

|Xi|2
) p

2

 1
p

≤ 2
p
4
− 1

2

( n∑
i=1

E|Xi|p
) 1

p

+

(
n∑
i=1

E|Xi|2
) 1

2

 ,

but by Khinchine's theorem 2.1.11 we have that,

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

≤ BpE

 n∑
j=1

|Xj |2


p
2

,

combining this, we get:E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
p

1
p

≤ Kp

( n∑
i=1

E|Xi|p
) 1

p

+

(
n∑
i=1

E|Xi|2
) 1

2

 ,

and the inequality follows immediately from this.
For the left hand side inequality, �rst note that by Hölders's inequality

E

 n∑
j=1

|Xj |2


p
2

≥

(
n∑
i=1

E|Xi|2
) p

2

,

on the other hand, since

(∑
i
|Xi|2

) p
2

≥
∑
i
|Xi|p. Then,

2

E

(
n∑
i=1

|Xi|2
) p

2

 1
p

≥

(
n∑
i=1

E|Xi|p
) 1

p

+

(
n∑
i=1

E|Xi|2
) 1

2

.

Now, the desired inequality follows from applying again theorem 2.1.11.

Here we gave a proof using Khinchine's inequalities. The result can also be derived using
lemma 3.1.3. The constants, however, may di�er.
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3.1.2 Convergence of series.

We begin this section with an auxiliary result on the convergence of series of real random
variables. Let c = 1

3p . And for 0 < δ < c
8 de�ne: given X a R-valued random variable ,

Ψ(X) = X1{|X|≤1} + sign(X)1{|X|>1}

and for every subset of indexes J :

△ = △((Xi)i∈J) = inf

{
s :
∑
i∈J

Ψ2

(
Xi

s

)
≤ δ

}
.

Lemma 3.1.4. Let X =
∞∑
i=1

Xi be an a.s. convergent series of independent, symmetric, real

valued random variables then:
i)P(|X| > △) ≤ 2δ .

ii) P

(
|X| > δ

1
2△
c

)
.

iii) ∃ C1, C2 > 0 depending only on c and δ, such that

C1E|X|p ≤ △p +

∞∑
i=1

E|Xi|p1{|X|>△} ≤ C2E|X|p .

Proof. (i) Since△ = lim
n→∞

△((Xi)
n
i=1), it is enough to prove the result for �nite sums. Denoting

Φ((Xi)
n
i=1) = E

(
n∑
i=1

Ψ(Xi)

)2

we have that, if Sn =
n∑
i=1

Xi then

P(|Sn| > 1) ≤ P

(∣∣∣∣∣
n∑
i=1

Ψ(Xi)

∣∣∣∣∣ > 1

)
+P

(
max
1≤k≤n

|Xk| > 1

)

≤ E

(
n∑
i=1

Ψ(Xi)

)2

+

n∑
i=1

P(|Xi| > 1) ≤ 2Φ((Xi)
n
i=1) ,

by Chevychev's inequality.
As △ is an homogeneous function , then P(|Sn| > △) < 2δ.
(ii) By prop. 3.1.5 with p = 2, and the symmetry of the Xi's we can write,

Φ((Xi)
n
i=1) ≤

E
(

max
1≤k≤n

|Ψ(Xk)|
)2

+ t2

3−2 − 2P

(∣∣∣∣ n∑
i=1

Ψ(Xi)

∣∣∣∣ > t

) ≤
P

(
max
1≤k≤n

|Xk| > t

)
+ 2t2

3−2 − 2P

(∣∣∣∣ n∑
i=1

Ψ(Xi)

∣∣∣∣ > t

)

≤ 2P(|Sn| > t) + 2t2

3−2 − 4P(|Sn| > t)
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then by proposition 2.1.2

P

(∣∣∣∣∣
n∑
i=1

Ψ(Xi)

∣∣∣∣∣ > t

)
≤ P(|Sn| > t)

and from prop. 2.1.1: P

(
max
1≤k≤n

|Xk| > t

)
≤ P(|Sn| > t). So if Φ((Xi)

n
i=1) = δ =⇒ P(|Sn| >

t) ≥ ( δ18 − t2)/(2δ + 1), putting t = δ1/2

6 , we get that P(|Sn| > δ1/2

6 ) ≥ 1
36(2δ+1) >

δ
45 , since

δ > 1
8 . Then by the homogenity of δ (ii) holds.

(iii) By prop. 3.1.5 putting t = △ and by (i) of this lemma:

E|Sn|p ≤
2△p + E

(
max
1≤k≤n

|Xk|1{ max
1≤k≤n

|Xk|>△}

)p
c− 8δ

≤ 1

c− 8δ
2

(
△p +

n∑
i=1

E|Xi|p1{Xi>△}

)
which proves the �rst part of the inequality in (iii). By part (ii)

E|Sn|p ≥

∣∣∣∣∣δ1/2△6
∣∣∣∣∣
p

P

(
|Sn| >

δ1/2△
6

)
≥ c′

δ△p

45

Now, recalling prop. 3.1.5 we have by prop. 2.1.1 and prop. 3.1.1 that

n∑
i=1

E|Xi|p1{|Xi|>△} ≤
E
(

max
1≤k≤n

|Xk|
)p

1{ max
1≤k≤n

|Xk|>△}

1−P

(
max
1≤k≤n

|Xk| > △
)

≤ 2

1− 4δ
E|Sn|p .

For further references on similar results see, for example, Giné and Zinn's work [28].
The following Itô Nisio theorem is the in�nite dimensional analogue of the important result
of Lèvy on the convergence of series of independent real random variables:

Theorem 3.1.2. Let {Xi}∞i=1 be a sequence of independent E-valued random variables, and

Sn =
n∑
i=1

Xi, then the following are equivalent:

i) {Sn}n converges a.s.
ii) {Sn}n converges in probability.
iii) The distributions L (Sn) converge weakly.

For the original proof, see [39].

Proof. ii)=⇒i) If Sn −→
n→∞

S in probability then from the Cauchy condition, for every ϵ > 0:

sup
j>1

P(∥Sn+j − Sn∥ ≥ ϵ) −→
n→∞

0 but by prop. 3.1.3 this implies:

P

(
sup
j>1

∥Sn+j − Sn∥ ≥ ϵ

)
≤ 3 sup

j>1
P
(
∥Sn+j − Sn∥ ≥ ϵ

3

)
−→
n→∞

0 .
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Now, write
∪

ϵ∈Q>0

∞∩
n=1

{
sup
j,k≥n

∥Sj − Sk∥ > 2ϵ

}
Taking in account the equation above, then

P

( ∞∩
n=1

{
sup
j,k≥n

∥Sj − Sk∥ > 2ϵ

})
= 0 ,

and the a.s. convergence follows from this.
iii)=⇒ ii) First, observe that {Sn}n converges in probability if and only if

P(∥Sn − Sm∥ > ϵ) −→
n>m→∞

0

or equivalently, if µmn = L (Sn − Sm) −→
n>m→∞

δ0 weakly. Let K ⊂ E be a compact set, then

P(Sn − Sm /∈ K − K) ≤ P(Sn /∈ K) + P(Sm /∈ −K), and since µn = L (Sn) converges
weakly to a measure µ, then {µmn}n>m is relatively compact, so there exists a measure ν and
a subsequence of measures {µmk nk

}mk nk
, such that µmk nk

−→
k→∞

ν, with nk > mk. Then the

convolution of the measures veri�es:

µmk
∗ µmk nk

−→
k→∞

ν ∗ µ ,

but on the other hand, the Xi's are independent so that the measures associated to the
distributions of Snk

= (Snk
− Smk

) + Smk
are the convolutions µmk

∗ µmk nk
= µnk

, thus
µ ∗ ν = µ which implies ν = δ0.
i)=⇒ii)=⇒iii) is immediate.

3.1.3 Convergence in the p-th mean

Often is easier to investigate the convergence in the mean, or Lp metric than the almost
sure convergence. Also in many cases, it is important to have information about moments of
series of independent random variables in E, a separable Banach space. We have seen in the
previous theorem that for the case of sums of independent random variables, as in the real
variable case a.s convergence, convergence in probability and convergence in distribution are
equivalent. However, these type of convergences are not equivalent to convergence in mean
(or Lp norm). Some additional conditions have to be considered. Let us �rst study some
relationships between the a.s. convergence and moment inequalities for maximal functions.

Theorem 3.1.3. Let p > 0 , and let {Xi}∞i=1 be a sequence of independent E-valued random

variables. If the series
∞∑
i=1

Xi converges almost surely to Z then the following are equivalent:

i) E( sup
1≤k≤∞

∥Sk∥)p <∞.

ii) E( max
1≤k≤∞

∥Xk∥)p <∞.

iii) ∀t > 0 (equivalently, for some t > 0):
∞∑
i=1

E(∥Xi∥p 1{∥Xi∥>t}) <∞.

iv) E ∥Z∥p <∞.
And, if one of these conditions is ful�lled then lim

n→∞
E ∥Sn − Z∥p = 0 .
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For an alternative proof, see [4].

Proof. ii)=⇒ i) This implication holds because
∞∑
k=1

Xk is a.s. convergent and, therefore, given

a < 1 and su�cient large t, P( sup
1≤k≤∞

∥Sk∥ > t) < 3−pa, so that by prop 3.1.5, taking limit as

n −→ ∞, we have

E

(
sup

1≤k≤∞
∥Sk∥

)p
≤

3p E
(

max
1≤k≤∞

∥Xk∥
)p

+ tp

1− a
.

iii)=⇒ ii) follows from the following inequality:

∀ t ≥ 0 ( max
1≤k≤∞

∥Xk∥)p ≤ tp +
∞∑
i=1

∥Xi∥p 1{∥Xi∥>t}.

ii)=⇒iii) Let a > 0, and let t be such that P( max
1≤k≤∞

∥Xk∥ > t) ≤ a < 1 then, by prop. 3.1.6,

for s > t: P( max
1≤k≤∞

∥Xk∥ > s) ≥ (1− a)
∞∑
i=1

P(∥Xi∥ > s), and by prop. 3.1.1,

∞∑
i=1

E(∥Xi∥p 1{∥Xi∥>t}) ≤
1

1− a
E
(

max
1≤k≤∞

∥Xk∥1{ max
1≤k≤∞

∥Xk∥>t}
)p

.

From this, we have that if iii) is ful�lled for some t0 > 0 then it also holds for t > t0, and
�nally, for t < t0 , we have,

∞∑
i=1

E(∥Xi∥p 1{∥Xi∥>t}) ≤
∞∑
i=1

E(∥Xi∥p 1{∥Xi∥>t0}) + t0
p

∞∑
i=1

P(∥Xi∥ > t)

but
∞∑
i=1

P(∥Xi∥ > t) <∞ by the Borel-Cantelli lemma, thus iii) holds.

i)=⇒iv) is immediate.
iv)=⇒ i) it follows from inequality 3.1.3 because, for a given a > 0 and t large enough to

satisfy P

(
sup

1≤k≤∞
∥Sk∥ > t

2

)
< a < 1, then

P

(
sup

1≤k≤∞
∥Sk∥ > s+ t

)
≤ 1

1− a
P(∥Z∥ > s).

Recalling prop. 3.1.1 this yields

E

((
sup

1≤k≤∞
∥Sk∥ − t

)p
1{ sup

1≤k≤∞
∥Sk∥>t}

)
≤ E ∥Z∥p

1− a
.

Finally, by the dominated convergence theorem, E

(
sup

1≤k≤∞
∥Sk∥

)p
<∞, and from ∥Sn − Z∥ ≤

2 sup
1≤k≤∞

∥Sk∥, then lim
n→∞

E ∥Sn − Z∥p = 0.
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In order to get convergence in the p-mean from the a.s. convergence, an additional
condition could be the following: suppose, there exists positive constants C, λ, such that,
E ∥Xn∥p 1{∥Xn∥>λ} ≤ CP(∥Xn∥ > λ), then from theorem 3.1.3 and the Borel-Cantelli lemma,
we have that the a.s. convergence of

∑
i
Xi implies convergence in the p-mean. Later, we shall

discuss some other conditions, in particular when E is the Lebesgue space Lp(X,Σ, µ).

Corollary 3.1.1. let p > 0 , and let {Xi}∞i=1 be a sequence of E-valued independent random

variables, then the series
∞∑
i=1

Xi converges a.s. ⇐⇒ ∃λ > 0 (or equivalently, ∀λ > 0) for

which the following conditions are satis�ed:

i)
∞∑
i=1

P(∥Xi∥ > λ) <∞.

ii)
∞∑
i=1

Xi1{∥Xi∥≤λ} converges in Lp(E).

Proof. (=⇒ )If
∞∑
i=1

Xi converges a.s. then by the Borel-Cantelli lemma
∞∑
i=1

P(∥Xi∥ > λ) <

∞. Hence
∞∑
i=1

Xi1{∥Xi∥≤λ} converges a.s., and by theorem 3.1.3 it converges in Lp(E) (since∥∥Xi1{∥Xi∥≤λ}
∥∥ ≤ λ).

(⇐=) by the Itô-Nisio theorem 3.1.2 the series
∞∑
i=1

Xi1{∥Xi∥≤λ} converges a.s. and by i) and

the Borel-Cantelli lemma ,
∞∑
i=1

Xi1{∥Xi∥>λ} converges a.s. Thus
∞∑
i=1

Xi converges a.s..

Now, let E = H be a separable Hilbert space, from the previous we can get the following
analogue of Kolmogorov`s three series theorem.

Corollary 3.1.2. Let H be a separable Hilbert space, and let {Xn}n be a sequence of inde-

pendent H valued random variables. Then
∞∑
i=1

Xi converges a.s. ⇐⇒ ∃λ > 0 (or equivalently

∀λ > 0 ) the following series are convergent:

i)
∞∑
i=1

P(∥Xi∥ > λ), ii)
∞∑
i=1

EXi1{∥Xi∥≤λ}, iii)
∞∑
i=1

V ar
(
Xi1{∥Xi∥≤λ}

)
.

Using a symmetrization argument it is possible to prove the following useful result:

Corollary 3.1.3. Let {Xn}n be a sequence of independent E-valued random variables. Then

the series
∞∑
i=1

Xi converges a.s. ⇐⇒ for some (equivalently for all) λ > 0, the following three

conditions hold:

i)
∞∑
i=1

P(∥Xi∥ > λ) < ∞ ii)
∞∑
i=1

EXi1{∥Xi∥≤λ} converges in E. iii)
∞∑
i=1

Yi converges a.s. where

Yi is a symmetrization of Xi1{∥Xi∥≤λ}.

Proof. By corollary 3.1.1, it su�ces to prove that the series
∞∑
i=1

Yi converges in the 1-mean if

and only if conditions ii) and iii) hold. Convergence in the 1-mean obviously implies ii) and



CHAPTER 3. RANDOM SERIES IN BANACH SPACES 53

it also implies iii) in view of theorem 3.1.2.

On the other hand by corollary 3.1.2, the series
∞∑
i=1

Yi converges in the 1-mean . Therefore,

∞∑
i=1

∫
Ω
Yi(., ω

′)P(ω′) =

∞∑
i=1

(Xi1{∥Xi∥≤λ} − EXi1{∥Xi∥≤λ})

converges in the 1-mean. Since, by ii), the series
∞∑
i=1

EXi1{∥Xi∥≤λ} converges in E, the series

∞∑
i=1

Xi converges in the 1-mean

From the previous corollary 3.1.2, as in the real valued case, one can derive the following
very useful result:

Corollary 3.1.4. Let H be a separable Hilbert space, and let {Xn}n be a sequence of indepen-

dent H valued random variables. Such that Xn ∈ L2(Ω,F ,P,H) and moreover
∞∑
i=1

V ar(Xi) <

∞. Then
∞∑
i=1

Xi converges a.s..

Alternatively, this result as in the real valued case, can be obtained from a maximal
inequality, which is useful on its own:

Theorem 3.1.4. (Hilbert space version of Kolmogorov's inequality) Let H be a separable
Hilbert space and let {Xk}nk=1 be a sequence of independent H valued random variables. Such
that Xn ∈ L2(Ω,F ,P), then given λ > 0:

P

(
max
1≤k≤n

∥∥∥∥∥
k∑
i=1

Xi

∥∥∥∥∥ > λ

)
≤

n∑
i=1

V ar(Xi)

λ2
. (3.1.3)

Proof. (sketch) The proof of this result is very similar to the original version for real valued
random variables. In a similar manner to props. 3.1.3 and 3.1.4 it starts de�ning events

Ak = {∥S1∥ ≤ λ; . . . , ∥Sk−1∥ ≤ λ, ∥Sk∥ > λ} ,

then the A′
ks are disjoint and A =

{
max
1≤k≤n

∥Sk∥ > λ

}
=

n∪
k=1

Ak. Now estimate P(A) as

before.

Note that, for example, corollary 3.1.4 gives a su�cient condition for a mean convergent
series to converge a.s. However to obtain a kind of reciprocal, we have to add some conditions
on the moments of the ∥Xn∥′ s.

Theorem 3.1.5. Let {Xn}n be a sequence of independent H-valued random variables such
that Xn ∈ L4(Ω,F ,P,H), for n = 1, . . . and suppose that there exists a positive constant C,

such that E ∥Xn∥4 ≤ CV ar2(Xn), for all n, if
∞∑
n=1

Xn converges a.s. then
∞∑
n=1

V ar(Xn) <∞,

in particular
∞∑
n=1

Xn converges in L2(H).
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Proof. (sketch.) Take λ ∈ (0, 1). And de�ne:

An =


∥∥∥∥∥

n∑
k=1

Xk

∥∥∥∥∥
2

> λ2
n∑
k=1

V ar(Xk)

 , A = lim
n→∞

An .

On the other hand, apply prop. 3.1.2, to get: ∃ k(λ) > 0 independent of n, such that,

P

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
2

> λ
n∑
i=1

V ar(Xi)

 > k .

From this estimate P( lim
n→∞

An)

In the previous result, we have imposed a �reverse Hölder inequality� condition on the ran-
dom variables. In the following, alternatively, the additional condition to ensure convergence
in the p-th mean, is similar to a �reverse Tcheviche� inequality�.

Lemma 3.1.5. Let p > 0 . If {Xn}∞n=1 are real, independent, random variables such that for
some α, β, λ > 0 , P(|Xi| > α) ≥ β, and

E|Xi|p1{|Xi|>t} ≤ λtpP(|Xi| > t) ,

for all t > α and i ∈ N, then for each sequence f1, f2, · · · ∈ E, the series
∞∑
i=1

Xifi converges

a.s. ⇐⇒ it converges in the p-th mean. Moreover ∀ q < p, there exists a constant C > 0 such
that: (

E

∥∥∥∥∥
∞∑
i=1

Xifi

∥∥∥∥∥
p) 1

p

≤ C

(
E

∥∥∥∥∥
∞∑
i=1

Xifi

∥∥∥∥∥
q) 1

q

.

Proof. If the series converges a.s. then
∑
i
P(∥Xifi∥ > 1) < ∞. Then, by the hypothesis

1/ ∥fi∥ > α for i large enough. For these i′s we have:

E ∥Xifi∥p 1{∥Xifi∥>1} = ∥fi∥p E|Xi|p1{|Xi|>1/∥fi∥} ≤ λP

(
|Xi| >

1

∥fi∥

)
which, as we have seen before, implies the convergence of the series. The proof of the inequality
is immediate.

Example For example, if the Xi's are i.i.d's symmetric α-stable random variables,
∞∑
i=1

Xifi

converges a.s. if and only if it converges in the p-th mean.



Chapter 4

Lp Valued Random Series

4.1 Introduction

Here we will concentrate in convergence problems when the random variables take values in
the Lebesgue spaces Lp(X).
First, we will study sums of independent random variables, and we will give necessary and
su�cient conditions for the a.s. convergence. Afterwords, we study the particular case of
stable series, since for this case some more tractable conditions can be given. Finally, we will
consider another particular case, when the series comes from an unconditional basis. For this
case, we will study some relationships between di�erent types of convergence. In this case,
sometimes, the somewhat strong condition of a basis being unconditional allows us to drop the
independence hypothesis on the terms of the sums. This may be regarded as the case when
we have the representation of a random element with respect to a given basis (see Chapter
2). Recalling that given a function in Lp(X) (or equivalence class) its series expansion, with
respect to a basis, always converges in norm, but it may not converge a.e.. So for this case
we will also consider some pointwise convergence problems, namely, we will study if given a
random element (or series), when this representation, with respect to an unconditional basis,
converges a.e. [µ] respect to the underlying measure space (X,Σ, µ), with probability one .

4.2 Auxiliary Results

Here we will be considering two measure spaces: a probability space, say (Ω,F ,P) and a
σ-�nite measure space (X,Σ, µ). As usual, we de�ne the Lebesgue spaces Lp(X,Σ, µ). We
talk about properties that hold almost everywhere [µ] almost surely. This must be understood
without ambiguity meaning that such a property holds for almost all pairs (x, ω) in a mea-
surable subset of X × Ω with respect to the complete measure µ × P [40]. Some results of
this section remain true in a general separable Banach space with arbitrary norm ∥.∥. In this
case we will denote it just (E, ∥.∥). Recall that by convergence in the p- mean, we mean that
E ∥Xn −X∥p −→ 0 whenever n→ ∞. In the particular case that E = Lp(X,Σ, µ) is σ-�nite,
one would expect this type of convergence to be equivalent to convergence in the norm of the
space Lp(X ×Ω,Σ⊗F , µ×P). Moreover, if Y : Ω −→ Lp(X,Σ, µ) is a random variable, then
for each ω ∈ Ω, Y (ω) represents a (an equivalence class) function of Lp(X,Σ, µ). Then if for

55
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each ω we select a particular function f(ω, .) of this equivalence class, we obtain a function
f(ω, x) : X×Ω −→ R. This resulting function is called a representation of the random variable
Y . However, it is not immediate that this representation is a Σ⊗F-measurable function. So,
we �rst give some conditions that identify Y (ω) with a Σ⊗F-measurable function f(ω, .).

Theorem 4.2.1. Let (X,Σ, µ) be a σ-�nite measure space, (Ω,F ,P) a probability space and
let Y : Ω −→ Lp(X,Σ, µ) be a P-integrable random variable. Let 1 ≤ p ≤ ∞, and let
(X × Ω,Σ ⊗ F , µ × P) be the product measure space. Then there exists a Σ ⊗ F-measurable
function, f : X × Ω −→ R, which is uniquely determined except for a set of µ × P-measure
zero, and such that f(., ω) = Y (ω) for almost all ω ∈ Ω [P]. Moreover, f(x, .) is P-integrable
on Ω for almost all x ∈ X [µ] and the integral

∫
Ω

f(x, ω)dP as a function of x, is equal to the

element of Lp(X,Σ, µ),
∫
Ω

Y (ω)dP.

Proof. See [20]

Remark 4.2.1. In chapter 2 we introduced the de�nition of the Bochner integral or expected
value. It would be desirable that this notion coincides with an ordinary Lebesgue integral
for the case of Lp valued random variables. In ([20], chapter III) is proved that if f : X ×
Ω −→ R is a measurable function, such that it belongs to L1(Ω,F ,P, Lp(X)), then the the
Bochner integral or expected value E(f) ∈ Lp(X,Σ, µ) equals a.e. the Lebesgue integral∫
Ω f(x, ω)dP(ω).

