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Introducción

El objetivo de esta tesis es entender por qué las fibraciones sobre un espacio pueden ser in-
terpretadas como representaciones del tipo homotópico de este espacio. El trabajo está dividido
en dos capítulos.

El primer capítulo repasa la teoría de fibraciones esféricas y apunta a estudiar algunos con-
ceptos que podrían acercar la K-teoría a la Teoría Homotópica de Tipos (HoTT). La parte prin-
cipal de este capítulo es la demostración de un conocido teorema que relaciona los grupos de
homotopía del espacio clasificante de fibraciones esféricas con los grupos de homotopía estables
de las esferas.

En el segundo capítulo intentamos traducir las nociones básicas de la teoría de fibraciones es-
féricas a HoTT. Esto nos lleva a conjeturar la validez de resultados conocidos en teoría de homo-
topía y teoría de categorías, como la conmutatividad de limites homotópicos finitos y colímites
homotópicos filtrantes. El estudio de espacios clasificantes nos lleva naturalmente a considerar
el concepto de diagramas secuenciales y tipos compactos. Si bien estos son temas relativamente
nuevos en este contexto, es claro que son buenas abstracciones y una teoría sobre estas sería
útil. Varias ideas en esta sección se deben a Egbert Rijke. Cuando consideramos los grupos de
homotopía del espacio clasificante de fibraciones esféricas en HoTT debemos también estudiar
el grado de funciones Sn → Sn y la acción del grupo fundamental de un espacio en sus grupos
de homotopía.

En el segundo capítulo el lenguaje de HoTT formaliza la analogía entre representaciones
de un tipo homotópico y fibraciones sobre el mismo, y teniendo esto en cuenta concluimos
definiendo las nociones básicas de una teoría de ∞-grupos y sus representaciones en HoTT.
El segundo capítulo es exploratorio, pocos argumentos están formalizados y verificados en una
computadora y algunos argumentos son bastante informales. Está pensada como una colección
de ideas bajo estudio y que serán objeto de trabajo futuro.
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Introduction

Scope

The objective of this thesis is to understand why fibrations over a space can be regarded as
representations of its homotopy type. The work is divided in two chapters.

The first chapter reviews the theory of spherical fibrations and aims to study some concepts
that could bring K-theory closer to Homotopy Type Theory (HoTT). The main content of the
chapter is the statement and proof of a well known theorem that relates the homotopy groups
of the classifying space of spherical fibrations to the stable homotopy groups of the spheres.

In the second chapter we attempt to translate the basics of the theory of spherical fibrations
into HoTT. This leads us to conjecture the validity of well known results of homotopy theory
and category theory in the HoTT setting, such as the commutativity of finite (homotopy) limits
and filtered (homotopy) colimits. When studying classifying spaces we are naturally lead to the
concept of sequential diagram and the concept of compact type. Although these are relatively new
topics in this context it is already clear that they are good abstractionworthy of the development
of a theory about it. Many ideas in this section are due to Egbert Rijke. When considering the
homotopy groups of the classifying space of spherical fibrations in HoTT we are also lead to the
study of the degree of maps Sn → Sn and the action of the fundamental group of a space on its
homotopy groups.

In the second chapter the language of HoTT formalizes the analogy between representations
of a homotopy type and fibrations over the type, and having this in mind we conclude by mak-
ing an attempt to define the very basics of the theory of ∞-groups and their representations
in the HoTT setting. The second chapter is exploratory, few of the arguments given there are
formalized and some of them are quite informal. It is intended as a collection of ideas that are
currently under study and that will be the subject of future work.

Prerequisites

For both chapters it is convenient to have some background in category theory since this
language simplifies many explanations. The reader is referred to the classical text [ML98]. A
good understanding of the basic notions in topology and of some basic notions of algebraic
topology and homotopy theory will also be useful. Standard references for algebraic topology
are [Spa94], [Hat02], [Swi02]. References for topological K-theory are [Ati94], [Kar08], [JM74]
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NOTATION AND CONVENTIONS

and [Hus94].
For the second chapter the reader is assumed to have some knowledge of the basics of Ho-

motopy Type Theory. The canonical reference for this is the HoTT book [Uni13]. For a shorter
but complete introduction to HoTT we also recommend [Rij12].

Notation and conventions

Generalities

0.0.0.1 Notation (Categories). Standard categories that we will be using are:

Set for sets.
Cat for categories.

Space for “nice” topological spaces. We will use CW-complexes.
hSpace for “nice” topological spaces up to homotopy: The objects are CW-complexes and

the arrows, maps up to homotopy.
cSpace for “nice” compact topological spaces.

hcSpace for “nice” compact topological spaces up to homotopy.
Grp for groups.
Ring for unital rings.
Ab for abelian groups.

csGrp for commutative semigroups.
vecK for finite dimensional vector spaces over a field K.

Notice that instead of CW-complexes up to homotopy we can also use topological spaces up to
weak equivalence. See [Qui67] for the theory that lets us identify these two categories.

0.0.0.2 Notation (hom spaces). If C is a category and A and B are two objects of C we will use
C(A,B) to denote the arrows between A and B. When the category C is implicit we may also
use the notation [A,B]. When doing so for spaces A and B (see Notation 0.0.0.7) notation [A,B]

will always mean hSpace(A,B), the set of maps between A and B up to homotopy.

0.0.0.3 Notation (Pointed things). When using pointed “things” such as pointed sets, pointed
functions between pointed sets, etc, we will use the symbol “•”. For example the set of pointed
functions between two pointed sets A and B will be denoted by Set•(A,B). And the set of
pointed maps up to homotopy between two spaces will be denoted by [A,B]•.

0.0.0.4 Notation (Equivalences and analogies). Many times we will state that there is an equiv-
alence between two classes of objects. In general we could be referring to a bijection of sets, an
equivalence of categories, an equivalence of types, etc. We will use a double line for this. For
example, we can state (part) of the Yoneda lemma as:

[c,−]→ [d,−]

d→ c

We can read this as “A natural transformation between the representable functors [c,−] and
[d,−] is the same as an arrow c→ d.”
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When we only have a construction that assigns to each object of a certain kind an object of
another kind we will denote so with a single line. For example given a group G and a subgroup
H ≤ Gwe can construct an action on the cosets GyG/H , but there is no way to assign to each
action GyX a subgroup H ≤ G in a natural way. We write this as:

H ≤ G
GyX

0.0.0.5 Notation (Conjectures). Results markedwith a dagger “†” depend on conjectures. These
will appear in the second chapter.

0.0.0.6 Notation (Spheres). In both chapters the n-dimensional sphere will by denoted by Sn.

Conventions for the first chapter

0.0.0.7 Notation (Spaces andmaps). We reserve the wordmap for continuous functions between
topological spaces. The word function will usually mean function between sets. The word space
will mean CW-complex.

0.0.0.8 Notation (Paths). Some times we will write paths in some space A as a map p : I →
A, where I is the interval space. But other times it will be useful to explicitly state what the
endpoints of the path are. For a path that starts at a and ends at b we will also use the notation
p : a b.

0.0.0.9 Definition (H-spaces). An H-space is a space X together with an associative operation
µ : X ×X → X and a two-sided unit e ∈ X . The associativity and unit law must hold on the nose,
not just up to homotopy.

Conventions for the second chapter

0.0.0.10 Notation (Universe). For simplicity we will use just one universe which we denote by
U although strictly speaking some constructions will actually live in a higher universe.

0.0.0.11 Notation (Spaces andmaps). Here spacewill mean type, andmapwill mean computable
map between types.

0.0.0.12 Notation (Paths). Path spaces in HoTT will be denoted by the usual a =A b where
a, b : A. When the type that the elements inhabit is implicit we will omit the subscript and we
will write just a = b.The composition of two composable paths p and q will be denoted by p � q.

0.0.0.13 Notation (Definitionaly equality). Definitional equality will be denoted by ≡ as usual
in HoTT. When defining an inhabitant of a type we will often use the notation a ··≡ b : A, which
means that a is just a renaming of b : A. Of course in this case we have a ≡ b.

0.0.0.14 Notation (Dependent products and dependent sums). If B : A → U is a type family
indexed by A : U we will denote the induced dependent product by (a : A) → B(a). If B(a)

is again a function type we will usually omit parenthesis, using the standard convention that
C → D → E means C → (D → E).
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In the same setting, the induced dependent sum will be denoted by (a : A) × B(a). Inhabi-
tants of a dependent sum will be denoted by tuples. Again, if B(a) is a dependent sum we will
omit parenthesis.

0.0.0.15 Definition (H-spaces). In the second chapter the notion of H-spacewill be the one given
in [Uni13, Definition 8.5.4].

0.0.0.16 Notation (Mere things). A mere proposition is a −1-truncated type as defined in [Uni13,
Definition 3.3.1]. Sometimes we will say “mere inhabitant a : A” meaning an inhabitant m :

‖A‖−1. Will mostly do so when proving a mere proposition and thus we will immediately as-
sume thatm is of the form |a|−1 justifying the abuse of terminology.

Standard algebraic topology definitions and results

The following are standard definitions andwell known propositions that can be found in the
cited bibliography about algebraic topology. The reader might wish to skip this part since this
propositions will be referenced when needed.

0.0.0.17 Notation (Automorphisms space). For X any space we write hAut(X) for the space of
self homotopy equivalences of X with the compact open topology. Notice that this space has a
natural H-space structure given by composition of self homotopy equivalences (composition is
associative on the nose).

0.0.0.18Definition (Suspension and loop space). Given a spaceX we can construct its suspension
as a quotient ΣX := X × I/ ∼, where the equivalence relation is given by (x, 0) ∼ (y, 0) and
(x, 1) ∼ (y, 1) for all x, y ∈ X . For a map f : X → Y we can consider the product map f × I :

X×I → Y ×I that is the identity in the second component. It is straightforward to check that this
induces amapbetween the quotientsΣf : ΣY → ΣY . ThismakesΣ a functorΣ : Space→ Space.

When working with pointed spaces one usually uses the reduced suspension functor. The
construction of the reduced suspension of a space is the same as the suspension of the space,
but one also collapses the “line” that goes through the distinguished point of the space: If (X,x)

is the pointed space then its reduced suspension collapses {(x, t) ∈ ΣX | t ∈ I} to a point. It is
easy to check that this construction is also functorial.

For a pointed space (X,x) there is another related construction, the loop space ΩX . This is
the subspace ofXI given by paths starting and ending in x. This construction is also functorial.

0.0.0.19 Proposition (Exponential laws). For spaces X,Y, Z there is a natural isomorphism:

Space(X × Y,Z) ' Space(X,ZY ).

If X,Y and Z are pointed spaces we have the natural isomorphism:

Space•(X ∧ Y,Z) ' Space•(X,Z
Y ),

where ZY is the pointed exponential.

0.0.0.20 Definition (Stable homotopy groups of spheres). Define for each k ∈ N the group
πS
k = colim n πn+k(Sn), where the colimit is taken to the sequential diagram of the suspension

morphisms πn+k(Sn)→ πn+k+1(Sn+1) given by the functoriality of the reduced suspension.
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0.0.0.21 Lemma. If the fundamental group of a spaceX acts trivially on the n-th homotopy group there
is a bijection [Sn, X]• ' [Sn, X].

0.0.0.22Definition (Degree of an endomap of a sphere). For amap Sn → Sn one can consider the
inducedmapZ→ Z in then-th homology group. For this one has to choose the same orientation
on both copies of Sn. Moreover, the degree is multiplicative, which means that composition
of endomaps corresponds to multiplication of integers. One can check that this is the same
morphism induced by regarding the map as a representative of the n-th homotopy group of the
sphere Sn. To do this one must use Lemma 0.0.0.21 to identify pointed maps with non-pointed
ones using the fact that the fundamental group of the n-dimensional sphere is trivial for n > 1,
and for example Hurewicz’s theorem to relate homotopy and homology. For our purposes it
suffices to take the characterization using homotopy groups as the definition of degree.

0.0.0.23 Proposition (Degree determines the homotopy class). From the fact that the n-th homotopy
group of the n-dimensional sphere is Z (and the remark made in the definition above) one deduces that the
homotopy equivalence class of pointed maps Sn →• Sn is completely determined by its degree.

0.0.0.24 Proposition (Action of fundamental group of an H-space). For any H-space A the action
of π1(A) on πn(A) is trivial.
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1

Classical spherical fibrations

The idea of this chapter is tomotivate the study of spherical bundles and spherical fibrations.
We will see that spherical fibrations are classified in a suitable way by a space, and that the
homotopy groups of this space are the stable homotopy groups of spheres. On the other hand
we will introduce real K-theory and using this classifying space we will construct a morphism
from the real K-theory of the spheres to the stable homotopy groups of spheres. This is called
the J-homomorphism.

The reason why this morphism is so important is that it is far from trivial and yields a lot of
elements of the stable homotopy groups of spheres. These elements are easy to compute since
the real K-theory of spheres is completely described by the Bott periodicity theorem. For many
applications of orthogonal spherical bundles and the J-homomorphism the reader can take a
look at the series of four papers by Adams that starts with [Ada63], at Atiyah’s article [Ati61]
and at Hatcher’s [Hat09, Chapter 4].

We will start defining fibrations and fiber bundles, then we will define real K-theory and
spherical bundles. The main focus of this chapter are Sections 1.5 and 1.7, and in particular the
proof of Theorem 1.6.0.4 that essentially states that the homotopy groups of the classifying space
of spherical bundles are isomorphic to the stable homotopy groups of the spheres. This seems
to be a well known theorem but it is not easy to find a complete proof in the literature.

1.1 Fibrations

Let us motivate the definition of fibration by asking some questions. Consider a function
between sets f : E → B. This function induces the function that takes an element b ∈ B to its
fiber f−1(b) ∈ Set.

F : B → Set

b 7→ f−1(b)

One can read this as "a function between sets induces a family of sets parametrized by the
codomain of the map".

The following remark takes this idea further.

13



CHAPTER 1. CLASSICAL SPHERICAL FIBRATIONS

1.1.0.1 Remark (Indexed families). Given a set B there is a bijection between families of sets
indexed by B and functions between sets with B as its codomain. We write this as:

E → B

B → Set

In fact this bijection can be lifted to an equivalence of categories. To be precise consider
the category that has as objects families of sets indexed by B. We can denote an object of this
category as {Eb}b∈B . An arrow between two families {Eb}b∈B and {E′b}b∈B is given by a family
of functions {fb : Eb → E′b}b∈B . The statement is that this category is equivalent to the slice
category Set/B . The proof of this last fact is a simple exercise in category theory: To construct
a function E → B out of a B-indexed family of sets assume given a family {Eb}b∈B and define
E to be the disjoint union

∐
b∈B Eb = {(b, x) | b ∈ B, x ∈ Eb}. Given an arrow between two B-

indexed families just “glue” the family {fb}b∈B to form a function f such that f(b, x) = fb(x). It
is easy to show that this construction constitutes an inverse for the functor that takes a function
E → B to the family of its fibers.

Now translate everything we just said to the world of maps and spaces: E and B are now
spaces, f is now a (continuous) map and F takes values in Space since the fibers f−1(b) have
a natural topology, the subspace topology. This might lead us to ask to ourselves: Does the
fact that f is a continuous map imply that F is in some sense continuous? This is an ill-posed
question because it does not say in which sense F should be continuous, but let us try to make
sense out of it. From a homotopy theoretic point of view we could say that F is continuous if
paths p : b  a in B induce continuous maps p̃ : F (b) → F (a). One way to formalize this is to
consider the fundamental groupoid ofB, usually denoted as π1(B). The fundamental groupoid
of B is a category where the objects are the points b ∈ B and the arrows are paths p : b a up
to homotopy (notice that this category is indeed a groupoid since paths are reversible). Let us
refine our first question as: Is there a functor F : π1(B) → Space that behaves like the function
F on objects? Since we are using paths up to homotopy it might be more reasonable to ask
for a functor F : π1(B) → hSpace. How should this functor act on arrows? Remember that
arrows in this category are paths in B up to homotopy. The functor should then assign to each
path p : a b a homotopy equivalence between f−1(a) and f−1(b). Observe that this potential
construction would yield a representation of the fundamental groupoid of B: The image of
this construction is again a groupoid that remembers some of the structure of the fundamental
groupoid of B, and maybe collapses part of the structure also. Notice that if B were to be path
connected then the fiber would be essentially unique: f−1(a) would be homotopy equivalent to
f−1(b) for any a, b ∈ B.

If themap f is a fibration then this construction can indeed be carried on. Althoughwewon’t
do it, it is even possible to lift the representation of the fundamental group of the base spaceB of
a fibration to a representation of the homotopy type of B using some standard higher category
theory. Nonetheless the reader should keep in mind the following analogy.

1.1.0.2 Remark (Representations of homotopy types). Fibrations over a connected space B are
the representations (in hSpace) of the homotopy type ofB in the sameway thatG-sets are repre-
sentations (in Set) of a groupG. Under this analogy the (essentially unique) fiber F of a fibration
over B corresponds to the G-set X of a representation of a group G.

14



CHAPTER 1. CLASSICAL SPHERICAL FIBRATIONS

The following remark will be of use in the second chapter to exemplify in which way fibra-
tions over a homotopy type and representations of this homotopy type and can be identified in
HoTT:

1.1.0.3 Remark. Although in the category of sets we have the equivalence

E → B

B → Set.

When looking at (topological) spaces this is a priory not true. We only stated that a fibration
E → B induces a functor π1(B)→ hSpace:

E → B
π1(B)→ hSpace.

Before giving the definition of fibration let us give two examples of maps where the domain
is parametrized by the codomain in a “continuous” way.

1.1.0.4 Example (Double coverings of the circle). Consider the map:

S1 → S1

z 7→ z2

We can picture it as:

Figure 1.1: Möbius covering of the circle.

Notice how the fiber of each element is S0. This map is sometimes called theMöbius covering
of the circle. A similar situation is the one of the map S1 t S1 → S1 that maps each copy of S1

homeomorphically to S1 (here t denotes the disjoint union):

15



CHAPTER 1. CLASSICAL SPHERICAL FIBRATIONS

Figure 1.2: Trivial two-sheeted covering of the circle.

Once again the fiber of eachpoint is S0. Ifwe think of the domain of amap as beingparametrized
by its codomain we see in this example that there are at least two distinct ways in which we can
put a topology in the disjoint union of the fibersE =

∐
x∈S1 S0 to get a (continuous)mapE → S1.

Informally, there are at least two distinct ways in which we can glue S1-many S0’s.

1.1.0.5 Definition (Homotopy lifting property with respect to cubes). A map p : E → B has
the homotopy lifting property with respect to cubes if every time we have a cube c : In → B

in B and a lift of one of its faces f : In−1 → E there exists a lift of the entire cube c : In → E.
Diagrammatically:

In−1 E

In B

f

i p

c

c

Here i is the inclusion of the (n − 1)-dimensional cube In−1 in one of the faces of the n-
dimensional cube In.

1.1.0.6 Definition ((Weak) fibrations). Amap p : E → B that has the homotopy lifting property
with respect to cubes is called a weak fibration or a Serre fibration. We will call them simply
fibrations1. We call B the base space and E the total space.

1Since we are only considering CW-complexes there is really no difference between weak fibrations and standard
(Hurewicz) fibrations. Concretely, the lifting property with respect to cubes implies the lifting property with respect to
any CW-complex, as one can show by induction on the dimension of the cells.

16



CHAPTER 1. CLASSICAL SPHERICAL FIBRATIONS

Figure 1.3: Homotopy lifting property with respect to cubes.

1.1.0.7 Notation (The fiber point of view). Since we are interested in the way the fiber of a map
varies when we move along its codomain we will frequently use the following notation. If f :

E → B is a fibration and b ∈ B we will write Eb for the fiber of b through f .
We will also make many constructions that will have a very concrete characterization when

we look at each fiber. When applying the same construction to each fiber we will say that the
construction is made fiberwise. We will refer to the idea of regarding the total space as a space
parametrized by the base space as the fiber point of view.

It is not obvious that the definition of fibration we just gave implies that there exists a functor
π1(B) → hSpace that maps every point in B to its fiber. To prove this one must use some basic
theory about fibrations (see for example [Spa94, Chapter 2, Section 8, Theorem 12]).

A very important consequence of this fact is that fibrations have an essentially unique fiber
in the following sense.

1.1.0.8 Remark (Uniqueness of the fiber). Let B be a connected space and let E → B be a fibra-
tion. Then the fibers of any pair of points are homotopy equivalent. This follows from the result
stated above since a path between the two points induces a homotopy equivalence between the
fibers.

For this reason it makes sense to introduce the following notation.

1.1.0.9 Notation (Standard notation for fibrations). Let B be a pointed connected space an let
E → B be a fibration. One usually denotes this fibration as F ↪→ E → B where the first map is
the inclusion of the fiber of the base point of B in the total space.

By abuse of notation if we know that the fiber in each component is homotopy equivalent to
F we will use the notation F ↪→ E → B even if B is not connected.

Another very important property of fibrations is that, up to homotopy, every map is equiv-
alent to a fibration. Concretely this means that given a map f : A→ B there exists a homotopy
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CHAPTER 1. CLASSICAL SPHERICAL FIBRATIONS

equivalence e : A → E and a fibration p : E → B such that f = p ◦ e. The canonincal reference
for this subject –that leads to an abstract notion of fibration and eventually to the concept of
model category– is [Qui67].

Regarding fibrations over a fixed spaceB as the objects of study we now define an appropri-
ate notion of morphism between these objects.

1.1.0.10 Definition (Fibration maps). Amorphismm between two fibrations over the same base
E → B and E′ → B is given by a commutative triangle of the form:

E E′

B

m

p p′

1.1.0.11 Remark. From the fiber point of view this is the same as a family of maps:

{mb : Eb → E′b}b∈B

such that the whole glued mapm is continuous. We say thatm respects or preserves the fibers.

A concept of particular interest for us will be the one of F -fibrations over a space B. As a
matter of fact we will be interested in classifying this objects.

1.1.0.12 Definition (F -fibrations). Fix two spaces F and B. Fibrations of the form F ↪→ E → B

will be called F -fibrations over B, or simply F -fibrations if the base space is implicit.

There is a notion of homotopy equivalence between F -fibrations called fiber homotopy equiv-
alence. Essentially a fiber homotopy equivalence between fibrations is a homotopy equivalence
of the total spaces that respects the fibers.

1.1.0.13 Definition (Fiber homotopy equivalence). A map m between two fibrations E1 → B

and E2 → B is called a fiber homotopy equivalence if there exists a mapm going from E2 → B

to E1 → B and fiber preserving homotopies h : E1 × I → E1 and h′ : E2 × I → E2 between
m′ ◦m and the identity of E1, andm ◦m′ and the identity of E2 respectively. When such anm
exists we say that E1 and E2 have the same fiber homotopy type.

Finally let us state a very useful property of fibrations that will be needed later, namely the
long exact sequence of homotopy groups induced by a fibration. For a proof of this fact see
any book with an introduction to algebraic topology, for example the construction in [Hat02,
Proposition 4.66].

