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El presente trabajo fué desarrollado en inglés. Aún aśı nos corresponde escribir una
introducción en castellano. La tabla de contenidos indexará la version en inglés.

Introducción

El teorema que demostramos en ésta tesis yace entre medio de dos tipos de teorema co-
munmente conocidos como Teoremas de Embebimiento y Teoremas de Suficientes Puntos.
Los teoremas de embebimiento son aquellos que buscan representar plenamente un objeto
matemático abstracto dentro de uno concreto de la misma naturaleza. Estos teoremas sue-
len esclarecer la naturaleza de la abstraccion misma. Los siguientes son algunos ejemplos
de embebimientos donde la representación se da en algún sentido de forma canónica:

1. Cayley : G ↪→ S!, S = Conjunto Subyacente (G).
(representación de un grupo como un subgrupo del grupo simétrico).

2. Stone: B ↪→ Sub(S), S = Ideales Primos (B).
(representación de un algebra booleana como una subalgebra de partes de un conjunto)

3. Gelfand : A ↪→ Set(S,C), S = Ideales Maximales Cerrados (C)
(representación de una álgebra C∗ como una subalgebra del algebra de funciones a

valores complejos)

4. Yoneda: C ↪→ EnsD, D = Cop.
(representación de una categoŕıa pequeña C como una subcategoria plena de una cat-

egoŕıa de funtores a valores en los conjuntos)

El siguiente ejemplo, el Teorema de Representación de Barr, es el teorema que nos
concierne en éste trabajo.

Theorem 1.1. Para toda categoŕıa pequeña regular C existe un funtor regular plenamente

fiel C h
↪→ EnsD a una categoŕıa de funtores a valores en los conjuntos donde el exponente

tiene como objetos el conjunto Sub(1) de subobjetos de 1.

Tanto la demostración original de Barr como otras conocidas de éste teorema son alta-
mente no constructivas, pues usan tanto el axioma de elección como inducción transfinita.
El propósito de éste trabajo es demostrar una versión débil del teorema de Barr, cuyo
enunciado es que el funtor h es conservativo (o sea refleja isos), de forma constructiva.
Ésto es de hecho un teorema de Suficientes Puntos.

Posterior a la tésis doctoral de William Lawvere los teoremas de completud de teoŕıas
lógicas fueron formuladas en términos categóricos como teoremas de Suficientes Pun-
tos. Informalmente, dado un modelo A ∈ C de una teoŕıa T en una categoŕıa apropi-
ada C, toda fórmula ϕ(x) tiene una extensión en A que no es más que un subobjeto
[[x ∈ A | ϕ(x) vale ]] ↪→ A. La idea está en asociar a una teoria T una categoria apropiada
CT provista de un modelo (el modelo genérico) GT de T el cual es genérico en los siguientes
sentidos:

1. Provee (de forma tautológica por la construcción misma de CT ) un teorema de
completud para la teoŕıa T . O sea una fórmula ϕ(x) es demostrable en T si y solo si
[[x ∈ GT | ϕ(x) vale ]] = GT .

2. Para todo modelo A ∈ C de T en una categoŕıa apropiada, existe un único funtor

apropiado CT
F−→ C tal que F (GT ) = A.
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Claramente una familia conservativa (y por ende mono conservativa, o sea que si un
monomorfismo va a parar por todo funtor de la familia a un isomorfismo, el monomorfismo
mismo es un isomorfismo) (see 3.3) de funtores apropiados a valores en los conjuntos

CT
F−→ Ens (en algunos contextos llamados puntos) nos provee un teorema de completud.

Para lógicas geométricas intuicionistas de primer orden (eso es admitiendo el cálculo
proposicional intuicionista y solamente el cuantificador existencial) las categoŕıas apropi-
adas son exactamente las categoŕıas regulares y los funtores apropiados son exactamente
los funtores regulares. De ésta forma la version débil del teorema de Barr nos provee de
una demostración del teorema de completud para éstas lógicas mediante el siguiente ar-
gumento. Dada una categoŕıa regular C debemos ver que la familia de funtores regulares
C −→ Ens es conservativa. El teorema débil de Barr nos garantiza que hay un funtor

regular conservativo C h−→ EnsSub(1). Las evaluaciones EnsSub(1) −→ Ens son regulares y
la familia de evaluaciones es conservativa. Queda entonces demostrado.

Independientemente de éstas consideraciones el propósito de éste trabajo consiste en
dar una demostración constructiva de la version débil del Teorema de Barr.

Gúıa de la Construcción

Para la construcción usamos una gúıa establecida por André Joyal en unas charlas no
publicadas a principio de los años setenta en Montreal. Su demostración está inspirada en
reinterpretar la demostración del Teorema de Completud de Gödel dada por Leon Henkin
que consiste en “agregar constantes”.

Para llevar a cabo la contrucción de forma constructiva precisamos las hipótesis adi-
cionales de que la categoria regular posea objeto terminal distinguido y a su vez represen-
tantes distinguidos de cada clase de subobjetos en C. Ésto no afecta las aplicaciones a la
lógica que tenemos en mente. Por ésto quiero decir que las categoŕıas CT asociadas a las
lógicas geométricas intuicionistas de primer orden verifican éstas hipótesis.

Empezamos por construir para toda categoŕıa regular A, que posee un objeto terminal
1 distinguido, un funtor regular A −→ Ens que es conservativo sobre los monomorfismos
cuyo codominio tiene soporte global (Section 6). Ésto lo logramos construyendo un funtor

A J0−→ A∞ donde 1 ∈ A∞ es proyectivo débil (y por ende el funtor A∞ [1,−]−→ Ens es regular)
tal que ambos J0 y [1,−] son conservativos sobre monomorfismos cuyo codominio tiene

soporte global. La construcción del funtor A J0−→ A∞ se realiza en dos etapas.

En la primer etapa construimos un funtor A j−→ A′ en donde “agregamos” una sección
global genérica para cada objeto de A con soporte global (subsección 6.1). La idea de base
en ésta construcción yace en la siguiente construcción de una una sección global genérica

para un objeto de soporte global B
e // // 1 ∈ A. Si tuvieramos una elección de pullbacks

a lo largo de e obtendŕıamos un funtor regular fiel A e∗−→ A/B y una sección global e(B)
descripta en el siguiente diagrama.

e∗(1) = B

1B $$

∆B // B ×B = e∗(B)

π2
xx

B

≡

La sección ∆B es genérica en el siguiente sentido:
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Si A // m // B ∈ A es tal que ∆B se levanta a lo largo de m,

A×B // e∗(m) // B ×B

B

∆B

OO

∃

hh
≡

se sigue que m es un isomorphismo.

Ésto significa que si ∆B se levanta a A, entonces toda sección global se levanta a A
(Nota aparte, en nuestra demostración no supondremos que tal elección de pullbacks
pueda hacerse). Agregar éstas secciones a todo objeto de soporte global de A nos lleva
a calcular el colimite del siguiente seudo diagram en Cat (es quiere decir que el diagrama
conmuta salvo único isomorfismo).

A/B

**
A

==

!!

// A/B ×B′ = (A/B)/B′ = (A/B′)/B

A/B′

44

(1.2)

Construimos una fibración cuyas fibras son isomorfas la las categoŕıas slice A/B (de hecho
como no asumimos que haya una elección de productos la fibras no pueden ser una categoŕıa
slice sino que deben ser multislice 3.2) y cuya base cofiltrante “contiene” de algún modo
la categoŕıa que indexa el seudo diagrama de arriba. La inclusión de la fibra A/1 en el

colimite de la fibración es lo que tomamos como A j−→ A′.
La segunda estapa consiste en iterar la construcción previa y aśı quedarnos con un

diagrama filtrante de funtores regulares al cual le calculamos su colimite filtrante A∞ (de
hecho no calculamos el coĺımite fitrante en Cat sino que tomamos el coĺımite de la fibración
asociada a éste diagrama que resulta ser equivalente categóricamente)(subsection 6.2.1).

A j // A′ j′ // (A′)′ · · · // A∞

Para nuestra categoŕıa inicial C obtenemos aśı un funtor, el cual denotamos C Γ1−→ Ens,
que es conservativo sobre monomorfismos cuyo codominio tiene soporte global. En la

subsección 7.1 construimos un funtor regular C hS−→ Ens para cada subobjeto distinguido
S ↪→ 1 que es conservativo sobre monomorfismos cuyo codominio tiene soporte en S (o sea
cualquier monomorfismo A

m−→ B cuya factorización estricta de B −→ 1 se logra a travéz
de S). Con lo cual la familia de funtores regulares {hS} indexada por el conjunto Sub(1)
de subobjetos de 1 nos provee de una familia de funtores regulares en los conjuntos mono
conservativa (y por ende conservativa (section 3.3)).

Por último en la subsección 7.2 describimos una manera genérica de construir un
funtor C −→ EnsI a partir de una familia de funtores {hi}i∈I que en nuestro caso nos da
el resultado deseado.
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Resultados

Para demostrar la version débil del teorema de Barr constructivamente desarrollamos
el concepto de Fibración Regular, el cual no aparece en la literatura, y demostramos
constructivamente el resultado fundamental que es que el coĺımite de una fibración regular
con base cofiltrante es una categoria regular. Ésto demuestra en particular que los coĺımites
filtrantes de categorias regulares es una categoŕıa regular.
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2 INTRODUCTION

The theorem we prove in this work lies in between the realms of Embedding Theorems and
Sufficient Points Theorems. Embedding theorems are those that fully represent an ab-
stract mathematical object within a concrete one of the same nature. These theorems shed
light on the nature of the abstraction itself. Some embeddings where the representation
is in a way canonical are the following:

1. Cayley : G ↪→ S!, S = Underlying set (G).
(representation of a group as a subgroup of the symmetric group).

2. Stone: B ↪→ Sub(S), S = Prime Ideals (B).
(representation of a boolean algebra as a subalgebra of the algebra of subsets)

3. Gelfand : A ↪→ Set(S,C), S = Closed Maximal Ideals (C)
(representation of a C∗-algebra as a subalgebra of the algebra complex valued func-

tions)

4. Yoneda: C ↪→ SetD, D = Cop.
(representation of a small category C as a full subcategory of a category of Set-valued

functors.

The next example, Barr’s Representation Theorem, is the theorem that concerns us in
this work.

Theorem 2.1. For any small regular category C there exists a fully faithful regular functor

C h
↪→ EnsD into a set valued functor category, where the exponent has as objects the set

Sub(1) of subobjects of 1.