Taking in account these results, on the following, we will sometimes make the following
abuse of notation: given a vector valued random variable Y : Ω −→ Lp(X,Σ, µ), we will denote
also as Y its Σ⊗F-measurable representation. So for a �xed x ∈ X it is possible, and useful,
to think this measurable representation Y (x, .) as an ordinary real valued random variable.
Then, we would like to know if these real valued random variables inherit from the original,
some characteristic properties, such as independence and symmetry. Before answering these
questions, we will prove an auxiliary result on real valued random variables:

Lemma 4.2.1. Let (Ω,F ,P) be a probability space and let {X1, . . . , Xm} ⊂ Lp(Ω,F ,P), with
1 ≤ p <∞. Then, there exists a family of �nite sub σ-algebras {Gn}n∈N, such that Gn−1 ⊆ Gn,
and ∀ j = 1, . . . ,m

(E|Xj − E[Xj |Gn]|p)
1
p <

1

n
.

Moreover, E[Xj |Gn] −→ Xj a.s, as n −→ ∞.

Proof. If {X1, . . . , Xm} ⊂ Lp(Ω,F ,P), given n ∈ N, for each Xj there exists a simple random

variable Y n
j , such that (E|Xj − Y n

j |p)
1
p < 1

2n . The sigma algebra generated by the set of

random variables An = {Y k
j }

k=1,...,n
j=1,...,m, σ(An) is �nite and veri�es σ(An−1) ⊆ σ(An), so we

take Gn = σ(An). It remains to prove that the Gn's verify the last property. First note that
E[Y n

j |Gn] = Y n
j a.s. then,

(E|Xj − E[Xj |Gn]|p)
1
p ≤

(
E|Xj − Y n

j |p
) 1

p +
(
E|E[Xj |Gn]− Y n

j |p
) 1

p

=
(
E|Xj − Y n

j |p
) 1

p +
(
E|E[Xj − Y n

j |Gn]|p
) 1

p ≤ 2(E|Xj − Y n
j |p)

1
p <

1

n
(by theorem 2.1.13)
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By Lévy�s martingale theorem 2.1.15 E[Xj |Gn] −→ E[Xj |G∞] a.s. But on the other hand,
by the previous arguments E[Xj |Gn] −→ Xj in Lp and then in probability, thus by Riesz�s
theorem there exists a subsequence E[Xj |Gnk

] −→ Xj a.s. From this fact, E[Xj |Gn] −→ Xj

a.s.

Theorem 4.2.2. Let (X,Σ, µ) be a σ-�nite measure space, (Ω,F ,P) a probability space, and
1 ≤ p <∞, and let Y : Ω −→ Lp(X,Σ, µ) be an P-integrable random variable. Then:
a) If Y is symmetric, i.e. P(Y ∈ B) = P(−Y ∈ B) for every B in the Borel σ-algebra of
Lp(X,Σ, µ), then for almost all x ∈ X [µ], Y (x, .) is a symmetric real valued random variable.
b) If Z is another Lp(X,Σ, µ)-valued integrable random variable, independent of Y , then Y (x, .)
and Z(x, .) are independent for almost all x ∈ X [µ].

Proof. a) Without loss of generality we may assume that (X,Σ, µ) is another probability space.
If Y : Ω −→ Lp(X,Σ, µ) veri�es P(Y ∈ B) = P(−Y ∈ B) for every B in the Borel σ-algebra
of Lp(X,Σ, µ). Then for every g ∈ Lq(X,Σ, µ) and t ∈ R, with 1

p +
1
q = 1, we have

P(⟨g, Y ⟩ ≤ t) = P(−⟨g, Y ⟩ ≤ t) , (4.2.1)

where ⟨., .⟩ denotes the usual duality pairing. On the other hand, if Lp(X,Σ, µ) is separable
there exists a dense subset {fn}n∈N. By theorem 4.2.1, for each k = 1, . . . there exist �nite sub
σ-algebras of Σ, {Gkm}m, such that Gkm ⊆ Gkm+1 and Eµ[fk|Gkm] −→

m→∞
fk = Eµ[fk|Gk∞] a.e. [µ]

and in Lp(X,Σ, µ). Here Eµ[ . | . ] denotes the conditional expectation with respect to (X,Σ, µ).

Take Gm = σ

(
m∪
k=1

Gkm
)
, then Gm is �nite and Gm ⊆ Gm+1. Note that since each Gm is �nite,

then Gm = σ({E1, . . . , El}), for some measurable partition {E1, . . . , El} of X, and for every
f ∈ Lp(X,Σ, µ):

Eµ[f |Gm](x) =
l∑

i=1

1

µ(Ei)

∫
Ei

fdµ1Ei(x) for almost all x ∈ X [µ] .

But this equation can be rewritten as

Eµ[f |Gm](x) = ⟨f,Km( . , x)⟩ , (4.2.2)

where Km(y, x) =
l∑

i=1

1
µ(Ei)

1Ei(y)1Ei(x). Fix x ∈ X, Km( . , x) represents an element of

Lq(X,Σ, µ) and is independent of the particular choice of f .
On the other hand, given ϵ > 0, there exists fk0 such that ∥Y − fk0∥Lp(X,Σ,µ) <

ϵ
2 , and by

theorem 2.1.15,

Eµ[fk0 |Gm] −→ Eµ[fk0 |G∞] a.e. [µ] and in Lp(X,Σ, µ) .

But fk0 = Eµ[fk0 |Gk0∞ ] a.e. and Gk0∞ ⊆ G∞ then Eµ[fk0 |G∞] = fk0 a.e. Thus, Eµ[fk0 |Gm] −→ fk0
a.e. and in Lp(X,Σ, µ). Now,

∥Eµ[Y |Gm]− Y ∥Lp(X)

≤ ∥Y − fk0∥Lp(X) + ∥Eµ[fk0 |Gm]− fk0∥Lp(X) + ∥Eµ[Y |Gm]− Eµ[fk0 |Gm]∥Lp(X)
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≤ 2 ∥Y − fk0∥Lp(X,Σ,µ) + ∥Eµ[fk0 |Gm]− fk0∥Lp(X) (by theorem 2.1.13)

< ϵ+ ∥Eµ[fk0 |Gm]− fk0∥Lp(X) −→
m→∞

ϵ .

Again, theorem 2.1.15 asserts that the sequence {Eµ[Y |Gm]}m converges a.e. [µ]. Then for
almost all x,

Eµ[Y |Gm](x) −→ Y (x) . (4.2.3)

Note that since Y takes values in Lp(X,Σ, µ) and Km(., x) ∈ Lq(X,Σ, µ), then, for every
x ∈ X, ⟨Y,Km( . , x)⟩ represents, a well de�ned, real valued random variable. And then all the
previous arguments hold for almost all ω ∈ Ω. Thus recalling equation 4.2.2, we have that,
for almost all x ∈ X [µ],

⟨Y,Km( . , x)⟩ = Eµ[Y |Gm](x) −→ Y (x) a.s. [P] .

Recalling eq. 4.2.1, we have that for almost all x ∈ X [µ], and every t ∈ R:

P(⟨Km(., x), Y ⟩ ≤ t) = P(−⟨Km(., x), Y ⟩ ≤ t) ,

and since a.s. convergence implies convergence in distribution the result follows taking m −→
∞.
b) The idea of the proof is very similar to a). If X,Y are independent, then for every g, h in
Lq(X,Σ, µ), with 1

p +
1
q = 1 and t1, t2 ∈ R,

P({⟨g, Z⟩ ≤ t1} ∩ {⟨h, Y ⟩ ≤ t2}) = P(⟨g, Z⟩ ≤ t1)P(⟨h, Y ⟩ ≤ t2) ,

then taking again g = h = Km( . , x) as in a) and taking m −→ ∞, the result follows.

Let J be any �nite subset of N then, the same argument leads to the following, if {Yj}j∈J are
independent as vector valued random variables then there exists (P) AJ , such that µ(AcJ) = 0

and for all x ∈ AJ : given tj ∈ R, P

( ∩
j∈J

{Yj(x) ≤ tj}

)
=
∏
j∈J

P(Yj(x) ≤ tj). If {Yj}j∈N are

independent as vector valued random variables, then for every �nite subcollection of {Yj}j∈J ⊂
{Yj}j∈N property (P) holds, so taking Ac =

∪
J

Acj , then the scalar valued random variables

{Yj(x)}j∈N are independent for all x ∈ A.

4.3 Convergence of series of Lp valued random variables

Now, let us prove a result which is a consequence of theorem 2.1.3:

Theorem 4.3.1. Let {Xi}i be a sequence on independent random elements in Lp(X,Σ, µ),
p ∈ [1,∞) such that EXi = 0, then: if

∑
i
Xi converges in the norm topology of Lp(X × Ω)

then it converges [µ]-a.e. a.s..

Remark. The main idea of this result is to transfer a maximal inequality to the product
space. We could use a weaker condition on the Xi's. For example if the sequence of partial
sums forms a martingale, one could use proposition 2.1.3 or theorem 2.1.14. For further
references about this type of argument see section 4.5 at the end of this chapter.
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Proof. First note that, for almost all x ∈ X [µ], by theorem 4.2.2, the Xi(x)'s can be seen
as independent real valued random variables. Now let us transfer theorem 2.1.3 for random
variables to this context:∫

X

P

(
(x, ω) ∈ X × Ω : max

j=1,...,n

∣∣∣∣∣
m+j∑
i=m+1

Xi(x, ω)

∣∣∣∣∣ > δ

)
dµ

≤ 1

δp

∫
X

E

∣∣∣∣∣
m+n∑
i=m+1

Xi

∣∣∣∣∣
p

dµ (By theorem 2.1.3)

=
1

δp
E

∥∥∥∥∥
m+n∑
i=m+1

Xi

∥∥∥∥∥
p

Lp(X,Σ,µ)

(By Fubini's theorem) . (4.3.1)

Now, with this maximal inequality we have: in X ×Ω write ν = µ×P; take δ > 0 and m ∈ N
then: {

(x, ω) : sup
j∈N

∣∣∣∣∣
m+j∑
i=m+1

Xi(x, ω)

∣∣∣∣∣ > δ

}
⊂
∪
n∈N

Dn ,

where Dn =

{
(x, ω) : max

j=1,...,n

∣∣∣∣∣ m+j∑
i=m+1

Xi(x, ω)

∣∣∣∣∣ > δ

}
. Clearly Dn ⊂ Dn+1 then:

ν

{
(x, ω) : sup

j∈N

∣∣∣∣∣
m+j∑
i=m+1

Xi(x, ω)

∣∣∣∣∣ > δ

}
≤ ν

(∪
n∈N

Dn

)
= lim

n→∞
ν(Dn)

≤ Kp
p

δp
lim
n→∞

E

∥∥∥∥∥
n∑

i=m+1

Xi

∥∥∥∥∥
p

= C(m, δ) <∞ (By equation 4.3.1) .

Since
n∑
i=1

Xi is Cauchy in Lp(X × Ω), this implies:

lim
m→∞

ν

{
(x, ω) : sup

j∈N

∣∣∣∣∣
m+j∑
i=m+1

Xi(x, ω)

∣∣∣∣∣ > δ

}
= 0 . (4.3.2)

De�ne En δ =

{
(x, ω) : sup

j,k>n

∣∣∣∣∣ j∑
i=k+1

Xi(x, ω)

∣∣∣∣∣ > 2δ

}
, then:

En δ ⊂

{
sup
j∈N

∣∣∣∣∣
n+j∑
i=n+1

Xi(x, ω)

∣∣∣∣∣ > δ

}
,

so that En+1 δ ⊂ En δ. From this and equation 4.3.2 we have:

ν

(∩
n∈N

En δ

)
= lim

n→∞
ν(En δ) = 0 =⇒ ν

 ∪
δ∈Q>0

∩
n∈N

En δ

 = 0 .
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4.3.1 General conditions for sums of independent random variables

Theorem 4.3.2. Let {Xi}∞i=1 be a sequence of independent and symmetric Lp(X,Σ, µ)-valued

random variables, and let c > 0. Then, the series
∞∑
i=1

Xi converges a.s. in Lp(X,Σ, µ) ⇐⇒

the following conditions are satis�ed:

i)
∞∑
i=1

P(∥Xi∥Lp > c) <∞.

ii) △((Xi)i) ∈ Lp(X,Σ, µ).
iii) ∫

X

∞∑
i=1

E|Xi(x)|p1{|Xi(x)|>△((Xi)i)(x),∥Xi∥Lp≤c}dµ(x) <∞ .

Proof. By the Borel-Cantelli lemma and by corollary 3.1.3 we have that
∞∑
i=1

Xi converges a.s.

in Lp(X,Σ, µ) ⇐⇒
∞∑
i=1

P(∥Xi∥Lp > c) <∞ and
∞∑
i=1

Xi1{∥Xi∥Lp≤c} converges a.s. So it will be

su�cient to show that these conditions are equivalent.

=⇒) Given c > 0, if Yi = Xi1{∥Xi∥Lp≤c}, then
∞∑
i=1

E ∥Yi∥p 1{∥Yi∥>c} = 0. Thus by theorem

3.1.3, calling S′ the a.s. limit of
∞∑
i=1

Yi, we have that E ∥S′∥p <∞. Since the Yn are symmetric,

then by theorem 4.2.2 we have that for almost all x ∈ X the Yn(x) are symmetric real valued

random variables. If we denote, for k = 1 . . . , S′
k(x) =

k∑
i=1

Yi(x), then also by theorem 3.1.3a,

S′
n converges in Lp(Ω,F ,P, Lp(X)). Now, de�ne (S′

k)
∗(x) = max

1≤j≤k
|S′
j(x)| , then for almost all

x [µ], by the symmetry of the Yj 's recalling theorem 2.1.8, we have:

P(|(S′
n)

∗(x)| > λ) ≤ 2P(|S′
n(x)| > λ) .

Now, let us consider the product measure ν = µ×P, so by the previous inequality, Chevychev�s
inequality over (X,Σ, µ) and Fubini�s theorem, we have:

ν(|(S′
n)

∗| > λ) ≤ 2ν(|S′
n| > λ) = E

(
µ(|S′

n| > λ)
)
≤ E ∥S′

n∥
p

λp
,

thus S′
n(x) converges a.s. for almost all x ∈ X [µ] by a similar argument to the proof of

theorem 4.3.1b. Then for almost all x ∈ X we can apply lemma 3.1.4:

C1E|S′(x)|p ≤ (△((Yi)i))
p (x) +

∞∑
i=1

E|Yi(x)|p1{|Yi|>△(Yi)i} ≤ C2E|S′(x)|p ,

then integrating, and by Fubini�s theorem:

C1E
∥∥S′∥∥p ≤ ∥△((Yi)i)∥p +

∞∑
i=1

∫
X

E|Yi(x)|p1{|Yi|>△(Yi)i}dµ ≤ C2E
∥∥S′∥∥p ,

aAlthough this is a result for normed spaces this theorem can be easily adapted for the Lp spaces, with
p < 1.

bIf we restrain to the case p ≥ 1 one could appeal to theorem 4.3.1 directly.
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from this ∫
X

∞∑
i=1

E|Yi(x)|p1{|Yi(x)|>△((Yi)i)(x)}dµ(x) <∞ , (4.3.3)

and △(Yi)i ∈ Lp(X). but by the de�nition of △, we always have that

△((Yi(x))i) ≤ △((Xi(x))i) ,

and, from the de�nition of Yi, we have that over {∥Xi∥ ≤ c}: |Yi| > △((Yi)i) ⇐⇒ |Xi| >
△((Yi)i). Then

{|Xi| > △((Xi)i), ∥Xi∥Lp ≤ c} ⊆ {|Yi| > △((Yi)i)} ,
and by eq. 4.3.3 this readily implies that∫

X

∞∑
i=1

E|Xi(x)|p1{|Xi(x)|>△(x),∥Xi∥Lp≤c}dµ(x) <∞ .

For δ′ < δ, we have that △δ((Xi(x))) ≤ △δ′((Yi(x))) ,
c whenever

∞∑
i=1

P(∥Xi∥ > c) < δ − δ′.

This fact follows from the inequality:

∞∑
i=1

Ψ2(Xi(t)/s) ≤
∞∑
i=1

Ψ2(Yi(t)/s) +
∞∑
i=1

P(∥Xi∥ > c) .

And then, △(Yi)i ∈ Lp(X) =⇒ △(Xi)i ∈ Lp(X).
⇐=) By the de�nition of △δ((Xi)i), given x ∈ X and ϵ > 0, there exists s = s(x) such that∑
i

(
E
(
Xi(x)
s

)2
1{|Xi|≤ s} +P(|Xi(x)| > s)

)
≤ δ, and △ ≤ s < △ + ϵ. Thus for every ϵ > 0,(∑

i
E (Xi(x))

2 1{|Xi|≤△((Xi)i)}

) 1
2

< δ1/2(△((Xi)i) + ϵ). So if △((Xi)i) ∈ Lp(X), then

(∑
i

E (Xi(x))
2 1{|Xi|≤△((Xi)i)}

) 1
2

∈ Lp(X) ,

and then (∑
i

E (Yi(x))
2 1{|Xi|≤△((Xi)i)}

) 1
2

∈ Lp(X) with Yi = Xi1{∥Xi∥≤c} . (4.3.4)

Now, using eq. 4.3.4 and condition (iii) let us prove that
∑
i
Yi1{|Xi|≤△((Xi)i)} and∑

i
Yi1{|Xi|>△((Xi)i)} converge a.s.

Case 1 ≤ p < 2: By Hölder�s inequality, we have(
E

m∑
i=n

(Yi(x))
2 1{|Xi|≤△((Xi)i)}

) p
2

≥ E

(
m∑
i=n

(Yi(x))
2 1{|Xi|≤△((Xi)i)}

) p
2

cRemember that △ depends also of a positive constant δ.
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≥ 1

Bp
E

∣∣∣∣∣
m∑
i=n

Yi1{|Xi|≤△((Xi)i)}

∣∣∣∣∣
p

(By theorem 2.1.11)

Then, by eq. 4.3.4 and by Fubini�s theorem:

E
∫
X

∣∣∣∣∣
m∑
i=n

Yi1{|Xi|≤△((Xi)i)}

∣∣∣∣∣
p

dµ −→
n,m→∞

0 ,

so
∑
i
Yi1{|Xi|≤△((Xi)i)} converges in probability and then by theorem 3.1.2 it converges a.s.

On the other hand, using that ar + br ≥ (a+ b)r, if a, b ≥ 0 and 0 < r < 1, with r = p
2 :

E

(
m∑
i=n

|Yi|p1{|Xi|>△((Xi)i)}

)
≥ E

(
m∑
i=n

|Yi|21{|Xi|>△((Xi)i)}

) p
2

≥ 1

Bp
E

∣∣∣∣∣
m∑
i=n

Yi1{|Xi|>△((Xi)i)}

∣∣∣∣∣
p

(By theorem 2.1.11)

Then, by condition (iii) and by Fubini�s theorem:

E
∫
X

∣∣∣∣∣
m∑
i=n

Yi1{|Xi|>△((Xi)i)}

∣∣∣∣∣
p

dµ −→
n,m→∞

0 ,

so
∑
i
Yi1{|Xi|>△((Xi)i)} converges in probability and then by theorem 3.1.2 it converges a.s.

Thus,
∑
i
Yi converges a.s.

Case 2 ≤ p <∞: By Rosenthal�s theorem 3.1.1 and Fubini�s theorem,

Kp

∫
X

m∑
i=n

E|Yi|p1{|Xi|≤△((Xi)i)}dµ+

∫
X

(
E

m∑
i=n

(Yi)
2 1{|Xi|≤△((Xi)i)}

) p
2

dµ

 (4.3.5)

≥ E
∫
X

∣∣∣∣∣
m∑
i=n

Yi1{|Xi|≤△((Xi)i)}

∣∣∣∣∣
p

dµ ,

Now, let us bound
∫
X

m∑
i=n

E|Yi|p1{|Xi|≤△((Xi)i)}dµ. First, note that

E|Yi|p1{|Xi|≤△((Xi)i)} ≤ E|Yi|21{|Xi|≤△((Xi)i)} (△((Xi)i))
p−2 .

Then by Hölder�s inequality with exponent p
2 and conjugate exponent p

p−2 :∫
X

m∑
i=n

E|Yi|p1{|Xi|≤△((Xi)i)}dµ ≤
∫
X

m∑
i=n

E|Yi|21{|Xi|≤△((Xi)i)}(△((Xi)i))
p−2dµ
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≤

∥∥∥∥∥∥
(

m∑
i=n

E|Yi|21{|Xi|≤△((Xi)i)}

) 1
2

∥∥∥∥∥∥
2

Lp(X)

∥△((Xi)i)∥p−2
Lp(X) .

Then taking in account equation 4.3.5, again as in the previous case, we have that,

E
∫
X

∣∣∣∣∣
m∑
i=n

Yi1{|Xi|≤△((Xi)i)}

∣∣∣∣∣
p

dµ −→
n,m→∞

0 ,

so
∑
i
Yi1{|Xi|≤△((Xi)i)} converges in probability and then by theorem 3.1.2 it converges a.s.

Now, we prove that
∑
i
Yi1{|Xi|>△((Xi)i)} converges a.s. Again we use theorem 3.1.1:

Kp

∫
X

m∑
i=n

E|Yi|p1{|Xi|>△((Xi)i)}dµ+

∫
X

(
E

m∑
i=n

(Yi)
2 1{|Xi|>,△((Xi)i)}

) p
2

dµ

 (4.3.6)

≥ E
∫
X

∣∣∣∣∣
m∑
i=n

Yi1{|Xi|>△((Xi)i)}

∣∣∣∣∣
p

dµ ,

But in this case we will bound
∫
X

(
E

m∑
i=n

(Yi)
2 1{|Xi|>,△((Xi)i)}

) p
2

dµ. Indeed, write Ai =

{(x, ω) : |Xi| >,△((Xi)i)}, so by Minkowski�s inequality∫
X

(
E

m∑
i=n

(Yi)
2 1{|Xi|>,△((Xi)i)}

) p
2

dµ ∥△((Xi)i)∥
(p−2)p

2

Lp(X)

≤

 m∑
i=n

E

∫
X

|Yi|p1Aidµ

 2
p


p
2

∥△((Xi)i)∥
(p−2)p

2

Lp(X) =

(
m∑
i=n

E ∥Yi1Ai∥
2
Lp(X)

) p
2

∥△((Xi)i)∥
(p−2)p

2

Lp(X)

Since |Xi| ≥ △((Xi)i) over Ai, we have that

∥Yi1Ai∥
p
Lp(X) ≥ ∥Yi1Ai∥

2
Lp(X) ∥△((Xi)i)∥(p−2) .

Then the last inequality can be bounded by:

(
m∑
i=n

E ∥Yi1Ai∥
p
Lp(X)

) p
2

. But from condition (iii)

this term tends to 0 whenever n,m −→ ∞. Then,∑
i

Yi1{|Xi|>△((Xi)i)} ,

converges in probability and then by theorem 3.1.2 it converges a.s.

Remark. Case 0 < p < 1 : Note, that if 0 < p < 1 the Lp spaces are metric spaces but not
normed spaces. The proofs of the previous cases rely on corollary 3.1.1, which is a result for
normed spaces. However, these general results for normed spaces can be modi�ed for the case
of the Lp metric. For further references about theorem 4.3.2 and its consequence, theorem
4.3.3, see section 4.5 at the end of this chapter.
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4.3.2 a.s. convergence of stable sequences in Lp

In the following theorem, we consider series of the form
∞∑
i=1

aifi, where ai are symmetric

α-stable (α ∈ (0, 2)) independent random variables, and fi ∈ Lp(X,Σ, µ).

