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Introducción

En su artículo [Joy1981], André Joyal presentó la noción de especie combinatoria, con
el objetivo de categorificar la idea de función generadora. En líneas generales, una especie
combinatoriaX consiste de una sucesión de conjuntos {X(n)}n>0, cada uno de ellos dotado
de una acción del grupo simétrico correspondiente, que codifica la forma en que las es-
tructuras combinatorias se “reetiquetan”. Por ejemplo, la especie de árbolesA tiene como
A(n) al conjunto de árboles con vértices etiquetados biyectivamente por los elementos del
conjunto {1, . . . , n}, sobre los que el grupo Sn actúa de la forma evidente.

Recientemente, Aguiar y Mahajan, en el contexto del estudio de las especies combina-
torias con el objeto de construir álgebras deHopf, se vieron llevados a considerar variacio-
nes o deformaciones de la estructura monoidal de Cauchy de la categoría de especies, asi
como de sus monoides y comonoides. Esto lleva naturalmente a la consideración de una
teoría de cohomología para especies: de esta manera, a cada comonoide X asignan grupos
de cohomologíaH∗(X,Z), y su interés se centra en el grupoH2(X,Z), que parametriza las
deformaciones de la estructura de comonoide de X.

En esta tesis estudiamos en detalle la construcción de esta teoría de cohomología y
damos los primeros ejemplos de su cálculo. Siguiendo la presentación de [AM2010], con-
sideramos con cierto cuidado la estructura monoidal de la categoría de especies y, en par-
ticular, las representaciones y correpresentaciones de la especie exponencial E. Esta espe-
cie E juega un rol especial en toda la teoría, ya que la teoría de cohomología de Aguiar–
Mahajan puede verse como una especializacion de los funtores Ext en la categoría de los
E-bicomódulos. Esto nos permite encarar su estudio con las herramientas del álgebra ho-
mológica.

Nuestro trabajo estuvo organizado alredor del cálculo de la cohomología de ejemplos
concretos. En particular, centramos inicialmente nuestra atención sobre la especie de ór-
denes lineales L: el problema de la determinación de su cohomología está ya planteado
en la monografía de Aguiar–Mahajan y resulta, de hecho, no trivial. Lo resolvemos es-
tableciendo una conexión con la geometría del arreglo de trenzas y el correspondiente
complejo de Coxeter. Hecho esto, consideramos algunos ejemplos más —especies asocia-
das a complejos simpliciales, y otros monoides de Hopf importantes en la teoría, como la
especie de composiciones Σ y la especies de particiones Π.
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2 INTRODUCCIÓN

Analizando el patrón de cálculo en estos ejemplos, pudimos abstraer un procedi-
miento general. El resultado final de esto es una descripción alternativa de la cohomo-
logía de una especie: mostramos que a partir de cada especie X se puede construir un
complejo CC∗(X, E), que llamamos el “complejo combinatorio” de X, cuya cohomología
coincide, en los casos favorables, con la cohomología de la especie. Esta construcción pro-
viene de considerar sobre la especie X una filtración natural por cardinalidad y, a partir
de ésta, construir una sucesion espectral que converge a H∗(X, E) y que estudiamos en
detalle. Esto es enteramente análogo a la forma en que se puede describir la cohomología
de un CW-complejo en términos de su cohomología celular. Más aún, cuando C∗(X, E)
admite un producto cup, esa sucesión espectral es de álgebras y esto permite describir
explícitamente el producto cup de H∗(X, E) en términos del complejo combinatorio de X.

Las ventajas del complejo CC∗(X, E), respecto al complejo canónico C∗(X, E) son mu-
chas: en primer lugar, cada componente deCC∗(X, E) es un k-modulo finitamente genera-
do si X es finita en cada cardinal. En contraste, el complejo canónico que calcula H∗(X, E)
no es, excepto es casos triviales, localmente finito. En segundo lugar, el diferencial del
complejo CC∗(X, E) en grado q depende sólo de las estructuras combinatorias en cardi-
nales q y q + 1, e involucra —en un sentido estricto— la menor cantidad de información
posible de la estructura de bicomódulo de X. De forma completamente opuesta, el dife-
rencial del complejo canónico en grado q involucra a todas las estructuras en cardinales
menores o iguales a q+ 1 y toda la información de la estructura de bicomódulo de X.

El cálculo de la cohomología usando esta descripción alternativa es realmente más
simple en la práctica. Por ejemplo, pudimos recuperar todos los hechos en el Capítulo III
demanera directa de una formamuchomás rápida y sencilla. Por otro lado, es importante
notar que esta descripción de la cohomología, a diferencia de la original, se presta a ser
implementada en una computadora: por ejemplo, a pesar de que no conocemos el álgebra
de cohomología de la especie de grafos simples—cuya determinación completa es proba-
blemente un problema muy difícil— podemos calcularla explícitamente en grados bajos.
En particular„ esta teoría transforma la determinación del segundo grupo de cohomología
de una especie “razonable” en un problema computacionalmente muy sencillo.

La tesis está organizada en cinco capítulos y un apéndice.
En el capítulo I recordamos las nociones básicas sobre especies combinatorias y pre-

sentamos los ejemplos que vamos a estudiar a lo largo de este trabajo, junto con otros
que son relevantes y que motivan la teoría. En el capítulo II presentamos el lenguaje ne-
cesario para enmarcar la teoría de cohomología de especies combinatorias. Sus primeras
secciones tratan sobre categorías monoidales, que usamos para dotar de las estructuras
necesarias a la categoría de especies combinatorias, y su última sección presenta el mé-
todo simplicial estándar para constuir teorías de cohomología vía objetos simpliciales en
categorías monoidales abelianas.
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En el capítulo III definimos, por fin, la teoría de cohomología para especies, especiali-
zando las construcciones generales del capítulo anterior a nuestro contexto. Estudiamos
en detalle la categoría deE-bicomódulos, conE la especie exponencial, y su teoría de coho-
mología dada por ExtEe( ? , E), que, como dijimos, coincide con el funtor de cohomología
de especies. Para ciertas especies X, mostramos que H∗(X, E) es, de manera natural, un
álgebra graduada, construyendo un “producto cup” sobre ella. El capítulo concluye con
los cálculos explícitos prometidos, incluyendo en cada caso su estructura de álgebra.

En el capítulo IV probamos que a todo E-bicomodulo X, que cumple una condición
técnica (que se satisface en los ejemplos de interés) se le puede asociar un complejo de
cocadenas CC∗(X, E), el complejo combinatorio, que calcula la cohomología H∗(X, E). En
la situación en que esta cohomología es un álgebra, exhibimos sobre CC∗(X, E) una es-
tructura de álgebra diferencial graduada que induce la estructura correcta sobreH∗(X, E).

La tesis finaliza en el Capítulo V, en el que planteamos algunos problemas que surgen
de nuestro trabajo asi como algunos posibles caminos a seguir para continuar el estudio
iniciado aquí.

Los resultados del Capítulo III son originales, con excepción de las Proposiciones
III.2.1, III.2.2 y III.2.3, que ya están presentes en la tesis de maestría de Javier Cóppola
[Cop2015], mientras que los resultados del Capítulo IV son originales.

Nuestra referencia general para las herramientas del álgebra homológica es el libro de
Weibel [Wei1994], y para las sucesiones espectrales, ese libro y el deMcCleary [McC2001].
Para especies, referimos al lector al artículo fundacional de Joyal [Joy1981] y al libro de
Labelle, Leroux y Bergeron [LBL1998]. Finalmente, para el formalismo de las categorías
monoidales, nuestra referencia es el libro de Kassel [Kas1995], para las categorías abelia-
nas, es el de Freyd [Fre1964], y para el formalismo simplicial, son el libro [Wei1994] y el
de MacLane [Mac1971].

A lo largo de toda la tesis, k denota un anillo conmutativo y unital, y cuando escri-
bamos ⊗ y hom, estaremos considerando los funtores de k-modulos, salvo mención en
contrario.





CHAPTER I

Combinatorial species

Most of this chapter follows the exposition in [Joy1981].

1. The category of species

Denote by Set× the category of finite sets and bijections. A combinatorial species over a
category C is a functor X : Set× −→ C. Concretely, a combinatorial species X is obtained
by assigning

S1. to each finite set I an object X(I) in C,
S2. to each bijection σ : I −→ J an arrow X(σ) : X(I) −→ X(J),

in such a way that
S3. for every pair of composable bijections σ and τ, we have X(τσ) = X(τ)X(σ) and,
S4. for every finite set I, it holds that X(idI) = idX(I).

In particular, for every finite set Iwe have a map σ ∈ Aut(I) 7−→ X(σ) ∈ Aut(X(I))which
gives an action of the symmetric group with letters in I on X(I). The category Set× is a
grupoid, and it has as skeleton the full subcategory spanned by the sets1 [n] = {1, . . . , n},
and a species is determined, up to isomorphism, by declaring its values on the finite sets
[n] and on every σ ∈ Sn. In view of this, one can think of a combinatorial species as a
sequence (Xn)n>0 of objects in C endowed with Sn actions (Sn × Xn −→ Xn)n>0.

We denote by Sp(C) the category Fun(Set×,C) of species over C, whose morphisms
are natural transformations: explicitly, an arrow η : X −→ Y is an assignment of a map
ηI : X(I) −→ Y(I) to each finite set I, in such a way that for any bijection I σ−→ J the
following diagram commutes

X(I) Y(I)

X(J) Y(J)

ηI

X(σ) Y(σ)

ηJ

This says thatwemust specify, for each finite set I, anAut(I)-equivariantmap ηI : X(I) −→
Y(I). If we view species as sequences of objects on which the symmetric grupoid acts, a
morphism of species X −→ Y is a sequence of equivariant maps (ηn : Xn −→ Yn)n>0.

Our main interest will lie on species over sets or vector spaces. We write Sp for the
category of species over Set, the category of sets and functions, and call its objects set
1In particular, [0] = ∅.
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6 I. COMBINATORIAL SPECIES

species. If a species takes values on the subcategory FinSet of finite sets we call it a finite
set species, and if X(∅) is a singleton, we say it is connected. We write Spk for the category
of species over kMod, the category of modules over k, and call its objects linear species. If
a species takes values on the subcategory kmod of finite generated modules we call it a
linear species of finite type, and we say it is connected if X(∅) is k-free of rank one.

Denote by k[ ? ] the functor Set −→ k Mod that sends a set X to the free k-module with
basis X, which we will denote by kX, and call it the linearization of X. By postcomposition,
we obtain a functor L : Sp −→ Spk that sends a set species X to the linear species kX. The
species in Spk that are in the image of k[ ? ] are called linearized species. Thus, a linearized
species X = kX0 is such that, for every finite set I, X(I) has a chosen basis X0(I), the
morphisms X(I) −→ X(J) map basis elements to basis elements, and the action of Aut(I)
on X(I) is by permutation of the basis elements.

It is important to note that for each non-negative integer j, there is an embedding
[ ? ](j) : kSj Mod −→ Spk of the category of kSj-modules in Spk by assigning a kSj-module
V the species V(j) that has V(j)(I) = V if I has j elements and V(j)(I) = 0 if not. This
determines V(j) up to a choice of bijections βI : I −→ [j] for each finite set Iwith j elements
that dictate how Aut(I) acts on V(j)(I) for such finite set. In a similar fashion, there are
projections [ ? ](j) : Spk −→ kSj Mod that assign, to each X, the kSj-module X(j) = X([j]). It
is clear that ([ ? ](j), [ ? ](j)) is an adjoint pair, and, in fact, the assignment

(1) K : X ∈ Sp −→ (X([n]))n>0 ∈ R

is an equivalence of categories, where R is the direct product of the categories Rj = Sj Mod
for j > 0. This also applies to linear species, of course.

2. Basic definitions

Given a species X : Set× −→ Set and a finite set I, we call X(I) the set of structures
of species X over I. If s ∈ X(I), we call I the underlying set of s, and call s an element of X
or an X-structure. If I σ−→ J is a bijection, the element X(σ)(s) = t is the structure over
J obtained by transporting s along σ, which we will usually denote, for simplicity, by σs.
Two X structures s and t over respective sets I and J are said to be isomorphic if there is a
bijection σ : I −→ J that transports s to t, and we say σ is a structure isomorphism from s

to t. A permutation that transports a structure s to itself is said to be an automorphism of s.
Inmost cases, ifX is a species and I is a set,X(I) consists of a collection of combinatorial

structures of some kind labelled in some way by the elements of I. For example, there is
a species Pos that assigns to every finite set I the set Pos(I) of partial orders on I, and to
every bijection σ : I −→ J the function Pos(σ) : Pos(I) −→ Pos(J) which assigns to every
order on I the unique order on J that makes σ an order isomorphism: in concrete terms,
Pos(σ) “relabels” a poset on I according to σ.
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We denote by el(X) the category of elements of X: the objects of this category are the X-
structures, and its arrows are structure isomorphisms. This category is a groupoid, and
there is a forgetful functor uX : el(X) −→ Set that sends a structure to its underlying set.
In this way, we obtain a functor el : Sp −→ Grpd to the category of grupoids: if η : X −→ Y

is a morphisms of species, el(η) : el(X) −→ el(Y) is the functor that sends an X-structure
s on a set I to the Y-structure ηI(s) on I. Moreover, this renders the following triangle
commutative

el(X) el(Y)

Set

el(η)

uX uY

There is partial converse to this construction: if one has a functor ρ : el(X) −→ el(Y) such
that uYρ = uX, then there is a morphism of species η : X −→ Y such that el(η) = ρ: send
an X-structure s on a set I to ρ(s), which is a Y-structure on the set I by the condition on ρ.

We write π0(X) for the set of connected components of the grupoid el(X) and call its
elements types of X-structures. If s is an X-structure, we denote its type by |s|. One can (and
should) think about the type of a structure as being obtained from it by deleting labels.
To illustrate, the following two posets over [2] are not equal, but have the same type, since
the transposition (12) ∈ Aut([2]) transports one to the other:

1

2

2

1

3. Examples

To understand all that follows it useful to have a list of examples in mind. We collect
in this section such a list. We also include some examples of morphisms. For a compre-
hensive treatment of combinatorial species, we refer the reader to the book [LBL1998].
E1. The exponential or uniform species E : Set× −→ FinSet is the species that assigns to

every finite set I the singleton set {I}, and to any bijection σ : I −→ J the unique bijec-
tion E(σ) : E(I) −→ E(J). Remark that E is the unique species, up to isomorphism,
that has exactly one structure over each finite set. For ease of notation, we will write
∗I for {I}.

E2. The species of partitions Π assigns to each finite set I the collection of partitions of I:
sets X = {X1, . . . , Xt} of nonempty disjoint subsets of Iwhose union is I. If σ : I −→ J

is a bijection and X is a partition of I, Π(σ)(X) = {σX1, . . . , σXt} is the partition of J
obtained by transporting X along σ.

E3. The species of compositions Σ assigns to each finite set I the collection of composition
of I: ordered tuples (F1, . . . , Ft) of nonempty disjoint subsets of I whose union is I.
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If σ : I −→ J is a bijection and F is a composition of I, Σ(σ)(F) = (σF1, . . . , σFt) is the
composition of J obtained by transporting F along σ.

E4. The species of derangements Der assigns to each finite set I the collection of bijections
σ : I −→ Iwith no fixed points, and transports structures by conjugation: if σ : I −→
I is a derrangement and τ : I −→ J is a bijection, then Der(τ)(σ) = τστ−1. There is
also the species of permutations Per, that assigns to each set I the set Per(I) of bijections
of I, and this is in turn a subspecies of the species of endofunctions End, that assigns to
each set I the set End(I) of functions of I to itself.

E5. There is a species A that assigns to each finite set I the collection A(I) of binary
trees with leaves bijectively labelled by I — alternatively, A(I) consists of properly
parenthesised words with letters in I. To illustrate, the words (1(42))3 and 1((34)2)
over {1, 2, 3, 4} correspond to the trees

1 2 34 1 23 4

If σ : I −→ J is a bijection and z ∈ A(I) is a labelled binary tree, A(σ)(z) relabels the
leaves of z according to σ.

E6. There is a species Simp that assigns to each set I the collection of simplicial structures
on I, this is, collections of finite subsets S ⊆ 2I that contain all singleton sets of
elements of I, and such that whenever ∆ ∈ S and ∆ ′ ⊆ ∆, then ∆ ′ ∈ S. We call the
elements of S simplices.

E7. Let X be topological space. There is a species CX that assigns to each finite set I
the collection of continuous functions XI −→ X. If σ : I −→ J is a bijection and
f : XI −→ X is a morphism we set σf((xj)) = f((xσ−1j)).

E8. Again, let X be a topological space. There is a species FX that assigns to each finite
set I the configuration space FX(I) ⊆ XI of X with coordinates on I: FX(I) consists
of tuples (xi)i∈I with xi 6= xj whenever i and j are distinct elements of I. As in
the previous example, there is an obvious action of any bijection σ : I −→ J that
permutes the coordinates. For each fixed finite set I, the set of types of structures
over I is usually called the unordered configuration space EX(I).

E9. There is a species of parts ℘ that sends each finite set I to the collection 2I of parts of
I, and sends each bijection σ : I −→ J to the induced bijection σ∗ : 2I −→ 2J. In a
similar way, if n is a positive integer, there is a species ℘n which sends each finite set
I to the set ℘n of its subsets of cardinality n; notice that ℘n(I) is empty if I has less
than n elements, and that ℘n is a subspecies of ℘ for each n.

E10. A graph with vertices on a set I is a pair (I, E) where E is a collection of 2-subsets
of I. For each finite set I, let Gr(I) be the collection of graphs on I. If σ : I −→ J is
a bijection and (I, E) is a graph on I, we set Gr(σ)(I, E) = (J, σ(E)). This defines the
species Gr of graphs.
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E11. For each finite set I, let L(I) be the collection of linear orders on I. If σ : I −→ J is
a bijection, we let L(σ) send a linear order i1i2 · · · it on the set I to the linear order
σ(i1) · · ·σ(it) on J. This defines the species L of linear orders.

E12. A tree is a connected graph with no cycles, and the species Tr of trees is a subspecies
of the species of graphs. A rooted tree on a set I is a t tree with vertices on I and a
distinguished vertex r ∈ I, called the root of t. The species of rooted treesTr∗ assigns
to each finite set I the collection of rooted trees on I, and transport of structures is
done by relabelling a tree t according to a given bijection I −→ J.

E13. A contraction on a set I is a function f : I → I for which there exists a fixed point
x0 ∈ I such that, for every i ∈ I, there is n for which fn(i) = x0. There is defined a
species Con of contractions that is a subspecies of the species of endofunctions, with
transport of structure is carried out by conjugation.

The following illustrates how combinatorial constructions on structures are encoded by
the morphisms of species.
E14. The species of rooted trees Tr∗ is isomorphic to the species Con of contractions. The

isomorphism is obtained by assigning to each rooted tree the endofunction on the
set of its labels that maps an element to its ‘immediate successor’ in the direction of
the root. The inverse assignment maps a contraction f : I −→ I with distinguished
point x0 to the rooted tree with root x0, in which there is an edge i → j whenever
f(i) = j.

E15. The species of derrangements is a subspecies of the species of permutations, and this
is in turn a subspecies of the species of endofunctions.

E16. The species of trees is both a subspecies of the species of graphs and of the species
of rooted trees, and the species of graphs is a subspecies of the species of simplicial
structures.

E17. If g is a graph on a finite set I, the collection of its connected components is a partition
of I. This defines a morphism of species Gr −→ Π.

E18. There is a morphism of species L −→ Σ that assigns to a linear order i1 · · · in on I the
corresponding composition of I into singletons, and there is a morphism of species
Σ −→ Π that assigns to a composition F of a set I the partition on I obtained by
forgetting the order of the blocks of F.





CHAPTER II

Monoidal categories and simplicial homology

1. Monoidal categories

Let C be a category and let ⊗ be a functor C × C −→ C. A natural isomorphism
a : ( ? ⊗ ? ) ⊗ ? −→ ? ⊗ ( ? ⊗ ? ) is called an associator. We say a satisfies the pentagonal
axiom if the diagram

(x⊗ (y⊗ z))⊗w ((x⊗ y)⊗ z)⊗w

(x⊗ y)⊗ (z⊗w)

x⊗ ((y⊗ z)⊗w)) x⊗ (y⊗ (z⊗w))

a

a⊗1
a

a

1⊗a

commutes for every four objects w, x, y, z in C. A unit object for ⊗ is an object e of C with
a choice of natural isomorphisms r : ? ⊗ e −→ ? and l : e ⊗ ? −→ ? . We say (e, r, l)

satisfies the triangle axiomwith respect to (⊗, a) if the diagram

(x⊗ e)⊗ y x⊗ (e⊗ y)

x⊗ y

a

r⊗1 1⊗l

commutes for eachpair of objects x, y inC. Amonoidal category is a 6-tuple (C,⊗, a, e, r, l)
with C a category, ⊗ : C × C −→ C a bifunctor, a an associator for ⊗ and (e, r, l) a unit
for (⊗, a), which satisfy the pentagonal and triangle axioms. We will usually denote a
monoidal category by (C,⊗, e)without explicitmention of the associator or the isomorph-
isms r and l.

A monoidal category is strict if the isomorphisms a, r and l are identities. Our ca-
nonical examples for monoidal categories are the category Setwith the cartesian product
and unit object e = {∅}, and the category of modules k Mod over k with the usual tensor
product⊗k and unit object the base ring k. Any categorywith finite products ismonoidal,
with the product taking the role of the tensor product and the final object that of the unit
object, and, dually, any category with finite coproducts is monoidal. Such categories are
called (co)cartesian monoidal categories. The category of endofunctors of a category C is a

11



12 II. MONOIDAL CATEGORIES AND SIMPLICIAL HOMOLOGY

strict monoidal category, with product the composition and unit object the identity func-
tor.

Let (C,⊗, e) be a monoidal category. A comonoid in C is an object c of C endowed with
two arrows ∆ : c −→ c ⊗ c and ε : c −→ e so that ∆ is coassociative and ε is counital with
respect to ∆ in the sense that the diagrams

c c⊗ c

c⊗ c c⊗ c⊗ c

∆

∆ 1⊗∆

∆⊗1

c⊗ e c⊗ c

c

c⊗ c e⊗ c

ε⊗1

l−1

r−1 ∆

∆

1⊗ε

are commutative. Remark that implicit in the writing of a triple product is the use of the
arrows provided by the associator a. Dual diagrams provide the definition of a monoid
object inC. In our canonical examples, amonoid in Set is a classicalmonoid, and amonoid
in kMod is an associative and unital k-algebra. If k is a field and A is a finite dimensional
k-algebra with multiplication µ : A⊗A −→ A and unit η : k −→ A, the dual vector space
A ′ = homk(A, k) is a comonoid in kMod —what is usually called a k-coalgebra— with
counit ε = η ′ and comultiplication given by the compositionA ′ µ ′−→ (A⊗A) ′ '−→ A ′⊗A ′.
Every set X is a comonoid in a unique way, by means of the diagonal map X −→ X × X
and the unique constant map X −→ {∅}.

If (c, ∆, ε) and (c ′, ∆ ′, ε ′) are comonoids in C, a morphism of comonoids1 is an arrow
f : c −→ c ′ in C that renders the following two diagrams commutative:

c c⊗ c

c ′ c ′ ⊗ c ′

f

∆

f⊗f

∆ ′

c

e

c ′

ε

f

ε ′

A left c-comodule x is an object of C endowed with an arrow λ : x −→ c ⊗ x, called a
left coaction, subject to the commutativity of the leftmost square in Figure 1. A right c-
comodule with a right coaction ρ : x −→ x ⊗ c is defined analogously. If x is both a
left and a right c-comodule, we shall say the two coactions are compatible if the second
square in Figure 1 commutes, and the triple (x, λ, ρ) is then said to be a c-bicomodule.
If (x, λ) and (x ′, λ ′) are left c-comodules, a morphism of left c-comodules is an arrow g :

x −→ x ′ in C that renders the third square in Figure 1 commutative. In a similar fashion,
we define morphisms of right c-comodules and of c-bicomodules, and in this way we
obtain the categories cmod, modc and cmodc of left c-comodules, right c-comodules and
c-bicomodules. Every comonoid c is a bicomodule over itself —in particular, a left and
a right c-comodule— with the comultiplication map ∆ : c −→ c ⊗ c playing the role of
both the left and the right coactions. Dually, every monoid a is a bimodule over itself,
1At this point, we hope the reader can guess what a morphism of monoids is supposed to be.
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x c⊗ x

c⊗ x c⊗ c⊗ x

λ

λ ∆⊗1

1⊗λ

x c⊗ x

x⊗ c c⊗ x⊗ c

λ

ρ 1⊗ρ

λ⊗1

x x ′

c⊗ x c⊗ x ′

g

λ λ ′

1⊗g

Figure 1. The diagrams defining left coassociativity, compatibility and
morphisms of left comodules.

and there are categories amod, moda and amoda of left a-modules, right a-modules, and
a-bimodules.

Let τ : C× C −→ C× C be the flip functor that sends a pair (x, y) to (y, x) and acts in
the obvious way on morphisms. We say that C is braided if it is endowed with a braiding,
that is, a natural isomorphism b : ( ? ⊗ ? ) −→ ( ? ⊗ ? ) ◦ τ that satisfies the following
hexagonal axiom: for any choice of objects x, y, z in C, the diagrams

x⊗ (y⊗ z) (y⊗ z)⊗ x

(x⊗ y)⊗ z y⊗ (z⊗ x)

(y⊗ x)⊗ z y⊗ (x⊗ z)

b

aa

b⊗1

a

1⊗b

(x⊗ y)⊗ z z⊗ (x⊗ y)

x⊗ (y⊗ z) (z⊗ x)⊗ y

x⊗ (z⊗ y) (x⊗ z)⊗ y

b

a−1a−1

1⊗b

a−1

b⊗1

commute. If additionally b(y, x) ◦ b(x, y) = idx⊗y for any pair of objects x, y in C, we
say that C is symmetric. A monoid (m,µ, η) in C is commutative if µb = µ, and dually, a
comonoid (c, ∆, ε) in C is cocommutative if∆ = b∆. Ifm is a commutative monoid, any left
module (x, λ) overm admits a bimodule structure with right action ρ = λb. Dually, a left
comodule over a cocommutative comonoid is canonically a bicomodule.
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The categories ofmonoids and comonoids overC aremonoidal: for example, if (c, ∆, ε)
and (c ′, ∆ ′, ε ′) are comonoids, then c ⊗ c ′ is a comonoid with comultiplication the com-
position ∆ ′′ = 1 ⊗ b ⊗ 1 ◦ ∆⊗ ∆ ′ and counit r ◦ ε ⊗ ε ′, the first structure map illustrated
by the following diagram:

c⊗ c ′

c⊗ c⊗ c ′ ⊗ c ′

c⊗ c ′ ⊗ c⊗ c ′

∆ ′′

∆⊗∆ ′

1⊗b⊗1

A bimonoid inC is amonoid in the category of comonoids inC or, equivalently, a comonoid
in the category of monoids in C. Explicitly, this is an object z endowed both with the
structure of a monoid (z, µ, η) and of a comonoid (z, ∆, ε) in such a way that µ and η are
morphisms of comonoidsm, or equivalently, in such a way that ∆ and ε are morphisms of
monoids. If c is a comonoid andm is a monoid, the set homC(c,m) is a classical monoid
with product the operation ? ? ? of convolution such that for f, g ∈ homC(c,m), f ? g :

c −→ m is the composition

c c⊗ c m⊗m m
∆ f⊗g µ

andwith unit the composition ηε : c −→ e −→ m. In particular, the set of endomorphisms
of a bimonoid z is in this way a classical monoid with operation this convolution, and we
say z is a Hopf monoid if the identity idz is invertible there. In this case, the inverse of idz
is called the antipode of z and is usually denoted by s. The simplest example of a Hopf
monoid is the group algebra kG of a group G over k, which is a Hopf monoid in kMod,
with comultiplication ∆(g) = g⊗ g, counit ε : kG −→ k such that ε(g) = 1 for g ∈ G, and
antipode s : kG −→ kG such that s(g) = g−1 for g ∈ G. Similarly, the polynomial algebra
k[x] is a Hopf monoid in the same category, now with ∆(x) = x ⊗ 1 + 1 ⊗ x, ε(x) = 0

and s(x) = −x. For more exotic examples of Hopf algebras and an extensive treatment of
monoidal categories, we refer the reader to [Kas1995].