Barr’s original proof as well as all known proofs of this theorem are highly not constructive,
using transfinite induction and the axiom of choice. The purpose of this work is to develop
a constructive proof of a weaker form of Barr’s theorem, namely that the functor h is
conservative (reflects isomorphisms). This is in fact a Sufficient Points Theorem.

After the leading work of William Lawvere completeness theorems of logical theories
were formulated in categorical terms as Sufficient Points Theorems. Informally, given a
model A ∈ C of a theory T in an appropiate category C, any formula ϕ(x) has an extension
in A which is a subobject [[x ∈ A | ϕ(x) holds ]] ↪→ A. The idea is to associate to a theory
T an appropiate category CT equipped with a model (the generic model) GT of T that is
generic in two senses:

1. It furnishes a (tautological by the very construction of CT ) completeness the-
orem for the theory T . That is, a formula ϕ(x) is provable in T if and only if
[[x ∈ GT | ϕ(x) holds ]] = GT .

2. For any model A ∈ C of T in an appropiate category, there exist a unique appropiate

functor CT
F−→ C such that F (GT ) = A.

Clearly a conservative (thus a monic-conservative, i.e. if a monomorphism is sent by
every functor in the family to an isomorphism it is itself an isomorphism) (see 3.3) family

of appropriate set valued functors CT
F−→ Ens (in some contexts called points) yields a

completeness theorem.
For first order intuicionistic geometric logic (that is admitting the intuicionistic propo-

sitional calculus and only the existencial quantifier), the appropriate categories are exactly
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the regular categories and the appropriate functors are regular functors. In this way, the
weak version of Barr’s theorem yields a completeness theorem for these logics using the
following argument. Given any regular category C we wish to see that the family of regular
functors C −→ Ens is conservative. Barr’s weak theorem guarantees us that there is a

conservative regular functor C h−→ EnsSub(1). Evaluations EnsSub(1) −→ Ens are regular
and the family of evaluations is conservative. The claim follows.

Independently of these considerations the purpose of this work is to develop a con-
structive proof of the weaker form of Barr’s Theorem.

2.1 Outline of the Construction

For the construction we followed a guideline set by André Joyal in some unpublished talks
given in Montreal in the early seventies. His proof was inspired in reinterpreting Leon
Henkin’s proof by adding constants of the Gödel Completeness Theorem of first order
logic.

To carry out the whole proof constructively we need the additional hypothesis that
the regular category C possesses a distinguished terminal object 1 and that distinguished
subobject representatives for every subobject class exist in C. These hypothesis will not
affect our desired range of applications to logic. That is to say, for first order intuicionistic
geometric logic theories the categories CT verify these additional hypothesis.

We start by constructing for any regular category A that possesses a distinguished
terminal object 1 a regular functor A −→ Ens that is conservative over monics with glob-
ally supported codomain (Section 6). This is achieved by constructing a regular functor

A J0−→ A∞ where 1 ∈ A∞ is weakly projective (thus the functor A∞ [1,−]−→ Ens is regular)
and such that both J0 and [1,−] are conservative over monics with globally supported

codomain. The construction of the functor A J0−→ A∞ is carried out in two stages.

In the first stage we construct a functor A j−→ A′ in which we “add” a generic
global section for each globally supported object in A (subsection 6.1). The basis of this
construction lies on the following idea of how to construct a generic global section for a

chosen globally supported object B
e // // 1 ∈ A. If we had a choice of pullbacks along e

we would have a faithful regular functor A e∗−→ A/B and a global section of e(B) described
in the following diagram.

e∗(1) = B

1B $$

∆B // B ×B = e∗(B)

π2
xx

B

≡

The section ∆B is generic in the following sense:

If A // m // B ∈ A is such that ∆B lifts along m,

A×B // e∗(m) // B ×B

B

∆B

OO

∃

hh
≡
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it follows that m is an isomorphism.

That is to say if ∆B lifts to A, then every global section will lift to A (As a note, in our
proof we will not suppose that a choice of pullbacks can be made). In order to add these
sections for every globally supported object of A leads to the calculation of the colimit
of the following pseudo diagram in Cat (that is the diagram commutes up to a unique
isomorphism).

A/B

**
A

==

!!

// A/B ×B′ = (A/B)/B′ = (A/B′)/B

A/B′

44

(2.2)

We construct a fibration whose fibres are isomorphic to the slice categories A/B (in fact,
since we do not assume there is a choice of products the fibres cannot be single sliced cat-
egories but must be multislice categories 3.2) and whose cofiltered base category contains
in some way the indexing category of the pseudo diagram above. The inclusion of the

fibre A/1 in the colimit of the fibration is what we take as A j−→ A′.
The second stage consists of iterating the previous construction, yielding a filtered

diagram of regular functors and calculating the filtered colimit A∞ of this diagram (In
fact we do not take the filtered colimit Cat but take the colimit of the fibration associated
to this diagram which is in fact equivalent to it) (subsection 6.2.1).

A j // A′ j′ // (A′)′ · · · // A∞

For our initial category C we have thus obtained a regular functor, which we label C Γ1−→
Ens, that is conservative over monics with globally supported codomain. In subsection
7.1 we construct a regular functor C −→ Ens for each distinguished subobject S ↪→ 1 the
is conservative over monics whose codomain is supported in S(This is a monic A

m−→ B
for which the strict factorization of B −→ 1 is through S). Thus that family of regular
functors indexed by the the set Sub(1) of subobjects of 1 yields a monic conservative
family of functors(thus a conservative family (section 3.3)).

Lastly in subsection 7.2 we describe generic method of constructing a functor C −→
EnsI from a given family of functors {hi}i∈I which in our case will yield the desired result.

2.2 Results

In order to prove the weaker form of Barr’s theorem constructively we developed the con-
cept of Regular Fibration which does not apear in the literature and proved constructively
the fundamental result that the colimit of a regular fibration over a cofiltered category
yields a regular category. This in fact has as particular case that a filtered colimit of
regular categories is a regular category.
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3 CATEGORICAL PRELIMINARIES

3.1 Regular Categories

In this section we will introduce the basic concepts we need to define what a regular
category is and prove some basic properties these categories satisfy. We will denote with
Cat the category of small categories whose morphisms are functors and Ens the category
of small sets.

3.1.1 Definition

Let C be a small category. In what follows all the diagrams are in C.

Definition 3.1. C is finitely complete if finite limits exist.

Remark 3.2. C is finitely complete if and only if pullbacks exist and a terminal object
exists.

We will denote Catfl the subcategory of Cat whose objects are finitely complete categories
and whose morphisms are limit-preserving functors.

Observation. A morphism X
f−→ Y is monic if and only if the following diagram is a

pullback.

X
idX //

idX

��

p.b.

X

f

��
X

f
// Y

Proposition 3.3. If C F−→ D ∈ Catfl, then F preserves monics.

Proof. It is an immediate consequence from the previous observation.

For what follows it is useful to have the following result present.

Lemma 3.4. If a monic X
f // Y admits a section, that is there exists a morphism

Y
h−→ X such that fh = idY , then f is an isomorphisms.

Proof. We have that f · hf = fh · f = idY · f = f · idX . Since f is monic it follows that
hf = idX .

Definition 3.5. For morphisms X
f−→Y and X

g−→ Z we say that g is compatible with

f if for every pair W
x //
y
// X ∈ C such that fx = fy it follows that gx = gy.

We will also express this by saying that g is f -compatible.
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Definition 3.6. A morphism X
f−→ Y is a strict epimorphism if for every f -compatible

morphism X
g−→ Z there exists a unique morphism Y

h−→ Z such that hf = g.

X
f //

∀ f−compatible g

��

Y

∃!

��
Z

≡

We will use the symbol // // to label strict epimorphisms.

Observation. Strict epimorphism are epimorphism.

Observation. A morphism X
f−→ Y is monic if and only if idX is f -compatible.

Proposition 3.7. If X
f−→ Y is monic and a strict epimorphism , then f is an isomor-

phism.

Proof. We will prove that f admits a section. From the previous observation we know

there is a unique morphism Y
h−→ X such that the following diagram commutes.

X
f //

idX

��

Y

h

��
X

≡

Thus we have that fh · f = f · hf = f · idX = idY · f . Since f is epic we conclude that
fh = idY . The result follows.

We will use the symbol // // to label monomorphisms. A monomorphism
A // // Y will be called a subobject of Y. Consider the following commutative diagram.

X
f //

e

  

Y

A

≡

??
m

??

We will say the pair X
e // A // m // Y is a factorization of f through a subobject of Y .

If e is a strict epimorphism we call the pair X
e // // A // m // Y a strict factorization of

f .

Remark 3.8. A strict factorization X
e // // A // m // Y of f is universal with respect to

every factorization of f throught subobjects of Y . That is if X
e′ // A′ //

m′ // Y is a

factorization of f through a subobject of Y , then there exists a unique A
s−→ A′ such that

se = e′ and m′s = m.
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Consider the following pullback diagram.

A //

f ′

��

B

f

��
D g

//

p.b.

C

We will call f ′ a pullback of f along g or simply a pullback of f .

Definition 3.9. Strict epimorphisms are stable if a pullback of a strict epimorphism is
a strict epimorphism.

Definition 3.10. C is regular if finite limits exist, strict factorizations exist for every
morphism and strict epimorphisms are stable.

We will denote Reg the subcategory of Cat whose objects are regular categories and whose
morphisms are limit-preserving functors that preserve strict factorizations. We call the
morphisms in Reg regular functors. Reg is in fact a subcategory of Catfl.

3.1.2 A few facts

In what follows C represents a regular category.

Proposition 3.11. Strict epimorphisms are closed under composition.

Proof. Take composable strict epimorphisms X
f // // Y

g // // Z and take

X
e // // A // m // Z a strict factorization of gf . We will prove m is an isomor-

phism. It suffices to prove that m admits a section. We have that e is f -compatible
because m is monic. Thus there exists a unique h such that hf = e.

X
f // //

e

�� ��

Y
g // //

∃!h

��

≡ ≡

Z

A
??

m

??

Since f is epic we also have that mh = g. Because m is monic h is g-compatible. Thus

there exists a unique Z
h′−→ A such that h′g = h. Composing with m we obtain that

mh′ · g = idY · g and since g is epic we have that mh′ = idY . The result follows.

Definition 3.12. An object X is globally supported if for every terminal object 1 the
unique morphism X −→ 1 is a strict epimorphism.

Observation. If for any terminal object 1 the unique morphism X −→ 1 is a strict
epimorphism, then X is globally supported.

Let [n] = {0, 1, 2, ..., n − 1} denote the finite ordinal. Take a product {P πi−→ Bi}i∈[n]

of the family {Bi}i∈[n].