Theorem 4.3.3. Let 0 < p < ∞, {fj}j∈N ⊂ Lp(X,Σ, µ), and let {aj}j∈N be a sequence
of real, independent, identically distributed, α-stable symmetric random variables. Then the

series
∞∑
i=1

aifi converges in L
p(X,Σ, µ) a.s. ⇐⇒

i) In the case α = 2 or p < α < 2,∥∥∥∥∥∥
( ∞∑
i=1

|fi|α
)1/α

∥∥∥∥∥∥
Lp(X,Σ,µ)

<∞ . (4.3.7)

ii) In the case p > α and α < 2,

∞∑
i=1

∥fi∥αLp(X,Σ,µ) <∞ ;

iii) In the case p = α and α < 2,

∞∑
i=1

∫
X

|fi|α

1 + log+
|fi|α∑

j
|fj |α ∥fi∥αLα

 dµ <∞

Moreover, the a.s. convergence of the series
∞∑
i=1

aifi implies its convergence en the r-mean,

r < α.

Proof. The equivalence of the a.s. convergence and convergence in the r mean for r < α was
established in corollary 3.1.5. We will use theorem 4.3.2, and we begin estimating △((Xi)i) by( ∞∑
i=1

|fi|α
)1/α

. Indeed, �rst note, that if Ψ(x) = x1{|x|≤1} + sgn(x)1{|x|>1}, then (Ψ(x))2 =

x21{|x|≤1} + 1{|x|>1}. Thus,

E
(
Ψ

(
aifi
s

))2

= f2i E
(ai
s

)2
1{|aifi|≤s} +P(|aifi| > s) .

Recalling the asymptotic properties of stable distributions from chapter 2, section 2.4.4, we
have, that for some positive constants A,B > 0:

A
|fi|α−2

sα
≤ E

(ai
s

)2
1{|aifi|≤s} ≤ B

|fi|α−2

sα
,

and, for some A′, B′ > 0,

A′ |fi|α

sα
≤ P(|aifi| > s) ≤ B′ |fi|α

sα
,
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if s
|fi| ≥ s0, for some s0 su�ciently large. So,

∞∑
i=1

f2i A
|fi|α−2

sα
+A′ |fi|α

sα
≤

∞∑
i=1

E
(
Ψ

(
aifi
s

))2

≤
∞∑
i=1

f2i B
|fi|α−2

sα
+B′ |fi|α

sα
,

then, from the de�nition of △((aifi)i), we have that for an appropriate small δ, given ϵ > 0,
there exists s = s(x) (x ∈ X), such that △((aifi)i)(x) ≤ s(x) < △((aifi)i)(x) + ϵ and for

some constant C > 0: C
∞∑
i=1

|fi(x)|α ≤ δsα(x). But if △((aifi))(x) > s(x)− ϵ, C
1
α ∥(fi)i∥lα >

δ
1
α (s(x)− ϵ). Thus

∥(fi)i∥lα ∈ Lp(X,Σ, µ) ⇐⇒ △((aifi)i) ∈ Lp(X,Σ, µ) , (4.3.8)

with α ∈ (0, 2) and 0 < p <∞. In particular we have from theorem 4.3.2 that,

∞∑
i=1

aifi converges a.s. =⇒ ∥(fi)i∥lα ∈ Lp(X,Σ, µ) . (4.3.9)

Now, let us consider di�erent separate cases:

Case p < α < 2: Let Yn =
n∑
i=1

aifi, then since the a′is are independent symmetric α-stable

random variables: there exists a positive constant K, such that for every x ( again recall
chapter 2, section 2.4.4), n > m:

E|Yn(x)− Ym(x)|p = K

(
n∑

i=m

|fi(x)|α
) p

α

.

So, integrating in the variable x:

E ∥Yn − Ym∥p = K

∫
X

(
n∑

i=m

|fi(x)|α
) p

α

dµ(x) .

But if ∥(fi)i∥lα ∈ Lp(X,Σ, µ) then
∫
X

(
n∑

i=m
|fi(x)|α

) p
α

dµ(x) −→
n,m→∞

0. Thus Yn converges in

the p-mean and then in probability but by theorem 3.1.2 this is equivalent to a.s. convergence.
This, together with the implication 4.3.9 proved before concludes the proof of the theorem for
this case.
Case α < 2, α < p: Condition i) of theorem 4.3.2 reads as follows, for α ̸= 2:

∞∑
i=1

∥fi∥αLp(X,Σ,µ) <∞ , (4.3.10)

Indeed, this follows from the estimate for the i.i.d. stable ai's :

A
∥fi∥αLp(X)

cα
≤ P(|ai| > c ∥fi∥−1

Lp(X)) ≤ B
∥fi∥αLp(X)

cα
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for large enough c.
In particular, in view of theorem 4.3.2, we have that eq. 4.3.10 is a necessary condition for

the a.s. convergence of
∞∑
i=1

aifi. On the other hand, by Minkowski's inequality, since p
α > 1 :

∞∑
i=1

∥fi∥αLp(X,Σ,µ) =

∞∑
i=1

(∫
X
|fi|pdµ

)α
p

≥

∫
X

( ∞∑
i=1

|fi|α
) p

α

dµ

α
p

. (4.3.11)

Then condition 4.3.10 together with eq. 4.3.8 implies condition ii) of theorem 4.3.2. Now, let
us prove that condition iii) of theorem 4.3.2 is veri�ed. In this case condition iii) reads

∞∑
i=1

∫
X

|fi|pE|ai|p1Aidµ , (4.3.12)

where

Ai(x) =

{
ω ∈ Ω :

∥(fi(x))∥lα
|fi(x)|

< |ai| ≤
c

∥fi∥Lp

}
.

If α ̸= 2 and α ̸= p, then we majorize the sum in 4.3.12 by

∞∑
i=1

∫
X

|fi|pE|ai|p1{|ai|≤ c

∥fi∥Lp
}dµ ,

and since the a′is are α-stable and p > α, we have the following estimate on the distributions,

A

(
c

∥fi∥Lp

)p−α
≤ E|ai|p1{|ai|≤ c

∥fi∥Lp
} ≤ B

(
c

∥fi∥Lp

)p−α
.

Then the sum 4.3.12 is bounded by:

∞∑
i=1

∫
X

|fi|pE|ai|pdµ ∥fi∥α−pLp = C
∞∑
i=1

∥fi∥αLp ,

thus this concludes the proof the theorem for this case.

Case p = α < 2: If α < 2 and p = α then, in a similar way to the previous cases, but
using the property 5 of chapter 2, section 2.4.4, since the ai�s are α-stable, the sum 4.3.12 can
be estimated by

C
∞∑
i=1

|fi(x)|plog+
|fi(x)|

∥fi∥Lp ∥(fi(x))i∥lα
,

since ∥(fi(x))i∥lα ≤ |fi(x)| and conditions 4.3.10 and 4.3.7 coincide with the condition

∞∑
i=1

∫
X

|fi(x)|pdµ <∞ ,
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which proves the corollary in this case. Finally, if α = 2 then condition 4.3.7 implies 4.3.10
and 4.3.12. Indeed, since for r ≥ max{2,p},( ∞∑

i=1

∥fi∥rLp

) 1
r

≤

∥∥∥∥∥∥
(∑

i

|fi|2
) 1

2

∥∥∥∥∥∥
Lp

since the ai's are stable, condition 4.3.7 implies 4.3.10. If p < 2, we estimate the sum in the
condition 4.3.12, by

∞∑
i=1

∫
X

|fi(x)|pE|ai|p1{∥(fi(x))i∥l2<|aifi(x)|}dµ

≤ C

∞∑
i=1

∫
X

|fi(x)|p ∥(fi(x))i∥2−pl2

|fi(x)|2−p
dµ = C

∥∥∥∥∥∥
(∑

i

|fi|2
) 1

2

∥∥∥∥∥∥
p

Lp

the follows from E|ai|p1{|ai|≤t} ≤ E|ai|p and since ∥(fi(x))i∥l2 ≥ |fi(x)|. As a result, we obtain
that 4.3.7 implies 4.3.10. If p ≥ 2, then the sum in 4.3.12 is estimated by

E|a1|p
∞∑
i=1

|fi|pdµ = E|a1|p
∞∑
i=1

∥fi∥pLp ≤ E|a1|p
∥∥∥∥∥∥
(∑

i

|fi|2
) 1

2

∥∥∥∥∥∥
p

Lp

.

This concludes the proof of the corollary in the case α = 2.

4.3.3 Series expansions with respect to an Unconditional Basis. Conver-

gence in p-th mean and a.s. almost everywhere convergence.

Unconditional basic sequences are very important in the theory of Banach spaces. Another
concept which is related with them is lp stability and both are important topics in wavelet
analysis, shift invariant subspaces and their applications such as sampling of signals. It is
also interesting to study the pointwise, almost everywhwere convergence properties of these
expansions. Here, we will consider random series of the form

∞∑
i=1

aifi , (4.3.13)

where the ai's are independent (or not) zero mean random variables and the fi's are an
unconditional basic sequence or an lp stable sequence in a Lebesgue space Lp(X,Σ, µ), where
p ∈ [1,∞). In this section we give conditions under which, if one of these series 4.3.13
converges in the norm topology almost surely then converges almost everywhere almost surely
and converges in the p mean.
We begin with a concept from the theory of Banach spaces. lp stability is de�ned as an
equivalence of norms :

De�nition 20. [25] Let (E, ∥.∥) be a Banach space, then {fj}j∈N ⊂ E is a lp-stable sequence
(p ∈ [1,∞)), if there exist positive constants cp and Kp, such that:

cp ∥a∥lp ≤

∥∥∥∥∥∑
i

aifi

∥∥∥∥∥ ≤ Kp ∥a∥lp , ∀ a ∈ l0 .
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Where l0 is the linear space of all real (or complex) valued sequences which have all its
coordinates equal to 0 but for a �nite set of indexes.

lp- stable sequences provide examples of bounded unconditional basic sequences. That is,
if the {fj}j is a lp-stable sequence then 0 < inf

j
∥fj∥ ≤ sup

j
∥fj∥ <∞ and it is a basis. Indeed,

the �rst assertion is obvious and for the second take f ∈ span{fj}j , then for each n ∈ N there
exists a sequence an = (aj n)j∈N ∈ RN, with zero coordinates except for a �nite set of indexes

j, such that

∥∥∥∥∥f −
∑
j∈N

aj nfj

∥∥∥∥∥ < 1
n . We shall see, that the sequence (an)n is a Cauchy sequence

in lp. Note, that from the de�nition, and the triangle inequality:

cp
∑
j∈N

|aj n − aj m|p ≤

∥∥∥∥∥∥
∑
j∈N

aj mfj −
∑
j∈N

aj nfj

∥∥∥∥∥∥
p

<
1

n
+

1

m
.

Then there exists b = (bj)j ∈ lp such that an −→ b in lp. Let us verify that
∑
j
bjfj converges

in (E, ∥ . ∥). Given n ∈ N: ∃ j0, aj n = 0 for all j ≥ j0. Taking m ≥ k ≥ j0:∥∥∥∥∥∥
m∑
j=k

bjfj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
m∑
j=k

(bj − aj n)fj

∥∥∥∥∥∥ ≤ Kp ∥b− an∥lp .

Then
∑
j
bjfj converges in (E, ∥ . ∥). On the other hand,

∥∥∥∥∥∥
∑
j∈N

(bj − aj n)fj

∥∥∥∥∥∥ ≤ Kp ∥b− an∥lp −→ 0 .

Hence f =
∑
j
bjfj . The uniqueness of this representation follows again from the de�nition of

the lp stability. Then the {fj}j is a basis of span{fj}j .

Recalling the characterization of unconditional bases in Lp(X) spaces of theorem 2.3.2, we
can prove the �rst result of this section: a kind of analogue of a result of Paley and Zygmund.

Proposition 4.3.1. a) Let {fj}j∈N ⊂ E be an lp-stable sequence, 0 < λ < 1; and {aj}j∈N a
sequence of random variables such that there exist a constant C > 0 and r ∈ (1,∞) such that
E|aj |rp ≤ C(E|aj |p)r, ∀ j, then equation 4.3.14 holds.
b) Let {fj}j∈N ⊂ Lp(X,Σ, µ), (∞ > p ≥ 2) be basic unconditional sequence, 0 < λ < 1;
and {aj}j∈N a sequence of random variables such that there exists a constant C > 0 such that
E|aj |2p ≤ C(E|aj |2)p, ∀ j, then equation 4.3.14 holds with r′ = 2. If 1 ≤ p < 2, the last

assertion remains true with the additional condition: (E|ai|p)
1
p ≥ c(E|ai|2)

1
2 .

P

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
p

> λE

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
p ≥ (1− λ)r

′
k (4.3.14)

where k is a positive constant independent of n and 1
r +

1
r′ = 1.
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Remark. The hypothesis E|aj |rp ≤ C(E|aj |p)r ∀ j may look arti�cial, but this regularity
condition is necessary in order to control the values of the ai's. Similar conditions can be
found in [40], [18], [62] and [63] dealing, for example, with random Fourier series.

Proof. Part a) First, by lemma 3.1.1 we have:

P

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
p

> λE

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
p ≥ (1− λ)r

′

(
E

∥∥∥∥∥ n∑
j=1

aj fj

∥∥∥∥∥
p)r′

(
E

∥∥∥∥∥ n∑
j=1

aj fj

∥∥∥∥∥
pr) r′

r

, (4.3.15)

on the other hand, by the de�nition of lp-stability and Minkowski's inequality:

E

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
rp

≤ Krp
p E

 n∑
j=1

|aj |p
r

≤ Krp
p

 n∑
j=1

(E|aj |pr)
1
r

r

,

using the condition E|aj |rp ≤ C(E|aj |p)r ∀ j, one gets,

E

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
rp

≤ Krp
p C

 n∑
j=1

E|aj |p
r

(4.3.16)

Clearly, from eq. 4.3.16 :(
E

∥∥∥∥∥ n∑
j=1

aj fj

∥∥∥∥∥
p)r′

(
E

∥∥∥∥∥ n∑
j=1

aj fj

∥∥∥∥∥
pr) r′

r

≥
cpr

′
p

(
n∑
j=1

E|aj |p
)r′

Kr′p
p C

r′
r

(
n∑
j=1

E|aj |p
)r′ .

This, together with equation 4.3.15 implies the desired result.

Part b) To bound E

∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥
p

we must consider two separate cases: �rst ∞ > p ≥ 2

and then 1 ≤ p ≤ 2. The rest of the proof is valid for all ∞ > p ≥ 1.
If p ≥ 2 then,

E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
p

=

∫
Ω

∫
X

(
n∑
i=1

|aifi|2
) p

2

dµ dP

=

∫
X

∫
Ω

(
n∑
i=1

|aifi|2
) p

2

dPdµ =

∫
X

E

(
n∑
i=1

|aifi|2
) p

2

dµ . (4.3.17)
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But by Hölder's inequality E
(

n∑
i=1

|aifi|2
) p

2

≥
(
E

n∑
i=1

|aifi|2
) p

2

and clearly, from this and 4.3.17

we have:

E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
p

≥

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

. (4.3.18)

Now, if 1 ≤ p < 2 as a direct consequence of Minkowski's integral inequality and Fubini's
theorem:

E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
p

=

∫
X

E

(
n∑
i=1

|aifi|2
) p

2

dµ ≥
∫
X

(
n∑
i=1

(E|ai|p)
2
p |fi|2

) p
2

dµ

≥ c

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

. (4.3.19)

On the other hand,

E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
2p

=

∫
Ω

∫
X

(
n∑
i=1

|aifi|2
) p

2

dµ

2

dP . (4.3.20)

If we de�ne g(x, ω) =

(
n∑
i=1

|ai(ω)fi(x)|2
) p

2

, then by, Minkowski's inequality we have the

following bound on 4.3.20:

∫
Ω

∫
X

g(x, ω)dµ

2

dP ≤

∫
X

∫
Ω

|g(x, ω)|2dP

 1
2

dµ


2

.

Now,
∫
Ω

|g(x, ω)|2dP = E
(

n∑
i=1

|aifi(x)|2
)p

then by the triangle inequality:

E

(
n∑
i=1

|aifi(x)|2
)p

≤

(
n∑
i=1

(
E|aifi(x)|2p

) 1
p

)p
(4.3.21)

=

(
n∑
i=1

(E|ai|2p)
1
p |fi(x)|2

)p
≤ C

(
n∑
i=1

E|ai|2|fi(x)|2
)p

, (4.3.22)

where the last inequality follows from E|aj |2p ≤ C(E|aj |2)p, ∀ j.
Hence:

∫
X

∫
Ω

|g(x, ω)|2dP

 1
2

dµ ≤ C
1
2

∫
X

(
n∑
i=1

E|ai|2|fi|2
) p

2

dµ = C
1
2

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

Lp(X)

,
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and from this it is immediate that:

E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
2p

≤ C

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
2p

. (4.3.23)

By equations 4.3.23 and 4.3.18 or 4.3.19 we have the following bounds:

E

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
p

≥ App E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
p

≥ kpA
p
p

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

, (4.3.24)

and:

E

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
2p

≤ B2p
p E

∥∥∥∥∥∥
(

n∑
i=1

|aifi|2
) 1

2

∥∥∥∥∥∥
2p

≤ CB2p
p

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
2p

. (4.3.25)

Recall 4.3.15 with r = 2, so as from 4.3.24 and 4.3.25, we have:(
E

∥∥∥∥∥ n∑
j=1

aj fj

∥∥∥∥∥
p)2

E

∥∥∥∥∥ n∑
j=1

aj fj

∥∥∥∥∥
2p ≥

A2p
p

∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥
2p

B2p
p C

∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥
2p ,

and then we get the desired result.

4.3.4 Convergence in the p mean and almost sure [µ]-a.e. convergence.

First, let us note that if

sup
n∈N

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

<∞ ,

under the conditions of proposition 4.3.1 part b), then it is rather straightforward to see that

Sn =
n∑
i=1

aifi is a Cauchy sequence in Lp(X × Ω) (equations 4.3.29 and 4.3.30) and since for

λ > 0: P(∥Sn − Sm∥ > λ) ≤ E∥Sn−Sm∥p
λp , then it is a Cauchy sequence in probability but if

the ai's are independent then convergence in probability of sums of independent Banach space
valued random implies a.s. convergence (By theorem 3.1.2). A similar argument holds for the
case of lp-stable sequences. Next we prove a result which is a partial converse of this fact.

Proposition 4.3.2. a) Let {fj}j∈N be a lp-stable sequence and {aj}j∈N be a sequence of
random variables such that there exist a constant C > 0 and r ∈ (1,∞) such that E|aj |rp ≤

C(E|aj |p)r ∀ , j; then if
∞∑
i=1

aifi converges in the norm topology of E a.s. then

∞∑
i=1

E|ai|p <∞ .
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b) Let {fj}j∈N ⊂ Lp(X,Σ, µ), (p ≥ 2) be a basic unconditional sequence and {aj}j∈N a
sequence of independent random variables such that there exists a constant C > 0 E|aj |2p ≤

C(E|aj |2)p ∀ j; if
∞∑
i=1

aifi converges in the norm topology of Lp(X,Σ, µ) a.s. then

∥∥∥∥∥∥
( ∞∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

<∞ .

If 1 ≤ p < 2, the last assertion remains true with the additional condition: (E|ai|p)
1
p ≥

c(E|ai|2)
1
2 .

In particular, a) or b) imply that
∞∑
i=1

aifi converges in the p-mean.

Proof. part a) Take λ ∈ (0, 1) , de�ne:

Dn =

ω ∈ Ω :

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
p

> λE

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
p

and de�ne:

D = lim
n→∞

Dn =

∞∩
p=1

∞∪
n=p

Dn , (4.3.26)

By proposition 4.3.1 ∃ k > 0 such that P(Dn) ≥ k(1 − λ)r
′
for all n, where 1

r +
1
r′ = 1, but

P( lim
n→∞

Dn) ≥ lim
n→∞

P(Dn) ≥ k(1− λ)r
′
> 0 then, P(D) > 0.

From this last fact: D
∩
{ω ∈ Ω :

∑
i
aifi converges in E} ̸= ⊘, equivalently ∃ω ∈ D such

that
∑
i
ai(ω)fi converges in (E, ∥.∥) and this implies: ∃M > 0 such that

sup
n∈N

∥∥∥∥∥∥
n∑
j=1

aj(ω) fj

∥∥∥∥∥∥
p

≤ M .

By equation 4.3.26 there exist in�netly many n′s, such that for this ω ∈ D:

∞ > M ≥

∥∥∥∥∥∥
n∑
j=1

aj(ω) fj

∥∥∥∥∥∥
p

> λE

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
p

≥ λcpp

n∑
i=1

E|ai|p (4.3.27)

=⇒
∞∑
i=1

E|ai|p < ∞, and the proof of a) is complete.

part b) The proof is almost the same as for part a) but with r = r′ = 2. Instead of the bound
4.3.27, recalling the bound of equation 4.3.24 we have:

∞ > M ≥

∥∥∥∥∥∥
n∑
j=1

aj(ω) fj

∥∥∥∥∥∥
p

> λE

∥∥∥∥∥∥
n∑
j=1

aj fj

∥∥∥∥∥∥
p

≥ λkpA
p
p

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

(4.3.28)
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for in�netly many n′s and, then by Beppo Levi's theorem:

∞ > lim
n→∞

∥∥∥∥∥∥
(

n∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
( ∞∑
i=1

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥
p

.

The convergence in the mean follows from eq. 4.3.23 of the previous result.

Almost Sure a.e. [µ] convergence

Now, we relate the previous result with a.e. convergence: let us give a result on convergence
over the product space. However, some additional conditions on the random coe�cients ai's,
such as independence, should be added.

Theorem 4.3.4. a) Let {aj}j∈N be a sequence of independent random variables such that there
exist a constant C > 0 and r ∈ (1,∞) such that E|aj |rp ≤ C(E|aj |p)r, ∀ j, and E(aj) = 0;

and let {fj}j∈N ⊂ Lp(X,Σ, µ), 1 ≤ p < ∞, be a lp-stable sequence. If
∞∑
i=1

aifi converges in

Lp(X,Σ, µ) a.s. =⇒
∞∑
i=1

aifi converges [µ] almost everywhere a.s.

b) Let {aj}j∈N be a sequence of independent random variables such that there exists a constant
C > 0 such that E|aj |2p ≤ C(E|aj |2)p, ∀ j, and E(aj) = 0; and let {fj}j∈N ⊂ Lp(X,Σ, µ) be an

unconditional basic sequence. If
∞∑
i=1

aifi converges in Lp(X,Σ, µ) a.s. =⇒
∞∑
i=1

aifi converges

[µ]-almost everywhere a.s. If 1 ≤ p < 2, the last assertion remains true with the additional

condition: (E|ai|p)
1
p ≥ c(E|ai|2)

1
2 .