If z is a bimonoid, every object x in C may be endowed with the left and right z-
comodule structures given by the compositions

x
l−1−→ e⊗ x η⊗1−→ z⊗ x x

r−1−→ x⊗ e 1⊗η−→ x⊗ z

and with the left and right z-module structures

z⊗ x ε⊗1−→ e⊗ x l−→ x x⊗ z 1⊗ε−→ x⊗ e r−→ x.

We say these are the trivial (co)actions on x, and say that x is a trivial (co)module. These
actions are compatible and turn x into a trivial z-bimodule and a trivial z-bicomodule. In
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a similar fashion, every left z-module can be made into a z-bimodule with a right trivial
action, and every left z-comodule can be made into a z-bicomodule with a right trivial
action.

If z is a bimonoid in C, each of the six possible categories of (bi)(co)modules over z is
itself monoidal with tensor product induced by that of C: to illustrate, if x and x ′ are left
z-comodules, then the tensor product x⊗ x ′ is a left z-comodule with left coaction λ ′′ the
unique arrow which makes the following diagram commute

x⊗ x ′ z⊗ x⊗ z⊗ x ′

z⊗ x⊗ x ′ z⊗ z⊗ x⊗ x ′

λ ′′

λ⊗λ ′

1⊗b⊗1

µ⊗1

2. Linear and abelian categories

A category C is a preadditive category or an Ab-category if, for every pair of objects x and
y in C, the set hom(x, y) is an abelian group, and the law of composition of morphisms
is compatible with this structure, meaning that for every three objects x, y and z in C, the
composition of morphisms

? ◦ ? : hom(y, z)× hom(x, y) −→ hom(x, z)

is a biadditive map. More generally, a k-linear category is a category whose hom-sets are
k-modules and whose law of composition is k-bilinear; thus a Z-linear category is exactly
an Ab-category.

An additive category is a preadditive category C that has a zero object, and such that
every two objects x and y in C admit a biproduct. The opposite category of a k-linear
category is canonically a k-linear category, and since zero objects and biproducts are self-
dual concepts, the opposite of an additive category is itself additive. An additive category
is abelian if
AB1. every morphism has a kernel and a cokernel,
AB2. every monic morphism is the kernel of its cokernel, and
AB3. every epic morphism is the cokernel of its kernel.

These axioms are self dual, and therefore the opposite category of an abelian category is
itself abelian. The following conditionsmay ormay not be satisfied by an abelian category.
We state them for future reference:
AB4. Every family of objects admits a coproduct.
AB5. The coproduct of a family of monomorphisms is a monomorphism.
AB6. The filtered colimit of a family of exact sequences is exact.

We will use a star to denote the dual of one of the axioms above. For example, AB2∗ is
AB3, and AB5∗ states the product of a family of epimorphisms is an epimorphism.
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Proposition II.2.1. If A is an abelian category and C is a locally small category, the category
of functors C −→ A is abelian, and it satisfies AB4 (or, respectively, AB4∗) if A does.

In particular, Spk is an abelian k-linear category and satisfies axioms AB4∗ and AB4.
More generally, the category Sp(C) of species over C usually inherits whatever extra struc-
ture C has. The following proposition lists two instances of this which are of use to us:

Proposition II.2.2. Let C be a category.
SP1. If C is k-linear, the category Sp(C) of species over C has a canonical structure of k-linear

category induced from that of C. Morover, if C is additive or abelian, then so is Sp(C).
SP2. If C is monoidal with tensor product⊗, there is an induced monoidal structure on Sp(C)

with tensor product, denoted by ×, which on objects is as follows: if X and Y are species
over C, then (X× Y)(I) = X(I)⊗ Y(I) for all finite sets I. If C is braided monoidal, so is
Sp(C), and if additionally it is symmetric, the same is true for Sp(C).

We call the product × the Hadamard product or pointwise product of Sp(C). It is worth
remarking that under the equivalence K in (1), the Hadamard product of two species X
and Y satisfies

K(X× Y)([n]) = ResSn×SnSn
(X([n])× Y([n])),

where we view Sn as a subgroup of Sn × Sn via the diagonal embedding.

Proof. The proof is standard and we omit it. J

3. The Cauchy monoidal structure on species

A decomposition S of length q of a set I is an ordered tuple (S1, . . . , Sq) of possible empty
subsets of I, which we call the blocks of S, that are pairwise disjoint and whose union is
I. We say S is a composition of I if every block of S is nonempty. It is clear that if I has n
elements, every composition of I has at most n blocks. We will write S ` I to mean that
S is a decomposition of I, and if necessary will write S `q I to specify that the length of S
is q. Notice the empty set has exactly one composition which has length zero, the empty
composition, and exactly one decomposition of each length n ∈ N0. If T is a subset of I
and σ : I −→ J is a bijection, we let σT : T −→ σ(T) be the bijection induced by σ.

Proposition II.2.2 tells us that the category Spk of species over kMod is abelian and
monoidal with respect to the Hadamard product. We will construct another product in
Spk, called the Cauchy product and denoted by ⊗, which will play a central role in all that
follows, and which categorifies the usual Cauchy product of power series.

Let X and Y be linear species over k. The Cauchy product X ⊗ Y is the linear species
such that for every finite set I

(X⊗ Y)(I) =
⊕

(S,T)`I

X(S)⊗ Y(T),
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the direct sum running through all decompositions of I of length two, and for every bijec-
tion σ : I −→ J

(X⊗ Y)(σ) =
⊕

(S,T)`I

X(σS)⊗ Y(σT ).

As it happenswith theHadamardproduct, theCauchyproduct is easily understoodwhen
viewing species as a product of representations of the various symmetric groups. Indeed,
for each n and each pair (p, q) with p+ q = n, there is an isomorphism⊕

S⊆I,#S=p
X(S)⊗ Y(T) ' IndSp+qSp×Sq(X([p])⊗ Y([q])),

and these collect to give an isomorphism

(X⊗ Y)([n]) '
⊕
p+q=n

IndSp+qSp×Sq(X([p])⊗ Y([q])).

It should be clear this construction extends to produce a bifunctor ⊗ : Spk × Spk −→
Spk. Inwhat follows, wheneverwe speak of the category Spk, wewill view it as amonoidal
category with the monoidal structure described in the following proposition.

Proposition II.3.1. The Cauchy product ⊗ makes Spk into an abelian braided monoidal
category, in the sense that it is abelian, braided monoidal, and⊗ is k-bilinear. The unit object 1 is
the linear species with 1(∅) the free k-module with basis {∅} and 1(I) = 0whenever I is nonempty.
The associator, left and right unitors and braiding are all induced by those of kMod.

The series of verifications needed to prove the result just stated are tedious but stand-
ard. For convenience, we give a broad idea of how to endow Spk with such structure.
We identify once and for all the vector space with basis the set {∅} with our ground ring
k, by means of the isomorphism that sends the basis element ∅ to 1 ∈ k, so that 1 can
be seen as the species concentrated on degree 0, where it has the value k. This has the
effect of turning the unitors r : X ⊗ 1 −→ X and l : 1 ⊗ X −→ X into the usual iso-
morphism k ⊗ V ' V ⊗ k ' V in each cardinal. In a similar fashion, the associator
a : (X⊗Y)⊗Z −→ X⊗ (Y⊗Z) is, for each choice of linear species X, Y and Z, obtained by
a cardinalwise use of the usual natural isomorphism a : (U ⊗ V) ⊗W −→ U ⊗ (V ⊗W)

for k-modulesU,V,W. The data (⊗, 1, a, r, l)makes Spk into a monoidal category. Unless
otherwise stated, we will reserve the symbol ⊗ for the Cauchy product of species. The
usual braiding in k Mod gives a braiding in Spk obtained by applying the braiding com-
ponentwise, and with this structure (Spk,⊗, 1, a, r, l, b) is a braided monoidal category.

It is important to notice the construction of the Cauchy product in Spk carries over to
the category Sp(C) when C is any monoidal category with finite coproducts which com-
mute with its tensor product. The main example of this phenomenon happens when C is
the category Set. If X and Y are set species, the species X⊗ Y has

(X⊗ Y)(I) =
⊔

(S,T)`I

X(S)× Y(T),
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so that a structure z of speciesX⊗Y over a set I is determined by a decomposition (S, T) of I
and a pair of structures (z1, z2) of species X and Y over S and T , respectively. For example,
every permutation τ of a finite set I determines a derangement on the subset S of points
of I not fixed by τ and the set T of fixed points of τ, and (S, T) is a decomposition of I: this
observation leads to the construction of an isomorphism Per −→ Der⊗E from the species
of permutations Per to the product of the exponential species E and the species Der of
derangements; we encourage the reader to exhibit this isomorphism explicitly, which we
illustrate in the following figure for the permutation (36)(158) ∈ S10:

4

2

9

10

7

1 8

5

3

6

T S

The linearization functor L : Sp −→ Spk preserves the monoidal structures we have
defined on these categories, in the sense there is a natural isomorphism L (X ⊗ Y) −→
LX ⊗ L Y for each pair of objects X, Y in Sp. For details on such monoidal functors see
[Kas1995, XI. §4].

The following will be useful, and we record it for future reference: if X, Y1, . . . , Yr are
linear species, a map of species α : X −→ Y1⊗ · · · ⊗ Yr determines and is determined by a
choice of equivariant k-module maps

αI : X(I) −→⊕
Y1(S1)⊗ · · · ⊗ Yr(Sr),

one for each finite set I, with the direct sum running through decompositions (S1, . . . , Sr)
of length r of I. In turn, the map αI is specified uniquely by its components at each decom-
position S = (S1, . . . , Sr), which we denote α(S1, . . . , Sr) without further mention to the
set Iwhich is implicit, for

⋃
S equals I. Moreover, it suffices to specify αI for I the sets JnK

with n ∈ N0. This said, we will usually define a map α : X −→ Y1 ⊗ · · · ⊗ Yr by specifying
its components at each decomposition of length r of I.

4. Monoids, comonoids and bimonoids in species

Amonoid (X, µ, η) in the category Spk is determined by a multiplication µ : X⊗X −→
X and a unit η : 1 −→ X. Specifying the first amounts to giving its components µ(S, T) :
X(S)⊗X(T) −→ X(I) at each decomposition (S, T) of every finite set I, and specifying the
latter amounts to a choice of the element η(∅)(1) ∈ X(∅), which we will denote by 1 if no
confusion should arise.

We think of the multiplication as an operation that glues partial structures on I, and
of the unit as an “empty” structure. For example, the species of graphs admits a multi-
plication kGr ⊗ kGr −→ kGr which is the linear extension of the map that takes a pair of



4. MONOIDS, COMONOIDS AND BIMONOIDS IN SPECIES 19

graphs (g1, g2) ∈ Gr(S)×Gr(T) and constructs the disjoint union g1tg2 on I. The unit for
this multiplication is the empty graph ∅ ∈ Gr(∅). One can readily check µ is associative
and unital with respect to η, so we indeed have a monoid kGr.

A linearized monoid in Spk is a linearized species X of the form kX0 with X0 a monoid in
the category Sp. For example, the monoid structure on the linearization of the species of
graphs just defined is linearized. Simply put, a monoid is linearized when it is linearized
as a species and its operations are also linearized. Amorphism of linearized monoids is one
obtained by linearization of a morphism of monoids in Sp.

Dually, a comonoid (X,∆, ε) in Spk is determined by a comultiplication ∆ : X −→
X ⊗ X and a counit ε : X −→ 1. The comultiplication has, at each decomposition (S, T)

of I, a component ∆(S, T) : X(I) −→ X(S) ⊗ X(T), which we think of as breaking up a
combinatorial structure on I into substructures on S and T , while the counit is a map of
k-modules X(∅) −→ k.

To continue with our example, the linearization of the species of graphs admits a
comultiplication kGr −→ kGr ⊗ kGr that sends a graph g on a set I to gS ⊗ gT ∈ kGr(S)⊗
kGr(T), where gS and gT are the subgraphs induced by g on S and T , respectively. This
comultiplication admits as counit the morphism ε : kGr −→ 1 that assigns 1 ∈ k to the
empty graph. In this way, we obtain a comonoid structure on kGr which is, in fact, com-
patible with the monoid structure we described in the previous paragraph: we therefore
have a bimonoid structure on kGr.

In general, defining a comonoid structure on a linear species X requieres we give a
map ε : X(∅) −→ 1(∅) and, for each finite set I and each decomposition (S, T) of I, a map
∆(S, T) : X(I) −→ X(S)⊗ X(T), in such a way the following diagrams commute2

X(A)⊗ X(B)⊗ X(C) X(AB)⊗ X(C)

X(A)⊗ X(BC) X(ABC)

∆(A,B)⊗1

1⊗∆(B,C) ∆(AB,C)

∆(A,BC)

(2)

1(∅)⊗ X(I) X(I)⊗ X(∅)

X(I)

X(∅)⊗ X(I) X(I)⊗ 1(∅)

1⊗ε
∆(I,∅)

∆(∅,I)
ε⊗1(3)

2We are writing AB for a disjoint union A t B to lighten up the notation.
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This is a consequence of the fact that, in order to check the equality 1⊗∆ ◦∆ = ∆⊗ 1 ◦∆,
it is sufficent that we do so at each decomposition (A,B,C) of length 3 of each finite set
I, and that the counit ε : X −→ 1 necessarily has ε(I) the zero map when I is nonempty
since 1(I) = 0 in such case, so the only data provided by ε is the map X(∅) −→ 1(∅) ' k.

We can partially reverse this idea. A pre-comonoid in Sp is a set species X0 endowed
with maps ∆(S, T) : X0(S ∪ T) −→ X0(S) × X0(T) for each decomposition (S, T) of each
finite set I, that render the diagrams obtained from (2) and (3) by replacing⊗with× com-
mutative, where X0(∅) −→ 1(∅) is the unique constant map. The point of this definition
is that, upon linearization, the linear species X = kX0 becomes a bona fide comonoid in
Spk. Observe that the data defining a pre-comonoid in Sp does not define a comonoid
in Sp —in fact, a set species X that is a comonoid in Sp is necessarily concentrated in the
empty set: the existence of a counit determines maps εI : X(I) −→ 1(I), and 1(I) is empty
whenever I is not. A linearized comonoid will be, for us, the result of linearizing a pre-
comonoid in Sp. It should be clear what a morphism of pre-comonoids is supposed to be,
and a morphism of linearized comonoids is just the linearization of such a thing. If X = kX0

is a linearized comonoid with underlying comultiplication ∆ : X0 −→ X0 ⊗ X0, we will
write ∆(S, T)(z) = (z 
 S, z � T).

We emphasize the fact that in the dual situation of monoids in Spk the commutativity
of the diagrams dual to (2) and (3) is a strictly stronger condition than the usual associativ-
ity and unit conditions. Combining the notions of linearized monoids and linearized co-
monoids one obtains, as expected, the notion of linearized bimonoids and their morphisms.
Our main example of a bimonoid in Spk is the provided by the following proposition.

Proposition II.4.1. The linearized exponential species E is a linearized bimonoid with multi-
plication and comultiplication with components

µ(S, T) : E(S)⊗ E(T) −→ E(I), ∆(S, T) : E(I) −→ E(S)⊗ E(T)

at each decomposition (S, T) of a finite set I such that

µ(S, T)(∗S ⊗ ∗T ) = ∗I, ∆(S, T)(∗I) = ∗S ⊗ ∗T

and with unit and counit the morphisms ε : E −→ 1 and η : 1 −→ E such that ε(∗∅) = 1 and
η(1) = ∗∅.

Proof. The verifications needed to prove this follow immediately from the fact that
E(I) is a singleton for every finite set I. J

The exponential species plays a central role in the category of linearized bimonoids,
as evinced by the following proposition.
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Proposition II.4.2.
(1) The exponential species E admits a unique structure of linearized bimonoid.
(2) If X is a pre-comonoid in Sp, the linearization of the unique morphism of species X −→ E

is a morphism of linearized comonoids.
(3) In particular, every linearized comonoid is canonically an E-bicomodule.

Proof. If s is a singleton set and x is any set, there is a unique function x −→ s, and
it follows from this, first, that the bimonoids structure defined on E is the only linearized
bimonoid structure, and, second, that if X is a species in Sp, there is a unique morphism
of species X −→ E. If X is a pre-comonoid in Sp, the following square commutes because
E(S)× E(T) has one element:

E(I) E(S)× E(T)

X(I) X(S)× X(T),

∆

∆

and, by the same reason, X −→ E is pre-counital. All this shows that the exponential
species E is terminal in the category of linearized comonoids. This completes the proof of
the proposition. J

We will fix some useful notation to deal with comonoids. Let X = kX0 be a linearized
species that is a comonoid in Spk; notice thatwe do not require it be a linearized comonoid.
If z is an element ofX0(I), wewrite the image∆(I)(z) as a sum

∑
z
S⊗z�T with z
S⊗z�T

denoting an element of X(S)⊗X(T) (not necessarily an elementary tensor, à la Sweedler).
Consider now a left E-comodule X with coaction λ : X −→ E⊗ X. Since E(S) = k{∗S},

the component X(I) −→ E(S) ⊗ X(T) can canonically be viewed as map X(I) −→ X(T)

which we denote by λIT , and call the it the restriction from I to T to the right.
In these terms, that λ be counital means λII is the identity for all finite sets I, and the

equality 1 ⊗ λ ◦ λ = ∆ ⊗ 1 ◦ λ, which expresses the coassociativity of λ, translates to the
condition that we have λIA = λBA ◦ λIB for any chain of finite sets A ⊆ B ⊆ I. It follows that,
if FinSetinc is the category of finite sets and inclusions, a left E-comodule X in Spk can be
viewed as a pre-sheaf FinSetinc −→ k Mod. When convenient, we will write z� S for λIS(z)
without explicit mention to I, which will usually be understood from context. Using this
notation, we can write the coaction on X as

λ(I)(z) =
∑
∗S ⊗ z � T.

Of course the same consideration apply to a right E-comodule, and we write z
 T for
ρIT (z). If X is both a left and a right E-comodule with coactions λ and ρ, the compatilibity
condition for it to be anE-bicomodule is that, for any finite set I andpair of non-necessarily
disjoint subsets S, T of I, we have ρSS∩TλIS = λTS∩Tρ

I
T . Schematically, we can picture this as

follows:
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S ∩ T

S T

I

ρ λ

ρλ

There is a category FinSetbinc such that an E-bicomodule is exactly the same as a pre-sheaf
FinSetbinc −→ Spk; we leave its construction to the categorically inclined reader. If the
structure on X is cosymmetric, we will write z ‖S for the common value of z
S and z�S.

There is a close relation between linearized comonoids and linearized E-bicomodules,
as described in the

Proposition II.4.3. Let (X,∆) be a linearized comonoid, and let fX : X −→ E be the unique
morphism of linearized comonoids described in Proposition II.4.2. There is an E-bicomodule struc-
ture on X so that the coactions λ : X −→ E ⊗ X and ρ : X −→ X ⊗ E are obtained from
postcomposition of ∆ with fX ⊗ 1 and 1⊗ fX, respectively. J

We refer the reader to [AM2010, Chapter 8, §3, Proposition 29]. Remark that, with
this proposition at hand, the notation introduced for bicomodules and that introduced
for comonoids is consistent.

5. Hopf monoids in the category of species

Let X be a bimonoid in Spk with structure maps ∆ and µ. We have already described
in Section 1 how End(X) is a monoid under the convolution operation constructed from
∆ and µ, and unit the composition ηε. It is readily seen convolution is biadditive with
respect to the k-linear structure in End(X), so in fact End(X) is a k-algebra. Recall that a
species X is connected if X(∅) is free of rank one. The following result in [AM2010] states
every connected bimonoid in Spk is automatically a Hopf monoid, and this automatically
endows the various categories of representations ofXwith extra structure, as described in
Section 1. More generally, a bimonoid X in Spk is a Hopf monoid precisely when X(∅) is a
Hopf k-algebra, and the antipode of X can, in that case, be explicitly constructed from the
antipode of X(∅) —this is a variant of what is known as Takeuchi’s theorem, see [AM2013,
Proposition 9].

Theorem II.5.1. Let (X, µ,∆) be a bimonoid in Spk.
(1) If X is a Hopf monoid with antipode s, then X(∅) is an Hopf k-algebra with antipode

s(∅).
(2) If X(∅) is a Hopf k-algebra with antipode s0, then X is a Hopf monoid, and s can be

iteratively constructed from s0, µ and ∆.
(3) In particular, if X is a connected bimonoid, X is a Hopf monoid.
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Proof. For a proof and an explicit formula for s in terms of s0, see [AM2010, Chapter 8,
§3.2, Proposition 8.10, and §4.2, Proposition 8.13]. The third part follows from the second
since k is, in a unique way, a Hopf k-algebra. J

We define some connected bimonoids that will be of interest in Chapter III. In view of
the previous result, they are all Hopf monoids in the category of linear species. Remark
that, since themonoidal category Spk is symmetric, the tensor product ofHopfmonoids in
Spk is again Hopf monoid, so the following examples provide further ones by combining
them into products. For completeness, we also list the bimonoid structure of E. In all
cases the unit and counit are the projection and the inclusion of 1 in the component of ∅.
H1. The exponential species E admits a bimonoid structure such that

• multiplication is given by the union of sets: µ(S, T)(∗S, ∗T ) = ∗ST
• comultiplication is given by partitioning a set into disjoint subsets: ∆(S, T)(∗I) =
∗S ⊗ ∗T

Using our notation, this comultiplication is given by ∗I
S = ∗I�S = ∗S. The antipode
is given by s(I)(∗I) = (−1)#I∗I.

H2. Fix a finite set I and a decomposition (S, T) of I. If `1 and `2 are linear orders on S and
T respectively, their concatenation `1 · `2 is the unique linear order on I that restricts
to `1 in S and to `2 in T , and such that s < t if s ∈ S and t ∈ T ; this operation is in
general not commutative. If ` is a linear order on I, write `|S for the restriction of ` to
S, and ¯̀ for the reverse order to `. The species of linear orders L admits a bimonoid
structure such that
• multiplication is given by concatenation: µ(S, T)(`1, `2) = `1 · `2 ,
• comultiplication is given by restriction: ∆(S, T)(`) = `|S ⊗ `|T .

In particular, this endows L with a cosymmetric bicomodule structure over E. The
map L −→ E that sends a linear order on a finite set I to ∗I = {I} is amap of bimonoids.
The antipode is given, up to sign, by taking the reverse of a linear order: s(I)(`) =

(−1)#I ¯̀.
H3. If (S, T) is a decomposition of a finite set I, and F = (F1, . . . , Fs) and G = (G1, . . . , Gt)

are compositions of S and of T , respectively, the concatenation F ·G is the composition
(F1, . . . , Fs, G1, . . . , Gt) of I. If F = (F1, . . . , Ft) is a composition of I, the restriction of F
to S is the composition F|S of S obtained from the decomposition (F1∩S, . . . , Ft∩S) of
S by deleting empty blocks, which usually has shorter length than that of F. Finally,
the reverse of a composition F is the composition F̄ whose blocks are listed in the
reverse order of those in F. The species Σ of compositions has a bimonoid structure
such that
• multiplication is given by concatenation: µ(S, T)(F,G) = F ·G,
• comultiplication is given by restriction: ∆(S, T)(F) = F|S ⊗ F|T .
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This is cocommutative but not commutative. The morphism L −→ Σ that sends a
linear order i1 · · · it on a set I to the composition ({i1}, . . . , {it}) is a map of bimonoids.
The formula for the antipode is not as immediate as the previous ones. For details,
see [AM2013, §11].

H4. If (S, T) is a decomposition of a finite set I, and X and Y are partitions of S and T ,
respectively, the union X ∪ Y is a partition of I. If X is a partition of I, then X|S =

{x ∩ S : x ∈ X} r {∅} is a partition of S, which we call the restrction of X to S. The
species Π of partitions admits a bimonoid structure such that
• multiplication is given by the union of partitions: µ(S, T)(X, Y) = X ∪ Y,
• comultiplication is given by restriction: ∆(S, T)(X) = X|S ⊗ Y|T .

This is both commutative and cocommutative. Themap Σ −→ Π that sends a decom-
position F of a set I to the partition X of I consisting of the blocks of F is a bimonoid
map. The morphism E −→ Π that sends ∗I = {I} to the partition of I into singletons is
also a map of bimonoids. See [AM2013, Theorem 33] for a formula for the antipode
of Π.

H5. If p is a poset with underlying set I, and (S, T) is a decomposition of I, we say S is
a lower set of T with respect to p and write S ≺p T if no element of T is less than an
element of S for the order p, and we write pS for p ∩ (S × S), the restriction of p to S.
The linearized species Pos of posets admits a bimonoid structure so that
• multiplication is given by the disjoint union of posets: µ(S, T)(p1, p2) = p1 t p2,
• comultiplication is obtained by lower sets and by restriction: we set∆(S, T)(p) =
pS ⊗ pT if S ≺p T , and set ∆(S, T)(p) = 0 if not.

The verification that these are compatible operations making Pos into a bimonoid is
straightforward. Remark this is an example of a non-commutative comultiplication,
as opposed to the previous examples we gave.
It is worthwhile to remark that one can define another multiplication on this species:

if p1 and p2 are posets on disjoint sets S and T , respectively, let p1 ∗ p2 be the usual join of
posets. This is associative and has unit the empty poset, and the inclusion of linear orders
into posets L −→ P is a morphisms of monoids if L is given the concatenation product.
We also remark that the maps described above fit into a commutative diagram of Hopf
monoids as illustrated in the figure

Σ

L Π

E
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and we will analyse the resulting maps in cohomology in Chapter III. For more examples
of Hopf monoids in species, and their relation to classical combinatorial results, we refer
the reader to [AM2010, Chapter 13].

6. Monoidal structure on the category of bicomodules

Fix a comonoid c in an abelianmonoidal category C, and two c-bicomodules x, x ′with
corresponding structure maps (λ, ρ) and (λ ′, ρ ′). Further, assume that c ⊗ ? and ? ⊗ c
are exact. We define the cotensor product of x and x ′, and write x� x ′, for the kernel of the
map 1⊗ λ ′ − ρ⊗ 1, as illustrated in the following diagram:

0 x� x ′ x⊗ x x⊗ c⊗ x ′
ρ⊗1

1⊗λ ′

It is not immediate that x�x ′ is a again a c-bicomodule, and this is in fact not always true.
In our case, however, the assumption that c⊗ ? and ? ⊗ c are exact renders the diagram
of short exact sequences

0 x� x ′ x⊗ x ′ x⊗ c⊗ x ′

0 c⊗ (x� x ′)⊗ c c⊗ x⊗ x ′ ⊗ c c⊗ x⊗ c⊗ x ′ ⊗ c

λ⊗1◦1⊗ρ λ⊗1◦1⊗ρ

that induces the desired map, and compatibility of the corresponding diagrams is in-
herited from those for x ⊗ x ′. The dotted arrow is natural, so this induces a bifunc-
tor ? � ? : c modc −→ c modc. It is easy to check that x� c = x ⊗ e ' x and that
c� x = e⊗ x ' x, and that � is associative via the original associator of C. Thus we have
endowed the category of c-bicomodules with a monoidal structure (�, c, a, r, l).

7. The simplicial category

The augmented simplicial category ∆ ′ has as objects the finite sets [n] = {0, . . . , n− 1} for
n ∈ N0, so that in particular [0] = ∅, and arrows the monotone non-decreasing functions.
The sum of [n] and [m] is [n+m] and we denote it by [n] + [m], and for any pair of arrows
f : [n] −→ [n] ′ and g : [m] −→ [m] ′ we define f + g by juxtaposition: f + g takes the value
f(i) for i ∈ {1, . . . , n} and the value n ′ + g(i − n) for i ∈ {n + 1, . . . ,m + n}. The empty
set [0] is initial, the set [1] is terminal, and addition + : ∆ ′ × ∆ ′ −→ ∆ ′ makes (∆ ′,+, [0])
into a strict monoidal category. The only arrow µ : [1] + [1] → [1] and the only arrow
η : [0]→ [1] make [1] into a monoid. The simplicial category ∆ is the full subcategory of ∆ ′

whose objects are the nonempty objects of ∆ ′. It is convenient to use the notation JnK for
the set [n+ 1].

