
UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Matemática

Tesis de Licenciatura

Structural and Algorithmic Results on
Neighborhood-Perfect Graphs and

Neighborhood Numbers

Xavier S. Warnes

Director: Martı́n D. Safe
Co-director: Guillermo Durán

Noviembre 2014

i

Resumen

Un grafo es vecindad-perfecto si en cada subgrafo inducido, el mı́nimo número

de vecindades cerradas necesarias para cubrir los vértices y aristas es igual

al máximo cardinal de un conjunto de vértices y aristas sin dos elementos

pertenecientes a la misma vecidad cerrada. A diferencia de los grafos perfectos,

los grafos vecindad-perfectos no han sido aún caracterizados por subgrafos

inducidos prohibidos, ni tampoco se conoce la complejidad algorı́tmica del prob-

lema de reconocimiento de la clase. En esta tesis probamos caracterizaciones de

los grafos vecindad-perfectos por subgrafos inducidos prohibidos minimales

restringidas a ciertas clases de grafos, incluyendo la clase de los grafos P4-tidy,

la de los tree-cographs y ciertas clases relacionadas a los grafos clique-Helly

hereditarios. Por otro lado consideramos el problema de reconocimiento de

los grafos vecindad-perfectos y encontramos algoritmos polinomiales para re-

solverlo restringido a distintas clases de grafos. Finalmente mostramos dos

algoritmos lineales para encontrar los parámetros involucrados en la definición

de vecindad-perfección (y los conjuntos óptimos que realizan los parámetros)

restringiendo la entrada a grafos pertenececients a la clases de los grafos P4-tidy

y los tree-cographs, y probamos que el problema de determinar estos mismos

parámetros es NP-completo aún para grafos complemento de bipartito.

ii

Abstract

A graph is neighborhood-perfect if for every induced subgraph, the minimum

number of closed neighborhoods needed to cover all the vertices and edges

equals the maximum size of a set of vertices and edges, no two of which belong

to the same closed neighborhood. Unlike perfect graphs, neither a forbidden

induced subgraph characterization, nor the computational complexity of the

recognition problem are known for the whole class of neighborhood-perfect

graphs. In this thesis we give characterizations of neighborhood-perfect graphs

by minimal forbidden induced subgraphs restricted to several graph classes,

including the classes of the P4-tidy graphs, tree-cographs and several graph

classes related to the class of hereditary clique-Helly graphs. Moreover we

consider the problem of recognizing neighborhood-perfect graphs and propose

polynomial-time algorithms to solve it restricted to different graph classes.

Finally we present two linear-time algorithms to find the parameters involved in

the definition of neighborhood-perfectness for P4-tidy graphs and tree-cographs

and prove that the problems of these same parameters are NP-complete when

restricted to complement of bipartite graphs.

iii

Agradecimientos

A Martı́n y Willy, por el trabajo y dedicación que le pusieron a este trabajo.

A Willy por darme un lugar para trabajar con tan buen grupo de investi-

gadores y siempre darme el apoyo necesario para poder aprender y crecer

académicamente. A Martı́n, porque sin él esta tesis no hubiese sido posible, por

sus correcciones precisas y puntillosas que tanto me enseñaron y por dedicar el

tiempo que no tenı́a a ayudarme.

A Flavia, por mostrarme el mundo de la teorı́a de grafos y siempre estar dis-

puesta a darme una mano. A Oscar, porque sin sus clases de algoritmos en

grafos nunca hubiese podido escribir el cuarto capı́tulo de la tesis. A Marina y a

Diego, por todos sus consejos a lo largo de estos años.

A mis compañeros, a Eugenio, Agustı́n, Pedro, Fede, Pablo, Santi V, Santi D, por

hacer que muchas materias fuesen mucho más placenteras de cursar. A Flor y

Vero, por la buena onda que le ponen a toda la oficina.