1.1.0.14 Proposition (Long exact sequence induced by a fibration). Given three pointed spaces F ,
E and B and a point preserving fibration F ↪→ E

p−→ B there exists a long exact sequence:

· · · → πn+1(F )→ πn+1(E)→ πn+1(B)→ πn(F )→ · · ·

→ π1(F )→ π1(E)→ π1(B)→ π0(F )→ π0(E)→ π0(B).

Where exactness means that the image of each morphism is equal to the kernel of the following morphism.
Morphisms for n > 1 are abelian group morphisms, for n = 1 they are group morphisms and for n = 0

they are pointed set morphisms.
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1.1.0.15 Remark (Morphisms of the long exact sequence and homotopy pullbacks). To get the
long exact sequence one can make the following constructions: The morphisms πk(F )→ πk(E)

are induced by the inclusion of the fiber F ↪→ E and the functoriality of the loop space con-
struction (recall Definition 0.0.0.18 and the fact that the homotopy groups are defined as the
connected components of an iterated loop space). Similarly the map p : E → B induces mor-
phisms πk(E)→ πk(B). What we need now is a so-called connecting map ΩB → F . This can be
done with the homotopy fiber construction as showed in [Hat02, Proposition 4.66]. More gener-
ally, the homotopy fiber of a pointed map can be defined as the homotopy pullback:

hfib(p) E

{∗} B

p

where {∗} → B is the inclusion of the base point of B.
The homotopy pullback of a cospanA f−→ C

g←− B is defined as the space of triples {(a, b, p) ∈
A×B×CI | p(0) = f(a), p(1) = g(b)}with the subspace topology2. See howwith this definition
the following is a homotopy pullback:

ΩB {∗}

{∗} B

By a simple application of the lifting property of fibrations one sees that if F ↪→ E
p−→ B is

a fibration the natural inclusion F → hfib(p) is a homotopy equivalence. On the other hand a
pullback-pasting lemma for homotopy pullbacks gives us a map ΩB → hfib(p):

ΩB {∗}

hfib(p) E

{∗} B

p

Together with a choice of homotopy inverse for the equivalence F ∼−→ hfib(p) we obtain the
connecting map ΩB → F . If we do not make this choice we get a map defined up to homotopy.
Notice that iterating this construction we get in fact the long exact sequence of the fibration.

2One should also prove that we can perform an equivalent construction to obtain a CW structure on the homotopy
pullback.
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1.2 Fiber bundles

Now it would be interesting to have some examples of fibrations. As a matter of fact we
already saw two examples of fibrations in Example 1.1.0.4 but we have not proved this formally.
To get more examples of fibrations we introduce another concept, the one of fiber bundles. Fiber
bundles are special cases of fibrations, sometimes called locally trivial fibrations.

1.2.0.1 Definition (Trivial fiber bundles). The trivial fiber bundle over a space B with fiber F is
the product space B × F together with the projection B × F → B.

Maps of this kind have the homotopy lifting property with respect to cubes and thus they
are fibrations. Fiber bundles over a space B with fiber F are maps E → B which are locally
trivial in the following sense:

1.2.0.2 Definition (Fiber bundles). A fiber bundle is a map p : E → B together with a space
F such that B has an open cover {Uα} for which it exist a family of homeomorphisms ϕα :

Uα × F
∼−→ p−1Uα that render commutative the following diagram:

Uα × F p−1Uα E

Uα B

ϕα

π1 p p

We call F the fiber and we call the Uα local trivializations. We denote such a fiber bundle as
(E,B, p, F ). We will frequently abuse notation and write E for the whole fiber bundle.

This local triviality permits to extend the homotopy lifting property with respect to cubes to
fiber bundles (at least when the base is Haussdorf paracompact):

1.2.0.3 Proposition. Fiber bundles with a Hausdorff paracompact base are fibrations.

Proof. See [Spa94, Chapter 2, Section 7, Corollary 14]. �

Notice that the notion of map between fibrations and the notion of fiber homotopy equiva-
lence applies to fiber bundles without change. It is time to give some examples of fiber bundles.

1.2.0.4 Example (Covering spaces). It is easy to see that covering spaces are fiber bundles. Indeed
covering spaces are fiber bundles inwhich the fiber is a discrete space. The coverings of the circle
that we analyzed before are of course covering spaces.

Now let us see an example of a fiber bundle which is not a covering space.

1.2.0.5 Example (Real projective plane). Consider the (real) projective plane constructed as a
quotient of R3 \ {0}:

R3 \ {0} → RP 2.

Explicitly this map is the quotient map given by the relation (x, y, z) ∼ (λx, λy, λz) for every
x, y, z ∈ R3 \ {0} and every λ ∈ R×. See how the fiber of each point is the disjoint union of two
lines. From this observation is easy to check the local triviality of the map.
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As a matter of fact a construction similar to the one in the above example works for real and
complex projective spaces of any dimension as we now show. Here we will make use of some
very basic differential topology.

1.2.0.6 Example (Real and complex projective spaces). Let K stand for the real or the complex
numbers with its usual norm. Define the subspace F = {λ ∈ K | ‖λ‖ = 1} and the subspace
S = {x ∈ Kn+1 | ‖x‖ = 1}, the unit sphere of the normed vector space Kn+1. Notice that F has
a topological group structure inherited by the group structure of K×, the multiplicative group
of the units of the field K. There is also a continuous action of F on S: λ · x = λx. As with
any group action we can consider the induced equivalence relation on S given by x ∼ λx. We
denote the quotient space by KPn := S/ ∼ and we endow it with the quotient topology. This
space is the projective n-dimensional space overK. Let q : S → KPn be the quotient map. With
these definitions we claim that the following is a fibration:

F λ

x S (λ, 0, . . . , 0)

[x]∼ KPn

q

Indeedwewill prove that this is a fiber bundle. Let us construct local trivializations. For the real
case this is easy: Notice that in this case the fiberF can be identifiedwith the discrete topological
groupZ2, and that its action on the unit sphereS is the antipode action. Since the fiber is discrete
it is simple to construct a trivializing open cover that shows that the above map is locally trivial,
and as a matter of fact a covering map. One can check that this is indeed the Möbius covering of
Example 1.1.0.4.

The complex case is not so immediate. Wewill give two arguments, the first one is interesting
because it generalizes to the case of a compact Lie group acting smoothly on a differentiable
manifold, the second one is simpler and uses the classical covering of the projective spaces by
affine spaces.

First notice that in this case the fiber F can be identified with the topological group S1. Now
assume given a [x] ∈ CPn and let us construct a trivializing neighborhood for [x]. Observe that
the map q is an open map: To see this we have to check that the image of an open set is again
open. Since the codomain has the final topology it is enough to show that the preimage of the
image of an open set is open. Take an open set U ⊆ S and notice that p−1(p(U)) = ∪λ∈S1λ · U .
Since S1 acts by homeomorphisms (it is a group action) all the sets in the union are open which
proves what we wanted. It is important to notice that this argument works in the general case of
a group acting on a space. Now that we know that q is open we can define the trivializing open
neighborhood of [x] as the image of an open subset of S that contains a representative x ∈ S.
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Fixing this representative we see that the action of S1 induces a closed simple curve in S:

γ : S1 → S

λ 7→ λ · x

This is indeed a smooth curve and thus (remembering that S is a subspace of Cn+1) we can
consider the orthogonal space to the curve at each λ ∈ S1. Call this space Tλ. Each of these
orthogonal spaces is a complex vector space of codimension 1. Let Nε(y) ⊆ S be the ball of
radius ε centered at y ∈ S. Choosing a small enough ε > 0 we can make sure that the open
set N = ∪λ∈S1λ · Nε(x) forms a tubular neighborhood of the curve γ in such a way that the
intersection N ∩ Tλ is the ball contained in Tλ of radius ε and center λx. Call U to the image of
N and observe that sinceN is a tubular neighborhood q restricts to a homeomorphism between
each of the slices N ∩ Tλ and the open set U . Finally notice that N is homeomorphic to S1 × U
as required.

A shorter construction of the trivializing neighborhood is the following. Let [x] ∈ CPn, then
by definition the representative xmust have some non-zero coordinate, say the i-th coordinate.
Consider the open subset of CPn given by the elements represented by elements in S with
the i-th coordinate different from zero. It is straightforward to show that this is a trivializing
neighborhood of [x].

This last example yields a lot of interesting bundles.

1.2.0.7 Example (The Hopf fibration). Specializing the last example to the case of the one di-
mensional complex projective space we observe that in this case S is the sphere S3 and CP 1 is
homeomorphic to the sphere S2. To prove this last statement recall that S2 is homeomorphic
to the Riemann sphere C∞ (by the stereographic projection). Thus it suffices to check that the
following map is well defined and it is an homeomorphism:

CP 1 → C∞
[(x0, x1)] 7→ x1/x0

which is a straightforward check.
This defines a fibration S1 ↪→ S3 → S2 called the Hopf fibration. From this fibration and the

long exact sequence induced by a fibration one can deduce at once some non-trivial results such
as the isomorphisms πn(S3) ' πn(S2) for n ≥ 3.

Notice that applying the long exact sequence of a fibration to the fibrations defined in the
Example 1.2.0.6 also yields a lot of interesting relations between the homotopy groups of the
spheres and the homotopy groups of the projective spaces.

The same idea of Example 1.2.0.7 applies to a couple more cases.

1.2.0.8 Example (More Hopf fibrations). Recall the construction of Example 1.2.0.6 and now let
K be a division algebra over R. Thus we consider the cases where K are the real numbers, the
complex numbers, the quaternions and the octonions. A simple check shows that the same
reasoning done in Example 1.2.0.7 yields fibrations in these four cases. The real case yields a
fibration S0 ↪→ S1 → S1, which is the Möbius covering of the circle of Example 1.1.0.4. The
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complex case is the classical Hopf fibration S1 ↪→ S3 → S2 covered in Example 1.2.0.7. The
quaternionic case yields a fibration S3 ↪→ S7 → S4 and the octonionic case yields a fibration
S7 ↪→ S15 → S8.

1.2.0.9 Remark (Proof strategy for bundles). The reader will notice that many proofs of results
about fiber bundles have the following structure: First prove the result in the case of trivial
bundles, and then prove it for arbitrary bundles using some sort of “gluing” to put together
a construction for the whole bundle out of constructions for each local trivialization. This is
exactly the reason why fiber bundles are useful: Locally they are easy to describe but they also
leave enough room as to let us glue constructions made for each local trivialization. An example
of the usage this strategy is Definition 1.3.1.1.

Observe that a fiber bundle over a space B with fiber F is also a fibration with fiber F and
thus we have a natural definition of the concept of F -bundles.

1.2.0.10 Definition (F -bundles). Given a base space B and a space F we can consider fiber
bundles over B with F as its fiber. When B is implicit we call such fiber bundles F -bundles.
Notice that F -bundles are special cases of F -fibrations.

1.3 Vector bundles

Vector bundles are fiber bundles with some extra structure:

1.3.0.1 Definition (Vector bundles). A real vector bundle is a fiber bundle (E,B, p, V ) such that
V is a finite dimensional real vector space (with its usual Euclidean topology), and for each b ∈ B
the fiberEb has a structure of real vector space such that eachϕα restricts to a linear isomorphism
ϕα : {b} × V → Eb. The dimension of the vector bundle is by definition the dimension of V as
a real vector space. Many times, when there is no risk of confusion we will call vector bundles
just bundles.

Under the fiber point of viewvector bundles should be regarded as vector spaces parametrized
by a base spaceB. Informally, just as a fibrationE → B induces an functorE : π1(B)→ hSpace,
a vector bundle E → B induces a functor π1(B) → vecR. Following the idea given in Re-
mark 1.1.0.2 this means that a vector bundle over B is in some sense a “linear” representation
of the homotopy type of the space B.

The theory of vector bundles generalizes the theory of vector spaces in a very concrete sense.
Consider the one point space {∗}. It is immediate to see that having a vector bundle over {∗} is
the same as having a vector space. Vector bundles over {∗} are examples of trivial vector bundles.

1.3.0.2 Definition (Trivial vector bundles). Given any space B and an natural number n we
define the trivial vector bundle of dimension n over B as π1 : B × Rn → B.

When B is implicit we denote this vector bundle simply as n.

By abuse of languagewewill call trivial bundle to any bundlewhich is isomorphic to a trivial
bundle, usually omitting the actual isomorphism.
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1.3.0.3 Example (The cylinder and the Möbius strip). To further exemplify take the base space
to be S1. Then the total space of the one dimensional trivial vector bundle over B is a cylinder
(without boundary).

Figure 1.4: Cylinder bundle over S1.

Now consider another one dimensional vector bundle over S1. One can describe this bundle
formally by taking an open cover {Uα} of S1 and by giving explicit maps {ϕα}, but the following
picture should be just as good:

Figure 1.5: Möbius bundle over S1.

The total space of this bundle is a Möbius strip (without boundary). Notice that, locally, we
cannot distinguish this vector bundle from the previous one, since locally they both look like an
interval U ⊆ S1 times R. But globally they are quite different, for example the Möbius strip is
not orientable while the cylinder is.

Because vector bundles are fiber bundles with extra structure, morphisms between vector
bundles are defined as morphisms of the underlying fiber bundles that preserve this structure.

1.3.0.4 Definition (Vector bundle morphisms). Amorphismm between vector bundles p : E →
B and p′ : E′ → B over the same base is a morphism of fiber bundles such that eachmb : Eb →
E′b is linear.
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This definition determines a category structure on the vector bundles over a fixed base space.

1.3.0.5 Notation. Given a space B the category of real vector bundles over B will be denoted
Vec(X).

Although this automatically gives us the definition of isomorphism between vector bundles
we state an equivalent definition explicitly.

1.3.0.6 Definition (Isomorphism of vector bundles). A morphism between vector bundles is
called an isomorphism if it restricts to linear isomorphisms in each fiber.

Now that we defined the morphisms we have the problem of describing the morphisms
between two vector bundles. In the case of trivial bundles there is a simple and extremely useful
characterization.

1.3.0.7 Remark (Morphisms between trivial vector bundles). Recall that vecR is the category
of real finite dimensional vector spaces. Observe that given two real finite dimensional vector
spaces V andW there is a natural choice for the topology of vecR(V,W ), since this is again a real
finite dimensional vector space. Then, given two trivial vector bundles B × V and B ×W there
is a bijection betweenmorphisms of vector bundlesB×V → B×W andmapsB → vecR(V,W ):

B × V → B ×W
B → vecR(V,W )

This follows at once from the definition of morphism between vector bundles: A commutative
diagram of the form:

B × V B ×W

B

g

π π

where g is fiberwise linear, is simply a map from B to the linear morphisms between V andW .

A priory Vec(−) is just a function that assigns to each space X a category Vec(X), but one
could expect it to be functorial in some sense. For this we will assign to each map f : A → B a
functor Vec(B)→ Vec(A), and thus we will get a contravariant functor Vec(−) : Spaceop → Cat.

1.3.0.8 Definition (Pullback of vector bundles). Given a vector bundle p : E → B and a map
f : A→ B we can form the pullback bundle f∗E by taking the following pullback:

f∗E E

A B

f∗p p

f

This construction yields a functor f∗ : Vec(B)→ Vec(A) for each map f : A→ B.
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Notice that from the fiber point of view, by construction of pullbacks, we are taking the
fibration E and precomposing it with f in the sense that (f∗E)a = Ef(a).

It is easy to see that this correspondence is indeed functorial: It is deduced from the universal
property of pullbacks, for composition one can use the pasting pullback lemma. The reader
interested in category theory might notice that this construction is entirely analogous to the
change of basis functor that given a category (with pullbacks) C and a morphism f : c → d

yields a functor f∗ : C/d → C/c.
We did not prove the fact that the above pullback exists but the construction is simple: Define

f∗(E) = {(a, e) ∈ A × E | f(a) = p(e)} and take the topology to be the subspace topology of
A×E. To check the local triviality of this bundle one must use the local triviality of p : E → B.

1.3.0.9 Remark. Notice how the pullback bundle does not change the fiber: The fiber of an
element a ∈ A is defined as the fiber of f(a) ∈ B.

A very important property of the pullback bundle construction is that for compact base
spaces it is invariant under homotopy, as stated in the following lemma. This lemma implies
that vector bundles over a space are representations of the homotopy type of the space (see
Lemma 1.3.1.12).

1.3.0.10 Lemma (Pullback over homotopic maps). Let A be a compact space and suppose given a
homotopy H : A × I → B and a vector bundle E → B. Then the vector bundles H∗0 (E) and H∗1 (E)

over A are isomorphic.

Proof. Consider the pullback bundleH∗(E) over A× I . On the other hand consider the projec-
tion π : A × I → A and for each t ∈ I the pullback bundle π∗H∗t (E) over A × I . Restrict these
two bundles to the subspace A×{t}where they are clearly isomorphic. Using the compactness
of A × I and Lemma 1.3.0.11 we deduce that the two bundles are isomorphic when restricted
to an open strip A × (t − ε, t + ε). This means that the isomorphism class of H∗t (E) is locally
constant. Since the interval I is connected the restrictions to each endpoint H∗0 (E) and H∗1 (E)

are isomorphic as required. �

1.3.0.11 Lemma. LetX be a compact space and let Y ⊂ X be a closed subspace. If two vector bundlesE
and F overX are isomorphic when restricted to Y then there exists an open set U containing Y to which
this isomorphism can be extended.

Proof. Call E|Y and F |Y the restrictions of the bundles E and F . Let f : E|Y → F |Y be the
isomorphism of the hypothesis. By an application of Tietze extension theorem we can extend
f to an open neighborhood of each y ∈ Y : Choosing a neighborhood U ′′ of y that trivializes
both bundles we can use the characterization of the morphisms between trivial bundles (Re-
mark 1.3.0.7) to deduce that f |U ′′ corresponds to a map m : Y ∩ U ′′ → vecR(Rn,Rn) ' Rn×n.
Using Tietze in each coordinate of m we can extend it to a neighborhood Uy of y, open in X .
Now by the compactness ofX (and thus of Y ) a partition of unity argument implies that we can
glue the extensions to obtain an extension f̄ : E|U ′ → F |U ′ for U ′ an open set containing Y .
Let U be the set for which f̄ is an isomorphism. Notice that Y ⊆ U and also that U is an open
set since being an isomorphism is an open condition. Then U is the required open set and the
restriction of f̄ to U is the required isomorphism. �

26



CHAPTER 1. CLASSICAL SPHERICAL FIBRATIONS

1.3.1 Operations

Since vector bundles are parametrized vector spaces it would be nice to be able to make the
same constructions we can carry on with vector spaces. For example, we should be able to take
the direct sum of two vector bundles and also to take their tensor product. From the fiber point
of view there is an obvious choice. If we have two vector bundles E and E′ over B, their direct
sum should satisfy:

(E ⊕ E′)b = Eb ⊕ E′b.

But this is not enough sincewe also need to topologizeE⊕E′. For this we use the following con-
struction which is a reformulation of the one given in [Ati94, Section 1.2]. This is a very general
method for constructing operations between vector bundles out of operations between vector
spaces taken fiberwise. As a matter of fact this same idea generalizes to operations between
other kinds of bundles as commented in Remark 1.5.0.9 when defining the join of orthogonal
spherical bundles.

1.3.1.1 Definition (Operations between vector bundles). Let T : vecR → vecR be a functor. We
say that T is continuous if for any two vector spaces V,W the induced function vecR(V,W ) →
vecR(T (V ), T (W )) is continuous (here vecR(V,W )has the usual finite-dimensionalR-vector space
topology). Now given a vector bundleE → B we can apply the functor fiberwise and define the
set T (E) :=

∐
b∈B T (Eb) = {(b, e) | b ∈ B, e ∈ T (Eb)}. Our goal is to topologize this set so that

the obvious projection T (E)→ B is a vector bundle. Notice that the application of T is already
functorial at the set level, since if we have a morphism of vector bundles m : E → E′ we can
define T (m) : T (E) → T (F ) by the fiberwise application of T : T (m)b = T (mb). And thus we
will also want to show that the functions T (m) are indeed bundle morphisms.

To give a topology to T (E) we start with the case in which E is a trivial bundle and then
we extend it to arbitrary bundles using the local triviality. Suppose then that E = B × V with
V ∈ vecR. Then by construction T (E) = B × T (V ) as a set, but we have also a nice choice for
the topology of T (E), namely the product topology. Let us see that with this topology the ap-
plication of T on a bundle morphism yields a bundle morphism. For this let E′ = B × W

be another trivial bundle and let m : E → E′ be a bundle morphism. By Remark 1.3.0.7
this corresponds to exactly one map m : B → vecR(V,W ) and, under the same correspon-
dence T (m) : T (E) → T (E′) corresponds to T (m) = T ◦ m : B → vecR(T (V ), T (W )). Since
T : vecR(V,W ) → vecR(T (V ), T (W )) is continuous by hypothesis, T (m) is indeed a bundle
morphism in the case of trivial bundles with a given choice of trivialization.

To check that any choice of trivialization yields the same topology is straightforward: Given a
trivial bundleE choose a trivialization for it and endow T (E) with the topology induced by that
trivialization as we did in the previous paragraph. If we have two trivializationsm : E

∼−→ B×V
and m′ : E

∼−→ B ×W , consider m′ ◦m−1 : B × V ∼−→ B ×W . Since T is functorial on trivial
bundles we have T (m′ ◦m−1) = T (m′) ◦ T (m−1) which gives a homeomorphism between the
topologies induced bym andm′.

Finally notice that a trivialization of E yields a trivialization for T (E):
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Uα × F p−1Uα E

Uα B

ϕα

π1 p p

Uα × T (F ) T (p)−1Uα T (E)

Uα B

T (ϕα)

π1 T (p) T (p)

So for an arbitrary vector bundle E topologize T (E) with the same local trivializations and
declare a set S ⊆ T (E) to be open if and only if it is open when restricted to each local trivializa-
tion. Using the same ideas as above one deduces at once that this construction yields a functor
T : Vec(B)→ Vec(B) that behaves like T in each fiber.

One should notice that this discussion extends to the case when T can take a finite number of
(covariant or contravariant) arguments and thus, given two vector bundles E,E′ over the same
base we can construct the bundles: direct sum E ⊕ E′, tensor product E ⊗ E′, mapping space
hom(E,F ), dual bundle E∗, etc. We stress the fact that by construction we have the fiberwise
equalities (E ⊕ E′)b = Eb ⊕ E′b, (E ⊗ E′)b = Eb ⊗ E′b, hom(E,F )b = hom(Eb, Fb), (E∗)b = E∗b ,
etc.

The formalism of this approach also makes it easy to translate properties of operations on
vector spaces to those same properties of the corresponding operations on vector bundles. For
example we have the following remark.

1.3.1.2 Remark (Distributivity of tensor product). Recall that in vecR the tensor product dis-
tributes over the direct sum in the sense that for any three vector spaces U, V andW there is a
natural isomorphism U ⊗ (V ⊕W ) ' (U ⊗ V )⊕ (U ⊗W ). Using the functoriality of our previ-
ous construction one can deduce at once that the (natural) distributivity of tensor products over
direct sums in the case of vector spaces translates to a (natural) distributivity of tensor products
over direct sums in the case of vector bundles. By the fiberwise construction it is obvious that
this holds for the underlying sets.