We single out an important collection of arrows in ∆: for each i ∈ {0, · · · , n}, we let
∂i : Jn− 1K −→ JnK be the unique injective monotone function whose image misses i, and
dually for each i ∈ {0, . . . , n}we let σi : Jn+1K −→ JnK be the unique surjective monotone
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function which sends i and i+ 1 to i. We can write these arrows using the addition of ∆ ′

and the monoid [1]:

∂i = 1
i + η+ 1n+1−i : Jn− 1K −→ JnK

σi = 1
i + µ+ 1n+1−i : Jn+ 1K −→ JnK

One can visualize this category by assigning to JnK the geometrical n-simplex obtained
from the convex hull of n + 1 affinely independent points in space, and to the face and
degeneracy maps the usual inclusions opposite to vertex i and the collapsing of the edge
joining i and i + 1 on such simplices. In fact, this construction gives a functor ∆ ′ → Top,
and exhibits ∆ ′ as a subcategory of Top.

Definition II.7.1. A simplicial object on a category C is a functor A : ∆op → C; dually, a
cosimplicial object on C is a functor C : ∆→ C. An augmented simplicial object on a category
C is a functor A : ∆ ′op → C, an augmented cosimplicial object on a category C is a functor
C : ∆ ′ → C. This defines respective categories Simp(C), Simp ′(C), Cosimp(C), Cosimp ′(C).

The semisimplicial category∆s is the subcategory of∆with the same objects but only the
injective functions as morphisms. One can define semisimplicial objects and semicosimpli-
cial objects, and these suffice for many homological purposes. Degeneracies give a richer
homological and combinatorial structure, and will allow us to prove certain complexes
are exact in particular situations. Remark that semisimplicial (but not simplicial) objects
arise naturally in the cohomology of algebras which are not necessarily unital.

The following pair of lemmas gives a concrete description of arrows in the simplicial
category.

Lemma II.7.2. [Wei1994, Exercise 8.1.1, Lemma 8.1.2] The category ∆ ′ is generated by the
face and degeneracy maps subject to the following cosimplicial relations:

∂j∂i = ∂i∂j−1, i < j;

σjσi = σiσj+1, i 6 j;

σj∂i =


∂iσj−1, if i < j;

id, if i = j or i = j+ 1

∂i−1σj, if i > j+ 1.

Moreover, every arrow α : JnK −→ JmK in ∆ admits a unique epi-monic factorization α = ηε

where the monic ε is uniquely a composition of face maps ∂i1 · · ·∂is with 0 6 is 6 · · · 6 i1 6 m
and the epi η is uniquely a composition of degeneracy maps σj1 · · ·σjt with 0 6 j1 6 · · · 6 jt 6 n.

The relations obtained by composing the arrows in the reverse order give the so called
cosimplicial relations. The description of ∆ ′ given in these lemmas translates to the follow-
ing concrete description of cosimplicial objects:
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Proposition II.7.3. [Wei1994, Corollary 8.1.4] To give a cosimplicial object X in a category
C it is necessary and sufficent to give a sequence of objects X0, X1, X2, . . . in C, together with co-
degeneracy and coface arrows di : Xn−1 −→ Xn, sj : Xn+1 −→ Xn that satisfy the cosimplicial
relations.

There is a dual description of simplicial objects. In light of the previous proposition,
we will denote a simplicial or cosimplicial object by (X, d, s). Accordingly, a morphism
f : X −→ Y of simplicial objects is specified by giving arrows fn : Xn −→ Yn in C that
commute with the face and degeneracy maps. A consequence of this last proposition is
that to specify an augmencted simplicial object amounts to giving a simplicial object X,
an object X−1 ∈ C and an arrow ε : X0 → X−1 such that ε∂0 = ε∂1. Analogous remarks
hold for semisimplicial, semicosimplicial and cosimplicial objects.

Definition II.7.4. Let (X, d) and (Y, δ) be semisimplicial objects over a category, and
let f, g : X −→ Y be simplicial morphisms. A semisimplicial homotopy h between f and g,
denoted by h : f ' g, is a sequence of arrows hi : Xn −→ Yn+1, one for each 0 6 i 6 n and
each n > 0, such that δ0h0 = f, δn+1hn = g and

δihj =


hj−1di i < j,

δihi−1 i = j, 0 < i 6 n,

hjdi−1 i > j+ 1.

If there is a semisimplicial homotopy h : f ' g we say that f and g are semisimplicially
homotopic. One can define simplicial homotopies by extending the above list of relations to
include relations involving degeneracies.

Fix an abelian category C, and write Ch+(C) for the category of bounded below chain
complexes overC. There is a functor Semisimp(C) −→ Ch+(C) obtained as follows. If (X, ∂)
is a semisimplicial object over C, the associated chain complex (CX, d) of X has components
those of X and differential d =

∑n
i=0(−1)

i∂i : Xn −→ Xn−1. The composition d ◦ d is zero:
one can split the double sum on indices i and j at those for which i < j and at those for
which i > j, and the terms then cancel out in pairs (−1)i+j∂i∂j and (−1)i+j−1∂j−1∂i by
virtue of the simplicial identities. It follows that (CX, d) is indeed a complex. If f : X −→
X ′ is a morphism of semisimplicial objects there is induced a morphism of complexes
Cf : CX −→ CX ′ that coincides with f componentwise. Moreover, homotopies are sent to
homotopies:

Lemma II.7.5. If two semisimplical maps are semisimplicially homotopic, the resulting maps
on the associated chain complexes are chain homotopic.

Proof. Let f, g : X −→ Y be simplicial maps with h : f ' g a simplical homotopy.
Define arrows Hn : Xn −→ Yn+1 by H =

∑n
i=0(−1)

ihi. When computing δH + Hd the
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terms δihi and δihi−1 cancel, the terms δihj and hj−1δi cancel when i < j, the terms δihj
and hjdi−1 cancel when i > j+ 1 and all that is left is δ0h0 − δn+1hn = f− g. J

IfX is a simplicial object overC, the homology ofX is the graded objectH(X) = H(CX, d),
and we say that X is acyclic if H(X) = 0.

For a cosimplicial object (X, ∂, σ) in an abelian category, we defineDXn to be the sub-
object

∑
σj(Xn+1). This defines a subcomplexDX, the subcomplex of degenerate simplices in

X; to see this, note that when computing dσj in terms of face maps, the only terms that do
not involve degeneracies cancel at i = j, j+1. AlongwithDX, we can consider the complex
(NX, δ) with NXn =

⋂n−1
i=0 ker(∂i : Xn −→ Xn+1) and differential δn = (−1)n∂n, which we

call the Moore or normalized subcomplex of CX. The following lemma will simplify many
calculations in what follows. We write C̄X for the quotient CX/DX.

Lemma II.7.6. [Wei1994, Lemma 8.3.7, Theorem 8.3.8] For any cosimplicial object X over
an abelian category,DX is acyclic andNX⊕DX = CX, so that the inclusionNX ↪→ CX and the
projection CX −→ C̄X are quasi-isomorphisms.

8. Cohomology in abelian monoidal categories

We now give a general construction that takes a comonoid (c, ∆, ε) on an abelian
monoidal category C and defines a cohomological functor on the category cmodc of c-
bicomodules. To do this, we need the following observation, which dualizes the usual
property of free modules: there is a functor C → cmodc that sends an object y in C to
c⊗y⊗cwith the natural bicomodule structure defined by ∆, and acts in the obvious way
on arrows. The bicomodules in the image of this functor are “free”; this is stated more
precisely in the following lemma.

Lemma II.8.1. Let x be a c-bicomodule and let y ∈ C. There is a natural isomorphism

η : homcmodc(x, c⊗ y⊗ c) −→ homC(x, y)

such that if α : x −→ c ⊗ y ⊗ c is a morphism of c-bicomodules and β : x −→ y is a morphism
in C, the following diagrams commute:

y 1⊗ y 1⊗ y⊗ 1 x c⊗ x

x c⊗ y⊗ c c⊗ y⊗ c c⊗ x⊗ c.

l 1⊗r λ

η−1(β) 1⊗ρη(α)

α

ε⊗1⊗ε

1⊗β⊗1

Proof. Suppose that β : x −→ y is a morphism in C. The arrow η−1(β) uniquely
defined by the commutativity of the rightmost diagram is a morphism of c-bicomodules:
this follows directly from the fact that λ and ρ are compatible coactions. Indeed, this
compatibility means that —writing χ for the composition 1⊗ ρ ◦ λ : x −→ c⊗ x⊗ c—we
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have the equality ∆⊗ 1⊗ ∆ ◦ χ = 1⊗ χ⊗ 1 ◦ χ, and then

∆⊗ 1⊗ ∆ ◦ 1⊗ β⊗ 1 ◦ χ = 1⊗ β⊗ 1 ◦ ∆⊗ 1⊗ ∆ ◦ χ

= 1⊗ β⊗ 1 ◦ 1⊗ χ⊗ 1 ◦ χ,

as desired. On the other hand, if α : x −→ c⊗y⊗ c is a morphism of c-bicomodules, then
η(α) : x −→ y is a fortiori a morphism in C. That η and η−1 are inverse bijections follows
from the equality

ε⊗ 1⊗ ε ◦ χ = l−1 ⊗ 1⊗ r−1,

and this is what the lemma claims. J

Let (c, ∆, ε) be a comonoid in C, fixed throughout what remains of this section, and let
us construct a cosimplicial c-bicomoduleΩ(c) : ∆ ′ −→ cmodc, which we refer to the cobar
construction on c. For each nonnegative integer n, we put Ω(c)n = c⊗(n+2), and define
coface and codegeneracy maps

∂i =1⊗i ⊗ ∆⊗ 1⊗(n+1−i) : Ω(c)n −→ Ω(c)n+1 for 0 6 i 6 n,

σj =1⊗j+1 ⊗ ε⊗ 1⊗(n−j+1): Ω(c)n+1 −→ Ω(c)n for 0 6 j 6 n.

It is important to notice these coface and codegeneracy arrows are all morphisms of c-
bicomodules —this can be seen as a special case of Lemma II.8.1.

We now want to show thatΩ(c) provides us with a resolution of c in the category of
c-bicomodules, with augmentation given by the comultiplication map ∆. In other words,
that

Proposition II.8.2. The complex associated toΩ(c) has trivial homology in positive degrees,
and ∆ : c −→ c⊗ c = Ω(c)0 induces an isomorphism c −→ H0(Ω(c)).

Proof. Let U : cmodc −→ C be the forgetful functor, and write Ω(c) ′ = U ◦ Ω(c).
Since U reflects exactness, it suffices to prove the analogous claims for Ω(c) ′, which is a
cosimplicial object in C. To this end, we consider the complex

0 c Ω(c) ′0 Ω(c) ′1 · · ·∆ d0 d1

which has c in degree −1, and show that it is exact. In fact, it is contractible: there is a
contracting homotopy Hwith components

Hn = 1⊗n+2 ⊗ ε : Ω(c) ′n+1 −→ Ω(c) ′n

for n > 1 and H0 = 1 ⊗ ε : Ω(c) ′0 −→ c. Indeed, a direct computation shows that if ∂i is
the ith coface component of d, then Hn∂i = ∂i−1Hn−1 if 0 6 i < n and Hn∂n = id, so that
Hd+ dH = id. J
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If x is a c-bicomodule we obtain, by applying the functor hom(x, ? ), omitting the sub-
script cmodc to lighten up the notation, a cosimplicial k-module hom(x,Ω(c)), with asso-
ciated cochain complex

0 hom(x, c⊗2) hom(x, c⊗3) hom(x, c⊗4) · · ·δ0 δ1 δ2

and differential acting by precomposition. The cohomology H∗(x, c) of c with values in x is
the cohomology of this complex.

Using the identifications provided in Lemma II.8.1 we can give an alternative descrip-
tion of this cochain complex, which has the advantage of involving hom-spaces in the
underlying category C instead of those in cmodc.

Theorem II.8.3. Let x be a c-bicomodule with left and right coactions λ and ρ. There is a
cosimplicial k-module C∗(x, c) with

C1. components Cn(x, c) = homC(x, c
⊗n) for each n > 0,

C2. coface maps ∂i : Cn(x, c) −→ Cn+1(x, c), for i ∈ {0, · · · , n+ 1}, such that

∂i(f) =


(1⊗ f) ◦ λ if i = 0,

(1⊗i−1 ⊗ ∆⊗ 1⊗n−i) ◦ f if 0 < i < n+ 1,

(f⊗ 1) ◦ ρ if i = n+ 1

for each morphism f : x −→ c⊗n in C, and
C3. codegeneracy maps σj : Cn+1(x, c)→ Cn(x, c), for each j ∈ {0, . . . , n+ 1}, given by

σj(f) = (1⊗j ⊗ ε⊗ 1⊗n−j) ◦ f

for each morphism f : x −→ c⊗n+1 in C,
and a functorial isomorphism of cosimplicial k-modules Ψ : hom(x,Ω(c)) −→ C∗(x, c).

As a consequence of this, the complex associated to C∗(x, c), namely

0 homC(x, 1) homC(x, c) homC(x, c
⊗2) · · ·d0 d1 d2

computes the cohomology of cwith values in x.

Proof. For each n > 0, let Ψn : hom(x,Ω(c)n) −→ Cn(x, c) be given by Ψn(f) =

ηx,cn(f), where we identify c⊗(n+2) = c ⊗ c⊗n ⊗ c. That this is an isomorphism follows
from Lemma II.8.1, and we now check that the following diagrams are commutative

hom(x,Ω(c)n) hom(x,Ω(c)n+1)

Cn(x, c) Cn+1(x, c)

Ψn

∂i

Ψn+1

∂i
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hom(x,Ω(c)n) hom(x,Ω(c)n+1)

Cn(x, c) Cn+1(x, c)

Ψn Ψn+1

σj

σj

for each i ∈ {0, . . . , n} and each j ∈ {0, . . . , n + 1}. Indeed, for f : x −→ c⊗n+2, we have,
omitting the unitors,

Ψn+1∂i(f) = ε⊗ 1⊗ ε ◦ 1⊗i ⊗ ∆⊗ 1⊗(n−i+1) ◦ f

= 1⊗i−1 ⊗ ∆⊗ 1⊗(n−i) ◦ ε⊗ 1⊗ ε ◦ f

= ∂iΨn(f),

if 0 < i < n. To see the diagram commutes for for i = 0, we will instead compute
∂0(Ψn)−1(g) for g : x −→ c⊗n a morphism in C, and check this equals (Ψn+1)−1∂0(g):

∂0(Ψn)−1(g) = ∆⊗ 1n+1 ◦ 1⊗ g⊗ 1 ◦ λ⊗ 1 ◦ ρ

= 1⊗ g⊗ 1 ◦ ∆⊗ 1⊗ 1 ◦ λ⊗ 1 ◦ ρ

= 1⊗ g⊗ 1 ◦ (1⊗ λ ◦ λ)⊗ 1 ◦ ρ

= 1⊗ ◦(g⊗ 1 ◦ λ)⊗ 1 ◦ λ⊗ 1 ◦ ρ

= (Ψn+1)−1∂0(g).

The case i = n is dual to this. We omit the verification that the diagrams involving code-
generacies commute, which are equally straightforward. It follows the collectionΨ = (Ψn)

is, in fact, an isomorphism of cosimplicial k-modules, as claimed. J





CHAPTER III

The cohomology of combinatorial species

1. Definitions and first examples

Let C be a comonoid in Spk and X a C-bicomodule. The Cartier cohomology of C with
values in X is the cohomology of the cosimplicial k-module C∗(X,C) constructed in The-
orem II.8.3, andwe denote it byH∗(X,C). As usual, we will writeHH∗(C) forH∗(C,C). In
the following we will mainly consider the case in which C = E, the exponential species,
but will make it clear when a certain result can be extended to other comonoids. Usually,
it will be necessary that C is linearized and with a linearized bimonoid structure, and we
will usually require that C be connected. Because of the plethora of relevant examples
of such bimonoids found in [AM2010] and other articles by the same authors, such as
[AM2013], there is no harm in restricting ourselves to such species.

Fix an E-bicomoduleX. The complexC∗(X, E) has in degree q the collection ofmorph-
isms of species α : X −→ E⊗q. Such a morphism is determined by a collection of k-linear
maps α(I) : X(I) −→ E⊗q(I), one for each finite set I, which is equivariant, in the sense
that for each bijection σ : I −→ J between finite sets, and every z ∈ X(I), the equality
σ(α(I)(z)) = α(J)(σz) holds.

Now, E⊗q(I) is a free k-module with basis the tensors of the form F1 ⊗ · · · ⊗ Fq with
(F1, . . . , Fq) a decomposition of I; for simplicity, we use the latter notation for such basis
elements. In terms of this basis, we can write

α(I)(z) =
∑
F`qI

α(F)(z) F

where α(F)(z) ∈ k.
As described in Chapter II, Section 4, the cochain α is completely determined by an

equivariant collection of functionals α(F) : X(I) −→ k, the components of α, one for each
decomposition F of a finite set I. The equivariance condition is now that, for a bijection
σ : I −→ J, and (F1, . . . , Fq) a decomposition of I, we have

α(F1, . . . , Fq)(z) = α(σ(F1), . . . , σ(Fq))(σz)

for each z ∈ X(I). Recall that when writting α(F)(z) we omit I, recalling that it is always
the case I = ∪F.

Nowfix a q-cochainα : X −→ E⊗q inC∗(X, E). By the remarks in the last paragraph, to
determine the (q+1)-cochaindα : X −→ E⊗(q+1) it is enough to determine its components.

33
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If we pick a decomposition F = (F0, . . . , Fq) of a set I, then the component of the ith coface
∂iα at F is given, for z ∈ X(I), by

(4) (∂iα)(F0, . . . , Fq)(z) =


α(F1, . . . , Fq)(z � Fc0) if i = 0,

α(F0, . . . , Fi ∪ Fi+1, . . . , Fq+1)(z) if 0 < i < q+ 1,

α(F0, . . . , Fq−1)(z 
 Fcq) if i = q+ 1.

Indeed, let us follow the construction carried out in Theorem II.8.3, and compute each
coface map explicitly. If z ∈ X(I), to compute ∂0α(z), we must coact on z to the left and
evaluate the result at α, that is

(1⊗ α ◦ λ)(I)(z) =
∑

(S,T)`I

∗S ⊗ α(T)(z � T),

and the coefficient at a decomposition F = (F0, . . . , Fq) is α(F1, . . . , Fq)(z � Fc0). The same
argument gives the last coface map. Now consider 0 < i < q + 1, so that we must take
z ∈ X(I), apply α, and then comultiply the result at coordinate i. Concretely, write

α(I)(z) =
∑
F`qI

α(I)(F)(z)F

and pick a decomposition F ′ = (F0, . . . , Fq) into q + 1 blocks of I. There exists then a
unique F `q I such that 1i−1 ⊗ ∆⊗ 1q−i(F) = F ′, to wit, F = (F0, . . . , Fi ∪ Fi+1, . . . , Fq), and
in this way we obtain the formulas of Equation (4).

The codegeneracymaps are easier to describe: they are obtained by inserting an empty
block into a decomposition. Concretely, for each j ∈ {0, . . . , q+ 1},

(σjα)(F1, . . . , Fq)(z) = α(F1, . . . , Fj,∅, Fj+1, . . . , Fq).

As a consequence of this, a cochain α : X −→ E⊗q in C∗(X, E) is in the normalized sub-
complex C∗(X, E) if its components are such that α(F)(z) = 0 ∈ kwhenever F contains an
empty block. Alternatively, we can construct a species Ē with Ē(∅) = 0 and Ē(I) = E(I)

whenever I is nonempty, and describe the normalized complex C∗(X, E) as the complex
of maps X −→ Ē⊗∗ with differential induced by the alternating sum of the coface maps
we just described. Remark that Ē⊗q(I) has basis the compositions of I into q blocks, while
E⊗q(I) has basis the decompositions of I into q blocks. In particular, Ē⊗q(I) = 0 if q > #I,
while E⊗q(I) is always nonzero. This observation will be crucial in Chapter IV.

With this at hand, let us now look at low dimensional cohomology groups, starting
with the 0-cocycles.
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Proposition III.1.1. Let X be an E-bicomodule. Then H0(X, E) is isomorphic to the kernel of
the map

ϑ0 : homk(X(∅), k) −→ homk(X([1]), k)

such that for f : X(∅) −→ k, we have ϑ0(f)(z) = f(z �∅) − f(z 
∅).

Proof. The space C0(X, E) is that of maps α : X −→ 1. Since 1 is concentrated in
cardinal zero, such a things amounts to a k-linear map α(∅) : X(∅) −→ k. Moreover,
the coboundary dα is determined by its values at decompositions of I into one block, of
which there is only one, namely (I). By definition,

(5) (dα)(I)(z) = α(∅)(z �∅) − α(∅)(z 
∅),

and, in particular, by taking I to be the set [1], we see that ϑ(α(∅)) = 0. This shows that
the map α ∈ C0(X, E) 7−→ α(∅) ∈ homk(X(∅), k), which is a bijection, restricts to a map
H0(X, E) −→ ker ϑ0. Let us show this is bijective, and, to do this, that it is onto. Pick
f ∈ ker ϑ0, and let α ∈ C0(X, E) be the unique 0-cochain such that α(∅) = f. We have to
show it is a cocycle, namely, that the right hand side of Equation (5) vanishes for any set
I, and every z ∈ X(I). We do this by induction on the cardinal of I. If I is empty, there is
nothing to do. If not, choose i ∈ I and observe that

α(z 
∅) = α(z 
 Ir i 
∅)

= α(z 
 Ir i �∅) by induction

= α(z � {i} 
∅) because λ and ρ are compatible

= α(z � {i} �∅) since ϑ0(f) = 0

= α(z �∅).

This completes the proof of the proposition. J

A particular but useful consequence of the above is the following corollary.

Corollary III.1.2. If X is cosymmetric or linearized and connected, H0(X, E) is isomorphic
to homk(X(∅), k).

Proof. In both cases, the map ϑ0 is zero. J

We now consider 1-cochains, which have a similar description. For every finite set I
and i ∈ I, denote by τi the unique bijection {i} −→ [1]. Note that for any E-bicomodule X
there is a 1-cocycle κ : X −→ E such that κ(I)(z) = #I, which we call the cardinality cocycle
of X.

Proposition III.1.3. Let X be an E-bicomodule, and consider the map

ϑ1 : homk(X([1]), k) −→ homk(X([2]), k)
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such that for f : X([1]) −→ k and z ∈ X([1]),

ϑ1(f)(z) = f(z � {1}) − f(τ2(z � {2})) − f(z 
 {1}) + f(τ2(z 
 {2})).

Then ϑ1 ◦ ϑ0 = 0, the k-linear map r1 : α ∈ C1(X, E) 7−→ α([1]) ∈ homk(X([1]), k) restricts to
an injection Z1(X, E) −→ ker ϑ1 and r1(B1(X, E)) = im ϑ0, so r1 induces an injective map

r1 : H1(X, E) −→ ker ϑ1
im ϑ0

.

We will see that r1 is in fact an isomorphism in Chapter IV.

Proof. That ϑ1 ◦ ϑ0 = 0 can be seen by direct computation. If α : X −→ E is a cochain,
the coboundary dα is such that for every decomposition (S, T) of a finite set I and every
z ∈ X(I),

dα(S, T)(z) = α(S)(z � S) − α(I)(z) + α(T)(z 
 T).

If α is a cocycle, this equation shows, first, that α(∅) = 0, and second, by an obvious
induction, thatα is completely determined by its values at sets of cardinal one. We deduce
from this that r1 restricts to an injection onZ1(X, E). Moreover, it has image in ker ϑ1, since
bothα({1})(z�{1})+α({2})(z
{2}) andα({2})(z�{2})+α({1})(z
{1}) equalα([2])(z). Finally,
it is immediate that r1(B1(X, E)) = im ϑ0, so the last claim in the proposition follows. J

Remark that by Lemma II.7.6wemay calculateH∗(X, E)using the normalized complex
of C∗(X, E). The motivating reason is that decompositions of sets are replaced by composi-
tions, and every finite set has finitely many compositions, while every finite set always has
infinitely many decompositions.

2. First computations

The unit species 1 and the exponential species E offer two simple examples of the
calculation of the cohomology of a species. Although these are quite simple, we record
them in the form of propositions. We also consider low dimensional cohomology groups
for the species of linear orders L, whose E-bicomodule structure is defined Chapter II,
Section 5.

We endow 1 with the symmetric bicomodule structure obtained from the unit morph-
ism ε : 1 −→ E that is an isomorphism in cardinal 0.

Proposition III.2.1. We have H0(1, E) = k and Hp(1, E) = 0 for p > 0.

Proof. Let us show that the normalized complex C∗(1, E) has Cp(1, E) = 0 if p > 0,
and that C0(1, E) ' k: this proves the proposition. A normalized q-cochain α : 1 −→ E⊗q

is determined uniquely by a scalar for each composition of∅ into q blocks. If q > 0, there
are no such compositions, and thereforeCp(1, E) = 0. On the other hand, if q = 0, there is
a unique composition of∅ into no blocks, and this yields a k-linear map α : k ' 1(∅) −→
E(∅) ' k. J
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This is a first toy example of how normalization simplifies computations significantly.
The species E is obviously an E-bicomodule via the comultiplication ∆. Denote by

C∗(N0, k) the cosimplicial k-module that computes the semigroup cohomology of Nwith
values in k. We refer the reader to [CE1956, Chapter VIII, §3] for details.

Proposition III.2.2. There is an isomorphism of cosimplicial k-modules

Γ : C∗(E, E) −→ C∗(N0, k)

that assigns to a cochain α : E −→ E⊗p the cochain Γ(α) : Np0 −→ k such that

Γ(α)(n1, . . . , np) = α(F1, . . . , Fp)(∗I)

where I is any finite set of
∑
ni elements and (F1, . . . , Fp) is a decomposition of I with #Fi = ni.

As a consequence of this, there is an isomorphism HH∗(E) −→ H∗(N0, k), so that HH0(E) and
HH1(E) are free of rank one, and HHp(E) = 0 if p > 1. Moreover, a generator of HH1(E) is the
cardinality cocycle.

Proof. Note first that Γ is well-defined because every cochain in C∗(X, E) is equivari-
ant. Indeed, if (n1, . . . , np) ∈ Np, pick I and F = (F1, . . . , Fp) as in the statement of the
proposition, and consider J and G = (G1, . . . , Gp) with the same properties. There is a
unique bijection σ : I −→ J such that σ(F) = G, and then, since σ sends ∗I to ∗J, we have

α(F1, . . . , Fp)(∗I) = α(G1, . . . , Gp)(∗J).

An easy verification shows that Γ is a cosimplicial map, and that the inverse isomorphism
is given by the map Λ : C∗(N, k) −→ C∗(E, E) that assigns to a cochain f : Np −→ k the
cochain Λ(f) : E −→ E⊗p such that

Λ(f)(F1, . . . , Fp)(∗I) = f(#F1, . . . , #Fp).

To conclude the proof of the proposition, we need only recall from [CE1956, Chapter X,
§5] that H∗(N, k) is an exterior algebra Λ(x) with |x| = 1, and that, because E is cocom-
mutative, the differential d0 : C0(E, E) −→ C1(E, E) is zero, so the cardinality cocycle is
not a coboundary. J

We have defined a cosymmetric E-bicomodule structure on the species L of linear or-
ders, and we can easily compute its zeroth and first cohomology groups.

Proposition III.2.3. Both H0(L, E) and H1(L, E) are free k-modules of rank one, and the
cardinality cocycle generates H1(L, E).