A mis padres, si no fuese por su apoyo constante e inagotable no hubiese podido

terminar esta carrera. A mi padre, por enseñarme matemática desde siempre. A

mi hermano Pablo, por parecerse a mı́.

A Sabri, por aguantarme durante toda la carrera, pese a todos esos fines de

semanas en que todo lo que hacı́amos era estudiar.

iv

“Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen
sondern das Erwerben, nicht das “Da-sein”, sondern das Hinkommen, was den

grössten Genuss gewährt.”

Carl Friedrich Gauß

Contents

Resumen i

Abstract ii

Acknowledgements iii

Nomenclature ix

1 Introduction 1

2 Preliminaries 7

2.1 Basic Definitions and Notations 7

2.2 Important Parameters . 11

2.3 Some Special Graph Classes . 16

2.3.1 Perfect Graphs . 16

2.3.2 Neighborhood-Perfect Graphs 18

2.3.3 Clique-Perfect Graphs . 18

2.3.4 Helly Property and Hereditary Clique-Helly Graphs . . 19

2.3.5 Balanced Graphs . 20

v

vi CONTENTS

2.3.6 Circular-arc Graphs and Helly Circular-arc Graphs . . . 22

2.3.7 Modular Decomposition of a Graph and Superclasses of

Cographs . 22

2.4 Complexity Theory and Approximation Algorithms 27

3 Partial Characterizations of Neighborhood-Perfect Graphs 31

3.1 Known Characterizations . 32

3.2 Minimally Non-Neighborhood-Perfect Graphs with Disconnected

Complement . 33

3.3 P4-tidy and P4-sparse Graphs . 41

3.4 Tree-cographs . 44

3.5 Subclasses of Hereditary Clique-Helly Graphs and Related Graph

Classes: Relation with Clique-Perfectness 46

3.5.1 Helly Circular-arc Graphs 48

3.5.2 Gem-Free Circular-arc Graphs 50

3.5.3 Subclasses of HCH Graphs 50

3.5.4 Some Relations with Balanced Graphs 51

4 Algorithmic and Complexity Results on Neighborhood-Perfect Graphs 55

4.1 Known Results . 56

4.2 Recognition Algorithms . 57

4.2.1 P4-tidy Graphs . 58

4.2.2 Tree-cographs . 64

4.2.3 Recognition in Other Graph Classes 70

4.3 Algorithms for Computing Optimal Sets of Vertices and Edges . 72

CONTENTS vii

4.3.1 P4-tidy Graphs . 76

4.3.2 Tree-cographs . 78

4.4 Complexity Results . 83

5 Conclusion and Final Remarks 87

Index 93

Bibliography 94

viii CONTENTS

Nomenclature

αc(G) clique-independence number, 13

α(G) independence number, 11

α2(G) 2-independence number, 14

αk(G) k-independence number, 14

αn(G,k) k-neighborhood-independence number, 16

αn(G) neighborhood-independence number, 12

β(G) vertex-cover number, 15

χ(G) chromatic number, 11

∆(G) maximum degree of vertices of G, 8

δ(G) minimum degree of vertices of G, 8

γ(G) domination-number, 14

P class of polynomial-time solvable problems, 28

NP non-deterministic polynomial problems, 28

ω(G) maximum clique, 11

π(G) set of all π(h), for every h ∈ T(G), 24

ix

x Nomenclature

π(h) graph representing the adjacencies among the children of h ∈ T(G), 23

ρn(G) neighborhood-covering number, 12

ρn(G,k) k-neighborhood-covering number, 16

τ(G) size of a minimum vertex cover of G, 10

τc(G) clique-transversal number, 13

Cn chordless n-cycle, 9

dG(v) degree of v in G, 8

G[h] G[M(h)] for h ∈ T(G), 23

G[W] subgraph of G induced byW, 8

hR child representing the head of a starfish or urchin in N-node, 26

Kn complete graph of n nodes, 8

m number of edges, 8

M(h) module corresponding to h ∈ T(G), 23

n number of vertices, 8

NG(v) open neighborhood of v in G, 8

NG[v] closed neighborhood of v in G, 8

Pn chordless n-path, 9

T(G) modular decomposition tree, 22

Chapter 1

Introduction

One of the most celebrated results in the last fifteen years in Graph Theory

is without a doubt the characterization by forbidden induced subgraphs of

the class of perfect graphs. A graph G is said to be perfect if χ(G ′) = ω(G ′),

for all induced subgraph G ′ of G1, where χ(G) is the minimum number of