14



Observation. For Bn ∈ C we can calculate a product of the family {Bi}i∈[n+1] taking the
following pullback.

P ′ //

π̂n
��

Bn

��
P //

p.b.

1

The morphism π̂n can be interpreted as truncating the nth coordinate.

Lemma 3.13. If Bn is globally supported, then truncating the nth coordinate P ′
π̂n−→ P is

a strict epimorphism.

Proof. It is immediate from the previous diagram.

Corollary 3.14. If the objects of the family {Bi}i∈[n] are globally supported, then every

projection P
π̂i−→ Bi is a strict epimorphism. Consequently P is globally supported.

Proof. The result follows from that fact that strict epimorphisms are closed under compo-
sition and that truncating one coordinate at a time we reach to the desired projection.

The following result will be useful throughout the thesis.

Proposition 3.15. If D is a regular category and C F−→ D is a limit-preserving functor,
the the following are equivalent:

• F is a regular functor.

• F preserves strict epimorphisms.

Proof. It follows from Proposition 3.3.

3.2 Multislice Categories of Regular Categories

In this section we will define what a multislice category is and prove that a multislice
category of a finitely complete category is finitely complete. More so a multislice category
of a regular category is regular.

Definition 3.16. For a category C and a family {Bi}i∈[n] of objects of C we define the

multislice category C/{Bi}i∈[n] whose objects are families {X xi−→ Bi}i∈[n] of arrows of C

and morphisms {X xi−→ Bi}i∈[n]
f−→ {Y yi−→ Bi}i∈[n] are arrows X

f−→ Y in C such that
for every i ∈ [n]

X
f //

xi   

Y

yi~~
Bi

≡

Remark 3.17. The domain functor C/{Bi}i∈I
Σ−→ C is faithful, conservative and preserves

pullbacks. It follows that Σ reflects monomorphisms and pullbacks (3.30).

15



3.2.1 Finite completeness

Proposition 3.18. If pullbacks exist in C, then pullbacks exist in C/{Bi}i∈[n].

Proof. For each i consider the following commutative diagram in C

P
π1 //

π2 ��
p.b.

X

xi

��

f

  
Y

g //

yi ''

Z

ziww
Bi

This diagram determines a cone for f and g in C/{Bi}i∈[n] . It follows from Remark 3.17
that this cone is a pullback.

Observation. If distinguished pullbacks exist in C, then distinguished pullbacks exist in
C/{Bi}i∈[n] and Σ preserves them.

Remark 3.19. If a product of the family {Bi}i∈[n] exists, then the family of its projections

{P πi−→ Bi}i∈[n] form a terminal object of the multislice category.

Corollary 3.20. If C is finitely complete, then C/{Bi}i∈[n] is finitely complete.

Proof. It follows from Proposition 3.18 and Remark 3.19.

3.2.2 Regularity

Remark 3.21. Σ preserves compatibility. In other words if we consider the following
commutative diagrams in C

Z
x //
y
// X

f //

g

  

xi

��

Y

yi

��

Z

zi
��
Bi

then g is f -compatible in C/{Bi}i∈[n] if and only if g is f -compatible in C. Moreover Σ
reflects and preserves strict epimorphisms.

Proposition 3.22. If every morphism in C admits a strict factorization, then so does
every morphism in C/{Bi}i∈[n].

Proof. For {X xi−→ Bi}i∈[n]
f−→ {Y yi−→ Bi}i∈[n] take a strict factorization of f in C.
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X
f //

e     

xi

��

Y

yi

��

A
>> m

>>
≡

ti

��
Bi

Since xi is e-compatible, there is a unique arrow T
ti−→ Bi such that tie = xi. Since

e is epic it follows that myi = ti. We conclude from Remarks 3.17 and 3.21 that this is a
strict factorization.

Observation. If every morphism in C has a distinguished strict factorization, then so
does every morphism in C/{Bi}i∈[n] and Σ preserves them.

Theorem 3.23. If C is regular, then C/{Bi}i∈[n] is regular.

Proof. The only thing left to verify is that strict epimorphisms are stable. But this fol-
lows from the fact that the domain functor Σ preserves and reflects pullbacks and strict
epimorphisms.

3.3 Families of Functors With Common Domain

In this section we will establish some generalities on the collective behaviour that a family
of functors may have. We will prove that for a regular category C, a monic-conservative
family of regular functors is faithful and conservative.

Let F be a family of functors with common domain C.

Definition 3.24. We will say that pullbacks (pushouts,...) are preserved by F if for
every F ∈ F the functor F preserves pullbacks (pushouts,...).

Definition 3.25. We will say that monomorphisms (epimorphisms,...) are reflected by F
if for every arrow X

u−→Y ∈ C such that for every F ∈ F its image Fu is a monomorphism
(epimorphism,...), it follows that u is a monomorphism (epimorphism,...).

Definition 3.26. F is conservative if F reflects isomorphisms.

Definition 3.27. F is monic (epic)-conservative if for every monic (epic)
X

u−→ Y ∈ C such that for every F ∈ F its image Fu is an isomorphism, it follows
that u is an isomorphism.

Observation. A conservative family is monic (epic)-conservative.

Definition 3.28. F is faithful if for every pair X
u //
v
// Y ∈ C such that for every

F ∈ F their images are equal (Fu = Fv), it follows that u = v.

Lemma 3.29. If F is faithful, then F reflects monics(epics).
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Proof. Let X
u−→ Y in C be such that for every F ∈ F , Fu is monic. Suppose we have

A
x //
y
// X such that ux = uy. Then for every F ∈ F , Fu · Fx = Fu · Fy and since Fu

is monic, it follows that for every F ∈ F , Fx = Fy. Thus x = y. The dual proposition
follows.

Lemma 3.30. If C has pullbacks (pushouts), F preserves them and F is monic (epic)-
conservative, then F reflects monics (epics).

Proof. Let X
u−→ Y be such that for every F ∈ F , Fu is monic. We will prove that the

following diagram is a pullback

X
idX //

idX
��

X

u
��

X u
// Y

Take a pullback in C and δ as follows:

X

idX

$$

idX

$$
∃!δ

  
P

p.b.

≡

≡
p1 //

p2

��

X

u

��
X u

// Y

From this diagram we see δ is monic and for every F ∈ F , Fδ is the isomorphism
between the corresponding pullback diagrams. Therefore δ is an isomorphism. The dual
proposition follows.

Remark 3.31. The proof of Lemma 3.30 gives us a technique to prove that under the
additional hypothesis of preserving limits (colimits) of a certain type, conservative families
reflect limits (colimits) of that type.

Proposition 3.32. If C has pullbacks (pushouts), F preserves them and F is monic
(epic)-conservative, then F is conservative.

Proof. Observe that monic (epic)-conservative families that reflect monics (epics) are con-
servative.

Proposition 3.33. If C has equalizers (coequalizers), F preserves them and F is
monic/strict-monic (epic/strict-epic)-conservative, then F is faithful.

Proof. Take X
u //
v
// Y in C such that for every F ∈ F their images are equal (Fu = Fv).

An equalizer E
e−→ X of u and v is monic and its image Fe is an equalizer of Fu and Fv

which are equal, so Fe is an isomorphism. Thus e is an isomorphism and consequently
u = v. For the strict case we need only note that equalizers are strict monics. The dual
propositions follow.
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Proposition 3.34. If C has equalizers (coequalizers), F preserves them and F is monic
(epic)-conservative, then F is conservative.

Proof. It follows from Lemma 3.29 and the observation made in Proposition 3.32.

Corollary 3.35. If C has equalizers, F preserves them and F is monic (epic)-conservative,
then F is conservative and faithfull.

Remark 3.36. If C is regular and F the set of all regular functors C −→ Ens is monic
conservative, it follows that it is conservative and faithful.

Remark 3.37. Even under the strictest limit-preserving conditions we will not be able
to guarantee that a faithful family is conservative in any sense. Take the following coun-
terexample: Let C = {0 u−→ 1} and take the family whose only member is the functor

C F−→ {∗}. C is a regular category that in fact has all limits and colimits, F is regular
and preserves all limits and colimits , F is faithful but nevertheless does not reflect the
isomorphism Fu.

Proposition 3.38. If in C every bimorphism (a morphism that is both epic and monic)
is an isomorphism and F is faithful, then F is conservative.

3.4 Weakly Projective Objects

Here we give a characterization of which hom-functors of a regular category A are regular
functors.

Observation. A hom-functor homA(A,−) always preserves limits but doesn’t necessarily
preserve strict epimorphisms.

Definition 3.39. An object A in a regular category A is weakly projective if the functor

A homA(A,−)−→ Ens preserves strict epimorphisms.

Remark 3.40. A is weakly projective if and only if given any strict epimorphism

X
u // // Y it follows that

X
u // // Y

A

∀t

OO

∃

aa
≡

We call such a dotted arrow a lift of t along u.

Lemma 3.41. A is weakly projective if and only if every strict epimorphism X
u // // A

admits a section.

Proof. If A is weakly projective, a lift of 1A along the given strict epimorphism yields a

section. For the converse let X
u // // Y be a strict epimorphism. For a given A

t−→ Y
take a pullback of u along t.

X
u // //

p.b.

Y

P

p1

OO

p2
// A

t

OO
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Since p2 is a strict epimorphism it admits a section v. The morphism p1v is a lift of t
along u.

4 PREFIBRED CATEGORIES

4.1 Basic Notions

Let G be a category. We denote Cat/G the category whose objects are functors E F−→ G
and whose morphisms from E F−→ G to E ′ F ′−→ G are functors E f−→ E ′ such that F ′f = F .

E f //

F ��

E ′

F ′��
G

≡

We will call f a G-functor and with an abuse of language we will denote with homG(E , E ′)
the set of G-functors from F to F ′.

Definition 4.1. For a functor E F−→ G and α ∈ G, the fibre over α is the subcategory of E
given by the preimage of F of the punctual category defined by α. That is the subcategory of
E whose objects are X ∈ E such that F (X) = α and morphisms s ∈ E such that F (s) = idα.
We will use Eα to label this category.

Observation. A G-functor induces functors between fibres. That is to say if

f ∈ homG(E , E ′) and α ∈ G, then f sends Eα into E ′α. We will use Eα
fα−→ E ′α to denote

these restriction.

For α
ϕ−→ β in G, A ∈ Eα and B ∈ Eβ we will denote with homϕ(A,B) the set of

morphisms s ∈ homE(A,B) such that F (s) = ϕ. We will represent an element of this set
with a double diagram.