Proof. Since L is connected, we know that d0 = 0 and that H0(L, E) equals the free
k-module homk(L(∅), k) ' k. Consider now a 1-cochain α : L −→ E. For each finite
set I of n elements, the scalars α(I)(`) for ` ∈ L(I) are completely determined by the
scalar α([n])(id). Indeed, for any choice of linear order ` in I there is a unique bijection
σ : I −→ [n] such that σ(`) = id, and then α(I)(`) = α([n])(id) by equivariance of α. The
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cochain α is thus uniquely determined by the sequence of scalars (α([n])(id) : n > 0)

which we view as a map a : N0 −→ k. Moreover, the cocycle condition for α translates
to the fact that a is additive, and when it is satisfied, a is completely determined by a(1).
We conclude that H1(L, E) = Z1(L, E) is isomorphic to k, and because there are no 1-
coboundaries, we see that the cardinality cocycle generates H1(L, E). J

It is worthwhile to note that we just verified, in this special case, that the map r1 of
Proposition III.1.3 is an isomorphism. Let us record there is a 2-cochain L −→ E⊗2, which
we call the Schubert cocycle and denote by sch, which is as follows. For a linear order ` on
a finite set I and a decomposition (S, T) of I, we set

sch(S, T)(`) = #{(i, j) ∈ S× T : i > j according to `}.

This cochain is defined in [AM2010] and it is easily verified it is, as its name indicates it,
a cocycle.

3. The cup product

A graded k-algebra1 is a k-algebra A endowed with a direct sum decomposition

A = A0 ⊕A1 ⊕A2 ⊕ · · ·

into submodules A0, A1, A2, . . . such that for any choice of natural numbers p and q, we
have ApAq ⊆ Ap+q, where ApAq denotes the submodule generated by the pointwise
products of elements of Ap and Aq. Every graded k-algebra is thus, in particular, a k-
module, A0 is a subring of A, and A is an A0-module. We call Ap the homogeneous
component of degree p, say a non-zero element a ∈ Ap is homogeneous of degree p, and
in that case write |a| for its degree. It is clear from the definitions that if A is unital then
necessarily 1 ∈ A0, in which case A0 is unital. A k-linear map between graded vector
spaces f : A −→ B is graded of degree r if for every p ∈ N0, we have f(Ap) ⊆ Bp+r. If A
is a graded k-algebra and a and b are homogeneous elements of A, their commutator is
the element [a, b] = ab − (−1)|a||b|ba, and this definition extends linearly to every pair
of elements of A. A graded k-algebra is commutative if the commutator of every pair of
elements vanishes. For this, it is necessary and sufficient that ab = (−1)|a||b|ba for every
pair of homogeneous elements a and b of A.

A differential graded algebra is a pair (A,d) where A is a graded k-algebra and d is a k-
linear endomorphism ofA of degree 1 such that d◦d = 0, satisfying the following Leibniz
rule: for any pair of homogeneous elements a, b ∈ Awe have

d(ab) = (da)b+ (−1)|a|adb.

Such an endomorphism d : A −→ A is called a graded derivation of A. From the Leibniz
rule it follows that kerd is a graded subalgebra of A and that imd is an homogeneous
1We should be speaking of N0-graded k-algebras, but this distinction will not be necessary.
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ideal of kerd, so that we may form the graded k-algebra

H(A,d) =
kerd
imd

which we call the cohomology algebra of (A,d). The homogeneous elements of kerd are
called cocycles, and a cocycle of degree p is called a p-cocycle. Similarly, the homogen-
eous elements of imd are called coboundaries, and a coboundary of degree p is called a
p-coboundary.

We describe how every cosimplicial algebra (A, ∂, σ) gives rise to a differential graded
algebra DA. We set

DA =
⊕

Ap

and consider on DA the unique graded multiplication, which we call the cup product, that
on homogeneous elements is as follows. If a ∈ Ap and b ∈ Aq, we put

a^ b = ∂0 · · ·∂0(a) · ∂m+n · · ·∂n+1(b).

Note that this makes sense because ∂0 · · ·∂0(a) and ∂m+n · · ·∂n+1(b) are elements of the
algebra Am+n. The differential on DA is d =

∑
(−1)i∂i, the usual differential of the asso-

ciated cochain complex of A. The cup product makes (DA,d) into a differential graded
algebra, so that the cohomology of any simplicial algebra is canonically endowed itself
with a graded algebra structure.

Let us show how this construction applies in our context. Let X be an E-bicomodule
which is a linearization of a species X0 in Sp, and letC∗(X, E) be the cosimplicial k-module
we considered in Section 1. We now make it into a cosimplicial k-algebra.

Let q be a non-negative integer. The collection Cq(X, E) of q-cochains is a k-algebra
with product defined pointwise: if α,β are cochains, F is a decomposition of a finite set,
we define the cochain α · βwith components

(α · β)(F)(z) = α(F)(z) · β(F)(z)

for every z ∈ X0(I), and extend this linearly to X. One can check that α · β is indeed a
morphism in Spk —in particular the required equivariance condition follows by checking
it on basis elements in X0— and that this makes (C∗(X, E), ∂, σ) into a cosimplicial al-
gebra, that is, the coface and codegeneracies are algebra morphisms. As described above,
H∗(X, E) inherits a graded algebra structure from C∗(X, E). We record the following for
future reference, whose proof is a straightforward calculation:

Proposition III.3.1. Let α be a p-cochain and let β be a q-cochain, both in C∗(X, E). The cup
product of α and β is the (p+ q)-cochain with components

(6) (α^ β)(F)(z) = α(F ′)(z 
 F ′)β(F ′′)(z � F ′′).
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for any decomposition F = (F ′, F ′′) of a finite set I into p + q blocks F ′ = (F ′1, . . . , F
′
p) and

F ′′ = (F ′′1 , . . . , F
′′
q) and every structure z ∈ X0(I).

In Chapter V we briefly explain how one can, more generally, endow C∗(X, E) with a
cup product using a diagonal map ∆ : X −→ X� X.

With this at hand, we now compute some cohomology rings of species we defined in
Chapter II, which are of interest to the authors of [AM2010]. Before doing so, we consider
a useful operation on the algebra C∗(X, E) that will aid us in such computations. This is
in parallel with the ideas developed in Section 1.3.4 of [Lod1998].

4. Antisymmetrization of cochains

Fix an E-bicomodule X in Spk. For each nonnegative integer q, the symmetric group
Sq acts on decompositions of length q by permuting the blocks, so that for a permutation
σ and a decomposition F = (F1, . . . , Fq), we have σF = (Fσ−1(1), . . . , Fσ−1(q)); it is important
to remark this action is different from the action of SI on E⊗q(I). Nonetheless, these two
actions are evidently compatible.

We can turn this into an action of Sq on Cq(X, E): for a cochain α : X −→ Eq, we define
another cochain ασ such that for any composition F = (F1, . . . , Fq) of a finite set I and
every structure z ∈ X(I),

(ασ)(F)(z) = α(σF)(z).

Extending this linearly, we obtain an action of the group algebra k[Sq] on Cq(X, E). We
define the antisymmetrization element εq ∈ k[Sq] to be

εq =
∑
σ∈Sq

(−1)σσ.

We will think about εq both as an element of the group algebra of Sq and as an endo-
morphism εq : Cq(X, E) −→ Cq(X, E), and we omit the index qwhen it is not needed. The
purpose of this section is to show that, because E is a cocommutative comonoid, we have
εpd = 0wheneverX is a cosymmetric bicomodule. This sometimes allows to decidewhen
a cocycle is not a coboundary: if α is a cocycle whose image under ε is nonvanishing, we
can conclude α is not a coboundary.

Lemma III.4.1. Let q > 0 be an integer, and fix i ∈ {1, . . . , q}.
(1) If σ ∈ Sq+1 is such that σ(q + 1) = i, let τ ∈ Sq be the permutation whose word is ob-

tained from that of σ by replacing every letter j greater than i by j−1, then (−1)τ(−1)σ =

(−1)q+1−i.
(2) If σ ∈ Sq+1 is such that σ(1) = i, let τ ∈ Sq be the permutation whose word is obtained

from that of σ by replacing every letter j greater than i by j − 1, then (−1)τ(−1)σ =

(−1)i−1.
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Proof. We proceed as in Lemma IV.4.3. Wemay obtain the sign of a permutation σ by
counting the number of inversions in σ. In the first part of the proposition, if we remove
the letter i, which appears last in σ, we lose q+ 1− i inversions corresponding to those j
larger than i; in the second part, i appears first, and therefore we lose, in this case, i − 1
inversions corresponding to those j smaller than i. J

With this at hand, we can prove the desired result, which we record in the form of the
following proposition.

Proposition III.4.2. Suppose X is a cosymmetric E-bicomodule. Then εd = 0 in C∗(X, E).
It follows that if α is a cocycle for which εα 6= 0, then α is not a coboundary.

Proof. We compute. If q = 0 then d0 = 0, and the claim is obvious, so we may
assume q > 0. Consider a q-cochain α, and fix a finite set I, a structure z ∈ X(I) and a
decomposition (F1, . . . , Fq+1) of I. When computing εdα(F)(z), the terms∑

σ∈Sq+1

(−1)σα(Fσ(1), . . . , Fσ(i) ∪ Fσ(i+1), . . . , Fσ(q+1))

are all zero since Fσ(i)∪Fσ(i+1) = Fσ(i+1)∪Fσ(i) while the associated permutations differ by
a transposition, so the sum consists of terms that cancel in pairs. It remains to consider
the sum∑
σ∈Sq+1

(−1)σ
(
α(Fσ(2), . . . , Fσ(q+1))(z ‖ Fcσ(1)) + (−1)q+1α(Fσ(1), . . . , Fσ(q))(z ‖ Fcσ(q+1))

)
.

Grouping terms according to the value of σ(1) and σ(q+ 1), this becomes

q+1∑
i=1

∑
σ(1)=i

(−1)σα(Fσ(2), . . . , Fσ(q+1))(z ‖ Fci )

+

q+1∑
i=1

∑
σ(q+1)=i

(−1)σ+q+1α(Fσ(1), . . . , Fσ(q))(z ‖ Fci ).

To conclude, we note these two sums cancel in view of the previous lemma. J

5. The cohomology ring of the species of linear orders

The aim of this section is to give a complete description of the cohomology ring of
the species of linear orders endowed with its canonical cosymmetric bicomodule struc-
ture. This calculation, and the ones to follow in the next sections, were done before we
developed the theory of Chapter IV. Although this theory provides an alternative —and
much simpler!— form of computation, all what follows shows how this machinery was
thought out and generalized.
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Recall the species of linear orders L is such that
• for each finite set I, L(I) is the collection of linear orders ` = i1 · · · it on I, and
• for each bijection σ : I −→ J and every linear order ` = i1 · · · it on I, σ(`) =

σ(i1) · · ·σ(it).
The linearization kL of L has a canonical cosymmetric E-bicomodule structure obtained
by restricting linear orders, and defines, by Theorem II.8.3, a cosimplicial object which we
denote by (C∗(L, E), ∂, σ), whose cohomology we want to compute.

For each non-negative integer p, letMp be the free monoid on the letters x1, . . . , xp; in
particular,M0 is the free monoid on zero letters. Moreover, if for each n > 0we consider
the subsetMp(n) consisting of those words of length n, we have thatMp =

⊔
Mp(n). We

can make the sequence of monoids {Mp}p>0 into a simplicial monoid (M,d, s) as follows.
Define homomorphisms sj :Mp −→Mp+1 and di :Mp+1 −→Mp for j ∈ {1, . . . , p− 1} so
that on generators we have

d0(xi) =

1 if i = 1,

xi−1 if 1 < i 6 p+ 1,
dj(xi) =

xi−1 if j < i 6 p+ 1,

xi if 1 6 i 6 j,

dp(xi) =

xi if 1 6 i 6 p,

1 if i = p+ 1,
sj(xi) =

xi if i 6 j,

xi+1 if i > j.

From this simplicial monoid we obtain a simplicial algebra kM# by linearizing it degree-
wise, and in turn, taking duals, a cosimplicial k-module kM# = homk(kM#, k). Using
this cosimplicial object, we will obtain another description of (C∗(L, E), ∂, σ), and a first
step toward this is the following lemma, whose proof we omit.

Lemma III.5.1. There are inverse bijections ϕq(n) and ψq(n) between the set Fq(n) of com-
positions of length q of [n] and the set of wordsMq(n) on q letters x1, . . . , xq of length n, in such
a way that:

(1) A composition F = (F1, . . . , Fq) is mapped byϕq(n) to the wordωF = xi1 · · · xin , where
ij = k if j ∈ Fk. In words, the letter in position j inωF has index equal to the block where
j appears in F.

(2) A word ω = xi1 · · · xin is mapped by ψq(n) to the partition Fω = (F1, . . . , Fq) where
Fk = {j ∈ [n] : ij = k}. In words, Fk consists of those positions where letter k appears in
ω.

(3) Moreover, a word inMq(n) is sent to a composition in Fq(n) if and only if every letter
appears in it. We call such words sincere. J

With this at hand, we can obtain the desired alternative description of (C∗(L, E), ∂, σ).

Proposition III.5.2. There is an isomorphism of cosimplicial k-modules kM# −→ C∗(L, E).
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Proof. We construct inverse bijections ϕp : kMp −→ Cp(L, E), ψp : Cp(L, E) −→ kMp

that constitute morphisms of cosimplicial k-modules.
Consider a p-cochain α : kL −→ Ep. For each integer n > 0, kL([n]) is a free Sn-

module of rank one, and from this it follows α is determined uniquely on the set [n] by
the valuesα(F1, . . . , Fp)(idn)where idn is the usual linear order of [n], and F = (F1, . . . , Fp)

is a decomposition of [n]. Indeed, let F ′ be a decomposition of [n] into p blocks, and let `
be a linear order on [n]. There is a unique bijection σ that transports ` to idn, and then

α(F1, . . . , Fp)(`) = α(F
′
1, . . . , F

′
p)(idn).

Using the bijections of the lemma, we define a function ϕp(α) :Mp −→ k so that for each
ω ∈Mp of length n we have ϕ(α)(ω) = α(Fω)(idn). Conversely, a function f :Mp −→ k

defines ap-cochainψp(f) : L −→ E⊗p by settingψ(f)(F)(idn) = f(ωF)whenever F ∈ Fp(n).
Because ϕp(n) and ψp(n) define inverse bijections fromMp(n) to Fp(n), and because we
already noted a p-cochain is determined uniquely by the values α(F)(idn) for n > 0 and
F ` [n], it follows that ϕp and ψp are, for each non-negative integer p, inverse bijections
from kMp to Cp(L, E).

It remains to showϕ = (ϕp) andψ = (ψp) are morphisms of cosimplicial k-modules,
that is, we must check that for all non-negative p and i ∈ {0, . . . , p + 1} the following
equalities hold:

ϕpdiψp = ∂i, ϕp+1siψp+1 = σi.(7)

Fix a p-cochain α : kL −→ E⊗p. If j ∈ {0, . . . , p+ 1}, we already observed that

σj(α)(F1, . . . , Fp)(z) = α(F1, . . . , Fj−1,∅, Fj, . . . , Fp)(z),

which makes it clear the second equality in (7) holds, since, under our bijection, the ap-
pearance of the empty block has the effect of shifting the letters xi for i > j up by one in
their subindices. Similarly, for i ∈ {1, . . . , p}, we have

∂i(α)(F1, . . . , Fp+1)(z) = α(F1, . . . , Fi ∪ Fi+1, . . . , Fp+1)(z)

so the first equality in (7) holds for such values of i, by an analogous argument as the one
we just carried out for the codegeneracy maps. It remains to deal with the cases where i
equals either 0 or p+ 1, in which we have

∂0(α)(F1, . . . , Fp+1)(z) = α(F2, . . . , Fp+1)(z ‖ Fc1),

∂p+1(α)(F1, . . . , Fp+1)(z) = α(F1, . . . , Fp)(z ‖ Fcp+1).

Let (F1, . . . , Fp+1) be a decomposition of [n], so that (F2, . . . , Fp+1) is a partition of T =

[n] \ F1. Let ` be the order on T induced by idn. The bijection `j 7→ j sends ` to idk if T has
k elements, the composition (F2, . . . , Fp+1) to some other composition (F ′2, . . . , F

′
p+1) of [k],
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and naturality of α guarantees that

α(F2, . . . , Fp+1)(`) = α(F
′
2, . . . , F

′
p+1)(idk).

This makes it evident the first equality of (7) holds when i = 0, since the words assigned
to (F ′2, . . . , F

′
p+1) is obtained from that of (F1, F2, . . . , Fp+1) by deleting the first letter x1 and

re-indexing the remaining words accordingly; an analogous observation holds for the last
differential. J

We can illustrate the last argument of the proof: if F is the composition (F1, F2, F3) =

({1, 5}, {2, 4}, {3, 6, 7}) of [7] then T = {2, 3, 4, 6, 7} and

α(F2, F3)(23467) = α({1, 3}, {2, 4, 5})(12345).

Theword assigned to F isωF = x1x2x3x2x1x3x3, while the word assigned to ({1, 3}, {2, 4, 5})
is x1x2x1x2x2, which is obtained from ωF by setting x1 = 1 and shifting the remaining
indices, as per our definition of d0(ωF).

Assume now k is a PID, and let us compute the homology of the simplicial k-module
kM#. To do so, we will use a spectral sequence coming from the filtration on kM# by
word-length. Once we check this has k-free homology, we will be able to deduce, by an
appeal of the Universal Coefficient Theorem, that the cohomology of kM# is dual to this.

To computeH∗(kM#)wewill use the normalized complex kM associated to (kM,d, s).
The description of degeneracy maps ofM makes it clear that kMp has basis the sincere
words on the letters x1, . . . , xp, and, as usual, the differential is induced from that of kM.
There is a filtration on the complex kM that has FpkMq =

⊕
n6pMq(n). This filtration

is exhaustive and bounded below, so the spectral sequence associated to it converges to
H∗(kM#) by Theorem A.2.1 in the Appendix. The zero page of this spectral sequence has

E0p,q = FpkMp+q/Fp−1kMp+q,

a free k-module with basis the sincere words of length p on p + q letters. Observe that
E0p,q vanishes when p + q 6 0 and p 6= 0, when q > 0 or when p < 0. In the first case,
this is obvious when p+q < 0, and when p+q = 0 the only nontrivial filtration quotient
is E00,0; in the second case, this is because there are no sincere words of length at most p
in p + q > p letters, while the last case follows from the fact that Fp = 0 for p < 0. Our
spectral sequence is therefore concentrated in a cone as illustrated in Figure 1.

To begin the computation of the E1-page, we note the differentials d0 and dp+q strictly
decrease word length, so they vanish modulo the filtration. It follows the differential
d0 : E0p,q −→ E0p,q−1 is the alternating sum of the inner coface maps ofM. To continue, we
must compute the homology of the columns in E0, and to do so we identify the complexes
that appear as such.

Definition III.5.3. Let X be a non-empty finite set. For each integer j > −1, write
Cj(Σ,X) for the free k-module with basis the compositions of X of length j+ 2. There are
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d1

Figure 1. The spectral sequence for L lies in a cone in the fourth quadrant.

face maps ∂i : Cj(Σ,X) −→ Cj−1(Σ,X) such that

∂i(F0, . . . , Fj+1) = (F0, . . . , Fi ∪ Fi+1, . . . , Fj+1)

that make C∗(Σ,X) into a semisimplicial k-module.

We will show in Chapter IV, Section 2, that C∗(Σ,X) has homology equal to the re-
duced homology of an (r − 2)-sphere with coefficients in k, with r the cardinal of X, and
that the generator of Hr−2(C∗(Σ,X)) is the element

νr =
∑
σ∈Sr

(−1)σσ,

where a composition of X into r blocks is identified with a permutation of X via a choice
of linear ordering of X2. We exemplify this for X = [3] in Figure 2. The resulting complex
C∗(Σ,X) is, in fact, that of a triangulation of S1 induced from the braid arrangement inR3.

With this information at hand, we can identify the E0-page of this spectral sequence.

Proposition III.5.4. For each integer p > 1, the complex E0p,∗ identifies with the complex
Cp−∗(Σ, [p])[2], that is, for each q > 0 we have identifications E0p,−q = Cp+q−2(Σ, [p]). It follows
that the E1-page of the spectral sequence is concentrated in the positive p-axis. Moreover, under
this identification, the differential d1 : E1∗,0 −→ E1∗−1,0 is identically zero.

Proof. We already know that a sincere word of length p in p − r letters corresponds
uniquely to a composition of [p] = {1, . . . , p} into p−r blocks. Thus, at least as k-modules,
we have the desired identifications E0p,−q = Cp+q−2(Σ, [p]) for each q > 0. It is easy to
verify this identification is compatible with the face maps. Our first claim now follows
2This can be done coherently if we assume that X is a subset of N, which we usually do.



46 III. THE COHOMOLOGY OF COMBINATORIAL SPECIES

Figure 2. The complex C∗(Σ, [3]) is the simplicial complex of a triangu-
lation of S1. The the braid arrangement is drawn with dotted lines, the
triangulation ofD2 is light gray, and the triangulation of S1 is marked with
heavy gray lines.

from the remarks preceding the proposition. The last claim, on the other hand, is imme-
diate, since the generator we chose for E1∗,0 has zero differential in our original complex
and not only modulo the filtration. J

We can now conclude the determination of H∗(L, E) as a graded k-module.

Corollary III.5.5. For each integer q > 0, the k-module Hq(kM#) is free of rank one. It
follows that Hq(kM#) is k-free of rank one for each integer q > 0, and then the same is true for
Hq(L, E).

Having identified the ranks of the cohomology groups of L, we now give explicit gen-
erating cocycles and the algebra structure of H∗(L, E). Recall we defined in Section 2 a
2-cocycle sch in C2(L, E), which we call the Schubert cocycle. Along with this, we have a
1-cocycle κ in C1(L, E), the cardinality cocycle. Our final result is the following.

Theorem III.5.6. Let k be a PID as before, and suppose additionally that Q is contained in
the field of fractions of k. The cohomology algebra H∗(L, E) is generated by the cardinality and the
Schubert cocycles, and there is an isomorphism of graded algebras

H∗(L, E) ' k[X]⊗ k[Y]/(Y2)

where |X| = 2 and |Y| = 1.

To prove this, we will show that sch and κ generate H∗(L, E) as an algebra, and we
will do this with the ideas of Section 4. We will denote by sch ′ the 2-cocycle κ^ κ− sch,
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which is such that

sch ′(S, T)(`) = #{(i, j) ∈ S× T : i < j according to `}.

It is not hard to see that 2κ^ κ = −dσwhere σ(I)(`) = |I|2, so the cohomology classes of
sch and −sch ′ are the same, and then it suffices we prove the following.

Lemma III.5.7. With the hypotheses of the theorem, for each non-negative integerp, the cocycles
κ^ sch ′p and sch ′p are not coboundaries.

Proof. Let ε be the antisymmetrization map. In view of Lemma III.4.2, it suffices we
prove that for every non-negative integer pwe have,

ε(sch ′p)(1, 2, . . . , 2p)(id) = p!, ε(κ^ sch ′p)(1, 2, . . . , 2p+ 1)(id) = p!.(8)

It follows that κ ^ sch ′p and sch ′p are not coboundaries as long as p! is invertible in the
field of fractions of k, as in our case. To prove the first equality we note that, by definition,

ε(sch ′p)(1, 2, . . . , 2p)(id) =
∑
σ∈S2p

(−1)σsch ′(σ(1)σ(2)) · · · sch ′(σ(2p− 1)σ(2p))

where sch ′(ij) is 1 if i < j and zero if not. It follows that in the right hand side the only
terms that do not vanish are those where σ(1) < σ(2), . . . , σ(2p − 1) < σ(2p). Let Tp be
the collection of permutations in S2p such that

σ(1) < σ(2) , . . . , σ(2p− 1) < σ(2p),

σ(1) < σ(3) < · · · < σ(2p− 1),

and let us show our sum equals
p!
∑
σ∈Tp

(−1)σ.

Indeed, interchanging two factors sch ′(ij) and sch ′(kl) in a term of our sum amounts to
a double transposition, and this does not affect the sign of a permutation. If follows that
to each σ ∈ Tp there are associated p! terms, all with sign (−1)σ.

Our claim is then equivalent to the equality
∑
σ∈Tp(−1)

σ = 1. To prove the latter,
we define an involution u : Tp −→ Tp so that u(id) = id and such that for every other
permutation we have (−1)u(σ) = −(−1)σ. We may look at a permutation σ ∈ Tp as a p× 2

σ(1) σ(2)

σ(3) σ(4)

...
...

∗ σ(2p)

Figure 3. The tableau associated to σ ∈ Tp.
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tableau Tσ with increasing rows and increasing first column as in Figure 3. If Tσ is not the
identity permutation then there is a first row of the form

i i+k

with k > 1 — call such pair an exceedance of Tσ. The row immediately below is of the
form

i+1 i+j

with j > 1: by our condition on rows and columns, i+ 1must appear immediately under
i in Tσ. If we transpose i+ k and i+ j, we obtain a valid tableau u(Tσ) in Tp, as illustrated
in Figure 4. Moreover, the row at which the first exceedance of Tσ happens is preserved

1 2

3 4

...
...

i i+k

i+1 i+j

...
...

1 2

3 4

...
...

i i+j

i+1 i+k

...
...

Figure 4. The involution u : Tp −→ Tp.

so that u is involutive, and the sign of the permutation associated to u(Tσ) is −(−1)σ: Tσ
and u(Tσ) differ by a transposition. This proves that

∑
σ∈Tp(−1)

σ = 1, as desired.
The second equality in (8) follows from the first one. Indeed, by definition

ε(κ^ sch ′p)(1, 2, . . . , 2p+ 1)(id) =
∑

σ∈S2p+1

(−1)σsch ′(σ(2)σ(3)) · · · sch ′(σ(2p)σ(2p+ 1)),

and grouping the terms of this sum according to the value of σ(1), we can write it in the
form

2p+1∑
i=1

∑
σ(1)=i

(−1)σsch ′(σ(2)σ(3)) · · · sch ′(σ(2p)σ(2p+ 1)),

and for each i, the corresponding inner sum equals

(−1)i−1
∑
σ∈S2p

(−1)σsch ′(σ(1)σ(2)) · · · sch ′(σ(2p− 1)σ(2p))

by virtue of Lemma IV.4.3. We conclude that the original sum is exactly p!, since we
already calculated this last sum. J
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Observation III.5.8. It is easy to see that #Tp = (2p − 1)!!, since to each element of
Tp there correspond, as in our proof, 2pp! elements of S2p. This gives the sum must be
nonzero modulo two, for it is a sum of an odd number of signs. This is faster, but less
precise than the formulas of the proof, and it might be of interest to consider the cases
when k is a finite field of positive characteristic.

6. The cohomology ring of the species of compositions

We proceed to calcuate the cohomology of Σ. The method is analogous to what was
done in the previous section, and we will in fact exploit the determination of H∗(L, E) to
determine H∗(Σ, E) using the morphism L −→ Σ. To begin, the following will organise
our calculations.

Definition III.6.1. Fix a finite set I and two decompositions F,G of I. We define the
weight matrix of the ordered pair (F,G) to be the matrix ω(F,G) such that ω(F,G)ij =

#(Fi ∩Gj). Observe that the rows (respectively columns) ofω(F,G) are nonzero precisely
when F (respectively G) is a composition of I.

The following is immediate.

Lemma III.6.2. Let I be a finite set and let J be a finite set. Fix a pair of decompositions (F,G)
of I and (F ′, G ′) of J. There exists a bijection σ : I −→ J such that (σF, σG) = (F ′, G ′) if and only
if the weight matricesω(F,G) andω(F ′, G ′) coincide.

Observe that any p×qmatrix with entries in N0 arises in this way as a weight matrix.
Indeed, if we pick anyp×qmatrix (Aij)with non-negative integer entries, we can consider
a p × q square grid, and start filling each square with the numbers from 1 to n =

∑
Aij

with the specified number of elements in each square. This produces a finite set I of n
elements and decompositions (F,G) of Iwithω(F,G) = n.