colors needed to color the vertices of graph G andω(G) the size of the largest

clique of G. Perfect graphs were defined by Berge in 1961 [4]. Not only are

perfect graphs of great theoretical importance, but they have as well significant

importance in real-world applications. They arise naturally in many of these,

for example optimization of computer storage, analysis of genetic structure

and scheduling problems [54, 98]. In his initial work, Berge proposed two

conjectures that were later known as the Perfect Graph Theorem and the Strong

Perfect Graph Theorem. The first of these stated that a graph is perfect if and

only if its complement is perfect2, and was proved to be true by Lovász in

1972 [74, 75]. Although Lovasz admited that much credit should be given to

Fulkerson, who had previously established the relation between perfect graphs

1We shall assume, in this chapter, basic knowledge of Graph Theory. In case of doubt we refer
the reader to Chapter 2.

2The original conjecture used the terms χ-perfect and α-perfect, where G is α-perfect if
α(G ′) = θ(G ′) for all induced subgraphs G ′ of G, α(H) being the independence number
and θ(H) being the minimum clique cover of the vertices of a graphH.

1

2 Chapter 1. Introduction

and polyhedral combinatorics, which led him to an independent proof of the

theorem [49]. The second conjecture was a characterization of perfect graphs

as those graphs such that no induced subgraph is an odd chordless cycle of

length at least 5 or a complement of such an odd cycle. Graphs containing no

such induced cycles or their complements were later on called Berge graphs. An

interesting report of the history and motivations of these conjectures can be

found in [6]. The Strong Perfect Graph Theorem was proved by Chudnovsky,

Robertson, Seymour and Thomas in 2002 [32], using a structural theorem, in

which they proved that a Berge graph belongs to one of five basic classes or

admits one of a few kinds of decompositions. An account of how this final proof

was found was written in 2006 by Seymour [92].

The class of neighborhood-perfect graphs was defined in 1986 by Lehel and Tuza

[70] based on a min-max equality similar to that of perfect graphs. Given a graph

G, a set C ⊆ V(G) is a neighborhood-covering set if each edge and vertex of G

belongs to G[v] for some v ∈ C, where G[v] is the subgraph of G induced by the

closed neighborhood of the vertex v 3. This concept of neighborhood-covering

was first introduced by Sampathkumar and Neeralagi [89]. We shall say that

two elements of E(G) ∪ V(G) are neighborhood-independent if there is no vertex

v ∈ V(G) such that both elements belong toG[v]. A set S ⊆ V(G)∪E(G) is said to

be a neighborhood-independent set if every pair of elements of S is neighborhood-

independent4. Let ρn(G) be the size of the minimum neighborhood-covering

set and αn(G) of the maximum neighborhood-independent set. Clearly, the

inequality

ρn(G) > αn(G)

holds for every graph G. Thus, Lehel and Tuza define neighborhood-perfect

graphs as those graphs G where ρn(G
′) = αn(G

′) holds for every induced

subgraph G ′ of G. They observe as well that as a consequence of the Strong

3Note that this definition is slightly different from the one given in [70], where isolated vertices
are not required to be covered.

4As for neighborhood-covering sets, neighborhood-independent sets are defined in [70] as sets
of edges, without taking into account isolated vertices.

3

Perfect Graph Theorem, all neighborhood-perfect graphs must be perfect. In

Figure 1.1 we can see two graphs that will appear throughout the thesis, one is

neighborhood-perfect and the other is not.