A
s // B

α
ϕ // β

We will refer to arrows in a fibre as vertical arrows, and if an arrow is in Eα, we draw the
arrow vertically above α. We write homα instead of homidα .

For s ∈ homϕ(A,B), γ
ψ−→ α

ϕ−→ β ∈ G and X ∈ Eγ we will use the notation

homψ(X,A)
s∗−→ homϕψ(X,B) to indicate the function defined by postcomposing with

s.

X
s∗(g)

##
g
  
A
≡

s
// B

γ
ψ
// α ϕ

// β
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Definition 4.2. For s ∈ homϕ(A,B) we say that s is cartesian (or cartesian over
ϕ) if for every X ∈ Eα the function

homα(X,A)
s∗−→ homϕ(X,B)

is a bijection.

X
∀

��
∃!
��
A

≡

s
// B

α ϕ
// β

Definition 4.3. For s ∈ homϕ(A,B) we say that s is strong cartesian (or strong

cartesian over ϕ) if for every γ
ψ−→ α

ϕ−→ β ∈ G and for every X ∈ Eγ the function

homψ(X,A)
s∗−→ homϕψ(X,B)

is a bijection.

X
∀

##∃!   
A
≡

s
// B

γ
ψ
// α ϕ

// β

Observation. If s is strong cartesian, then s is cartesian.

Definition 4.4. A functor E F−→ G is prefibred if for every α
ϕ−→ β ∈ G and for every

B ∈ Eβ there exists a cartesian morphism over ϕ with target B. A prefibred functor is
fibred if the set of cartesian morphisms is closed under composition.

Remark 4.5. Strong cartesian morphisms are closed under composition. In a fibration
every cartesian morphism is strong cartesian.

Observation. We have the dual definitions of cocartesian morphism and precofibration.
We will freely use these notions and the dual theorems.

Definition 4.6. A functor E F−→ G is said to be cleaved if we are provided with a set K
of cartesian morphisms that verifies that for each pair α

ϕ−→ β ∈ G and X ∈ Eβ there is
a unique morphism s ∈ K over ϕ with target X.

Observation. Every cleaved functor is a prefibration. Using choice we have that every
prefibration admits a clivage. We will not assume such a choice has been made.

Such a set K is called a clivage of the functor.
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Definition 4.7. A cleaved prefibration E F−→ G with clivage K is split if the morphisms
in K are closed under composition.

Observation. Every functor that admits a split clivage is a fibration. Not every fibration

is split. Take as example a surjective group homomorphism G
f−→ H. Interpreting

the groups as punctual categories f is a fibration. In fact every morphism is cartesian.
Nevertheless this fibration is split if and only if f admits a section [5].

The category of prefibrations over G as the subcategory of Cat/G whose objects are
prefibrations and whose morphisms are G-functors that transform cartesian morfisms into
cartesian morphisms. We call these morphisms cartesian G-functors and we will denote this
category Prefib(G). The category of fibrations over G is the full subcategory of Prefib(G)
whose objects are fibrations. We denote this category Fib(G). We define the category of

cleaved (split) prefibrations as the category whose objects are pairs (E F−→ G,K) where K
is a clivage for F and whose morphisms are cartesian G-functors that preserve the clivages.
We will denote this category Cprefib(G) (Sprefib(G)). Similar notations will be used for
the categories of cleaved and split fibrations.

Remark 4.8. In a cleaved prefibration (E F−→ G,K) there is associated to α
ϕ−→ β ∈ G

a functor Eβ
ϕ∗−→ Eα called the pullback functor along ϕ of the prefibration determined by

the diagram below where X
m−→ Y ∈ Eβ and s, t ∈ K.

ϕ∗X
s //

ϕ∗(m)
��

X

m

��
ϕ∗Y

t
// Y

≡

α
ϕ // β

For a general prefibration we will use a simpler version of this diagram notation to indicate
we are labelling a cartesian morphism over ϕ with target X.

X∗ // X

α
ϕ // β

This variation in notation is done to remind us we are making a momentary choice of a
single cartesian arrow and that we do not assume to have a clivage. We may also indicate
this by saying we have a cartesian morphism X∗ −→ X over ϕ.

Proposition 4.9. If F is a prefibred and cofibred, then F is a fibration.

Proof. We will prove that cartesian morphisms are strong cartesian (see Remark 4.5). Take

Y ∗
f−→ Y a cartesian morphisms over α

ϕ−→ β. Take γ
ψ−→ α

ϕ−→ β ∈ G and X ∈ Eγ . We

will prove that homψ(X,Y ∗)
f∗−→ homϕψ(X,Y ) is a bijection. Take X

r−→ X∗ a strong
cocartesian morphism over ψ. The situation can be described as follows.
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X
r //

∀

��

∃!c

  

X∗ ≡

≡ ∃!a

  

∃!b

��
Y ∗

f
//

≡

Y

γ
ψ // α

ϕ // β

The arrow c shows that f is strong cartesian.

For an alternative proof take the following commutative diagram.

homψ(X,Y ∗)
f∗ //

≡

homϕψ(X,Y )

homα(X∗, Y
∗)

f∗
//

r∗

OO

homϕ(X∗, Y )

r∗

OO

The bottom arrow is bijective because f is cartesian and the vertical arrows are bijections
because r is strong cocartesian. The result follows.

4.2 Stability in a Prefibration

The following concepts are inspired in defining properties of the pullback functors of a

cleaved prefibration without using clivages. Let E F−→ G be a prefibration.

4.2.1 Pulling back objects and arrows

Definition 4.10. A subset A ⊂ Ob(E) is stable if for every X ∈ A and any cartesian
morphism X∗ −→ X it follows that X∗ ∈ A.

If X∗ −→ X is cartesian over α
ϕ−→ β we think of X being pulled back to X∗ along

ϕ. We will call X∗ a pullback of X along ϕ. This means that A is stable when its objects
are pulled back to objects of A exclusively.

Remark 4.11. Stable subsets are closed under isomorphisms.

Definition 4.12. We will say that terminal objects are stable if the set of terminal
objects of the fibres is a stable set.

That is to say if 1β is a terminal object of Eβ and (1β)∗ −→ 1β is cartesian over α
ϕ−→ β ∈ G,

it follows that (1β)∗ is terminal in Eα.
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Observation. Vertical arrows can be pulled back as follows. For X
m−→ Y ∈ Eβ choose

two cartesian morphisms X∗ −→ X and Y ∗
s−→ Y over α

ϕ−→ β ∈ G. These determine an

arrow in X∗
m∗−→ Y ∗ ∈ Eα given by m∗ in the following diagram.

X∗ //

∃!m∗
��

X

m
��

Y ∗ s
// Y

≡

α
ϕ // β

We call m∗ a pullback of m along ϕ. In a fibration the diagram on top is in fact a pullback
in E and thus m∗ is a pullback of m along s.

Arrows in Eα that are isomorphisms (epimorphisms,...) in Eα will be refered to as
vertical isomorphisms (epimorphisms,...).

Definition 4.13. We will say that isomorphisms (epimorphisms,...) are stable if
for every vertical isomorphism (epimorphism,...) m it follows that every pullback m∗ of it
is a vertical isomorphism (epimorphism,...).

Observation. Isomorphisms are stable in any prefibration or precofibration.

4.2.2 Pulling back finite diagrams

Objects in E and vertical arrows are examples of a more general type of object that we
can pullback in a prefibration. It is well known that a functor preserves finite limits if and
only if the functor preserves terminal objects and pullbacks. We have already developed a
notion of stability for terminal object and classes of morphisms in the previous section. In
this section we define stability of pullbacks taken in a fibre. To encompass the three types
of objects we will take a fixed finite category D with a terminal object t and consider the

set of functors D G−→ E that factor through a fibre.

D
G

��

Gα

~~
≡

Eα jα
// E

We will allow the abuse of notation D G−→ Eα to indicate through which fibre such a functor
factors.

These functors form the objects of a category E(D) whose morphisms from D G−→ Eα
to D H−→ Eβ are natural transformations G

η
=⇒ H of functors D −→ E that are projected

onto a single arrow in G. That is for every d ∈ D, it follows that F (ηd) = F (ηt).
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D
Gα

��

Hβ

��
Eα

jα ��

η
=⇒ Eβ

jβ��

Gd
ηd // Hd

E α
F (ηt) // β

The category E(D) is a subcategory of the functor category ED and we denote the in-

clusion E(D) i−→ ED. The assignments G � // F (Gt) and η � // F (ηt) yield a functor

E(D) F
(D)

−→ G. For this functor there is a natural identification between the categories (E(D))α
and EαD and we will allow the abuse of language of sometimes using the latter as if it were
the fibre itself.

Remark 4.14. The functor F (D) is prefibred. A morphism G
η−→ H ∈ E(D) is cartesian

if and only if for every d ∈ D the morphisms ηd are cartesian. Consequently if F is a
fibration, then F (D) is a fibration. Similarly if F is cleaved (split), then so is F (D).

Observation. For any category A and X ∈ A we will use D ∆X−→ A to denote the functor

defined for every d
a−→ d′ ∈ D as (∆X)(d

a−→ d′) = X
1X−→ X. We call this the constant

functor X. For X
f−→ Y ∈ A we associate a natural transformation between the constant

functors ∆X
∆f−→ ∆Y defined as the constant family f . This yields a functor A ∆−→ AD.

Remark 4.15. Take ED FD−→ GD the functor defined as postcomposing with F . The

functor F (D) is a pullback of FD along G ∆−→ GD in Cat and we have the following
diagram.

E ∆

��

F

**

δ

!!
E(D)≡

≡

i //

F (D)

��

ED

FD
��

G
∆
// GD

p.b.

The functor δ is cartesian. If F is cleaved, thenr δ is a morphism between cleaved functors.

Remark 4.16. If F is a prefibration, FD will not necessarily be a prefibration. This does
not happen with fibrations. We show now that when F is a fibration, so is FD.

If G
f−→ H ∈ ED satisfies that for every d ∈ D the morphisms fd are strong cartesian,

it follows that f is cartesian. If F is a fibration, given A
η−→ B ∈ GD and X ∈ (ED)B, a

choice of strong cartesian morphisms Xd
∗ fd−→ Xd over ηd determines a functor D X∗−→ E

over A and a cartesian morphism X∗
f−→ X over η (only finite choices are being made).
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Xd
∗ fd //

∃!X∗(a) ""

Xd

X(a)

!!
Xd′
∗ fd′ //

≡

Xd′

Ad
ηd //

G(a) ""

Bd
H(a)

!!
Ad′

ηd′ //

≡

Bd′

Thus the existence of the necessary cartesian morphisms for FD to be a fibration follows
without using choice. In such a case we have that i in Remark 4.15 preserves cartesian
morphisms. If F is a cleaved (split) fibration, then FD is cleaved (split) fibration and i
preserves transport morphisms.