Consider now a decomposition F of a finite set I into q blocks (F1, . . . , Fq) and another
decompositionG of I. Viewing the matrixω(F,G) row-wise, we identify it with a tuple of
vectors (v1| · · · |vq) ∈ (Nj)q where j is the length of G. In particular, if j = 0, then I is the
empty set.

Definition III.6.3. Fix a non-negative integer q. For each j > 1, we write Tq(j) for the
set of tuples (v1, . . . , vq) ∈ (Nj)q such that its associatedmatrix—obtained by viewing the
vi as column vectors— has nonzero rows. For 0 < i < q, there are face maps ∂i : Tq(j) −→
Tq−1(j) so that

∂i(v1, . . . , vq) = (v1, . . . , vi + vi+1, . . . , vq).

We define edge maps ∂0, ∂q : Tq(j) −→ Tq−1(j) ∪ Tq−1(j − 1) ∪ · · · that delete the first
and last vector of (v1, . . . , vq). If the matrix represented by the image of ∂0 or ∂q contains
a zero rows, we delete it, to obtain an element of Tq−1(j− 1). By convention, each Tq(0) is
free of rank one. There are also degeneracy maps that add a column of zeros.
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The above defines a simplicial k-module (C∗, ∂, σ)whereCq =
⊕

j>0 Tq(j), andwe can
picture this is the following way, to obtain a complex (C∗, d):

Cq : Tq(0) Tq(1) Tq(2) Tq(3) · · ·

Cq−1 : Tq−1(0) Tq−1(1) Tq−1(2) Tq−1(3) · · ·

Uponnormalization, we can confine ourselves to the k-modules Tq(j) of j×qmatriceswith
non-negative integer coefficients and both nonzero rows and nonzero columns. We define
the weight of a matrix with non-negative integer coefficients as the sum of its entries, and
writeω(A) for such number.

Proposition III.6.4. There is an isomorphism of cosimplicial k-modules

C∗(Σ, E) −→ C∗

where C∗ denotes the k-dual of C∗ defined above.

Proof. Consider a p-cochain α : Σ −→ E⊗p. Then α is determined uniquely by the
collection of scalars {α(F)(G) : F ` [n], G |= [n]}, where G |= [n] denotes a composition of
[n]. We claim that the scalar α(F)(G) depends only on the weight matrix ω(F,G). This is
clear, because the weight matrix depends uniquely on the Sn-orbit of the pair (F,G) by the
first lemma of this section. It follows that α determines uniquely a map Γ(α) : Cp −→ k

that assigns a matrix of the formω(F,G) in Cp the scalar α(F)(G). Conversely, every map
θ : Cp −→ k defines a p-cochain Ψ(θ) : Σ −→ E⊗p such that α(F)(G) = θ(ω(F,G)). A
straightforward but tedious calculation shows Γ and Ψ are inverse cosimplicial morph-
isms, so the claim follows. J

Again, we assume k is a PID. Our objective is to determine the homology groups of
C∗, and use the Universal Coefficient Theorem to determine those of C∗.

We already noted we can view the component Cq as the collection of matrices with
q columns and a finite number of nonzero rows. The weight of such a matrix is the sum
of its entries, and by construction the coface maps ∂i for 0 < i < q preserve this weight,
while ∂0, ∂q strictly decrease it. It follows there is a filtration of C∗ by the subcomplexes
consisting of those matrices with weight at most p, which we denote by FpCq. This filtra-
tion is manifestly bounded below and exhaustive, and provides with a convergent spec-
tral sequence starting at E0p,q, a free k-module with basis the matrices with nonzero p+ q
columns, nonzero rows and with weight exactly p. By the remarks on the coface maps,
the differential on E0 is the alternating sum of the inner coface maps of C∗.

If A is a matrix in E0p,q, denote by ωr(A) the vector obtained by summing the rows
of A, that is, ωr(A)j =

∑
Aij. Call this the weight row vector of A. Note then that our

differential d0 : E0 −→ E0 preserves such sum, and it also preserves the number of rows
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Figure 5. The triangulation of S2 arising from the braid arrangement with
corresponding complex C∗(Σ, [4]).

of a matrix. It follows we have a direct sum decomposition

E0p,∗ =
⊕
j6p

E0p,∗(j),

and in turn a direct sum decomposition

E0p,∗(j) =
⊕
ω∈Nj

E0p,∗(ω),

where E0p,∗(j) is the subcomplex of E0p,∗ consisting of those matrices with exactly j rows,
and E0p,∗(ω) is the subcomplex of E0p,∗(j) consisting of those matrices with j rows and row
weight vectorω.

A simple extension of the definition of the complexes C∗(Σ,X) allows us to identify
the complexes E0p,∗(ω), like we did with the species of linear orders.

Definition III.6.5. LetM be a finite multiset on a set X, that is, a function f : X −→ N0,
so that the collection of multisets on X is a monoid under addition. We sayM is proper
if f(X) ⊆ {0, 1}. A decomposition of M is an ordered tuple F = (f1, . . . , fr) of multisets
on X whose sum is f, and a composition of M is a decomposition with nonzero entries.
Denote by C∗(Σ,M) the graded vector space with basis the compositions ofM, graded by
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Figure 6. Shaded in black is the subcomplex that triangulatesD2 and cor-
responds to the multiset 1123.

composition length. This is a chain complex C∗(Σ,M) with differential

∂(f0, . . . , fp) =

p−1∑
i=1

(−1)i(f1, . . . , fi + fi+1, . . . , fp).

Note that ifM is the multiset on X that assigns every x ∈ X the value 1, then C∗(Σ,M)

is the complex of Definition III.5.3. One can also see, for example, that the complex as-
sociated to the multiset {11 · · · 11} consisting of d > 1 ones arises from the canonical tri-
angulation of the (d− 2)-simplex. We have the following proposition, that completes the
determination of the homology of the complexes C∗(Σ,M):

Proposition III.6.6. The complexesC∗(Σ,M) are acyclic ifM is a multiset that is not proper.
In fact, ifM is not proper and has d elements counted with multiplicity, C∗(Σ,M) arises as the
simplicial chain complex associated to a triangulation of the (d − 2)-disk induced from the braid
arrangement.

Proof. We provide a sketch of the proof. LetM be a multiset with d elements, and
associate to it the set [d], without loss of generality, assume the multiset is obtained by
identifying certain elements of d into blocks, say:

i
(1)
1 < · · · < i(1)j1 | · · · | i(t)1 < · · · < i(t)jt .
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We can assume there is at least one block with more than one element, since the case X is
a set has already been addressed. We refer the reader to the proof of Proposition IV.2.1
for the definition of the triangulation K of Sd−2 arising from the braid arrangement. The
simplices of K are in bijection with the compositions of [d]. We now consider the posit-
ive half-spaces of the hyperplanes xs = xr whenever s and r are in the same block of the
multisetM. The intersection of Sd−2 with such halfspaces is a (d− 2)-disk, and the inter-
section L of Kwith such halfspaces is a subcomplex, and in this way we obtain a bijection
between compositions ofM and simplices of L, in such a way that the complex that com-
putes the simplicial homology of L is exactly C∗(Σ,M). This completes the sketch of the
proof. J

To illustrate, the complex C∗(Σ, 1123) arises from the triangulation of the 2-disk ob-
tained by slicing in half the triangulation of S2 as shown in Figure 6, while the complex
C∗(Σ, 1122) arises from the triangulation of D2 as shown in Figure 7, which can be ob-
tained by further dividing the triangulation for 1123 by a second half-space. We now
associate to a vectorω ∈ Nj of weight p the p-multisetM(ω) = {1ω1 , . . . , jωj}, and obtain
the following.

Proposition III.6.7. There is an isomorphism of complexes Φ : E0p,∗(ω) −→ C∗(Σ,M(ω))

that assigns to a s×jmatrixZ the composition F of length s ofM(ω) so that Fk = {1Zk1 , . . . , jZkj}.

Proof. This is now a straightforward verification. J

Because we have completely described the homology of the complexes C∗(Σ, ? ), we
obtain the following corollary.

Corollary III.6.8. The E1 page of the spectral sequence is concentrated in the p-axis, where
E1p,0 is k-free of rank one for every non-negative integer p. Moreover d1 = 0, so thatHp(Σ, E) = k
for every non-negative integer p.

Proof. The only vector ω whose associated multiset is proper is e = (1, . . . , 1), so
the only summand of E0p,∗ with nontrivial homology groups is E0p,∗(e), and this has the
reduced homology of a sphere. As in the case of linear orders, one checks the generator of
E1p,0 has zero differential before looking at its class, so the spectral sequence degenerates
where stated. J

We can now exhibit generators ofH1(Σ, E) andH2(Σ, E), and deduce that the inclusion
L −→ Σ induces a quasi-isomorphism C∗(Σ, E) −→ C∗(L, E).

Definition III.6.9. The Schubert cochain sch : Σ −→ E⊗2 is such that for a finite set I, a
decomposition (S, T) of I and any composition F of I,

sch(S, T)(F) = #{(i, j) ∈ I× J : i > j according to the blocks of F}.
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Figure 7. Shaded in black is the triangulation of D2 arising from the
multiset 1122.

We also recall that the cardinality cocycle κ : Σ −→ E is such that κ(I)(F) = #I. With
this at hand, our result is the following.

Proposition III.6.10. The map ι∗ : C∗(Σ, E) −→ C∗(L, E) induced by the inclusion L −→ Σ

is a quasi-isomorphism. Moreover,H∗(Σ, E) is generated as an algebra by the classes of the Schubert
cocycle and the cardinality cocycle.

Proof. This is now a straightforward verification. The induced arrow ι∗ maps the
Schubert cocycle of Σ to the Schubert cocycle of L, and the cardinality cocycle of Σ to that
of L. Because we already checked the latter have non-trivial classes in H∗(L, E), the same
is true for the former in H∗(Σ, E). Moreover, we have checked that for each non-negative
integer q, the k-module Hq(Σ, E) is free of rank one, so it is generated, like Hq(L, E), by
schq/2 or κ^ sch(q−1)/2 according to whether q is even or odd. J

7. Determined and representable species

The special case of posets. For Λ a finite poset define the set species XΛ that sends a
finite set I to the collection XΛ(I) of order morphisms f : Λ −→ ℘(I), and sends a bijection
σ : I −→ J to themap XΛ(σ) = ℘(σ)◦f : Λ −→ ℘(J). If h : Λ1 −→ Λ2 is an order morphism
between posets, define a species morphism h∗ : XΛ2 −→ XΛ1 that acts by precomposition.
This gives a functor between the category of posets P and Sp.
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If there is defined a set comodule structure on the species of parts, we can define a
set comodule structure on XΛ as follows: for a set I, a subset S and a map f : ℘(I) −→ Λ,
let f ‖ S : Λ −→ ℘(S) be the map that sends λ ∈ Λ to f(λ) ‖ S. Of course, one can also
define a bicomodule structure if such a structure is defined on the species of parts. In
what follows we will always assume XΛ is endowed with the cosymmetric bicomodule
structure obtained from the canonical structure defined on the species of parts.

If Λ is a finite poset, an order ideal of Λ is a subset J ⊆ Λ such that whenever s ∈ J and
t 6 s, it follows that t ∈ J. An antichain in Λ is a subset A ⊆ Λ of incomparable elements.
There is a bijection between antichains and order ideals in such a way that an order ideal
J is sent to the collection A(J) of maximal elements of J, and an antichain A is sent to the
order ideal J(A) = {s ∈ Λ : s 6 t for some t ∈ A}. The set of order ideals of a poset Λ,
denoted by J(Λ), is itself a poset under the order of set containment. We begin with a
lemma that shows how order ideals are related to H1(XΛ, E).

Lemma III.7.1. Let Λ be a finite poset and J(Λ) the set of order ideals of Λ.
(1) For each J ∈ J(Λ) there is defined a 1-cocycle αJ : XΛ −→ E such that for every finite set

I and every order morphism z : Λ −→ ℘(I),

αJ(I)(z) = #{i ∈ I : (∀λ ∈ Λ)(i ∈ z(λ) ⇐⇒ λ /∈ J)}

(2) The set of cocycles {αJ : J ∈ J(Λ)} forms a basis for the k-module of 1-cocycles.

Proof. In words, αJ(I)(z) is the number of elements in I that are in none of the sets
z(ω) for ω ∈ J, and are in every set z(ω) for ω /∈ J. The definition of αJ makes it evident
that it is a cocycle, and proves the first claim.

Consider now an arbitrary 1-cocycle α : XΛ −→ E so that for any decomposition (S, T)

of a finite set I and any z ∈ XΛ(I),

α(I)(z) = α(S)(z ‖ S) + α(T)(z ‖ T).

Define a function ϕ(α) : XΛ([1]) −→ k that sends z 7→ α({1})(z). The claim is that α
is uniquely determined by ϕ(α), as we stated in Proposition III.1.3. Indeed, consider a
finite set I with n elements and fix a bijection ι : [n] −→ I. This defines a decomposition
(F1, . . . , Fn) of I where Fj = {ι(j)}, and there is a unique bijection fj : Fj −→ [1]. Using the
cocycle equation several times, we find that

α(I)(z) =

n∑
j=1

α(Fj)(z ‖ Sj)

and because α is natural, that

α(I)(z) =

n∑
j=1

f(α)(zj)
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for zj = XΛ(fj)(z ‖ Sj). Thus the map ϕ : Z1(C(XΛ, E)) −→ XΛ([1])
∗ just constructed is

injective, and it is also linear.
The elements of XΛ(1) are in bijection with the order ideals of Λ in such a way that a

map ζ : Λ −→ ℘(1) is sent to the order ideal J(ζ) = {λ ∈ Λ : ζ(λ) = ∅} and an order ideal
J is sent to ζ(J) : Λ −→ ℘(1) such that ζ(J)(λ) = {1} if and only if λ /∈ J. For each z ∈ XΛ(I)
and i ∈ I, define

χI(z, i) = {λ ∈ Λ : i /∈ z(λ)}

For ζ ∈ PΛ(1) let J = J(ζ) and define for a finite set I and z ∈ XΛ(I)

αζ(I)(z) = #{i ∈ I : χI(z, i) = χ1(ζ, 1)}

Then α coincides with the cochain αJ defined earlier, and it is in particular a cocycle.
Moreover if ζ ′ ∈ XΛ(1), ϕ(αζ)(ζ ′) equals

αζ({1})(ζ
′) = #{i ∈ {1} : χ1(ζ

′, i) = χ1(ζ, 1)} =

1 if ζ = ζ ′,

0 else.

This proves that the set {ϕ(αJ) : J ∈ J(Λ)} is a basis for the space XΛ([1])∗ and hence
that ϕ is onto, so it is an isomorphism of vector spaces. Since there are no nonzero 1-
coboundaries, this concludes the proof of the lemma. J

Remark we just defined an isomorphism H1(C∗(XΛ, E)) ' homk(XΛ([1]), k), and we
already know there is an isomorphism H0(C∗(XΛ, E)) ' homk(XΛ([0]), k). Both results
are special cases of Corollary IV.4.6.

The cohomology of representable species. We show the cohomology algebra of the
product species Ek with their canonical product bicomodule structure can be completely
described.

Definition III.7.2. For each finite set C, let PC denote the cosymmetric E-bicomodule
species such that

(1) For each finite set I, XC(I) is the set of functions z : I −→ C,
(2) For a bijection σ : I −→ J and a function z : I −→ C, XC(σ)(f) = fσ−1,
(3) For each finite set, each subset S ⊆ I and each function z : I −→ C, z ‖ S is the

restriction of z to S.
We call XC the species represented by the set C. This gives, in fact, a functor Set −→ Sp.
Remark that XC is canonically isomorphic to E⊗k if #C = k, when E⊗k is endowed with its
canonical product comonoid structure.

Definition III.7.3. Let X be a cosymmetric E-bicomodule. Define for each z ∈ X(I) and
each ζ ∈ X([1]) the set

χI(z; ζ) = {i ∈ I : X(fi)(z ‖ {i}) = ζ}
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where fi is the unique bijection {i} −→ [1]. This defines a function ηI(z) : I −→ X([1])

that assigns to each i ∈ I the element ζ ∈ X([1]) if i ∈ χI(z; ζ), and defines a function
χI(z) : X([1]) −→ N such that χI(z)(ζ) = #χI(z; ζ). We say that X is 1-determined if ηI
is an injection for every finite set I, and strongly 1-determined if this is a bijection for every
finite set I. The proof of Proposition III.7.5 will show η is always amorphism of symmetric
bicomodules from X to XC where C = X([1]).

Observation III.7.4. If the species X is 1-determined then for every pair of finite sets I, J
and every pair of structures z ∈ X(I), w ∈ X(J), the following are equivalent.

(1) There is some bijection σ : I −→ J that transports z to w.
(2) The functions χI(z) and χJ(w) are equal.

Proposition III.7.5. A linealized cosymmetric E-bicomodule is strongly 1-determined if and
only if it is isomorphic to a representable species.

Proof. Two functions z,w : I −→ C are determined uniquely by their fibres. Our last
observation boils down to the fact two functions z : I −→ C and w : J −→ C differ by a
permutation σ : I −→ J if and only if the fibres z−1(x) andw−1(x) are of the same cardinal
for each x ∈ C, and these are precisely the cardinalities of the sets χI(z; ζ) and χJ(w; ζ) for
ζ ∈ X([1]), for X([1]) stands in canonical bijection with the set C. Thus any representable
species is strongly 1-determined. Suppose, conversely, that X is strongly 1-determined,
and let X([1]) = C. We claim that X is isomorphic as a symmetric bicomodule to XC. By
hypothesis the natural transformation η : X −→ XC is a bijection for each finite set I, so it
remains to verify this is a bicomodule morphism.

It suffices to check that for every finite set I, every subset S ⊆ I, every structure z ∈ X(I)
and every ζ ∈ X, χI(z; ζ) ∩ S = χS(z ‖ S; ζ). But if i ∈ S, zPsS ‖ {i} = z ‖ {i}, so the claim
follows. J

Observation III.7.6. Note that the species of parts is represented by the set {0, 1}, so by
the following theorem H∗(℘, E) is canonically isomorphic to the cohomology of the free
commutative monoid in two letters. Alternatively, the species of parts is isomorphic to
the species associated to the one element poset Λ, and the set of order ideals of Λ has
precisely two elements.

Theorem III.7.7. Let XC be the cosymmetric E-bicomodule represented by a finite setC. There
is an isomorphism of complexes

ϕC : C∗(XC, E) −→ C∗(MC, k)

whereMC is the free commutativemonoid on the setC andC∗(MC, k) is the canonical complex that
calculates the semigroup cohomology ofMC. It follows that H∗(XC, E) is an exterior algebra with
generators in bijection with the elements of C. Moreover, the 1-cocycles that generate H∗(XC, E)



58 III. THE COHOMOLOGY OF COMBINATORIAL SPECIES

are given by τc : XC −→ E for c ∈ C where

τc(I)(z) = #z−1(c).

Proof. Suppose C = {x1, . . . , xr}, and for each non-negative integer n letMn denote
the set of sums

∑
nixi with

∑
ni = n. There is a bijection ϕn : π0(X

C([n])) −→ Mn that
assigns to each function z : [n] −→ C the elementm =

∑
zixi where zi = #z−1(xi). This

is well defined for if w = zσ for a permutation σ ∈ Sn, then wi = zi for each i ∈ [n]. It is
injective, for if two functions z,w : [n] −→ X are such that zi = wi we can (not necessarily
in a unique way) define a permutation σ ∈ Sn such that z = wσ. It is clear this is also
surjective. These bijections assemble to give a bijection ϕ : π0(X

C) −→MC.
SetMq = homSet(M

q
C, k), and define inverse bijections Φ : Cq(XC, E) −→Mq and Ψ :

M
q
C −→ Cq(XC, E) as follows. Fix a cochain α : XC −→ E⊗q and consider (m1, . . . ,mq) ∈

(MC)
q. Then

∑
mi = m ∈Mn for some n, and by the remarks in the previous paragraph

this defines —up to isomorphism— a unique z : [n] −→ X with #z−1(xj) = nj. Write

mi =
∑
nijxj so that, if we set

r∑
j=1

nij = ni, we have n = n1 + · · · + nq. Let (F1, . . . , Fq) be

a decomposition of [n] such that Fi intersects z−1(xj) in nij elements. Define, finally

Φ(α)(m1, . . . ,mq) = α(F1, . . . , Fq)(z).

Conversely, consider a function f : (MC)
q −→ k, and let us define a q-cochain Ψ(f) :

XC −→ E⊗q. Suppose I is a finite set of size n, (F1, . . . , Fq) is a decomposition of I, and
pick z ∈ XC(I). By the previous paragraph there is a correspondingm ∈Mn that depends
only on the isomorphism type of z, namely m =

∑
zjxj where zj = z−1(xj). Let zij =

#(Si ∩ z−1(xj)) so that
q∑
i=1

zij = zj, and setmi =
∑
zijxj. Define

Ψ(f)(F1, . . . , Fq)(z) = f(m1, . . . ,mq)

A tedious verification shows that Ψ,Φ are inverse bijections, and are, in fact, morphisms
of cosimplicial objects. The theorem follows. J

As we stated earlier, we can now obtain the cohomology of the species XΛ defined for
a poset Λ.

Proposition III.7.8. For any finite poset Λ, the species XΛ is isomorphic as a cosymmetric
bicomodule to the species XJ(Λ) represented by the set J(Λ) of order ideals of Λ.

Proof. For any finite set I there are defined inverse bijections betweenmonotone func-
tions Λ −→ ℘(I) and functions I −→ J(Λ) in such a way that z : Λ −→ ℘(I) corresponds
to the function ϕ(z) : I −→ J(Λ) such that

ϕ(z)(i) = {λ ∈ Λ : i /∈ z(λ)}
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and a function g : I −→ J(Λ) corresponds to the monotone function ψ(g) : Λ −→ ℘(I)

such that
ψ(g)(λ) = {i ∈ I : λ /∈ f(i)}.

This defines, in fact, a natural isomorphism η : XΛ −→ XJ(Λ) which is also a morphism of
E-bicomodules, so the claim follows. J

This completes the calculation of H∗(XΛ, E):

Theorem III.7.9. For any finite poset Λ, the cohomology ring H∗(XΛ, E) is canonically iso-
morphic to the exterior algebra on the k-module H1(XΛ, E).

We also obtain the following corollary.

Corollary III.7.10. Suppose X is a cosymmetric E-bicomodule, and suppose further that
X([1]) a k-module with basis {ζ1, . . . , ζr} = C. There is a morphism of graded commutative algeb-
ras3

Λ(ζ1, . . . , ζr) −→ H∗(X, E)

induced by the canonical map η : X −→ XC described in Definition III.7.3.

Recall that the species represented by a set C on k elements is isomorphic as a cosym-
metric bicomodule to the product species E⊗k, endowed with the canonical product bico-
module structure. The previous calculations give first confirmations that a Künneth-type
formula holds for species, that is, the cohomology of the product X⊗Y is canonically iso-
morphic to the graded tensor product of the cohomology of X and Y in favourable cases.

The cohomology of 1-determined species and Stanley–Reisner rings. If C is a finite
set the subbicomodules of the correpresentable species XC are 1-determined, and a sub-
E-bicomodule of XC is completely determined by defining for each finite set I a collection
of functions z : I −→ C that is stable under restrictions.

Definition III.7.11. Let C be a finite set. An abstract simplicial complex over C is a col-
lection K of finite subsets of C such that

(1) If x ∈ C then {x} ∈ K,
(2) If ∆ ∈ K and ∆ ′ ⊆ ∆, then ∆ ′ ∈ K.

Thus K is an order ideal in the poset of subsets of C that contains every singleton subset
of C. We call the elements of K the simplices of K and say that ∆ is a q-simplex, or that it
is a simplex of dimension q, whenever #∆ = q + 1. We denote by dim∆ the dimension
of ∆ and define the dimension of K by dimK = sup{dim∆ : ∆ ∈ K}. If it is necessary we
will denote by (C,K) a simplicial complex K defined on C. Remark we include the empty
simplex in any simplicial complex.
3Here Λ(S) denotes the exterior algebra with generators S.
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Definition III.7.12. A simplicial set is a simplicial object in the category of sets. Because
of Lemma II.7.3, a simplicial set is defined by specifying a sequence of sets X0, X1, X2, . . .
and respective face and degeneracy maps ∂i : Xq+1 −→ Xq, σi : Xq −→ Xq+1 that satisfy
the simplicial relations. We will call an element s ∈ Xq a q-simplex of X, and say s is
degenerate if it is of the form σjs

′ for some j and some s ′ ∈ Kq−1. Otherwise, s is said to
be a nondegenerate q-simplex. We can write Xq = NXq ∪DXq where NXq and DXq denote
the collections of nondegenerate and degenerate q-simplices, respectively. The dimension
of X is the largest q such that NXq is nonempty.

We may associate to every simplicial complex (X,K) a simplicial set (K#, ∂, σ) as fol-
lows. Enlarge to collection of simplices of the complex K by allowing degenerate q-simplices
which are multisubsets of X of size q where at least one x ∈ X appears twice. We will
denote by NKq the collection of ordered q-simplices of K which we call the nondegenerate
q-simplices of K#, and denote by DKq the collection of ordered degenerate q-simplices of
K. Now let Kq = NKq ∪DKq, and define K# to be the sequence of the sets K0, K1, . . ..

The face maps ∂j : Kq+1 −→ Kq are defined so that ∂j(xi0 , . . . , xiq+1) is the ordered
q-simplex obtained by deleting xij from (xi0 , . . . , xiq+1), and the degeneracy maps σj :

Zq −→ Kq+1 are defined so that σj(xi0 , . . . , xiq+1) is the ordered (q+ 1)-simplex obtained
by repeating xij . One can see inductively that in the above constructionDKq+1 is the image
of Kq = DKq ∪NKq under σ0, . . . , σq.

Definition III.7.13. If K is a simplicial complex defined on a finite set C, consider the
subspecies XK of XC such that

(1) For every finite set I, XK(I) consists of those functions z : I −→ C for which
z(I) ∈ K,

(2) If σ : I −→ J is a bijection and z ∈ XK(I), XK(σ)(z) = zσ−1,
(3) For every finite set I, every subset S of I and z ∈ XK(I), z ‖ S is the restriction of z

to S.
Note that if S ⊆ I then z(S) ⊆ z(I) ∈ K, and since K is a simplicial complex, z(S) ∈ K.

Definition III.7.14. There is defined a category Simp of finite simplicial complexes
that has objects the finite simplicial complexes (C,K) and arrows (C,K) −→ (D, L) the
functions f : C −→ D such that whenever ∆ ∈ K, it follows that f(∆) ∈ L.

The previous construction defines a covariant functor X ? : Simp −→ Sp from the cat-
egory of abstract simplicial complexes to the category of species in such a way that every
simplicial complex (C,K) is assigned the species XK ⊆ XC and a morphism of simplicial
complexes f : (C,K) −→ (D, L) is assigned the natural transformation f∗ : XK −→ XL

acting by postcomposition on structures.

Like in the previous example, to calculate the cohomology of XL we will introduce an
intermediate cosimplicial object obtained by dualizing a simplicial object.
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Definition III.7.15. If (C,K) is a finite simplicial complex, let ΓK denote the subset of
functions f : C −→ N0 of finite support such that the support ‖f‖ = {xi : f(xi) 6= 0} is
a simplex of K. In particular, the function that is identically zero has support the empty
simplex of K. We define the weight of a function f to be the sum of its values, and denote
it by |f|.

We now construct the simplicial set that, when properly linearized and dualize, gives
the cosimplicial k-module with cohomology equal to H∗(XK, E). Define for each non-
negative integer q the set

Γ
(q)
K = {(f1, . . . , fq) :

∑
fi ∈ ΓK}

so that, in particular, Γ (1)K = ΓK. In general, Γ (q)K is a proper subset of the cartesian product
Γ
q
K . The total weight and total support of a tuple (f1, . . . , fq) in Γ (q)K is the weight and
support of the sum of its entries. The weight (resp. support) of a tuple is the ordered
tuple of the weights (resp. supports) of its entries. Denote by Γ #

K the sequence of sets just
constructed.