Figure 1.1: Example of a neighborhood-perfect graph (left) and a non neighborhood-perfect graph
(right). For each graph, a maximum neighborhood-independent set is marked by dotted (green)
edges and a minimum neighborhood-covering set by circling the vertices (in red).

No forbidden induced subgraph characterization of the whole class of neighborhood-

perfect graphs is known, but several partial characterizations have been proven.

In the paper where Lehel and Tuza defined the class, they proved that, when

restricted to chordal graphs, neighborhood-perfect graphs are exactly odd-

sun-free graphs. Lehel and Tuza showed as well that triangle-free graphs

are neighborhood-perfect if and only if they are bipartite. In [57] minimally

non-neighborhood-perfect graphs were defined and all those minimally non-

neighborhood-perfect graphs G satisfying αn(G) = 1 were found. Moreover,

in this same work, they proved that all line graphs of bipartite graphs are

neighborhood-perfect and found a forbidden induced subgraph characteri-

zation for neighborhood-perfect graphs in the class of chordal graphs. As a

generalization of the result on line graphs of bipartite graphs, Lehel proved a

characterization of those line graphs that are neighborhood-perfect [69].

Several results have been published on the algorithmic problems of finding

αn(G) and ρn(G) for different graph classes. If G is a cograph, interval graph

or a strongly chordal graph, then this problems can be solved in linear time

[57, 23, 70]. If G is a neighborhood-perfect chordal graph, then finding the

parameters can be done in polynomial-time [70]. On the other hand it has been

seen that the same problems are NP-complete for line graphs, planar graphs

and split graphs [56, 27].

Although by many previously published results it is clear that the problem of

4 Chapter 1. Introduction

recognizing neighborhood-perfect graphs is polynomial in several graph classes,

the computational complexity of the recognition problem of the whole class

is still unknown. Gyárfás et al. [57] described an algorithm to find αn(G) and

ρn(G) of any neighborhood-perfect cograph G, which can easily be modified to

a linear-time recognition algorithm of neighborhood-perfect cographs. More-

over by results of [70], a polynomial-time recognition algorithm for chordal

neighborhood-perfect graphs follows. Finally the fact, implicitly proven in

[69], that neighborhood-perfectness coincides with clique-perfectness when

restricted to the class of hereditary clique-Helly graphs, implies that polynomial-

time recognition algorithms for neighborhood-perfectness within hereditary

clique-Helly graph classes can be derived from analogous existing results for

clique-perfectness. These results are stated explicitly in Section 4.2.

This thesis is divided into three main chapters. In Chapter 2 we give the basic

definitions and known results used in the rest of the thesis. In Chapters 3 and 4

we present the main results of the thesis; each of these chapters begins with a

summary of previously proven results on the subject.

In Chapter 3 we first prove some structural results. For instance, we prove that

if a graph G is the join of two neighborhood-perfect graphs F and H, then G is

neighborhood-perfect if and only if it contains no induced C4 ∨ 2K1, C6 ∨ 3K1

or P6 ∨ 3K1, where ∨ denotes the join operation. To reach this conclusion,

we begin by showing how to obtain αn(G) and ρn(G) from the dominating

number, the 2-independence number and the neighborhood-covering number

of F and H. Using the structural results proved in Section 3.1, in the next two

sections of Chapter 3 we prove forbidden induced subgraph characterizations

of neighborhood-perfect graphs restricted to P4-tidy graphs and tree-cographs,

respectively. In the last section of this chapter we prove forbidden induced

subgraph characterizations of neighborhood-perfect graphs restricted to several

other graph classes, namely Helly circular-arc graphs, gem-free circular-arc

graphs, diamond-free graphs, hereditary clique-Helly claw-free graphs and

paw-free graphs. Most of these results are direct corollaries of the fact implicit

5

in [69] that, if a graph is hereditary clique-Helly, then it is clique-perfect if and

only if it is neighborhood-perfect.

