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Chapter 1

Introduction

How to make models of the world based on experience and data instead of human
experts is one of the most important challenges today. Given the massive amount of
data available on the web and on domains such as medicine, vision, speech and natural
language, we need fully automated methods to learn from this knowledge. Machine
learning techniques and especially deep neural networks have been tremendously suc-
cesful to this effect in recent years. However, the reason of this success remains a
partial mistery. While neural networks have the capacity to potentially capture any
phenomenon, finding the network that best fits the current data or problem (also called
learning) was thought to be an impossible quest. Learning in this setting is posed as
minimizing a certain error function between what our model predicts and what our data
tells us the world to be. A good model of the world is found by minimizing this error
function. As it was seen in the 80s and 90s, these functions are full of local minima and
are incredibly nonconvex, so the fact that in a lot of cases they be succesfully minimized
by current algorithms remains an open intrigue.

However, very recently, some work has started to shed some light on this. Some
models in physics whose Hamiltonians resemble the cost function of neural networks
have been close to fully studied, and have some very relevant properties. The core of it
is the fact that, while there are an exponential number of local minima, they all appear
to be in some small error range, and close to the global minimum. However, some other
interesting problems arize, such as saddle point proliferation: the fact that there are
exponentially more saddle points than local minima as we increase the dimension of
the problem.

This thesis provides a review on the methods and consequences of this recent work,
and states it’s connections to deep learning. Furthermore, we study how these properties
impact optimization algorithms for neural networks, and we devise a variant that’s well
suited to fully take advantage of them.
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6 CHAPTER 1. INTRODUCTION

This paper is divided in three parts (without counting this tiny introduction).
In Chapter 2, we introduce the machine learning problem, with a focus on function

approximation and especially on deep learning. Readers who are already confident with
the material can skip the chapter. We recommend the excelent textbooks [MRT12], and
[GBC16] for a complete view of the foundations of machine learning and deep learning
respectively. For further read on optimization, we refer the reader to the great paper
[BCN16].

In Chapter 3, we display the techniques that start to attack the problem of studying
the complexity of deep structures. We focus mainly on spin glass models, because they
are the most understood. In this scenario, it’s possible to provide concrete qualitative
and quantitative estimates of relevant quantities. Later, we provide parallels with deep
linear networks and multilayer perceptrons. Finally, we state clearly the similarities
and differences between the well studied models and the optimization problem posed
in learning deep neural networks. We state concretely which are the next problems
to be tackled, where current methods might fall and where they might succeed. The
main paper refered by this section is [AAC13], and to a minor extent [CHM+15] (even
though we employ a different approach), and [DPG+14].

Finally, in Chapter 4, we study optimization algorithms under the scope provided
by the theory. We show why Newton type methods fail catastrophically at learning
deep neural networks. We study the computational complexity of different alterna-
tives, and by joining these ideas we create a new second order optimization algorithm.
This novel algorithm is designed to dismay the computational complexity in traditional
second order methods, and is designed to be especially well suited for the nonconvex
optimization problems arizing in deep learning. This part of the work will cover mainly
[Arj15], [DPG+14], [Mar10], [ABB00], and [Pea94].

We conclude in Chapter 5, with a brief summary of results, contributions, and future
work.



Chapter 2

Machine Learning Basics

Even though machine learning today encompasses many different areas, all machine
learning algorithms share one core principle: using experience to improve performance.
This experience typically comes in the form of data. Depending on the context, this
data might have different shapes or sizes. What type of experience is available and how
we measure performance defines the problem we are trying to solve.

2.1 Generalities

In what we call supervised learning, we typically have an unknown distribution D with
support on X ⊆ Rd and an unknown function f : X → Y with Y ⊆ R. Our task is,
given a new x sampled from D, to return f(x). This is, we want to approximate this f
(our target function) by some other function h : X → Y called a hypothesis. Because
of the setting, this version of supervised learning falls under the broad class of function
approximation problems, which are essentially about figuring out how to approximate
a function of which we have limited information.

As an example, X might be the space of k-by-l natural images, and f(x) might be
the answer to "does image x have an animal?". If we call d = k × l, we can represent
X = [0, 255]d as the vector of pixel intensity values. Similarly, we can say Y = {0, 1}
with f(x) = 0 meaning there is no animal in the image x, and f(x) = 1 meaning there
is one.

Even though the function f is unknown, we do have access to some data of the form
of a set {x(i), y(i)}ni=1 ⊆ Rd × R, where the x(i) are iid samples of D, and y(i) = f(x(i)).
In our little example, this can mean that we took a set of pictures and manually wrote
down for each one if there is an animal in it or not.

The next step is to measure performance. If we have some notion of difference (not
necessarily a metric) l : Y × Y → R called the loss, ideally we would like to measure
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8 CHAPTER 2. MACHINE LEARNING BASICS

our approximation based on our expected loss under D. I.e.

L(h) = Ex∼D [l(h(x), f(x))]

Since both D and f are unknown, this approximation is intractable. What we do have
access to is an unbiased estimator of this, called empirical loss :

L̂(h) =
1

n

n∑
i=1

l(h(x(i)), y(i))

It is important to notice also that the empirical loss is the expected loss under the
empirical distribution. If we use l(ŷ, y) = (ŷ− y)2 we get the usual mean squared error:

L̂(h) =
1

n

n∑
i=1

(h(x(i))− y(i))2

However, many different losses can be used (such as any p-distance). In our example,
if we expand Y to be [0, 1], we can interpret h : X → [0, 1] as the probability of the
image containing an animal. Therefore, we can take l to be the negative log-likelihood
of this model:

l(ŷ, y) = − (y log(ŷ) + (1− y) log(1− ŷ))

L̂(h) =
1

n

n∑
i=1

−
(
y(i) log(h(x(i))) + (1− y(i)) log(1− h(x(i))

)
We will usually consider consider h ∈ H in a specific class of functions we know how
to compute. For example, we can consider the class of linear models H = {h(w,b)(x) =
wTx + b : w ∈ Rd, b ∈ R}. Usually, h can be parameterized by a vector θ ∈ Rm. In
the linear case, clearly, θ = (w, b). Therefore, the expected and empirical losses can be
thought of as functions of θ instead of h. We therefore would like to solve the following
optimization problem:

min
θ∈Rm

L(θ) = Ex∼D[l(hθ(x), f(x)] (2.1)

Furthermore, in our examples, l(ŷ, y) and hθ(x) are infinitely differentiable as func-
tions of ŷ and (θ, x) respectively. From now on, we will asume that they belong to Ck

with k > 1. Therefore, by differentiation under the integral sign

∇θL(θ) = Ex∼D[∇θl(hθ(x), f(x))]

∼ 1

n

n∑
i=1

∇θl(hθ(x
(i)), y(i))

= ∇θL̂(θ)
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Where the tilde is meant to mean an unbiased estimate. Since the negative gradient is
the direction of maximum descent, the basic (and widely used) procedure followed to
solve this problem is: initialize θ0 at random and iterate

θk+1 ← θk − α∇θL̂(θk) (2.2)

where α is a parameter of the algorithm called the learning rate. When the full dataset
is used to measure the gradient of the empirical risk, this method is known as Batch
Gradient Descent. When the set of samples used for the gradient is changed at every
iteration, this approach is known as Stochastic Gradient Descent, popularly abbreviated
by SGD.

If l(hθ(x), y) is a convex function on θ, then L and L̂ are convex as well, since in-
tegrating on another variable preserves convexity. The most important property to us
about convex functions is that they only have one critical point, which is the global min-
imum [BV04]. If l(hθ(x), y) is strongly convex in θ (i.e. the Hessian has it’s eigenvalues
bounded below by a constant larger than 0) then you can prove that batch gradient
descent converges exponentially fast to the global minimum of L̂ [BCN16]. What this
means is that if L̂∗ is the global minimum of L̂ then (L̂(θk) − L̂∗) ∈ O(γk) for some
γ < 0.