Remark 4.17. The conclusions in Remarks 4.16 and 4.15 are true if we replace the words
fibration and cartesian for cofibration and cocartesian respectively.

Observation. Let 2 denote the category {0 −→ 1}. Vertical arrows in a fibration F are
naturally identified with the objects of E(2) and pulling back vertical arrows in F is the
same as pulling back objects in F (2). This allows us to generalize the notion of pulling
back diagrams of type D a prefibration.

4.2.3 Pulling back cones

Observation. For any category A and a functor D G−→ A, a cone {C cd−→ Gd}d∈D of G
in A is nothing but an arrow ∆C

c−→ G in AD.

We will call an arrow δC
c−→ G in EαD a vertical cone in F .

Definition 4.18. We will say a vertical cone δC
c−→ G ∈ EαD is universal if

{C cd−→ Gd}d∈D is a limit cone of G in Eα.

Observation. A vertical cone δC
c−→ G in EαD is universal if and only if for every X ∈ Eα

and for every vertical cone δX
x−→ G in EαD there exists a unique X

f−→ C ∈ Eα such
that x = c · δ(f). That is for every X ∈ Eα we have the following universal property.

X

∃!f
��

δX

δf
��

∀

!!
C δC c

//
≡

G

α α
idα // α

(4.19)

Observation. We can pullback a cone δC
c−→ G ∈ EβD along α

ϕ−→ β ∈ G to a vertical

cone in EαD choosing a cartesian morphism C∗
s−→ C over ϕ in F and a cartesian morphism

G∗
t−→ G over ϕ in F (D).
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δ(C∗)
δs //

∃!
��

δC

c

��
G∗

t
//

≡

G

α
ϕ // β

(4.20)

Definition 4.21. We will say that limits of type D are stable if vertical universal
cones are stable for pullbacks such as 4.20.

Observation. Pullbacks are limits of functors whose domain is the following category P.

0

��
2 // 1

Definition 4.22. We will say that pullbacks are stable if limits of type P are stable.

4.2.4 A property equivalent to the stability of pullbacks

We will give a more comprehensive characterization of the stability of pullbacks in a
fibration. Nevertheless we will develop it for the general type of finite category D with
terminal object t.

Lemma 4.23. For every category A the functor A ∆−→ AD is fully faithful (this actually
holds for any connected category D).

Proof. For X,Y ∈ A and ∆X
η−→ ∆Y ∈ AD we have η = ∆(ηt). This is because for every

d ∈ D the unique arrow d −→ t ∈ D yields the following diagram.

d

��

X

1X
��

ηd // Y

1Y
��

t X

≡

ηt
// Y

Corollary 4.24. E δ−→ E(D) and E(D) i−→ ED are fully faithful functors.

Proof. Since fully faithful functors are stable in Cat [5, page 128] it follows from Remark
4.15 that i and consequently δ are fully faithful.

Remark 4.25. In this context we can merge the sets homE(X,Y ) and homE(D)(G,H)
with homE(D)(δX, δY ) and homED(iG, iH) respectively. Thus we will adopt the abuse of
notation of suppressing δ, ∆ and i in our expressions. Looking at diagram 4.19 we have
that a vertical cone C

c−→ G in EαD is universal if and only if it verifies the following
universal property for every X ∈ Eα.
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X
∀

  
∃!f
��
C c

//
≡

G

α
idα // α

That is for every X ∈ Eα the function

homα(X,C)
c∗−→ homα(X,G)

is a bijection.

Proposition 4.26. Limits of type D are stable if and only if for every α
ϕ−→ β ∈ G, every

D G−→ Eβ and every vertical universal cone C
c−→ G ∈ EβD we have that for every X ∈ Eα

the function

homϕ(X,C)
c∗−→ homϕ(X,G)

is a bijection.

Proof. Take cartesian morphisms C∗
s−→ C and G∗

t−→ G over ϕ. Diagram 4.20 can be
written as follows.

C∗
s //

c∗

��

C

c
��

G∗
t // G

≡

α
ϕ // β

Thus we have the following commutative diagram.

homα(X,C∗)
s∗ //

(c∗)∗
��

homϕ(X,C)

c∗
��

homα(X,G∗)
t∗
// homϕ(X,G)

≡

The result follows from this diagram and Remark 4.25.

Remark 4.27. For a functor D G−→ E a cone C
c−→ G ∈ ED of G in E is a limit cone if

and only if for every X ∈ E the following function is a bijection.

homED(X,C)
c∗−→ homED(X,G)
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Proposition 4.28. Limits of type D are stable if and only if the functors Eα
jα−→ E

preserves limits of type D.

Proof. Take D G−→ Eα a functor and C
c−→ G a universal cone of G in Eα. The result

follows from Proposition 4.26, Remark 4.25, Remark 4.27 and the following sequence.

homE(D)(X,C) = q
ϕ
homϕ(X,C)

c∗−→ q
ϕ
homϕ(X,G) = homE(D)(X,G)

Theorem 4.29. If F is precofibred, then terminal objects and limits of type D are stable.

Proof. For α
ϕ−→ β ∈ G, 1β a terminal object of Eβ and (1β)∗

s−→ 1β cartesian over ϕ we

will prove that (1β)∗ is a terminal object in Eα. Take X ∈ Eα and X
r−→ X∗ cocartesian

over ϕ. we have the following diagram.

homα(X, (1β)∗)
s∗−→ homϕ(X, 1β)

r∗←− homβ(X∗, 1β) (4.30)

Both arrows are bijections and the set on the right is a singleton. The result follows.
Take C

c−→ G a universal vertical cone in EβD. We will prove that for every X ∈ Eα
the function homϕ(X,C)

c∗−→ homϕ(X,G) is a bijection. Take X
r−→ X∗ cocartesian over

ϕ. We have the following diagram.

homϕ(X,C)
c∗ // homϕ(X,G)

≡

homβ(X∗, C) c∗
//

r∗

OO

homβ(X∗, G)

r∗

OO

The bottom arrow and the vertical arrows are bijections. The result follows.

Definition 4.31. We will say that finite limits are stable if terminal objects and
pullbacks are stable.

Definition 4.32. A prefibration E F−→ G is finitely complete if the categories Eα are
finitely complete and finite limits are stable.

Accordingly we have the category of finitely complete prefibrations whose morphisms are
cartesian G-functors f ∈ homG(E , E ′) such that for every α ∈ G the restrictions

Eα
fα−→ E ′α

preserve finite limits.

Definition 4.33. A prefibration E F−→ G is regular if the categories Eα are regular, finite
limits are stable and strict epimorphisms are stable.
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The category of regular prefibrations over G is the category that has regular prefibra-
tions (fibrations) as objects and whose morphisms are cartesian G-functors f ∈ homG(E , E ′)
such that for every α ∈ G the restrictions

Eα
fα−→ E ′α

are regular functors. This category is included in the category if finitely complete prefi-
brations. The restrictions to fibrations are natural and coherent.

4.2.5 Reflection properties in a prefibration

Properties of functors such as reflecting limits and other types of categorical objects can
be defined in a prefibration. Here we define without using clivages the property that the
pullback functors are conservative over a specific set of morphisms as defined in section
3.3.

Consider A a stable set of vertical arrows. We will use the notation Aα to represent
the subset A∩Eα. We will work freely identifying vertical arrows in F with objects in F 2.

Definition 4.34. The prefibration E F−→ G is conservative over A if for every cartesian
morphism f∗ −→ f such that f ∈ A and f∗ is an isomorphism, it follows that f is an
isomorphism.

We will say the prefibration E F−→ G is conservative if it is conservative over the complete
set of arrows of E .

4.3 Two facts about epimorphisms in a prefibration

Lemma 4.35. If A
f−→ B is an epimorphism in Eα and g, h ∈ homϕ(B,C) satisfy

gf = hf , then g = h.

Proof. Take C∗
s−→ C a cartesian arrow over ϕ. We have the following diagram.

homϕ(B,C)
f∗ //

≡

homϕ(A,C)

homα(B,C∗)

s∗

OO

f∗
// homα(A,C∗)

s∗

OO

Since the vertical arrows are bijections and the bottom is injective, the result follows.

Lemma 4.36. If A
f−→ B is a strict epimorphism in Eα, then every compatible morphism

with f in E factors through f .

Proof. Let A
g−→ C be compatible with f . Take C∗

s−→ C cartesian over F (g) = α
ϕ−→ β.

It is straightforward that the only factorization of g through s over α is compatible with
f . In a diagram:
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A
f

~~
g

��

∃!a

��

B

∃!b   

≡

C∗ s
//

≡
C

α
idα // α

ϕ // β

5 COLIMIT OF A FIBRATION WITH COFILTERED
BASE

In this section we will study the structure of the colimit of a fibration developed in [1] for
the particular case where the base category is cofiltered.

Let E F−→ G be a fibration where G is cofiltered. If S denotes the set of cartesian
morphisms in E , the colimit of the fibration is defined as the category of fractions E [S−1]

characterized by a functor E Q−→ E [S−1] that satisfies the following universal property in
Cat.

Proposition 5.1. For every functor E G−→ I such that G transforms cartesian morphisms

into isomorphisms, there exists a unique functor E [S−1]
H−→ I such that HQ = G.

Remark 5.2. Because G, is cofiltered S admits a calculus of right fractions [1, 3]. Thus
we can describe the category of fractions E [S−1] as done in [4] as follows. The objects
of E [S−1] are the objects of E . A morphism X −→ Y in E [S−1] is an equivalence class

of the quotient set of the set of pairs X
s←− A

f−→ Y with s ∈ S where the equivalence

relation is given by the relation X
s←− A f−→ Y ∼ X s′←− A′ f ′−→ Y if and only if there

exists X
s′′←− A′′ f ′′−→ Y with s′′ ∈ S and arrows A′′ −→ A and A′′ −→ A′ in E such that

the following diagram commutes.

A

s

~~

f

  
X A′′

s′′oo f ′′ //

OO

��

Y

A′

s′

``

f ′

>>

We will denote the class of the pair X
s←− A f−→ Y by X

f/s−→ Y . For X
f/s−→ Y

g/t−→ Z

having a calculus of right fractions guarantees that there is a pair A
u←− C

h−→ B with
u ∈ S such that su ∈ S and the following diagram commutes.
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C
u

��

h

  
A

s

~~

f

��

B
t

~~

g

��
X Y Z

The operation (g/t)(f/s) := (gh)/(su) is well defined, which defines the composition. The

functor Q is defined as the identity on objects and for A
f−→ Y ∈ E we have Q(f) = f/1A.