We also have the following commutativity (or functoriality) relation.

1.3.1.3 Lemma (Functoriality of operations). For any map f : A → B and any continuous functor
T : vecR → vecR there is a natural isomorphism f∗T (E) ' Tf∗(E).

To prove this fact just look carefully at the definitions. For a fiberwise intuitive argument
observe that f∗T (E)b = T (E)f(b) = T (Ef(b)) = T (f∗(E)).

Our next goal is to use the sum and product operations in Vec(B) to form a ring. This con-
structionwill respectmaps between spaces and thuswewill construct a functorKO : Spaceop →
Ring. Until nowwe have constructed a functorial assignment Spaceop → Cat that takes a spaceB
to the category of all its vector bundles. Now notice that for any space the set3 of isomorphism
classes of Vec(B) has the structure of a commutative semigroup using the direct sum operation.
This is because the direct sum is commutative (up to isomorphism). Moreover this commutative
semigroup is in fact a commutative monoid since the zero dimensional trivial bundle acts as a

3It might not be obvious that the isomorphism classes of vector bundles over a space form a (small) set. This essen-
tially follows from the fact that a finite dimensional vector space is isomorphic to Rn for some n ∈ N and the fact that
the open sets of a topology form a set. These two facts combined with a trivializing open cover prove the statement.
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unit (up to isomorphism). Let Vec(B)∼ be the set of isomorphism classes of vector bundles over
B. Using the direct sum operation and Remark 1.3.1.2 we get a semiring structure on Vec(B)∼.
Since by Lemma 1.3.1.3 the operations of direct sum and tensor product commute with taking
pullback bundle, the semiring structure that we defined for each space B is functorial, in the
sense that maps f : A → B induce semiring morphisms f∗ : Vec(B)∼ → Vec(A)∼. In other
words we have a functor:

Vec(−)∼ : Spaceop → sRing .

Luckily for us there is a formal method to construct a ring out of a semiring. In fact, this
works for commutative semigroups. Given a commutative semigroup S we can construct what
is usually called the Grothendieck group or the groupification of S.

1.3.1.4 Definition (Groupification). Given a commutative semigroup S we define its groupifi-
cation as the set of cosets of the diagonal subsemigroup ∆ = {(s, s) ∈ S × S} included in the
product semigroup ∆ ⊆ S×S. Call this setG(S) and notice that it inherits a commutative semi-
group structure. Let us see why this semigroup structure is in fact an abelian group structure.
Explicitly we are considering elements in S × S up to elements in the diagonal. Since S is only
a semigroup it doesn’t make sense to subtract two elements s, s′ ∈ S. But notice that the class
of (s, s′) in G(S) behaves like s − s′: For example the class of (s, s) is zero, because it is in the
diagonal. But also the class of (s, t) is the same as the class of (s + u, t + u) since they differ in
(u, u). Finally observe that (t, s) serves as an additive inverse for (s, t) since their sum is in the
diagonal (here we need the commutativity of S).

Observe that we have a semigroup morphism S → G(S) that sends s to the class of (s, 0).
This morphism is universal in the sense that any morphism from S to a group factors through
thismorphism. It is easy to check that this is indeed the counit of the adjuction of Remark 1.3.1.6.

1.3.1.5 Example (Groupification of the natural numbers). The standard example of groupifica-
tion is to consider the semigroup N of non-negative integers. One can show at once that the
semigroup morphism:

G(N)→ Z

(n,m) 7→ n−m

is well defined and that it is in fact an isomorphism.

The following lemma is a simple exercise in category theory.

1.3.1.6 Remark (Universal property of groupification). This last construction is the solution to
a universal property problem. Namely, this last construction gives a left adjoint to the inclusion
functor ι : Ab→ csGrp.

1.3.1.7 Remark (Groupification of a group). Notice that ι is full and faithful and thus the groupi-
fication of a commutative semigroup which is already an abelian group yields and isomorphic
group. One can also express this fact by saying that being an abelian group is a property that a
particular semigroupmight have, a given semigroup can be an abelian group in atmost oneway.
Having inverses in this case is a property in contrast of being additional structure. In Section 2.1.2
we discuss the notions of property and additional structure in more detail.
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1.3.1.8 Remark (Groupification of semirings). One good thing about groupification is that its
construction is so formal that it behaves well with respect to additional structure on the semi-
group. For example it is easy to check that if we start with a semiring the product operation
induces a well behaved product operation in the groupification of the underlying semigroup,
and thus in this case the groupification produces a ring.

Finally we construct the real K-theory functor composing Vec(−)∼ with the groupification
and using Remark 1.3.1.8 to get a ring.

1.3.1.9 Definition (Real K-theory functor). Using the definitions in this section we have con-
structed a functor KO : Spaceop → Ring that assigns to each space the isomorphism classes
of vector bundles over it, modulo an equivalence relation. This equivalence relation is given
by the groupification of the semigroup formed by the isomorphism classes of vector bundles
over the space. The direct sum of vector bundles corresponds to the sum operation of the ring
and the tensor product of bundles corresponds to the product operation of the ring (recall Re-
mark 1.3.1.2).

1.3.1.10 Notation. Given a (base) space B, when referring to elements inKO(B) or elements in
Vec(B)∼ wewill often denote them [E], whereE is a vector bundle overB. By abuse of notation
we might denote them simply by E if there is no risk of confusion.

Let us analyze a very simple case of this ring. Namely the K-theory of the one point space
{∗}.

1.3.1.11 Example (K-theory of {∗}). Recall that vector bundles over {∗} are the same as vector
spaces. Indeed we can say this formally as: The category vecR is equivalent to the category
Vec({∗}). To see this send a vector space V to the vector bundle {∗} × V , it is easy to check
this is an equivalence (and in fact an isomorphism) of categories. Now let us computeKO({∗}).
Since the functor Vec∼(−) only distinguishes isomorphism classes of vector bundles, we deduce
that Vec∼({∗}) is in bijection with N, because (up to isomorphism) a vector space is completely
determined by its dimension. Concretely, the bijection is given by sending an isomorphism class
of vector bundles over {∗} to its dimension (the dimension is invariant under isomorphism).
Moreover this bijection respects sums and products since the dimension of a direct sum of vector
spaces is the sum of the dimensions, and the same is true if we replace direct sum with tensor
product and sum with product. Thus using Example 1.3.1.5 we have establishedKO({∗}) ' Z.
This isomorphism takes the class of a vector bundle to its dimension.

Although this previous discussion works for non-compact spaces, from now on we will as-
sume that all our base spaces are compact since this is a necessary condition for some results
that we will state (homotopy invariance and representability).

Next we state the homotopical invariance of the functor KO. This means that KO does
not distinguish homotopically equivalent maps and in particular, that it does not distinguish
homotopically equivalent spaces.

1.3.1.12 Lemma (Homotopy invariance ofKO). The functorKO that we defined factors through the
category hSpace:
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cSpaceop Ring

hcSpaceop

KO

Here the vertical arrow takes a map to its homotopy class, cSpace is the category of compact spaces and
hcSpace is the homotopy category of compact spaces.

Proof. This is an immediate application of Lemma 1.3.0.10 �

As an application of the theorem we deduce that the K-theory of a contractible space is Z.
Nextwemotivate the reduced (real) K-theory functor. This is a contravariant functor from spaces
to groups. As a matter of fact this functor can be already defined from the functor KO, but we
will give an explicit definition since it will be useful to understand some constructions. But first
the motivation.

1.3.1.13 Remark (Suspending a vector bundle). As we saw above, the K-theory of a point is Z.
On the other hand every vector bundle over {∗} is a trivial vector bundle, thus it would probably
be better if the K-theory of a point was the trivial group. For this we introduce the suspension
operation4 between vector bundles. For any base space B we have the functor:

Vec(B)→ Vec(B)

E 7→ E ⊕ R

SinceE⊕R is obtained fromE by adding a trivial bundle it would be nice to regard both vector
bundles as the same bundle. A potential solution is to regard trivial vector bundles as zero, that
is to consider the groupKO(B) modulo trivial vector bundles.

This situation is analogous to when one defines the Homology functor and then the reduced
Homology functor so that a contractible space has trivial homology groups.

1.3.1.14 Definition (Stable equivalence). Two vector bundles E,E′ over the same space are said
to be stably equivalent if they become isomorphic after adding trivial bundles. Concretely, if there
exist natural numbers n,m such that E ⊕ n ' E′ ⊕m.

1.3.1.15 Definition (Reduced real K-theory functor). Given a space B consider the set Vec(B)∼

and quotient it by the equivalence relation given by stable equivalence. Observe that this equiv-
alence relation respects the sum of vector bundles, and thus it yields a commutative semigroup.
We denote reduced real K-theory of a space B as K̃O(B).

At this point one might expect that the next step is to take the groupification of this commu-
tative semigroup, but it turns out that this is not necessary since the reduced real K-theory as we
defined is already an abelian group (at least when the base is compact), so by Remark 1.3.1.7 the
groupification would make no difference. The following discussion shows that given a vector

4The usage of the term suspensionwill be justified oncewe introduce orthogonal spherical bundleswhich relate vector
bundles and spherical bundles.

31



CHAPTER 1. CLASSICAL SPHERICAL FIBRATIONS

bundle E over a compact space there exists another vector bundle E′ such that E ⊕ E′ is a trivial
vector bundle. This implies that reduced K-theory takes values in commutative groups. In the
rest of this subsection we will study the necessary lemmas to prove this fact.

1.3.1.16 Definition (Section of a bundle). Given a bundle p : E → B a section for it is a map
m : B → E such that p ◦m is the identity of B.

1.3.1.17 Example (Zero section). If we have a vector bundle p : E → B there is always an obvious
section, namely the map b 7→ 0 ∈ Eb.

Under the fiber point of view a section is a continuous choice of an element for each fiber
Eb. Once again, if we consider vector bundles over {∗} the notion of section coincides with the
familiar notion of element of a vector space.

We now define what it means to have a metric or inner product on a bundle.

1.3.1.18 Definition (Metric on a bundle). Using the construction carried on in Definition 1.3.1.1,
given a vector bundle E → B we can define a new vector bundle Sym(E) such that each fiber
Sym(E)b is the space of symmetric forms on Eb. For this one just has to check that the functor
V 7→ Sym(V ) is continuous.

A metric on a bundle E → B is then a section s : B → Sym(E) of the vector bundle
Sym(E)→ B, such that for any b ∈ B the symmetric form s(b) is positive definite.

Metrics on vector spaces are very useful, for example they give a canonical choice for a com-
plement of a subspace. As the reader must be guessing this translates into the world of vector
bundles. For this one must translate first the notion of subspace.

1.3.1.19 Definition (Subbundle). A subbundle F → B of a vector bundle E → B is a choice of
a (vector) subspace Fb ⊆ Eb for every b, in such a way that F → B is a vector bundle with the
subspace topology.

1.3.1.20 Lemma (Orthogonal complement of subbundles). Given a vector bundle E endowed with
a metric, for any subbundle F we can take its (fiberwise) orthogonal complement F⊥. Then F⊥ is a
subbundle of E and moreover the inclusions yield an isomorphism E ' F ⊕ F⊥.

Proof. To prove this one has to check that taking the complement in each fiber is continuous.
This is a local condition and thus the proof is reduced to the case of trivial vector bundles which
is immediate. �

1.3.1.21 Example (Metrics on a trivial bundle). Since any real finite dimensional vector space is
isomorphic toRn for some n ∈ Nwe deduce that any trivial vector bundle can be endowedwith
a metric.

Now, given an arbitrary vector bundle over a compact base can we endow it with a metric?
The answer is yes, and the proof consists of straightforward application of the previous example,
the partition of unity and the compactness of the base. So we have:

1.3.1.22 Lemma (Existence of metrics). Given a bundle, there exists a metric over it.
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This construction makes it possible to embed any bundle as a subbundle of a trivial bundle,
although there are some technicalities involved.

1.3.1.23 Lemma (Embedding of bundle in trivial bundle). Any bundle over a compact base is iso-
morphic to a subbundle of a trivial bundle.

Proof. See [Ati94, Corollary 1.4.11 and Corollary 1.4.13]. �

Finally, using the results stated in this section one can prove:

1.3.1.24 Lemma (Inverse bundle). Given a vector bundle E there exists a vector bundle E′ such that
E ⊕ E′ is trivial.

Proof. Using Lemma 1.3.1.23 we can embed E in a trivial bundle F . Applying Lemma 1.3.1.20
we get a complement E⊥ of E. �

And thus we deduce the fact that, under stable equivalence, any bundle has an inverse for
the direct sum operation. This means that reduced K-theory takes values in abelian groups and
not just commutative semigroups. Finally notice that by definition of reduced K-theory we have
an obvious function Vec(B)∼ → K̃O(B). We summarize this in the following remark.

1.3.1.25 Remark (K-theory to reduced K-theory). Since the group operation of the reduced K-
theory is the direct sum of bundles, by the universal property of groupification we get a group
morphismKO(B)→ K̃O(B).

1.4 Classifying spaces

In category theory there is the notion of representable functor. Given a category C and a
functor F : C → Set we say that F is representable if there exists an object c ∈ C such that F
is naturally isomorphic to [c,−]. Notice that the same idea applies to contravariant functors:
A contravariant functor is called representable or sometimes corepresentable, if it is naturally
isomorphic to a functor of the form [−, c].

This definition is important because it says that a given functor is already encoded in the
structure of a category. Many times representable functors do not have Set as its codomain. For
example if we have a functor F : C → Grp we can still ask ourselves if F is representable. How
can a functor of the form [c,−] take values in Grp? One possibility is to take the representing
object c to be a cogroup object. The following is a standard example of this phenomenon.

1.4.0.1 Example (Cogroup structure on S1). Consider the category hSpace• of pointed nice topo-
logical spaces as objects and maps up to homotopy as arrows. Notice that the coproduct in this
category is the wedge operation ∨ that takes two pointed spaces and glues their base points to-
gether. Consider the space S1, the one dimensional sphere. Now notice that up to homotopy S1

has a cogroup structure since we have a comultiplication µ : S1 → S1 ∨S1, a counit η : S1 → {∗}
and a coinverse ι : S1 → S1. Such that µ is coassociative, η is a counit for the comultiplication,
and ι is the inverse for the comultiplication. Explicitly if we model S1 as the unit vectors of the
complex plane, the comultiplication glues 1 and −1 and ι sends z to −z.

The comultiplication can be visualized in the following way:
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Figure 1.6: Comultiplication of S1.

The functor represented by S1 is just the fundamental group functor:

[S1,−]• ' π1(−) : hSpace• → Grp .

Notice how the comultiplication induces the composition of paths. This discussion extends
to higher dimensional spheres and thus we get the representability of the homotopy groups
functors: [Sn,−]• ' πn(−) : hSpace• → Grp.

A classifying space often comes in the form of a contravariant representable functor. The
notion of classifying space is a very broad one. In full generality a classifying space of some
data on objects of a category C is an object c ∈ C such that for every X ∈ C, arrows X → c

correspond to data on X . In other words, the contravariant functor “data on −” is represented
by c.

1.4.1 The classifying space of F -fibrations

A special case of this concept is the following. Suppose that we want to classify F -fibrations
over a space B. The notion of classifying space then suggests that we might want to study
some particular space CF such that maps B → CF are in one-to-one correspondence with F -
fibrations over B. It turns out that we don’t have such a space in the category Space. Just like
in the example about the cogroup structure on S1 we need to pass to hSpace to get a space that
classifies F -fibrations. As a matter of fact the classification works up to fiber homotopy equivalence
of F -fibrations. In this case the functor “data on −” that we want to represent is “F -fibrations
over − up to fiber homotopy equivalence”.

Since the abstract concept of classifying space is not too precise and this very concept is used
in many different situations, one can find many different definitions in the literature. The fol-
lowing discussion relates our (yet not given) definition of the classifying space of F -fibrations to
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the definition of the classifying space of a topological group, and more generally the classifying space
of an associative H-space 5. Some references to the history of this theory are given.

Probably the most familiar notion of classifying space is the one of the classifying space of
a topological group. To explain what does a classifying space of a topological group G classify
we would have to introduce the notion of principal G-bundles. Principal bundles are a very
interesting topic on their own but it would be too much of a digression to discuss them here.
We refer the reader to the introductory exposition of [MLM94, Chapter 8, Part 1]. For a modern
discussion see also the introduction of [Lur09]. The relation between principal G-bundles, clas-
sifying spaces and F -fibrations with structure group G is explained in [Mit01] and in [Hus94,
Chapter 4, Part 5] (see also the discussion in [May99, Chapter 23, Section 8]). Althoughwewon’t
discuss the theory of principal bundles we must give a definition of classifying space of a topo-
logical group to justify some notation. One way to do this is the following: A classifying space
of a topological group G is a space BG such that ΩBG has the homotopy type of G, and such
that composition of paths in ΩBG corresponds to multiplication in G. For obvious reasons the
classifying space BG is also called the delooping of G. The existence and uniqueness of this ob-
ject is far from obvious, the classical reference for this topic is Milnor’s seminal paper [Mil56] in
which this space is constructed using the join construction (for a shorter exposition see [Hus94,
Chapter 4, Part 11]). It is important to keep in mind that this construction can be made in a func-
torial way and thus a morphism of topological groups induces a map of the classifying spaces
(see [Mit01, Theorem 11.1 and Theorem 11.3]).

A generalization of this result to the case of H-spaces is made in [DL59]. Notice that for
any space F , the space hAut(F ) carries an obvious structure of H-space. We use the compo-
sition of maps for the H-space operation and the identity for the unit. Since composition is
associative (on the nose) this is indeed an H-space structure for our definition of H-space (recall
Definition 0.0.0.9). Now as explained in [DL59, Definition 7.2, Theorem 6.2 and Corollary 7.4]
a classifying space of the H-space hAut(F ), that we denote for now by B hAut(F ), serves to
distinguish F -bundles (over a base space B) up to fiber homotopy equivalence in the following
sense: Each F -bundle determines a unique map B → B hAut(F ) (up to homotopy). And two
such bundles are fiber homotopy equivalent if and only if the induced maps to the classifying
space are homotopic.

Although the result that we just mentioned is sufficient to develop the theory of F -bundles
needed in the rest of this chapter it is probably more enlightening to take a look at the more
general classification in Stasheff’s article [Sta63a], a generalization of the one byDold and Lashof
[DL59]. This is also a good idea because we will study an analogous result in HoTT but using
a much simpler construction (see Theorem 2.5.0.2). Before stating the result let us simplify the
notation.

1.4.1.1Notation (Classifying space ofF -bundles). Wewill denote the classifying spaceB hAut(F )

by CF .

Nowwe can state themain result of [Sta63a], namely the correspondence betweenF -bundles
and maps to the classifying space of F -bundles.

5For this construction the translation by elements of the H-space must induce homotopy equivalences, but notice
that if the H-space is connected this follows from the existence of a unit. More details are given in the references.
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1.4.1.2 Theorem (Classifying space of F -bundles). For any compact space F there exists a space CF

such that for every other space B the homotopy equivalence classes of maps B → CF are in one-to-one
correspondence with the fiber homotopy equivalence classes of F -fibrations over B. The space CF is in
fact the classifying space B hAut(F ) defined in [DL59].

Moreover there exists a universal map u : E → CF such that the function that takes a homotopy class
of maps f : B → CF and sends it to the corresponding fiber homotopy class of F -fibrations is given by
taking the pullback of this universal map along f , as depicted in the following pullback diagram:

f∗(E) E

B CF

f∗u u

f

We can restate this as:
F ↪→ E → B up to fiber homotopy equivalence

[B,CF ]

Next we state a very important theorem about K-theory, the representability of the K-theory
functors that we defined. The reader can compare this with Example 1.4.0.1 in which we briefly
discussed the representability of the fundamental group functor. This is also a classical example
of classifying spaces.

1.4.1.3 Theorem (Representability of KO and K̃O). For any (compact) space B we have a natural
isomorphism:

K̃O(B) ' [B,BO]

Here BO denotes the colimit space of the sequential diagram · · · → BO(n) → BO(n + 1) → · · · ,
where O(n) is the n-dimensional orthogonal group, BO(n) denotes its classifying space (or delooping)
and the inclusions BO(n) → BO(n + 1) are given by applying the functor B to the group morphism
in : O(n) → O(n + 1) that completes an n-by-n matrix to an (n + 1)-by-(n + 1) one by adding a 1 in
the right bottom corner.

We have an analogous statement for non-reduced K-theory:

KO(B) ' [B,BO × Z]

Proof. See [Kar08, Section 1, Proposition 1.32 and Theorem 1.33]. Notice that the cited proof
uses the infinite Grassmannian as a model for BO(n). For a proof of the fact that infinite Grass-
mannians serve as deloopings of the orthogonal groups see the discussion at the beginning
[May99, Chapter 23]. The idea is to prove that we have a fibration O(n) ↪→ E → Gn where
Gn is the Grassmannian of n-dimensional subspaces of R∞. This fibration is easy to construct
if one knows just a little bit about Grassmannians: The fibration is given by the quotient map
Vn → Gn where Vn is the Stiefel manifold of orthogonal n-frames in R∞. This is one of the
typical definition of Grassmanians. Of course one must also prove that Vn is contractible. As a
side note observe that Grassmanians and orthogonal groups are manifolds and thus have a CW-
complex structure, so they are indeed spaces for our definition of space. In [Hat09, Section 1.2,
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Cell Structures on Grassmannians] it is given a quite explicit characterization of a cell structure
on Grassmannians. �

1.4.1.4 Remark (Vector bundles over the circle). As a matter of fact the proof of the above theo-
rem first shows that the n-dimensional Grassmannian represents n-dimensional vector bundes.
See for example [Hat09, Theorem 1.16]. Having this in mind we see that [S1, Gn] is in bijec-
tion with the isomorphism classes of n-dimensional vector bundles over the circle. Notice that
we have ΩGn = ΩBO(n) ' O(n) and it is easy to see that O(n) has exactly two connected
components, the orientation-preserving maps and the non-orientation-preserving ones. This
implies that π1(Gn) ' Z2 which is abelian. So the action π1(Gn)yπ1(Gn) is trivial (this ac-
tion is fact given by conjugation). Then by Lemma 0.0.0.21 there is a canonical identification
[S1, Gn] ' [S1, Gn]•. This means that π1(Gn) is in bijection with the n-dimensional vector bun-
dles over the circle. Thus, up to isomorphism, there are only two n-dimensional vector bundles
over the circle. When n = 1 these are the vector bundles described in Example 1.3.0.3.

1.4.1.5 Remark (Compact objects). Throughout this section we required the base space to be
compact a number of times. Categorically the reason is the following. Consider for example the
characterization of the homotopy groups given in Example 1.4.0.1. Now let {Ai} be a filtered
diagram of spaces. It is usually the case that the homotopy groups of the colimit of the diagram
are can be computed as the colimit of the diagram formed by computing the homotopy groups
of each Ai. The proof of this fact depends on the model of space one is using.