Proof. Under the hypothesis of a) or b) , we can see that
n∑
i=1

aifi is a Cauchy sequence in

Lp(X × Ω). Then both assertions will follow as a consequence of theorem 4.3.1:
Part a) We have:

E

∥∥∥∥∥
n∑

i=m

aifi

∥∥∥∥∥
p

≤ Kp
p E

n∑
i=m

|ai|p = Kp
p

n∑
i=m

E|ai|p −→ 0 , (4.3.29)

when n,m −→ ∞, as a consequence of proposition 4.3.2 part a).
Part b) Again, from Hölder's inequality and equation 4.3.25:

E

∥∥∥∥∥
n∑

i=m

aifi

∥∥∥∥∥
p

≤

E

∥∥∥∥∥
n∑

i=m

aifi

∥∥∥∥∥
2p
 1

2p

≤ C
1
2pBp

∥∥∥∥∥∥
(

n∑
i=m

E|ai|2|fi|2
) 1

2

∥∥∥∥∥∥ −→ 0 , (4.3.30)

when n,m −→ ∞, since
n∑
i=1

E|ai|2|fi|2 is a Cauchy sequence in L
p
2 (X,Σ, µ) as a consequence

of proposition 4.3.2 part b).

As a consequence we obtain that almost all permutations of sign of the coe�cients of
expansions using unconditional basis converges a.e. [µ]:
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Theorem 4.3.5. Let f ∈ Span{fj}j∈N ⊂ Lp(X,Σ, µ) with (X,Σ, µ) σ-�nite, {θj}j a sequence
of i.i.d. r.v's taking values in {+1,−1} with equal probability, and {fj}j∈N an unconditional
basic (lp stable) sequence, if f =

∑
i
aifi is the expansion of f in this basis then the random

series
∑
i
θiaifi converges a.e. [µ] a.s.

Proof. This result a direct application of theorem 4.3.4 above and the de�nition of uncondi-
tional basic (lp stable) sequence.

It is remarkable that the case p = 2 for theorem 4.3.4 can be easily derived from the
results in chapter 3 using theorems 3.1.4 and 3.1.5, with no more assumptions on the sequence
{fj}j∈N than the convergence in norm of the series 4.3.13. This is a consequence of the
fact that L2(X,Σ, µ) is a Hilbert space, and that the independence of the ai's makes the
aifi behave in some sense as orthogonal elements, moreover they are independent and have
O mean ( in L2(X × Ω) = L2(Ω,F ,P, L2(X))). Since unconditional basis are good basis
and keep some of the properties of orthogonal basis, it is reasonable that this result can be
extended to the case p ̸= 2 when {fj}j∈N is an unconditional basis. Finally, as an example of
application: consider the case of a wavelet basis {ψj k}j k∈Z×Z of Lp(R), ∞ > p > 1 with the
usual Lebesgue measure. It is known that under some conditions on the mother wavelet ψ then
{ψj k}j k is an unconditional basis of Lp(R) (for example see [80] or similar references). Take
an arbitrary f ∈ Lp(R) and θj k i.i.d. r.v.'s taking values in {1,−1} with equal probability,
then if we consider the expansion of f in this basis, f ∼ S(f) =

∑
j k∈Z×Z

< f, ψj k > ψj k, we

can construct the following random series in Lp(R): X(ω) =
∑

j k∈Z×Z
θj k(ω) < f, ψj k > ψj k

as {ψj k}j k is an unconditional basis. This series converges in Lp(R) for every ω ∈ Ω. Then,
we have convergence in norm almost surely, but we also have a.e. convergence a.s. as a
consequence of theorem 4.3.5. Hence, S(f) is just one realization of this random element
de�ned by this series, but one may intuitively expect this series to converge not only in the
norm of Lp(R) but also almost everywhere. Despite these facts it can be shown that the
exceptional set of zero probability is not necessarily void for an arbitrary unconditional basic
sequence.Moreover consider the following deep result: orthonormal basis in a Hilbert space are
unconditional basis, but Mencho� [59] showed that if (X,Σ, µ) is [0, 1] with Lebesgue Measure
then there exists an orthonormal basis {fj}j∈N of L2[0, 1] and an f0 ∈ L2[0, 1] such that the
sequence Pkf0 of projections of f0 on the subspaces spanned by {f1, ..., fk} diverges a.e..

4.4 Some Applications and considerations.

4.4.1 About the representation of continuous parameter processes without

loss of information.

In the previous section 4.3.3 me have studied several relationships and conditions between dif-
ferent types of convergences for series of the form 4.3.13. However, when studying a series rep-
resentation of a process by a series relative to a basis, one may be concerned if the coe�cients
ai's carry all the information about the whole process. This situation may be the following,
given a process {Yx}x∈Rd with sample paths in Lp(Rd, dµ) with an unconditional basis {fi}i,
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where µ is some equivalent measure to Lebesgue measure, in some applications such as detec-
tion theory, one wishes to express a likelihood ratio or a posteriori probability , given the sample
path {Yx}x∈Rd as the limit of the corresponding n-dimensional quantity, given n functionals of
Y . This is granted if the σ-algebras σ((Yx)x) and σ((ai)i) coincides. Let us discuss brie�y this
problem under the assumptions of proposition 4.3.2. In many applications the process is as-
sumed to be continuous in probability. Let us see that under this condition σ((Yx)x) = σ((ai)i).
Indeed, if D = {xi}i is any countable dense subset of Rd is easy to verify that if Yx is continu-
ous in probability, then σ((Yxi)i) = σ((Yx)x). Under the assumptions of proposition 4.3.2, we

have that E
∥∥∥∥Y −

n∑
i=1

aifi

∥∥∥∥p −→
n→∞

0 and then this implies convergence in measure, with respect

to the product, i.e. for every ϵ > 0: lim
n→∞

µ × P

(
|Y −

n∑
i=1

aifi| > ϵ

)
= 0. So there exists a

measurable set A ⊆ Rd × Ω and a subsequence such that lim
n→∞

mn∑
i=1

ai(ω)fi(x) = Y (x, ω) for

every (x, ω) ∈ A and µ × P(Ac) = 0. Hence almost every x section of A has P measure 0.
Namely, there exists a Lebesgue measurable set C, such that L(Cc) = 0, and P(Ax) = 0 for all

x ∈ C. Then Y (x) = lim
n→∞

mn∑
i=1

aifi(x) a.s. for every x ∈ C. Since C is dense, also there exists a

countable subset D ⊂ C which is also dense, such that Y (xk) = lim
n→∞

mn∑
i=1

aifi(xk) a.s. for every

xk ∈ D. This implies that each Y (xk) is σ((ai)i)-measurable, and then σ((Yxk)k) ⊂ σ((ai)i).
But as Y is continuous in measure then σ((Yx)x∈Rd) ⊆ σ((ai)i). The reverse inclusion fol-
lows from this: Let {f∗i }i be the dual basis then ai =

∫
Rd

Y f∗i dµ, and since the integrand is

σ((Yx)x∈Rd)⊗ Σ- measurable, by Fubini's theorem the ai's are σ((Yx)x∈Rd)-measurable.

4.4.2 Construction of Random Processes. Fractional Brownian Motion.

Let us discuss some constructions of random process by means of series. This type of con-
structions where �rst given for Brownian Motion by N. Wiener using Fourier expansions, and
later in a more general form by Laurent Schwartz, Itô, Nisio and others.

Theorem 4.4.1. Let (X,Σ, µ) be a �nite measure space and T : L2 −→ L2 a bounded lin-
ear operator de�ned by T (f)(x) =

∫
X

k(x, y)f(y)dµ(y), where k : X × X :−→ R is a mea-

surable function such that k is symmetric and sup
x∈X

∫
X

|k(x, y)|2dµ(y) < ∞. If {ai}i∈N is a

sequence of independent identically distributed, zero mean R-valued random variables, with
ai ∈ Lp(Ω,F ,P), p ∈ [1,∞) and {fi}i∈N is an orthonormal basis. Then, X =

∑
i∈N

aiTfi con-

verges in p- mean and a.s. in Lp(X,Σ, µ). Moreover this series converges a.e. µ a.s.
And if p ≥ 2 the covariance functional for this process is given by Γ(ϕ, ψ) = ⟨ϕ, T ◦ T ∗ψ⟩.

Proof. By Fubini's theorem

E

∥∥∥∥∥
m∑
i=n

aiTfi

∥∥∥∥∥
p

Lp(X)

=

∫
X

E

∣∣∣∣∣
m∑
i=n

aiTfi

∣∣∣∣∣
p

dµ ,
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but since the ai's are independent, by theorem 2.1.11 for each x ∈ X:

E

∣∣∣∣∣
m∑
i=n

aiTfi(x)

∣∣∣∣∣
p

≤ Cp

(
m∑
i=n

|Tfi(x)|2
) p

2

Since Tfi(x) =
∫
X

k(x, y)fi(y)dµ(y) = ⟨k(x, .), fi⟩, by Parseval's identity,

m∑
i=n

|Tfi(x)|2 ≤
∞∑
i=1

|Tfi(x)|2 =
∫
X

|k(x, .)|2dµ ≤ sup
x∈X

∫
X

|k(x, .)|2dµ ,

and since µ(X) <∞, by Lebegue's theorem, then

E

∥∥∥∥∥
m∑
i=n

aiTfi

∥∥∥∥∥
p

Lp(X)

≤ Cp

∫
X

(
m∑
i=n

|Tfi|2
) p

2

dµ −→
n,m→∞

0 .

Then, we have convergence in the p-mean, and then in probability, but from theorem 3.1.2, this
implies a.s. convergence. Recalling theorem 4.3.1 we get that a.s. this series converges a.e. [µ].

Now, note that since the ai's are uncorrelated E(X(x)X(x′)) =
∞∑
i j=1

Tfi(x)Tfj(x
′)E(aiaj) =

σ2
∞∑
i=1

Tfi(x)Tfi(x
′). Then for �xed ϕ, ψ ∈ L2(X,Σ, µ):

∫
X

∫
X

ϕ(x)E(X(x)X(x′))ψ(x′)dµ(x)dµ(x′)

=

∞∑
i=1

⟨T ∗ϕ, fi⟩⟨T ∗ψ, fi⟩ = ⟨T ∗ψ, T ∗ϕ⟩ .

But this last term equals ⟨ψ, T ◦ T ∗ϕ⟩.

In some sense, this gives a method for constructing processes with a prescribed correlation
functional. However, there are some limitations, such as the the �nite measure hypothesis. In
the case when X = Rd, in the following chapter we shall give a similar construction but in the
space of Schwartz's distributions, although this convergence will be in a weaker sense, it gives
some �exibility. Finally, let us give an example, the Brownian Motion.

Brownian motion (Bm) and fractional Brownian motion of type II(fBm II)

In this case set X = [0, 1] and µ the ordinary Lebesgue measure. Let {fi}i be any orthonormal
basis of L2[0, 1], and let {ai}i be a sequence of N(0, 1) i.i.d's random variables, and consider
the fractional integration operators over [0, 1]:

Iα(f)(x) = Γ−1(α)

x∫
0

(x− y)α−1f(y)dy .
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This integral operators have similar properties to their Rd versions, de�ned in chapter 2. It
is easy to verify that Iα de�nes a continuous linear operator from L2[0, 1] to Lp[0, 1], for any
p <∞, provided that α > 1

2 . Indeed, by the Cauchy-Schwartz inequality,

∥Iαf∥pLp =

∫
[0,1]

|Iαf(x)|pdx

≤
∫

[0,1]

 x∫
0

|f(y)|2dy


p
2
 x∫

0

∣∣Γ−1(α)(x− y)α−1
∣∣2 dy


p
2

dx ≤ C ∥f∥p
L2 ,

where C is a constant depending only on α and p. Now if we denote kα(x, y) = Γ−1(α)(x −
y)α−11{y≤x}. We have by the previous results that X(x) =

∞∑
i=1

aiIα(fi)(x) converges in p-mean

and a.s. to a process with covariance given by:

E(X(x)X(x′)) =

∫
[0,1]

kα(x, y)kα(x
′, y)dy = K(α)

x∧x′∫
0

(x− y)α−1(x′ − y)α−1dy .

Note that, we have not used that the ai�s are Gaussian r.v.'s. So we have constructed a
process with the same second order properties of fBm II. If the the ai's are Gaussian then
this is a fBm. This approach is also useful to study the regularity of the trajectories. Indeed,
[85], as Iβ also maps continuously Lr into the Hölder class of continuous functions Λα−1/r,

if 1/r < α < 1 + 1/r, then, taking 1
2 < γ < α write α = (α − γ) + γ, and since ,[85],

Iα = Iα−γ ◦ Iγ . Then, by the previous arguments, we have that
∞∑
i=1

aiIγfi ∈ Lp[0, 1] a.s., and

then X ∈ Λα−γ− 1
p
, ∀ 1 ≤ p <∞. Thus X ∈ Λβ a.s. for all β < α− 1

2 .
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4.5 Bibliographical and Historical Notes

4.5.1 The product space, Fubini�s theorem and almost everywhere conver-

gence. Theorem 4.3.1 its consequences and related results.

An early, and brief, result in the direction of theorems 4.3.4 and 4.3.1 is given in Alexits' book
[2]:

Theorem 4.5.1. Let {fk}k be an orthonormal system in L2((a, b), dx). If
∑
k

c2k < ∞, and

{ak}k is a sequence of independent Ber(p = 0.5) random variables, taking values in {−1, 1},
then with probability one:

∑
k

akckfk(x) converges for almost all x ∈ (a, b).

This result is a consequence of the a.e. convergence of series of Rademacher functions,
Parseval�s theorem and, �nally, Fubini�s theorem. In theorem 4.3.1 we proved an almost
everywhere convergence result by a device of using an already known result over a �xed
measure space, in this case Kolmogorov's inequality 2.1.3 (or similar results could have been
used), and by means of Fubini�s theorem, by transferring this known result to the product
measure space. This device can be found in several results of ergodic theory, for example, in
Wiener�s local ergodic theorem or Calderón�s proof of the a.e. convergence of the Hilbert
ergodic transform, namely:

Theorem 4.5.2. (N. Wiener)[65] Let {Tt}t be a measure preserving �ow on a probability
space (Ω,F ,P), and suppose that X ∈ L1(Ω,F ,P). Then,

lim
ϵ→0+

1

2ϵ

ϵ∫
−ϵ

X ◦ Ttdt = X a.s.

This rather short result is a consequence of Lebesgue�s di�erentiation theorem and Fubini�s
theorem. On the other hand, a similar, but more complicated idea is behind Calderón�s proof
of the convergence of the ergodic Hilbert transform. There, using Fubini�s theorem he transfers
a known result for real variable functions, the weak -type (1, 1) inequality for the ordinary
Hilbert transform, to the ergodic context. Using this device he proves:

Theorem 4.5.3. (A.P. Calderón)[65] Let {Tt}t be a measure preserving �ow on a probability
space (Ω,F ,P), and suppose that X ∈ L1(Ω,F ,P). Then,

lim
ϵ→0+

∫
ϵ≤|t|≤ 1

ϵ

X ◦ Tt
t

dt exists a.s.

4.5.2 On theorems 4.3.2 and 4.3.3

An alternative proof of points i) and ii) of theorem 4.3.3 can be found, in the book of Samorod-
nitsky and Taqqu [71]. This completely di�erent proof, in the context of stochastic integrals,
relies in some speci�c representations of stable processes by means of Poisson processes. An-
other di�erent proof, of the complete result, can be found in [15]. Here, theorem 4.3.3 was
presented as a consequence of a more general result on the convergence of Lp valued random
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series, theorem 4.3.2. This is the way in which this result is presented, in for example, [42].
There, a similar result to theorem 4.3.2, for Orlicz spaces, is presented previously. However,
it is worth mention, that the proof presented there is not complete. The �if-⇐� part of the
analogue of theorem 4.3.2 presented there is almost missing.
Other rather similar conditions to theorem 4.3.2, for series of Lp(X)-valued independent ran-
dom variables, with p ≥ 2, are studied in [29]. These results are based on Rosenthal's inequality
3.1.1.



Chapter 5

Some Random Series in D′(Rd)

5.1 Introduction

In this chapter we prove the convergence in the sense of distributions of certain random series,
this result is useful to construct some type of random processes which cant be de�ned from
their pointwise values. Here we construct series such that given {ξn}n a set of independent,
identically distributed random variables, and if {gk}k is a set of appropriate functions, then

∞∑
n=0

ξngn = X , (5.1.1)

converges a.s. in the sense of Schwartz distributions. First, we shall give some de�nitions and
general results related to the theory of generalized random processes. Then, we will discuss a
method for the construction by series of generalized random �elds with prescribed correlation
functional. This construction resembles the classic Karhunen-Loéve theorem. In particular,
this method is useful for the construction of stationary generalized random processes, with a
spectral behaviour which fall out of the ordinary theory of stationary processes, such as the
1
f (where f is "frequency") family of stochastic processes . For more references and physical
motivations on constructing such a process, and other possible applications read sec. 5.5 at
the end of this chapter.

5.2 Generalized random processes

5.2.1 Some generalities.

In this chapter we will consider the class of random variables taking values in the space D′(Rd)
(or in S ′(Rd)).
Our results, are aimed at the construction of certain random variables taking values in D′(Rd).
In this case, every D′(Rd)- valued random variable, say X, takes the form of a random linear
functional de�ned on D(Rd). Previously, we will also need to de�ne the class of generalized
random processes a, of which these D′(Rd)- valued random variables are particular cases.

aIn some literature, the term "process" is reserved for the case d = 1, and "�eld" for the other cases.

80
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Following [25], we will say that a generalized random functional is de�ned on D(Rd) if for
every ϕ ∈ D(Rd) there is associated a real valued random variable X(ϕ). In accordance
with the way that one usually speci�es the probability distributions of a countable set of real
random variables, given n ∈ N, ϕ1, . . . , ϕn ∈ D(Rd) one gives the probability of the events,

{ak ≤ X(ϕk) < bk}, k = 1, . . . , n ,

and these probability distributions are compatible in the usual sense.
On the other hand, the linearity means that for any a, b ∈ R, ϕ, ψ ∈ D(Rd):

X(aϕ+ bψ) = aX(ϕ) + bX(ψ) a.s .

Finally, the random functional X is called continuous if given n ∈ N, and if for j = 1, . . . , n
the functions ϕk j converge to ϕj in D(Rd), when k −→ ∞ then for any continuous bounded
function f ∈ C(Rn):

lim
k→∞

∫
Rn

f(x1, . . . , xn)dLk =

∫
Rn

f(x1, . . . , xn)dL ,

where L is the law of corresponding to (X(ϕ1), . . . , X(ϕn)) and Lk the law corresponding
to (X(ϕk 1), . . . , X(ϕk n)). Note, that in particular, a D′(Rd)-valued random variable is a
generalized random process. Following the usual convention, we will just refer to them as
generalized random processes.

5.2.2 Two examples

�Continuous time� white noise.
We associate to the linearly independent functions f1, . . . , fn ∈ D(R), the random variable
having the probability distribution

P ((X(f1), . . . , X(fn)) ∈ A) =
(det(R))

1
2

(2π)
n
2

∫
A
e−

1
2
Rx.xdx , (5.2.1)

where R−1
i j =

∫
R
fi(x)fj(x)dx. It can be shown that these random variables are compatible,

and are continuous and linear in f . The generalized random process de�ned by eq. 5.2.1, is
called the unit process or white noise.
Brownian motion.
In this instance, one may specify in the usual way the probabilities of

(W (t1), . . . ,W (tn)) ,

where W (t) is the trajectory of a Brownian process at an instant t. Namely if W (0) = 0, then
the probability that (W (t1), . . . ,W (tn)) ∈ A is expressed by

P((W (t1), . . . ,W (tn)) ∈ A)

=
1

(2π)
n
2

n∏
j=1

(tj − tj−1)1/2

∫
A

e
− 1

2

n∑
j=1

(xj−xj−1)
2

tj−tj−1
dx1 . . . dxn , (5.2.2)
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with t0 = x0 = 0. It can be shown that the generalized random process corresponding to
the random process {W (t)}t∈R, with probability distribution as eq. 5.2.2, associates with
the linearly independent functions f1, . . . , fn the random variable (W (f1), . . . ,W (fn)) with
probability distribution

P((W (f1), . . . ,W (fn)) ∈ A) =
(det(R))

1
2

(2π)
n
2

∫
A
e−

1
2
Rx.xdx ,

where, R−1
i j =

∫
R
(gi(x) − gi(∞))(gj(x) − gj(∞))dx, gi(x) =

x∫
0

fi(t)dt, this random process is

called the Wiener process.

For more information about these facts and how measures can be constructed over a space
such as D′(Rd) we refer the reader to Gel'fand and Vilenkin's book [26], chapters III and IV.

5.2.3 Basic operations on Generalized Random Processes

The operations which can be performed on generalized random processes are de�ned in a man-
ner analogous to that by which they are de�ned for generalized functions. For example, by a
linear combination aX1 + bX2 is understood the generalized random process which associates
with every test function f ∈ D(Rd) the random variable aX1(f) + bX2(f). Thus, the set of
all generalized random processes forms a linear space.
The ordinary operations on generalized random processes are de�ned by means of the corre-
sponding operations on the test functions f . Thus the product fX of an in�nitely di�erentiable
function f with a generalized process X is de�ned as the process for which there corresponds
to the function g ∈ D(Rd) the random variable X(fg). In the same way it is possible to de�ne
the derivative X ′ of X, as the process for which there corresponds to the test function f the
random variable −X(f ′). We note that the derivative of a generalized random process always
exists and is also a generalized random process, however the (generalized) derivative of an
ordinary process may no longer be an ordinary random process. As an example it is easy to
verify that the unit process or �white noise� process is the (generalized) derivative of the the
Wiener process, although it is well known that this process has no ordinary derivative.

5.2.4 Expected value of Generalized Random Processes and correlation

functional

In chapter 2 we introduced several notions of expected value for vector valued random variables.
Let us discuss this notion in the context of generalized random processes.

De�nition 21. 1. Expected value. Let X be a generalized random process, then for each f ∈
D(Rd), X(f) is a random variable, if for each f , X(f) has an expected value m(f) = EX(f),
which is continuous in f . Then is easy to see that m is a continuous linear functional on D(Rd)
i.e. a generalized function.
2. Correlation functional. If the mean of the random variable X(f)X(g) exists for all f, g ∈
D(Rd) and is continuous in each of the arguments f, g, we call it the correlation functional
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of X b, Thus the correlation functional of the generalized random processes X is given by
ΓX(f, g) = E(X(f)X(g)).

From the linearity of the random functional X , it follows that ΓX is a bilinear functional.
Moreover since X(f)2 is positive, its mean ΓX(f, f) is also positive. Therefore, the correlation
functional is positive-de�nite. Also it is possible to de�ne the covariation functional C(f, g) =
E(X(f)X(g))− E(X(f))E(X(g)). Which is also positive-de�nite.

Recall that in the �nite dimensional case, given the correlation matrix we can associate to
it a positive-de�nite bilinear form. We shall see, that in this case we can �nd a distribution
which plays a similar role of this matrix.

Theorem 5.2.1. (The Kernel Theorem) i) Every bilinear functional B( , ), de�ned over
D(Rd)×D(Rd), which is continuous in each of the arguments, has the form:

B(f, g) = (F, f(x)g(x′)) ,

where F ∈ D′(R2d).
ii)Every bilinear functional B( , ), de�ned over S(Rd)×S(Rd), which is continuous in each of
the arguments, has the form:

B(f, g) = (F, f(x)g(x′)) ,

where F ∈ S ′(R2d).