Without assuming strong convexity, [BCN16] proves that for any ε > 0 there is a
learning rate α such that if you use SGD then

E[‖∇θL(θk)‖2
2] ∈ O

(
ε+

1

k

)
It is crucial to notice that this is the expected loss, the function we trully want to
minimize. Furthermore, you can show that by diminishing α carefully at each iteration,
you can achieve ‖∇θL(θk)‖

P−→ 0. Using more involved techniques such as the ones
found in the foundational paper [RM51] and in [RS85], one can achieve almost sure
convergence.

The main point to carry about this last bound is that gradient methods make the
gradient go to zero. For a convex function, this means that we are reaching a critical
point. But the only critical point is the global minimum! Therefore, gradient methods
are extremelly useful on minimizing convex functions. You can easily show that if you’re
optimizing over linear models, for most loss functions, the expected and empirical losses
end up being convex [BV04].

However, the functions we typically want to aproximate are incredibly complicated
and nonlinear, so linear models are not expressive enough. In our example of going from
images to having an animal in the picture, it is very unlikely that a linear combination
of pixel intensities will be able to determine this, and more complex models are needed
[KSH12].

If the loss is nonconvex, then we have no guarantee that the critical point found
is the global minimum. Furthermore, it doesn’t even have to be a local minimum, it
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can be a saddle point. Under (albeit strong) assumptions, [LSJR16] shows that batch
gradient descent converges to a local minimum of the empirical risk. However, does
the local minimum found have low cost? Is it close to the global minimum? Do other
methods fall in saddle points or minima? Do saddle points have low error? These are
the questions we attempt to answer in this thesis.

To do that, we study a widely successful class of models that have arbitrary expres-
sive power, known as deep neural networks.

2.2 Deep Learning
Deep neural networks are a broad class of families of functions. In here, we will focus
mainly on deep feedforward neural networks, also called multilayer perceptrons, often
abreviated as MLPs. MLPs are functions of the form

hθ(x) = wT (g(p) ◦ F (p) ◦ · · · ◦ g(1) ◦ F (1))(x) + b (2.3)

where F (i) : Rdi−1 → Rdi is an affine transformation of the form F (i)(x) = A(i)x + b(i).
As well, g(i) : Rdi → Rdi is a pointwise (coordinatewise) function. We will do a small
abuse of notation and call the function g(i) : R → R applied on each coordinate with
the same name.

This type of network is called a p-layer MLP, and each operation g(i) ◦F (i) is called
a hidden layer, or simply layer. Note that 0-layer MLPs are exactly the linear models.
Typically, networks have g(i) = g for all layers. These g’s are called activation functions,
and are usually required to be differentiable almost everywhere and continuous, so it’s
possible to do gradient descent on the network. Typical activation functions are

• Rectified linear units (ReLUs): g(x) = max(0, x).

• Sigmoid units: g(x) = 1
1+e−x

.

• Tanh units: g(x) = tanh(x).

For fixed p and d1, . . . , dp, neural networks are parameterized by

θ = (A(1), b(1), . . . , A(p), b(p), w, b) ∈ Rm

which are called the weights.
To highlight the capabilities of multilayer perceptrons, we first state the universal

approximation theorem. This theorem shows that any continuous function defined on
a compact set can be approximated arbitrarily well by a neural network.

Theorem 2.2.1 (Universal Approximation). Let g : R→ R be a nonconstant, bounded,
and monotonically increasing function. Let f : X → R be any continuous function on
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the compact set X ⊆ Rd. Then, for any ε > 0 there is a one-hidden layer neural network
hθ with activation g such that

‖f − hθ‖∞ < ε

Proof. The proof is a straightforward application of the Stone-Weierstrass theorem and
can be found in [Hor91].

While the universal approximation theorem is a nice guarantee, the size of the hidden
layer grows very fast as ε goes down, so it’s necessary to ask wether these methods work
in practice.

The theorem states that there is a θ that achieves low error, but whether we can
actually find it is a whole other story. We can apply the chain rule to equation (2.3)
and therefore calculate the gradient ∇θL̂(θ) to do batch or stochastic gradient descent.

Let m be the dimension of θ and n the amount of examples used to estimate ∇θL̂(θ)
each time. The efficient implementation of the chain rule is popularly known as back-
propagation [RHW86], and it’s computation cost is O(mn) per iteration, which means
that it can be scaled to extremely large networks and number of examples. Further-
more, in the SGD setting, the number of samples per iteration is very small (n = 32 is
very usual), so the computational efficiency allows to use massive models, representing
very complex functions. For example, m > 108 is fairly common [HZRS16] [TYRW14]
[DCM+12].

However, it is possible to show that the problem (2.1) of minimizing the expected loss
is incredibly nonconvex, and that the number of local minimum can grow exponentially
with m on some corner cases [AHW96].

Somewhat surprisingly then, we are able to find a plethora of modern results showing
the wide applicability of deep neural networks trained by gradient descent. These
models have surpased dramatically the state of the art on complex problems such as
object and face recognition [KSH12] [TYRW14], speech recognition [CJLV16], machine
translation and language modelling [SVL14] [JVS+16], robotics [TDH+16], and beating
world champions in Go and Atari [SHM+16] [MKS+13].

Therefore, why is it that we can achieve low loss, even on the prescence of an
overwhelming number of local minimum (and perhaps saddle points)? Does this mean
that some local minima are hard to get stuck on? Maybe they have low error? Do all
critical points have low error? Are we avoiding saddle points? How close (in terms of
loss) are different critical points to the global minimum?

The next chapter formalizes some of this questions in a setting close to learning
deep networks, and answers them.
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Chapter 3

Theory

This chapter will mainly be devoted to the study of spin glasses. These are a class of cost
functions that share a lot of similarities with the empirical risk when the hypothesis is
a neural network. We will study the (random) number of critical points on spin glasses,
and their values with concrete estimates to provide a clear picture of the loss surface.

Since to provide parallels between spin glasses and neural networks we first need to
become ourselves familiar with the former, we leave the analysis of the similarities and
differences to section 3.5.

3.1 Spin Glasses

We define the Hamiltonian of the p-spin glass model as the random function defined on
the sphere HN,p : SN−1(

√
N)→ R such that

HN,p(σ) =
1

N (p−1)/2

N∑
i1,...,ip=1

xi1,...,ipσi1 . . . σip

where xi1,...,ip are standard Gaussian independent random variables.
For these models, we are interested in examining the number and nature of critical

points. To do this, we introduce the definition of the index of a critical point. The
index of a critical point is the number of negative eigenvalues in the Hessian at that
point. For a critical point σ, it’s index i(σ) (also noted i(∇2HN,p)) counts the number
of descent directions among the Hessian’s eigenvectors. Trivially, for a minimum the
index is 0, and N for a strict maximum.

Let B ⊆ R be a Borel set and k ∈ N, then we define by CrtN,k the (random) number
of critical points of index k whose value lies in NB = {Nx : x ∈ B}. Analogously, we

13



14 CHAPTER 3. THEORY

define CrtN(B) as the (random) number of critical points whose value lies in NB

CrtN,k(B) =
∑

σ:∇HN,p(σ)=0

1{HN,p(σ) ∈ NB}1{i(∇2HN,p(σ)) = k}

CrtN(B) =
∑

σ:∇HN,p(σ)=0

1{HN,p(σ) ∈ NB}

Let u ∈ R be a number, we also note CrtN,k(u) = CrtN,k((−∞, u)) and CrtN(u) anal-
ogously. It is important to stop for a second and think about what these quantities
mean. The quantity CrtN,0(u), for example, tells us the mean number of minima under
a certain threshold. If we can find out structure on the values of u’s as a function of
CrtN,0(u), we can gain information on the value of local minima.

The following section states and proves the central identity, which provides a formula
for E[CrtN,k(B)]. The core of the proof is the Kac-Rice formula, which will be introduced
in a general fashion, highlighting it’s potential applicability to other models, possibly
ones closer to deep neural networks.

Once we have a formula for E[CrtN,k(B)], we show on section 3.3 how to provide
estimates for the number of critical points below a certain value, and finally on 3.4 how
to characterize the values of critical points of a given index. This is the section that
will study, for example, the question of whether all local minima have low error, which
is of crucial importance.