For A
s−→ X ∈ S, and adopting the abuse of notations f/1A = f and 1A/s = 1/s, we have

that (1/s) · s = 1A, s · (1/s) = 1X and f/s = f · (1/s). For details see [4].

5.1 Colimit of a Finitely Complete Fibration

Our objective in this section is to prove the following theorem.

Theorem 5.3. If F is finitely complete, then E [S−1] is a finitely complete category and
the functors

Eα

jα ��

Jα // E [S−1]

E
Q

<<
≡

preserve finite limits. More so if I ∈ Catfl and E [S−1]
H−→ I is a functor such that for

every α ∈ G the functors H · Jα ∈ Catfl, it follows that H ∈ Catfl.

Corollary 5.4. If I ∈ Catfl and E G−→ I is such that G transforms cartesian morphisms
into isomorphisms and for every α ∈ G the functors G · jα ∈ Catfl, then there exists a

unique functor E [S−1]
H−→ I ∈ Catfl such that HQ = G.

Proof. We know of the existence of a unique functor H that satisfies HQ = G. The fact
that it preserves finite limits follows from the following diagram.

E [S−1]
H //

≡

I

E≡

Q

OO

G

<<

Eα

Jα

<<

jα

OO

Corollary 5.5. The construction determines a functor from the category of finitely com-
plete fibrations into Catfl.
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Proof. Suppose we have a morphisms of finitely complete fibrations.

E f //

F ��

E ′

F ′��
G

≡

From the following commutative diagram it follows that for every α ∈ G the functors
Q′f · jα preserve finite limits.

E [S−1]

≡

∃! // E ′[S′−1]

E

Q

OO

f // E ′

Q′

OO

≡

Eα

≡

fα
//

jα

OO

E ′f(α)

jf(α)

OO Jf(α)

``

The result follows.

Proposition 5.6. The functors Eα
Jα−→ E [S−1] preserve terminal objects.

Proof. Let 1α be a terminal object in Eα and X ∈ E [S−1]. Take a cone of the following
diagram in G.

β
ϕ0

}}

ϕ1

��
F (X) α

Take X∗
s−→ X and (1α)∗

t−→ 1α cartesian morphisms over ϕ0 and ϕ1 respectively. We

obtain a morphism X∗
f−→ 1α in E going through the terminal object (1α)∗. This yields a

morphism X
f/s−→ 1 in E [S−1]. Now suppose we have X

f0/s0 //

f1/s1

// 1α in E [S−1]. Take a cone

of the following diagram in G.

F (X)

F (s0)

>>

F (f0)

!!

β

ϕ0

OO

ϕ1

��

ψ0oo
ψ1

//

F (s1)

``

F (f1)

}}
α
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Let X∗
s−→ X be a cartesian morphism over ϕ0. Take (i = 0, 1) ai the unique mor-

phism over ψi that factors s through si. It follows that f0a0 = f1a1 in E (4.30). Thus
precomposing with 1/s we obtain f0/s0 = f1/s1.

Proposition 5.7. The functors Eα
Jα−→ E [S−1] preserve pullbacks.

Proof. It is an immediate consequence of Proposition 4.28 and the fact that E Q−→ E [S−1]
preserves finite limits [4].

Proposition 5.8. Any diagram of type P in E [S−1] is naturally isomorphic to one that

can be factored through a fibre. More precisely, for every P G−→ E [S−1] there exists α ∈ G,
G∗ and η

P
G∗

��
η

=⇒
G

""
Eα

Jα
// E [S−1]

where the natural transformation is composed of cartesian morphisms.

Proof. Let P G−→ E [S−1] be such a diagram. Suppose G(ai) = fi/si. Take a cone of the
following diagam in G.

α

ϕ2

��

ϕ0

��

ϕ1

��

ψ1

��

ψ0

��
F (s1)

||

F (f1)

""

F (f0)

||

F (s0)

""
F (G2) F (G1) F (G0)

Take (i = 0, 1, 2) G∗i
ηi−→ Gi a cartesian morphism over ϕi. Since (i = 0, 1) si is cartesian

there is a unique factorization of ηi through si over ψi, namely bi. Set G∗(ai) to be the
unique factorization of fibi through η1 over α.

Remark 5.9. Proposition 5.8 holds for any finite diagram D instead of P, though the
proof is harder when composition of nontrivial arrows exist in D. We will not use the
general case.

Corollary 5.10. Pullbacks exist in E [S−1] and the rest of Theorem 5.3 follows.

Proof. The way to calculate pullbacks in P G−→ E [S−1] is to take G∗ as in Proposition 5.8
and take any pullback of G∗ in Eα. This will yield the following diagram.
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P
p0 //

p2

��

p.b.

G∗0

η0

  

G∗(a0)

��
G∗2

G∗(a1)
//

η2

!!

G∗1

η1

  

≡

≡ G0

f0/s0

��
G2

f1/s1

// G1

(5.11)

The arrows ηi are isomorphisms and the square is a pullback in Eα as well as in E [S−1].

5.2 Colimit of a Regular Fibration

Our objective in this section is to prove the following theorem.

Theorem 5.12. If F is a regular fibration, then E [S−1] is a regular category and the
functors

Eα

jα ��

Jα // E [S−1]

E
Q

<<
≡

are regular. More so if I ∈ Reg and E [S−1]
H−→ I is a functor such that for every α ∈ G

the functors H · Jα ∈ Reg, it follows that H ∈ Reg.

The proofs of the following two corollaries ar identical to the proofs of Corollaries 5.4
and 5.5.

Corollary 5.13. If I ∈ Reg and E G−→ I is such that G transforms cartesian morphisms
into isomorphisms and for every α ∈ G the functors G · jα ∈ Reg, then there exists a

unique E [S−1]
H−→ I ∈ Reg such that [HQ = G].

Corollary 5.14. The construction determines a functor from the category of regular fi-
brations into Reg.

Observation. If A
f //
g
// B are in E , we have that f = g in E [S−1] if and only if there

exists s ∈ S such that fs = gs in E .

Proposition 5.15. The functors Eα
Jα−→ E [S−1] send strict epimorphisms to epimor-

phisms.
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Proof. Let B
f0/s0 //

f1/s1

// C be such that (f0/s0)f = (f1/s1)f . Take a cone of the following

diagram in G.

α

F (s0)

==

F (f0)
  

β

ϕ0

OO

ϕ1

��

ψ0oo
ψ1

//

F (s1)

aa

F (f1)
~~

F (C)

Let B∗
s−→ B be a cartesian morphism over ϕ0. Take (i = 0, 1) ai the unique morphism

over ψi that factors s through si. It suffices to prove that f0a0 = f1a1 in E [S−1]. Take

A∗
t−→ A cartesian over ϕ0 and f∗ the corresponding pullback of f along ϕ0.

A∗∗
u //

f∗∗

��

≡

A∗
t //

f∗

��

A

f

��

≡

B∗∗ v
// B∗ s

//

ai

  

B

≡
si

??

fi

((
C

γ
F (u) // β

ϕ0 // α

We have that (f0a0)f∗ = (f1a1)f∗ in E [S−1]. Thus there is a cartesian morphism
A∗∗

u−→ A∗ such that (f0a0f
∗)u = (f1a1f

∗)u in E . Take B∗∗
v−→ B∗ cartesian over F (u)

and call f∗∗ the corresponding pullback of f∗ along F (u). Since (f0a0v)f∗∗ = (f1a1v)f∗∗

in E and F (f1a1v) = F (f0a0v) = ϕ1F (u) from Lemma 4.35 we conclude f0a0v = f1a1v in
E . The result follows.

Proposition 5.16. If A
f−→ B is a strict epimorphism in Eα, then every compatible

morphism with f in E [S−1] factors through f .

Proof. Let A
gr−1

−→ C be compatible with f . Take K
x1 //
x2
// A a kernel pair of f in Eα and

K∗
s−→ K a cartesian morphisms over F (r).
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K∗∗
t //

x∗∗2

��

x∗∗1

��

K∗
s //

x∗2

��

x∗1

��

K

x2

��

x1

��
A∗∗

f∗∗

��

u // A∗
r // A

f

��
B∗∗

v // B

F (K∗∗)
F (t) // F (A∗)

F (r) // α

Since (g/r)x1 = (g/r)x2, we have that gx∗1 = gx∗2 in E [S−1]. Thus there is a cartesian

morphism K∗∗
t−→ K∗ such that (gx∗1)t = (gx∗2)t in E . Take A∗∗

u−→ A∗ cartesian over

F (t) and B∗∗
v−→ B cartesian over F (r)F (t) = F (st). The morphisms K∗∗

x∗∗1 //
x∗∗2

// A∗∗ are

a kernel pair of the strict epimorphism f∗∗ in the fibre over F (K∗∗), so gu is compatible
with f∗∗ in E . By Lemma 4.36 there is a morphism h ∈ homE(B∗∗, C) such that gu = fh

in E . The morphism B
h/v−→ C yields the desired factorization.

Theorem 5.17. The functors Eα
Jα−→ E [S−1] preserve strict epimorphisms.

Proof. It follows from Propositions 5.15 and 5.16.

Proposition 5.18. Any morphisms X
f/s−→ Y ∈ E [S−1] admits a strict epic - monic fac-

torization.

Proof. For any morphism X
f/s−→ Y ∈ E [S−1] take a cartesian morphisms Y ∗

t−→ Y over
F (f). We have the following situation.

X∗
s //

e

{{{{
∃!f ′

��

f

��

X

I ≡##

m ##
Y ∗

t
//

≡

Y

F (X∗)
F (f) // F (Y )

The morphisms m and e form a strict epic - monic factorization of f ′ in the fibre over
F (X∗). From Theorem 5.17 and the fact that the Jα preserve monics we have that the
morphisms e/s and tm yield a strict epic - monic factorization of f/s.
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Proposition 5.19. Strict epimorphisms are stable in E [S−1].

Proof. We will use as reference diagram 5.11. Suppose f0/s0 is a strict epimorphism.
Then G∗(a0) is a strict epimorphism in E [S−1]. Take a strict epic - monic factorization of
G∗(a0) in Eα. We will take a composite pullback of G∗(a0) along G∗(a1) in Eα.

P
p //

e′

����
p.b.

G∗0

e

����
G∗(a0)

��

I ′ //
��

m′

��

p.b.