Proof. [26]

In both cases, when B = ΓX is the correlation functional of a processes X, we will some-
times call to F the correlation functional. From the theorem above, it is clear that there is no
ambiguity in using this term both for F or B.
Example. Recall the example of white noise, de�ned by eq. 5.2.1, in this case it is clear that
the correlation functional is given by F (x, x′) = δ(x− x′). This means, that

ΓX(f, g) = (δ(x− x′), f(x)g(x′)) =

∫
R

∫
R

δ(x− x′)f(x)g(x′)dxdx′

=

∫
R

f(x)g(x)dx .

Where the identity with the double integral is only formal, since this integrals are not de�ned.
Finally, as in the �nite dimensional case, we have:

Theorem 5.2.2. In order that a linear continuous functional m on D(Rd) and a bilinear con-
tinuous functional Γ on D(Rd)×D(Rd) be respectively the mean and the correlation functional
of a generalized random process X, it is necessary and su�cient that the bilinear functional,

C(f, g) = Γ(f, g)−m(f)m(g)

be positive-de�nite, in which case the process can be chosen to be gaussian.

Proof. [26]

bFor simplicity, here we are considering real random processes, for complex random processes the correlation
is de�ned by E(X(f)X(g)).
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5.2.5 Stationary Generalized Random Process.

In chapter 2, section 2.4.5, we introduced the class of wide sense stationary random process.
Here, we de�ne the corresponding notion for generalized random processes. First, let us
discuss stationarity in the strict sense. A generalized random process is called stationary if
for any functions f1, . . . , fn ∈ D(Rd) and any h ∈ Rd: (X(f1( . + h)), . . . , X(fn( . + h))) and
(X(f1), . . . , X(fn)) are identically distributed. If X is stationary, then its expected value is
invariant under translation, thus

E(X(f)) = E(X(f(. + h))) . (5.2.3)

But the only linear functionals on D′(Rd) which are invariant under translation are those of
the form:

E(X(f)) = a

∫
Rd

f(x)dx

for some constant a. Also from the stationarity of the process it follows that

ΓX(f, g) = ΓX(f( . + h), g( . + h)) , (5.2.4)

for any two functions f, g ∈ D(Rd). Thus, the correlation functional of a stationary general-
ized random process is a positive- de�nite bilinear Hermitian functional which is translation
invariant. However, in the following we shall deal, with generalized processes which only verify
the weaker conditions of eqs. 5.2.3 and 5.2.4. Following the de�nition given in 2, section 2.4.5,
if a generalized process veri�es these conditions it will be called wide sense stationary. And
to simplify, without loss of generality we will assume that a = 0 and from here when we talk
about stationarity we will be referring to wide sense stationarity. Let us see the form that the
correlation functional takes under this assumptions. We need two results,

Theorem 5.2.3. Every translation invariant bilinear functional B on D′(Rd) has the form:

B(f, g) = (F, f ∗ g)

where F ∈ D′(Rd). If B is positive de�nite then F is positive de�nite, i.e. (F, f ∗ f∗) ≥ 0 for
every f ∈ D(Rd), where f∗(x) = f(−x).

Proof. See [26].

Using a generalization of Bochner's theorem: the Bochner-Schwartz theorem is possible to
give an expression in terms of Fourier transforms.

Theorem 5.2.4. (Bochner-Schwartz) The class of positive de�nite generalized functions on
D(Rd) coincides with the class of positive tempered measures. (A measure µ is called tempered
if for some m ≥ 0,

∫
Rd

dµ
(1+|λ|2)m <∞)

Proof. See [26].

From this, one gets,
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Theorem 5.2.5. Every translation invariant positive de�nite bilinear functional B on D(Rd)
has the form

B(f, g) =

∫
Rd

f̂(λ)ĝ(λ)dµ(λ)

where µ is a positive tempered measure.

Proof. See [26].

These results have the following immediate consequence:

Corollary 5.2.1. The correlation functional of a stationary generalized random process X,
has the form

ΓX(f, g) = (R, f ∗ g∗) ,

where R is the Fourier transform of some positive tempered measure µX . Moreover,

ΓX(f, g) =

∫
Rd

f̂(λ)ĝ(λ)dµX(λ) .

Proof. [26] Is immediate consequence of the previous theorems 5.2.3 and 5.2.5.

So in view of this, the measure µX of corollary 5.2.1 will be called spectral measure of the
process. This measure is uniquely de�ned by the process.

Some examples. Let X be a white noise or unit process, then as we have seen, the corre-
lation functional can be written as

ΓX(f, g) = (δ(x− x′), f(x)g(x′)) = (δ, f ∗ g∗) =
∫
Rd

f̂(λ)ĝ(λ)dλ ,

so, the spectral measure of this process is the Lebesgue measure , i.e. dµX = dλ. Intuitively,
this says that in the process X, all the frequencies are present and are "equidistributed".
Let d > s > 0, then as we have seen in chapter 2, the Fourier Transform of |x|−d+s is
γ(s)(2π)−s |λ|−s in the distributional sense. So in view of the previous results and theorem
6.3.2 there exists a generalized random process with spectral measure de�ned by the generalized
function,

γ(s)(2π)−s |λ|−s .

This corresponds to the case of the so called 1
f -processes. The correlation functional is given

by |x|−d+s.
If we can write dµX = ϕXdλ for some ϕX ∈ L1

loc(Rd), this ϕX will be called the spectral
density of the process X.
Note that in chapter 2, section 2.4.5, we noted that every (ordinary) w.s.s. process has a �nite
spectral measure. So spectral measures such as those above, are not valid within the theory
of ordinary stationary random process.
So, if we would like to construct a process with a spectral behaviour such as those described
before, in principle one could specify or construct a probability measure over the space D′(Rd).
A detailed discussion about the construction of measures in linear topological spaces can be
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found in [26]. However, from the point of view of some applications, to describe the desired
process this way could become less valuable. From a practical view, it could be di�cult to
handle such measures. Moreover in many times only is required a model which full�lls certain
requisites related with its spectral behaviour or second order properties. So, if we �nd an
expansion like 5.1.1, which converges to a process with the desired properties we would be
done. Note that, in contrast, if we adopt this approach to construct the process, and if the
fn's are �xed deterministic functions we would only need to construct the real valued random
variables ξn.

5.3 Representation of some generalized random processes by

random series.

5.3.1 Some auxiliary results and de�nitions.

As in chapter 3 we gave several results on random series in Banach spaces, but D′(Rd) is not a
normed space, so it will be necessary to introduce as an auxiliary tool the Sobolev Hs spaces.
At an intermediate step they will allow us to introduce the results for Banach spaces into this
context.

De�nition 22. The Sobolev spaces Hs [30] are de�ned as:

Hs(Rd) =

f ∈ S ′(Rd) :
∫
Rd

∣∣∣f̂(λ)∣∣∣2 (1 + |λ|2
)s
dλ <∞

 (5.3.1)

Remark 5.3.1. Let s ∈ R then Hs(Rd) is a Hilbert space with the product ( , )HS : Hs(Rd)×
Hs(Rd) 7−→ C

(h, g)Hs =

∫
Rd

ĥ(λ)ĝ(λ)
(
1 + |λ|2

)s
dλ . (5.3.2)

For f, g ∈ D(Rd) we de�ne the pairing ⟨ ., .⟩ : D(Rd)×D(Rd) −→ R as

⟨f, g⟩ =
∫
Rd

f(x)g(x)dx .

This can be extended by a density argument over Lp × Lq, 1
p +

1
q = 1 (when p = 2 this is the

usual inner product) or Hs ×H−s.

Now recalling the variant of the Shannon Nyquist Kotelnikov theorem of chapter 2, we can
prove:

Proposition 5.3.1. Let f ∈ L2(Rd) be with the same hypotheses of theorem 2.4.1, then

∥f∥Hs ≤ K(s)

∑
k∈Zd

∣∣∣f̂(k)∣∣∣2 (1 + |k|2
)s1/2

.
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Proof. Recall Peetre's inequality:
(
1 + (a+ b)2

)s
≤ 2|s|

(
1 + a2

)|s| (
1 + b2

)s
and by theorem

2.4.1 we have:∫
Rd

∣∣∣f̂(λ)∣∣∣2 (1 + |λ|2
)s
dλ ≤

∫
Rd

∑
k∈Zd

∣∣∣f̂(k)θ(λ− k)
∣∣∣ (1 + |λ|2

)s/22

dλ

≤
∫
Rd

∑
k∈Zd

u2k (λ)
∑
k∈Zd

v2k (λ)dλ ,

where vk (λ) = |θ(λ− k)|1/2 and

uk (λ) =
∣∣∣f̂(k)∣∣∣ (1 + |k|2

)s/2
2|s|/2

(
1 + ||λ| − |k||2

)|s|/2
|θ(λ− k)|1/2 .

Since θ(x) ∈ S(Rd) we have
∑
k∈Zd

v2k (λ) =
∑
k∈Zd

|θ(λ− k)| ≤ C, for some 0 < C <∞, and:

K (s) 2−|s| =

∫
Rd

(
1 + ||λ| − |k||2

)|s|
|θ(λ− k)| dλ

≤
∫
Rd

(
1 + |λ− k|2

)|s|
|θ(λ− k)| dλ <∞ ,

then: ∫
Rd

∣∣∣f̂(λ)∣∣∣2 (1 + |λ|2
)s
dλ ≤ CK (s)

∑
k∈Zd

∣∣∣f̂(k)∣∣∣2 (1 + |k|2
)s

5.3.2 Main Results.

Now, we can prove the desired result,

Theorem 5.3.1. Let {ξn}n∈N ⊂ L4(Ω,F ,P) be a sequence of independent identically dis-
tributed random variables such that Eξn = 0 . If {fn}n∈N is an orthonormal basis of L2

(
Rd
)

and let T : L2(Rd) −→ Lp(Rd) be a bounded linear operator, with p ≥ 1; then:
I)

X =

∞∑
n=0

ξnTfn (5.3.3)

converges to a generalized process a.s.

II) The covariance functional of X, ΓX : D(Rd)×D(Rd) −→ R is ΓX(ϕ, ψ) = ⟨ϕ, T ◦ T ∗ψ⟩
III) Given φ ∈ D(Rd) then

X(φ) =

∞∑
n=0

ξn ⟨Tfn, φ⟩ in the L2 sense. (5.3.4)
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Proof. (Part I) Let {Qp}p be a denumerable family of disjoint cubes such that by some trans-

lation τp equals
(
−1

4 ,
1
4

]d
and Rd =

⊔
p
Qp. then

∥∥(Tfn)1Qp

∥∥
Hs ≤ K(s)

∑
k∈Zd

∣∣∣ ̂(Tfn)1Qp(k)
∣∣∣2 (1 + |k|2

)s1/2

with
∣∣∣ ̂(Tfn)1Qp(k)

∣∣∣ = ∣∣⟨(Tfn)1Qp , ek
⟩∣∣ and ek = ei2πk.x1τ−1

p [− 1
4
, 1
4
]d then by proposition 5.3.1

∑
n

∥∥(Tfn)1Qp

∥∥2
Hs ≤

∑
n

K(s)
∑
k∈Zd

∣∣∣ ̂(Tfn)1Qp(k)
∣∣∣2 (1 + |k|2

)s
Taking s = −d, and as ek ∈ Lp

′
(Rd) , 1

p +
1
p′ = 1 and Supp((Tfn)1Qp) = Supp(ek) then

the last term equals: ∑
k∈Zd

K(s)
(
1 + |k|2

)−d∑
n

∣∣⟨(Tfn)1Qp , ek
⟩∣∣2

=
∑
k∈Zd

K(s)
(
1 + |k|2

)−d∑
n

|⟨fn, T ∗ek⟩|
2

≤
∑
k∈Zd

K(s)
(
1 + |k|2

)−d
∥T ∗ek∥2L2 (5.3.5)

≤
∑
k∈Zd

K(s)
(
1 + |k|2

)−d
K ′′ ∥ek∥2Lp′ ≤ K ′′′

∫
Rd

(1 + |x|2)−ddx |Qp|2/p
′
<∞ ,

Independently of p. Since {ξn}n∈N are independent random variables we can assume, without

loss of generality, E |ξn|2 = 1 then:∑
n

E |ξn|2
∥∥(Tfn)1Qp

∥∥2
H−d =

∑
n

∥∥(Tfn)1Qp

∥∥2
H−d <∞

By corollary 3.1.4 and remark 5.3.1 we have

∥∥∥∥∑
n
ξn (Tfn)1Qp

∥∥∥∥
H−d

<∞ a.s.

Take Ω′ =
∞∩
p=1

{
ω ∈ Ω :

∥∥∥∥∑
n
ξn(ω) (Tfn)1Qp

∥∥∥∥
H−d

<∞
}
. Now, for a �xed ω ∈ Ω′ , let us

see that 5.3.3 converges in D′(Rd). For this it su�ces to show that given φ ∈ D′(Rd) then

lim
n→∞

n∑
i=1

⟨Tfi, φ⟩ξi(ω) exists [72]. Indeed, if φ ∈ D′(Rd), then it has compact support, so for

some �xed q, Supp(φ) ⊂
q∪
p=1

Qp. So,

∣∣∣∣∣
n∑

i=m

⟨Tfi, φ⟩ξi(ω)

∣∣∣∣∣ ≤
q∑
p=1

∣∣∣∣∣
n∑

i=m

⟨(Tfi)1Qp , φ⟩ξi(ω)

∣∣∣∣∣
=

q∑
p=1

∣∣∣∣∣⟨
n∑

i=m

(Tfi)1Qp , φ⟩ξi(ω)

∣∣∣∣∣
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=

q∑
p=1

∣∣∣∣∣∣
∫
Rd

(
n∑

i=m

ξn(ω) ̂(Tfi)1Qp(λ)

)
(1 + |λ|2)

d
2 φ̂(λ)(1 + |λ|2)

−d
2 dλ

∣∣∣∣∣∣
Where the last equation follows from Parseval's theorem. Now, by the Cauchy-Schwartz
inequality, this expression is less or equal than

q∑
p=1

∥∥∥∥∥
n∑

i=m

ξi(ω) (Tfi)1Qp

∥∥∥∥∥
H−d

∥φ∥Hd −→
n,m→∞

0 .

(Part II) If X : Ω −→ D′(Rd) is the limit �eld then its covariance is ΓX(ϕ, ψ) := EX(ϕ)X(ψ).

(note that X(ϕ) is F− measurable since Xm(ϕ) =
m∑
n=0

ξn ⟨Tfn, ϕ⟩ is F -measurable)

In order to prove that EXm(ϕ)Xm(ψ) −→ EX(ϕ)X(ψ) = ⟨ϕ, T ◦ T ∗ψ⟩ when m −→ ∞, with
ϕ , ψ ∈ D(Rd); �rst we prove the uniform integrability of the sequence {Xm(ϕ)Xm(ψ)}m,
which will follow if we �nd ϵ > 0, K > 0 such that

E |Xm(ϕ)Xm(ψ)|1+ϵ ≤ K ∀m. (5.3.6)

Given ϕ ∈ D(Rd) let us call cm := ⟨Tfm, ϕ⟩ = ⟨fm, T ∗ϕ⟩, c := (cm)m ∈ RN. Then

E |Xm(ϕ)|4 = E

 m∑
i j k l=0

cicjckclξiξjξkξl


but, since the ξm's are independent then we have the following factorization: di j k l := E(ξiξjξkξl) =
E(ξi)E(ξjξkξl) = 0 whenever i ̸= j , k , l. From this fact and since the ξm's are identically dis-
tributed, we get

di j k l =


(
E|ξ1|2

)2
whenever two pairs of indexes are equal.

E|ξ1|4 if i = j = k = l

0 whenever only one index differs from the others.

From this,

E |Xm(ϕ)|4 =
m∑
i=0

c4iE|ξ1|
4 + 3

m∑
i,j=0 i̸=j

c2i c
2
j

(
E|ξ1|2

)2
≤ E|ξ1|4

∥∥c2∥∥
l∞

∥T ∗ϕ∥2L2(Rd) + 3∥T ∗ϕ∥2L2(Rd) (5.3.7)

≤
(
E|ξ1|4

∥∥c2∥∥
l∞

+ 3
)
∥T ∗∥ ∥ϕ∥2Lp′ (Rd) <∞ (5.3.8)

Now, since E |Xm(ϕ)Xm(ψ)|2 ≤
(
E |Xm(ϕ)|4

) 1
2
(
E |Xm(ψ)|4

) 1
2
and from (5.3.7) condition

(5.3.6) is veri�ed for ϵ = 1, then recalling theorem 2.1.2, EXm(ϕ)Xm(ψ) −→ EX(ϕ)X(ψ) =
ΓX(ϕ, ψ) when m −→ ∞.
Let us prove that ΓX(ϕ, ψ) = ⟨ϕ, T ◦ T ∗ψ⟩. Given m let us de�ne the bilinear form Γm :
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D(Rd) × D(Rd) 7−→ R as follows: Let km(x, y) :=
m∑

j k=0

EξjξkTfk(x)Tfj(y). Then given

ϕ, ψ ∈ D(Rd),

Γm(ϕ, ψ) =

∫
Rd

∫
Rd

km(x, y)ϕ(y)ψ(x)dxdy

Since {ξn}n∈N is a sequence of independent random variables with V ar(ξn) = 1 and E[ξn] = 0

then Eξnξm = δnm from this it follows that km(x, y) =
m∑
k=0

Tfk(x)Tfk(y) then,

Γm(ϕ, ψ) =

∫
Rd

 m∑
k=0

∫
Rd

Tfk(x)ψ(x)dxTfk(y)

ϕ(y)dy

=

∫
Rd

T

 m∑
k=0

∫
Rd

fk(x)T
∗ψ(x)dxfk(y)

ϕ(y)dy

=

∫
Rd

 m∑
k=0

∫
Rd

fk(x)T
∗ψ(x)dx fk(y)

T ∗ϕ(y)dy, . (5.3.9)

Then, if Pm is the orthogonal projection over span {f0, ... fm} (5.3.9) equals ⟨Pm ◦ T ∗ψ, T ∗ϕ⟩L2(Rd)

and since {fn}n is complete, given ϵ > 0 there existsM(ϵ) ∈ N such that ∥Pm ◦ T ∗ϕ− T ∗ϕ∥L2 <
ϵ

∥T ∗ψ∥L2
ifm ≥M . On the other hand, ⟨ϕ, T ◦ T ∗ψ⟩ = ⟨T ∗ϕ, T ∗ψ⟩ and from these facts, taking

for example m ≥M(ϵ) it follows that

|⟨ϕ, T ◦ T ∗ψ⟩ − Γm(ϕ, ψ)| = |⟨T ∗ϕ, T ∗ψ⟩ − ⟨Pm ◦ T ∗ψ, T ∗ϕ⟩| (5.3.10)

= |⟨Pm ◦ T ∗ϕ− T ∗ϕ, T ∗ψ⟩| ≤ ∥T ∗ψ∥L2 ∥Pm ◦ T ∗ϕ− T ∗ϕ∥L2 < ϵ .

(Part III) From equations (5.3.7), (5.3.8), given φ ∈ D(Rd) we have that
{
|Xn(φ)|2

}
n
is

uniformly integrable, since condition (2.1.2) is veri�ed for ϵ = 2; and since Xn(φ) −→ X(φ)
a.s. from Part I, then from theorem 2.1.2 we have

lim
n→∞

E|Xn(φ)−X(φ)|2 = 0 .

5.4 Some consequences and applications. Construction of a 1
f

process.

We will need the following well known result [75]:

Theorem 5.4.1. Let T : Lp(Rd) −→ Lq(Rd) be a bounded linear operator, if T is translation
invariant then there exists a unique tempered distribution h such that for every f ∈ S(Rd):
Tf = h ∗ f .
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Then, from the above theorem and the de�nition of Fourier transform of a distribution,
we have the following immediate and intuitive result on the covariance functional of de limit
process X of proposition 5.3.1: If T is translation invariant and h ∈ S ′(Rd) is the distribution
of theorem 5.4.1 then,

ΓX(φ,ψ) =

∫
Rd

φ̂(λ) |ĥ(λ)|2ψ̂(λ)dλ . (5.4.1)

In this way, taking T as a translation invariant operator we obtain a series which converges
to a generalized (wide sense) stationary process. Moreover, its spectral density is given by
ϕX(λ) = |ĥ(λ)|2.

Construction of a fractional random �eld

Random processes with 1/f spectral behaviour, �rst introduced by Kolmogorov in the context
of turbulent �ows (For a brief reference about this read the end of this chapter, sec. 5.5.1),
have numerous applications in engineering , general science and wherever strong long-range
(Long Memory) dependence (LRD) phenomena appear.
A long memory process or �eld X with spectral density ϕX (λ) veri�es the condition (see [7]
and [66]): there exists β > 0 and cf > 0 such that

lim
λ→0

ϕX (λ)

cf |λ|−β
= 1 , (5.4.2)

this suggests (for example, [3], [11]) to look for a relation between these processes and certain
fractional integration di�ererencing operators (see equations 2.4.2, 2.4.3). Considering, these
processes not yet as point processes, but as random elements in a space of distributions using
the previous results, we can construct series which converges a.s. to a generalized fractional
random �eld which show LRD or more generally with spectral density of the form:

ϕX(λ) = (1 + |λ|2)−γ |λ|−2α γ, ∈ R>0 , 0 < α < d/2. (5.4.3)

The term (1 + |λ|2), suggested in [3], is intended to give intermittency to the model. This
characteristic is sometimes observed in turbulence. For this purpose we need to recall the
results of section 2.4 on fractional integration.

From theorems 2.4.2 and 2.4.3, we can claim that if we de�ne T = (−∆)−α/2(I −∆)−γ/2

with 0 < α < d/2, γ > 0, then T de�nes a bounded linear operator from Lp(Rd) into Lq(Rd),
with 1

q = 1
p − α

d . From this, 5.3.3 converges to a generalized random process with spectral
density as 5.4.3. Note that the case α = γ = 0 corresponds to the case of white noise.

Remark 5.4.1. Is straightforward to see from the proof of proposition 5.3.1 that this assertion
may fail if α ≥ d/2. In [3] by means of the operators 2.4.6, 2.4.3 and Fourier transform methods
a nice proof of the existence over a bounded domain U ⊂ Rd of a process with spectral density
as 5.4.3 with α ∈ (0, d) is given. However, this result is based on the following assertion: If
D ⊂ Rd is a measurable bounded domain there exists C > 0 such that for every f ∈ L2(Rd)
such that Supp(f) ⊂ D ∫

Rd

| ̂(−∆)−α/2f(λ)|2dλ ≤ C

∫
Rd

|f̂(λ)|2dλ . (5.4.4)
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Figure 5.1: A sample of a 2-dimensional process, with spectral density given by eq. 5.4.3
(α = 0.5).

But this is false for α ≥ d
2 : Take D = B(0, 1) the ball of radius 1 and f = 1D, we prove that

for this f , (−∆)−α/2f does not belong to L2(Rd). From eq. 2.4.3 we have

(−∆)−α/2f(x) =
1

γ(α)

∫
B(0,1)

dy

|x− y|d−α
,

but |x− y| ≤ |x|+ |y| ≤ |x|+ 1 then (|x|+ 1)−d+α ≤ |x− y|−d+α if |y| ≤ 1, so

|(−∆)−α/2f(x)| ≥ K
L(B(0, 1))

(|x|+ 1)−d+α

for all x ∈ Rd. Then we have the following bound:∥∥∥(−∆)−α/2f
∥∥∥2 ≥ ∫

Rd

(|x|+ 1)−2d+2αdxL(B(0, 1))2

= K

∞∫
0

(r + 1)−2d+dαrd−1dr = kβ(d, d− 2α) ,

but this expression for Euler's Beta function converges if and only if d > 0 and d− 2α > 0.
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Figure 5.2: A sample of a 2-dimensional process, with spectral density given by eq. 5.4.3
(α = 0.99).