3.2 The Kac-Rice Formula

The Kac-Rice formula is an extremely general construct that allows one to calculate the
expected number of zeros of a random function f defined on a Riemannian manifold.
We can also calculate the expected number of zeros t such that the value of another
random function h(t) lies in a borel set B. The formula will be expressed mainly in
terms of the densities of f , the determinant of ∇f and h. Setting f = ∇HN,p, the
critical points of HN,p will be the zeros of f , and we can set h = (HN,p,∇2HN,p) to lie
on NB×{A ⊆ RN×N : i(A) = k} for the formula to yeld E[CrtN,k(B)]. For the case of
spin glasses, all the densities involved are known, so precise computations can be done.

We now state the Kac-Rice formula as in [AT07] in its more general fashion, to
highlight that it covers cases far more general than where f and h are simple Gaussian
fields, such as in spin glasses.

Given a Riemannian n-manifold M with a Riemannian metric g, we define an or-
thonormal framing (or frame) to be (Ei)1≤i≤n a set of vector fields such that for every
x ∈M , {Ei(x)}ni=1 is an orthonormal basis of (TxM, gx). In that case, ∇fE denotes the
vector field whose coordinates are given by (∇fE)i ≡ Ei(f).
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Theorem 3.2.1 (Kac-Rice formula). Let M be a compact, oriented, N-dimensional
C1 manifold with a C1 Riemannian metric g. Let f = (f 1, . . . , fN) : M → RN and
h = (h1, . . . , hk) : M → RK be random fields on M . For an open set B ⊆ RK for which
∂B has dimension K − 1 and a point u ∈ RN , let

Nu ≡ Nu(M) ≡ Nu(f, h;M,B)

denote the number of points t ∈M for which

f(t) = u and h(t) ∈ B

Assume the following conditions are satisfied for some orthonormal frame field E:

• All components of f , ∇fE and h are a.s. continuous and have finite variances
over M.

• For all t ∈ M , the marginal densities pt(x) of f(t) (implicitly assumed to exist)
are continuous ar x = u.

• The conditional densities pt(x|∇fE(t), h(t)) of f(t) given h(t) and (∇fE)(t) (im-
plicitly assumed to exist) are bounded above and continuous at x = u, uniformly
in t ∈M .

• The conditional densities pt(z|f(t) = x) of det(∇f iEj(t)) given f(t) = x are con-
tinuous for z and x in neighbourhoods of 0 and u, respectively, uniformly in t ∈M .

• The conditional densities pt(z|f(t) = x) of h(t) given f(t) = x are continuous for
all z and for x in a neighbourhood u, uniformly in t ∈M .

• The following moment condition holds

sup
t∈M

max
1≤i,j≤N

E
[
|∇f jEi(t)|

N
]
<∞

• The moduli of continuity with respect to the canonical metric induced by g of each
component of h, each component of f , and each ∇f jEi all satisfy for any ε > 0

P (ω(η) > ε) = o
(
ηN
)

as η ↓ 0

Then
E[Nu] =

∫
M

E
[
| det(∇fE)|1B(h)

∣∣∣∣f = u

]
pt(u)Volg (3.1)

where pt is the density of f at point t and Volg the volume element on M induced by
the metric g.
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Proof. The proof (while important) is quite involved and beyond the scope of this thesis.
We therefore refer the avid reader to [AT07] (Theorem 12.1.1) for more details.

As a corollary for the Gaussian case, we have:

Corollary 3.2.1. Let (M, g) be a Riemannian manifold satisfying the conditions of
Theorem 3.2.1. Let f and h be centered Gaussian fields over M . Then, if f, h and
∇fE are a.s. continuous over M , and if for each t ∈ M , the joint distributions of
(f(t),∇fE(t), h(t)) are nondegenerate, then (3.1) holds.

We now turn back to the case of spin glass models, where the Kac-Rice formula and
some work will allow us to gain an operable expression (deemed the central identity for
E[CrtN,k(B)]. Before stating and proving the central identity we need some preliminary
notation.

The Gaussian orthogonal ensemble (GOE) is the probability distribution of anN×N
symmetric matrixM such that its entries are independent centered Gaussians with vari-
ance EM2

i,j =
1+δi,j

2N
. We note EGOE = ENGOE the expectation under the GOE measure.

We call λN0 ≤ λN1 ≤ · · · ≤ λNN the ordered eigenvalues ofM , LN = 1
N

∑N
i=0 δλNi the (ran-

dom) spectral measure of M , and ρN(x) the density of the (non-random) probability
measure EGOE(LN) 1. The function ρN(x) is usually called the (normalized) one-point
correlation function and satisfies∫

R
f(x)ρN(x)dx =

1

N
ENGOE

[
N−1∑
i=0

f(λNi )

]

We are now ready to state the central identity.

Theorem 3.2.2 (Central identity). Let N, p ≥ 2, k ∈ {0, . . . , N−1} be natural numbers
and B ⊆ R a Borel set. Then

E[CrtN,k(B)] = 2

√
2

p
(p− 1)

N
2 ENGOE

[
e−N

p−2
2p

(λNk )2
1

{
λNk ∈

√
p

2(p− 1)
B

}]
(3.2)

Summing over k, we also arrive at the identity for the mean number of critical points

Theorem 3.2.3. The following identity holds for all N, p ≥ 2, and for all Borel sets
B ⊆ R

E[CrtN(B)] = 2N

√
2

p
(p− 1)

N
2

∫
√

p
2(p−1)

B

exp

(
−N p− 2

2p
x2

)
ρN(x) dx

1This density exists because λNi are absolutely continuous random variables [Tao12]. Let B be a
Borel set with Lebesgue measure 0, then E[LN (B)] = 1

N

∑N
i=0 E[δλN

i
(B)] = 1

N

∑N
i=0 P(λNi ∈ B) = 0.
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The first step to proving the central identity is to use the Kac-Rice formula for our
particular case, as we hinted before. We therefore state it as a lemma.

Let (Ei)1≤i<N be an orthonormal framing of SN−1. We write φσ for the density
of the gradient vector (Ei(σ)(f))1≤i<N and det∇2f(σ) the determinant of the matrix
(∇2f(Ei, Ej)(σ))1≤i,j<N .

Lemma 3.2.1. Let f be a centered random Gaussian field on SN−1 and let A =
(Uα, ψα)α∈I be a finite atlas on SN−1. Set fα = f ◦ ψ−1

α : ψα(Uα) ⊆ RN−1 → R
and define fαi = ∂fα/∂xi, fαi,j = ∂2fα/∂xi∂xj. Assume that for all α ∈ I and all
x, y ∈ ψα(Uα) the joint distribution of (fαi (x), fαi,j(x))1≤i≤j<N is non-degenerate, and

max
i,j
|Var(fαi,j(x)) + Var(fαi,j(y))− 2Cov(fαi,j(x), fαi,j(y))| ≤ Kα| ln |x− y||−1−β

for some β > 0 and Kα > 0. For a Borel set B ⊆ R, let

CrtfN,k =
∑

σ:∇f(σ)=0

1{f(σ) ∈ B, i(∇2f(σ)) = k}

Then, using dσ to denote the usual surface measure on SN−1,

E[CrtfN,k(B)] =

∫
SN−1

E
[
| det∇2f(σ)|1{f(σ) ∈ B, i(∇2f(σ)) = k} | ∇f(σ) = 0

]
φσ(0) dσ

(3.3)

Proof. Equation (3.3) is just a renaming of (3.1) when we calculate the zeros of ∇f and
set h(σ) = (f(σ),∇2f(σ)) to lie in the borel set B × {A ⊆ R(N−1)×(N−1) : i(A) = k}.
The checking of the conditions of Theorem 3.2.1 can be seen in the proof of Lemma 3.1
in [AAC13].

For the rest of the proof of theorem 3.2.2 we will work with the normalized version
of HN,p, defined as

fN,p(σ) =
1√
N
HN,p(

√
Nσ)

This makes it easier to work with, since (as it is easily checked), the Gaussian process
fN,p has variance 1 at every σ ∈ SN−1. Furthermore, we will typically drop the subscript
and note f ≡ fN,p.