In the case of CW-complexes one can prove the statement by noticing that a class in the n-th
homotopy group of a spaceA is represented by a (pointed) map Sn → A. Moreover a homotopy
between two representatives is given by a map Sn × I → A. Notice that both Sn and Sn × I are
compact spaces and thus their image can touch only a finite number of cells of A. In the case
of a filtered diagram of spaces this implies two things: That a class in the n-th homotopy group
of the filtered colimit is represented by a map from Sn to one of the spaces Ai of the diagram
and that two such classes are equal if and only if their representatives are homotopical already
in some Ai of the diagram.

We can state this in the following way. Let B be a compact space and let {Ai} be a filtered
diagram of spaces. Then the induced morphism colim i[B,Ai] → [B, colim iAi] is an isomor-
phism. In the language of category theory we say that B is a compact object. This discussion is
continued in the second chapter (see Section 2.3 and Section 2.2).

1.5 Spherical fibrations and orthogonal spherical bundles

1.5.0.1 Definition (Spherical fibrations and spherical bundles). Given a spaceB, a spherical fibra-
tion over it is a fibration overB with a sphere as its (essentially unique) fiber. Wewill sometimes
call a spherical fibration with an n-dimensional sphere as fiber an n-spherical fibration. A spher-
ical bundle over B is a bundle with a sphere as fiber.

1.5.0.2 Example (Spherical bundle induced by a vector bundle with a metric). Given a vector
bundle p : E → B endowed with a metric we can restrict the map to the unit sphere in each
fiber, yielding a spherical fibration S(p) : S(E) → B. Under the fiber point of view we denote
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such a fiber bundle by S(E). Explicitly S(E)b consists of the unit vectors of Eb with the sub-
space topology. Notice that the local triviality of E implies local triviality of S(E) and thus the
spherical fibration S(E) turns out to be a spherical bundle. Spherical bundles defined in this
way are called orthogonal spherical bundles.

As a particular case of this last example we have:

1.5.0.3 Example (Spherical bundles over the circle). Applying the construction on the Cylinder
and Möbius vector bundles described in Example 1.3.0.3 (we can endow them with the Eu-
clidean metric induced by an embedding inR3) we obtain the two double coverings of the circle
described in Example 1.1.0.4:

Figure 1.7: Orthogonal spherical bundles over S1

We learned how to construct spherical bundles out of vector bundles endowed with a metric,
but if we are given just a vector bundle there is a priori no canonical choice for a metric on it.
But if we are only interested in the fiber homotopy type of spherical bundles then the choice of
the metric makes no difference as stated in the following lemma.

1.5.0.4 Lemma (Homotopy type of spherical bundle induced by a vector bundle). Let E → B

be a vector bundle and assume given two choices of metric. Call S → B and S′ → B to the spherical
bundles induced by each of the metrics. Then S and S′ have the same fiber homotopy type.

Proof. Start by proving the fact for trivial bundles and then glue the homotopies using a partition
of unity. The proof for trivial bundles essentially uses the fact that GL(n) deformation retracts
to O(n). See for example [Hir12, Chapter 4, Lemma 2.3]. �

1.5.0.5 Definition (Stable homotopy type). Two orthogonal spherical bundles S(E1), S(E2) are
said to have the same stable homotopy type if there exist integers n1, n2 such that S(E1 ⊕ n1)

and S(E2 ⊕ n2) have the same fiber homotopy type.

1.5.0.6 Definition (The set J(B)). We define J(B) as the set of stable fiber homotopy types of
orthogonal spherical bundles over B. For a spherical bundle E → B its class in J(B) will be
denoted by J(E).
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Nowwewill define a group structure on the set J(B). Recall that in the case of vector bundles
we used operations between vector spaces to define operations between vector bundles. When
we wanted to define a group structure on vector bundles we used a binary operation on vector
spaces, namely the direct sum. In this case the same idea applies. An operation that can be
carried on with two spheres to get a new sphere is the join.

1.5.0.7 Definition (Join of two spaces). The underlying set of the join of two spaces X and Y is
defined as the set of formal sums rx + sy with x ∈ X, y ∈ Y , r, s ∈ [0, 1] such that r + s = 1.
Now one considers the four projection functions rx + sy 7→ r, rx + sy 7→ s, rx + sy 7→ x and
rx+ sy 7→ y, and gives X ∗ Y the initial topology with respect to these functions.

It is natural to interpret the join construction as actually joining every point of one space to
every point of the other in a continuous way. With this definition it is easy to prove that the join
is an associative operation. A proof of this fact can be found in [Bro06, Section 5.7]. As we said
before we can characterize the join of two spheres.

1.5.0.8 Lemma (Join of two spheres). Let n and m be natural numbers, then the join Sn ∗ Sm is
homeomorphic to Sn+m+1.

Proof. Notice that for a space A the join A ∗ S0 is just the (non reduced) suspension of A. Thus
a sphere Sn can be written as S0 ∗ . . . ∗ S0, joining n + 1 times. Using this and the associativity
of the join operation we are finished. �

Figure 1.8: The join of S0 and S1 is S2.

1.5.0.9 Remark (Fiberwise join). Making an argument analogous to the one explained in Def-
inition 1.3.1.1 one can indeed define an operation between fiber homotopy classes of spherical
fibrations that behaves like the join in each fiber. Moreover, by the Yoneda lemma this induces
an H-space structure on the spherical fibrations classifier to be defined in Definition 1.6.0.2.

But we can also make the following remark that will lead us to a simpler definition, since for
now we are only interested in orthogonal spherical bundles.
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1.5.0.10 Remark (Unit sphere of a direct sum). From the pictures one might infer that the unit
sphere of a sum of two vector spaces is the join of the unit spheres of each space, at least up to
homotopy. This is indeed true and just like in Lemma 1.5.0.4 it does not depend on the choice
of metric used to define the spherical bundle.

So we will define the join operation directly on orthogonal spherical bundles instead of making
a general definition for spherical fibration. For this we will use the sum operation of vector
bundles. An advantage of this approach is that once we define the operation on J(B) it will be
fairly obvious that there is a group morphism KO(B)→ J(B). Nonetheless the reader should
keep in mind the topological idea that this operation corresponds to the fiberwise join.

1.5.0.11 Definition (Operation on J(B)). Given two classes of orthogonal spherical bundles
J(E), J(E′) over the same space B we define their sum in J(B) as J(E) + J(E′) := J(E ⊕ E′).

Although this definition simplifies some arguments it is not clear that it is well defined since
it is defined on representatives. And thus we have to prove the following proposition.

1.5.0.12 Proposition. The operation defined on J(B) is well defined.

Proof. We must show that the definition does not depend on the choice of the representatives.
Concretelywe have to show that if J(E1) = J(E2) then J(E1⊕E′) = J(E2⊕E′). First we reduce
it to the case in which E1 and E2 do not have just the same stable fiber homotopy type but the
same fiber homotopy type. For this we can add trivial bundles on both sides. So we assume
thatE1 andE2 have the same fiber homotopy type. Now assume given f, f ′, h, h′ that constitute
the fiber homotopy equivalence. Using these we can define F, F ′, H,H ′ that constitute a fiber
homotopy equivalence between E1⊕E′ and E2⊕E′. First notice that an element of S(E1⊕E′)
can be written in a unique way as u cos θ ⊕ v sin θ with u ∈ E1 and v ∈ E′, and thus we can
define:

F : S(E1 ⊕ E′)→ S(E2 ⊕ E′)

u cos θ ⊕ v sin θ 7→ f(u) cos θ ⊕ v sin θ

By understanding what we did with F here the rest of the proof follows at once. We simply
plugged the maps we were given by hypothesis in the first coordinate. It is then immediate that
if we do this for F ′, H and H ′ we will get the desired fiber homotopy equivalence. �

1.5.0.13 Proposition (Group structure on J(B)). The operation defined on J(B) makes it an abelian
group. In particular for every bundle E over a fixed space B there exists another orthogonal spherical
bundle E′ such that J(E) + J(E′) is trivial.

Proof. By definition of the operation we deduce at once that J(B) is at least a commutative
semigroup. It remains to check the existence of additive inverses. For this, given J(E) we use
Lemma 1.3.1.24 to construct a vector bundle E′ such that E⊕E′ is trivial. Then J(E) +J(E′) =

J(E⊕E′) = 0, since we are using spherical bundles up to stable fiber homotopy equivalence. �

Finally observe that J : Vec(B)→ J(B) factors through Vec(B)∼ because it does not distin-
guish isomorphic bundles. Moreover, since KO(B) is the groupification of Vec(B)∼ and J(B)
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is a group, by the universal property of groupification we get a group morphism J : KO(B)→
J(B). For this we have to use that J is a semigroup morphism and this is immediate by the
definition of sum in J(B). Diagrammatically we have:

Vec(B)

Vec(B)∼ J(B)

KO(B)

As a side remarkwe note that it is easy to prove that the last morphism in the diagram factors
through themorphismmentioned in Remark 1.3.1.25 yielding amorphism K̃O(B)→ J(B). For
this just use that we are considering spherical bundles up to stable fiber homotopy equivalence.

By the previous argument we define:

1.5.0.14 Definition (First J homomorphism). The morphism we just constructed is called the
J-homomorphism J : KO(B)→ J(B).

Explicitly the homomorphism takes a real vector bundle to the orthogonal spherical bundle
induced by endowing the vector bundle with an arbitrary metric. This yields a spherical bundle
well defined up to fiber homotopy equivalence and thus is well defined in J(B).

1.6 The homotopy groups of the classifying space of spherical
fibrations

Now we will use some concepts introduced in the section about classifying spaces.

1.6.0.1 Definition. We define the space Hn as the space of self homotopy equivalences of the
sphere Sn−1 with the compact open topology. Using the notation introduced inNotation 0.0.0.17
we have Hn := hAut(Sn−1).

Now we observe that there is an obvious map in : Hn → Hn+1 that takes a homotopy
equivalence f : Sn−1 → Sn−1 to Σf : Sn → Sn (recall Definition 0.0.0.18). It is easy to see
that in is in fact continuous.

1.6.0.2 Definition (Classifying space of spherical fibrations). Using Theorem 1.4.1.2 we define
the classifying space of (n−1)-dimensional spherical fibrations asBHn = B hAut(Sn−1). Using
the notation introduced inNotation 1.4.1.1we haveBHn = C Sn−1. SinceB is functorial we also
get maps Bin : BHn → BHn+1 by the application of B to the maps defined above. We define
the classifying space of spherical fibrations as the colimit of this diagram BH := colim

n
BHn.

The following remark discusses the meaning of these definitions.
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1.6.0.3 Remark. Fix a base space B. By Theorem 1.4.1.2 it is clear that BHn classifies Sn−1-
fibrations. But what does BH classify? By the definition of BH it is immediate that a map
B → BHn induces a map B → BH by postcomposition with the inclusion of BHn in the
colimit cn : BHn → BH . This is true for every n ∈ N and thus it might seem to be the case
that BH classifies all spherical fibrations. This is not exactly true. Consider an (n−1)-spherical
fibration classified by a map s : B → BHn. Composing the classifying map swith the map Bin

we obtain amap (Bin)◦s : B → BHn+1 that classifies an n-spherical fibration. This n-spherical
fibration can be regarded as the suspension of the original (n − 1)-spherical fibration (one can
check that it is indeed the fiberwise suspension). Notice that cn◦s = cn+1◦(Bin)◦s and thus the
spherical fibrations classified by s and by (Bin) ◦ s get identified when seen as maps B → BH .
The following commutative diagram depicts the described situation:

B

· · · BHn BHn+1 · · ·

BH

s (Bin) ◦ s
Bin

cn cn+1

Since BH is a filtered colimit, for a compact base space B two classes s ∈ [B,BHn] and s′ ∈
[B,BHm] are identified when passing to the colimit if and only if they are identified when
suspending them a finite number of times. So for a compact base space BH classifies spherical
fibrations up to stable homotopy equivalence. For this one also needs to justify that since we are
requiring the base space to be compact then every map B → BH factors through a map B →
BHi for some i (recall Remark 1.4.1.5).

The reader is invited to compare this with the classifying space of reduced K-theory (see
Theorem 1.4.1.3) which classifies vector bundles up to stable equivalence.

Although the spaceBH classifies spherical fibrations up to stable homotopy equivalence we
call it the classifier of spherical fibrations for simplicity.

The proof of the next theorem follows closely the one given in [Ati61], but we fill in many
arguments that are not explained in the reference. All of them are probably obvious to an ex-
perienced homotopy theorist but it is instructive to understand the constructions in this proof
because it seems very plausible to make an analogous proof in HoTT and the proof uses many
standard results in homotopy theory that would also be nice to formalize in HoTT (see Sec-
tion 2.6.1 for a discussion about translating the proof intoHoTT). Some of these results are stated
and proved during the course of the proof and other are stated and proved as additional lemmas
after the proof.

The theorem relates the homotopy groups of the spaceBH with the stable homotopy groups
of the spheres (recall Definition 0.0.0.20).

1.6.0.4 Theorem (Homotopy groups of BH). The following three statements characterize the homo-
topy groups of BH : The π0 of BH is trivial. The fundamental group of BH is isomorphic to Z2. The
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higher homotopy groups of BH are isomorphic to the stable homotopy groups of the spheres shifted by
−1. Formally πr(BH) ' πS

r−1 when r > 1.

Proof. By construction the spaceBH is connected (see [DL59, Section 7]) and thus its π0 is trivial.
This establishes the first statement.

Nowwe use the fact that ΩBHn is homotopy equivalent toHn and thus we only have to deal
with Hn since we are concerned with homotopy groups from 1 onwards. To see that ΩBHn is
in fact homotopy equivalent to Hn use Lemma 1.6.0.5 and the universal bundle constructed in
[DL59, Part 6] which has BHn as its base space, Hn as its fiber and a contractible space as total
space.

The rest of the proof is structured as follows: For the fundamental group case we will see
that the group π0(Hn) is isomorphic to Z2. For the case of the higher homotopy groups we will
see that πr−1(Hn) is isomorphic to πn+r−2(Sn−1) if 2 ≤ r ≤ n− 2. Moreover, the isomorphisms
will render commutative the following square for every n and every r:

πr(Hn) πn+r−1(Sn−1)

πr(Hn+1) πn+r(Sn)

'

πr(in) S

'

Here S denotes the suspension morphism:

S : [Sn+r−1,Sn−1]• → [Sn+r,Sn]•

f 7→ Σf

and in : Hn → Hn+1 are the maps defined previously. The result then follows by taking the
colimit in r on both sides of these squares, and by using the fact that the πn(−) commute with
filtered colimits (recall Remark 1.4.1.5).

So let us now prove the second statement, the one about the fundamental group of BH .
It suffices to show that Hn has just two connected components and that the maps in respect
them. To see this remember that Hn is the space of homotopy self equivalences of the (n − 1)-
dimensional sphere. But by Proposition 0.0.0.23 we know that maps Sn−1 → Sn−1 are com-
pletely determined up to homotopy by their degree. Since we are considering homotopy self
equivalences, by the multiplicativity of the degree, the degree can be either 1 or −1 and thus Hn

has exactly two connected components. Moreover the degree is preserved by the maps in be-
cause they are defined by taking the suspension of a homotopy self equivalence. Let us rename
the two connected components of Hn as H+

n and H−n respectively, since we will need them for
the proof of the third statement.

The proof of the third statement is more involved. Fix a distinguished point b ∈ Sn−1 and
let Fn be the space of pointed maps Sn−1 → Sn−1 with the compact open topology, formally
Fn := Space•(Sn−1,Sn−1). The same discussion about degrees applies here and thus Fn is the
disjoint union of the connected components F dn that consist of the maps of degree d ∈ Z. Now,
notice that the component F 1

n embeds in a obvious way inH+
n (a map of degree 1 is a homotopy

equivalence). On the other hand we have a map q : H+
n → Sn−1 that evaluates a self homotopy
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equivalence at b and by Lemma 1.6.0.6 this map is in fact a fibration. Moreover, the fiber of q
is by definition F 1

n and thus we can apply the long exact sequence of homotopy groups to the
fibration F 1

n ↪→ H+
n → Sn−1. To be precise we must choose a base point for H+

n , and for this we
pick the identity Id : Sn−1 → Sn−1.

Now notice that if r ≤ n− 3 the groups πr+1(Sn−1) and πr(Sn−1) are trivial and so, from the
long exact sequence we get natural isomorphisms:

πr(H
+
n ) ' πr(F 1

n), 1 ≤ r ≤ n− 3

But the inclusion H+
n → Hn induces an isomorphism πr(H

+
n ) ' πr(Hn) because the functors

πr(−) depend only on the connected component of the base point for r ≥ 1 and we pointedHn

with the identity. This gives us πr(Hn) ' πr(F 1
n).

We now use the fact that Fn has an H-space structure, since it is by definition the (n−1)-fold
loop space of Sn−1. Moreover the monoid structure induced by the H-space operation on the
connected components of Fn is a group structure, since this monoid is exactly πn−1(Sn−1). Thus
by Lemma 1.6.0.8 we deduce that we have isomorphisms πr(F 1

n) ' πr(F 0
n).

Let us make a diagram reflecting our current situation. For r ≤ n− 3 we have:

πr+1(Sn−1)

πr(F
0
n) πr(F

1
n)

πr(H
+
n ) πr(Hn)

πr(Sn−1)

'

'

'

where the vertical maps are part of the long exact sequence.
Next we must show that we have isomorphisms πr(F 0

n) ' πn+r−1(Sn−1) for this will give us
isomorphisms πr(Hn) ' πn+r−1(Sn−1). Notice that we have an equivalence:

πr(F
0
n) = [Sr, F 0

n ]• ' [Sr,Space(Sn−1,Sn−1)]• = [Sr, Fn]• (1.1)

Remember that the • means that we are considering pointed maps and the [−,−] indicates that
we are considering maps up to homotopy. The equivalence of this last statement is induced by
the inclusion F 0

n → Space(Sn−1,Sn−1) that forgets the pointing. Why does the inclusion induce
an equivalence? Observe that Fn is pointed by the function that takes all Sn−1 to the standard
base point and that map lies in the connected component F 0

n for it has degree zero, since it is
nullhomotopic. Since we are considering pointed maps that have Sr as its domain and Sr is
connected we conclude that pointed maps Sr → Fn are the same as pointed maps Sr → F 0

n and
thus the equivalence.
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Finally in Eq. (1.1) we can use the adjunction of Proposition 0.0.0.19 between the exponential
and the smash product in the category of pointed spaces and the fact that the smash product of
two spheres is again a sphere to get isomorphisms:

πr(F
0
n) = [Sr,Space(Sn−1,Sn−1)]• ' [Sn−1 ∧ Sr,Sn−1]• ' [Sn+r−1,Sn−1]• = πn+r−1(Sn).

To conclude we must show that the square in the beginning of this proof commutes. To
see this recall that the vertical arrow on the right side of the square is given by taking reduced
suspension:

[Sn+r−1,Sn−1]• → [ΣSn+r−1,ΣSn−1]• ' [Sn+r,Sn]•

On the other hand, the vertical arrow of the left side consists on composing a map πr(Hn) =

[Sr, Hn]• with the reduced suspension in : Hn → Hn+1. A straightforward check shows that all
the isomorphisms we defined respect this suspension. One must pay attention in the case of the
adjunction between the hom space and the smash product. �

1.6.0.5 Lemma. A pointed fibration F ↪→ E → B such that the total space E is contractible induces a
homotopy equivalence between F and ΩB.

Proof. Consider the connectingmapΩB → F mentioned in the discussion of Proposition 1.1.0.14.
This map induces the connectingmorphisms in the long exact sequence of the fibration. SinceE
is contractible its homotopy groups are trivial and thus the connectingmorphisms turn out to be
isomorphisms in every degree. This proves that the connecting map is a weak homotopy equiv-
alence but since we are working with CW-complexes this is indeed a homotopy equivalence by
Whitehead’s theorem. �

1.6.0.6 Lemma. The map q : H+
n → Sn−1 that evaluates at b is a fiber bundle with fiber F 1

n and thus it
is a fibration and the long exact sequence of homotopy groups applies.

Proof. We must construct an open cover of Sn−1 that trivializes the map q. For this, take Ub :=

Sn−1 \ {b} and U−b := Sn−1 \ {−b} where −b is the antipode of b. Now we must construct
homeomorphisms ϕα with α ∈ {b,−b} that render commutative the triangles:

Uα × F 1
n q−1Uα

Uα

ϕα

π1 q

Let us begin with the case α = b. For each y ∈ Ub we can consider the geodesic p : b  y

endowing Sn−1 with the metric induced by Rn, and we can rotate Sn−1 following this geodesic.
This yields a rotation rp : Sn−1 → Sn−1 that sends b to y. Then define ϕb(y, f) := rp ◦ f . Notice
that the paths p = p(y) depend continuously on y. This is well defined since −b /∈ Ub and −b is
the only point for which there is more than one geodesic that connects it to b. The fact that we
were able to make this choice in a continuous way implies that ϕb is continuous. Since rotations
are homeomorphisms ϕb is a homeomorphism.
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Figure 1.9: A path p(y) : b y for each y ∈ Ub.

It remains to deal with the case α = −b. For this case we cannot use exactly the same idea
as above, since we do not have a canonical choice for a geodesic connecting b and −b. We solve
this problem by making a non canonical choice at the beginning and then using the same idea
as above. Let t : b  −b be a geodesic connecting b to −b and let rt be its associated rotation.
Now define ϕ−b(y, f) := rp ◦ rt ◦ f where p is the geodesic p : −b  y which is well defined
since y ∈ U−b. Again p = p(y) is continuous in y. �

Now to the proof of the lemma about H-spaces. For this we need:

1.6.0.7 Remark. An H-space structure on a space induces a monoid structure on the set of
connected components. We will regard the set of connected components as a discrete space.
Call Xx to the connected component of x ∈ X . If the H-space operation of X is called µ de-
fine the operation induced on the connected components as µ(Xx, Xy) = Xµ(x,y). To see that
this is well defined notice that if Xx = Xz then there is a path p : x  z and thus a path
µ(p, y) : µ(Xx, Xy)  µ(Xz, Xy). Since the space of connected components is discrete we have
µ(Xx, Xy) = µ(Xx, Xy). Since µ is associative it is immediate that µ is also associative.

1.6.0.8 Lemma. If we have an H-space such that the monoid structure induced on the connected compo-
nents of the space is a group structure then all the connected components are homotopy equivalent.

Proof. Suppose X has an H-space structure with operation µ : X × X → X . Let Xe be the
connected component of the unit of the H-space structure and let Xx be the connected com-
ponent of an element x ∈ X . We will show that for any connected component Xx we have a
homotopy equivalence X0 ' Xx. For any connected component Xx we know that there exists
a connected component Xy such that µ(Xy, Xx) = Xe where µ is the operation induced by µ
on the connected components of X . This is a direct consequence of the fact that µ induces a
group structure on the connected components. Now consider the maps µ(y,−) : Xx → Xe and
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µ(x,−) : Xe → Xx. Then the following equivalence shows that these are homotopy inverses of
each other:

µ(x, µ(y,−)) = µ(µ(x, y),−) ' µ(e,−) = Id .