Remark 5.4.2. About Self-similarity. The self-similarity property for this process is understood
in the following manner: for 0 < s < d, given f, g ∈ D(Rd), a > 0, then by a change of
variables:

ΓX(f(a . ), g(a . )) =

∫
Rd

1

a2d
f̂

(
λ

a

)
ĝ

(
λ

a

)
γ(s)(2π)−s

dλ

|λ|s

=
1

ad−s

∫
Rd

f̂ (λ) ĝ (λ) γ(s)(2π)−s
dλ

|λ|s
=

1

ad−s
ΓX(f, g) .

If X is gaussian this relation on the covariance functional is equivalent to the corresponding
notion for the �nite dimensional distributions of the process.
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5.5 Bibliographical and Historical Notes

5.5.1 More on 1
f
random �elds.

A. N. Kolmogorov's 1
f model for turbulence. The term turbulence as used in �uid mechanics

refers to a �ow whose characteristics are so chaotic that statistical and probabilistic methods
are used to describe many of its aspects. In many studies the velocity �eld v(x, t) of the �ow
is considered function of the position x = (x1, x2, x3) and the time t that is a random solution,
in some sense, of the Navier-Stokes equation

vt(x, t) + (v.▽)v = −1

ρ
▽ p+ ν △ v

and the continuity equation ▽.v = 0. Where ρ is the density, p the thermodynamic pressure, ν
the kinematic viscosity. The dimensionless quantity R = ul/ν, with u a characteristic velocity
and l a characteristic length, represents an important aspect of the �ow and its for large
Reynold's number R that the �ow takes on the erratic and unstable character of turbulence.
he Reynold's number R represents the ratio of inertial to viscous forces. An idealized model
is that of turbulence in which the process v(x, t) is considered a stationary random process in
the spatial coordinates x with �nite second order moments. It is thought that the turbulence
generated downstream in a wind tunnel by passing a uniform �uid �ow through a regular grid
of bars held at right angles to the �ow is approximated reasonably by such a model locally.
Another idea, to model turbulence, is that the motion can be regarded qualitatively as a
summation of turbulent eddies (corresponding to harmonics). Idealized models like that of
homogeneous turbulence have been proposed where the random velocity �eld is assumed to
be spatially stationary. This leads to a Fourier representation of the covariance function and
the random �eld in homogeneous turbulence. Before continuing with this informal discussion,
let us consider another heuristics with which turbulence is often analyzed. One introduces
the concept of Reynold's number numbers for turbulent eddies of di�erent sizes. Let h be the
magnitude of a given eddy and vh the corresponding velocity. The corresponding Reynold's
number is taken to be Rh = vhh

ν . In the case of large eddies, Rh is large and the viscosity
is thought to be unimportant. The viscosity is important for small eddies of magnitude h0.
Energy transfer and dissipation is thought to have the following character in turbulent �ow.
The energy passes from large eddies to the smaller ones with essentially no dissipation. Energy
is dissipated in the smallest eddies and there the kinetic energy is transformed to heat. Many
arguments in �uid mechanics use dimensional analysis. Let us discuss brie�y Kolmogorov's
argument [44]. The object is in part to specify the parameters relevant in turbulent �ow over
regions small relative to the overall scale l of the turbulence, but large relative to the distance
h0 at which viscosity is important. In the model of homogeneous turbulence with the implied
spatial harmonic analysis, this corresponds to wave numbers λ in the range l−1 << λ << h−1

0 ,
the inertial subrange (Here, only for this section, << is �very much bigger than...�). One argues
that the relevant parameters are wave-number and the mean dissipation of energy per unit
time per unit mass of �uid ϵ. Consider estimating the order of magnitude vh of turbulent
velocity variation over distances of the order of h in the range l > h > h0. The only obvious
quantity in terms of ρ, ϵ and h having the dimensions of velocity is (ϵh)1/3. In the model
of homogeneous turbulence this suggests an approximate form of the spectrum in the inertial
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range. That is E(v(x)v(x+ h)) ∼ |ϵh|−1/3. This implies that the spectral density should have
the form of the so-called Kolmogorov spectrum: c|λ|−5/3 (averaged about a sphere of radius
|λ| in wave number space, λ = (λ1, λ2, λ3) ).

Mandelbrot's interpretation of 1/f processes. Motivated by some problems related to the de-
sign of electronic devices B. Mandelbrot studied in [50] the self-similar processes with spectrum
∼ 1

|λ|α . This type of noise appears in some measurements of current in thin metallic �lms and
semiconductors. He observed that the ordinary theory for stationary processes of Wiener and
Khinchine is not applicable to such a process. To reinterpret these spectral measurements
without paradox, he choose an alternative approach and introduced the concept of "condi-
tional spectrum".

Many elegant results on fractional processes, can be obtained using properties of fractional
powers of the Laplacian operator or fractional integrals. Just one example, from formula 2.4.5
and the results of section 5.2.1 it can be given a short proof of the existence of the fractional
Brownian �eld with exponent α/2 [11].



Chapter 6

Stationary sequences and stable

sampling

�Après moi, le déluge�.

Louis XV.

6.1 Introduction

Let X = {Xr
t }r=1...n
t∈A be a wide sense stationary (w.s.s.) n-dimensional random process, in-

dexed in a �time" set A. Many statistical problems such as linear prediction, interpolation
or extrapolation, or computing conditional expectations for gaussian processes [69]-[21]-[38]-
[68] are reduced to the problem of obtaining the best approximation of a random Variable
Y ∈ spanX = H(X ) in terms of an element of a closed subspace of H(X ). Some authors
e.g. [52] made clear the relationship between some of these subjects and the theory of shift-
invariant subspaces. A related problem is that of reconstructing a continuous time random
process/signal from discrete time samples. Analogous results to the classic Shannon sampling
theorem, or its generalizations, can be given for stationary or related processes [47]-[45]-[69].
For example, the problem 1.0.1, stated in the introduction admits the following weaker re-
formulation: to �nd conditions under which span{Xk}k∈Z = span{Xt}t∈R. However, that a
process is linearly determined by its samples is a necessary condition for a process to have a
series representation like eq. 1.0.1. So it is natural to ask under what conditions Y can, in
some reasonable sense, be represented in the form of a series

Y ∼
n∑
r=1

∑
t

ar(t)X
r
t .

In the context of stationary processes, it is natural to formulate conditions on the spectral
density, or spectral measure of the process. To treat some of these approximation problems
Rozanov [69] introduced the concept of Conditional basis. Giving su�cient conditions [69]-
[70] on the spectral density, this can be strengthened to an unconditional basis or Riesz Basis,
that makes the series unconditionally convergent. In these derivations much care is given to

96
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minimality, i.e. no element Xr
t of this system belongs to the closed linear span of the remaining

elements. Minimal 1-dimensional processes were �rst introduced by Kolmogorov, and their
structure can be characterized in terms of the spectral measure of the process [69]-[78]-[49].
Many interpolation or extrapolation problems are easier to handle when the processes involved
are minimal. In the context of sampling, su�cient conditions on the spectral density are also
used in e.g. [84] to construct a Wavelet Karhunen-Loéve like expansion for a w.s.s. process.
The random variables obtained in this case are uncorrelated, i.e. they are orthogonal. Wavelet
type expansions of random signals, and some of their properties, are also studied in [14] and
[37]. However, in some applications mainly related to signal analysis, redundancy could be
useful. As for example, a natural way to achieve this is by means of frames. The main results
are given in section 3. First, in theorem 6.3.1 we give necessary and su�cient conditions
in terms of the spectral measure for a stationary sequence to form a frame. This result on
stability generalizes the results of Rozanov ([69], Chapter II sec. 7 and sec. 11). Second, the
problem of reconstructing a random signal from its samples can be viewed as a problem of
completeness of the sequence of samples in the closed linear span of the whole random process
[47]-[45]. So, we study conditions for the stability of these sequences of samples. We relate
the previous result on frames to the case of a sequence obtained from sampling a continuous
parameter process. The conditions are obtained in terms of the periodized spectral density of
the process (e.g. theorem 6.3.2). Finally, in theorem 6.3.4 we give conditions for a sequence
of samples to be a frame of the closed linear span of the whole process.
As we will see the study of conditions for stationary sequences to form frames is similar, in
some way, to the problem of the characterization of frames for shift invariant subspaces (SIS)
of L2(Rd) ([19]-[12]-[6]-[17]). Theorem 6.3.1 is an analogue to the results of sec. 3 of [6] or sec.
2 of [12]. In [12] the SIS are generated by more than one generator, then the conditions are
given in terms of the Gramian matrix or the dual Gramian matrix. In our context the spectral
density matrix of a stationary process will play a similar role. Finally, we note that the study
conditions of frames and Riesz basis is very useful for the theory of sampling of signals, since
these conditions are related to stability. For example in [48], several conditions for stable
sampling in an union of shift invariant subspaces, are studied using Riesz basis. The theory
of sampling in an union of subspaces gives an appropriate framework for problems related
to sparse representations [48] and spectrum-blind sampling of multiband signals among other
applications.

6.2 Auxiliary Results

6.2.1 Stationary processes revisited.

Recalling the de�nitions of section 2.4.5, let us see the form that these de�nitions and results
take for the case of vector valued processes. This brief review is mainly borrowed from ([69],
Chapter I). Let (Ω,F ,P) be a probability space, let X = {Xj

t }
j=1...n
t∈A be a n − dimensional

wide sense stationary random process, where A = R or Z. By this we mean a family of random
variables in L2(Ω,F ,P) (i.e. with �nite variance) stationary correlated in the index t, i.e. :
Ri j(t, s) = E(X i

tX
j
s ) = Ri j(t − s), for all t, s. We will also assume that EXk

t = 0 for all t, k.
In the following, G = R if A = R or G = [0, 1) if A = Z.
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Harmonic Analysis of Stationary n-dimensional Random Processes:

Every stationary multidimensional process X = {Xj
t }
j=1...n
t∈A admits a spectral representation:

Xj
t =

∫
G

ei2πλtdΦj

in the form of an stochastic integral [42] with respect to a random spectral measure Φ =
(Φ1, . . . ,Φn). Moreover for each t ∈ R or Z, Xr

t can be written as the result of the action of
the (unitary) time shift operator T on Xr

0 :

Xr
t = T tXr

0 where by Stone's spectral theorem: T t =

∫
G

eiλ2πtdE(λ) , (6.2.1)

where the E(λ)'s are orthogonal projection operators over H(X ).
Set µi j(A) = E(Φi(A)Φj(A)), i, j = 1 . . . , n. This matrix of complex measures is positive
de�nite and we call it the spectral measure of the process X . On the other hand the (cross)
spectral measures µr j are also related by the following Fourier transform pairing

E(Xr
tX

j
0) =

∫
G

eiλ2πtdµr j (6.2.2)

We study some properties of the Hilbert space H(X ) which is the closed linear span of X in
L2(Ω,F ,P). Some properties are more easily characterized over an isometrically isomorphic
space, de�ned as:

De�nition 23.

L2(G) =

f : G → Cn, f is measurable and

∫
G

f
dM

dν
f∗dν <∞

 ,

where M is a n×n positive semi de�nite matrix of complex measures de�ned by (M)i j(A) =
µi j(A) for each A ∈ B(G), ν(A) = tr(M)(A) and dM

dν is the matrix of Radon Nykodym

derivatives
dµi j
dν .

First note that always µi j << ν, so this assures the existence of the
dµi j
dν . In our case

M will be the spectral measure of the process. Unless dM
dν (λ) is of full rank for almost

all λ [ν], there may exist measurable f such that f ̸= 0 over a set of positive ν measure
with

∫
G
f dMdν f

∗dν = 0 . Moreover if we do not distinguish between two vector functions f , g

such that
∫
G
(f − g)dMdν (f − g)∗dν = 0 , then we can treat L2(G) as a Hilbert space. More

precisely L2(G)/{f ∈ L2 : f∗ ∈ Nul(dMdν ) a.e. [ν]} is a Hilbert space with the norm ∥f∥2L2 =∫
G
f dMdν f

∗dν. The isomorphism between L2(G) and H(X ) is given by an integral respect to

the random measure Φ. That is, for every Y ∈ H(X ) there exists f ∈ L2(G) such that
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Y =
n∑
j=1

∫
G
fjdΦj . In the case that all the elements µi j << L, where L is Lebesgue measure,

then we call the Radon-Nykodym derivatives ϕi j with respect to L spectral densities, and we
say that X has a spectral density (matrix) D of elements ϕi j . Then, the integrals involving
M introduced before can be written as

∫
G
fDf∗dλ and so on. The same discussion made for ν

and M also holds for this case.
Finally, it is clear that a corresponding concept of stationarity can be considered for any
process {Xg}g∈G, with EXg = 0 and E|Xg|2 < ∞ and the index set G a group. The results,
for w.s.s. processes, involving Fourier transforms are also extended to the case when G is a
LCA group [68], Chapter I.

There exists a useful spectral characterization of minimal sequences for stationary se-
quences . This result also admits an extension to processes indexed over LCA groups [49]:

Theorem 6.2.1. ([69], Chapter II, sec. 11, and [49]) Let X = {Xj
k}
j=1...n
k∈Z be a w.s.s. process

with spectral density D, if

∃ D−1 a.e. [L] and

∫
[0,1)

tr(D−1)dλ <∞ =⇒ X isminimal. (6.2.3)

Remark. In [69] it is claimed, that condition 6.2.3 is necessary and su�cient, however
the proof of the necessity part contains an error, see [49]. Theorem 6.2.1 is an immediate
consequence of Corollary 4.9 of [49].

Some facts about periodic functions and Sampling

We will see that some properties of uniform sampling can be derived from the properties of
periodic functions and measures, For this purpose it is useful to consider the quotient space
R/Z. We will denote the canonical projection Π : R −→ R/Z, the map which assigns to
every x ∈ R its equivalence class Π(x). In our derivations it is useful to make the following
convention: to identify Π(x) with its unique representative in the interval [0, 1). That is to
consider Π as the following map: Π : R −→ [0, 1), Π(x) =

∑
k∈Z

1[0,1)+k(x)(x− k).

Let U ⊂ R be a Borel measurable set, then, the class of Borel subsets of U will be denoted
by B(U). If µ is a complex measure, we recall that the induced measure Π is the measure
de�ned for every Borel set U ⊂ [0, 1) by the formula µΠ(U) = µ(Π−1(U)). Let f be a Borel
measurable 1-periodic function, i.e. f(x) = f(x+ 1) for every x ∈ R (we will not distinguish
between two functions which are equal at almost every x µ-a.e.). Then, if we denote f |[0,1)
the restriction of f to the interval [0, 1), i.e. (f |[0,1) ◦Π)(x) = (f ◦Π)(x) = f(Π(x)) = f(x)
for every x ∈ R.
Given a continuous time process X = {Xr

t }t∈R, with random measure Φ over R, if we consider
the sequence of samples {Xr

k}k∈Z as a discrete stationary sequence, then we have two possible
spectral representations for every k ∈ Z:

Xj
k =

∫
R

ei2πλkdΦj =

∫
[0,1)

ei2πλkdΦ′
j a.s.
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where Φ′
j is a random measure over [0, 1). From this, by a density argument this is also true

for 1-periodic functions, in particular if A ∈ B[0, 1):∫
R

1Π−1(A)dΦr

∫
R

1Π−1(A)dΦj =

∫
[0,1)

1AdΦ
′
r

∫
[0,1)

1AdΦ′
j a.s.

Then, taking expected values in both sides of the equality, if we denote µ′r j the cross spectral

measure of the discrete sequence of samples, we have: µ′r j(A) = µr j(Π
−1(A)), where µr j is the

cross spectral measure of the original process. On the other hand, as we have seen before, given
a continuous time process X = {Xr

t }t∈R, H(X ) is isomorphic to L2(R), and this induces an
isomorphism between the closed subspace span{Xr

k}k∈Z and the closed subspace of L2(R) :
{f ∈ L2(R) : f is 1 − periodic}. Additionally, taking in account the previous discussion
about periodic functions, both subspaces are isometrically isomorphic to the Hilbert space

L2[0, 1) =

{
f : [0, 1) → Cn, f is measurable and

∫
[0,1)

f dMΠ
dνΠ

f∗dνΠ <∞

}
. This suggests that

some properties may be characterized in terms of induced measures. We begin with the
following result:

Proposition 6.2.1. Let µ be a complex measure (Borel) over R If (µΠ)s and (µΠ)ac denote the
singular and absolutely continuous parts of µΠ respectively (with respect to Lebesgue measure).
Then:
a) For every Borel set U in [0, 1): (µΠ)s(U) = µs(Π

−1(U)) and (µΠ)ac(U) = µac(Π
−1(U)).

The measures µs and µac denote the singular and absolutely continuous parts of µ respectively.
That is, the singular part of the induced measure by Π is the induced measure by Π through
the singular part of µ, the same with the absolutely continuous part.
b) If w ∈ L1(R) is the Radon-Nykodym (R-N) derivative of µac respect to Lebesgue measure,
then

∑
k∈Z

w(.+ k) is the R-N derivative of (µΠ)ac.

Notation. Given a complex measure µ, the total variation of µ is |µ|.

Proof. a) It is su�cient to �nd Z,Z ′ ∈ B([0, 1)) such that Z ∪ Z ′ = [0, 1), Z ∩ Z ′ = ∅ and
|(µs)Π|(Z) = L(Z ′) = 0. We have, that there exists U,U ′ ∈ B(R) such that U ∪ U ′ = R,
U ∩ U ′ = ∅ and |(µs)|(U) = L(U ′) = 0. We claim that Z ′ = Π(U ′) and Z = [0, 1) \ Z ′.
To prove this fact, �rst note that: if µ is a complex measure, {Aj}j=1...n is any (measurable)
partition of [0, 1) and E any measurable subset of [0, 1), then {Π−1(Aj)}j=1...n is a partition
of R. So we have

n∑
j=1

|µΠ(Aj ∩ E)| =
n∑
j=1

|µ(Π−1(Aj) ∩Π−1(E)| ≤ |µ|(Π−1(E)) = |µ|Π(E) .

Then if we take the supremum over all possible partitions of [0, 1), in the left-hand side of the
chain of inequalities we get

|µΠ|(E) ≤ |µ|Π(E) .

In particular, |(µs)Π|(Z) ≤ |µs|Π(Z). On the other hand, Π−1(Z) = R\Π−1(Z ′) = (Π−1(Z ′))c,
but U ′ ⊆ Π−1(Z ′) then (Π−1(Z ′))c ⊆ (U ′)c = U . From this we have,

|(µs)Π|(Z) ≤ |µs|Π(Z) = |µs|(Π−1(Z)) ≤ |µs|(U) = 0 .
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On the other hand, let Ik = [k, k + 1), k ∈ Z, then U ′ =
∪
k∈Z

Ik ∩ U ′, hence:

Z ′ = Π(U ′) =
∪
k∈Z

[(Ik ∩ U ′)− k] .

Since the Lebesgue measure is invariant under translations, then L[(Ik ∩ U ′)− k] = L(Ik ∩
U ′) ≤ L(U ′) = 0, and:

L(Z ′) = L

(∪
k∈Z

[(Ik ∩ U ′)− k]

)
≤
∑
k∈Z

L[(Ik ∩ U ′)− k] = 0 ,

so that (µs)Π ⊥ L.
Now, we prove that (µac)Π << L. Take W ∈ B[0, 1) such that L(W ) = 0. Again, by
the translation invariance property of the Lebesgue measure: L(W + k) = L(W ) = 0, so
µac(W + k) = 0 for every k ∈ Z, since µac << L over R. Then:

(µac)Π(W ) = µac(Π
−1(W )) = µac

(∪
k∈Z

W + k

)
≤
∑
k∈Z

µac(W + k) = 0 . (6.2.4)

Finally, we have:
µΠ = (µac)Π + (µs)Π . (6.2.5)

The equations given above, together with the uniqueness of the Lebesgue decomposition of a
measure, show that 6.2.5 must be the Lebesgue decomposition of µΠ. The result of part a)
follows from this.
Part b)
Is immediate.

The following is proved in the appendix:

Lemma 6.2.1. Let X = {Xj
k}
j=1...n
k∈Z be a w.s.s. stationary in the variable k, if D is the

matrix of spectral densities and if PCol(D)(λ) is the orthogonal projection matrix over Col(D)

for each λ, then: a) The Moore Penrose pseudo-inverse D♯ and PCol(D) are measurable. b)
If 0 ∈ σ(D)(λ) for all λ in a set of positive Lebesgue measure, then there exists a column of
PNul(D) and a measurable set A, such that: L(A) > 0 and (PNul(D))j(λ) ̸= 0 for all λ ∈ A. c)

If Y = H(X ) admits the following representation for some f ∈ L2: Y =
n∑
j=1

∫
[0,1)

fjdΦj then

for all g ∈ L2 such that g ∈ Nul(D) a.e. : Y =
n∑
j=1

∫
[0,1)

(fj + gj)dΦj, in particular Y can be

written as Y =
n∑
j=1

∫
[0,1)

(PCol(D)f
∗)jdΦj.

Remark. The same holds in R (continuous parameter case) or for the derivative of the
matrix measure M with respect to ν.
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6.3 Main Results.

Now, we can give a necessary and su�cient condition for a stationary sequence to form a frame
in terms of its spectral measure. In e.g. ([69], Chapter II, sec. 7, [70]), it is proved that if
a stationary sequence has an spectral density (matrix) which has all its eigenvalues inside an
interval [A,B] a.e. then it is a Riesz basis of its span. This stability condition entails many
consequences [79]. For example: the linear predictor, for any time lag, and the innovation
process are expressible as the sum of mean-convergent in�nite series.
The following theorem generalizes the result of [69] in two ways. First, we obtain a similar
condition, on the spectral density, for frames. And second, it is proved that Rozanov's su�cient
condition of the spectral measure being absolutely continuous is also necessary. The original
result of [69]-[70] is contained in one of the implications of part b) of theorem 6.3.1, however
in our case, the result will be derived from the �rst result for frames. On the other hand, this
theorem resembles theorem 3.4 and prop. 3.2 of [6], or theorem 2.5. of [12] for shift invariant
subspaces of L2(Rd).