We now give a lemma by [AAC13] that fully describes the joint density of (f(σ),∇f(σ),∇2f(σ).
Perhaps more importantly, it also describes precisely the density of the Hessian ∇2f(σ)
conditioned on f(σ) = x.

Lemma 3.2.2. Let (fi(σ))1≤i<N be the gradient and (fi,j(σ))1≤i,j≤N the Hessian matrix
at σ ∈ SN−1, that is fi = Eif(σ), fi,j = ∇2f(Ei, Ej)(σ). Then, for all 1 ≤ i, j, k < N ,
f(σ), fi(σ), fj,k(σ) are centered Gaussian random variables whose joint distribution is
determined by
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• E[f(σ)2] = 1.

• E[f(σ)fi(σ)] = E[fi(σ)fj,k(σ)] = 0.

• E[f(σ)fi,j(σ)] = −pδi,j.

• E[fi(σ)fj(σ)] = pδi,j.

• E[fi,jfk,l] = p(p− 1)(δi,kδj,l + δi,lδj,k) + p2δi,jδk,l.

As well, under the conditional distribution P[·|f(σ) = x], x ∈ R, the random variables
fi,j(σ), 1 ≤ i, j < N , are independent Gaussian random variables satisfying

• E[fi,j(σ)] = −xpδi,j.

• E[fi,j(σ)2] = (1 + δi,j)p(p− 1).

Alternatively, the random matrix (fi,j(σ)) has the same distribution as

M
√

2(N − 1)p(p− 1)− xpIN−1 (3.4)

where M is an (N − 1)× (N − 1) GOE, and IN−1 is the identity.

Before we dive into the proof, let’s stop for one crucial bit of intuition. Equation
(3.4) tells us that as the value of f(σ) goes down (analogously, our cost decreases),
the one but massively important change reflected in the Hessian is that it’s eigenvalues
shift to the right (increase). This means that as we go down in our cost, the index is
likely to decrease, leaving less descent directions. Furthermore, this change is simple
enough that it will allow us to invert this principle, and ask how the value f(σ) changes
statistically as we consider different types of critical points. For example, if we have a
local minimum all the eigenvalues will be positive, which will make x = f(σ) likely to
be low. The precise formulation of this idea will be stated and proved in section 3.4.

Proof. Without loss of generality we can assume that σ is the north pole n = (0, . . . , 0, 1)
of SN−1. This is because the distribution of f is trivially checked to be rotation-
invariant. We define ψ : SN−1 → RN−1 as the function that drops the last coordinate,
which is a chart of n in a neighbourhood U . We set f̄ = f ◦ ψ−1, which is a Gaussian
process on ψ(U) with covariance

C(x, y) = Cov(f̄(x), f̄(y)) =

N−1∑
i=1

xiyi +

√√√√(1−
N−1∑
i=1

x2
i )(1−

N−1∑
i=1

y2
i )

p
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What follows is the crucial step of the proof. Being f̄ a Gaussian process in Rd, we
can easily calculate the joint of (f̄(σ),∇f̄(σ),∇2f̄(σ)) via the formula (see [AT07], eq
5.5.4)

Cov
(

∂kf̄(x)

∂xi1 . . . ∂xik
,

∂lf̄(y)

∂yj1 . . . ∂yjl

)
=

∂k+lC(x, y)

∂xi1 . . . ∂xik∂yj1 . . . ∂yjl
(3.5)

More than that, we can choose an orthonormal frame (Ei) such that Ei(n) = ∂/∂xi
with respect to ψ. Since the Christoffel symbols Γik,l(n) are all equal to 0, then the
Hessian (fi,j(n)) coincides with (f̄i,j(0)). Because of this, the only thing left in the
proof is to verify that the Theorem holds for f̄ , which is easily checked via equation
(3.5). The distribution of the conditional Hessian again can easily be computed since it
is well known how Gaussian distributions change under conditioning (see for example
[AT07] pages 10-11).

Before we prove the central identity we require one final lemma regarding the de-
terminant of the shifted GOE. Since the proof is mainly an algebraic manipulation, we
will omit it and refer to the literature.

Lemma 3.2.3. Let M be a (N − 1)× (N − 1) GOE matrix and X be an independent
Gaussian normal random variable with mean m and variance t2. Then, for any Borel
set G ⊆ R

E [| det(M −XI)|1{i(M −XI) = k,X ∈ G}]

=
Γ
(
N
2

)
(N − 1)−

N
2√

(πt2
ENGOE

exp

N(λNk )2

2
−

((
N
N−1

) 1
2 λNk −m

)2

2t2

1

{
λNk ∈

(
N − 1

N

) 1
2

G

}
(3.6)

Proof. See [AAC13], proof of lemma 3.3.

We are now ready to prove the central identity.

Proof of Theorem 3.2.2. We first check that f verifies the hypothesis of Lemma 3.2.1.
We again take the chart of the north pole ψ : U ⊆ SN−1 → RN−1 such that ψ(x1, . . . , xN) =
(x1, . . . , xN−1). From Lemma 3.2.2, it is not hard to check that the joint distribution
(fi(σ), fi,j(σ)) is non-degenerate for σ = n. Since the covariances are continuous, it has
to be non-degenerate in a neighbourhood U ′ of the north pole. However, this implies
that it’s non-degenerate in all SN−1 by covering the sphere with rotations of U ′ around
the center of the sphere. Therefore, the conditions of Lemma 3.2.1 are satisfied.

By remembering that the distribution of f(σ) is rotation invariant, the integrand of
(3.3) doesn’t depend on σ. Therefore, by (3.3) and the definitions of CrtN,k(B) and f ,
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we get

E[CrtN,k(B)] = ωNE
[
| det∇2f(n)|1{i(∇2f(n)) = k}1{f(n) ∈

√
NB}

∣∣∣∣∇f(n) = 0

]
φn(0)

(3.7)
where ωN = 2φN/2

Γ(N/2)
is the volume of the sphere SN−1. Since the density of the gradient

∇f(n) is the same as the density of (f̄i(0))1≤i<N , then by Lemma 3.2.2 we have φn(0) =
(2πp)−(N−1)/2.

To compute the expectation in (3.7), we use the fact that, by 3.2.2, f and it’s
Hessian are independent of the gradient. After that, we condition on f(n) and get

E
[
| det∇2f(n)|1{i(∇2f(n)) = k}1{f(n) ∈

√
NB}

∣∣∣∣∇f(n) = 0

]
= E

[
| det∇2f(n)|1{i(∇2f(n)) = k}1{f(n) ∈

√
NB}

]
= E

[
E
[
| det∇2f(n)|1{i(∇2f(n)) = k}1{f(n) ∈

√
NB}

∣∣∣∣f(n)

]]
(3.8)

Applying Lemma 3.2.2, the interior expectation turns into

E
[
| det∇2f(n)|1{i(∇2f(n)) = k}1{f(n) ∈

√
NB}

∣∣∣∣f(n)

]
= (2(N − 1)p(p− 1))

N−1
2 EN−1

GOE

[
| det(M − p1/2(2(N − 1)(p− 1))−1/2f(n)IN−1)|

× 1

{
i(M − p1/2(2(N − 1)(p− 1))−1/2f(n)IN−1) = k, f(n) ∈

√
NB

}]
(3.9)

Plugging (3.9) into (3.8) we can use Lemma 3.2.3 with m = 0, t2 = p
2(N−1)(p−1)

and

G =
√

Np
2(N−1)(p−1)

B. Plugging back this expectation and the value of φn(0), ωN , and
after a bit of algebra we get

E[CrtN,k(B)] = 2

√
2

p
(p− 1)

N
2 ENGOE

[
e−N

p−2
2p

(λNk )2
1

{
λNk ∈

√
p

2(p− 1)
B

}]
concluding the proof of the central identity. The proof of Theorem 3.2.3 is straight-
forward summing the central identity for all k and replacing the expectation of the
empirical measure with an integral with the density ρN .