I ≡
��

m

��
G∗2

G∗(a1)
// G∗0

This diagram in fact is also true in E [S−1]. In fact in E [S−1] we have that G∗(a0) is a strict
epic and consequently m is an isomorphism in E [S−1]. Therefore m′ is an isomorphism in
in E [S−1] and so m′e′ is a strict epimorphisms in E [S−1]. The result follows.

5.3 Colimit of a Conservative Fibration Over A

Take A a stable set of vertical arrows.

Theorem 5.20. If F is conservative over A, then for every α ∈ G the functors Eα
Jα−→

E [S−1] reflect isomorphisms that are already in Aα.

That is to say that if f ∈ Aα and Jα(f) is an isomorphism, then f is an isomorphisms.

Proof. Suppose X
f−→ Y ∈ Aα is such that Jα(f) is an isomorphism. Let Y

t←− Y ∗ g−→ X

represent its inverse. Take α
ϕ−→ F (Y ∗) such that F (t) · ϕ = F (g) · ϕ = ψ and construct

the following commutative diagram as indicated below.

Y ∗∗∗∗
y //

g∗∗∗

��

Y ∗∗∗
v //

g∗∗

��

Y ∗∗
s //

g∗

��

Y ∗
t //

g

$$

Y

X∗∗∗
x //

f∗∗∗

��

X∗∗
w //

f∗∗

��

X∗
u //

f∗

��

X

f

��
Y ∗∗∗∗

y //

g∗∗∗

��

Y ∗∗∗
v //

g∗∗

��

Y ∗∗
s //

g∗

��

Y ∗
t //

g

$$

Y

X∗∗∗
x // X∗∗

w // X∗
u // X

F (X∗∗∗)
F (x) // F (Y ∗∗∗)

F (v) // α
ϕ // F (Y ∗)

F (t)
,,

F (g)

22 F (X)
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Take s cartesian over ϕ, u cartesian over ψ and the corresponding vertical arrows g∗ and
f∗. So it happens that f∗g∗ = 1Y ∗∗ and g∗f∗ = 1X∗ in E [S−1]. Take v a cartesian
morphism such that (f∗g∗)v = 1Y ∗∗v in E followed by w cartesian over F (v). For the
corresponding vertical arrows we have that f∗∗g∗∗ = 1Y ∗∗∗ in E and g∗∗f∗∗ = 1X∗∗ in
E [S−1]. Take x a cartesian morphism such that (f∗∗g∗∗)x = 1Y ∗∗∗x in E and y cartesian
over F (x). It follows that f∗∗∗ and g∗∗∗ are inverse of eachother in the fibre over F (X∗∗∗).
The result follows.

6 CONSTRUCTION OF A REGULAR SET VALUED
FUNCTOR THAT IS CONSERVATIVE OVER MON-
ICS WITH GLOBALLY SUPPORTED CODOMAIN
FOR ANY REGULAR CATEGORY A THAT POS-
SESSES A DISTINGUISHED TERMINAL OBJECT

6.1 Construction of the Functor from A to A′ That Sends Globally Sup-
ported Objects into Objects That Have a Generic Global Section

In this section A will denote a regular category that possesses a distinguished terminal
object 1.

6.1.1 A fibration that has A as its fibres

For the following fibration we will have that A can be identified as de fibre over {1}.

The Cofilitered Base for the Fibration

Strict epimorphisms are closed under composition in A (3.11). Take Gls(A) the cate-
gory whose objects are the globally supported objects of A and whose morphisms are
the strict epimorphisms in A. We define GA to be the category whose objects are fi-
nite sequences of objects {Bi}i∈[n] ⊂ Gls(A) whose first term is B0 = 1. A morphism

{Bi}i∈[n]
ϕ−→ {Cj}j∈[m] ∈ GA is a function [m]

ϕ−→ [n] that verifies ϕ(0) = 0 and that for
every j ∈ [m] it verifies Bϕ(j) = Cj .

Remark 6.1. GA is a cofilitered category. More so it is finitely complete and has a unique
terminal object. This can be verified interpreting GopA embedded in Ens∗/Gls(A) where
Ens∗ denotes the category of pointed sets and where we distinguish 1 ∈ Gls(A).

A Finitely Complete Fibration

We will give an explicit description of Grothendiecks construction of a split cofibration
associated to the covariant functor DA : GA −→ Cat that assigns to each object {Bi}i∈[n]

the multislice category A/{Bi}i∈[n] and to each arrow {Bi}i∈[n]
ϕ−→ {Cj}j∈[m] the functor

ϕ∗ : A/{Bi}i∈[n] −→ A/{Cj}j∈[m]
that is defined as ϕ∗({X

xi−→ Bi}i∈[n]) = {X
xϕ(j)−→ Cj}j∈[m]

on objects and is the identity on arrows.
Take EA the category whose objects are ordered pairs (X,α) where α ∈ GA and X ∈

DA(α). Its arrows are ordered pairs (X,α)
(f,ϕ)−→ (Y, β) where α

ϕ−→ β ∈ GA and f :
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ϕ∗X −→ Y . Composition is defined for (Y, β)
(g,ψ)−→ (Z, γ) as (g, ψ)(f, ϕ) = (g · ψ∗(f), ψϕ).

Take FA be the projection in the second coordinate. The arrow (X,α)
(1ϕ∗X ,ϕ)
−→ (ϕ∗X,β)

is cocartesian over ϕ with source X and these arrows are closed under composition. The
projection in the first coordinate restricted to a fiber (EA)α

π1−→ DA(α) is an isomorphism.
If ϕ∗ denoted the (co) pullback functor along ϕ we have in fact this isomorphism that is
natural in the following sense:

(EA)α

π1

��

ϕ∗ // (EA)β

π1

��
DA(α)

DA(ϕ)
// DA(β)

≡

(6.2)

Thus we can make the abuse of language of identifying the fiber of the split cofibration

EA
FA−→ GA over {Bi}i∈[n] with A/{Bi}i∈[n] and similarly identify the cotransport functor

along ϕ with DA(ϕ).

Proposition 6.3. FA is a fibration.

Proof. It suffices to prove that FA is prefibered (see 4.9). Take

{Bi}i∈[n]
ϕ−→ {Cj}j∈[m] ∈ GA and {Y

yj−→ Cj}j∈[m] over {Cj}j∈[m]. Let Dϕ be the
finite graph whose objects are [n+1] and whose arrows are identified with [m]. The arrow

j ∈ [m] has source n and target ϕ(j). The object {Y
yj−→ Cj}j∈[m] induces a functor

Dϕ
Ỹ−→ A defined as Ỹ n = Y , as Ỹ i = Bi for any other i ∈ [n] and Ỹ j = yj on arrows.

A cone for this functor is a family of arrows {X xi−→ Ỹ i}i∈[n+1] such that for every
j ∈ [m] the following diagram is commutative.

X
xn

��

xϕ(j)

""
≡

Y yj
// Bϕ(j)

Thus it is naturally identified with a morphism {X xi−→ Ỹ i}i∈[n]
(xn,ϕ)−→ {Y

yj−→ Cj}j∈[m]

over ϕ with target {Y
yj−→ Cj}j∈[m]. A limit cone corresponds to a cartesian morphism.

Since A is finitely complete the result follows.

Proposition 6.4. FA is finitely complete.

Proof. It follows from Theorem 4.29 and that the fibers are multislice categories of a
regular category, in particular finitely complete.

A Regular Fibration

We will in fact prove that EA
FA−→ GA is a regular fibration.
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Lemma 6.5. In EA if

{W wi−→ Bi}i∈[n]
(f,ϕ) //

(a,1)
��

≡

{X
xj−→ Cj}j∈[m]

(b,1)
��

{Z zi−→ Bi}i∈[n]
(g,ϕ) // {Y

yj−→ Cj}j∈[m]

{Bi}i∈[n]
ϕ // {Cj}j∈[m]

is such that (f, ϕ) and (g, ϕ) are cartesian, then

W
f //

a
��

≡

X

b
��

Z g
// Y

is a pullback in A.

Proof. For any cone {V h−→ X,V
c−→ Z} in A we have the object {V zic−→ Bi}i∈[n] together

with the cone {(c, 1), (h, ϕ)}. A factorization of the former cone in A is identified with a
factorization of the latter in EA over {Bi}i∈[n].

Proposition 6.6. Strict epimorphisms are stable in the fibration FA.

Proof. It follows from Lemma 6.5 and the fact that the domain functors Σ in multislice
categories preserve and reflect strict epimorphisms.

Corollary 6.7. FA is a regular fibration.

6.1.2 Construction of the colimit A′ of the fibration and proof that includ-
ing the first fibre is conservative over monics with globally supported
codomain

Theorem 5.12 guarantees that the colimit of this fibration is a regular category and in
particular the functors J{1} in the diagram below is regular.

(EA){1}

j{1} ##

J{1} // EA [S−1]

EA
Q

;;

≡

Identifying (EA){1} with A we will label to top arrow in the diagram with A j−→ A′. For a

morphism X
f−→ Y ∈ A will use the abuse of language of saying X

f−→ Y in A′ referring

to the morphism j(X)
j(f)−→ j(Y ) ∈ A′. Taking into consideration that j transforms 1 into

a terminal object, preserves monics and preserves strict epimorphisms makes the abuse
coherent with these objects.
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A generic section for every B � 1 ∈ A

Take a globally supported object B
π // // 1 ∈ A. The fiber over {1, B} is naturally iden-

tified with A/B. Choose a product {B × B
π1 //
π2
// B} of B with itself in A and take

B
∆−→ B ×B the diagonal morphism. We obtain the following diagram in EA .

{P π2−→ B}
(π1,ϕ) // B

{B idB−→ B}
(π,ϕ)

//

(∆,1)

OO

1

{1, B} ϕ // {1}

Lemma 6.8. {B idB−→ B} (π,ϕ)−→ 1 and {P π2−→ B} (π1,ϕ)−→ B are cartesian morphisms.

Proof. This follows immediately using the characterization of cartesian morphisms given
in Proposition 6.3.

Remark 6.9. We have a section (π1∆,ϕ)
(π,ϕ) = (1B ,ϕ)

(π,ϕ) of B
π // // 1 in A′. This section is in

fact canonical in the sense that any choice of product {B ×B
π1 //
π2
// B} of B with itself in

A will induce the same arrow in A′ built this way. This follows from the fact that (π1, ϕ)

is cartesian. We will label this uniquely determined arrow 1
∆B−→ B.

Separating B from its subobjects in A

We will prove is that 1
∆B−→ B separates B from its subobjects in A, in the sense of

Theorem 6.11.