In Chapter 4, we give linear-time algorithms that recognize neighborhood-

perfect graphs within the classes of P4-tidy graphs and tree-cographs. We

present as well two linear-time algorithms that find a minimum neighborhood-

covering set and a maximum neighborhood-independent set for any P4-tidy

graph or tree-cograph. Furthermore, based on the characterizations that we

prove in the last section of Chapter 3, we prove that the recognition problem

of neighborhood-perfect graphs can be solved in polynomial time when the

input graph is restricted to belong to certain graph classes, namely paw-free

graphs, diamond-free graphs, claw-free hereditary clique-Helly graphs and

Helly circular-arc graphs. Finally we finish the chapter by proving that the prob-

lems of determining αn(G) and ρn(G) are NP-complete even if G is restricted to

be the complement of a bipartite graph.

Chapter 5 contains a summary of the main results of the thesis and some further

remarks.

6 Chapter 1. Introduction

Chapter 2

Preliminaries

In this chapter we shall define the basic concepts and give the basic results that

shall be used throughout the thesis. References are given in each section to

works where these concepts are explained in full detail.

2.1 Basic Definitions and Notations

For the sake of clarity we shall follow when possible West’s [104] notations. In

his book he defines a graph G as a triple, consisting of a vertex set V(G), an

edge set E(G) and a relation that assigns two vertices, called the endpoints, to

each edge. We will only deal with simple graphs, that is, graphs that are finite,

undirected and have no loops nor multiple edges. Thus we can view an edge as

an unordered pair of vertices, ignoring the formality of the relation associating

vertices and edges. Hence, if v and w are vertices of G, we shall denote the

edge joining them as vw. The complement of a graph G is a graph G such that

V(G) = V(G) and for every two different v,w ∈ V(G), vw ∈ E(G) if and only

if vw /∈ E(G). An edge-vertex incidence matrix of G is a {0, 1}-matrix having one

column for each vertex and one row for each edge, such that for each row, the

only two 1 ′s that appear correspond to the endpoints of the associated edge .

We shall say that a graph H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G).

7

8 Chapter 2. Preliminaries

Given a setW ⊆ V(G), we shall say that G[W] is the subgraph of G induced by

W when V(G[W]) = W and E(G[W]) = {vw ∈ E(G) : v,w ∈ W}. The graph H

shall be called an induced subgraph of G if there is a setW such that H = G[W];

moreover, if W 6= V(G), then H shall be called a proper induced subgraph. We

shall denote the subgraph of G induced by V(G) \W by G −W; if W = {v},

simply by G − v. For any set S, |S| denotes the cardinality of S. For simplicity,

we shall note the number of vertices of a G as nG = |V(G)|, and the number of

edges asmG = |E(G)|. When clear by context to which graph we are referring,

we shall simply denote its number of vertices by n and its number of edges by

m.

The neighborhood of a vertex v in G is the set of vertices of G adjacent to v, and

is denoted by NG(v). The closed neighborhood of v in G is NG(v) ∪ {v} and is

noted NG[v]. When the graph G is clear by context, the neighborhood and the

closed neighborhood shall be denoted by N(v) and N[v], respectively. A vertex

v is called universal if N[v] = V(G) (that is, v is adjacent to all other vertices of

G), pendant if it is adjacent to exactly one vertex of G, isolated if it is adjacent to

none, and simplicial if its neighborhood is a clique. An edge is pendant if it has

at least one pendant endpoint. The common neighborhood of an edge e = vw is

N(e) = N(v) ∩N(w); in general the common neighborhood of a nonempty set of

vertices S is N(S) =
⋂
s∈SN(s). The degree of a vertex v is dG(v) = |NG(v)|. The

maximum degree of the vertices of G is noted by ∆(G) and the minimum degree by

δ(G).