3.3 The Complexity of Spin Glasses
We now use the central identity to provide estimates on the growth of the number of
critical values. Let us define E∞ = E∞(p) = 2

√
p−1
p
.
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Let also I1 : (−∞,−E∞]→ R be given by

I1(u) =
2

E2
∞

∫ −E∞
u

(z2−E2
∞)1/2 dz = − u

E2
∞

√
u2 − E2

∞−log
(
−u+

√
u2 − E2

∞

)
+logE∞

Clearly I1 is a strictly decreasing function, with I1(−E∞) = 0 and I1(u) ∈ O(u2) as
u→ −∞

We now define the following two functions that will describe the asymptotic growth
of the complexity of spin glass models.

Θk,p(u) =

{
1
2

log(p− 1)− p−2
4(p−1)

u2 − (k + 1)I1(u) if u ≤ −E∞
1
2

log(p− 1)− p−2
p

if u ≥ −E∞

Θp(u) =


1
2

log(p− 1)− p−2
4(p−1)

u2 − I1(u) if u ≤ −E∞
1
2

log(p− 1)− p−2
4(p−1)

u2 if − E∞ ≤ u ≤ 0
1
2

log(p− 1) if 0 ≤ u

Remembering that CrtN,k(u) ≡ CrtN,k(B) for B = (−∞, u), we now state the logarith-
mic estimates for the complexity of spin glasses.

Theorem 3.3.1. For all p ≥ 2 and k ≥ 0 fixed,

lim
N→∞

1

N
logE[CrtN,k(u)] = Θk,p(u)

Theorem 3.3.2. For all p ≥ 2,

lim
N→∞

1

N
logE[CrtN(u)] = Θp(u)

Corollary 3.3.1. The mean number of critical points of a given index and the total
mean number of critical points is given by

lim
N→∞

1

N
logE[CrtN,k(R)] =

1

2
log(p− 1)− p− 2

p

lim
N→∞

1

N
logE[CrtN(R)] =

1

2
log(p− 1)

A few observations to carry away from this last corollary. First of all, it is clear
then that the number of critical points grows exponentially with the dimension N .
Furthermore, the mean number of critical points of any given index grows exponentially
with N , with a speed that doesn’t depend (in these logarithmic estimates) on the index.
This of course applies as well to k = 0, which tells us that the "fear" of the neural
network community in the 90s that there are an exponential number of local minima
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may be correct. However, as we will see later, almost all of these have roughly the same
error.

What’s perhaps even more interesting is the study of the proportion of minima with
respect to all critical points. A corollary that we devise follows

Corollary 3.3.2. Let N ≥ 0, p > 2, then

lim
N→∞

1

N
log

E[CrtN,0(R)]

E[CrtN(R)]
= −p− 2

p
< 0

What this tells us is that in proportion, there are exponentially more saddle
points than minima. This is a phenomenon we deem saddle point proliferation, and
we’ll go back to it’s consequences on chapter 4.

We now turn ourselves to the proofs of Theorems 3.3.1 and 3.3.2. We first state a
lemma that establishes a large deviation principle for the k-th largest eigenvalue of the
GOE.

Lemma 3.3.1. Let X be an N ×N real symmetric random matrix whose entries Xi,j

are independent (up to symettry) centered Gaussian random variables with variance
EX2

i,j = σ2N−1(1 + δi,j). Let λ1 ≤ · · · ≤ λN be it’s ordered eigenvalues.
Then, for each fixed k ≥ 1, the k-th largest eigenvalue λN−k+1 of X satisfies an LDP

with speed N and a good rate function

Ik(x;σ) = kI1(x, σ) =

{
k
∫ x

2σ
σ−1
√

( z
2σ

)2 − 1 dz if x ≥ 2σ

∞ otherwise

Proof. See [AAC13], Theorem A.1.

Proof of Theorem 3.3.1. By Lemma 3.3.1 and the symmetry between the largest and
the smallest eigenvalues, the (k+1)-th smallest eigenvalue λNk ofM a GOE, satisfies the
LDP with the good rate function Jk(u) = (k + 1)I1(−u; 2−1/2). If we set t = u

√
p

2(p−1)

and φ(x) = −p−2
2p
x2, then by the central identity

lim
N→∞

1

N
logE[CrtN,k(u)] =

1

2
log(p− 1) + lim

N→∞
logENGOE

[
eNφ(λ2k)

1λk≤t

]
(3.10)

By Vardhan’s Lemma, we have

sup
x∈(−∞,t)

(φ(x)− Jk(x)) ≤ lim inf
N→∞

1

N
logENGOE

[
eNφ(λ2k)

1λk<t

]
≤ lim sup

N→∞

1

N
logENGOE

[
eNφ(λ2k)

1λk≤t

]
≤ sup

x∈(−∞,t]
(φ(x)− Jk(x))



3.3. THE COMPLEXITY OF SPIN GLASSES 23

When t ≤ −
√

2, both suprema are equal to φ(t) − Jk(t). If t > −
√

2, they are both
equal to φ(

√
2). By definition of φ, t, Jk, E∞ and the fact that Ik(x;σ) = Ik(x/σ; 1), we

have that (3.10) equals{
1
2

log(p− 1)− p−2
4(p−1)

u2 − (k + 1)I1(u) if u ≤ −E∞
1
2

log(p− 1)− p−2
p

if u ≥ −E∞

concluding the proof.

Proof of Theorem 3.3.2. Let t and φ be as in the previous proof. By Theorem 3.2.3 we
have

lim
N→∞

1

N
logE[CrtN(u)] = lim

N→∞

1

N
log

(
2N

√
2

p
(p− 1)N/2

∫ t

−∞
eNφ(x)ρN(x) dx

)
=

1

2
log(p− 1) + lim

N→∞

1

N
log

∫ t

−∞
eNφ(x)ρN(x) dx

Let’s study now the contribution by the integral. For t ≤ −
√

2, using that 1λ0≤t ≥ 1λi≤t
for any i and the definition of the spectral measure, we have

1

N
E
[
eNφ(λ0)

1λ0≤t
]
≤
∫ t

−∞
eNφ(x)ρN(x) dx ≤ E

[
eNφ(λ0)

1λ0≤t
]

Taking the logarithm and dividing by N , both sides of the inequality converge to
φ(t)− I1(−t; 2−1/2), by the same argument in the previous proof. Using the definition
of t and φ, this proves the case for u ≤ −E∞.

For t ∈ (−
√

2, 0], we cannot use λ0 in the lower bound. Because of that, we write
for ε > 0,

1

N
E
[
eNφ(t−ε)

1LN ((t−ε,t))>0

]
≤
∫ t

−∞
eNφ(x)ρN(x) dx ≤ E

[
eNφ(t)

1λ0≤t
]

By te LDP for λ0, P(λ0 ≥ t) → 1 as N → ∞. Similarly, since LN converges to the
semicircular law, we have P(LN((t − ε, t)) > 0) → 1 as N → ∞. After taking the
logarithm and dividing by N , we have

φ(t− ε) ≤ lim
N→∞

1

N
log

∫ t

−∞
eNφ(x)ρN(x) dx ≤ φ(t)

Since φ is continuous, the claim for the theorem follows for t ∈ (−
√

2, 0], or u ∈
(−E∞, 0]. The proof for u > 0 is analogous and left to the reader.
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3.4 Critical Points in Level Sets, Energy Landscapes

We now turn to the most interesting question, which is what is the value range of a
specific type of critical point. We first define Ek(p) to be the onle real value such that
Θk,p(−Ek(p)) = 0.

We first state without proof a theorem of the ground state (global minimum) of the
Hamiltonian. Let GSN = 1

N
minσ∈SN−1(

√
N) HN,p(σ).

Theorem 3.4.1. For p ≥ 3,

lim inf
N→∞

GSN ≥ −E0(p)

Moreover, for p ≥ 4 even,

lim
N→∞

GSN = −E0(p) in probability.

Now, we state the main theorem regarding the value range of critical points.