Theorem 6.3.1. Let X = {Xj
k}
j=1...n
k∈Z be stationary in the variable k. Then: a) X is a frame

of its span H(X ) (in L2(Ω,F ,P)) with constants A,B ⇐⇒ the (cross) spectral measures µi j

verify the following conditions:(i) µi j << L, (ii) the spectral densities matrix Di j =
dµi j
dL

veri�es σ(D)(λ) ⊆ {0} ∪ [A,B] for almost all λ ∈ [0, 1) [L].
b) X is a Riesz basis with constants A,B ⇐⇒ (i) µi j << L, (ii) the spectral densities matrix

Di j =
dµi j
dL veri�es σ(D)(λ) ⊆ [A,B] for almost all λ ∈ [0, 1) [L]

Proof. Part a)(⇒) If we suppose that X is a frame, then, given Y ∈ H(X ),

AE|Y |2 ≤
∑
k∈Z

n∑
j=1

|E(Xj
kY )|2 ≤ BE|Y |2 , (6.3.1)

On the other hand we know that Y admits the following representation: Y =
n∑
j=1

∫
[0,1)

fjdΦj ,

where f = (f1, . . . , fn) ∈ L2[0, 1) and the spectral random measures verifyXj
k =

∫
[0,1)

ei2πλkdΦj ,

and E(Y Xj
k) =

n∑
j=1

∫
[0,1)

f je
i2πλkdµr j . Recall that the latter can be written as,

∫
[0,1)

ei2πλk
n∑
j=1

f j
dµr j
dν

dν , (6.3.2)

then ∑
k∈Z

n∑
j=1

|E(Xj
kY )|2 =

∑
k∈Z

n∑
j=1

∣∣∣∣∣∣
∫
[0,1)

ei2πλk
n∑
j=1

f j
dµr j
dν

dν

∣∣∣∣∣∣
2

≤ BE|Y |2 <∞ ,

Hence 6.3.2 gives the Fourier coe�cients of a function belonging to L2[0, 1) (thus in L1[0, 1)). In
particular, if we take f = er = (0, . . . , 0 , 1 , 0 . . . ), the vector which is zero in all its coordinates
but for the r-th. coordinate, we get that (µ̂r r(k))k ∈ l2(Z) are the Fourier coe�cients of an
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integrable function. Then by the uniqueness theorem of the Fourier transform of measures,

we have that µr r << L and then ν =
n∑
k=1

µk k << L. From this: µr j << L, so by the

Radon-Nykodym theorem there exist derivatives (spectral densities)
dµr j

dL ∈ L1[0, 1). So if

Di j(λ) =
dµi j
dL (λ) is the matrix of spectral densities, we have that:

E(Y Xj
k) =

∫
[0,1)

ei2πλkejDf
∗dλ and E|Y |2 =

∫
[0,1)

fDf∗dλ .

Then,

A

∫
[0,1)

fDf∗dλ ≤
∑
k∈Z

n∑
j=1

∣∣∣∣∣
∫
[0,1)

ei2πλkejDf
∗dλ

∣∣∣∣∣
2

≤ B

∫
[0,1)

fDf∗dλ ,

and from Parseval's identity we have,∑
k∈Z

n∑
j=1

∣∣∣∫[0,1) ei2πλkejDf∗dλ∣∣∣2 = ∫
[0,1)

∥Df∗∥2 dλ. Hence we can write,

A

∫
[0,1)

fDf∗dλ ≤
∫

[0,1)

∥Df∗∥2 dλ ≤ B

∫
[0,1)

fDf∗dλ (6.3.3)

Now, given x ∈ Cn we can take ϵ > 0, λ0 ∈ [0, 1] and then if we replace in eq. 6.3.3
f = x1B(λ0,ϵ), by Lebesgue's di�erentiation theorem, we have that ∀x ∈ Cn there exists a
measurable set Fx such that L(F cx) = 0 and

AxD(λ)x∗ ≤ ∥D(λ)x∗∥2 ≤ BxD(λ)x∗ ∀λ ∈ Fx. (6.3.4)

Take D a countable dense subset of Cn, and de�ne F = ∩
x∈D

Fx, then clearly L(F c) = 0 and

given any λ ∈ F inequality 6.3.4 holds for every x ∈ D. On the other hand, for each λ ∈ F ,
h(x) = CxDx∗ − ∥Dx∗∥2 is continuous, so given λ ∈ F the inequality must hold for every
x ∈ Cn. But since D is self adjoint, then Nul(D) = Col(D)⊥, so Col(D) ⊕ Nul(D) = Cn,
a.e. Now, if v∗ /∈ Nul(D) is an eigenvector associated to z ∈ σ(D) \ {0}, ∥Dv∗∥2 = z2 ∥v∗∥2
and vDv∗ = z ∥v∥2, then as we have seen, eq. 6.3.4 holds for every λ ∈ F and x ∈ Cn, thus,
A ≤ z ≤ B.
(⇐) It is easy to see that assuming eq. 6.3.4, from eqs. 6.3.4 and 6.3.1 one can reverse the
argument .
Part b) (⇒) If X is a Riesz basis then it is a frame (Theorem 2.3.4). From part (a) we
have that µi j << L and σ(D) ⊆ {0} ∪ [A,B] a.e.. Let us check that 0 /∈ σ(D) a.e., if this
is not the case, by lemma 6.2.1 we can take a column g∗ = (PNul(D))j ̸= 0 over a set of
positive L measure, moreover we can suppose ∥g∥ = 1 over some A of positive measure. If
crk(g) =

∫
[0,1)

e−iλ2πkgr(λ)dλ then there exists k, r such that crk(g) ̸= 0, and on the other hand

(crk(g))k ∈ l2(Z). Now we can de�ne Y ∈ H(X ) as Y =
n∑
j=1

∫
[0,1)

gjdΦj , clearly E|Y |2 =

∫
[0,1)

gDg∗dλ = 0. If we show that Y =
∑
k∈Z

n∑
r=1

crk(g)X
r
k = 0 we are done, since from theorem
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2.3.5 then {Xr
k}rk∈Z can't be a frame. Let us de�ne for r = 1, . . . , n, gN r =

∑
|k|≤N

crk(g)e
i2πλk,

gN = (gN 1, . . . , gN n), and �nally YN =
n∑
j=1

∫
[0,1)

gN jdΦj =
∑

|k|≤N

n∑
r=1

crk(g)X
r
k . The result

will follow if we show that E|YN − Y |2 →
N→∞

0. This is true since M(λ) = sup
∥x∥=1

xD(λ)x∗ is

measurable and M ≤ B a.e. and on the other hand gN,r → gr ∈ L2[0, 1) converges in L2[0, 1)
and a.e. from which we have, E|YN − Y |2

=

∫
[0,1)

(g − gN )D(g − gN )
∗dλ ≤

∫
[0,1)

∥gN − g∥2Mdλ ≤ B

∫
[0,1)

∥gN − g∥2 dλ →
N→∞

0 .

(⇐) Under these conditions, again from part (a), we know that X is a frame. On the
other hand σ(D) ⊆ [A,B] a.e. implies that ∃D−1 a.e.. Moreover σ(D−1) ⊆ [B−1, A−1]. Then
if we call Λi i = 1 . . . n to the eigenvalues of D taking in account their multiplicity, we have
that

1

B
≤ tr(D−1) =

n∑
i=1

Λ−1
i ≤ n

A
a.e. in [0, 1) [L] =⇒

∫
[0,1)

tr(D−1)dλ <∞ .

This proves the result, since by theorem 6.2.1 this implies that X is minimal, and then a
Riesz basis, by theorem 2.3.5.

Sampling.

Given a continuous time stationary process we can give conditions for samples taken at an
uniform rate to form a frame. This is related to reconstructing a continuous parameter process
from its samples. Recall in section 6.2 we noted that the spectral measure of a sampled process
is (µi j)Π , where µi j is the spectral measure of the original continuous time process. Let us
prove the following result:

Lemma 6.3.1. Given the spectral measures µi j over (R,B(R)): µi j << L ⇐⇒ (µi j)Π <<
L.

Proof. In general, if f : (X,Σ) −→ (Y,Σ′) is a map between measurable spaces we have that
given a (positive) measure ν de�ned over Σ then ν ≡ 0 ⇐⇒ νf ≡ 0, where νf is the induced
measure by f . Since given A′ ∈ Σ′ then νf (A

′) = ν(f−1(A′)) and on the other hand given
A ∈ Σ then ν(A) ≤ ν(f−1(f(A))) = νf (f(A)). In our case, taking f = Π, and ν =

∑
j µj j

as in def. 23, we have that (νs)Π ≡ 0 ⇐⇒ νs ≡ 0, but by prop. 6.2.1 (νs)Π = (νΠ)s then
(νΠ)s ≡ 0 ⇐⇒ νs ≡ 0 which is equivalent to the result, since µi j << ν and (µi j)Π << νΠ.

Theorem 6.3.2. Let X = {Xr
t }
r=1,...,n
t∈R be a continuous time stationary process, and let

Y = {Xr
k}
r=1,...,n
k∈Z then the following are equivalent:

a) Y is a frame of its span H(Y ).
b) µi j << L, where µi j are the spectral measures of X , and there exists A,B > 0 such that
DΠ the matrix of periodized spectral densities veri�es σ(DΠ) ⊆ {0} ∪ [A,B] a.e [L].
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Proof. This is immediate from the previous lemma 6.3.1 and theorem 6.3.1.

Let us study under which conditions, given a w.s.s. process X = {Xr
t }r=1...n
t∈R , there exists

another stationary process (indexed by k ∈ Z) W = {W r
k }r=1...m

k∈Z such that span{W r
k }r=1...m

k∈Z =
span{Xr

k}r=1...n
k∈Z . For this purpose, let us review some facts about linear transformations over

the space H(X ) spanned by a process X . For more details see for example, [69], Chapter I,
sec. 8.
Let X = {Xk

t }k=1...n
t∈A be a stationary random process with an spectral representation

Xk
t =

∫
G
ei2πλtdΦX k ,

we say that a process Y = {Y k
t }k=1...m

t∈A is obtained by a linear transformation, if each of its
components admits the following representation:

Y k
t =

∫
G
ei2πλtϕY X

k dΦX , (6.3.5)

for some vector functions ϕY X
k = (ϕY X

k j)j=1...n ∈ L2(G). The equation 6.3.5 can be written
in the matrix form:

Yt =

∫
G
ei2πλtϕY X dΦX , (6.3.6)

where the matrix ϕY X acts symbolically over the vector random measure ΦX . Being a
stationary process Y has its own spectral representation, Y k

t =
∫
G e

i2πλtdΦY , but it follows
from eq. 6.3.5 that the random spectral measure of Y veri�es

ΦY k(A) =

∫
A
ϕY X
k dΦX .

From this we have that the spectral measures of Y are related by

µY
ij(A) =

∫
A

ϕY X
i

dMX

dν
(ϕY X
j )∗dν .

The measurable matrix ϕY X is called the spectral characteristic of the linear transformation
being considered. The processes X and Y are obviously stationarily correlated. If we write in
a matrix form MX Y their joint spectral (matrix) measure and the spectral (matrix) measure
of Y then we have the following relations:

MY X (A) =

∫
A
ϕY X dMX

dν
dν, MX (A) =

∫
A
ϕY X dMX

dν
(ϕY X )∗dν .

It can be proved that this conditions are also su�cient in order that Y be obtainable from X
from a linear transformation [69]. Let us introduce some notation. If Λ ∈ Rn×n is a diagonal

non negative matrix, for α ∈ R we de�ne Λ(α) as Λ
(α)
t l = Λαl if t = l and Λl ̸= 0, or Λ

(α)
t l = 0

otherwise. If A ∈ Rn×n is a (symmetric ) non negative de�nite matrix, A admits a diagonal
decomposition A = PΛP ∗, from this, we de�ne A(α) = PΛ(α)P ∗.
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Lemma 6.3.2. Let X = {Xr
t }r=1...n
t∈R be a w.s.s. process. X contains a stationary sequence

which is a frame of the closed linear span of Y = {Xr
k}r=1...n
k∈Z , H(Y ) ⇐⇒ the spectral measures

verify, for all i j: µi j << L.

Proof. (⇒) We denote Y = {Xr
k}r=1...n
k∈Z . If Y contains a stationary sequence, say W , which is

a frame of its span, then by the previous results, theorem 6.3.1, the (matrix) spectral measure
associated to W must be absolutely continuous, so there exists a spectral density matrix DW ,
de�ned over [0, 1). On the other hand if Y is obtainable by a linear transformation from W ,
say a n×m measurable matrix function φY W , then the spectral measures of Y are given by
[69]:

∀A ∈ B[0, 1) : µ′i j(A) =

∫
A
φY W
i DW (φY W

j )∗dλ ,

so µ′i j << L, but since µ′i j = (µi j)Π then by the claim 6.3.1: µi j << L.
(⇐) The spectral density matrix of Y , DX

Π exists since µi j << L is diagonalizable in a
measurable form, i.e. there exist a measurable [67] P orthogonal matrix and a diagonal matrix
of eigenvalues Λ such that Λ = P ∗DX

Π P . Take W the process obtained from Y by the linear

invertible transformationa [69] induced by G(− 1
2
) = PΛ(− 1

2
)P ∗. Then G(− 1

2
)DX

Π (G(− 1
2
))∗ =

PΛ(− 1
2
)ΛΛ(− 1

2
)P ∗ = B, where B is a diagonal matrix which takes the values 0 or 1 in the

diagonal. From this we have that this linear operation is well de�ned since each column of
G(− 1

2
) is in L2[0, 1). On the other hand by the result [69] which relates a linear transformation

and the spectral measure: DW = B ⇒ σ(DW ) ⊆ {0, 1} a.e., then, by theorem 6.3.1, W is a
frame of H(Y ).

In previous works e.g.[69]-[84] a common condition for the existence of orthogonal or min-
imal stationary sequences, is that the eigenvalues of the spectral density be not null a.e. In
theorem 6.3.1 we proved that the spectral density matrix of a stationary sequence which is a
Riesz basis must have all its eigenvalues inside a positive bounded interval [A,B]. However
there are some limitations on the supports of the spectral densities:

Lemma 6.3.3. Let X = {Xk}k∈Z be a w.s.s. sequence, with absolutely continuous spectral
measure, and let Z = {Zk}k∈Z be another w.s.s. sequence such that H(X ) = H(Z ), then Z
has an absolutely continuous spectral measure, and if ϕX and ϕZ are the spectral densities of
X and Z respectively, then

L(supp(ϕX )△supp(ϕZ )) = 0.

Proof. From 6.3.2 there exists Y = {Yk}k∈Z a stationary sequence which is a frame of H(Z ).
Let us call ΦZ and ΦX the random spectral measures of Z and X respectively. Then as we
have seen in lemma 6.3.2,

Yk =

∫
[0,1)

(ϕZ )−
1
21supp(ϕZ )e

i2πλkdΦZ .

On the other hand, as Zk ∈ H(X ), Zk admits the following representation:

Yk =

∫
[0,1)

fei2πλkdΦX ,

aNote that the operation is always de�ned over the closed linear span of the process
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for some f ∈ L2(R, ϕX dλ). Then ϕY = 1supp(ϕZ ) a.e. [L]. But [69] ϕZ = |f |2ϕX a.e. (in

particular Z has an absolutely continuous spectral measure), then ϕY = |f |2
ϕZ 1supp(ϕZ )ϕ

X =

1supp(ϕZ ) a.e. From this L(supp(ϕZ ) \ supp(ϕX )) = 0. Interchanging the roles of Z and X

we get L(supp(ϕX )△supp(ϕZ )) = 0.

We have seen that the closed linear span of a stationary sequence always contains a sta-
tionary sequence which is a frame. An arbitrary stationary sequence may not contain any
stationary Riesz basis. Moreover, from lemmas 6.3.3, 6.3.2 and theorem 6.3.1, it is immediate
that a necessary and su�cient condition for a 1-dimensional stationary sequence to contain a
(stationary) Riesz basis of its span, is to have a spectral measure equivalent to L.

Fundamental Frame

We give conditions for a sequence of samples to be a fundamental frame, i.e. to be a frame
and to be complete with respect to the closed linear span of the continuous time process, i.e.

span{Xr
k}r=1...n
k∈Z = span{Xr

t }r=1...n
t∈R = H(X ). (6.3.7)

This is related to reconstructing a signal from its samples, since the sampling problem can be
formulated in terms of �nding conditions for which eq. 6.3.7 holds [47]-[45]. The following
theorem 6.3.3 was proved by Lloyd [47], and it is an analogue result of the result of [5] for
L2(R) functions:

Theorem 6.3.3. [47] Let X = {Xt}t∈R be a w.s.s. process with spectral measure µ. The
following are equivalent:
i) span{Xk}k∈Z = span{Xt}t∈R, (in L2(Ω,F ,P)).
ii) span{ei2πkx}k∈Z = {f ∈ L2(µ) : f is 1− periodic} b = L2(µ).
iii) There exists A ∈ B(R) such that µ(Ac) = 0 and A ∩A+ k = ∅, k ∈ Z \ {0}.

Proof. The equivalence i) ⇐⇒ ii) is immediate, so let us prove i) (or ii))=⇒ iii). Let V =
span{ei2πkx}k∈Z, and let PV : L2(µ) −→ V be the orthogonal projection on V. We will �rst
derive some useful expressions for PV. Given f ∈ L2(µ), de�ne for every Borel subset A ⊆ R
the auxiliary measures: ν0(A) =

∑
n∈Z

µ (A+ n),

ν1(A) =
∑
n∈Z

∫
A+n

fdµ , ν2(A) =
∑
n∈Z

∫
A+n

|f |2dµ .

Is easy to verify that ν1 ≪ ν0 and ν2 ≪ ν0. We claim that, PV(f) =
dν1
dν0

a.e. [µ], where dν1
dν0

is the Radon-Nykodym derivative of ν1 with respect to ν0. Indeed if diam(A) ≤ 1, by the
de�nition of ν1 and the Cauchy-Schwartz inequality:

|ν1(A)|2 ≤
∫

∪
n∈Z

A+n

|f |2dµµ

(∪
n∈Z

A+ n

)
= ν2(A)ν0(A) .

bIndeed, every f coincides a.e. [µ] with a periodic function.
Obviously, here L2(µ) coincides with the previously de�ned space L2(R).
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Recalling the Lebesgue di�erentation theorem for Radon measures, this implies that
∣∣∣dν1dν0

∣∣∣2 ≤
dν2
dν0

a.e. [µ]. Then as the dνi
dν0

are taken as periodic functions

∥PV(f)∥2 =
∫
R

∣∣∣∣dν1dν0

∣∣∣∣2 dµ ≤
∫
R

dν2
dν0

dµ =
∑
k∈Z

∫
[0,1)+k

dν2
dν0

dµ =

∫
[0,1)

dν2
dν0

dν0 = ν2([0, 1)) = ∥f∥2 .

Then PV is bounded. Let f ∈ V, thus f = g a.e. [µ] for some periodic g. Then

ν1(A) =
∑
n∈Z

∫
A+n

gdµ =

∫
A

gdν0 ,

and from this dν1
dν0

= g a.e. [ν0] and since Ran(PV) ⊆ V, then this is an expression for the
projection over V. Now, let us write PV(f) in another way. De�ne, for every n ∈ Z and
A ∈ B(R), µn(A) = µ(A+ n), then µn admits the following Lebesgue decomposition, n ̸= 0:

µn(A) =

∫
A

φndµ+ µn(A ∩ Γn), µ(Γn) = 0, φn ∈ L1(µ) , (6.3.8)

and φ0 = 1 a.e. [µ], Γ0 = ∅. De�ne Γ =
∪
n∈Z

Γn, then µ(Γ) = 0 and for every n ∈ Z we can

write:

µn(A) =

∫
A

φndµ+ µn(A ∩ Γ) ,

thus ν0 and ν1 can be rewritten as

ν0(A) =

∫
A

∑
n∈Z

φndµ+ ν0(A ∩ Γ) , ν1(A) =

∫
A

∑
n∈Z

f( . + n)φndµ+ ν1(A ∩ Γ) ,

then, on Γc (see [33] sec. 32),

PV(f) =
dν1
dν0

=

f +
∑
n̸=0

f( . + n)φn

1 +
∑
n̸=0

φn
a.e. [µ] . (6.3.9)

If Xt ∈ span{Xk}k∈Z for every t ∈ R, in particular if t ∈ R \Q this implies that PV(e
i2πλt) =

ei2πλt a.e. [µ]. Then

ei2πλt =

ei2πλt +
∑
n̸=0

ei2π(λ+n)tφn(λ)

1 +
∑
n̸=0

φn(λ)
a.e. [µ] ,

equivalently,
∑
n̸=0

(1−ei2πnt)φn(λ) = 0 a.e. [µ]. Thus Re((1−ei2πnt)) > 0, since t ∈ R\Q. And

since the φn are non negative then µn⊥µ, n ̸= 0. Thus there exists complementary supports
for µ and µn, n ̸== 0; let An be a support of µ such that µn(An) = 0, n ̸= 0. The intersection
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N =
∩
n̸=0

An is a support of µ such that µn(N) = 0, n ̸= 0. From the de�nition of the µn, we

have that the translates Nn = N − n is a support of µn which has the property µm(Nn) = 0,

n ̸= m, n,m ∈ Z; In particular, µ(Nn), n ̸= 0. Finally, the set A = N
∩( ∪

n̸=0

Nn

)c
is a

support of µ which is disjoint of each of its translates A− n, n ̸= 0.

iii) =⇒ i), Suppose A is a support of µ which is disjoint from each of its translates. A− n is
a support of the previously de�ned µn, so that µn and µ have disjoint supports, n ̸= 0, thus µ
and µn are mutually singular. From eq. 6.3.8 we have that φn = 0 a.e. µ, n ̸= 0. This implies
that each f ∈ L2(µ) is equivalent to its projection PV(f), using eq. 6.3.9. Hence V = L2(µ)
or equivalently span{Xk}k∈Z = span{Xt}t∈R .

Remark 6.3.1. Condition i) of the theorem above, does not necessarily imply that every Xt

can be written as an (in�nite, mean square convergent) linear combination like the eq. 1.0.1
of theorem 1.0.1.

For further comments on this result read at the end of this chapter. The following is an
extension of theorem 6.3.3 :

Lemma 6.3.4. Let X = {Xr
t }r=1...n
t∈R be w.s.s. process and let Y = {Xr

k}r=1...n
k∈Z be the discrete

time 'sampled' process. Then:
a) H(X ) = H(Y ) ⇐⇒ for each eigenvalue Λj of dM

dν there exists Aj ∈ B(R), such that
Λj = 0 a.e. [ν] on Acj and Aj ∩Aj + k = ∅ for every k ∈ Z \ {0}.
b) Let X be such that the spectral measures µi j << L, then H(X ) = H(Y ) ⇐⇒ for each
eigenvalue Λj of D there exists Aj ∈ B(R), such that Λj = 0 a.e. [L] on Acj and Aj∩Aj+k = ∅
for every k ∈ Z \ {0}.

Remark. Recall that ν = tr(M)

Proof. a) Since dM
dν is non negative de�nite and self adjoint, there exists a measurable [67]

P orthogonal matrix and a diagonal matrix of eigenvalues Λ such that Λ = P ∗ dM
dν P . Let us

introduce the process Z = {Zrt }r=1...n
t∈R de�ned by the linear operation on X ([69], Chapter I,

sec. 8):

Zrt =
n∑
j=1

∫
R
eiλ2πtP ∗

r jdΦj . (6.3.10)

This operation is well de�ned since Pi, the i-th column of P , is in L2(R):

∫
R
P ∗
i

dM

dν
Pjdν ≤

∫
R
∥Pi∥2

∥∥∥∥∥
(
dM

dν

) 1
2

∥∥∥∥∥
2

op

dν ≤
∫
R
tr

(
dM

dν

)
dν = ν(R) <∞ ,

and if we denote µ′i j the spectral measures of the process Z , then by the result [69] which
relates a linear transformation and the spectral measure:

∀ A ∈ B(R) : µ′i j(A) =
∫
A
P ∗
i

dM

dν
Pjdν =

∫
A
Λi jdν. (6.3.11)
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The linear operation induced by P over H(X ) in eq. 6.3.10 is invertible, since P−1 exists
for almost all λ, then H(X ) = H(Z ). Equation 6.3.10 also implies that for each k ∈ Z, the
Xr
k are obtainable from the Zrk , for every r = 1 . . . n and reciprocally, since P−1 exists. If we

introduce another process of samples from Z : S = {Zrk}r=1...n
k∈Z , from the latter discussion

we have that H(X ) = H(Y ) ⇐⇒ H(Z ) = H(S ). But eq. 6.3.11 means that µi j ≡ 0

for i ̸= j, or equivalently E(Zit′Z
j
t ) = 0 for i ̸= j, so that we have the orthogonal sum

H(Z ) =
n
⊕
j=1

span{Zjt }t∈R. Hence it will su�ce to study when span{Zjt }t∈R = span{Zjk}k∈Z,

for each j. This holds if and only if (by theorem 6.3.3) there exists Aj ∈ B(R) such that
µ′j j(A

c) = 0 and Aj ∩ Aj + k = ∅ for integer k ̸= 0. But from eq. 6.3.11 µ′j j(A
c) = 0 is

equivalent to the condition on the eigenvalue Λj = Λj j = 0 a.e. [ν] on Acj .
b) Is an immediate consequence of a)

Now, we can characterize fundamental frames of uniform samples, in other words, given
X = {Xr

t }r=1...n
t∈R a w.s.s. process and Y = {Xr

k}r=1...n
k∈Z the discrete time 'sampled' process,

we want to give conditions when Y is a fundamental frame for H(X ) in terms of the spectral
measure of the process. For this purpose, in an analogue way to de�nition 23 for each λ ∈ [0, 1)
we introduce the following sequence space:

l2(D) =

{
x : Z → Cn ,

∑
k∈Z

xkD(λ+ k)x∗k <∞

}
.