The first equality is due to the associativity of µ, the second equivalence holds because µ(x, y) ∈
Xe and thuswe can choose a path p : µ(x, y) e that induces a homotopyµ(p,−) : µ(µ(x, y),−) '
µ(e,−). The last equality is just the unit law of µ.

The proof that the other composition is also a homotopy equivalence is completely analo-
gous. �

1.6.0.9 Remark. In the course of the previous proof we chose an element in each connected
component of X . This cannot be done in a natural way and thus the homotopy equivalence
between Xx and Xe that we constructed is not canonical. But the induced isomorphisms in the
homotopy groups are indeed canonical: They do not depend on the choice of representatives for
the connected components. This is because any two choices x, x′ ∈ X induce homotopical maps
µ(x,−) ' µ(x′,−) and we know that homotopical maps induce the same map in the homotopy
groups.

1.7 The J-homomorphism

In the last sectionwe established the fact that the homotopy groups of the spherical fibrations
classifier are isomorphic to the stable homotopy groups of the spheres. Recalling once again the
representability of the homotopy groups functors this means that:

[Sn,BH]• = πn(BH) ' πSn−1

for n > 1.
Now the construction gets interesting. Notice that we have an obvious inclusion jn : O(n)→

Hn that takes an orthogonal transformation and restricts it to the unit sphere: An orthogonal
transformation restricts to a homeomorphisms of the unit sphere and thus it is a self homotopy
equivalence of the unit sphere. It is easy to see that these maps commute with the suspension
maps we defined in Theorem 1.4.1.3 and Definition 1.6.0.1, and thus that the following diagram
commutes:

O(n) Hn

O(n+ 1) Hn+1

jn

in in

jn+1

This follows from the fact that taking the suspension of a sphere adds a dimension but the
suspension of a map is constant in this new dimension. The same occurs when taking the sus-
pension of an orthogonal transformation by adding a one in the bottom right corner.

Now fix a pointed space B. By applying first the functor B and then the functor [B,−] we
get commutative squares:
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[B,BO(n)] [B,BHn]

[B,BO(n+ 1)] [B,BHn+1]

[B,Bjn]

[B,Bin] [B,Bin]

[B,Bjn+1]

Now if we takeB to be a compact space the sequential colimits formed by the vertical arrows
of the squares commute with the functor [B,−] yielding a morphism J : [B,BO]→ [B,BH].

Why is this construction useful? Because it gives an alternative way of understanding the
group J(B) that we defined in Definition 1.5.0.6: J(B) turns out to be the image of this last
morphism J (although to see this one must carefully follow the construction of the universal
bundle made in [DL59]). Finally, taking B to be a sphere Sn and recalling from Theorem 1.4.1.3
that reduced real K-theory is represented by BO we have constructed a morphism from the
reduced real K-theory of the spheres to the stable homotopy groups of the spheres:

K̃O(Sn) = [Sn,BO]→ [Sn,BH]

for n > 1.
Althoughwe did not prove this formally it is easy to check that the fiberwise join makes BH

a homotopy associativeH-space6 and thus by Proposition 0.0.0.24 the fundamental group ofBH

acts trivially on its homotopy groups. This means that we can identify the homotopy classes of
maps [Sn,BH] with the homotopy classes of pointedmaps [Sn,BH]•. Using the morphism that
we just defined and Theorem 1.6.0.4 we can define the following morphism.

1.7.0.1 Definition (Second J-homomorphism). For every n ∈ N there is a morphism K̃O(Sn)→
πS
n−1 called the stable J-homomorphism. The image of this morphism is isomorphic to the group
J(Sn).

This morphismwas first defined byWhitehead in [Whi42]. As we said before the reader can
find many applications of this morphism, including computations of stable homotopy groups
of spheres, in [Ada63], [Ati61] and [Hat09].

6Since BH classifies spherical bundles up to stable fiber homotopy equivalence, and the fiberwise join makes the
stable fiber homotopy equivalences of spherical bundles over a base space B a monoid, one can use Yoneda to endow
BH with an H-space structure.
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Spherical fibrations in HoTT

To translate the basics of the theory of spherical fibrations into HoTT we will need to dis-
cuss some topics first. To classify spherical fibrations we will need pointed connected types and
classifying spaces in HoTT. To classify spherical fibrations up to stability we will need sequential
diagrams. And just like in the classical setting, this classification will work when the base space
is a compact type. Moreover, to get an analog of Theorem 1.6.0.4 we will need the spheres to be
compact types. These topics are studied in the first sections of this chapter. One should keep
in mind that many results on these topics depend on conjectures. Finally we will apply these
results to study the fundamental group of the classifying space of spherical fibrations, and here
we will also study the degree of maps Sn → Sn and the action π1(B)yπn(B) for a pointed
space B.

But first, as promissed at the beginning of the first chapter, let us explain in which way the
language of HoTT lets us identify fibrations over a type and representations of this type. Fix a
type B : U . In the same way that a presheaf P : C op → Set over a category C is a representation
of this category by sets, a map P : B → U can be regarded as a representation ofB by homotopy
types: Each inhabitant b : B is represented by a (homotopy) type P (b) : U and each path p : b = c

is represented by an equivalence P (p) : P (b) ' P (c). Maps with the universe U as codomain are
usually called type families, in analogywith the constructionmade in Remark 1.1.0.1. Continuing
with this analogy given a map f : E → B one can consider the fiber of each b : B defined as:

fibf : B → U

b 7→ (e : E)× (f(e) = b)

It is nice to observe how, syntactically, this is just a translation of the usual fiber (or preimage)
of a point through a function between sets, but homotopically this corresponds to taking the
homotopy fiber of a map between spaces as we did in Remark 1.1.0.15. By the functoriality of all
the constructions in HoTT this induces an application:

E → B
B → U

Moreover this correspondence is an equivalence as proved in [Uni13, Theorem 4.8.3]:
(E : U)× (E → B)

B → U
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This is a formal version of the analogy explained in Remark 1.1.0.2. This is analogous to
what happens when we restrict the study of presheafs to the study of sheaves: Sheaves can be
characterized as functors satisfying a gluing condition or, equivalently, as fibrations satisfying a
local triviality condition. We will use this result in Theorem 2.5.0.2 and in the last section of this
chapter (Section 2.7) where we will refine the analogy between representations and fibrations to
the case of pointed connected types.

2.1 Connected types

The goal of this section is to motivate the definition of connected types and to see that con-
nected types enjoy many properties that one would expect. Some results in this section have
generalizations to higher notions of connectedness but we won’t need the more general state-
ments.

The standard definition of being n-truncated is by induction: A type is (−2)-truncated if it
is contractible. A type is (n + 1)-truncated if its identity types are n-truncated. For n small
n-truncated types have special names: (−2)-truncated types are the contractible types, (−1)-
truncated types are calledmere propositions (or just propositions), and 0-truncated types are called
sets (or discrete types). An n-truncated type is also called an n-type.

An equivalent definition of n-truncated type is the following. A type A is n-truncated if it is
(strongly) localized at the map Sn+1 → 1. This means that for every map f : Sn+1 → A there
exists a unique g : 1→ A such that the following triangle commutes.

Sn+1 A

1

f

k g

Here k is the only map k : Sn+1 → 1. In HoTT we say this by considering the map − ◦ k : (1→
A)→ (Sn−1 → A) and defining A to be an n-type if isEquiv((− ◦ k)).

It is clear that being an n-type is a mere proposition and thus we can consider the universe
Un ··≡ (A : U)× isntype(A) as a sub-universe of U in the sense that the inclusion/projection:

ι : Un → U

(A, d) 7→ A

has a mere proposition as fiber.
The n-truncation of a type for n ≥ −1 is the type ‖A‖n obtained by localizing A at the map

Sn+1 → 1. Formally we can construct ‖A‖n with a higher inductive type having constructors:

| − |n : A→ ‖A‖n
h : (Sn+1 → ‖A‖n)→ ‖A‖n
s : (r : Sn+1 → ‖A‖n)→ (x : Sn+1)→ r(x) = h(r)
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2.1.0.1 Notation. The (−1)-truncation of a type A : U is often called just the truncation of A.
Following this usage, the notation ‖A‖will mean ‖A‖−1. We will do the same for the truncation
constructor | − | which will denote the (−1)-truncation constructor | − |−1.

2.1.0.2 Remark (Functoriality of truncation). Lemma 7.3.1 in [Uni13] proves that ‖A‖n is an n-
type. Moreover, the map ‖ − ‖n : U → Un is universal in the following sense. If isntype(B)

then:
‖A‖n → B

A→ B

and thus Un is a reflective subuniverse of U : This is proved in [Uni13, Lemma 7.3.3]. The left
adjoint of the inclusion ι : Un → U is the truncation | − |n : U → Un.

If n-types are types with trivial homotopy in dimensions grater than n, the connected types
are the dual concept: Types with trivial homotopy in dimensions less or equal than n. Formally
we say that a type is n-connected if its n-truncation is contractible. Why is this definition sensi-
ble? In the case of 0-connectedness a simple example can help to understand it:

2.1.0.3 Example. Suppose we have the type S1 + 1, the disjoint union of a circle and a point.
This type should not be connected for it is a disjoint union of non-empty types. What happens
when we take its 0-truncation? Every path space x = y collapses to a proposition, and thus the
inhabitants of the S1 component are all now (naturally) equal to each other. The space that we
got after applying ‖ − ‖0 is not contractible and so S1 + 1 is not connected. But if we make the
same construction but with S1 we get a contractible space, so S1 is connected.

Proving this assertion formally exemplifies the difference between equality and mere equal-
ity.

2.1.0.4 Example (S1 is connected). Notice that it suffices to give amere equality ‖base = x‖−1 for
every x : S1. We do this by induction on S1. For the base case we use the (truncated) reflexivity
|reflbase|−1. Then it remains to prove that loop respects this choice: We have to show that the
transport of |reflbase|−1 through loop is equal to itself. But |reflbase|−1 lives in a mere proposition
and thus this is immediate (see also Remark 2.1.0.13).

Since we won’t need n-connectedness for n > 0 we state a more explicit definition of 0-
connectedness.

2.1.0.5 Definition (Connected type). A typeA is said to be 0-connected (or just connected) if the
type is merely inhabited any two inhabitants are merely equal. Formally define isConn(A) ··≡
‖A‖ × ((a, b : A)→ ‖a = b‖−1).

A very important remark is the following.

2.1.0.6 Remark (Connectedness is a mere property). A type can be connected in at most one
way. This means that the space of proofs that a fixed type is connected is a mere proposition.
The fact that isConn(A) is a mere proposition is a direct consequence of the fact that a product of
mere propositions is again a mere proposition. The proof of this last statement is a simple use
of function extensionality (see [Uni13, Example 3.6.2]).

51



CHAPTER 2. SPHERICAL FIBRATIONS IN HOTT

If we try to draw a (homotopy) type we will probably picture it as a disjoint union of con-
nected types. To understand a bit more why the given definition of connected type is a good
notion of connectedness let us prove that any type is a disjoint union of connected types. For this
we must define what a disjoint union is. Since sets are by definition 0-truncated types (discrete
spaces) we can define a disjoint union to be a sigma type indexed by a set. Now consider the zero
truncation map | − |0 : A → ‖A‖0. This map collapses every connected component to a point.
Notice that for every x : ‖A‖0 the fiber is necessarily connected:

2.1.0.7 Proposition (Fiber of the 0-truncation). For any type A the fiber of an element x : ‖A‖0
through the map | − |0 : A→ ‖A‖0 is connected.

Proof. This is in fact a particular case of a more general statement: For any n the map | − |n :

A→ ‖A‖n is n-connected. And this is [Uni13, Corollary 7.5.8]. �

Using this we can prove that a type is indeed the disjoint union of connected components.

2.1.0.8 Proposition (A type as a disjoint sum). Any type can be written as a disjoint union of con-
nected components.

Proof. Using [Uni13, Lemma 4.8.2] we can write A ' (x : ‖A‖0) × | − |−1(x) and the previous
lemma implies that | − |−1(x) is connected. The type ‖A‖0 is a set by [Uni13, Lemma 7.3.1]. �

The following definition gives a way of constructing a new type from a type and an element
of this type. It is useful to think about this definition as the description of the connected component
that a given element inhabits.

2.1.0.9 Definition (Connected component). Given a type A and an inhabitant a : A define the
connected component of a to be the type C (A, a) ··≡ (b : A)× ‖a = b‖. The type of elements of A
that are merely equal to a.

The notation C will be justified in Section 2.5 where we will see how this construction lets
us build a classifying space in the sense of Theorem 1.4.1.2. There is a natural inclusion of a
connected component in the original type:

2.1.0.10 Definition (Inclusion of connected component). Fix a typeA and an a : A. By projecting
the first component of the dependent sum we get a map i : C (A, a)→ A.

Observer that this map is an embedding: The fibers are mere propositions. One can ob-
serve that we have two slightly different notions of connected component. One is to think about
a connected component as the fiber of a point through the 0-truncation, as we did in Propo-
sition 2.1.0.7. The other notion is the one of Definition 2.1.0.9 above which says the connected
component of a distinguished inhabitant is the type of inhabitantsmerely equal to it. The following
lemma serves to relate the two notions1.

2.1.0.11 Lemma. Given a type A : U and two inhabitants a, b : A there is an equivalence:

(|a|0 =‖A‖0 |b|0) ' ‖a = b‖−1

1Notice that this is the zero case of [Uni13, Theorem 7.3.12].
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Proof. Since both types are mere propositions it suffices to show that they are logically equiva-
lent. A proof of the LHS implies that b is in the fiber of a through the map ‖ − ‖0. By Propo-
sition 2.1.0.7 this fiber is connected and thus we get a mere path connecting a and b. For the
converse recall that the path spaces of a 0-truncation are mere propositions and thus given a
mere path connecting a and bwe can assume it comes from an actual path p : a = b by induction
on the (−1)-truncation. Nowuse the functoriality of the 0-truncation on p to finish the proof. �

2.1.0.12Remark (Characterization of connected component). With this last result it is immediate
to prove that the connected component of an inhabitant a : A in the sense of Definition 2.1.0.9 is
equivalent to the fiber of |a|0 through the map | − |0 : A→ ‖A‖0.

Before passing to the study of pointed connected types we make a remark on proving mere
propositions about connected types and about higher inductive types.

2.1.0.13 Remark (Proving mere propositions). Suppose we want to prove a mere proposition
P : A → U over some type A. If the type A happens to be connected then it suffices to prove
the proposition just for some a : A. This is because any other b : A is merely equal to a : A, so
by induction on truncation we can prove the proposition P (b) by assuming that b is equal to a.
This means that to prove a proposition about a type A it is enough to show it for an inhabitant
of each connected component of A.

In the case of higher inductive types this means that to prove a mere proposition about a
higher inductive type it suffices to prove it only for the point constructors. This can be justified
by induction on the type: The higher inductive steps of the induction will be automatic, since
they will ask us to show that the transport of a proof that we already gave (for example, a proof
for a point constructor) is equal to another proof that we already gave, but since we are proving
a mere proposition this will be immediate.

2.1.1 Pointed connected types

Apointed type is a type togetherwith an inhabitant of that type. Whenworkingwith pointed
types it is useful to think about connected types as types together with a map that proves that
any inhabitant of the type is merely equal to the distinguished point.

2.1.1.1 Definition (Pointed and pointed connected types). We define the universe of pointed
types as U• ··≡ (A : U) × A. We will usually denote pointed types as (A, a) or just by A if the
pointing is implicit. The universe of pointed connected types is defined by:

U•c ··≡ (A : U)× (a : A)× ((b : A)→ ‖a = b‖−1).

Wewill also write (A, a) for a pointed connected type, leaving the fact that the type is connected
implicit. This is not harmful: Being connected is a mere proposition and thus a particular proof
of this fact is no different than any other proof.

2.1.1.2 Definition (Pointed maps). For two pointed types (A, a) and (B, b) define the type of
pointed maps by: A→• B ··≡ (f : A→ B)× (f(a) = b).
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Once we are working in U• the fiber of a map is defined without having to explicitly give a
point in the codomain of the map. Moreover, when we have a map with a pointed connected
type as its codomain its fiber is essentially unique in the following sense (one can compare this
fact with Remark 1.1.0.8).

2.1.1.3 Proposition (Uniqueness of the fiber). LetA be any type and let (B, b) be a pointed connected
type. Given a map f : A→ B, for any b′ : B its fiber is merely equal to the fiber of b : B.

Proof. Just use the fact that we have a map fibf : B → U that takes a point in B to its fiber. Since
any b′ : B is merely equal to b, by functoriality of truncation (Remark 2.1.0.2) we are done. �

Given a type and an element in it we defined the connected component of this element.
Let us show that the connected component of an inhabitant is indeed connected and moreover
naturally pointed.

2.1.1.4 Remark. Given A : U and a : A the type C (A, a) is by definition (b : A) × ‖a = b‖. We
can point this type with (a, |refla|). To show that it is connected we use the fact that the first
coordinate of every element of type C (A, a) is merely equal to a by definition, and the fact that
any two inhabitants of a mere proposition are equal.

2.1.1.5 Remark (Loop space of connected component). Given a pointed type (A, a) it is immedi-
ate to see that that the loop space of (A, a) is (definitionally) equal to the loop space of C (A, a).

A generalization of this last remark is the following.

2.1.1.6 Remark (Factorization through connected component). Given a pointed connected type
(A, a), a pointed type (B, b) and a pointed map f : A→• B there is a natural factorization:

A C (B, b)

B

f

f
i

Where i : C (B, b) → B is the embedding defined in Definition 2.1.0.10 and f is the underlying
map of the pointed map f : A→• B. To construct f we only have to notice that the connected-
ness of A implies that any element in the image of f is merely equal to b.

Moreover, this construction induces an equivalence:

A→• B
A→• C (B, b)

where C (B, b) is pointed as in Remark 2.1.1.4.

2.1.2 A remark on mere propositions vs. additional data

When doing classical mathematics most of the time there’s not a clear distinction between
(mere) properties and additional data. For example, whenwe say that a category has all colimits
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we can be saying that there exists some colimit for each diagram, or that we already have a choice
for each one of these colimits. In this case the distinction is subtle since the axiom of choice
makes both statements equivalent. But in a constructive setting having a choice function is a
stronger condition.

But we don’t have to work with constructive mathematics to have a taste of the difference
between properties and additional data. Think about what additional data forces us to do. For
example, a pointed space is in particular a space. But being pointed is not just a property of the
space, it is an additional datum: If we want to define a morphism between pointed spaces we
should define it as a morphism between the spaces that respects the pointing. In the sense that
the map takes the point of the first to the point in the second. So a morphism between pointed
spaces isn’t just a map in the usual sense.

Now think about being connected. Being connected is a property: Any two proofs that a
particular space is connected are equal. Notice that to define what a map between connected
types is we don’t have to do anything new, just use a standard map between spaces. Since a
property is not an additional datum we didn’t have to make sure to be coherent when mapping
this property.

To give a more algebraic example think about monoids. A monoid is a set with additional
data: a distinguished element (the unit), and an operation. But also with some properties: unit
law and associativity. What about monoid morphisms? They must respect the unit and they
must respect the operation. Butwe don’t have to explicitly state anything regarding associativity
or the unit law.

In category theory a monoid object is an object together with some morphisms (unit and the
operation) such that some diagrams commute (associativity and unit law). In the 1-categorical
setting a diagram can commute in at most one way: Either it commutes or it doesn’t, and thus in
the 1-categorical setting associativity is a mere property of the operation, and so is the unit law.
This is not the case in a higher categorical setting: The possibilities for a diagram to commute
are now a space that might have many different connected components. So, to prove that a that
a triangle commutes one must make a choice regarding which 2-cell one is using to make it
commute. Here just requiring associativity of the monoid might not be enough: Consider the
classical situation in which we have a so-called associator, that for each triple of objects a, b, c
gives an isomorphism between the two possible ways in which we can multiply them: αa,b,c :

(a(bc))
∼−→ ((ab)c). The associator αa,b,c can be regarded as a 1-cell. But using these 1-cells we

can construct the following diagram:

a((bc)d)

(a(bc))d
((ab)c)d

(ab)(cd)
a(b(cd))

This shows that the α’s give us at least two isomorphisms between (a(bc)) and ((ab)c). So if
we want the associator to be coherent we need to have a 2-cell for each triple a, b, c making the
pentagon commute. But again these 2-cells would need to be coherent. There is an analogous
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discussion for the unit law. In the case of monoidal categories (which can be regarded as 2-
categories with just one object, in the same way that a monoid is a 1-category with just one
object), a well known theorem by Mac Lane says that it is sufficient to make the associator and
the unit coherent in order to achieve full (higher) coherence. A related result states that every
2-category is equivalent to a strict 2-category. For a formal exposition of these subjects see for
example [Lei98]. But these results do not generalize to higher dimensions. This is a typical
complication that arises when passing from a yes-or-no situation (mere propositions) to a space-
of-choices one (additional data): Now our morphisms must respect this new additional data,
and there can be highly non-trivial interaction between this data. Moreover the compatibility
between higher cells is often very complicated even to state. These are known as coherence
problems.

2.2 Sequential diagrams

Let us first remember the categorical definition of compact object. In full generality, a com-
pact object in a category is an object K such that for every small filtered diagram {Ai}I the
natural map colim [K,Ai] → [K, colim Ai] is an isomorphism. To define this map one uses the
universal property of colim [K,Ai]: The inclusions in the colimit in : An → colim Ai induce
morphisms in∗ : [K,An] → [K, colim Ai] by postcomposition, which form a cocone. From this
we get the natural morphism by the universal property of colim [K,Ai].

Let us adapt this definition to our case. Wewill use just one kind of directed diagram, namely
the diagrams of the form:

A0
α0−→ A1

α1−→ A2
α2−→ · · ·

We call these diagrams sequential diagrams.
The reader is invited to take a look at [Rij12, Section 3.6]where these diagrams are introduced

as directed diagrams and some of their properties are proved.

2.2.0.1 Notation. Since in this section we will deal with many dependent types over the natural
numbers we will usually denote them using subscripts. To be clear, whenever we have a depen-
dent type T : (n : N)→ B(n) wewill denote its evaluation at some particular n : N as Tn instead
of T (n).

2.2.0.2 Notation. Following the classical notation for families of sets, we will usually denote
type families T : N→ U as {Tn}n:N. When there is only one free variable inside the curly braces
and its type is implicit we will drop the indexing type and write {Tn}.

2.2.0.3 Definition (Sequential diagrams). Define the type seqDiag : U as the type of maps A :

N→ U together with maps α : (n : N)→ (An → An+1).
By abuse of notation we might write {An} for a directed diagram with types An, leaving the

maps implicit. When we want the maps to be explicit we will write {(An, αn)}. Sometimes we
will refer to a sequential diagram simply byD : seqDiag leaving the types and themaps implicit.
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Figure 2.1: A sequential diagram.