Theorem 3.4.2. Let for an integer k ≥ 0 and ε > 0, BN,k(ε) be the event "there is a
critical value of index k of the Hamiltonian HN,p above the level −N(E∞(p)− ε), that
is BN,k = {CrtN,k((−E∞(p) + ε,∞)) > 0}. Then, for all k ≥ 0 and ε > 0,

lim sup
N→∞

1

N2
logP(BN,k(ε)) < 0

This means that the probability of a critical point of fixed index (nondiverging with
N) having value larger than −N(E∞(p) − ε) decreases exponentially. If we we con-
sider the normalized value fN,p and index k = 0 we get that the probability of a
local minimum having cost outside of (minσ fN,p(σ),−E∞(p) + ε) decreases ex-
ponentially with N . Moroever, since GSN is larger than −E0(p) with overwhelming
probability, the value of a local minimum will lie in the range (−E0,−E∞) (again, with
overwhelming probability). The power of this bound comes from the fact that the range
(−E0,−E∞) is indeed very small. For example, for the case of p = 3, this range is close
to (−1.66,−1.63), which is an extremely small range considering that fN,p has variance
1 and mean 0. The conclusion is that as N increases, with overwhelming probability
the local minima will have low error, which if translated to the case of neural networks,
explains the massive success these algorithms have had in the past years.

Proof of Theorem 3.4.2. We again follow the proof by [AAC13]. We want to show
that there are no critical points of a finite index of the Hamiltonian above the level
N(−E∞ + ε). Let k and ε be as in the statement of the theorem. Then, by Markov’s
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inequality and the central identity,

P(CrtN,k((−E∞+ε,∞)) > 0) ≤ E[CrtN,k((−E∞ + ε,∞))]

≤ c(p)(p− 1)N/2E
[
exp

(
−N(p− 2)(λ2

k)

2p

)
1{λk ≥ −

√
2 + ε′}

]
≤ c(p)(p− 1)N/2P(λk ≥ −

√
2 + ε′) (3.11)

with ε′ = ε
√

2/E∞. By the LDP for the empirical spectral measure LN , we know for
some C(ε′) > 0,

P(λk ≥ −
√

2 + ε) ≤ e−CεN
2

Combining this last inequality with (3.11) concludes the proof.

3.5 Deep Neural Networks and Next Steps
In these section, we (informally) state the differences and similarities between spin
glasses and neural networks. We also conjecture how to adapt some methods of the
proofs to the case of deep linear networks, and provide insights on to where the current
methods might fail.

[CHM+15] show striking similarities between the complexity of the empirical risk L̂
and the one in the normalized version of the hypothesis for a neural network. This is
supported as well by [SMG13]. Because of this, we concern ourselves with the landscape
of the hypothesis classes and leave the learning problem setting to further work.

We now consider the Hamiltonian of the spin glass models as a hypothesis class
parameterized by σ, but present it with the neural network notation.

In the following, p is the number of hidden layers. H is the number of hidden units
per layer. w(k)

i,j is the weight from unit i in layer k to unit j in layer k + 1. The second
index is omitted for k = p (i.e. a weight from the final hidden layer to the output),
since the output is one dimensional. The input layer is indexed at 0, the first hidden
layer at 1, and so on.

Spin Glasses

hw(x) =
1

Z

H∑
i0,...ip=1

xi0,...,ipwi1wi2 . . . wip

Where Z = Hp/2

Linear Networks

hw(x) =
H∑

i0,...,ip=1

xi0w
(0)
i0,i1

w
(1)
i1,i2

. . . w
(p−1)
ip−1,ip

w
(p)
ip
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Multilayer Perceptrons

hw(x) =
H∑
ip=1

w
(p)
ip
φ

 H∑
ip−1=1

w
(p−1)
ip−1,ip

φ

(
· · ·

H∑
i1=1

w
(1)
i1,i2

φ

(
H∑
i0=1

w
(0)
i0,i1

xi0

))
Clearly if φ(x) = x then the multilayer perceptron becomes a linear network.

Observations

Both in spin glasses and linear networks, the hypothesis is an homogeneus polynomial of
degree p with pH terms and random coefficients. Most importantly, the hypothesis are
linear in any variable fixed the other ones. This means the cost function’s nonconvexity
comes from the multiplicative interactions between the weights. Assuming the xi’s are
centered Gaussians, both hypothesis are Gaussian processes with mean 0 and easy to
calculate covariance kernels, which is a core assumption in the techniques.

If we normalize the weights on a deep linear network, we come to a surprising
realization. The main tool used for the proofs was Lemma 3.2.2, which described the
joint of (f,∇f,∇2f). The proof of this lemma came by taking a chart ψ of the north
pole that drops the last coordinate, and realizing that f̄ = f ◦ψ−1 is a Gaussian process
on RN . Since the Christoffel symbols at the north pole are 0, the Hessians from f̄ and
f coincide. Furthermore, there is a simple formula (3.5) for calculating the joint of f̄ ,
the problem is solved. The main realization is that this all holds true as well when f is
the normalized version of the hypothesis of a linear network. The only core problem is
that the joint distribution is not invariant under rotations so we can’t cover the sphere
in the same way. However, there are other close symmetries in the network, so it might
still be possible to adapt the argument. It’s likely that if this method is successful, the
Hessian of f might again be close to a GOE, so it might be possible to apply Lemma
3.2.3 and the known LDPs to get similar results.

The main problem for extending these methods to MLPs is that the nonlinearities
make the distribution completely non-Gaussian. While the Kac-Rice formula is likely
to hold, all the distributions in it are not studied, so we don’t have equivalent Lemmas.
Similar results may come if we can describe the joint of (f,∇f,∇2f) taking advantage
of the hierarchical structure in MLPs. After all, by the change of variable theorem,
we know how applying a pointwise nonlinearity and an affine transformation alters the
distribution. However, none of the LDPs will hold, and it is likely that adapting them
will require a significant effort.

However, it is extremely important to point out that even if there’s an obvious
difference in representational power from linear to nonlinear networks; the learning
dynamics, the complexity, and the saddle point structure of both of them seem to be
remarkably similar [SMG13].



Chapter 4

Algorithmic Implications

As we have seen in the previous section, optimization problems similar to the one in
neural networks have some interesting properties. One of the main points to carry
through is that there appears to be an exponentially high numer of saddle points in the
loss surface. We also saw that typically all local minima are very close in error to the
global minimum, so finding any minimum guarantees that we will have low cost with
very high probability. In this chapter, we study the consequences of these theoretical
results and intuitions on optimization algorithms, and propose some modifications that
leverage these consequences.

4.1 Newton’s Method
Newton’s method [BV04] is probably the most studied optimization algorithm to present
day. If you have a function L : Rm → R that you want to minimize, Newton’s method
proposes to initialize some point θ0 at random, and then perform the following iteration
until convergence:

θk+1 ← θk − (∇2
θL(θk))

−1∇θL(θk) (4.1)

where ∇2
θL(θk) is the Hessian matrix of L at point θk. When L is not accessible directly

as in the case of function approximation, we can just use the Hessian and the gradient
of the empirical loss L̂ as we did with stochastic gradient descent.

If we compare updates (2.2) and (4.1) we see that the main difference is the addition
of the Hessian term. While this may seem somewhat arbitrary, we show now that
Newton’s update has a very interesting and straightforward derivation.

Consider the second order Taylor of L around θk

L̄(θ) = L(θk) +∇θL(θk)
T (θ − θk) +

1

2
(θ − θk)T∇2

θL(θk)(θ − θk)

In the case L is a strictly convex function, L̄ is strictly convex as well, and we can

27
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minimize it analitically by solving ∇θL̄(θ) = 0. But we have that

∇θL̄(θ) = ∇θL(θk) +∇2
θL(θk)(θ − θk)

Therefore, ∇θL(θ) = 0 if and only if

θ = θk − (∇2
θL(θk))

−1∇θL(θk)

Which is exactly update (4.1). This way, Newton can be seen as succesively approxi-
mating the loss by it’s second order Taylor, and minimizing it. Analogously, gradient
descent can be seen as minimizing a first order approximation in a ball of radius λ
for some λ > 0 that depends on the learning rate [BV04]. One would expect then for
Newton’s algorithm to work better than gradient descent, since it provides a better
minimization of the "surrogate" loss function at each step. In fact, it is easy to show
under mild assumptions that for a strongly convex function, (L(θk)− L(θ∗)) ∈ O(γk

2
)

for some γ < 1 [BV04]. Compared to the O(γk) of gradient descent, this is a massive
improvement. In fact, for convex problems, Newton’s method converges typically in
10-50 iterations, while gradient descent may take several thousands [BV04].