In a similar manner to that of de�nition 23, l2(D) can be identi�ed with a Hilbert space with
norm ∥x∥2l2(D) =

∑
k∈Z

xkD(λ+ k)x∗k. We give a condition in terms of l2(D) and an alternative

condition combining the preceding results.

Theorem 6.3.4. Let X = {Xr
t }r=1...n
t∈R be a w.s.s. process, with spectral measure µi j, and let

Y = {Xr
k}r=1...n
k∈Z be the discrete time 'sampled' process. Then:

a) Y is a frame with constants A,B > 0 for H(X ) ⇐⇒ µi j << L and for almost all λ ∈ [0, 1):

A ∥x∥2l2(D) ≤

∥∥∥∥∥∑
k∈Z

D(λ+ k)x∗k

∥∥∥∥∥
2

Cn

≤ B ∥x∥2l2(D) ∀x ∈ l2(D) .

b) Y is a frame with constants A,B > 0 for H(X ) ⇐⇒ the following conditions hold simulta-
neously: i) µi j << L and there exists A,B > 0 such that DΠ the matrix of periodized spectral
densities veri�es σ(DΠ) ⊆ {0} ∪ [A,B] a.e [L]. ii) For each eigenvalue Λj of D there exists
Aj ∈ B(R), such that Λj = 0 a.e. [L] on Acj and Aj ∩Aj + k = ∅ for every k ∈ Z \ {0}.

Proof. (Part a.) (⇒) First note that by theorem 6.3.2, µi j << L and then there exists D the
spectral density matrix. Recall eq. 6.3.1, if Y ∈ H(X ) then there exists f ∈ L2(R) such that

Y =
n∑
j=1

∫
R fjdΦj . Then for such Y and f we have:

∑
k∈Z

n∑
j=1

|E(Xj
kY )|2 =

∫
[0,1)

∥∥∥∥∥∑
k∈Z

D(λ+ k)f∗(λ+ k)

∥∥∥∥∥
2

Cn

dλ ,
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on the other hand,

E|Y |2 =
∫
[0,1)

∑
k∈Z

f(λ+ k)D(λ+ k)f∗(λ+ k)dλ .

Calling the sequence fk = f(. + k), then by a similar argument to that of the proof of theorem
6.3.1 we can rewrite condition eq. 6.3.1 as

A

∫
[0,1)

∥f∥2l2(D) dλ ≤
∫
[0,1)

∥∥∥∥∥∑
k∈Z

D(λ+ k)f∗(λ+ k)

∥∥∥∥∥
2

Cn

dλ ≤ B

∫
[0,1)

∥f∥2l2(D) dλ . (6.3.12)

Let us call D the set of all sequences in (Cn)Z such that xjk belongs to D if xjk = 0 but for
�nitely many j k's. D is a countable set which is dense in l2(D) for every λ. Given x ∈ D,
ϵ > 0 and λ0 ∈ [0, 1) set f(λ) =

∑
k∈Z

xk1B(λ0,ϵ)(λ− k)1[k,k+1). In this case eq. 6.3.12 becomes:

A

∫
B(λ0,ϵ)∩[0,1)

∥x∥2l2(D) dλ ≤
∫

B(λ0,ϵ)∩[0,1)

∥∥∥∥∥∑
k∈Z

D(.+ k)x∗k

∥∥∥∥∥
2

Cn

dλ ≤ B

∫
B(λ0,ϵ)∩[0,1)

∥x∥2l2(D) dλ .

Then for each x ∈ D, there exists Fx, such that L(F cx) = 0 and,

A ∥x∥2l2(D) ≤
∥∥∥∥∑
k∈Z

D(λ+ k)x∗k

∥∥∥∥2
Cn

≤ B ∥x∥2l2(D) , for all λ ∈ Fx. Then taking F = ∩
x∈D

Fx, we

have L(F c) = 0 and that for all λ ∈ F it holds

A ∥x∥2l2(D) ≤

∥∥∥∥∥∑
k∈Z

D(λ+ k)x∗k

∥∥∥∥∥
2

Cn

≤ B ∥x∥2l2(D) ∀x ∈ D . (6.3.13)

We want to prove that eq. 6.3.13 holds for every x ∈ l2(D). For such x let us de�ne

yk = D
1
2 (λ + k)x∗k, then

M∑
k=N+1

D(λ + k)x∗k =
M∑

k=N+1

D
1
2 (λ + k)yk. First we shall see that

given x ∈ l2(D): lim
N,M→∞

∥∥∥∥∥ M∑
k=N+1

D(λ+ k)x∗k

∥∥∥∥∥ = 0, for j = 1 . . . n. Denoting D
1
2
j (λ + k)

the j th= row of D
1
2 (λ+ k), we have:

∥∥∥∥∥ M∑
k=N+1

D
1
2 (λ+ k)yk

∥∥∥∥∥
2

=
n∑
j=1

∣∣∣∣∣ M∑
k=N+1

D
1
2
j (λ+ k)yk

∣∣∣∣∣
2

≤

n∑
j=1

(
M∑

k=N+1

∥∥∥∥D 1
2
j (λ+ k)

∥∥∥∥
Cn

∥yk∥Cn

)2

. Applying again the Cauchy-Schwartz inequality, we

get: ∥∥∥∥∥
M∑
k=N

D
1
2 (λ+ k)yk

∥∥∥∥∥
2

≤
n∑
j=1

(
M∑

k=N+1

∥∥∥∥D 1
2
j (λ+ k)

∥∥∥∥2
Cn

)(
M∑

k=N+1

∥yk∥2Cn

)
.

If we denote ∥.∥Cn×n the Froebenius/euclidean norm , denoting xN (k) = xk1(−∞,N ](k) and
recalling the de�nition of yk we can rewrite the last equation as:

M∑
k=N+1

∥∥∥D 1
2 (λ+ k)

∥∥∥2
Cn×n

∥xN − xM∥2l2(D) =

M∑
k=N+1

tr(D
1
2 (λ+ k)D

1
2 (λ+ k)) ∥xN − xM∥2l2(D)



CHAPTER 6. STATIONARY SEQUENCES AND STABLE SAMPLING 112

= tr

(
M∑

k=N+1

D(λ+ k))

)
∥xN − xM∥2l2(D) .

But by theorem 6.3.1: tr

(
M∑

k=N+1

D(λ+ k))

)
≤ tr(DΠ(λ)) ≤ nB a.e. in [0, 1). Equivalently

this holds for all λ ∈ F ′ with L((F ′)c) = 0, so we can take G = F ∩ F ′. Then, the result

follows, since for λ ∈ G and x ∈ l2(D): lim
M→∞

∥∥∥∥∑
k∈Z

D(λ+ k)x∗M (k)

∥∥∥∥ =

∥∥∥∥∑
k∈Z

D(λ+ k)x∗k

∥∥∥∥ and

lim
M→∞

∥xM∥l2(D) = ∥x∥l2(D).

(⇐) It is easy to reverse the proof using the condition of the hypothesis and equation 6.3.12.
(Part b.) It follows from combining theorem 6.3.2 and lemma 6.3.4.

In particular we have that if Y is a fundamental frame, then for almost all λ l2(D) must
be isomorphic to a �nite dimensional space.

6.4 Canonical Dual Frame and a.s. Convergence

6.4.1 Canonical Dual Frame.

In the case of shift invariant subspaces of L2(R) some useful formulations for the dual frame
are obtained in terms of the Fourier transforms of the generators. In the following we consider
a similar problem for the frame formed by the stationary sequence: {Xr

k}r=1...n
k∈Z . In this case

is possible to give conditions in terms of the spectral density. Recall that for each t ∈ R or
Z, Xr

t can be written as the result of the action of the (unitary) time shift operator T on Xr
0

[69]. In our case, the frame operator S : H(X ) −→ H(X ) is given by:

Y 7−→ S(Y ) =

n∑
r=1

∑
k∈Z

E(Y Xr
k)X

r
k .

Recall that S has a bounded inverse and on the other hand each Y ∈ H(X ) admits the
following representation:

Y =

n∑
r=1

∑
k∈Z

E(Y S−1Xr
k)X

r
k .

Taking into account eq. 6.2.1 and if we suppose that T commutes with S−1 we have:

Y =
n∑
r=1

∑
k∈Z

E(Y S−1T kXr
0)X

r
k =

n∑
r=1

∑
k∈Z

E(Y T kS−1Xr
0)X

r
k ,

so, in this case the canonical dual frame is a new stationary sequence given by W r
k =

T k(S−1Xr
0), k ∈ Z, and it would su�ce to show that W r

0 = S−1Xr
0 . We need the follow-

ing lemma to solve this problem:

Lemma 6.4.1. Let X = {Xr
k}r=1...n
k∈Z be a stationary sequence which is a frame of its span

H(X ). Then, for all Y ∈ H(X ) the following holds: ST kY = T kSY and S−1T kY =
T kS−1Y .
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Proposition 6.4.1. Let X = {Xr
k}r=1...n
k∈Z be a stationary sequence which is a frame of its

span H(X ). Then the canonical dual frame {W r
k }r=1...n

k∈Z is given by

W r
k =

n∑
j=1

∫
[0,1)

eiλ2πk(D♯e∗r)jdΦj . (6.4.1)

Proof. Let us de�ne Zm0 =
n∑
j=1

∫
[0,1)

(D♯e∗m)jdΦj . Where D♯ is measurable by lemma 6.2.1. If we

show that SZm0 = Xm
0 we are done, since S is invertible. De�ne MN =

n∑
r=1

∑
|k|≤N

E(Zm0 Xr
k)X

r
k

and hN ,r(λ) =
∑

|k|≤N
E(Zm0 Xr

k)e
iλ2πk, and recall that SZm0 =

n∑
r=1

∑
k∈Z

E(Zm0 Xr
k)X

r
k . By lemma

6.2.1 we have that Xm
0 =

n∑
j=1

∫
[0,1)

(em)jdΦj =
n∑
j=1

∫
[0,1)

(PCol(D)e
∗
m)jdΦj almost surely. On the

other hand:

E(Zm0 X
r
k) =

∫
[0,1)

eiλ2πkerDD
♯e∗mdλ =

∫
[0,1)

eiλ2πkerPCol(D)e
∗
mdλ .

So hN ,r −→ erPCol(D)e
∗
m in L2[0, 1) and a.e. But: E|Xm

0 −MN |2 =∫
[0,1)

(hN − PCol(D)e
∗
m)

∗D(hN − PCol(D)e
∗
m)dλ ≤ B

∫
[0,1)

∥∥hN − PCol(D)e
∗
m

∥∥2 dλ
where again, M(λ) = sup

∥x∥=1
xD(λ)x∗ is measurable and M ≤ B a.e. which proves the result.

On the expansion coe�cients

Observing equation 6.4.1 we expect that the coe�cients of the expansion may be rewritten in
terms of ordinary Fourier transforms. Let us discuss the case for fundamental frames and when
n = 1. In this case, given a stationary process Yt ∈ H(X ), we know that Yt =

∫
R f e

iλ2πtdΦ
for some f ∈ L2(R, ϕdλ), where ϕ is the spectral density. On the other hand, eq. 6.4.1 becomes
Wk =

∫
R(ϕ)

−11Se
iλ2πkdΦ, where S = {λ : ϕ(λ) ̸= 0}, then E(YtWk) =

∫
S f(λ)e

−i2πλ(t−k)dλ =

f̂(t − k). Note that we can take f such that f = 0 outside S, and moreover f ∈ L2(R)
since B

∫
R |f |2dλ ≤

∫
R |f |2ϕdλ < ∞. Then Yt ∈ H(X ), provided that Y = {Xk}k∈Z is a

fundamental frame, admits the following representation:

Yt =
∑
k∈Z

f̂(t− k)Xk .

Let us discuss the case when another dual frame is used. First we need an auxiliary lemma:

Lemma 6.4.2. Let f, g ∈ L2(R) and let f̂ , ĝ be their Fourier transforms, then∫
R
|f ∗ g|2dt =

∫
R
|f̂ ĝ|2dλ .

When one side of the above equation is �nite, then f̂ ∗ g = f̂ ĝ a.e.
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Proof. In the appendix.
In the general case, let {Wk}k∈Z be the dual frame. If g ∈ L2(R, ϕdλ) is such that Wk =∫
R ge

i2πλkdΦ, supposing that f and Yt are as in the previous discussion, then E(YtWk) =∫
R f(λ)g(λ)ϕ(λ)e

−i2πλ(t−k)dλ. First, we have that fgϕ ∈ L1(R). And, again as in the previous
case f, g ∈ L2(R). We also have that ∥gϕ∥2L2(R) ≤ A

∫
R |g|2ϕdλ < ∞, since g ∈ L2(R, ϕdλ).

Now by lemma 6.4.2 ĥ := ĝϕ = ĝ∗ϕ̂ and ĥ = ĝ∗ϕ̂ ∈ L2(R). Then, ĥ∗f̂ is well de�ned and then

ĥf = ĥ∗ f̂ (in S ′(R)) but hf ∈ L1(R) so ĥ∗ f̂ is well de�ned a.e. and then E(YtWk) = ĝ∗ϕ̂∗ f̂ .
Finally, from this:

Yt =
∑
k∈Z

(ĝ ∗ ϕ̂ ∗ f̂)(t− k)Xk .

6.4.2 Almost Sure Convergence

The representations given above converge in norm. Let us discuss brie�y the problem of almost
sure convergence for these representations. Note that point-wise convergence strongly depends
on the summation method. First let us examine what happens in this context of the frame
algorithm described before in section 2. Here, given Y ∈ H(X ) we can write: Y0 = 0 and
de�ne Yn+1 = Yn + λS(Y − Yn), with λ and δ de�ned as before, then E|Y − Yn|2 ≤ δ2nE|Y |2.
But given ϵ > 0 by Chevyshev's inequality,

P(|Y − Yn| > ϵ) ≤ E|Y − Yn|2

ϵ2
≤ δ2nE|Y |2

ϵ2
,

then
∑
n
P(|Y − Yn| > ϵ) < ∞, and then by the �rst Borel-Cantelli Lemma Yn −→

n→∞
Y a.s.

The Mencho�-Rademacher theorem [43] gives a su�cient condition for the a.s. convergence of
orthogonal expansions. A similar result holds for sequences which form a frame. This result
could be obtained in a similar manner to [36] adapting the classical proof [43] of the original
theorem. We include in the appendix a sketch of a shorter argument, similar to that of [81]
involving absolutely summing operators. To prove such a result one would like to bound the

maximal operator sup
N≤s

∣∣∣∣∣ n∑r=1

∑
|k|≤N

(log(k + 1))−1crkX
r
k

∣∣∣∣∣. Note that this also can be written in

terms of norms of sequences, and combining props. 33 and 21. From [81] it is possible to
summarize these results in the following:

Lemma 6.4.3. Let (ck)k ∈ l2(Z) be such that
∑
k

c2k log
2(k + 1) < ∞, if we de�ne T : l2 −→

l∞ as (Tξ)j =
∑

|k|≤j
ckξk and given a random vector Θ = (X−s, . . . , X0, . . . , Xs) we have

E ∥TΘ∥2l∞ ≤ C
∑
k

c2k log
2(k + 1) sup

x∈l2 ∥x∥=1

E|Θx∗|2.

This lemma contains all we need to prove:

Proposition 6.4.2. X = {Xr
k}r=1...n
k∈Z be a stationary sequence which is a frame of its span

H(X ). If (crk)k r ∈ l2 then
n∑
r=1

∑
|k|≤N

(log(k + 1))−1crkX
r
k converges almost surely as N −→ ∞.

Proof. See the appendix
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6.5 Appendix-Proofs of Some Auxiliary Results

Here are the proofs of some short and auxiliary results.
Proof of lemma 6.2.1 (a) In [67] it is proved that every non negative self adjoint matrix is
diagonalizable in a measurable form D = PΛP ∗, then D♯ = D(−1) and DD♯ = PCol(D) are
measurable.
(b) From the previous I−PCol(D) = PNul(D) is measurable. Now if L({λ : rg(D)(λ) < n}) > 0

and if Aj = {λ : (PNul(D))j(λ) ̸= 0}, then {λ : rg(D)(λ) < n} =
n∪
j=1

Aj ,. From this, there

exists a column (PNul(D))j(λ) ̸= 0 for every λ in some measurable Aj , with L(Aj) > 0.

Part c) For such g, put Z =
n∑
j=1

∫
[0,1)

(fj + gj)dΦj , then E|Y −Z|2 =
∫

[0,1)

gDg∗dλ = 0 since g ∈

Nul(D) a.e. so Y = Z a.s. �

Proof of lemma 6.4.1 Given Y ∈ H(X ), k ∈ Z: S(T jY ) =
n∑
r=1

∑
k∈Z

E(T jY T kXr
0)T

kXr
0 .

Recall that T is unitary so T ∗ = T−1 and then S(T jY ) =
n∑
r=1

∑
k∈Z

E(Y T k−jXr
0)T

kXr
0 . Making

a change of variables k − j =: m we have:

S(T jY ) =
n∑
r=1

∑
m∈Z

E(Y TmXr
0)T

m+jXr
0 = T j(SY ) .

Finally, S−1T kSS−1Y = (S−1S)T kSY = T kS−1Y . �

Proof of lemma 6.4.2. Note that (f ∗ g)(t) is well de�ned for all t and is a bounded func-
tion as a consequence of the Cauchy Schwartz inequality . Let {φn}n∈N be a sequence in the
Schwartz space S(R) such that φn −→ g in L2(R) as n −→ ∞, then by Cauchy-Schwartz:
|f ∗ g(t) − f ∗ φn(t)| ≤ ∥f∥L2(R) ∥g − φn∥L2(R) so that f ∗ φn −→

n→∞
f ∗ g uniformly. Taking

ψ ∈ S (R) we have that |f ∗ (g − φn)(t)||ψ̂(t)| ≤ ∥f∥L2(R)M |ψ̂(t)| ∈ L1(R) then by the
dominated convergence theorem:

lim
n→∞

∫
R
(f ∗ φn)(t)ψ̂(t)dt =

∫
R
(f ∗ g)(t)ψ̂(t)dt . (6.5.1)

But we also have that:

∀ n :

∫
R
(f ∗ φn)(t)ψ̂(t)dt =

∫
R
(f̂ φ̂n)(t)ψ(t)dt , (6.5.2)

and again by the Cauchy-Schwartz inequality:∣∣∣∣∫
R
f̂ψ(φ̂n − ĝ)dt

∣∣∣∣ ≤ ∥∥∥f̂ψ∥∥∥L2(R)
∥ĝ − φ̂n∥L2(R) −→

n→∞
0 . (6.5.3)
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Combining eqs. 6.5.1, 6.5.2 and 6.5.3 we have that:

⟨f ∗ g, ψ̂⟩ = lim
n→∞

∫
R
(f ∗ φn)(t)ψ̂(t)dt = lim

n→∞

∫
R
(f̂ φ̂n)(t)ψ(t)dt = ⟨f̂ ĝ, ψ⟩ .

On the other hand,∥∥∥f̂ ĝ∥∥∥ = sup
∥ψ∥=1ψ∈S (R)

∫
R
f̂ ĝψdt = sup

∥ψ∥=1ψ∈S (R)

∫
R
(f ∗ g)ψ̂dt = ∥f ∗ g∥ .

�

Proof of proposition 6.4.2 The result follows if we bound the expected value of the square
of the maximal function

sup
N≤s

∣∣∣∣∣ n∑r=1

∑
|k|≤N

(log(k + 1))−1crkX
r
k

∣∣∣∣∣ ≤ n∑
r=1

sup
N≤s

∣∣∣∣∣ ∑|k|≤N(log(k + 1))−1crkX
r
k

∣∣∣∣∣ thenE sup
N≤s

∣∣∣∣∣∣
n∑
r=1

∑
|k|≤N

(log(k + 1))−1crkX
r
k

∣∣∣∣∣∣
2

1
2

≤
n∑
r=1

E sup
N≤s

∣∣∣∣∣∣
∑
|k|≤N

(log(k + 1))−1crkX
r
k

∣∣∣∣∣∣
2

1
2

.

Now, from lemma 6.4.3, for each r:

E sup
N≤s

∣∣∣∣∣ ∑|k|≤N(log(k + 1))−1crkX
r
k

∣∣∣∣∣
2

≤ Cr ∥cr∥l2 sup
a∈l2(Z) ∥a∥=1

E

∣∣∣∣∣ ∑|k|≤s akXr
k

∣∣∣∣∣
2

. Since the sequence

X is Besselian E

∣∣∣∣∣ ∑|k|≤s akXr
k

∣∣∣∣∣
2

≤ B ∥a∥2l2(Z) ≤ B. From this:

E sup
N≤s

∣∣∣∣∣ ∑|k|≤N(log(k + 1))−1crkX
r
k

∣∣∣∣∣
2

≤ CrB . Then using the Cauchy-Schwartz inequality:

E sup
N≤s

∣∣∣∣∣∣
n∑
r=1

∑
|k|≤N

(log(k + 1))−1crkX
r
k

∣∣∣∣∣∣
2

≤

(
n∑
r=1

CrB ∥cr∥l2(Z)

)2

≤ C ′
n∑
r=1

∑
k∈Z

|crk|2

�



6.6 Some additional comments

6.6.1 About theorem 6.3.3 and ergodic theory.

[47] Note that the result contained in this theorem about PV, i.e. eq. 6.3.9 and related is an
ergodic theorem. Recall that a subset W of some measure space is wandering with respect to
a 1− 1 point transformation T if its transforms {Tn(W )}n are mutually disjoint, and a set Y
is dissipative with respect to T if Y can be written as Y =

∪
n
Tn(W ) for some wandering set

W . In the present case, [0, 1), for instance, is wandering with respect to T (λ) = λ − 1 and
its translates {[0, 1)− n}n cover R. In the usual case of an ergodic theorem an assumption is
made to the e�ect that all (measurable) dissipative sets have measure zero. Finally, such µ of
condition iii) theorem 6.3.3, in the language of ergodic theory, has a wandering support.
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