Given a sequential diagram we can form its colimit. There are many (equivalent) ways of
defining this colimit, but all of them use some kind of higher inductive type. Since sequential di-
agrams are a particular case of graph-indexed diagrams, the colimit of this kind of diagrams is a
special case of the colimit of graph-indexed diagrams (see Definition 2.4.0.2 and Remark 2.4.0.5)
but for now we define it by an explicit construction.

2.2.0.4 Definition (Colimit of a sequential diagram). Given a sequential diagram {An} with
maps αn we define its colimit colim nAn or more succinctly A∞, as the higher inductive type
with constructors:

i : (n : N)→ An → A∞

glue : (n : N)→ (a : An)→ ina = in+1(αn(a))

We can picture this as:

Figure 2.2: The colimit of a sequential diagram.

Now is a good time to give some examples of sequential diagrams and their colimits.

2.2.0.5 Example (N). Take the type family J−K : N → U defined inductively as J0K ··≡ 0 and
Jn + 1K ··≡ JnK + 1. There are obvious maps JnK → Jn + 1K that are just the inclusion in the
coproduct: i : JnK → Jn + 1K ··≡ JnK + 1. It is straightforward but instructive to check that the
colimit of this sequential diagram is the type N.
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2.2.0.6 Example (S∞). Consider the spheres type family S : N → U defined inductively by
iterating the suspension construction. If we want the indices to match the actual dimension of
the sphere we should start from the zero dimensional sphere which is equivalent to the type
J2K. Then we can include J2K in its suspension by sending one point to the north pole and the
other to the south pole. By functoriality of suspension we get a sequential diagram. The colimit
of this diagram is usually denoted by S∞. It is easy to prove that S∞ is contractible just like in
the classical setting. For a direct proof of this fact the reader can take a look at the solutions of
the exercises of [Uni13]2 or at [Rij12, Theorem 3.6.9].

2.2.0.7 Example (Colimit of contractible types). The colimit of a sequential diagram in which
every type is contractible is again contractible. One way to show this is to use the invariance
under homotopy proved in [Rij12, Theorem 3.6.4]. For this one must prove that a sequential
diagram of contractible types is homotopic to the sequential diagram consisting only on the type
1, which can be done by noticing that every map between contractible types is an equivalence.

2.2.0.8 Notation. Given a sequential diagram {(An, αn)} it is convenient to have some notation
for the iterated application of the maps αn. We will write αn+k

n : An → An+k for the k-fold
application of successive αi’s starting from αn and ending at αn+k−1.

Maps between sequential diagrams are maps between the underlying types, together with
homotopies rendering all the squares commutative. In categorical language this is nothingmore
than a natural transformation.

2.2.0.9Definition (Mapbetween sequential diagrams). Given two sequential diagrams {(An, αn)}
and {(Bn, βn)} the space of maps between them is the type:

(n : N)→ (fn : An → Bn)× (fn+1 ◦ αn = βn ◦ fn).

We will usually denote such a map by {(fn, Hn)}n or simply by {fn} leaving the homotopies
implicit.

Diagrammatically we can picture a map between two sequential diagrams {(An, αn)} and
{(Bn, βn)} as follows:

A0 A1 A2 · · ·

B0 B1 B2 · · ·

α0

f0

β0

α1

f1

β1

α2

f2

β2

where the squares are filled by the homotopies Hn.
Just like in the classical setting a natural transformation between two functors induces a

morphism between the colimits of the functors.

2.2.0.10 Remark (Induced map between colimits). Given two sequential diagrams {(An, αn)}
and {(Bn, βn)} and a map between them {(fn, Hn)} there is a natural induced map f∞ : A∞ →

2See https://github.com/HoTT/book file exercise_solutions.tex.
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B∞. We construct it by induction onA∞: For a point constructor im(a) : A∞ for somem : N use
im(fm(a)) : Bm. For a path constructor gluem(a)use gluem(fm(a)) : im(fm(a)) = im+1(βm(fm(a)))

and the homotopy Hm : fm+1 ◦ αm = βm ◦ fm to get:

gluem(fm(a)) � im+1(Hm(a)−1) : im(fm(a)) = im+1(fm+1(αm(a))).

The following lemma gives us more intuition about sequential diagrams and connected
types.

2.2.0.11 Lemma (Sequential colimit of connected types is connected). The colimit of a sequential
diagram {Ai} in which every type Ai is connected is again connected.

Proof. Weprove this by induction on the colimitA∞. Notice thatwe are proving amere property
and thus it suffices to give the proof only for point constructors as noted in Remark 2.1.0.13.
Given n,m : N and in(a), im(b) : A∞ we have to construct a mere equality between them. We
know that the order of the natural numbers is computable and thus we can consider the cases
in which n ≥ m and n < m. Both are analogous so suppose that n ≥ m. Then a, αnm(b) : An,
which gives us a mere path between them by the connectedness of An. Now we only have to
map this mere path to a mere path connecting in(a) and im(b) in A∞. This is done using the
path constructors of A∞ that say that A∞ is a cocone, and the functoriality of truncation. �

2.2.1 Fibrations over sequential diagrams

We will now define what it means to have a fibration over a sequential diagram. Essentially
it is a fibration over each type together with transition maps.

2.2.1.1 Definition (Fibration over a digram). Given a sequential diagram {(An, αn)} a fibration
over it is a sequence of fibrations P : (n : N)→ An → U together with maps:

ρ : (n : N)→ (a : An)→ (Pn(a)→ Pn+1(αn(a))).

We will write {(Pn, ρn)}when we want to make the maps explicit.

Given a fibration over a sequential diagramwe are naturally led to consider its colimit, which
should induce a (standard) fibration over the colimit of the sequential diagram. To give an in-
formal explanation of this construction let us define it first on the point constructors of A∞. So
given an inhabitant of a sequential colimit a : A∞ we assume that it comes from an a : An for
some n. Then we can consider the sequential diagram given by the transition maps:

Pn(a)→ Pn+1(αn(a))→ Pn+2(αn+1 ◦ αn(a))→ . . .→ Pn+k(αn+k
n (a))→ · · ·

and define the colimit fibration evaluated at a as the colimit of that diagram. So we make the
following definition.

2.2.1.2 Definition (Diagram induced by a fibration). If we have a sequential diagram {(An, αn)},
a fibration {(Pn, ρn)} over it and for a specificm : N an inhabitant a : Am, we form a sequential
diagram with types {Pn+k(αn+k

n (a))}k and maps:

ρn+k(αn+k
n (a)) : Pn+k(αn+k

n (a))→ Pn+k+1(αn+k+1
n (a)).
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Notice that here n is fixed and the indexing variable is k. We will denote this sequential type as
Ean and thus E can be regarded as a dependent sequential diagram:

E : (n : N)→ (a : An)→ seqDiag .

We defined the colimit fibration only on the point constructors so it remains to show that
this definition extends to the path constructors. Stated otherwise, we need to show that this
construction respects the gluing. For this we will use the following lemma.

2.2.1.3 Lemma (Invariance under traslation). Given a sequential diagram {(An, αn)}we can consider
the (left) shifted diagramA[−1] ··≡ {(A1+k, α1+k)}k and writeA1+∞ for its colimit. The identity maps
Id : A1+k → A1+k induce a map A1+∞ → A∞ by induction on A1+∞. In diagrammatic form:

A1 A2 · · · A1+∞

A0 A1 A2 · · · A∞

The induced map is an equivalence. We denote its inverse by trA : A∞ ' A1+∞.

Proof. We define the maps:

A1+∞ → A∞

in(a) 7→ in+1(a)

gluen(a) 7→ gluen+1(a)

and:

A∞ → A1+∞

in(a) 7→ in(αn(a))

gluen(a) 7→ gluen(αn(a))

And we must prove that the compositions:

A∞ → A∞

in(a) 7→ in+1(αn(a))

gluen(a) 7→ gluen+1(αn(a))

and:

A1+∞ → A1+∞

in(a) 7→ in+1(αn(a))

gluen(a) 7→ gluen+1(αn(a))

are homotopic to the identity Id : A∞ → A∞ and Id : A1+∞ → A1+∞ respectively. Both
homotopies are analogous so let us prove only the case of A∞. By induction on A∞ we give the
equalities gluen(a) : in(a) = in+1(αn(a)). And then we must show that this respects the gluing.
This reduces to show that we have (filled) squares:
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a αn(a)

αn(a) αn+1(αn(a))
gluen+1(αn(a))

gluen(a) gluen+1(αn(a))

gluen(a)

To fill these squares notice that for composable paths p : x = y and q : y = z there is always
a filling for the square:

x y

y z
q

p q

p

constructed by path induction. Using this construction we conclude the proof.
We formalized the above argument and others definitions in this section in cubicaltt3. �

With this last fact we can define a (standard) fibration over the colimit from a fibration over
the sequential diagram. To do this notice that, using the notation introduced inDefinition 2.2.1.2
the above lemma proves trEa

n : colim Ean ' colim Ean[−1]. But there is also an obvious equiva-
lence ean : Ean[−1] ' E

αn(a)
n+1 : Just unroll the definition of E in both cases and use the commuta-

tivity of addition:

E
αn(a)
n+1 ≡ (m 7→ Pn+1+m(αn+1+m

n+1 (αn(a))),

m 7→ ρn+1+m(αn+1+m
n+1 (αn(a))))

Ean[−1] ≡ (m 7→ Pn+m+1(αn+m+1
n (a)),

m 7→ ρn+m+1(αn+m+1
n (a)))

And of course equivalent diagrams induce equivalent colimits: colim ean : colim Ean[−1] '
colim E

αn(a)
n+1 .

2.2.1.4 Definition (Colimit fibration). Given a sequential diagram {An} and a fibration {Pn}
over it we define the fibration P∞ : A∞ → U by induction on A∞:

P∞ : A∞ → U

in(a) 7→ colim Ean

gluen(a) 7→ trE
a
n � colim ean

Now thatwe can define fibrations over sequential colimits as colimits of fibrationswewonder
if we can describe the total space of this colimit fibration as a colimit of each total space. Tomake
sense out of this we must construct a sequential diagram out of the total spaces of the fibrations
Pn.

3See https://github.com/LuisScoccola/cubicaltt.git, file seqcolim.ctt, function invcolim.
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2.2.1.5 Definition (Fibration out of the total spaces). For a sequential diagram {(An, αn)} and a
fibration {(Pn, ρn)}we can form a sequential diagram that has as types the total spaces ΣPn ··≡
(a : An)× Pn(a) of the fibrations Pn. For the maps between these types take:

ΣPn → ΣPn+1

(a, p) 7→ (αn(a), ρn(a)(p))

2.2.1.6 Remark. One can prove that the above construction gives, for every sequential diagram
{Ai}, an equivalence between fibrations of sequential diagrams over {Ai} and sequential dia-
grams {Bi} together with a sequential diagram map from {Bi} to {Ai}. This follows from the
equivalence between representations and fibrations stated at the beginning of this chapter.

The following conjecture can be regarded as a flattening lemma for sequential colimits in the
sameway that [Uni13, Lemma 6.12.2] is a flattening lemma for coequalizers. The author learned
this idea from Rijke.

2.2.1.7 Conjecture (Commutativity of sums and colimits). Given a sequential diagram {An} and
a fibration {Pn} over it we can characterize the total space of P∞ as:

colim
n

ΣPn ' ΣP∞

The equivalence should be given by the map:

colim ΣPn → ΣP∞

in(a, d) 7→ (in(a), in(d))

gluen(a, d) 7→ (gluen(a), gluen(d))

where gluen(a, d) : in(a, d) = in+1(αn(a), ρn(d)).
We will now use this conjecture to describe the identity types of a sequential colimit. To do

this consider the Yoneda fibration.

2.2.1.8 Definition (Yoneda fibration). Given a pointed type (T, t) define the Yoneda fibration to
as:

Yt : T → U

s→ t = s

Notice that Yt(t) is by definition the loop space of (T, t). For a sequential diagram this fibra-
tions yield a fibration over the whole diagram in a very natural way:

2.2.1.9 Definition (Colimit Yoneda fibration). Given a sequential diagram {(An, αn)} and an
inhabitant a : Am for a fixedm : Nwe form a fibration over the shifted diagram {Am+k}k using
the Yoneda fibration in the following way. For the fibrations in each degree k take:

Pk ··≡ Yαm+k
m (a) : Am+k → U

b 7→ αm+k
m (a) = b
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For the transition maps take:

ρk : (b : Am+k)→ Pk(b)→ Pk+1(αm+k(b))

b 7→ (p 7→ αm+k(p))

Call the colimit of this fibrationY∞a : A∞ → U . Notice that strictly speaking this construction
yields a fibration over the shifted colimit Am+∞ but by Lemma 2.2.1.3 we can transport this
fibration to a fibration over A∞.

Now, assume given an a : Am. Then we can consider the pointed type (A∞, im(a)). By
abuse of notation we write (A∞, a) for this type. Having a pointed type we can consider its
Yoneda fibration Ya : A∞ → U . The question is whether we can relate this standard Yoneda
fibrationwith the colimit Yoneda fibration defined in Definition 2.2.1.9. Using Conjecture 2.2.1.7
we can do this with the following argument due to Rijke, which serves as a characterization of
the identity types of a sequential colimit.

2.2.1.10 Conjecture (Identity types of sequential colimits). For any sequential diagram {An}
together with an inhabitant a : Am for somem : N there is an equivalence of fibrations:

ΣY∞a ΣYa

A∞

'

π π

Idea. By [Rij12, Corollary 2.4.20] it suffices to show that we have a fiberwise map Y∞a → Ya
and that the total space of Y∞a is contractible. The fiberwise map definition should be straight-
forward by induction on sigma types and the colimit colim n Yna , getting us a map:

Σ colim n Yna → ΣYa

To show that the total space of Y∞a is contractible we can use Conjecture 2.2.1.7 to get:

ΣY∞a ≡ Σ colim k Yαm+k
m (a) ' colim k ΣYαm+k

m (a)

Notice that inside the colimit in the RHS we have a total space of a Yoneda fibration which we
know is contractible by [Rij12, Lemma 2.3.16]. Thus we are taking a colimit of contractible types
which is contractible by Example 2.2.0.7. �

2.2.1.11 Remark. The previous result implies the following equivalence. Assume given a se-
quential diagram {Ai} and two inhabitants a : An and b : An+k. Then there is an equivalence:

(in(a) =A∞ in+k(b)) ' colim l(α
n+k+l
n (a) =An+k+l

αn+k+l
n+k (b)).

which characterizes identity types of sequential colimits.

We will see some consequences of this theorem later but as an example let us prove a propo-
sition about sequential colimits of n-types.
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2.2.1.12 Proposition† (Preservation of truncatedness). If we have a sequential diagram such that each
of its types is n-truncated then its colimit is also n-truncated.

Proof. The proof goes by induction on the truncatedness n. For n = −2 all types are contractible
and thus the colimit is contractible by Example 2.2.0.7. For the inductive case assume given a
sequential diagram {Ai} of n types. Observe that by Remark 2.2.1.11 the identity types of the
point constructors of a sequential colimit are sequential colimits of identity types. By hypothesis
each of these identity types is (n − 1)-truncated since each Ai is n-truncated. And thus, by
inductive hypothesis, the colimit of the identity types of the point constructors is (n−1)-truncated.
Since being n-truncated is a mere property, we can use Remark 2.1.0.13 to deduce that all the
identity types of A∞ are (n− 1)-truncates and thus A∞ is n-truncated. �

We also state the following related conjecture.

2.2.1.13 Conjecture (Conmutativity of truncation and sequential colimits). Given a sequential
diagram {An} and a fixed k : Nwe can use the functoriality of truncation to construct a diagram
{‖An‖k}. By induction on the colimit of this diagram we can construct a map colim n ‖An‖k →
‖A∞‖k, and this map is an equivalence.

2.3 Compact types

Just like in the category theoretical setting, for every type T and every sequential diagram
D ··≡ {An} we have a canonical map clD : colim [K,An] → [K, colim An] ≡ [K → A∞]. This
map can be defined by induction on colim (K → An) in the following way. Since we are dealing
with two sequential colimits we will use an overline for the constructors of colim (K → An). By
induction on colim (K → An) we define:

in(f) 7→ in ◦ f

gluen(f) 7→ gluen ◦ f

2.3.0.1 Definition. Given a type T : U and a sequential diagramD ··≡ {An}we call the defined
map clD : colim (T → An)→ (T → A∞).

With the discussion of Remark 1.4.1.5 in mind we now define in HoTT what it means to be a
sequentially compact type (also called ω-compact type or simply compact type).

2.3.0.2 Definition (Sequentially compact type). We say that a typeK is compact if the canonical
map clD is an equivalence for every sequential diagram D. We form the type:

isComp(K) ··≡ (D : seqDiag)→ isEquiv(clD).

Since we do not consider any other kind of directed diagram we call these types simply
compact types. A very nice property of this definition is that being compact is not an additional
datum: A type can be compact in at most one way. We state this as a lemma.

2.3.0.3 Lemma (Compactness is proposition). For every type A : U the type isComp(A) is a mere
proposition.
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Proof. Since being an equivalence is amere proposition and dependent products of mere propo-
sitions are again mere propositions (just like in the case of connected types) we deduce the de-
sired result. �

Let us give some examples of compact types. Observe that the non-trivial ones depend on
yet unproven results discussed in the next section.

2.3.0.4 Example (0 is compact). The empty type 0 is compact. One way to prove this is to show
that for any sequential diagram {An} both colim (0 → An) and 0 → A∞ are contractible since
anymap between contractible types is an equivalence. The second type is obviously contractible
since 0 is initial. For the first one use Example 2.2.0.7 (a sequential colimit of contractible types
is contractible) and again the initiality of 0.

2.3.0.5 Example (1 is compact). This follows at once from the fact that for any type A there is a
natural equivalence (1→ A) ' A.

Using this two examples one can show inductively that the types JnK are compact (recall that
these types were defined in Example 2.2.0.5).

2.3.0.6 Example† (Finite sets are compact). The type 0 is compact by the above example. For
the inductive case it suffices to show that the disjoint union of compact types is again compact
which is a consequence of Proposition† 2.4.0.6 and Lemma 2.4.0.9 which will be discussed later.

We can generalize this last example a little bit using the fact that compactness is a mere
proposition.

2.3.0.7 Example† (Sets with finite cardinality are compact). A type T is a setwith finite cardinality
provided it is merely equal to a type of the form JnK for some n : N. Since compactness is a mere
proposition, to prove the compactness of T we can assume that T is actually equal to JnK which
is compact by the previous example.

2.3.0.8 Example† (Spheres are compact). Spheres are compact types. The empty space is com-
pact, and the spheres are constructed by suspending a finite number of times. Since the suspen-
sion of a type is a particular case of a pushout we get the desired result by Corollary† 2.4.0.11.

There are many other spaces that can be constructed using pushouts of compact types. For
example cell complexes (with a finite number of cells) as presented in [Uni13, Section 6.6]. We
nowmake a digression to discuss the commutativity of finite limits and filtered colimits and the
results on which the above examples depend.

2.4 Finite limits and filtered colimits

A very important property of the category of sets is that finite limits commute with filtered
colimits. This implies that many other categories enjoy this property, for example presheaf
categories and even more, Grothendieck topoi (see for example [Bor94, Proposition 3.4.5, Sec-
tion 3.4]).
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To define in which sense finite limits commute with filtered colimits consider a functor F :

P ×J → C such that P is a finite category and J is a small filtered category. Assume that all the
limits and colimits that we will want to take exist in C (this is not a restriction in the case of Set).
Then we can form the following diagram:

F (p, j) limp F (p, j) colim j limp F (p, j)

colim j F (p, j) limp colim j F (p, j) limp colim j F (p, j)

cl

The solid arrows are the universal cones of the limits and colimits. The vertical arrow in the
middle of the diagram exists by the universal property of limp colim j F (p, j). Now this arrow
gives us a cone limp F (p, j) → limp colim j F (p, j) that together with the universal property of
colim j limp F (p, j) induces the arrow cl.

We say that finite limits commute with filtered colimits in the category C if the map cl is an
isomorphism for every choice of P, J and F . This is true in the category of sets and a proof can
be found in [ML98, Theorem 1, Section IX 2]. As one can expect the argument uses the explicit
characterization of limits and filtered colimits in the category of sets, thus it might not be clear
why this statement should hold in HoTT. One can argue that since HoTT is conjectured to be
the internal language of∞-topoi it should be the case that finite limits commute with filtered
colimits. A reference for this result in the case of ∞-categories is [Lur09, Proposition 5.3.3.3].
The basic theory of filtered colimits and compact objects in the∞-categorical setting is done in
[Lur09, Sections 5.3.3 and 5.3.4]. Notice that in the reference the universe of spaces is denoted by
a calligraphic S and it is by definition the simplicial nerve of the category of Kan complexes.

To study an analogous problem HoTT we will restrict our attention to finite graph-indexed
limits, and sequential colimits. Although we won’t use graph-indexed diagrams explicitly, we
state the definition to be able to state some conjectures regarding limits and colimits. A very
nice article that studies limits in HoTT is [AKL15], and the following definitions are taken from
there.

2.4.0.1 Definition (Graph). A graph is a type of vertices:

G0 : U

together with a dependent type of arrows:

G1 : (i, j : G0)→ U .

We usually denote a graph by G.

2.4.0.2 Definition (Graph-indexed diagram). Given a graph G a G-indexed diagram (or diagram
over G) is a representation of the graph G by types. Concretely a G-indexed diagramD is a map
representing the vertices:

D0 : G0 → U

together with a dependent map representing the edges:

D1 : (i, j : G0)→ G1(i, j)→ (D0(i)→ D0(j)).
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Now that we have diagrams we can define cones and cocones.

2.4.0.3 Definition (Cone of a diagram). If D is a G-indexed diagram, the type of cones of D is
the type of types C : U together with cone maps:

c : (i : G0)→ C → D0(i)

and homotopies making the triangles commute:

h : (i, j : G0)→ (g : G1(i, j))→ D1(i, j)(g) ◦ c(i) = c(j).

The type C is called the vertex of the cone.

The type of cones of a given G-indexed diagram with a fixed type C as vertex of the cone is
denoted byCone(C;D) and its inhabitants by (c, h)where c and h have the types of the definition
above. The definition of cocone coCone(C;D) is dual. Now we can define the type of limits of a
diagram.

2.4.0.4 Definition (Limit of a diagram). Given a G-indexed diagramD, a cone (c, h) : Cone(C;D)

is a limit forD if for every typeA : U the map (c◦−) : (A→ C)→ Cone(A;D) is an equivalence.

The definition of colimit is dual.

2.4.0.5 Remark (Colimits). In Definition 2.2.0.4 we defined the colimit of a sequential diagram
using an explicit higher inductive type. One can prove that this type satisfies the universal
property of the colimit of the diagram by induction on this higher inductive type. Recent work
by Boulier, Quirin, Tabareau and Rijke includes the necessary definitions for the formalization
of this fact in Coq (see [BQTR16]).