Sadly, Newton’s method never achieved widespread adoption in the deep learning
community. There are two reasons for this. The first one is computational. If m is the
dimension of θ, each iteration of gradient descent has cost O(m), Newton’s iteration
has cost O(m3), due to the cost of inverting ∇2

θL(θk). Since m tends to be extremely
large in neural networks, this is a serious issue. However, several approaches can be
used to deal with this challenge, and we will talk about them in sections 4.3 and 4.4.
The second reason is that, even on problems where the computational costs can be
overcome, it still fails to converge to a good solution. Why this happens and a first
step to a solution, proposed by [DPG+14], is the topic of the next section.

4.2 Saddle-Free Newton
When we did Newton’s update derivation, we did one critical assumption: that the
loss was convex. Even more, the place we used that assumption was to say that the
surrogate loss L̄ was minimized at a θ̄ that satisfies ∇θL̄(θ̄) = 0. This is clearly false
if L is nonconvex, because then ∇2

θL(θk) can have negative eigenvalues. Even more,
when ∇θL̄(θ̄) = 0, θ̄ has to be a saddle point of L̄. Therefore, for nonconvex functions
Newton’s method approximates the loss by it’s second order Taylor and drives θk to it’s
saddle point. Since our intuition tells us that the loss function of neural networks may
suffer from saddle point proliferation, it might be that Newton’s method is driving us
to a close saddle point, and not a minimum. This claim was evidenced empirically on
many real life problems by [DPG+14].

The main problem of Newton’s algorithm when the functions nonconvex is that
on the direction where the Hessian has negative eigenvalues, it changes the sign of
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the update of gradient descent. However, gradient descent always follows a descent
direction, so changing the sign of the update doesn’t really makes sense. To cope
with this, [DPG+14] propose an alternative method, deemed saddle-free Newton. To
introduce this method, we first define a few terms.

Definition 4.2.1. Let D =
(
λ1

...
λm

)
∈ Rm×m be a diagonal matrix, we define it’s

absolute value |D| ∈ Rm×m by

|D| =


|λ1| 0 . . . 0
0 |λ2| . . . 0
...

... . . . ...
0 0 . . . |λm|


This is, we change the elements on the diagonal to their absolute value.

Definition 4.2.2. Let H ∈ Rm×m be a diagonalizable matrix with real eigenvalues (e.g.
a real symmetric matrix). Let H = JDJ−1 be it’s diagonalization. Then, we define H’s
absolute value to be |H| = J|D|J−1. We therefore change the sign of the eigenvalues
to be positive whenever needed.

A simple but important observation to be made is that if H is a real symmetric
matrix, then |H| is positive semi-definite.

The saddle-free Newton method (popularly abbreviated as SFN) then proceeds as
follows. At first, initialize θ0 at random, and then iterate

θk+1 ← θk − (|∇2
θL(θk)|)−1∇θL(θk)

The change in the negative eigenvalues is indeed critical. Taking the one dimensional
case as an example, −L′ will take you always wherever the function is decreasing.
Dividing by L′′ when L′′ < 0 makes no sense, since it will take you in a direction that
increases L. However, if L′′ is positive, we don’t want to change the sign to keep the
route the gradient follows. Therefore, dividing by |L′′| achieves a rescaling, but doesn’t
change the fact that this is still a descent direction.

One thing we need to notice is that if L is convex, then SFN and Newton’s method
are identical, because the Hessian is positive semi-definite so taking the absolute value
doesn’t change anything. Furthermore, if we are sufficiently close to a strict local
minimum, and L is twice continuously differentiable (the assumptions made by all
classical theorems on Newton’s convergence [BV04]), then we get the same convergence
results as Newton. This is because the Hessian at the minimum is positive definite, and
since it’s eigenvalues are a continuous function of θ [Tao12], they all have to keep being
positive on a neighbourhood of the minimum.

If we use a small variant of the algorithm where we use |∇2
θL|+ λIm instead of just

|∇2
θL| for some λ > 0 we can also retrieve the same guarantees as gradient descent
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for convex and nonconvex functions [BCN16]. This addition is popularly known as
damping and is widely used in practice, since it limits how close to zero the division by
the matrix eigenvalues can be. It is important to recall that the algorithm is derived
by a second order approximation, and that therefore we should take some care not to
assign an incredibly large step on any iteration. This is what damping achieves.

On some extremely hard real word neural network applications, [DPG+14] shows
the superior performance of SFN

Figure 4.1: Learning curves for the training of a deep autoencoder (left) and a recurrent
neural network (right), two hard optimiation problems. The x-axis shows the number
of iterations, and the y-axis shows the cost function. Blue is SGD and red is SFN. As
we see, even when SGD has converged, SFN decreases the cost massively in very few
iterations.

The cost per iteration of saddle-free Newton is O(m3), the complexity of diagonal-
izing the Hessian matrix. Since it’s the same cost as Newton’s method, in principle it
doesn’t seem to carry any computational disadvantage. However, as we will see in the
next section, the approximation schemes that rend Newton’s method viable in practice,
do not transfer in a straightforward way to this algorithm.

4.3 Hessian-Free Optimization
One of the main disadvantages of Newton’s algorithm and SFN is their computational
complexity. If m is the number of parameters (or the dimension of θ), each ieration has
cost O(m3). Neural networks typically have at least 105 parameters for small networks
and about 107 for medium sized ones. This means each iteration would take roughly
4 days on a single CPU for a small net1, and about ten thousand years on a medium
network. Running this on a GPU would make it about 15 times faster, but going from

1Networks that have about 105 parameters are mainly recurrent neural networks, which would have
cost O(m3T ) per Newton iteration, with T the length of the sequence fed into the network, typically
on the order of 200. This means that instead of 4 days per iteration, each one would take more than
a year.
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ten thousand years to a couple of centuries isn’t really a big advantage. Therefore,
using either Newton’s method or SFN without any approximation scheme on neural
networks is impossible.

One of the first approaches to using full second order methods in neural networks is
Hessian-free optimization (HF) [Mar10]. HF is a combination of three main elements,
with some modifications that we will mention later. The core elements of HF are:

• The conjugate gradient method [HS52] is an algorithm for solving linear systems
of the form Ax = b when A ∈ Rm×m is positive definite. Recall that in the end,
all that’s required for computing a Newton step is solving the system ∇2

θL(θk)x =
∇θL(θk). The main advantage of this method is that it doesn’t require access to
A, it only requires a way to calculate Av for any vector v ∈ Rm. In the case
of neural networks, we will see that there’s a fast way to calculate ∇2

θL(θ)v, but
storing or even calculating the entire Hessian is prohibitively expensive.

Another advantage of the conjugate gradient method is that it’s iterative. It
takes m iterations to converge, where each iteration requires calculating one Av
product. In the typical case, calculating Av has cost O(m2), so the overall cost
remains the same. However, sometimes less than m iterations are required (as
little as 20) to achieve a good approximation of x, and there are cases where
calculating Av is surprisingly cheap.

• The Gauss-Newton method [Bjo96] is an algorithm similar to Newton, but with
one important modification: replacing the Hessian with a positive semi-definite
matrix GθL(θ) called the Gauss-Newton matrix. This matrix has the property
that it converges to the Hessian when close to a minimum, and as is positive
semi-definite it keeps the descent direction. However, the behaviour when the
loss is nonconvex is not well understood. Furthermore, [MD08] argues against
using the Gauss-Newton matrix on neural networks, showing it suffers from poor
conditioning and drops the negative curvature information, which is argued to
be crucial. Note that this is a major difference with SFN, which leverages the
negative curvature information, keeping the scaling in these directions.