Theorem III.7.16. There are face and degeneracy maps that endow Γ #
K with the structure of a

cosimplicial set. Moreover, there is an isomorphism of cosimplicial k-modules

Ψ : C∗(XK, E) −→ homk(kΓ
#
K, k).

Proof. We begin by constructing the face and degeneracy maps. For i ∈ {0, q} we
define

∂0(f1, . . . , fq) = (f2, . . . , fq), ∂q(f1, . . . , fq) = (f1, . . . , fq−1)

and for i ∈ {1, . . . , q− 1}, we define

∂i(f1, . . . , fq) = (f1, . . . , fi + fi+1, . . . , fq).

Finally set σj(f1, . . . , fq) = (f1, . . . , fj−1, 0, fj, . . . , fq) for j ∈ {0, . . . , q}. By a direct calcu-
lation, we see these maps satisfy the simplicial relations, and they make (Γ #

K, ∂, σ) into a
simplicial set. To obtain the isomorphism Ψ we adapt the proof of Theorem III.7.7. If
α : XK −→ E⊗p is a cochain, we can define a functional Ψ(α) : Γ

(p)
K −→ k as follows.

To each function f : C −→ N0 we can assign a function zf : [n] −→ C for some n, that
belongs to XK([n]), and whose isomorphism class depends uniquely on f. Moreover, if
f = (f1, . . . , fp) ∈ Γ

(p)
K , then we can find a function zf : [n] −→ C in XK([n]) and decompos-

ition (F1, . . . , Fp) such that the restriction of zf to Fi corresponds to zfi under our previous
assignment. We then define

Ψ(α)(f) = α(F1, . . . , Fp)(zf).
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Conversely, to each functional g : Γ
(p)
K −→ k we can assign a cochain Φ(g) : XK −→ E⊗p

so that
Φ(g)(F1, . . . , Fp)(z) = g(f1, . . . , fp)

where fi ∈ ΓK corresponds to the restriction of z to Fi, so that in particular the sum of the fi
corresponds to z itself, and lies again in ΓK. These are well defined inverse bijections, and
it is straightforward, albeit very tedious, to check they are cosimplicial morphisms. J

As we already did in the previous cases, we will calculate the homology of kK# in-
stead of the cohomology of its dual, and then make an appeal to the Universal Coefficient
Theorem. To do so, we use, again, a spectral sequence. We can filter Γ (q)K by weight, so
that FpΓ (q)K consists of those tuples of (total) weight at most p. Moreover, we may nor-
malize so that the tuples (f1, . . . , fq) consist of entries with nonzero weight —that is, of
nonzero entries. The associated spectral sequence starts at the E0-page, where E0p,q is the
free k-module with basis the tuples in Γp+qK with nonzero entries and total weight p. In
particular, we must have p + q > 0, p > 0 and q 6 0. Thus our spectral sequence looks
again like that of the Figure 1.

Before computing the vertical homology of the complexes E0p,∗ we note that in the in-
duced differential d0 : E0p,q −→ E0p,q−1 the first and last differentials strictly decrease the
weight of a tuple, so they vanish. Thus our differential is induced from the face maps
∂i(f1, . . . , fr) = (f1, . . . , fi + fi+1, . . . , fr). The following observation will allow us to re-
duce our problem of computing the E1-page to one independent of the chosen simplicial
complex. Wewill use the notationKp,r for the vector spacewith basis the tuples (f1, . . . , fr)
with weight exactly p, so that the complex E0p,∗ reads

0 Kp,p Kp,p−1 · · · Kp,1 0 .

Observation III.7.17. Fix f ∈ ΓK. For each r we can consider the subspace Kp,r(f) gen-
erated by those tuples (f1, . . . , fr) whose sum is exactly f. Because d0 preserves the sum
of a tuple, Kp,∗(f) is a subcomplex of Kp,∗, and it is immediate that Kp,∗ is the direct sum
of Kp,∗(f) as f ranges through ΓK. Moreover Kp,∗(f) is nonzero exactly when f has weight
p. Remark that because d0 preserves the sum of a tuple, a fortiori it preserves the support
and weight of a tuple. In particular, if we fix a simplex σ ∈ K and consider Kp,r(σ) the
subspace generated by those tuples with support σ, Kp,∗(σ) is a subcomplex. Moreover,
Kp,∗(σ) is zero if σ has dimension at least p: if f has support with size p+1, then its weight
is at least p+1. Finally, the complexKp,∗(σ) decomposes as the direct sum ofKp,∗(f)where
‖f‖ = σ. Thus only simplices of dimension p or less contribute to Kp+1,∗.

We summarize the above in the following lemma. Note that for p = 0 the space E00,0
is one dimensional with basis the zero function.
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Lemma III.7.18. For every nonzero p there is a finite direct sum decomposition

Kp,∗ =
⊕
σ∈K

Kp,∗(σ)

whereKp,r(σ) is generated by those tuples with total supportσ. Moreover, the only possibly nonzero
summands are of the form Kp,∗(σ) for dimσ < p, and for each σ ∈ K there is a direct sum
decomposition

Kp,∗(σ) =
⊕
‖f‖=σ

Kp,∗(f)

where Kp,∗(f) is generated by those tuples with sum f.

By the above, it suffices to calculate the homology of the complexes Kp,∗(f). Suppose
that σ = {xi0 , . . . , xid} has dimension d < p. If f has weight exactly p then f corresponds
to a multisetM(f) of size p on σ. Moreover, a tuple (f1, . . . , fr) that sums to f is equivalent
to a decomposition of the multisetM(f) into the multisetsM(fi), i ∈ {1, . . . , r}. One can
then check that, under this identification, Kp,∗(f) = C∗(Σ,M(f)). As in the case of Σ and
L, we deduce that

Proposition III.7.19. The E1 page of the spectral sequence associated to (C,K) has only one
nonzero row, which lies on the p-axis. Moreover E1p+1,0 has a canonical basis indexed by the p-
simplices of K, and the differential d1 is identically zero. Thus the p-th cohomology group of XK
has dimension equal to the number of (p− 1)-simplices in K.

Observe that this generalizes our computation for the correpresentable species XC

which is XK for K = ℘(X). We can also recover the algebraic structure of the cohomo-
logy algebra:

Theorem III.7.20. The cohomology ring of the E-bicomodule XK is isomorphic to the graded
commutative Stanley Reisner ring associated toK, which is generated in degree 1 by the vertices ofK
and is subject to the relations x2i = 0 for each vertex xi ∈ K and to the relations that xi1 · · · xik = 0
whenever {xi1 , . . . , xik} is not a simplex of K. The cocycles that generateH∗(XK, E) in degree 1 are
τv : XK −→ E where v ∈ X and

τv(I)(z) = #z−1(x).

Proof. For a composition F = (F1, . . . , Fk) and for x1, . . . , xk not necessarily distinct
elements of x, let ∆ = (x1, . . . , xk) and write

τ∆(F)(z) = (τx1 ^ · · ·^ τxk)(F)(z) =

k∏
i=1

τxi(Fi)(z ‖ Fi).

If every xi is different and the underlying set to ∆ = (x1, . . . , xk) is not a simplex of K,
then this last product is zero: if every z−1(xi)∩Fi has at least one element, this implies the
image of z contains at least {x1, . . . , xk}, which cannot be. Because each τx has square zero,
it follows that the product above is zero for any combination whose underlying set does
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not produce a simplex in K. Assume now the xi are distinct. We show that if {x1, . . . , xk}
is a simplex then this cocycle is not a coboundary. To do so, it suffices to check that ε(τ∆)
is not zero where ε is the antisymmetrization operator defined in Section 4. If x1, . . . , xk
is a simplex, for any composition F we can find some function z : I −→ X such that
z−1(xi) = Fk – for example, send every element of Fk to xk. It follows that if ω is not the
identity permutation, then ω · τ(F)(z) = 0, so that for this choice of F and z, we have
ετ(F)(z) = |F1| · · · |Fk| 6= 0. This argument also shows that the various τ∆ where ∆ ranges
through d-simplices in K are linearly independent. Indeed, for any other d-simplex ∆ ′

define z∆ ′ : ∆ ′ −→ X to be the inclusion, then considering ∆ ′ as a composition of itself in
the order the xi appear in τ∆ ′ , we have

ετ∆(∆
′)(z∆ ′) =

1 if ∆ = ∆ ′,

0 if ∆ 6= ∆ ′.

Because we already know the dimension of each homogeneous component of H∗(XK, E)
is the correct one, this proves that {Jτ∆K : ∆ ∈ K} form a basis of H∗(XK, E), that the set
{JτxK, x ∈ X} generatesH∗(XK, E) as an algebra and that the relations that hold among these
generators are those of the graded Stanley Reisner ring of K. J

Observe that the above implies the simplicial complexK can be completely reconstruc-
ted from the cohomology algebra of XK. Our calculations also show that we may restrict
ourselves to the class of injective functions whose images are simplices in some simplicial
complex (C,K). That is

Corollary III.7.21. Let X ′K denote the subbicomodule of XK consisting of injections z : I −→
C such that z(I) ∈ K. Then the inclusion X ′K −→ XK is induces a quasi-isomorphism of complexes
C∗(XK, E) −→ C∗(X ′K, E). Remark that X ′K is such that X ′K(J) = 0 if J has cardinality greater than
X, that is, X ′K is a species of finite length.



CHAPTER IV

The combinatorial complex

The objective of this chapter is to obtain an alternative and more useful description of
the cohomology groups of a species in Spk. We show that for every E-bicomodule X there
is a filtration on the complex C∗(X, E) giving rise to a spectral sequence of algebras which
converges to H∗(X, E). If X is weakly projective, that is, if for each non-negative integer j,
X(j) is a projective kSj-module, this collapses at the E1-page. Because we can completely
describe this page, this provides us with a complex that calculates H∗(X, E), and which
can be used for effective computations. To be explicit, by this wemean each component of
this complex is finitely generated whenever X has finitely many structures on each finite
set, and in that case the differential of an element depends on finite data obtained from
it —this is in contrast with the situation of C∗(X, E). Moreover, the spectral sequence is
one of algebras whenever we endow C∗(X, E)with a cup product arising from a diagonal
map∆, so these remarks apply to the computation of the cup product structure ofH∗(X, E)
obtained from ∆, and we exploit this for the cup product we defined in Chapter III.

More generally, similar arguments show there is a functorial spectral sequence of al-
gebras for every connected bimonoidH in Spk and everyH-bicomodule X, andwe discuss
this briefly in Chapter V.

We fix some useful definitions we will use in this chapter. Let X be a species. The
support of X is the set of non-negative integers j for which X([j]) is nontrivial. We say X is
finitely supported if is has finite support, and that it is concentrated in cardinal j if the support
of X is {j}. The support of a nontrivial species X is contained in a smallest interval of non-
negative integers, whose length we call the length of X. The species X is of finite type if
X([j]) is a finitely generated k-module for each nonnegative integer j, and it is finite if it is
both of finite type and finitely supported.

65
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1. The spectral sequence

Let X be a species in Spk and let j be a non-negative integer. We define species τjX
and τjX, which we call the upper truncation of X at j and the lower truncation of X after j as
follows. For every finite set I, we put

τjX(I) =

X(I) if #I 6 j,

0 else,
τjX(I) =

X(I) if #I > j,

0 else.

If σ : I −→ J is a bijection then (τjX)(σ) = X(σ) whenever I has at most j elements, while
(τjX)(σ) is the unique isomorphism 0 −→ 0 in the remaining cases. Similarly, (τjX)(σ) =
X(σ)whenever I has at least j elements, while (τjX)(σ) is the unique isomorphism 0 −→ 0

in the remaining cases. It is clear both of this constructions depend functorially on X, and
that there is a short exact sequence

(9) 0 −→ τjX −→ X −→ τj+1X −→ 0.

By convention, τjX = 0 and τjX = X if j is negative. We will write τji for the composition
τi ◦ τj, which is the same as τj ◦ τi, and X(j) instead of τjj; this species is concentrated in
cardinal j. This will be of use in Section 2.

More generally, we can carry out these constructions in the categories of H-(bi)co-
modules for any comonoid H in Spk. Precisely, we have the following proposition:

Proposition IV.1.1. Let H be a comonoid in Spk, let X be a left H-comodule, and fix a non-
negative integer j.

T1. The truncated species τjX is an H-subcomodule of X, so that the inclusion τjX −→ X is
a morphism of H-comodules, and

T2. the truncated species τjX is uniquely an H-comodule in such a way that the morphisms
in the short exact sequence (9) in Spk are in fact of H-comodules.

It is clear the above can, first, be extended toH-bicomodules, and second, be dualized
to H-modules, and then extended to H-bimodules. This provides a spectral sequence for
monoids and modules, which we will not discuss.

Proof. Denote by λ the coaction ofX. To seeT1, we have to show that λ(τjX) ⊆ H⊗τjX,
which is immediate, andT2 is deduced from this: we identify τjXwith the quotientX/τjX,
which inherits an H-comodule structure making the maps in the short exact sequence (9)
maps of H-comodules. J

In what follows, we will need to identify the comodule structure of X(j). This is done
in the following lemma, whose proof we omit.

Lemma IV.1.2. Let H be a connected comonoid in Spk. An H-(bi)comodule concentrated in
one cardinal necessarily has the trivial H-coaction. J
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Let X be an E-bicomodule. For each integer p, let FpC∗(X, E) be the collection of chains
that vanish on τp−1X. This is a subcomplex because τpX is a E-subbicomodule of X, so we
have a descending filtration of the complex C∗(X, E). When there is no danger of confu-
sion, we will write FpC∗ instead of FpC∗(X, E). This filtration in C∗(X, E) induces a filtra-
tion on H∗ = H∗(X, E) with FpH∗(X,C) = im(H∗(FpC∗) −→ H∗), and we write E0(H) for
the bigraded object with

E
p,q
0 (H) =

FpHp+q

Fp+1Hp+q
.

As explained in detail in [McC2001, Chapter 2, §2], this filtration gives rise to a co-
homology spectral sequence (Er, dr)r>0. According to the construction carried out there,
the E0-page has

E
p,q
0 =

FpCp+q

Fp+1Cp+q

and differential dpq0 : Epq0 −→ E
p,q+1
0 induced by that of C∗(X, E), and, in particular, we

have Epq0 = 0when p < 0 or p+ q < 0. Moreover:

Proposition IV.1.3. Let p be an integer.
(1) There is a natural isomorphism FpC∗(X, E) −→ C∗(τpX, E) that induces, in turn, an

isomorphism (Ep∗0 , d
p∗
0 ) −→ Cp+∗(X(p), E), so that

(2) for every integer q, there are isomorphisms Epq1 −→ Hp+q(X(p), E), and, viewing this
as an identification,

(3) the differential dpq1 : Epq1 −→ E
p+1,q
1 is the composition of the connecting homomorphism

Hp+q(X(p), E) −→ Hp+q+1(τp+1X, E) of the long exact sequence corresponding to the
short exact sequence 0 −→ X(p) −→ τpX −→ τp+1X −→ 0 and the mapH∗(ι) induced
by the inclusion ι : X(p+ 1) −→ τp+1X.

Proof. The exact sequence of E-bicomodules

0 −→ τp−1X −→ X
π−→ τpX −→ 0

is split in Spk, so applying the functor C∗( ? , E) gives an exact sequence

0 −→ C∗(τpX, E) −→ C∗(X, E) −→ C∗(τp−1X, E) −→ 0.

This gives the desired isomorphism of FpC∗(X, E) with C∗(τpX), since the injective map
C∗(π, X) has image the kernel of C∗(ι, E), which is, by definition, FpC∗(X, E). This proves
the first claim of the proposition.

Similarly, we have a short exact sequence of bicomodules

0 −→ X(p) −→ τpX −→ τp+1X −→ 0,

also split in Spk, and which gives us the exactness of the second row of the following
commutative diagram:
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0 Fp+1C∗ FpC∗ E
p∗
0 0

0 C∗(τp+1X, E) C∗(τpX, E) C∗(X(p), E) 0

The desired natural isomorphism E
p,∗
0 −→ C∗(X(p), E) is the unique dashed arrow that

extends the commutative diagram, and this proves the second claim of the proposition.
To prove the last one, we note the diagram above can be viewed as an isomorphism of
exact sequences, and so the connecting morphisms are also identified. Moreover, the dif-
ferential at the E1-page is induced from the connecting morphism of long exact sequence
associated to the exact sequence 0 −→ Fp+1C∗ −→ FpC∗ −→ FpC∗/Fp+1C∗ −→ 0 and the
projection Fp+1C∗ −→ Fp+1C∗/Fp+2C∗ which correspond, under our isomorphisms, to the
connecting morphism of the short exact sequence 0 −→ X(p) −→ τpX −→ τp+1X −→ 0

and to the map C∗(ι, E) : C∗(τp+1X, E) −→ C∗(X(p+ 1), E) induced by the inclusion. J

Wewill prove in the next section that the spectral sequence just constructed converges
to H∗(X, E). A first step towards this is the following result:

Proposition IV.1.4. The filtration is bounded above and complete.

Proof. Using the identification provided by the isomorphisms FpC∗ −→ C∗(τp, X) of
Proposition IV.1.3 and the split exact sequences 0 −→ τpX −→ X −→ τp+1X −→ 0 we are
able, in turn, to identify C∗(X, E)/Fp+1C∗(X, E) with C∗(τpX, E). In these terms, what the
proposition claims is that the canonical map

C∗(X, E) −→ lim←−C∗(τpX, E)
is an isomorphism, and this is clear: if a cochain vanishes on every τpX then it is zero,
so the map is injective, and if we have cochains αp : τpX −→ E⊗∗ that glue correctly, we
obtain a globally defined cochain α : X −→ E⊗∗, so the map is surjective. J

Proposition IV.1.5. IfX vanishes in cardinals aboveN, then the normalized complex C̄∗(X, E)
vanishes in degrees above N, and, a fortiori, the same is true for H∗(X, E).

Proof. Let p > N, consider a p-cochain α in the normalized complex C̄∗(X, E), and
let us show that α vanishes identically. Indeed, if I is a finite set, the map α(I) : X(I) −→
E
⊗p

(I) is zero: if I has more than p elements, its domain is zero because X vanishes on I,
and if I has at most p elements, then its codomain is zero, since there are no compositions
of length p of I. J

This has two important consequences, the first of which will be thoroughly exploited
in the next sections.
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Corollary IV.1.6. Fix an integer j.
(1) We have Hq(τjX, E) = 0 if q > j.
(2) The E1-page of the spectral sequence lies in a cone in the fourth quadrant. J

Because the E1-page of the spectral sequence involves the cohomology of the species
X(p) for p > 0, we turn our attention to the cohomology of species concentrated in a
cardinal.

2. Computation of the E1-page

This section is devoted to describing theE1-page of the spectral sequence, and showing
it concentrated in one row —so that the spectral sequence degenerates at the E2-page—
whenX is weakly projective in Spk. Recall that by this wemean that, for each non-negative
integer j, X(j) is a projective kSj-module.

For j > 1 and for each integer p > −1, let Σp(j) be the collection of compositions of
length p+ 2 of [j]. We will identify the elements of Σj−2(j)with permutations of [j] in the
obvious way. There are face maps ∂i : Σp(j) −→ Σp−1(j) for i ∈ {0, . . . , p} given by

∂i(F0, . . . , Fi, Fi+1, . . . , Fp+1) = (F0, . . . , Fi ∪ Fi+1, . . . , Fp+1)

that make the sequence of sets Σ∗(j) = (Σp(j))p>−1 into an augmented semisimplicial set.
Wewrite kΣ∗(j) for the augmented semisimplicial k-module obtained by linearizingΣ∗(j),
and kΣ∗(j) ′ for the dual semicosimplicial augmented k-module.

There is an action of Sj on each Σp(j) by permutation, so that if τ ∈ Sj and if (F0, . . . , Ft)
is a composition of [j], then

τ(F0, . . . , Ft) = (τ(F0), . . . , τ(Ft)).

It is straightforward to check the coface maps are equivariant with respect to this action,
so Σ∗(j) is, in fact, an augmented semisimplicial Sj-set. Consequently, kΣ∗(j) and kΣ∗(j) ′

have corresponding Sj-actions compatible with their semi(co)simplicial structures.
This complex Σ∗(j) is known in the literature as the Coxeter complex for the braid

arrangement, and its cohomology can be completely described.

Proposition IV.2.1. The complex associated to kΣ∗(j) ′ computes the reduced cohomology of
a (j − 2)-sphere with coefficients in k, that is, Hp(kΣ(j) ′) = 0 if p 6= j − 2 and Hj−2(kΣ∗(j) ′) is
the k-module freely generated by the class of the map ξj : kΣ∗(j) −→ k such that

ξj(σ) =

{
1 if σ = id,

0 else.

The action of kSj on Hj−2(kΣ∗(j) ′) is the sign representation.
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In what follows, k[j] will denote the sign representation of kSj just described. Note
that, when j = 1, Sj−2 = ∅, and the reduced cohomology of such space is concentrated in
degree −1, where it has value k.

Proof. We sketch a proof, and refer the reader to [AM2006] and [Bro1989] for de-
tails. The braid arrangement Bj of dimension j in Rj is the collection of hyperplanes
{Hs,t : 1 6 s < t 6 j}, with Hs,t defined by the equation xt = xs. This arrangement has
rank j−1 and its restriction to the hyperplaneHwith equation x1+ · · ·+xj = 0 is essential,
and defines a triangulation K of the unit sphere Sj−2 ⊆ H. Concretely, the r-dimensional
simplices of K are in bijection with compositions of [j] into r+ 2 blocks, so that a composi-
tion F = (F0, . . . , Fr+1) corresponds to the r-simplex obtained by intersecting Sj−2 with the
subset defined by the equalities xs = xt whenever s, t are in the same block of F and the
inequalities xs > xt whenever t > s relative to the order of the blocks of F. It follows that
kΣ∗(j)

′ computes the reduced simplicial cohomology of Sj−2, and the generator of the top
cohomology group is the functional ξj : kΣ∗(j) −→ k described in the statement of the
proposition. More generally, if ξσ : kΣj−2(j) −→ k is the functional that assigns σ to 1 and
every other simplex to zero, then JξσK = (−1)σJξjK. Because the action of Sj on kΣj−2(j) ′

is such that σξj = ξσ, this proves Hj−2(kΣ∗(j) ′) is the sign representation of kSj. J

We can describe the complex that calculates the cohomology of a species concentrated
in cardinal j in terms of the Coxeter complex Σ∗(j):

Proposition IV.2.2. Fix a non-negative integer j > 1, and let X be an E-bicomodule concen-
trated in cardinal j. There is an isomorphism of semicosimplicial k-modules

Ψ∗ : C̄∗(X, E) −→ homSj(X(j), kΣ∗(j)
′[2]).

In particular, if X(j) is a projective kSj-module, then Hp(X, E) = 0 when p 6= j and there is an
isomorphism

Ξ : Hj(X, E) −→ homSj(X(j), k[j]).

This isomorphism is such that if α : X −→ E⊗j is a normalized j-cocycle, then

(10) Ξ(JαK)(z) =
∑
σ∈Sj

(−1)σα(σ)(z)JξjK,

for each z ∈ X(j).

If k is a field of characteristic coprime to j! then every kSj-module is projective by
virtue of Maschke’s theorem, so the above applies. If k is a field of characteristic zero,
then every species X is weakly projective, and conversely.

Proof. Since X is concentrated in cardinal j, a normalized p-cochain α : X −→ Ē⊗p is
completely determined by an Sj-equivariant k-linear map α̃ : X(j) −→ E

⊗p
(j). Moreover,

E
⊗p

(j) is a free k-modulewith basis the tensors F1⊗· · ·⊗Fpwith (F1, . . . , Fp) a composition
of [j], that is, E⊗p(j) can be identified Sj-equivariantly with kΣp−2(j). Because E

⊗p
(j) is a
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free k-module, every k-linear map β : X(j) −→ Ē⊗p(j) corresponds uniquely to a map
βt : X(j) −→ Ē⊗p(j) ′ so that βt(z)(F1, . . . , Fp) = β(F1, . . . , Fp)(z). In this way we obtain a
map

Ψ∗ : C̄∗(X, E) −→ homSj(X(j), kΣ∗(j)
′[2]),

which is clearly an isomorphism of graded k-modules, and this map is compatible with
the semicosimplicial structure and Sj-equivariant. The non-trivial observation needed to
check this is that the first and last coface maps of C∗(X, E) are zero: this follows from
Lemma IV.1.2, which states X has trivial coactions, so these maps vanish upon normaliz-
ation.

Assume now thatX(j) is kSj-projective, so that the functor homSj(X(j), ? ) is exact. The
canonical map

θ : H∗(homSj(X(j), kΣ∗(j)
′[2])) −→ homSj(X(j), H

∗(kΣ∗(j)
′[2]))

is then an isomorphism, andwe can conclude by Lemma IV.2.1 thatHp(X, E) is zero except
for p = j, and that we have a canonical isomorphism induced by Ψ and θ

Ξ : Hj(X, E) −→ homSj(X(j), k[j]).

It remains to prove the last formula. To this end, consider a j-cocycle α : X(j) −→ E⊗j(j).
This corresponds under Ψ to the map X(p) −→ kΣj−2(j)

′ that assigns to z the functional∑
σ α(σ)(z)ξσ. Passing to cohomology and using the equality JξσK = (−1)σJξjK valid by

Lemma IV.2.1 for all σ ∈ Sj, we obtain the desired formula (10). J

Corollary IV.2.3. If X is weakly projective, then E1 is concentrated in the p-axis, where

E
p,0
1 ' homSp(X(p), k[p]),

so that, in particular, the spectral sequence degenerates at E2.

This motivates us to consider, independently of convergence matters, the complex
CC∗(X, E) that has CCp(X, E) = homSp(X(p), k[p]) and differentials induced from that
of the E1-page. Although this may not compute H∗(X, E), it provides us with another
invariant for X. We call CC∗(X, E) the combinatorial complex of X. We will give an explicit
formula for its differential in Theorem IV.4.5.

Proof. The above follows for p > 1 by the last proposition, and the case p = 0 follows
by definition of the E0-page. J

The description of the inverse arrow to Ξwill be useful for computations.

Lemma IV.2.4. With the hypotheses of Proposition IV.2.2, the inverse arrow to Ξ is the map

Θ : homSj(X(j), k[j]) −→ Hj(X, E)
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that assigns to an Sj-equivariant map f : X(j) −→ k[j] the class of any lift F of f according to the
diagram

X(j)

kΣj−2(j)
′ k[j] 0

f
F

π

In particular, if k is a field of characteristic coprime to j!, we can choose F to be the composition of
f with the Sj equivariant map Λ : k[j] −→ kΣj−2(j)

′ such that

Λ(JξjK) =
1

j!

∑
σ∈Sj

(−1)σξσ.

Wecannowprove, by an easy inductive argument, that the support of the cohomology
groups of a weakly projective species of finite length X is no bigger than the support of X.
This is a second step toward proving the convergence of our spectral sequence, which we
will completely address in the next section. Concretely:

Proposition IV.2.5. Let X be an E-bicomodule of finite length, which is weakly projective in
Spk, and let q be a non-negative integer.

(1) If X is zero in cardinalities below q, then Hi(X, E) = 0 for i < q.
(2) In particular, it follows that Hp(τqX, E) = 0 for p < q.

Proof. Assume X is a species that vanishes in cardinalities below q, and proceed by
induction on the length ` of X. The base case in which ` = 1 is part of the content in
Proposition IV.2.2. Indeed, if X has lenght 1 it is concentrated in some degree p larger
than q, and that proposition says Hj(X, E) = 0 if j 6= p.

For the inductive step, suppose ` > 1, and let j be the largest element of the support
of X. The long exact sequence corresponding to

0 −→ τj−1X −→ X −→ τjX −→ 0.

includes the exact segment

(11) Hq(τjX, E)︸ ︷︷ ︸
0

−→ Hq(X, E) −→ Hq(τj−1X, E)︸ ︷︷ ︸
0

.