Lemma 6.10. For any {Bi}i∈[n]
ψ−→ {1, B} in G, if {X xi−→ Bi}i∈[n]

(f,ψ)−→ {B idB−→ B} is
cartesian, then f is a strict epimorphism in A.

Proof. Note that {X xi−→ Bi}i∈[n] is a product of the family {Bi}i∈[n] and that f is in
fact one of the projections. The result follows (recall every Bi is globally supported and
3.14).

Theorem 6.11. If A // m // B ∈ A is such that ∆B lifts along m,

A //
m // B

1

∆B

OO

∃

ff
≡

it follows that m is an isomorphism.
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Proof. In our context the existence of such a lifting of ∆B reduces to there being a mor-

phism {Bi}i∈[n]
ψ−→ {1, B} in GA , a cartesian morphism {X xi−→ Bi}i∈[n]

(f,ψ)−→ {B idB−→ B}

over ψ and a morphism {X xi−→ Bi}i∈[n]
(g,ϕ◦ψ)−→ A such that the following diagram is com-

mutative.

A
��

m

��
{P π2−→ B}

(π1,ϕ) // B

{X xi−→ Bi}i∈[n]
(f,ψ) //

(g,ϕ◦ψ)

//

{B idB−→ B}
(π,ϕ)

//

(∆,1)

OO

1

{Bi}i∈[n]
ψ // {1, B} ϕ // {1}

It follows that mg = f and together with Lemma 6.10 m must be an isomorphism.

Corollary 6.12. The functor j{1} is conservative over monics with globally supported
codomain.

6.2 Construction of A∞ Where 1 is Weakly Projective

6.2.1 A new fibration that has A as its first fibre, proof that the inclusion of
any fibre into the colimit A∞ is conservative over monics with globally
supported codomain and 1 ∈ A∞ is weakly projective

Iterating the construction in Section 6.1 we obtain the following sequence of regular func-
tors.

A j // A′ j′ // (A′)′ · · ·

Using the dual construction in 6.1.1 we obtain from this diagram a split regular fibration

E F−→ N0
op whose base is cofiltered. A(n) will denote the fiber over n and jn the (n+ 1)th

functor of the diagram. We will make the same identification between jn and the transfer
functor along n+1 −→ n. The hypothesis of Theorem 5.12 are satisfied and it follows that

the colimit of this fibration A∞ is a regular category and the morphisms A(n) Jn−→ A∞ are
regular.

Remark 6.13. The functors jn preserve monics with globally supported codomain and
are conservative over them (see 6.11). It follows that the fibration is conservative over
vertical monics with globally supported codomain.

Corollary 6.14. The functors A(n) Jn−→ A∞ are conservative over monics with globally
supported codomain.
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Proof. See 5.20.

Proposition 6.15. The functors A(n) Jn−→ A∞ reflect globally suported objects.

Proof. Let X ∈ ccA(n) be such that Jn(X) has global support in A∞. Take a strict

epic-monic factorization of X
f−→ 1 in A(n).

X
f //

e �� ��

1

S
?? m

??
≡

Since Jn(f) and Jn(e) are strict epimorphisms, it follows that Jn(m) is an isomorphism.
Corollary 6.14 guarantees that m is an isomorphism. The result follows.

Remark 6.16. For A
f−→ B in A(n), jn(A)

jn(f)−→ jn(B) is a transfer of f along n+ 1 −→ n.

Theorem 6.17. 1 is weakly projective in A∞.

Proof. Let B ∈ A∞ be a globally supported object. Because of Proposition 6.15 it is
globally supported in the fiber over n = F(B). Since jn(B) is isomorphic to B in A∞

(6.16) and we have the generic section 1
∆B−→ jA(n)(B), the result follows.

6.2.2 The representable functor of 1 ∈ A∞ is conservative over monics with
globally supported codomain

Theorem 6.18. The functor A∞ [1, ]−→ Ens is conservative over monics with globally sup-

ported codomain. In particular we have constructed a functor A J0−→ A∞ [1, ]−→ Ens that is
conservative over monics with globally supported codomain.

Proof. It suffices to prove that the regular functors A(n) Jn−→ A∞ [1, ]−→ Ens are conservative
over monics with globally supported codomain. Let Γ represent the functor [1, ]. We will
use the abuse of notation of suppressing the symbol Jk when it is clear that we are

viewing an element of a fiber inside of A∞. Let A //
m // B ∈ A(n) be monic with globally

supported codomain in A(n) such that Γ(m) is an isomorphism (that is to say Γ(Jn(m))).

Since A //
m // B is isomorphic to jn(A) //

jn(m) // jn(B) in A∞ (Remark 6.16) we have that
Γ(jn(m)) is an isomorphism, which in particular means that any section of jn(B) −→ 1
lifts along jn(m) in A∞. Take a pullback of jn(m) along ∆B in A(n+1).

jn(A) //
jn(m) // jn(B)

P

p1

OO

p.b.

//
p2

// 1

∆B

OO

It suffices to prove that p2 admits a section in A(n+1). This diagram viewed in A∞ is
still a pullback and p2 is still monic. Since ∆B lifts along jn(m) in A∞ we obtain a section
of p2 in A∞. Thus p2 is an isomorphism in A∞. Thus we conclude p2 is an isomorphism
in A(n+1). The result follows.
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7 REDUCTIONS

7.1 A Regular Functor That is Conservative Over Monics With Globally
Supported Codomain Suffices

In this section we will prove that by making the following assumption on our category
C we will obtain the Sufficient Points theorem if we are able to construct a function
that associates to each regular category A that possesses a distinguished terminal object,
a regular functor A −→ Ens that is conservative over monics with globally supported
codomain.

Assumption 7.1. C possesses a distinguished terminal object which we denote with 1,
and a distinguished representative for each subobject class in C.

Remark 7.2. This assumption does not affect our desired range of applicability when
proving completeness theorems in logic.

We will denote the distinguished representatives of a subobject class with a curly arrow

↪→ and for every object X ∈ C we will choose X
1X
↪→ X as the distinguished representative

of its subobject class.

Observation. For every X ∈ C the slice category C/X has the distinguished terminal

object X
1X−→ X. Additionally since the domain functor C/X

Σ−→ C preserves and reflects
monics there are distinguished representatives for each subobject class in C/X .

Definition 7.3. For S ↪→ 1 we say X ∈ C has support in S if

X //

∃   
≡

1

S
/ �

??

and that S is the support of X if the dashed arrow is a strict epimorphism.

Observation. X is globally supported if and only if 1 is the support of X (see 3.12).

7.1.1 Pullback functor along a monomorphism

Proposition 7.4. For A // m // B there are distinguished pullbacks along m.

Proof. Pullbacks are well defined on subobject classes. For W
w−→ B take a pullback that

uses the representative of the corresponding subobject class of m along w and label it
m∗(W ) ↪→W .

m∗(W ) �
� //

��

W

w

��
A // m

//

p.b.

B

The dashed arrow is uniquely determined because m is monic. That arrow will be
denoted m∗(w).
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Remark 7.5. Having this choice of pullbacks along m determines a functor C/B
m∗−→ C/A

which is right adjoint to the functor defined as postcomposing by m. Thus it preserves all
limits. Since the following diagram is a pullback and the domain functor Σ preserves and
reflects strict epimorphisms we have that m∗ is a regular functor.

m∗(X) �
� //

m∗(f)

��

X

f

��
p.b.

m∗(Y ) �
� // Y

Observation. If A
m
↪→ B is a distinguished subobject, we have that m∗(1B) = 1A. That

is m∗ transforms the distinguished terminal object of C/B into the distinguished terminal
object in C/A. If the distinguished subobjects in C are closed under composition and from

A �
� //

u !!

B

A′

≡
. �

>>

it follows that u is a distinguished subobject, then m∗ transforms distinguished subobjects
into distinguished subobjects.

In the particular case where we take a distinguished subobject of 1 we will use the

following notation. For S ↪→ 1 we have the pullback functor C S∧−→ C/S and denote its
action as follows.

S∧(X
f−→ Y ) = X ∧ S

##

f∧S // Y ∧ S

||
S

≡

Lemma 7.6. If Y ∈ C has support in S, then for X
f−→ Y we have that Y ∧ S = Y ,

X ∧ S = X and f ∧ S = f .

Proof. It follows from the fact that for such a Y the following diagram is a pullback.

Y �
� 1Y //

��

Y

��
S �
�

i
// 1

p.b.

and that X has support in S as well.

Corollary 7.7. S∧(S) is a terminal object in C/S and S∧ is conservative over morphisms
whose target has support in S.

Proof. In fact S∧(S) = 1S .
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7.1.2 The result

Theorem 7.8. If for every S ↪→ 1 we are given a regular functor C/S
ΓS−→ Ens that

is conservative over monics with globally supported codomain, then the family of regular
functors of C −→ Ens is monic-conservative.

Proof. Consider the following family of regular functors of C −→ Ens.

C S∧−→ C/S
ΓS−→ Ens

It is a family of functors {hS} indexed by the set Sub(1) of subobject classes of 1. It

suffices to prove that this family is monic-conservative. Let X // f // Y in C be such that
its image through all these functors is an isomorphism. Take S the support of Y . It is
enough to prove that f ∧ S is an isomorphism. But this follows from the fact that f ∧ S
is monic, Y ∧ S −→ S has global support in C/S and ΓS(f ∧ S) is an isomorphism.

Corollary 7.9. The family of regular functors of C −→ Ens is conservative.

Proof. It follows from Theorem 6.18 and the Remark 3.36.

7.2 From a Family {hS} to h

Consider the following general construction for a family of set-valued functors {hi}i∈I
with common domain C. Let I denote the category whose object set is I and for i, j ∈ I
we define homI(i, j) = Nat(hi, hj) with composition defined naturally. Let C h−→ EnsI
denote de functor defined as h(C)(i) = hi(C).

Remark 7.10. This asignment is functorial in both variables. We have the following
commutative diagram for every i ∈ I.

C h //

hi
  

EnsI

evi
||

Ens

≡

Given the pointwise structure of the regular category EnsI we have that h preserves finite
limits if and only if for every i ∈ I the functors hi preserve finite limits, h preserves strict
epimorphisms if and only if for every i ∈ I the functors hi preserve strict epimorphisms
and h is conservative if and only if {hi}i∈I is a conservative family as in 3.3.

In our particular case we have constructed a conservative family of regular functors

{C hS−→ Ens}S∈Sub(1). Using the previous construction we give Sub(1) a structure and

obtain a regular conservative functor C h−→ EnsSub(1). The End.
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