In [AKL15] it is proved that the limit of a graph-indexed diagram exists and that it is unique.
Then it is shown that many 1-categorical arguments apply for graph-indexed diagrams. For
example [AKL15, Example 3.2.11] shows that any graph-indexed limit can be constructed as
an equalizer of two arrows between two products. A very similar argument should prove that
every finite graph-indexed limit can be constructed using pullbacks and the final object. This
implies that to show that sequential colimits commute with finite graph-indexed limits we can
show the commutativity between pullbacks and sequential colimits plus the fact that a sequen-
tial colimit of contractible types is contractible. Having said that, it seems pretty non-trivial to
prove the commutativity of pullbacks and sequential colimits. For example, even to prove the
commutativity of binary products and sequential colimits is not immediate. We can deduce this
fact from the commutativity of sequential colimits and sigma types of Conjecture 2.2.1.7.

2.4.0.6 Proposition† (Binary products commute with sequential colimits). For two sequential di-
agrams {(Ai, αi)} and {(Bi, βi)} we have colim i(Ai × Bi) ' A∞ × B∞, where the map is defined by
induction on colim i(Ai ×Bi).

Proof. Consider the fibration over {Ai} given by the degree-wise (constant) fibrations:

Ai → U

a 7→ Bi
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and with transition maps given by βi : Bi → Bi+1. It is clear that the degree-wise total spaces
are Ai ×Bi. It is also clear that the colimit fibration over A∞ is given by:

A∞ → U

a 7→ B∞

And thus the total space of the colimit fibration isA∞×B∞. The result then follows by applying
Conjecture 2.2.1.7. �

The following discussion is about pullbacks, but a very similar discussion applies in the
case of equalizers. Suppose we have three directed diagrams {An}, {Bn} and {Cn} that form a
cospan. This situation can also be thought as a directed diagram of cospans {An → Cn ← Bn}.
We can depict the situation as follows:

A0 A1 A2 · · ·

C0 C1 C2 · · ·

B0 B1 B2 · · ·

α0

f0

γ0

g0

β0

α1

f1

γ1

g1

β1

α2

f2

γ2

g2

β2

Where the commutativity of the diagram is given by homotopies:

Fn : fn+1 ◦ αn = γn ◦ fn,

Gn : gn+1 ◦ βn = γn ◦ gn

for each n. Given this context we can take the colimits of the directed diagrams and getA∞,B∞
and C∞. By Remark 2.2.0.10 we get a cospan: A∞ → B∞ ← C∞. Call the limit of this cospan L.

On the other hand we can take the pullbacks of each cospan, call this pullbacks Ln one
for each n : N. These types form a directed diagram in a natural way. The diagram can be
constructed using the characterization of pullbacks of [AKL15, Example 3.2.10] that says that
the limit of a pullback diagram X

f−→ Y
g←− Z is equivalent to (x : X)× (z : Z)× (f(x) = g(z)).

Then we map:

Ln → Ln+1

(a, b, p) 7→ (αn(a), βn(b), F (a) � γn(p) �G(b)−1)

where p : fn(a) = gn(b). Taking the colimit of this diagram we get L∞, and by induction on
L∞ we can construct a map l : L∞ → L. Notice that this construction is just an instance of the
general argument at the beginning of this section and that a proof of Remark 2.4.0.5 would give
us a completely formal way to construct this map.

The commutativity of pullbacks and sequential colimits can then be stated as:

2.4.0.7 Conjecture (Pullbacks commute with sequential colimits). In the above context the map
l : L∞ → L is an equivalence.
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The proof of this fact might be pretty involved. It seems that the characterization of iden-
tity types of sequential colimits (Conjecture 2.2.1.10) is a key ingredient in the proof. Moreover,
when trying to prove this one necessarily has study equalities in pullbacks: The limit L is the
pullback of a diagram of sequential colimits, which have point constructors and path construc-
tors. And as we already stated, an inhabitant of the pullback of a given diagram X

f−→ Y
g←− Z

is a pair of points x : X and z : Z together with a path p : f(x) = g(z). Then a path between
two such inhabitants (x, z, p) and (x′, z′, p′) is given by two paths r : x = x′ and s : z = z′ and
a square in Y with sides p, f(r), p′, g(s). Then the result should follow from a characterization
analogous to the one of Remark 2.2.1.11 but for squares instead of paths.

To be able to apply this conjectures to get results about compact types we need the following
lemma. Its proof should be analogous to the 1-categorical one4.

2.4.0.8 Lemma (Right exatness of representable map). Given a type A : U and a graph G, the map:

(− → A) : U → U

T 7→ (T → A)

sends G-shaped colimits to G-shaped limits.

Proof. Given a G-shaped diagramD call its colimit C. The universal property of C says that for
every typeK there is an equivalence (given by composition with the cone of C):

(C → K) ' coCone(K;D).

On the other hand we have to prove that for every type L there is an equivalence (given by
composition with the cone of (C → A)):

(L→ (C → A)) ' Cone(L, [D,A])

where [D,A] is the G-shaped diagram obtained by applying (− → A) on each object an each
map of the diagramD. Notice that by the universal property of C this is equivalent to proving:

(L→ coCone(A;D)) ' Cone(L, [D,A]).

This last equivalence follows from the fact that both types are equivalent to having, for each l : L,
a family of maps gi : Di → A together with homotopies Hi,j : gi ◦ D(i, j) = gj , that make the
g’s compatible with the diagram. To do this formally one must also keep track of the fact that
the equivalences must be given by composition with the cones. We formalized this argument in
Coq5. �

Then we can translate the classical 1-categorical argument used to prove that a finite colimit
of compact objects is again compact:

2.4.0.9 Lemma. Assume given a graph-indexed diagram D such that every type in the diagram is com-
pact. If sequential colimits commute with limits of the shape of the diagram D, then the colimit of D is
compact.

4One can prove the dual result that states that the map (A→ −) is left exact.
5See https://github.com/LuisScoccola/limandcolim.git, file Colim2Lim.v, function homisexact.
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Proof. Suppose thatwe have a diagramDi and a sequential diagram {Fn}with colimitF∞. Then
there are canonical maps:

colim n[colim iDi, Fn]→ colim n limi[Di, Fn]

→ limi colim n[Di, Fn]

→ limi[Di, colim n Fn]

→ [colim iDi, colim n Fn]

≡ [colim iD,F∞]

and all of them are equivalences. To justify this we apply Lemma 2.4.0.8 to the first and the
last map. For the second map we use the commutativity of the limit and sequential colimits
assumed by hypothesis. The third equivalence holds by the compactness of the types of the
diagram. To conclude the proof onemust observe that this composition is equal to the canonical
map colim n[P, Fn]→ [P, F∞]. This is not conceptually complicated, but is its complicated to do
formally since there are many identifications involved. �

Using this last result and the conjectured commutativity of pushouts and sequential colimits
we have:

2.4.0.10 Corollary†. A finite graph-indexed colimit of compact types is compact.

And in particular:

2.4.0.11 Corollary†. A pushout of compact types is compact.

2.5 Classifying spaces

Given a space F we want to define a new type CF such that for every other space A, maps
A→ CF classify fibrationsB → Awith fiber equivalent toF . Tomake sense out of this potential
definitionwemustmake some assumptions aboutA. First, sincewementioned the fiber of amap
with codomainAwe need a point inA to be able to define this fiber. So suppose given anA and
an inhabitant a : A. If we know that the fiber (of a) through a map B → A is equivalent to F we
can use Proposition 2.1.1.3 to deduce that this is (merely) true for every other a′ : A by requiring
A to be connected.

This leads us to define the classifying space of F fibrations as6:

2.5.0.1 Definition (Classifying space of F -fibrations). For a fixed space F we define the space
CF ··≡ (A : U)× ‖A = F‖. We call it the classifying space of F -fibrations.

Notice that this is just the connected component of F in the universe U in the sense of Defi-
nition 2.1.0.9. Having this in mind we can use Remark 2.1.1.4 to deduce that CF is pointed and
connected.

Next we state in which sense the defined space is the classifying space of F -fibrations (the
reader can compare with Theorem 1.4.1.2).

6The author learned these ideas from [Shu15b].
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2.5.0.2 Theorem (Classifying space of F -fibrations). Fix a space F and a pointed connected space
(T, t). There is an equivalence between pointed maps p : T →• CF and spaces E together with a map
E → T with fiber equivalent to F . Formally this last type is (E : U)× (f : E → T )× (f−1(t) = F ).

We can restate this as:
(E : U)× (f : E → T )× (f−1(t) = F )

T →• CF

Proof. Notice the similarity with [Uni13, Theorem 4.8.3] that essentially states that the universe
U classifies maps. As a matter of fact we can prove the theorem by applying the cited theorem
and by noticing just a couple of things. To see that the equivalence of [Uni13, Theorem 4.8.3]
“restricts” to the stated equivalence notice that an element of type (E : U) × (f : E → T ) ×
(f−1(t) = F ) is the same that a fibration P ··≡ f−1 : T → U such that P (t) = F , since f−1(t) = F .
And thus we have an equivalence:

(E : U)× (f : E → T )× (f−1(t) = F )

T →• (U , F )

But since T is connected we can use the equivalence stated in Remark 2.1.1.6 deduce the desired
result. �

Notice that we have a projection F : CF → U that only remembers the first component,
which is just the inclusion defined in Definition 2.1.0.10. Then for a map p : T →• CF that
classifies some F -fibration, the composition F ◦ p : T → U is a standard fibration with fiber F .

From Remark 2.1.1.5 we deduce the following lemma.

2.5.0.3 Lemma. For any type F the loop space ΩCF is (definitionally) equal to F = F .

2.6 The classifying space of spherical fibrations

2.6.0.1 Definition (Classifying spaces of spherical fibrations). Specializing this definition in the
case of spheres we define for each n the space Spn ··≡ C Sn.

Notice that these spaces are theBHn ofDefinition 1.6.0.1. As in the classical case these spaces
form a directed diagram in a natural way. To make this construction notice that if a type A is
merely equal to Sn then the suspension ΣA is merely equal to Sn+1, simply by the functoriality
of the truncation map.

2.6.0.2 Definition. Define for each n a map in : Spn → Spn+1 mapping (A, q) 7→ (ΣA,Σ q).
Here Σ q is notation for the proof that ΣA is merely equal to Sn+1 obtained from the proof q that
A is merely equal to Sn.

Recall that we have a natural pointing for the types Spn, since they are defined as connected
components. Moreover it is clear that the maps in preserve this pointing because (Sn, q) maps
to (Sn+1,Σ q) and these are exactly the inhabitants used to point Spn and Spn+1 respectively.
We define the space Sp as the colimit of the diagram.
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2.6.0.3 Definition (Classifier of spherical fibrations). Define the classifier of spherical fibrations Sp
to be the colimit of the sequential diagram constructed above:

Sp−1 → Sp0 → Sp1 → Sp2 → · · · .

Notice that the type Sp corresponds to BH in the same sense that the types Spn correspond
to BHn. Notice also that Sp is naturally pointed, since the maps in the diagram are all pointed
maps. Moreover from Lemma 2.2.0.11 we deduce that Sp is connected.

Just like in the classical setting, Sp seems to classify spherical fibrations only up to stability:
For a pointed type T and an n-dimensional spherical fibration classified by a map to T →• Spn
we get an induced map T →• Sp by postcomposition with the inclusion in the colimit jn :

Spn → Sp. This discussion is analogous to the one made in Remark 1.6.0.3. Again, to get an
equivalence class of spherical fibrations (up to stability) out of a map to Sp we require T to be
compact since by definition this means that colim n(T → Spn) ' (T → Sp).

2.6.0.4 Proposition† (The loop space of the classifier). As with any pointed space, we can consider
the loop space ΩSp. Because we constructed Sp as the colimit of the Spn, we would like to relate the loop
spaces with some kind of colimit. For this we use the characterization of Conjecture 2.2.1.10 and the fact
that ΩSpn ' (Sn = Sn). Then ΩSp is equivalent to the colimit of the diagram:

(S−1 = S−1)→ (S0 = S0)→ (S1 = S1)→ (S2 = S2)→ . . .

and the maps are given by:

apΣ : (Sn = Sn)→ (Sn+1 = Sn+1)

f 7→ Σf

By [Uni13, Lemmas 8.5.9 and 8.5.10] we know that that the join of two spheres is again a
sphere: Sn ∗ Sm = Sn+m+1. This induces a homotopy associative operation:

∗ : Spn → Spm → Spn+m+1.

There is a unit for this operation, namely S−1. Recalling Remark 1.5.0.9 we might wonder:

2.6.0.5Question (H-space structure onSp). Canwe extend this operation toSp to get anH-space
structure?

As we proved in Proposition 1.5.0.13 the operation for orthogonal spherical bundles already
has (homotopy) inverses. This means that when considering orthogonal spherical bundles up
to stable fiber homotopy equivalence the join operation is a group operation. This leads us to the
question of whether the H-space that we should be able to define on Sp has homotopy inverses:

2.6.0.6 Question. Does the conjectured H-space structure of Sp have homotopy inverses?

Thismight be pretty non-trivial to answer, for example in the classical case it depended on the
orthogonal complement construction for vector bundles (see Lemma 1.3.1.20). Moreover, this
question applies to the classical setting as well: In the classical setting we know that orthogonal
spherical bundles have inverses (up to stable fiber homotopy equivalence) but does this hold for
general spherical fibrations?

72



CHAPTER 2. SPHERICAL FIBRATIONS IN HOTT

2.6.1 Its homotopy groups

Let us conclude this section with a discussion about some aspects of a possible translation
of Theorem 1.6.0.4 into HoTT.

2.6.1.1 Proposition† (The fundamental group of Sp). We have an equivalence π1(Sp) ' Z2.

Proof. Using Proposition† 2.6.0.4 we need to classify equivalences Sn → Sn up to homotopy: We
have to show that the set ‖Sn ' Sn‖0 has exactly two elements and a group structure, and that the
suspension maps in the diagram respect this structure. To do this we observe three facts. First
that there is an equivalence πn(Sn) ' ‖Sn → Sn‖0 and that πn(Sn) ' Z. Secondly that composi-
tion in ‖Sn → Sn‖0 corresponds tomultiplication inZ. Assuming these two facts we deduce that
‖Sn = Sn‖0 with composition is isomorphic to the units of the integers Z× with multiplication.
And one should prove also that this last group is isomorphic to Z2. Thirdly, the suspensionmap
in Proposition† 2.6.0.4 respects this equivalences. Then using Conjecture 2.2.1.13we deduce that
π1(Sp) is equivalent to Z2.

For the first observation we need to study the action of the fundamental group on the higher
homotopy groups of a space, to be able to prove πn(Sn) ' ‖Sn → Sn‖0, which we do later. One
must keep in mind that this equivalence will respect composition of endomaps of Sn.

For the second observation we must justify why is that composition in ‖Sn → Sn‖0 corre-
sponds to multiplication in Z. This can be regarded as the multiplicativity of the degree that
we will define later. One way to do this is to use representatives for each class in ‖Sn → Sn‖0:
It is enough to show that composition of representatives [k] : ‖Sn → Sn‖0 for each k : Z corre-
sponds to multiplication in Z. When n = 1 using the proof that Ω(S1) ' Z we can find these
representatives:

[k] : S1 → S1

base 7→ base

loop 7→ loopk

Moreover, it is clear that [k ◦m] = [k] × [m]. This representatives should yield representatives
in the case of Sn for n > 1 by suspending them: [k]n ··≡ Σn−1([k]) : Sn → Sn. As a matter of fact
one can prove by induction on k that Σ([k]n) : Sn → Sn is homotopic to the map:

Sn → Sn

N 7→ N

S 7→ S

merid(s) 7→ merid([k]n−1(s))

and this last fact makes it clear that [k ◦m]n = [k]n× [m]n for every n. So the problem reduces to
show that the [k]n are representatives for the type πn(Sn). The problem is that to use the proof
of [Uni13, Theorem 8.6.17] to get representatives for n ≥ 2 we need representatives for n = 2,
since this is the base case of the induction in the cited theorem.

But we can also use the proof of πn(Sn) ' Z given in [LB13]. There it is shown that the
Freudenthal map Sn → ΩΣSn induces the equivalence πn(Sn) ' πn+1(Sn+1) for every n ≥ 1.
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On the other hand, using the adjunction between the suspension and the loop space, this map
corresponds to the suspension map (Sn → Sn) → (Sn+1 → Sn+1) given by functoriality of
suspension. So under this correspondence we have:

πn(Sn) ' Z

[k]n 7→ k

which proves the third statement.
�

We saw that to classify homotopy classes of maps Sn → Sn by its degree using πn(Sn) ' Z
(proved in [Uni13, Theorem 8.6.17]) we can use the canonical identification πn(Sn) ' ‖Sn →
Sn‖0 given by the fact that the fundamental group of spheres Sn, n > 1 is trivial and thus the
action π1(Sn)yπn(Sn) is also trivial. We can prove directly the equivalence πn(Sn) ' ‖Sn →
Sn‖0 which we do in Lemma 2.6.1.4. But let us also study a bit the definitions needed for a
more general statement. We want to define the action of the fundamental group of a space on
its homotopy groups. The following is an idea on how to do this. Recall that a very important
consequence of [Uni13, Lemma 6.5.4] is that the n-fold loop space of a pointed space (B, b) is
equivalent to the space of pointed maps Sn →• B. Seen this way an element of Ωn(B) can be
regarded as a pair (f, p) such that f : Sn → B and p : f(base) = b .

2.6.1.2 Definition (Action of fundamental group). Given an l : Ω(B) ≡ (b = b) we can make it
act on (f, p) by:

l · (f, p) ··≡ (f, p � l)

whichdefines amap−·− : Ω(B)×Ωn(B)→ Ωn(B). Thismap induces a right actionπ1(B)yπn(B)

by functoriality of the 0-truncation and the commutativity of truncation andproducts (see [Uni13,
Theorem 7.3.8]).

It is easy to check that it is a group right action. For example –omitting the truncation maps–
we have :

(l � l′) · (f, p) ≡ (f, p � (l � l′)) = (f, (p � l) � l′) ≡ l′ · (f, p � l) ≡ l′ · (l · (f, p)).

To argue that this is the right definition notice that in the case of the fundamental group acting
on itself one can check that the action is given by conjugation since (f, p) : S1 →• B corresponds
to p � f � p−1 : ΩB. We say that π1(B) acts trivially on πn(B) if we have a map:

(l : π(B))→ (e : πn(B))→ (l · e = e).

The next step is to show thatwhen the fundamental group acts trivially on then-th homotopy
group, we have an equivalence ‖Sn →• B‖0 → ‖Sn → B‖0.

2.6.1.3 Proposition. For a pointed connected spaceB and an n : N such that the action π1(B)yπn(B)

is trivial we have an equivalence πn(B) ' ‖Sn → B‖0.

Before proving this result let us prove a weaker statement that is already enough for our
purposes:
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2.6.1.4 Lemma. For n > 1 there is an equivalence ‖Sn → Sn‖0 ' πn(Sn).

Proof. By [Uni13, Theorem 7.3.9] we have an equivalence:

‖Sn →• Sn‖0 ≡ ‖(f : Sn → Sn)× (f(base) = b)‖0 ' ‖(f : Sn → Sn)× ‖f(base) = b‖0‖0.

But since for n > 1 the spheres are simply connected the RHS is equivalent to ‖Sn → Sn‖0 as
required. �

Proof of Proposition 2.6.1.3. Just like in the previous proof we have:

‖Sn →• B‖0 ≡ ‖(f : Sn → B)× (f(base) = b)‖0 ' ‖(f : Sn → B)× ‖f(base) = b‖0‖0

by [Uni13, Theorem 7.3.9]. Using the fact that π1(B) acts trivially on πn(B) we will show next
that:

‖(f : Sn → B)× ‖f(base) = b‖0‖0 ' ‖(f : Sn → B)× ‖f(base) = b‖−1‖0 (2.1)

But by connectedness of B the type ‖f(base) = b‖−1 is contractible, yielding an equivalence:

‖(f : Sn → B)× ‖f(base) = b‖0‖0 ' ‖Sn → B‖

as required. So let us prove that we have an equivalence Eq. (2.1).
The map that induces the equivalence is constructed by the functoriality of the 0-truncation:

‖(f : Sn → B)× ‖f(base) = b‖0‖0 → ‖(f : Sn → B)× ‖f(base) = b‖−1‖0
|(f, |p|0)0| 7→ |(f, |p|−1)|0

We prove that this map is an equivalence by showing that each fiber is contractible, and to do
this we first show that each fiber is amere proposition and only thenwe exhibit an inhabitant for
each fiber. Since being a mere proposition is a mere proposition (by induction on 0-truncation)
it is enough to show that the fiber of inhabitants of the form:

|(f,m)|0 : ‖(f : Sn → B)× ‖f(base) = b‖−1‖0

are mere propositions. Now assume given two inhabitants of the fiber which by induction on
0-truncation can be assumed to be of the form (we are proving a mere proposition):

|(g, |r|0)|0, |(h, |s|0)|0 : ‖(f : Sn → B)× ‖f(base) = b‖0‖0

together with equalities u : |(g, |r|−1)|0 = |(f,m)|0 and v : |(h, |s|−1)|0 = |(f,m)|0. Notice
that it is enough to show that we have an equality e : |(g, |r|0)|0 = |(h, |s|0)|0 since u and v

inhabit mere propositions and thus the compatibility transport(e, u) = v will be immediate.
Using u and v to transport (and 0-truncation induction) we obtain |(g, |r|0)|0 = |(f, |γ|0)|0 and
|(h, |s|0)|0 = |(f, |λ|0)|0, and so it is enough to show |(f, |γ|0)|0 = |(f, |λ|0)|0. Now observe how
the loop l ··≡ |γ−1 �λ|0 : π1(B) acts:

l · |(f, |γ|0)|0 ≡ |(f, |γ � γ−1 �λ|0)|0 = |(f, |λ|0)|0.

But since the action π1(B)yπn(B) is trivial we also have l ·|(f, |γ|0)|0 = |(f, |γ|0)|0 which proves
that the fiber of the map is a mere proposition.
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Nowwe have to show that each fiber is inhabited, and here comes the interesting part: Since
we proved that each fiber is a mere proposition we can use induction on the (−1)-truncation to
get an inhabitant |(f, |p|0)|0 : ‖(f : Sn → B)×‖f(base) = b‖0‖0 out of an inhabitant |(f, |p|−1)|0 :

‖(f : Sn → B)× ‖f(base) = b‖−1‖0, finishing the proof. �

The previous discussion allows us to define the degree of an endomap of an n-dimensional
sphere for n > 1.

2.6.1.5 Definition (Degree). By Lemma 2.6.1.4 we have an equivalence ‖Sn → Sn‖0 ' πn(Sn).
Composing this with the equivalence πn(Sn) ' Z we get a map deg′ : ‖Sn → Sn‖0 → Z. Define
the degree of f : Sn → Sn as deg(f) ··≡ deg′(|f |0).

2.6.1.6 Remark (Degree is property). Notice that by definition the degree takes values in a set
and thus having degree a fixed number k : N is mere property.