A graph is complete if its vertices are pairwise adjacent, we shall denote the

complete graph on n vertices by Kn. A complete graph of 3 vertices is called a

triangle. A clique of a graph is a set of pairwise adjacent vertices and a maximal

clique of a graph is an inclusion-wise maximal clique. A clique-matrix of a graph

is a {0, 1}-matrix, with one row for each maximal clique and one column for

each vertex and such that there is a 1 in a given entry if and only if the vertex

corresponding to the column belongs to the clique corresponding to the row. A

stable set of a graph is a set of pairwise nonadjacent vertices. Clearly a stable set

of G is a clique of G and vice versa.

2.1. Basic Definitions and Notations 9

A walk inG is a sequence of vertices v1, v2 . . . , vk, such that for each i ∈ {1, . . . ,k−

1}, vivi+1 ∈ E(G). If v1 = vk, the walk is called closed. A walk where no vertex is

repeated is called a path. A closed walk where no vertex except for the last and

first ones is repeated is called a cycle. We shall consider the smallest possible

cycle as a cycle of 3 vertices, which we shall call as well a triangle. The first

and last vertex of a path shall be called its endpoints. An n-path (resp. n-cycle)

is a path (resp. cycle) with n vertices. Let Z be a path or cycle of G. We shall

denote the set of vertices of Z by V(Z), and the set of edges of Z by E(Z). The

length of Zwill be |E(Z)|. The distance in G between two vertices is the minimum

length of a path having them as endpoints. A chord in Z is an edge joining two

nonconsecutive vertices of Z and Z is chordless if it has no chords. The chordless

n-path and n-cycle are denoted by Pn and Cn, respectively. For each n > 4,

Wn denotes the wheel graph on n vertices, which arises form Cn by adding

a universal vertex. A cycle is odd if it has a odd number of vertices, and even

otherwise. A hole is a chordless cycle of length at least 4 and an antihole is the

complement of a hole of length at least 5. A k-sun (or trampoline of order k) is a

graph having 2k vertices v1, . . . , vk,w1, . . . ,wk such that v1 . . . vk is a cycle and

every wi (1 6 i 6 k) has exactly two neighbors: vi and vi+1 (vk+1 = v1). A

k-sun is said to be odd if k is odd.

A graph G is connected if for every two vertices in it, there is a path that joins

them. A component of a graph is a containment-wise maximal connected sub-

graph. An anticomponent of G is the subgraph in G induced by the vertices of a

component of G . A component is trivial if it has only one vertex. A connected

graph without cycles is called a tree . The complement of a tree is called a co-tree

. A graph is called a forest if all its components are trees. A cutpoint is a vertex v

such that G− v has more components than G. An edge e is a bridge if G− e has

more components that G.

A dominating set of a graph G is a set A ⊆ V(G) such that each v ∈ V(G) ei-

ther is in A or is adjacent to some vertex of A. A total dominating set is a set

A ⊆ V(G) such that every vertex in V(G) is adjacent to at least one vertex of A.

A k-independent set of G is a set of vertices such that for every pair of vertices in

10 Chapter 2. Preliminaries

it there is no path of length k or less that connects them in G. A set A ⊆ V(G) is

called a vertex cover of G if every edge e ∈ E(G) has at least one endpoint that

belongs to A. We shall note by τ(G) the size of a vertex cover of a graph G with

minimum number of nodes.

IfG andH are two graphs, then we shall say thatG containsH ifH is isomorphic

to a subgraph (not necessarily induced) of G; if H is isomorphic to an induced

subgraph of G, we say it is G contains an induced H. A class G of graphs is called

hereditary if, for every graph G ∈ G, all induced subgraphs of G belong to G.

We say that G is H-free if G contains no induced subgraph isomorphic to H.

Given a collection of graphs H, we say that G is H-free if G does not contain

any induced graph H ∈ H. A graph H is a forbidden induced subgraph for a class

G if every graph of G is H-free. Moreover if G is a hereditary class, H is said to

be a minimal forbidden induced subgraph for G if H does not belong to G, but all of

its proper induced subgraphs do.