The choice of the integer j implies τjX is of length one, and τj−1X is of length smaller than
that of X, so by induction the cohomology groups appearing at the ends of (11) vanish.
This proves the first claim, and the second claim is an immediate consequence of it. J

Proposition IV.2.6. Let X be an E–bicomodule. For every non-negative integer j, the projec-
tion X −→ τj+1X induces

(1) a surjection Hj+1(τj+1X, E) −→ Hj+1(X, E), and
(2) isomorphisms Hq(τj+1X, E) −→ Hq(X, E) for q > j+ 1.
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In terms of the filtration on H∗(X, E), this means that FpHp+q = Hp+q for q > 0.

Proof. Fix a non-negative integer j and consider the exact sequence

0 −→ τjX −→ X −→ τj+1X −→ 0.

The associated long exact sequence gives an exact sequence

Hj+1(τj+1X, E) −→ Hj+1(X, E) −→ Hj+1(τjX, E)︸ ︷︷ ︸
0

,

and exact sequences

Hq−1(τjX, E)︸ ︷︷ ︸
0

δ−→ Hq(τj+1X, E) −→ Hq(X, E) −→ Hq(τjX, E)︸ ︷︷ ︸
0

,

for q > j+1, with the zeroes coming from Proposition IV.1.5. This proves both claims. J

3. Convergence of the spectral sequence

The filtration defined on C∗(X, E) is bounded above, and we have shown it is com-
plete, so it suffices to check the spectral sequence is regular to obtain convergence —see
the Complete Convergence Theorem in [Wei1994, Theorem 5.5.10]. We have proven the spec-
tral sequences degenerates at the E2-page when X is weakly projective, and this implies
the spectral sequence is regular, so the cited theorem can be applied. We give a mildly
more accessible argument to justify convergence, which the reader can compare with the
exposition in [Hat2002, pp. 137-140] and [McC2001, pp. 99-102].

Proposition IV.3.1. If X is an E-bicomodule that is weakly projective in Spk, then the group
Hp(τq+1X, E) vanishes for every integer p < q.

In other words, the filtration on C∗(X, E) is regular, that is, for each integer n, we have
Hn(FpC∗) = 0 for large p depending on n; in this case p > n works. This guarantees the
spectral sequence is regular, see [CE1956, Chapter XV, §4].

Proof. Let X be as in the statement. The sequence of inclusions

(12) · · · −→ τjX −→ τj+1X −→ · · ·
gives a tower of cochain complexes C = {C(τjX, E)}j>1 of k-modules. We noted, in the
proof of Proposition IV.1.4, that the canonical map C∗(X, E) −→ lim←−jC∗(τjX, E) is an iso-
morphism, and furnishes a map

η : H∗(X, E) −→ lim←−jH∗(τjX, E).
Let us show that this is an isomorphism. Fix r > 0. The tower of cochain complexes C

satisfies theMittag-Leffler condition since every arrow in it is onto: every inclusion in (12)
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is split in Spk, so by Theorem A.3.6 there is a short exact sequence

0 −→ lim←−1jHr−1(τjX, E) −→ Hr(X, E)
η−→ lim←−jHr(τjX, E) −→ 0.

We need only prove lim←−1jHr−1(τjX, E) = 0, and, to do this, that the tower of abelian groups
{Hr−1(τiX, E)}i>0 satisfies theMittag-Leffler condition: for k > j, let ι(k, j) : Hr(τkX, E) −→
Hr(τjX, E)) be the arrow induced by the inclusion, and let us show that for each j there
is some i such that image(ι(k, j)) = image(ι(i, j)) for every k > i. Fix j, and let us show
i = r+ 2works by considering three cases.

• If j < r, then for every k > j the map ι(k, j) is zero because its codomain is zero,
so the claim is true.
• If j > r + 1, then for every k > j, the map ι(k, j) is an isomorphism. In this case,
we have the exact sequence

0 −→ τjX
i−→ τkX

π−→ τkj+1X −→ 0

whose corresponding long exact sequence includes the segment

Hr(τkj+1X, E)︸ ︷︷ ︸
0

−→ Hr(τkX, E)
ι(k,j)−−−−→ Hr(τjX, E) −→ Hr+1(τkj+1X, E)︸ ︷︷ ︸

0

,

with the zeroes explained by Proposition IV.2.5 and the fact τkj+1X is zero at car-
dinals r and r+ 1.
• Finally, suppose j = r, and fix k > j. If k > r + 2, the map ι(k, j + 1) is an
isomorphism, and ι(k, j) factors as ι(j+1, j)◦ ι(k, j+1), so that the image of ι(k, j)
equals the image of ι(j+ 1, j).

Fix non-negative integers p and q with p < q as in the statement. For every integer
j, the double truncation τjq+1X is of finite length and begins in degrees greater than q, so
that Hp(τjq+1X, E) = 0 by Proposition IV.2.5. Because we have just shown that

η : Hp(τq+1X, E) −→ lim←−Hp(τjq+1X, E)
is an isomorphism, we can conclude that Hp(τq+1X, E) = 0, as we wanted. J

Proposition IV.3.2. Suppose X is a weakly projective E-bicomodule. There is an isomorphism
of bigraded objects E∞ −→ E0(H), so that the spectral sequence converges toH, and, as it collapses
at the E1-page, this gives an isomorphism Ep,02 −→ Hp.

Proof. We have already shown that E2 = E∞. Moreover, as we observed after Pro-
position IV.2.6, we have FpHp+q = Hp+q if q > 0, while the result of Proposition IV.3.1 is
that Hp+q(τpX, E) = 0 when q < 0, so that FpHp+q = 0 in this case. This means the only
non-trivial filtration quotients are exactly Ep,00 (H) = Hp, and that there is an isomorphism

Ep,0∞ = Ep,02 −→ E
p,0
0 (H)
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· · · · · ·Hq(X(q), E)Hq−1(X(q− 1), E) Hq+1(X(q+ 1), E)

Hq(τqX, E)

Hq(τq−1X, E)

Hq(X(q− 1), E)= 0

0 =Hq−1(τqX, E)

Hq+1(τq+1X, E)

0 =Hq(τq+1X, E)

d1 d1

δ ι∗

δ ι∗

π∗

Figure 1. The diagram used in the proof of Proposition IV.3.2.

which can be explicitly described as follows. Consider the diagram in Figure 1, built from
portions of long exact sequences coming from the split exact sequences

0 −→ X(i) −→ τiX −→ τi+1X −→ 0

for i ∈ {q−1, q, q+1}, and in which the horizontal arrows are the differential d1 of the E1-
page of our spectral sequence. The maps labelled ι∗ in the diagram are injective because
the diagonals are exact and there are zeros where indicated, and π∗ is surjective by the
same reason. We now calculate:

Ep,0∞ = Ep,02 =
kerd1
imd1

=
ker δ
im ι∗δ

=
ι∗(Hq(τqX, E))

ι∗ im δ

' H
q(τqX, E)

im δ
=
Hq(τqX, E)

kerπ∗

' Hq(τq−1X, E) = Ep,00 (H)

= Hq(X, E).

This is what we wanted. J
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We can summarize the above in the

Theorem IV.3.3. If X is an E-bicomodule, weakly projective in Spk, the combinatorial complex
CC∗(X, E) computes H∗(X, E). J

A useful corollary of this is what follows.

Corollary IV.3.4. If X is an E-bicomodule over a field of characteristic zero, then for every
integer q,

dimkH
q(X, E) 6 dimk homSq(X(q), k[q]),

and, in particular, the support of H∗(X, E) is contained in that of X. J

Observation IV.3.5. Fix a nonnegative integer q and a linearized species X. It is useful
to note that an element f ∈ homSq(X(q), k[q]) vanishes on every basis structure z ∈ X(q)
that is fixed by an odd permutation. This improves the last bound on dimkH

q(X, E) and
significantly simplifies computations.

We nowhave amuch better understanding of the derived functors of F = homEe( ? , E),
and all this was obtained from the canonical injective resolution of the E-bicomodule E.
This motivates the following problem:

Problem IV.3.6. Find a familyX ofweakly projective F-acyclic objects, sufficiently large
to allow us to resolve arbitrary species.

Solving this problem would allow us, in turn, to calculate the cohomology of species
that are not necessarily weakly projective by replacing themwith a weakly projective res-
olution.

4. The differential of the combinatorial complex

The purpose of this section is to give an explicit formula for the differential of the
E1-page of the spectral sequence, equivalently, for the differential of the combinatorial
complex, corresponding to a weakly projective E-bicomodule X. Once this is addressed,
we show how to use it to calculate H∗(X, E) for the species considered in Chapter III.
Throughout the section, we fix a weakly projective E-bicomodule X.

Lemma IV.4.1. The connecting morphism δ : Hj(X(j), E) −→ Hj+1(τj+1X, E) corresponding
to the short exact sequence

0 X(j) τjX τj+1X 0

is such that, for a cocycle α : X(j) −→ Ē⊗j, δJαK = Jdα̃K where α̃ : τjX −→ E
⊗j is the cochain

that extends α by zero away from cardinal j. Therefore, the differential of the E1-page is such that

d1JαK = Jdα̃ ◦ ιK,

that is, d1JαK is the class of the restriction of dα̃ to X(j+ 1).
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Proof. One follows the construction of the connecting morphism for the diagram of
normalized complexes

...
...

...

homSpk(τj+1X, E
⊗j
) homSpk(τjX, E

⊗j
) homSpk(X(j), E

⊗j
)

homSpk(τj+1X, E
⊗(j+1)

) homSpk(τjX, E
⊗(j+1)

) homSpk(X(j), E
⊗(j+1)

)

...
...

...

ι∗

d

π∗

If α : X(j) −→ E⊗j is a normalized cocycle, and if α̃ : τjX −→ E
⊗j extends α by zero then

certainly ι∗α̃ = α, and α̃ is normalized, and its restriction to X(j) is zero. So in fact dα̃ is
a cochain

dα̃ : τj+1X −→ E⊗(j+1)

and it is then its own lift for the map π∗. The lemma follows. J

Corollary IV.4.2. If c ∈ Hj(X(j), E) is represented by a normalized cocycle α : X(j) −→
E⊗j, then d1(c) ∈ Hj+1(X(j+ 1), E) is represented by the normalized cocycle

γ : X(j+ 1) −→ E⊗(j+1)

such that for a permutation σ of a finite set I of j+ 1 elements and z ∈ X(I),

γ(σ)(z) = α(σ(2), . . . , σ(j+ 1))(z � (Ir σ(1)))

+ (−1)j+1α(σ(1), . . . , σ(j))(z 
 (Ir σ(j+ 1))).

Proof. We calculate:

dα̃(σ(1), . . . , σ(j+ 1))(z) = α̃(σ(2), . . . , σ(j+ 1))(z � (Ir σ(1)))

+

j∑
i=1

(−1)iα̃(σ(1), . . . , σ(i) ∪ σ(i+ 1), . . . , σ(j+ 1))(z)

+ (−1)j+1α̃(σ(1), . . . , σ(j))(z 
 (Ir σ(j+ 1))).

Now α̃ equals α on sets of cardinality j so the first and last summands are those of the
statement of the corollary, while the sum vanishes, since α̃ vanishes on sets of cardinality
different from j. J
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We have a commutative diagram

Hp(X(p), E) CCp(X, E)

Hp+1(X(p+ 1), E) CCp+1(X, E)

d1

Ψ

∂

Ψ

and we have already identified d1. We now carefully follow the horizontal isomorphisms
to obtain the formula for the differential ∂ of the combinatorial complex. The following
notation will be useful. If j ∈ [p + 1], let λj be the unique order preserving bijection
[p+1]rj −→ [p], and, given a permutation σ ∈ Sp+1, wewrite σrσ(j) for the permutation
λσ(j)σλ

−1
j in Sp. In simple terms, this permutation is obtained by applying λσj to numbers

of the list σ1 · · · ^σ(j) · · ·σ(p+ 1). To illustrate, 2143r 2 = 132.

Lemma IV.4.3. With the notation above,
(1) the sign of σr σ(1) is (−1)σ−σ(1)−1, and
(2) the sign of σr σ(p+ 1) is (−1)σ+p+1−σ(p+1).

Proof. We may obtain the sign of a permutation by counting inversions, that is, ifm
is the number of inversions in σ, then the sign of σ is (−1)m. By deleting the first number
σ(1) in σ, we lose σ(1) − 1 inversions coming from those numbers smaller than σ(1), and
by deleting the last number in σ, we lose p + 1 − σ(p + 1) invesions, coming from those
numbers larger than σ(p+ 1). J

Definition IV.4.4. Fix a finite set I and a structure z ∈ X(I). The left deck of z is the set
ldk(z) = {z 
 (Ir i) : i ∈ I}, while the right deck of z is the set rdk(z) = {z � (Ir i) : i ∈ I}.
If z ∈ X(p) and j ∈ [p], we will write z ′j ∈ X(p − 1) for λj(z 
 ([p] r j)) and z ′′j ∈ X(p − 1)

for λj(z � ([p]r j)).

We now assume k is a field of characteristic zero. With this at hand, we have the
following computational result:

Theorem IV.4.5. The differential of the combinatorial complex CC∗(X, E) is such that if f :

X(p) −→ k[p] is Sp-equivariant, then df : X(p+ 1) −→ k[p+ 1] is the Sp+1-equivariant map so
that for every z ∈ X(p),

df(z) =

p+1∑
j=1

(−1)j−1
(
f(z ′j) − f(z

′′
j )
)
.

It follows that if X is a linearization kX0, the value of df(z) for f ∈ CCp(X, E) and z ∈ X0(p+ 1)
depends only on the left and right decks of z. This data is clearly degree-wise finite if X is of finite
type.

Proof. Fix f ∈ CCp(X, E). Following the correspondence described in Lemma IV.2.4,
the normalized cochain α : X(p) −→ E⊗p representing f is such that α(σ)(z) = (−1)σ

p! f(z)
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for each σ ∈ Sp and each z ∈ X(p). By Lemma IV.4.1 and its corollary, the differential of
α is represented by the cochain γ : X(p + 1) −→ E⊗(p+1) such that for z ∈ X(p + 1) and
σ ∈ Sp+1,

γ(σ)(z) = α(σ− σ(1))(z ′σ,1) + (−1)p+1α(σ− σ(p+ 1))(z ′′σ,p+1).

For brevity, we are writing z ′σ,i for z� ([p+1]rσ(i)) and z ′′σ,i for z
 ([p+1]rσ(i)). We are
also writing F− Ft to denote the composition obtained from F by deleting block Ft. Going
back to CCp+1(X, E) via Proposition IV.2.2, we obtain that

df(z) =
1

p!

∑
σ∈Sp+1

(−1)σ
(
α(σ− σ(1))(z ′σ,1) + (−1)p+1α(σ− σ(p+ 1))(z ′′σ,p+1)

)
andwe now split the sum according to the value of σ(1) andσ(p+1) as follows. Ifσ(1) = j,
then z ′σ,1 ∈ X([p+1]r j), so wemay transport this to [p] bymeans of λj: using the notation
previous to the statement of the theorem, we have

α(σ− σ(1))(z ′σ,1) = α(λj(σ− σ(1)))(z ′j).

Now the sign of the permutation corresponding to the composition λj(σ − σ(1)), which
corresponds to the permutation σr σ(1), is (−1)σ−(j−1) by Lemma IV.4.3, so that

α(σ− σ(1))(z ′σ,1) = (−1)σ−(j−1)f(z ′j).

Because there are p! permutations σ such that σ(1) = j for each j ∈ [p+1], we deduce that

1

p!

∑
σ∈Sp+1

(−1)σα(σ− σ(1))(z ′σ,1) =
p!

p!

p+1∑
j=1

(−1)σ+σ−(j−1)f(z ′j)

=

p+1∑
j=1

(−1)j−1f(z ′j)

and this gives the first half of the formula. The second half is completely analogous: the
sign (−1)σ+p+1 partially cancels with (−1)σ+p+1−j where j = σ(p + 1) and we obtain the
chain of equalities:

1

p!

∑
σ∈Sp+1

(−1)σ(−1)p+1α(σ− σ(p+ 1))(z ′′σ,p+1) =
p!

p!

p+1∑
j=1

(−1)jf(z ′′j )

= −

p+1∑
j=1

(−1)j−1f(z ′′j ).

This completes the proof of the theorem. J

As a consequence of this last theorem, we obtain the following immediate corollaries,
which address the structure of the differential of the combinatorial complex for bicomod-
ules that are symmetric or trivial to one side.
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Corollary IV.4.6.
D1. If X is symmetric, then for every nonnegative integer q there is an isomorphism

Hq(X, E) ' homSq(X(q), k[q]).

D2. If X has a trivial left structure, then the differential in CC∗(X, E) is such that for f ∈
CCp(X, E),

d ′f(z) =

p+1∑
j=1

(−1)j−1f(z ′j).

There is an analogous statement for for bicomodules with trivial right structure, and
we denote the corresponding differential by d ′′.

5. Some calculations using the combinatorial complex

To illustrate the use of the combinatorial complex, let us show how to recover the
calculations of Chapter III and, in doing so, try to convince the reader of the usefulness
of the results of this chapter. To begin with, we include a new computation that is greatly
simplified with the use of the combinatorial complex.

The species of singletons and suspension. Define the species s of singletons so that
for every finite set I, s(I) is trivial whenever I is not a singleton, and is k-free with basis I
if I is a singleton. By Lemma IV.1.2, the species s admits unique right and left E-comodule
structures, and thus a unique E-bicomodule structure. By induction, it is easy to check
that, for each integer q > 1, the species s⊗q, whichwewritemore simply by sq, is such that
sq(I) is k-free of dimension q! if I has q elements with basis the linear orders on I, and the
action of the symmetric group on I is the regular representation, while sq(I) is trivial in
any other case. By convention, set s0 = 1, the unit species. It follows that the sequence of
speciesS = (sn)n>0 consists of weakly projective species, andwe can completely describe
their cohomology groups. They are the analogues of spheres for species, its first property
consisting of having cohomology concentrated in the right dimension:

Proposition IV.5.1. For each integer n > 0, the species sn has

Hq(sn, E) =

k if q = n ,

0 else.

Proof. Fixn > 0. By the remarks preceding the proposition, it follows thatCCq(sn, E)
always vanishes except when q = n, where it equals homSn(kSn, k[n]), and this is one
dimensional. Because each sn is weakly projective, CC∗(sn, E) calculates H∗(sn, E), and
the claim follows. J

In Chapter V, we sketch how sX is a suspension of X, that is, there is an isomorphism
of graded k-modules H∗(sX, E)[1] ' H∗(X, E), at least when X is weakly projective.
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The exponential species. Every structure on a set of cardinal larger than 1 over the
exponential species E is fixed by an odd permutation: if I is a finite set with more than
one element, there is a transposition I −→ I, and it fixes ∗I. It follows that CCq(E, E) is
zero for q > 1, and it is immediate that CC0(E, E) and CC1(E, E) are one dimensional,
while we already know d = 0. Thus HHq(E, E) is zero for q > 1 and is isomorphic to k
for q ∈ {0, 1}. This confirms the results of Chapter III, Section 1.3.

To illustrate how sE is truly a suspension ofE, let us verify thatH∗(sE, E)[1] = H∗(E, E).
To do so, note that sE(I) is a free k-module and the elements i⊗∗Iri ∈ s(i)⊗E(Iri) for i ∈ I
form a basis. Moreover, a permutation of SI fixes the unique basis element in s(i)⊗E(Iri)
only when it fixes i, so that if I has more than three elements, every element of sE(I) is
fixed by an odd permutation. On the other hand, sE(∅) = 0, sE([1]) = k, and S2 acts on
sE([2]) by permutation, interchanging s([1])⊗ E([2]) and s([2])⊗ E([1]). Thus CCq(sE, E)
vanishes except when q ∈ {1, 2}, and in that case it is one dimensional. Finally, observe
that because s has a trivial action and E has a cosymmetric action, sE has a cosymmetric
action. Thus the computation ends here.

The species of linear orders. Recall the species of linear orders L from Chapter I,
Section 3, and endow its linearization kL with the E-bicomodule structure described in
Chapter II, Section 5. The kSj-module kL(j) is free of rank one for every j > 0, because Sj
acts freely and transitively on the set L(j) . It follows that the k-module homSj(kL(j), k[j])

is free of rank one, and by virtue of Theorem IV.4.5, the computation ends here: the dif-
ferential on this combinatorial complex is identically zero. We thus deduce that for every
integer j > 0 the k-module Hj(L, E) is free of rank one, which confirms, again, the results
of Chapter III.

The species associated to a simplicial complex. Amildly more elaborate example is
the following. Suppose K is a finite simplicial complex over a set C, and XK is the associ-
ated species of maps f : I −→ X with image a simplex of K, as described in Chapter III.
There is a left E-comodule structure defined on XK such that for f ∈ XK(I) and S ⊆ I, f
 S
is the restriction of f to S. This can be turned into an E-bicomodule structure on XK in two
ways: we may put on XK a cosymmetric structure which we write XsK, or the trivial right
structure, which we denote by XtK.

Fix a total order � on C. Consider the complex (S∗(K), dK) which has Sj(K) the k-
module of functions f : Kj −→ k, with Kj the set of j-simplices of K, and differential so
that, for s ∈ Kj+1,

(dKf)(s) =

j+1∑
i=0

(−1)if(si),

where si is the j-simplex of K obtained by deleting the ith vertex of s. Call S∗(K) the
complex of ordered simplicial cochains in K.
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Proposition IV.5.2. There is an isomorphism of graded k-modules

Θ : CC∗(XK, E) −→ S∗(K)[−1]

which is an isomorphism of complex in the two cases

Θt : CC∗(XtK, E) −→ (S∗(K)[−1], dK) Θs : CC∗(XsK, E) −→ (S∗(K)[−1], 0).

As a consequence of this, there are isomorphisms

H∗(XtK, E) ' H̃∗(SK) H∗(XsK, E) ' S∗(K)[−1]

where SK is the suspension of K.

Proof. For j > 0 and s ∈ Kj−1, let zs : [j] −→ C be the unique monotone function
with image s, and define Θj : CCj(XK, E) −→ Sj−1(K) as follows: if ϕ : XK(j) −→ k[j] is
equivariant, set Θj(ϕ)(s) = ϕ(zs) for s ∈ Kj−1. It is easy to see this is an isomorphism
using Observation IV.3.5, which in this case tells us an element in CCj(XK, E) vanishes on
non-injective functions. A direct calculation using the formulas for the differential ofCC∗

in each case, given in Theorem IV.4.5, and the definition ofdK show this is an isomorphism
of complexes. The last claim of the proposition follows immediately from this. J

The species of partitions. The species of partitions Π assigns to each finite set I the
collection Π(I) of partitions X of I, that is, families {X1, . . . , Xt} of disjoint non-empty sub-
sets of I whose union is I. There is a left E-comodule structure on Π defined as follows:
if X is a partition of I and S ⊂ I, X 
 S is the partition of S obtained from the non-empty
blocks of {x ∩ S : x ∈ X}. There is an inclusion E −→ Π as described in Chapter II §5.

Proposition IV.5.3. The cohomology group H0(Π, E) is free of rank one, and H1(Π, E) is
free of rank one generated by the cardinality cocycle. In fact, the inclusion E −→ Π induces an
isomorphism CC∗(Π, E) −→ CC∗(E, E).

Proof. A partition of a set with at least two elements is fixed by a transposition, and
this implies, in view of Observation IV.3.5, that CCj(Π, E) = 0 for j > 2. On the other
hand, CC0(Π, E) and CC1(Π, E) are both k-free of rank one, and we already know from
Proposition IV.4.5 that the differential of CC∗(Π, E) is zero. This proves both claims. J

The species of compositions. The species of compositions Σ is the non-abelian ana-
logue of the species of partitions Π. Let us recall its construction: the species of composi-
tions Σ assigns to each finite set I the set Σ(I) of compositions of I, that is, ordered tuples
(F1, . . . , Ft) of disjoint non-empty subsets of I whose union is I. This has a standard left
E-comodule structure such that if F = (F1, . . . , Ft) is a composition of I and S ⊆ I, F 
 S is
the composition of S obtained from the tuple (F1∩S, . . . , Ft∩S) by deleting empty blocks.
We view Σ as an E-bicomodule with its cosymmetric structure.
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Proposition IV.5.4. The morphism L −→ Σ induces an isomorphismH∗(Σ, E) −→ H∗(L, E)

and, in fact, an isomorphism CC∗(Σ, E) −→ CC∗(L, E).

Proof. It suffices that we prove the second claim, and, since C∗( ? , E) is a functor, that
for a fixed integer q, the map CCq(Σ, E) −→ CCq(L, E) is an isomorphism of modules.
This follows from Observation IV.3.5: a decomposition F of a set I is fixed by a transpos-
ition as soon as it has a block with at least two elements, and therefore an element of
CCq(Σ, E) vanishes on every composition of [q], except possibly on those into singletons.
Thus the surjective map CC∗(Σ, E) −→ CC∗(L, E) is injective. J

The species of graphs. We have already defined the species Gr of graphs along with
its cosymmetric E-bicomodule structure. We have the following result concerning the
cohomology groups of Gr:

Theorem IV.5.5. If k is of characteristic zero then, for each non-negative integer p > 0,
dimkH

p(Gr, E) equals the number of isomorphism classes of graphs on p vertices with no odd
automorphisms, namely,

1, 1, 0, 0, 1, 6, 28, 252, 4726, 150324, . . .

This sequence is [Slo2017, A281003].

Proof. Since the structure on Gr is cosymmetric, the differential of CC∗(Gr, E) van-
ishes, and Observation IV.3.5 tells us CCq(Gr, E) has dimension as in the statement of the
proposition. The tabulation of the isomorphism classes of graphs in low cardinalities can
be donewith the aid of a computer—we refer to BrendanMcKay’s calculation [McK2017]
for the final result— and then filter out those graphs with odd automorphisms. J

We can exhibit cocycles whose cohomology classes generate H1(Gr, E) and H4(Gr, E):
in degree one, we have the cardinality cocyle κ, and in degree four, the normalized cochain
p4 : Gr −→ E⊗4 such that for a decomposition F `4 I, and a graph g with vertices on I,
p4(F1, F2, F3, F4)(g) is the number of inclusions ζ : p4 −→ g, where p4 is the graph

1 2 3 4

and ζ(i) ∈ Fi for i ∈ [4]. One can check this cochain is in fact a cocycle, and it is normalized
by construction.

http://oeis.org/A281003
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6. Multiplicative structure of the spectral sequence

We have defined a complete descending filtration

C∗(X, E) ⊇ F0C∗(X, E) ⊇ · · · ⊇ FpC∗(X, E) ⊇ Fp+1C∗(X, E) ⊇ · · ·

on C∗(X, E)where FpC∗(X, E) consists of those cochains that vanish on τpX. Assume now
that X is a linearized comonoid of the form kX0, so that there is a cup product defined
on C∗(X, E), as detailed in Chapter III, Section 3. Remark that the proof of the following
proposition adapts immediately to any cup product on C∗(X, E) induced from a diagonal
map X −→ X� X.

Proposition IV.6.1. The cup product on C∗(X, E) is compatible with the filtration, in the
sense that, for every two non-negative integers p and p ′, we have that Fp ^ Fp

′ ⊆ Fp+p ′ .

Proof. Consider cochains α ∈ Fp and β ∈ Fp ′ . Then α ^ β ∈ Fp+p ′ by a pigeonhole
argument: if F = (F ′, F ′′) is a decomposition of a finite set with p+ p ′ elements, then F ′ is
a decomposition of a set with at most p elements or F ′′ is a decomposition of a set with at
most p ′ elements, and the formula

(α^ β)(F)(z) = α(F ′)(z 
 F ′)β(F ′′)(z � F ′′)

then makes it evident that α^ β is an element of Fp+p ′ . J

It follows from this proposition that the cup product descends to a product

FpC

Fp+1C
⊗ Fp

′
C

Fp
′+1C

−→ Fp+p
′
C

Fp+p
′+1C

so we obtain a multiplicative structure ? ^ ? : Epq0 × E
p ′q ′

0 −→ E
p+p ′,q+q ′

0 induced on
the E0-page of the spectral sequence. This induces in turn a multiplicative structure on
our spectral sequence (Er, dr)r>0. Because this spectral sequence degenerates at E2, we
can compute the cup product in H∗(X, E) from the combinatorial complex CC∗(X, E). We
describe how to do so in explicit terms.