To be able to translate the rest of the proof of Theorem 1.6.0.4 we need to prove analogues to
Lemma 1.6.0.6 and Lemma 1.6.0.8. The first one is fairly easy as we will now see. Define Fn as
the type of pointed maps Sn−1 →• Sn−1. Define F kn as the type of pointed maps Sn−1 →• Sn−1

of degree k: F kn ··≡ (f : Sn−1 →• Sn−1)× (deg(f) = k).

2.6.1.7 Lemma. There is a fibration F 1
n ↪→ H+

n → Sn given by:

Hn → Sn

f 7→ f(base)

Proof. We have to show that the homotopy fiber of base : Sn through this map is equivalent to
F 1
n . For this notice that by definition the fiber is (f : H+

n ) × (f(base) = b). Remember that H+
n

is the connected component Id : Sn−1 → Sn−1 of the space of self equivalences of the (n − 1)-
dimensional sphere. Recall that having degree 1 is a mere proposition and being in the con-
nected component of Id is a mere proposition. Being an equivalence is also a mere proposition
and thus we have equivalences:

(f : H+
n )× (f(base) = b) ' (f : Sn−1 →• Sn−1)× ‖f = Id ‖

' (f : Sn−1 →• Sn−1)× (deg(f) = 1)

≡ F 1
n

�

For the case of Lemma 1.6.0.8 observe that given an H-spaceX there is an induced operation
on the connected components ‖X‖0 by functoriality of truncation. Using this definition the
translation of the lemma into HoTT is straightforward by arguments of connectedness.

The main theorem then follows by the long exact sequence argument, using the adjunction
between exponentiation and the smash product. However we must keep in mind that we also
need the characterization of identity types of sequential colimits to derive the commutativity of
homotopy groups and sequential colimits.
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2.7 ∞-Groups

The idea of this section7 is tomotivate the fact that pointed connected spaces can be regarded
as generalized groups. Many ideas in this section are due toMichael Shulman andUrs Schreiber.
The generalization comes in the form of a higher notion of group: ∞-groups. The first (and in
a sense the only) example of such an object is the loop space of a pointed connected space. A
loop space is again a space, but with the operation given by path composition. This operation is
usually not associative on the nose but it is associative up to homotopy. The homotopies used for
associativity satisfy higher coherence laws, that come again in the form of (higher) homotopies.
This higher homotopies also satisfy coherence laws, and this holds for every dimension. All
these coherence laws can be packed up nicely using operads (see [MSS07, Part 1, Chapter 1,
Section 1.6]). In the case of CW-complexes what is needed is Stasheff’s associahedra, a family of
polyhedra used to define what it means for an operation on a space to be coherently associative
in all dimensions. The first non-trivial polyhedron is the associativity pentagon commented
in Section 2.1.2. Stasheff proved that a space together with an operation and homotopies that
satisfy the coherence laws described by the associahedra is indeed equivalent to the loop space of
a pointed connected space, where the operation corresponds to path composition (the standard
reference is [Sta63b]). There are other ways to definewhat∞-groups are, but for all the standard
definitions there is an analogous result, sometimes called the delooping hypothesis, which states
that every∞-group G has a delooping. This delooping is a pointed connected space such that
its loop space is equivalent to G as∞-groups. Having this in mind we can define the universe
of∞-groups in HoTT as follows.

2.7.0.1 Definition (∞-groups). Define the universe∞Grp ··≡ U•c.

2.7.0.2 Remark (Groups are∞-groups). If∞-groups are generalized groups we should be able
to assign an∞-group to each standard (discrete) group. In the classical setting this is done by
assigning to a groupG its classifying space (also known as Eilenberg-MacLane space) BG (also
writtenK(G, 1)). When the group is not discrete but a topological group this can be done using
the join construction mentioned in Section 1.4.1. The construction of Eilenberg-MacLane spaces
has been formalized in HoTT in [LF14]. This implies that∞-groups in HoTT as defined above
are indeed a generalization of the notion of (discrete) group.

2.7.0.3 Notation. For an∞-group BGwe will usually denote its distinguished point as •.

An∞-group should be in particular an H-space as defined in [Uni13, Definition 8.5.4]. For
this we define the underlying type of an∞-group.

2.7.0.4 Definition (Underlying type of an∞-group). The underlying type of an∞-group BG :

∞Grp is defined as the space G ··≡ ΩBG ≡ (• =BG •).

See that there is an obvious operation defined on G, namely path composition and this in-
duces an H-space structure on G. Moreover, the unit of the group is the constant path refl• :

G ··≡ (• = •). Let us give some examples of∞-groups.
7Formalizations of some constructions in this section can be found in https://github.com/LuisScoccola/

ooActions.git.
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2.7.0.5 Example (The integers). Asproved in [Uni13, Section 8.1]wehave an equivalenceΩ(S1) '
Z, where path composition corresponds to addition of integers. In the language of this section
this means that the group Z is the underlying type of the∞-group S1. Stated otherwise, S1 is
the classifying space of the group Z.

Given a category and an object in the category one can consider the automorphism group of
the object. One of the most basics theorems in algebra, Cayley’s theorem, says that any group
acts regularly on itself and that this action induces an inclusion of the group on the automor-
phisms group of the underlying set of the group. We will prove an analogous result for ∞-
groups, for this we need the automorphisms∞-group of a space.

2.7.0.6 Example (Automorphisms∞-group). Given a space A : U define its automorphisms∞-
group to be CA. This definition makes sense since by Remark 2.1.1.5 the underlying type of CA

is A = A.

As an instance of the previous example we have:

2.7.0.7 Example (BZ2). Consider the type BZ2 ··≡ C J2K, the space of types merely equal to
J2K. This space is the delooping of Z2 because its loop space is J2K = J2K which is discrete and
in fact equivalent to J2K. This can be proved using the univalence axiom to get equivalences
out of equalities J2K = J2K and then by induction on J2K to conclude that there are exactly two
such equivalences. Moreover this identification takes composition of equivalences to a (group)
product in J2K.

Although J2K = J2K is equivalent to J2K it might not be such a good idea to refer to this space
as J2K, since J2K = J2K comes with a natural operation given by path composition. Together with
this operation this type is in fact a group and thus it makes more sense to call it Z2.

Having defined∞-groupswemust look for a suitable definition of∞-groupmorphism. The
definition is simple.

2.7.0.8 Definition (∞-morphisms). Given two ∞-groups G and H we define the space of ∞-
morphisms between G and H as the space of pointed maps BG →• BH . Morphisms between
∞-groups can be denoted as Bϕ : BG→ BH is one wishes to regard ϕ : G→ H as the actual
group morphism.

2.7.0.9 Example. Asimple example of∞-groupmorphism is the classifyingmap for themultiplication-
by-two morphism:

(×2) : Z→ Z

n 7→ 2n

Consider theMöbius covering of the circle, which can be defined inHoTT by circle induction:

S1 → S1

base 7→ base

loop 7→ loop2

It straightforward to show that the induced map Z ' ΩS1 → ΩS1 ' Z is the morphism (×2)

defined above.
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2.7.0.10 Example. A less trivial example is the quotient morphism:

q : Z→ Z2

n 7→ n mod 2

Consider the self equivalence J2K ' J2K given by the only possible transposition. Call this
equivalence −1. We define a map S1 → BZ2 by circle induction (recall the definition of BZ2

given above):

S1 → BZ2

base 7→ J2K

loop 7→ ua(−1)

Here ua is the map of the univalence axiom that gives us a path in U out of an equivalence of
types.

The induced map Z ' ΩS1 → Ω(BZ2) ' Z2 takes n to ln and then to ua(−1)n. It is clear
that permuting the elements of J2K an even number of times is the identity and an odd number
of times is the equivalence −1 : J2K ' J2K. And thus the defined map classifies the group
morphism q defined above.

Notice that the last example classifies a group morphism with non-trivial kernel. It would
be nice to find a proper definition for the kernel of an∞-group morphism in such a way that
gives us the correct kernel in the above example. To make an attempt to do so we need some
basic theory about∞-group actions.

2.7.0.11 Definition (∞-action). An∞-action of an∞-group BG is a fibrationX : BG→ U . We
can denote such an action as GyX(•).

The following notation makes the action of G on the space X(•) more explicit.

2.7.0.12 Notation (Action notation). Write X for the space X(•). Then one can think that G
is acting on the space X : Each element g : G yields an equivalence between X and X . By
transporting along a given g : Gwe can recover the usual action notation g ·x. Concretely given
g : G and x : X we write g · x : X for transport(g, x) : X .

One can verify that this is an H-space action. The following remark lets us translate many
definitions of the classical setting to our setting.

2.7.0.13 Remark. Notice that by the characterization of the path spaces of sigma types given in
[Uni13, Theorem 2.7.2], for any two elements x, y : X the path space (•, x) = (•, y) is equivalent
to (g : G)×(g·x = y). In particularwe have the equivalence ((•, x) = (•, x)) ' (g : G)×(g·x = x).

2.7.0.14 Definition (Homotopy quotient of∞-action). Given an∞-actionX : BG→ U the total
space ΣX is sometimes called the homotopy quotient of the action since ΣX can be seen as a
quotient of X by regarding the map:

X → ΣX

x 7→ (•, x)

as a quotient map.
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Let us refine the analogy between fibrations and actions.

2.7.0.15 Remark (Fibrations = Representations = Actions). Recall Theorem 2.5.0.2. Notice how
using the language of this section it implies that, just like in the classical setting, actions of an
∞-group G on a type X are equivalent to a group morphisms G → (X = X ), and both are
equivalent to fibrations over BG. In other words, the following types are equivalent:

GyX

BG→ U such that • 7→ X

BG→ CX

G→ X = X (morphism)

Now we will translate some classical properties that group actions might enjoy into our set-
ting. By means of Notation 2.7.0.12 we have at least a naïve translation for transitive, free and
regular actions. Moreover, the reader should notice that when the∞-group is acting on a set, the
definitions reduce to the classical definitions. Notice that, since being a set is a mere property,
∞-group actions on sets are equivalent to fibrations BG→ Set, where Set is the type of discrete
types. First a remark on group actions.

2.7.0.16 Remark (Group actions are∞-group actions). SayG is a standard (discrete) group and
we have a set X and an action GyX . In the same way that –as mentioned in Remark 2.7.0.2–
we can construct an∞-group BG, the classifying space of G, we should be able to construct a
fibration X : BG → Set such that X(•) = X and such that the action given by the notation of
Remark 2.7.0.13 is the original action GyX . This construction has been carried on in HoTT in
[Hou15]. The article develops the basic of the theory of covering spaces in HoTT and proves the
classical equivalence between covering spaces and actions of the fundamental group on sets.
Notice that by definition a covering space over a type A is a fibration A → Set, a fibration with
discrete fiber. The equivalence then reads:

A→ Set

π1(A)− Set

This gives us a way to construct an ∞-action X : BG → Set out of a classical group action
GyX .

2.7.0.17 Definition (Non-empty∞-action). A non-empty action is an action X : BG→ U such
that we have ‖X‖.

2.7.0.18 Definition (Transitive∞-action). An action X : BG→ U is transitive if the total space
ΣX is connected (0-connected).

The following characterization of transitive action is closer to the classical definition and
motivates the above definition8.

2.7.0.19 Proposition (Equivalent definition of transitive action). An action X : BG → U is tran-
sitive if and only if it is non-empty and we have a map (x, y : X )→ ‖(g : G)× (g · x = y)‖.

8Although the definition gives the correct notion when instantiated with 0-truncated types one might choose to say
that such an action is merely transitive, instead of transitive.
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Proof. Notice that both definitions are mere propositions. To prove that a connected total space
implies the existence of a map of the described type just use Remark 2.7.0.13 and the fact that
both definitions are mere propositions to be able to get “real” paths out of truncated paths: If
ΣX is connected, given x, y : X we have a mere path p : (•, x) = (•, y), but since we want to
prove a proposition, we can assume that it is an actual path. But a path p is nothing but a path
g : (• = •) ≡ G together with a path g · x = y, which is just what we needed.

For the converse use Remark 2.7.0.13 again and the fact that BG is connected to reduce the
proof to the case in which all the elements live in X .

With this argument one proves that both definitions are logically equivalent, but since both
are mere proposition the definitions turn up to be equivalent as types. We formalized this proof
in Coq9. �

2.7.0.20 Definition (Free∞-action). An action X : BG → U is free if the total space is discrete
(0-truncated).

Again, we have a characterization that resembles a lot the classical definition of free action.

2.7.0.21 Proposition (Equivalent definition of free action). An action X : BG → U is free if and
only if we have a map (x : X )→ isContr((g : G)× (g · x = x)).

Proof. Again both definitions are mere propositions. Since (g : G) × (g · x = x) is equivalent
to (•, x) = (•, x) having a map of type (x : X ) → isContr((g : G) × (g · x = x)) implies that
the connected component of every (•, x) for x : X is contractible. Since BG is connected this
implies that every connected component of ΣX is contractible and thus ΣX is discrete.

On the other hand if ΣX is discrete, then (•, x) = (•, x) is contractible for each x : X which
implies that we have a map of type (x : X ) → isContr((g : G) × (g · x = x)) since ((•, x) =

(•, x)) ' (g : G)× (g · x = x). We formalized this proof in Coq10. �

See how if X is a set then g · x = y is a mere proposition and thus, if G is a discrete group
this reduces to the classical definition of free action of a (discrete) group on a set.

We can combine both these definitions to get the definition of regular action.

2.7.0.22 Definition (Regular∞-action). An action X : BG→ U is regular if it is both transitive
and free.

Similarly combining both characterizations we get the following result.

2.7.0.23 Proposition (Equivalent definition of regular action). An action X : BG → U is regular
if and only if the total space ΣX is contractible.

Proof. Once again both definitions are mere propositions. This proof follows at once from the
fact that a type is contractible if and only if it is connected and 0-truncated. �

A space together with a regular action of an ∞-group BG is usually called a principal
homogeneous space. One should also notice that an action is regular if and only if we have
(x, y : X )→ isContr((g : G)× (g · x = y)).

9See https://github.com/LuisScoccola/ooActions.git, file ooAction2.v, function
transitiveequivtransitive’.

10See https://github.com/LuisScoccola/ooActions.git, file ooAction2.v, function freeequivfree’.

81

https://github.com/LuisScoccola/ooActions.git
https://github.com/LuisScoccola/ooActions.git


CHAPTER 2. SPHERICAL FIBRATIONS IN HOTT

2.7.0.24 Example. It is interesting to interpret these definitions in the case of the proof that the
classifying ∞-group of the integers is the circle given in [Uni13, Section 8.1.4]. The proof can
be interpreted as constructing a regular action of the circle on the integers, thus proving that
the integers are a principal homogeneous ΩS1 space. Together with a choice of inhabitant of the
integers, for example 0 : N, we get the equivalence ΩS1 ' Z.

Now we can state the appropiate version of Cayley’s theorem. Notice that, just like in the
classical setting, this can be regarded as an application of Yoneda’s lemma. Recall the Yoneda
fibration of Definition 2.2.1.8.

2.7.0.25 Lemma (Cayley’s theorem for ∞-groups). Given an ∞-group BG the Yoneda fibration
Y• : BG → U induces an ∞-group morphism BG → CG which is nothing but an ∞-group action
GyG. Moreover this action is regular.

Proof. The action is regular since the total space of the Yoneda fibration is contractible. The
∞-group morphism is induced by the connectedness of BG using Remark 2.1.1.6. �

To define the kernel of an ∞-group morphism we first define the more general notion of
stabilizer of an element in an∞-group action. For this we study the orbit of an element. Given
an action GyX the orbit of x : X should be (y : X )× ‖(g : G)× (g · x = y)‖. Moreover, given
an action and an element in the acted space we can define the action restricted to the orbit of that
element.

2.7.0.26 Definition (Restriction of action). Let X : BG → U be an action and let x : X . We
define the action restricted to the orbit of x as:

Xx : BG→ U

b 7→ (y : X(b))× ‖(•, x) =ΣX (b, y)‖

We call this the restricted action or the orbit action.

2.7.0.27 Remark. This is just the restriction of the fibration X to the connected component of
(•, x) in ΣX . Moreover, we have a canonical identification ΣXx ' C (ΣX, (•, x)).

By projecting the first coordinate we get a fibration map Xx → X which can be regarded as
the inclusion of the orbit of x in the space X . Notice that Xx(•) is the orbit of x and thus we
define:

2.7.0.28 Definition (∞-orbit). Given an action X : BG → U and an element x : X define its
orbit as Ox ··≡ Xx(•).

The stabilizer of an element must be an ∞-group and thus to define it we must define its
classifying space.

2.7.0.29 Definition (∞-stabilizer). Given an action X : BG → U define BStabx ··≡ ΣXx, the
total space of the orbit fibration. By the identification of Remark 2.7.0.27 it is clear that this space
is pointed and connected.
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This definition might seem strange at first but notice that:

Stabx ··≡ ΩBStabx ' (g : G)× (g · x = x)

Naturally we must have a morphism from the stabilizer of an element to the group that is
acting.

2.7.0.30 Definition (Map from stabilizer to group). For this recall that the classifying space of
the stabilizer is defined as a total space of a fibration over BG and thus we can just project the
first coordinate of this total space:

BStabx ··≡ ΣXx ≡ (b : BG)× (y : X(b))× ‖(•, x) = (b, y)‖

so we define:

Bstx : BStabx → BG

(b, y, p) 7→ b

With this definition we can construct the kernel of an∞-group morphism by noticing that
a morphism G→ H induces an action GyH and then taking the stabilizer of the unit of H in
this action.

2.7.0.31 Remark. Given an ∞-group morphism m : BG → BH we can postcompose it with
the Yoneda fibration to get an action of G on H :

m̃ ··≡ Y• ◦m : BG→ U

• 7→ H

Now we can define the kernel of an∞-group morphism.

2.7.0.32 Definition (∞-kernel). We define the kernel of a morphism m : BG → BH as the
stabilizer of the unit of H in the induced action m̃ : GyH . Recall that unit of H is the element
refl• : ΩBH .

Let us consider the kernel of the∞-morphisms that we constructed above.

2.7.0.33 Example (Kernel of×2). The kernel of multiplying by two should be trivial. To convince
ourselves of this fact we take the classifying map S1 → S1 given by the Möbius covering and we
postcompose it with the Yoneda fibration to get the fibration:

X : S1 → U

base 7→ ΩS1

loop 7→ (− � loop2) : ΩS1 ' ΩS1

We now have to compute the stabilizer of reflb : b = b. We know that the delooping of the
stabilizer is equivalent to the connected component of (•, reflb) : ΣX , so to prove that the kernel
is trivial it suffices to show that this connected component is contractible. Now notice that this
fibration is very similar to the fibration used to prove that the circle is the delooping of the
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integers. Only that this time the∞-group ΩS1 is acting (regularly) on two copies of Z: The even
numbers and the odd numbers. This is reflected by the fact that the total space of this fibration
consists of two connected components, and both this connected components are contractible:
The action is a disjoint union of two Yoneda fibrations, and thus ΣXx which is the total space of
one of this fibrations, is contractible.

2.7.0.34 Example (Kernel of q). Consider the group Z2 as a multiplicative group with elements
1 and −1. Then we have the bijection (×(−1)) : Z2 → Z2 that multiplies by −1. To compute the
kernel we first postcompose q with the Yoneda map Y• : BZ2 → CZ2. With the notation above
introduced this gets us the fibration:

X : S1 → U

base 7→ Z2

loop 7→ (×(−1))

Then we have Ω(ΣX) ' ((b, 1) = (b, 1)) ' (n : Z) × ((−1)n = 1) ' Z. Where the first equiva-
lence is the characterization of Remark 2.7.0.13, the second one is an application of the fact that
ΩS1 ' Z, and the third one follows from the fact that Z2 is a set and thus (−1)n = 1 is a mere
proposition. Then the loop space of the classifying space of the kernel is Z, so the classifying
space of the kernel is indeed S1, since it is connected by definition.

We now see how our naïve translation approach works for the classical result that reads:
There is an equivalence between transitive pointed actions and subgroups of the acting group. In our
setting a transitive pointed action is an actionX : BG→ U together with an element x : X and
such that the homotopy quotient ΣX is connected.

2.7.0.35 Remark (Pointed transitive actions). There is an equivalence:

(X : BG→ U)× (x : X )× isConn(ΣX)

(BH :∞Grp)× (BH → BG)

This is again a restriction the equivalence between fibrations and actions. But in this case it says
that an∞-group morphism is the same that a pointed transitive action of the codomain.

84



Conclusions

We gave a minimal introduction to the theory of spherical fibrations and we related it to real
K-theory by means of the J-homomorphism. We proved Theorem 1.6.0.4 that characterizes the
homotopy groups of the classifier of spherical fibrations and togetherwith the J-homomorphism
we constructed a group morphism from the K-theory of the spheres to the stable homotopy
groups of the spheres. K-theory has not been defined in HoTT although it might be possible to
do so at least for compact types, since it is a homotopy-invariant notion. Maybe real-cohesive
homotopy type theory ([Shu15a]) can be used for this.

We translated the very basics of the theory of spherical fibrations into HoTT but to deduce
fairly basic results we used some conjectures. Some of these are not new and have already ap-
peared in other contexts. The most important ones imply that filtered colimits, or in our case
sequential colimits, behave as expected if one believes that HoTT is the internal logic of∞-topoi:
The total space of a filtered colimit fibration is the colimit of the degree-wise total spaces (Con-
jecture 2.2.1.7), and sequential colimits commute with pullbacks (Conjecture 2.4.0.7). It is clear
that a good HoTT theory on limits and colimits –with theorems relating both constructions–
is essential. The basics of limits and colimits are studied in [AKL15] and [BQTR16]. Here we
formalized Lemma 2.4.0.8 that states that the map (− → A) : U → U sends colimits to lim-
its. As we saw in Section 2.2 sequential colimits are of particular importance as they permit a
more controlled construction of higher inductive types. They are also essential in the definition
of classifying spaces for stabilized concepts, such as spherical fibrations up to stable fiber ho-
motopy equivalence. Here we formalized Lemma 2.2.1.3 that gives an equivalence between the
colimit of a sequential diagram and the colimit of the (−1)-shifed diagram.

On top of the strong results about sequential diagrams commented above, to translate the
characterization of the homotopy groups of the classifier of spherical fibration (Theorem 1.6.0.4)
we needed basic concepts fromhomotopy theory, such as the degree of endomaps of spheres, the
multiplicativity of the degree, the action of the fundamental group on the homotopy groups of
a space, and the long exact sequence of homotopy groups (the long exact sequence has already
been studied in HoTT see [Uni13, Section 8.4] and [AKL15, Section 3.3]). In Section 2.6.1 we
studied these concepts and we proved some lemmas and results needed for the translation of
the proof of Theorem 1.6.0.4 into HoTT.

Finally, in Section 2.7 we tried to convey that a development of a theory of∞-groups inHoTT
could be useful to understand HoTT from the point of view of representation theory. Here we
formalized the (very basic) theory that we developed.
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