• Let m be the number of parameters, and n the number of examples used in
computing L̂ for one iteration of Newton or Gauss-Newton with loss L̂. The
R-operator [Pea94] [Sch02] is a method that allows for computing ∇2

θL̂(θ)v and
GθL̂(θ)v in O(mn) (same as the cost of gradient descent) time for any vector
v ∈ Rm for the particular case of neural networks. Note that this is incredibly
fast, since a typical matrix-vector product takes O(m2). Furthermore, if we run l
iterations of conjugate gradients to calculate the Gauss-Newton step (i.e. solving
the system GθL̂(θk)x = ∇L̂(θk)) has cost O(lmn), which is remarkably fast for
low k and n.
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Another component of HF, which is albeit minor in comparison to the previous three,
is damping. Instead of using GθL̂(θ), HF uses GθL̂(θ) + λIm for some λ > 0. This
makes the system solved positive definite and reduces it’s condition number, speeding
up conjugate gradients and guaranteeing its convergence.

The overall HF optimization method looks as follows

gk ← ∇θL̂(θk)

Pick a λ > 0 with some heuristic

Define the function: Bk(v) = GθL̂(θk)v + λv

∆θk ← CG-Minimize(Bk,−gk)
θk+1 ← θk + ∆θk

In the algorithm, CG-Minimize(A, b) means to run l iterations of the conjugate
gradient method on the system Ax = b. We can see that the cost of calculating ∆θk
has therefore cost O(lmn). Since l is typically ranging from 20 to 200 and n is typically
less than 1000, this is not prohibitively large. Note that even if each HF iteration is
several orders of magnitude slower than an SGD iteration, the procedure converges
extremely fast, and is in general stopped after less than 250 iterations, in comparison
with the hundreds of thousands or millions in SGD.

For completeness, we mention how the damping parameter λ is chosen in HF. This
is done is via a Levenberg-Marquardt[Lev44, Mar63] style heuristic: first, we initialize
λ = λ0. After that, if qθ is the second order (or Gauss Newton) approximation to L̂(θ)
we define

ρ =
L̂(θ + ∆θ)− L̂(θ)

qθ(θ + ∆θ)− qθ(θ + ∆θ)

and at each iteration if ρ < 1
4
we do λ ← 3

2
λ, if ρ > 3

4
we do λ ← 2

3
λ. The main idea

is that ρ measures similarity between the actual loss and our second order approxima-
tion. If the approximation is reliable, we can afford a larger stepsize on low curvature
directions and therefore we can reduce the damping parameter.

In conclusion, Hessian-free optimization allows a for way to approximate full second
order methods such as Gauss-Newton for neural networks. Its main benefit is that it
goes from the prohibitive O(m3 +m2n) cost of full Newton to an approximation scheme
that takes O(lmn) time, for low l. A nice guarantee is also that if l = m, we get back
exactly the Gauss- Newton method. This is due to the fact that conjugate gradients
solve the system exactly with m iterations.

An extremely important thing to notice is that HF uses a small constant amount
of memory, O(m), irregardless of how good the approximation is. The only limitant
factor is time. This is in contrast to low rank approximation algorithms, for example.
These techniques require O(mk) memory for a k-rank approximation. Since m is very
big in practice, low rank methods tend to be extremely limited.
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4.4 Saddle-Free Hessian-Free Optimization

Unlike the Gauss-Newton method, SFN doesn’t drop the negative curvature informa-
tion, which seems to be extremely important in the case of nonconvex objectives, and
especially in neural networks [MD08]. However, the O(m3 + m2n) complexity makes
it intractable in practice. One could wonder why do we not simply do a Hessian-free
optimization style algorithm with |∇2

θL̂| instead of GθL̂. The main problem is that it’s
not clear how to calculate |∇2

θL̂|v for any vector v ∈ Rm in O(mn) time like with the
Gauss-Newton matrix.

The main disadvantage of calculating |∇2
θL̂|v is that in order to replace λi with |λi|

we need to change the sign of only the negative λi’s, for which we (in principle) would
need to calculate them and check their signs. However, there’s one simple way to go
from x to |x| without knowing the sign of x. We can just operate |x| =

√
x2.

As we know, if H = JDJ−1, then H2 = JD2J−1, and D2 is simply the result of
squaring it’s diagonal. Furthermore, we can define the square root of a positive definite
matrix H

1
2 by H

1
2 = JD

1
2J−1, where D

1
2 is the result of taking the square root of it’s

entries. One can alternatively define H
1
2 as the only positive definite matrix A such

that A2 = H. It is trivial to verify now that |H| = (H2)
1
2 .

Let us remember that we can use the R-operator to calculate ∇2
θL̂v very quickly.

Therefore, we can calculate (∇2
θL̂)2v quickly by applying the R- technique twice. Let A

be a positive definite matrix. If we can figure out how to calculate A
1
2u based only on

knowing how to calculate Av for any vector v then we would be done, because setting
A = (∇2

θL̂)2 would give us a way to calculate |∇2
θL̂|u.

[ABB00] describes a method for calculating A
1
2v when A is tridiagonal that we

describe now. Let us consider the following initial value problem:{
x′(t) = −1

2
(tA + (1− t)I)−1 (I−A)x(t)

x(0) = v
(4.2)

Under the condition that ‖A‖ is sufficiently small, equation (4.2) has a unique
solution [ABB00], which is

x(t) = (tA + (1− t)I)
1
2 v

Most importantly, x(0) = v and x(1) = A
1
2v. While the original paper uses the fact

that A is tridiagonal to solve the systems inside the calculations of x′(t) fast enough,
we can also solve them by applying the conjugate gradient methods. Since we can
calculate products of the form Au, we can also calculate (tA + (1− t)I)u easily as
well. By plugging this initial value problem into an ODE solver (such as RKF45), we
can therefore recover x and obtain x(1) = A

1
2v as we wanted.
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Going back to saddle-free Newton, we can calculate ∆θk in two steps:

y ← −α
(

(∇2
θL̂(θk))

2
) 1

2 ∇L̂(θk) = −α|∇2
θL̂(θk)|∇L̂(θk)

∆θk ←
((
∇2
θL̂(θk)

)2
)−1

y

The Hessian-free version we devised to follow this two steps, that we call Saddle-free
Hessian-free Optimization (SFHF) [Arj15], follows naturally:

y ← ODE-solve
(
Equation (4.2), A = ∇2

θL̂(θk), v = −α∇L̂(θk)
)

∆θk ← CG-Minimize
((
∇2
θL̂(θk)

)2

, y

)
The complexity of SFHF is O(mnll′), where l is the number of conjugate gradient

iterations we use to solve the linear systems involved, and l′ the number of evaluations
x′(t) evaluations we do to solve the differential equation. l′ typically is about 40, but
l is considerably smaller than in Hessian-free optimization. This makes the overall
algorithm only a bit slower than Hessian-free. However, the fact that HF ignores the
negative curvature makes it possible that SFHF converges in fewer iterations (and to
a lower error), leading to a faster algorithm overall. While preliminary experiments
support this hypothesis, more research needs to be done to arrive to a full conclusion.
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Conclusion

The optimization problem of learning deep neural networks is highly nonconvex. In
spite of this, looking deeper into the structure of the loss, the theory of spin glasses
points us to three likely and interesting conclusions:

• There are indeed an exponential number of local minima.

• However, all local minima lie within a small range of error with overwhelming
proability. Almost all local minima will have similar error to the global minimum.

• There are exponentially more saddle points than minima, a phenomenon called
saddle point proliferation.

We conjecture that it’s likely the proof methods used for spin glasses can be ex-
tended to linear networks, and show a path of research to do so. However, due to the
non-Gaussian behaviour created by the nonlinearities in multilayer perceptrons, it is
not clear how to transition to full neural networks. The hierarchical structure of the hy-
pothesis of neural networks might yield an understanding of the involved distributions,
but much work needs to be done.

While the three consequences are overall great news, since all we need is to find a
local minimum, this is horrible news for Newton’s method, which jumps straight to a
close saddle point. Leveraging this knowledge and the previous work on approximated
second order methods, we create a new algorithm called saddle-free Hessian-free opti-
mization, that’s especailly designed to tackle the computational issues of using the full
Hessian, and avoide saddle points.
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