If S is a subset of [n] = {1, . . . , n} with m 6 n elements, and if σ is a permutation of
S, we regard σ as a permutation of [m] by means of the unique order preserving bijection
λS : S −→ [m]. We say (σ1, σ2) is a (p, q)-shuffle of a finite set I with p + q elements
whenever σ1 is a permutation of a p-subset S of I, σ2 is a permutation of a q-subset T
of I, and S ∩ T = ∅. Call (S, T) the associated composition of such a shuffle. If (S, T) is a
composition of [n], we will write sch(S, T) for the Schubert statistic of (S, T), which counts
the number of pairs (s, t) ∈ S × T such that s < t according to the canonical ordering of
[n]. Our result is the following
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Theorem IV.6.2. The cup product ? ^ ? : CCp(X, E)⊗Cq(X, E) −→ CCp+q(X, E) is such
that for equivariant maps f : X(p) −→ k[p] and g : X(q) −→ k[q], and z ∈ X(p+ q),

(f^ g)(z) =
∑

(S,T)`[p+q]

(−1)sch(S,T)f(λS(z 
 S))g(λT (z � T))

where the sum runs through decompositions of [p+ q] with #S = p and #T = q.

Before giving the proof, we begin with a few preliminary considerations. First, con-
sider a (p, q)-shuffle (σ1, σ2) of [p + q], with associated composition (S, T), and let σ be
the permutation of [p+ q] obtained by concatenating σ1 and σ2.

Lemma IV.6.3. For any σ ∈ Sp+q and any (p, q)-composition (S, T) of [p+ q],
(1) the sign of σ is (−1)σ1+σ2+sch(S,T), and
(2) (−1)sch(S,T) = (−1)sch(T,S)+pq.

Proof. Indeed, by counting inversions, it follows that the number of inversions in σ is
precisely invσ1 + invσ2 + sch(S, T), which proves the first assertion. The second claims
follows from the first and the fact σ1σ2 and σ2σ1 differ by exactly pq transpositions. J

Recall that if α : X(p) −→ E⊗p is a cochain, we associate to it the equivariant map
f : X(p) −→ k[p] such that f(z) = α(νp)(z) where νp is the antisymmetrization element∑
σ∈Sp(−1)

σσ. Conversely, given such an equivariant map, we associate to it the cochain
α : X(p) −→ E⊗p such that α(σ)(z) = (−1)σ

p! f(z). We now proceed to the proof of The-
orem IV.6.2.

Proof. To calculate a representative of the class of f ^ g, we lift first lift the maps
f : X(p) −→ k[p], g : X(q) −→ k[q] to cochains α : X −→ E⊗p, β : X −→ E⊗q that are sup-
ported in X(p) and X(q) respectively, and represent f and g according to the correspond-
ence in the previous paragraph. As in formula (6), we compute for any decomposition
(F1, F2) of a finite set I and any z ∈ X(I) that

(α^ β)(F1, F2)(z) = α(F1)(z 
 F1)β(F2)(z � F2).

Now consider z ∈ X(p + q). If σ is a permutation of [p + q], write (σ1, σ2) for the (p, q)-
shuffle obtained by reading σ(1) · · ·σ(p) as a permutation of Sσ = {σ(1), . . . , σ(p)} and by
reading σ(p+ 1) · · ·σ(p+ q) as a permutation of Tσ = {σ(p+ 1), . . . , σ(p+ q)}. Then

(f^ g)(z) =
∑

σ∈Sp+q

(−1)σ(α^ β)(σ)(z)

=
∑

σ∈Sp+q

(−1)σα(σ1)(z 
 Sσ)β(σ2)(z � Tσ)

Fix a composition (S, T) of [p + q]. In the sum above, the permutations σ with (Sσ, Tσ) =

(S, T) are the (p, q)-shuffles with associated composition (S, T). We may then replace the
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sum throughout Sp+q with the sum throughout (p, q)-compositions (S, T) of [p + q] and
in turn with the sum throughout shuffles (σ1, σ2) of (S, T). This reads

(f^ g)(z) =
∑

(S,T)`[p+q]

∑
(σ1,σ2)

(−1)σ
1σ2α(σ1)(z 
 S)β(σ2)(z � T).

We now note that α(σ1)(z 
 S) = α(λS(σ
1))(λS(z 
 S)), that the sign of λS(σ1) ∈ Sp is

(−1)σ
1 , and that the same considerations apply to β, so we obtain that

(f^ g)(z) =
1

p!q!

∑
(S,T)`[p+q]

∑
(σ1,σ2)

(−1)σ
1σ2+σ1+σ2f(λS(z 
 S))g(λT (z � T)).

Using Lemma IV.6.3 finishes the proof of the proposition, for the sum
∑

(σ1,σ2)

(−1)σ
1σ2+σ1+σ2

consists of p!q! instances of (−1)sch(S,T). J

Suppose now that X is a symmetric E-bicomodule. Then Theorem IV.4.5 proves the
differential inCC∗(X, E) is trivial, while Lemma IV.6.3 alongwith Proposition IV.6.2 prove
that the cup product in CC∗(X, E) is graded commutative. We obtain the

Theorem IV.6.4. Suppose that X is a cosymmetric E-bicomodule. Then CC∗(X, E) is iso-
morphic to the cohomology algebra H = H∗(X, E) via the isomorphism of algebras E2 −→ E0(H).
In particular, H∗(X, E) is graded commutative. J

To illustrate, take X to be the species of linear orders. Each CCj(X, E) is one dimen-
sional generated by the map fj : L(j) −→ k that assigns σ 7−→ (−1)σ. A calculation, which
we omit, shows

Proposition IV.6.5. The algebra CC∗(L, E) is generated by the elements f1 and f2, so that if
fp is the generator of CCp(L, E), we have

f2p ^ f2q =

(
p+ q

p

)
f2(p+q), f1 ^ f2p = f2p+1, f1 ^ f2p+1 = 0.

These relations exhibit H∗(L, E) as a tensor product of a divided power algebra and an exterior
algebra. J

For a second example, consider Gr with its cosymmetric E-bicomodule structure. We
already know H4 is one dimensional, and the functional p4 : Gr(4) −→ k[4] that assigns
the 4-path to 1 and every other graph on four vertices to zero is a generator of CC4. Even
more can be said: our formula for the cup product and induction shows that for each
n > 1, the product fn is nonzero on the graph that is the disjoint union of n paths p4,
so that H4n is always nonvanishing for n > 1. Hence the cohomology algebra H∗(Gr, E)
contains both an exterior algebra in degree 1 and a polynomial algebra in degree 4.





CHAPTER V

Future work and problems

In this brief chapter we collect some problems and future projects related to the work
in this thesis.

Classifying space of a species. In Chapter IV we showed that we can associate to
every E-bicomodule X a complex CC∗(X, E). It is important to observe the differentials
d ′ and d ′′ described in that chapter make CC∗(X, E) into a cubical k-module: a cubical
k-module Q is a non-negatively graded k-module endowed with maps λεi : Qn −→ Qn−1

for each i ∈ {1, . . . , n} and ε ∈ {0, 1} that satisfy the cubical relations:

if 1 6 i < j 6 n and ε, ε ′ ∈ {0, 1}, then λεi ◦ λε
′
j = λε

′
j−1 ◦ λεi .

If (Q, λ0, λ1) is a cubical k-module, its associated chain complex, which is also denoted byQ,
has differential d : Qn −→ Qn−1 defined by

d =

n∑
i=1

(−1)i(λ0i − λ
1
i ).

If X is a linearization kX0, the cubical k-moduleCC∗(X, E) is obtained by applying cer-
tain hom-functors to a cubical set with components {X0(q)}q>0 and restriction maps λ0, λ1

obtained from the left and right coactions on X. This motivates us to construct, from this
cubical set, a topological space BX obtained as a “geometrical realization” of this com-
plex, in such a way that the cohomology of BX with coefficients in k is exactly H∗(X, E),
so that BX serves as a “classifying space” for X. Having this would make available, in
our context, the plethora of operations that can be performed on spaces, such as suspend-
ing it, considering its loopspace and obtaining fibrations with base or total space BX, for
example.

The suspension functor and cohomology. In Chapter IV we defined a species s and
proved the products s⊗j are “spheres” for the cohomology functor H∗( ? , E). Moreover,
we checked that s ⊗ E has the same cohomology as E, but shifted one degree up. This
motivates us to check whether s ⊗ ? acts as a suspension for H∗( ? , E). Assume that
X is weakly projective, so we may use CC∗(X, E) to compute H∗(X, E). We claim that
CC∗(sX, E) identifies with CC∗(X, E)[−1]. Indeed, for this it suffices to note, first, that
(sX)(n) is isomorphic, as an kSn-module, to the induced representation k⊗X(n−1) from

89
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the inclusion S1 × Sn−1 ↪→ Sn, and second, that the restriction of the sign representation
of Sn under this inclusion is the sign representation of Sn−1, so that:

homSn((sX)(n), k[n]) = homSn(IndSnS1×Sn−1(k⊗ X(n− 1)), k[n]))

' homS1×Sn−1(k⊗ X(n− 1),ResSnS1×Sn−1 k[n])

' homSn−1(X(n− 1), k[n− 1]).

A bit more of a calculation shows the differentials are the correct ones. By induction, of
course, we obtain that sjX has the cohomology of X, only moved j places up.

The cupproduct structure for a diagonalmap. LetX be anE-bicomodule. Wedefined
a cup product in Chapter III on the complexC∗(X, E)when the bicomodule structure on X
is defined on a linearized species. One can show that this cup product can be constructed
instead in terms of a diagonal map ∆ : X −→ X � X afforded by a comonoid structure
on X. The point of proceeding in this way is that we may define cup products on the co-
homology of E-bicomodules that admit an E-bicolinear map ∆ : X −→ X � X. It would
be desirable to determine whether different nontrivial diagonal maps determine different
cup products onH∗(X, E): it may very well happen that two diagonals∆ and∆ ′, although
inducing different cup products in C∗(X, E), descend to the same product in H∗(X, E). If
this is not the case, one may obtain different algebra structures on H∗(X, E), that may, for
example, aid in computations.

The spectral sequence of a connected bimonoid. One can extend the work done in
the first two sections of Chapter IV by replacingEwith any linearized connected bimonoid
H in Spk along the following lines. Let X be an H-bicomodule. The filtration FpC∗(X,H)
of C∗(X,H) by the subcomplexes

{α : X −→ H⊗∗ : α vanishes on τp−1X}

is natural with respect to H, and it is complete and bounded above. This yields a spectral
sequence (Er, dr)r>0 for each connected comonoidH starting at Ep,∗0 = Cp+∗(X(p), H)with
first page concentrated in a cone in the fourth quadrant, and to prove this is convergent
in the sense of [Wei1994], it suffices we show this spectral sequence is regular. It should
be possible to prove the filtration giving rise to such spectral sequence is regular, which
is equivalent to the statement that Hp(τjX,H) = 0 for large values of j. This is trivially
true if X is of finite length because in such case τjX = 0 for large values of j. Independent
of convergence matters, we can identify its first page. Indeed, for each natural number q,
write 〈H;q〉1 for the cosimplicial k-module

0 −→ H⊗0([q]) −→ H⊗1([q]) −→ · · · −→ H⊗j([q]) −→ · · ·
1Read “H evaluated at q”.
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1 1 1 1 1 1

0 0 1 3 6 10

0 0 0 2 11 35

0 0 0 0 6 50

0 0 0 0 0 24

0 0 0 0 0 0

Figure 1. The Betti numbers for L.

with coface maps and codegeneracies induced by ∆ and ε, and write 〈H̄;q〉 for the cor-
responding normalized complex of 〈H;q〉. Often we can find a topological space 〈H ;q〉
whose cohomology coincideswith that of 〈H;q〉. Denote byH p,q the cohomology groups
Hp+q(〈H;p〉), which are all Sp-modules. If X is weakly projective, the arguments outlined
in Section 2 of Chapter IV show that the E1-page of the spectral sequence has

E
p,q
1 ' homSp(X(p),H

p,q).

To illustrate this, we observe that the key point of Chapter IV, which is the case in which
H = E, is that we may take 〈H ;q〉 to be a sphere Sq−2, and H p,q = 0 for q 6= 0, while
H p,0 is the sign representation k[p] of Sp. In the general case, one must understand the
various modules H p,q, hopefully via a geometric construction.

We have preliminary results for this in the case H is the species of linear orders. With
the aid of a computer, we obtained the rank of H p,q for 0 6 p 6 5, which we list in
Figure 1. The attentive reader might notice this table is nothing else than that of the un-
signed Stirling numbers of the first kind. It would be desirable to understand the various
Sp-modules H p,∗ as completely as possible, as we did in the case of E. Remark that we
were able to prove H p,0 is the sign representation of Sp for every p ∈ N.

Singular cohomology of a topological space. In Chapter III we assigned to every
simplicial complex K a species whose cohomology is that of the suspension of K, see Pro-
position IV.5.2. It should be possible to do better, and assign to every topological space X
a species whose cohomology algebra is that of X. If possible, this would provide with a
converse to the construction proposed in the beginning of this chapter.

A plausible idea is the following. First, one can show that to every cubical k-module
Q one can assign a species SQ whose cohomology algebra coincides with that of Q; in
fact, we already know how to do this. Second, we can use the cubical setQ(X) of singular
cubes that Serre attaches in [Ser1951] to a topological space X: it is a theorem this cubical



92 V. FUTURE WORK AND PROBLEMS

complex calculates the ordinary cohomology algebra of such space. With this at hand the
species SQ(X) does what we need.

Cohomology and classical operations on species. The category of species Spk is en-
dowed, along with its monoidal Cauchy structure, with a wealth of operations that de-
scribe how combinatorial structures may be constructed from others, as thoroughly ex-
plained in [LBL1998]. It is desirable to understand if such operations restrict to the cat-
egory of E-bicomodules, that is, if X and Y are E-bicomodules, and if we write X ∗ Y for
the species obtained by applying a certain operation ? ∗ ? to X and Y, does X ∗ Y carry
a “natural” bicomodule structure arising from that of X and Y? In that case, how is this
reflected in the cohomology algebra of X ∗ Y? To illustrate, if X and Y are E-bicomodules,
the species X⊗ Y is also an E-bicomodule, and there is an arrow

(13) H∗(X, E)⊗H∗(Y, E) −→ H∗(X⊗ Y, E),

which may fail to be an isomorphism. Our calculations show this is an isomorphism,
for example, when X = E⊗k and Y = E⊗n for natural numbers n, k. This is, of course,
an instance of a Kunneth-like theorem for the product ⊗ and the functor C∗( ? , E). As a
second example, the species of Tr∗ of rooted trees satisfies the following equation

Tr∗ = s⊗ (E ◦ Tr∗),

where E is the exponential species, s is the species of singletons, and ◦ is a certain opera-
tion we did not define in this thesis. This equation has served wonders for enumerative
purposes, and it would be remarkable if it aided, too, in the computation of the cohomo-
logy algebra of Tr∗.

Finally, let us record herewe can now easily prove that for every pair of E-bicomodules
X and Y there is a natural map

CC∗(X)⊗ CC∗(Y) −→ C∗(X⊗ Y)

that is an isomorphism under mild hypothesis on one of X and Y, or if k is a field of
characteristic zero. In this case, we obtain the desired result that the arrow (13) is an iso-
morphism. This has the favourable consequence that the cohomology algebra of a con-
nected bimonoid in species is, in fact, a Hopf algebra, which should significantly aid in
computations.



APPENDIX A

Homological algebra

We collect in the form of an appendix some results and constructions we used in
Chapter IV. For further details, the reader can consult the texts mentioned towards the
end of the Introduction.

1. Bifunctors and homology

Let T : A × A −→ B be a bifunctor between abelian categories, covariant in the first
variable and contravariant in the second, and consider arbitrary short exact sequences

0 A ′ A A ′′ 0

0 C ′ C C ′′ 0

in A. We say T is left exact if the sequences

0 T(A ′′, C) T(A,C) T(A ′, C)

0 T(A,C ′) T(A,C) T(A,C ′′)

are exact. This is true, for example, if T is an hom bifunctor. Dually, one defines right
exactness of T , and then T is exact if it is both left and right exact. For the remaining of
the section, let A and C denote chain complexes in A, and let T(A,C) denote the standard
double complex in B. The following results are the formal statements of the informal
statement that “exact functors commute with homology”. If A or C is concentrated in
a degree and T is an hom bifunctor, this specializes to the commuting of homology and
hom functors for projective or injective objects, which we used in Proposition IV.2.2.

Proposition A.1.1. [CE1956, Chapter IV, Proposition 6.1] If T is right exact, there exists
a homomorphism of degree zero α : H(T(A,C)) −→ T(H(A), H(C)), natural in A and C. J

Proposition A.1.2. [CE1956, Chapter IV, Proposition 6.1a] If T is left exact, there exists a
homomorphism of degree zero α ′ : T(H(A), H(C)) −→ H(T(A,C)), natural in A and C. J

It is important to remark these statements are incomplete: both α and α ′ are the iden-
tity ofA andC have the trivial differential, and theymake certain diagrams commutative,
and this characterizes them uniquely.

Theorem A.1.3. [CE1956, Chapter IV, Theorem 7.2] If T is exact, α and α ′ are isomorph-
isms, and inverses of each other. J

93
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2. Spectral sequences

Fix an abelian category C, which usually is, for us, a category of representations of
a ring. A filtration of a complex C in C consists of a family of subcomplexes F = {FpC}

indexed by the integers and inclusions Fp+1C ↪→ FpC for each integer p. We assume that
{FpC} is exhaustive, meaning that

⋃
FpC = C. We say that F is bounded below if for every n

there is p such that FpCn = 0. Every filtration {FpC} of C induces a filtration on H(C) so
that

FpH(C) = image(H(FpC) −→ H(C))

and an associated bigraded object E0(C) so that

E
pq
0 (C) = FpCp+q/Fp+1Cp+q.

In particular, there is an associated bigraded object E0(H(C)) associated to the filtration
{FpH(C)}.

A cohomology spectral sequence (starting at r0) over C is a sequence (E, d) of bigraded
objects with bigraded maps {(Er, dr)}r>r0 satisfying the following properties:

• Every dr is a differential on Er,
• The map dr has bidegree (r, 1− r),
• There are isomorphisms H(Er, dr)→ Er+1 identifying H(dr) with dr+1.

We will write Epqr for a generic bigraded component of Er. A homology spectral sequence
is defined dually by considering the homological grading Erpq = E

−p,−q
−r and dr = d−r.

Thus dr has bidegree (−r, r − 1). There is a category of cohomology spectral sequences
with morphisms f : (E, d) −→ (E ′, d ′) those bigraded maps that preserve d and such that
H(fr) ' fr+1 under the isomorphisms H(Er) ' Er+1.

Because each Er+1 is a subquotient of Er, we can inductively define objects Zr, Br so
that

Br ⊆ Br+1 ⊆ · · · ⊆ Zr+1 ⊆ Zr

We set Z∞ = ∩Zr and B∞ = ∪B∞. Remark these objects always exist when dealing with
complexes of abelian groups, but may fail to exist in other abelian categories. We may
assume, however, that axioms AB4 and AB4∗ are satisfied, and consider the appropriate
limit and colimit objects.

A filtration is said to be regular if for each n we have Hn(FpC) = 0 for p large enough
depending on n. This implies, in particular, that Zrpq = Z∞

pq for r large enough —in this
case, we say that the spectral sequence is regular. If {FpC} is bounded below then the asso-
ciated spectral sequence is regular, for bounded below filtrations are themselves regular.
A spectral sequence is weakly convergent to a graded object H if there is a filtration {FpH}

on H and an isomorphism E∞ ' E0(H). We say a spectral sequence converges to a graded
object H if it is regular, weakly converges to H and if the maps

un : Hn(C) −→ lim←−Hn(C)/FpHn(C)
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are isomorphisms for each n. This last condition is immediate if the filtration {FpC} is
bounded below. The following is the simplest of many theorems that ascertain the exist-
ence and convergence of a spectral sequence associated to a chain complex.

Theorem A.2.1. Every filtered complex C naturally determines a cohomology spectral se-
quence (E, d) starting at

E
pq
1 = H(FpCp+q/Fp+1Cp+q).

If the filtration is bounded below and exhaustive, this spectral sequence converges to H(C). In
particular, there are isomorphisms

Epq∞ ' FpHp+q(C)/Fp+1Hp+q(C).
In general, it is virtually impossible to compute a spectral sequence in its totality, as

explained in [McC2001]:

“It is worth repeating the caveat about the differentials mentioned in Chapter 1: knowledge
of Er and dr determines Er+1 but not dr+1. If we think of a spectral sequence as a black box
with input a differential bigraded module, usually E1, then with each turn of the handle, the ma-
chine computes a successive homology according to a sequence of differential. If some differential
is unknown, then some other (any other!) principle is needed to proceed.”

However, the mere existence of a spectral sequence allows for computation in favour-
able cases. The following are concrete examples of this last vague claim. We used a more
refined variant of the second example in Chapter IV, Section 5.

Example A.2.2. A spectral sequence (E, d) collapses at a page r > 2 if there is either
exactly one nonzero column in Er or exactly one nonzero row in Er. If (E, d) converges to
H, then Hn ' Epqr for the unique pair (p, q) with p+ q = n.

Example A.2.3. Suppose C and C ′ are complexes with filtrations that are bounded
below and exhaustive. If f : C −→ C ′ is a morphism of filtered complexes there is an
inducedmorphismof spectral sequences f : E −→ E ′. If fr is an isomorphismat somepage
Er, one can show every fswith s > r is an isomorphism. This implies that f∞ : E∞ −→ E ′∞
is an isomorphism. Because E∞ and E ′∞ are the associated graded objects of H(C) and
H(C ′), we can conclude f is a quasi-isomorphism.

3. Inverse limits and the Mittag-Leffler condition

We follow [Wei1994, Chapter 3, §5]. In classical abelian categories filtered colimits are
exact functors, yet this is not the case for filtered limits. We can remedy this by use of
the first derived functor of lim←−. This has a simple description when the chosen abelian
category satisfies Grothendieck’s axiomAB4∗: we ask that products of epimorphisms are
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epimorphisms, or put differently, that the product of exact sequences be exact. This is
certainly true if the chosen abelian category is Ab, R mod or Ch(R mod)where R is a ring.

A tower of objects C in an abelian category C is a diagram of the form

· · · −→ Ci+1 −→ Ci −→ · · · −→ C1 −→ C0

which we denote by {Ci}. Put in other terms, a tower over C is an object in AbI where I is
the poset

· · · −→ i+ 1 −→ i −→ · · · −→ 1 −→ 0

If {Ai} is a tower in Ab (or a module category, or the category of chain complexes over a
module category) there is a map

∆ :
∏

Ai −→∏Ai

(ai)i 7→ (ai − ai+1)i

where ai+1 is the image of ai+1 under the mapAi+1 −→ Ai. It is clear that ker∆ = lim←−Ai.
We define coker∆ = lim←−1Ai, and set lim←−nAi = 0 if n /∈ {0, 1}.

Lemma A.3.1. Assume C is a complete abelian category with enough injectives and J is a small
category. Then CJ has enough injectives. In particular, for J = I, there are enough injective objects
of CI that are products of towers of the form

· · · E E E 0 · · ·

where E is injective in C.

Lemma A.3.2. If all the maps in a tower {Ai} are onto, then lim←−1Ai = 0.
Proof. We show that ∆ is onto. Pick (ai) ∈

∏
Ai, and any b0 ∈ A0, and let a1 be a

lift of a0 − b0 to A1. Inductively, let ai+1 be a lift of ai − bi to Ai+1. Then (bi) covers (ai)
under ∆, and the claim follows. J

Proposition A.3.3. The sequence of functors {lim←−n} form a δ-cohomological functor, and they
are, in fact, the derived functors of the limit functor lim←− : AbI −→ Ab.

Proof. If 0 −→ {Ai} −→ {Bi} −→ {Ci} −→ 0 is exact in AbI then axiom AB4∗ gives a
diagram with exact rows

0
∏
Ai

∏
Bi

∏
Ci 0

0
∏
Ai

∏
Bi

∏
Ci 0

∆ ∆ ∆
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The snake lemma now gives the desired functorial exact sequence

0 lim←−Ai lim←−Bi lim←−Ci
lim←−1Ai lim←−1 Bi lim←−1Ci 0

To show that lim←−n ' Rn lim←− for each non-negative n, it suffices we show that {lim←−n} form
a universal δ-functor. To prove this last claim, it suffices we show that lim←−1 vanishes on
enough injectives, the remaining lim←−n are already identically zero. By LemmaA.3.1, there
are enough injective objects {Ei} in AbI that are a product of towers whose maps are onto,
so the maps in {Ei} are also onto by axiom AB4∗. By Lemma A.3.2 it follows that

lim←−1Ei = 0
which is what we wanted. J

Definition A.3.4. A tower of abelian groups {Ci} satisfies the Mittag-Leffler condition
if for every non-negative integer k there is j > k such that, for every i > j, the image of
Ci → Ck equals the image of Cj → Ck. This is in particular true if Cj → Ck is the zero
map.

Proposition A.3.5. If a tower of abelian groups {Cj} satisfies the Mittag-Leffler condition,
then lim←−1Cj = 0.

Proof. Suppose first that {Cj} satisfies the trivial Mittag-Leffler condition, and let us
show that ∆ is onto. Given bi ∈ Ci set ak = bk + bk+1 + · · ·+ bj−1 where j is such that the
mapCj −→ Ck is zero. Then (ai) covers (bi), as desired. Consider now an arbitrary tower
{Cj}, and define a tower {Aj} so that Aj ⊆ Cj is the eventually stable image of the maps
Ci −→ Cj. The maps in the tower {Aj} are all onto so by Lemma A.3.2 lim←−1Aj = 0, and
the tower {Cj/Aj} satisfies the trivial Mittag-Leffler condition, so lim←−1Cj/Aj = 0. Finally,
from the short exact sequence of towers

0 {Aj} {Cj} {Cj/Aj} 0

we conclude that lim←−1Cj = 0, as claimed. J

The following theorem, necessary for the study of the spectral sequence in Chapter IV,
is analogous to many results that precisely describe the failure of a left exact functor to
preserve the homology of a complex when only its first derived functor is nonvanishing.

TheoremA.3.6. If {Cj} is a tower of cochain complexes of abelian groups satisfying theMittag-
Leffler condition, there is a short exact sequence

0 lim←−1H∗(Ci)[1] H∗(lim←−Ci) lim←−H∗(Ci) 0
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Proof. Write C for the complex lim←−Ci and view the cycles Z and boundaries B of C
as subcomplexes with zero differential. In particular, H(C) = Z/B[−1] is also a complex
with zero differential. Because lim←− is left exact, lim←−Zi is exactly Z. Moreover, the exact
sequence of towers of complexes

0 {Zi} {Ci} {Bi[−1]} 0
d

shows that lim←−1 Bi = 0 and that the following sequence is exact

0 B[−1] lim←−Bi[−1] lim←−Zi 0.

Similarly, from the exact sequence

0 {Bi} {Zi} {H∗(Ci)} 0

it is deduced that lim←−1 Zi and lim←−1H∗(Ci) are isomorphic, and that

0 lim←−Bi Z lim←−H∗(Ci) 0.

is exact. All this shows that C is filtered by subcomplexes

0 ⊆ B ⊆ lim←−Bi ⊆ Z ⊆ C
whose filtration quotients are B, lim←−1H∗(Ci)[1], lim←−H∗(Ci) and C/Z. This gives a short
exact sequence

0 lim←−Bi/B Z/B Z/lim←−Bi 0

which, as just observed, defines a short exact sequence

0 lim←−1H∗(Ci)[1] H∗(C) lim←−H∗(Ci) 0,
η ′

and it is not hard to check η ′ is the canonical map η : H∗(C) −→ lim←−H∗(Ci). This com-
pletes the proof of the theorem. J
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