Given two graphs G and H, such that V(G) ∩ V(H) = ∅, we shall define the join

of G and H as the graph G∨H having set V(G∨H) = V(G) ∪ V(H) and edge

set E(G∨H) = E(G) ∪ E(H) ∪ {vw : v ∈ V(G),w ∈ V(H)}.

A graph is bipartite if its vertex set can be partitioned in two stable sets X and Y.

If so, {X, Y} is a bipartition of the graph. Moreover if every vertex of X is adjacent

to every vertex of Y, the graph is called complete bipartite. The complement of a

bipartite graph is called a co-bipartite graph.

A matching of a graph G is a set of vertex-disjoint edges of G. IfM is a matching,

M is maximal if it is inclusion-wise maximal and maximum if it is of maximum

size. An induced matching is a matchingMwhere no two edges are joined by a

common edge. Equivalently a matchingM is induced if the subgraph induced

by its vertices has exactly M as its edge set. Induced matchings were first de-

fined by Cameron in [26], where she proves as well that the problem of finding

maximum induced matchings in bipartite graphs is NP-complete.

Some of the graphs that we will refer to in the thesis are depicted in Figure 2.1.

2.2. Important Parameters 11

0-pyramid 1-pyramid

2-pyramid 3-pyramid

odd holes C4

C9

V7viking

diamondgem

claw

Figure 2.1: Some special graphs.

For any definition not presented here, we refer the reader to the excellent book

by West [104].

2.2 Important Parameters

In this section we shall present the most important graph parameters that we

shall use in this work. They shall all take the form of an operator that applied to

a simple graph gives a positive integer.

Let us first consider four parameters that were already defined in Chapter 1 and

play a crucial role in the definition of perfect graphs. Given a simple graph G,

we shall define the independence number as the maximum size of a stable set in

G, and we shall denote it by α(G). Analogously we shall denote the maximum

number of vertices of a clique of G as ω(G). The chromatic number, χ(G), is

the minimum number of colors needed to color the vertices of G such that no

two adjacent vertices share the same color. Note that this is equivalent to the

minimum partition of V(G) into stable sets. Following the same relationship

between stable sets and cliques used in the previous two parameters, we shall

12 Chapter 2. Preliminaries

define θ(G) as the minimum number of cliques needed to cover all of the

vertices of G. Note that θ(G) = χ(G) and ω(G) = α(G). Moreover, in every

valid coloring of G, a clique must have all of its vertices colored with different

colors, and clearly in a every cover of V(G) by cliques, every element of a stable

set must be covered by a different clique. These remarks imply the following

two inequalities:

ω(G) 6 χ(G), (2.1)

α(G) 6 θ(G). (2.2)

The problem of computing any of these four parameters is NP-complete for

general graphs [67].

The two most important parameters that appear in this thesis are the neighborhood-

independence number and the neighborhood-covering number . The idea of neighbor-

hood-covering was first introduced by Sampathkumar and Neeralagi [89] and

was studied in [27, 65, 70]. A neighborhood-covering set or simply neighborhood set

of a graph G is a subset of V(G) such that every edge and vertex of G is covered

by some vertex of the set. We say that a vertex v covers a vertex or edge if it

belongs to G[N[v]]. A neighborhood-independent set is a set of vertices and edges

such that no two of its elements are covered by a common vertex in G. The

neighborhood-covering number is defined as the minimum size of a neighborhood-

covering set, and is denoted by ρn(G). The neighborhood-independence number

is defined as the maximum size of a neighborhood-independent set, and is

denoted by αn(G). It is worth noting that this definitions are not exactly the

same as those used in [70, 27], where isolated vertices are not required to be

covered and neighborhood-independent sets contain only edges. However, it

is clear that the only difference between the two pairs of definitions is that our

definitions take into account the isolated vertices. Namely, each of the param-

eters αn(G) and ρn(G) as defined here arises from the homonymous operator

defined in [70] by adding up the number of isolated vertices of G. Thus, all

equalities and inequalities between αn(G) and ρn(G) proved for the variants

2.2. Important Parameters 13

not taking into account the isolated vertices still hold. As different elements of

a neighborhood-independent set must be covered by different vertices of any

neighborhodd-covering set, the following inequality must hold for every graph

G:

αn(G) 6 ρn(G). (2.3)

It is NP-complete to determine αn(G) and ρn(G) even for split graphs G with

certain degree constraints [27], but there are linear-time algorithms for finding

them when restricted to interval graphs [70] and, more generally, strongly

chordal graphs [23]. These problems have been generalized to a k-distance

version [65]

A clique-transversal of a graphG is a set T of vertices such that for every maximal

clique C of G, C ∩ T 6= ∅; that is, every maximal clique of G has at least one

vertex in T . Two maximal cliques are said to be independent if they share no

common vertex. The minimum size of a clique-transversal of G is called the

clique-transversal number, and is noted τc(G). The maximum number of pairwise

independent maximal cliques on G is called the clique-independence number

and is denoted by αc(G). Once again, it is clear by the definition of these

parameters that for every every two independent cliques we shall need two

different vertices in the clique-transversal. Thus the following inequality must

hold for every graph G:

αc(G) 6 τc(G). (2.4)

These two parameters have been studied in [102, 1, 44, 27, 56, 43]. It was proven

that determining αc(G) and τc(G) is NP-complete even for split graphs [27], as

well as for planar graphs, line graphs, cocomparability graphs and total graphs

[56]. There are linear-time algorithms for finding these parameters in strongly

chordal graphs (given a strong elimination order) [27], and polynomial-time

algorithms in the class of Helly circular-arc graphs [56]. These parameters have

been generalized in [28] as follows. Suppose that each maximal clique Ci is

associated with an integer ri, where 0 6 ri 6 |Ci|. A generalized clique-transversal

set is a set of vertices D such that for every Ci, |Ci ∩ D| > ri. The generalized

14 Chapter 2. Preliminaries

clique-transversal number is the minimum size of generalized clique-transversal

set, whereas the generalized clique-independence number is the maximum of
∑
Ci∈P

ri,

among the collections P of pairwise disjoint maximal cliques of G.

The last pair of parameters we shall present is the domination number and the

k-independence number. The concept of domination arises naturally in many

location problems in operation research and has been extensively studied. We

have already defined dominating sets, as well as k-independent sets in the

previous section. The domination number γ(G) is the minimum size of a domi-

nating set of G, and the k-independence number αk(G) is the maximum size of a

k-independent set of G. It is easy to see that the following inequality holds for

every graph G:

α2(G) 6 γ(G). (2.5)

There have been many results regarding domination and independence prob-

lems (see [62, 29]). Determining γ(G) is NP-complete in general graphs [51] and

determining α2(G) is NP-complete even for split graphs [27].

Besides the inequalities (2.3), (2.4) and (2.5), the six previously defined param-

eters are related by the following two inequalities that hold for every graph

G:

γ(G) 6 ρn(G) 6 τc(G) and α2(G) 6 αn(G) 6 αc(G). (2.6)

The first inequality follows form the fact that every neighborhood-covering set

is a dominating set. The second inequality is a consequence of the fact that

every clique-transversal set is a neighborhood-covering set, because every edge

and vertex belongs to at least one maximal clique and thus is covered by at

least one vertex of any clique-transversal. The third inequality follows from

the fact that every 2-independent set is a neighborhood-independent set. The

last inequality follows from the fact that replacing each edge or vertex of a

neighborhood-independent set by a maximal clique containing it must result in

a clique-independent set.

Nevertheless it is worth noting that all the preceding inequalities can be all strict.

2.2. Important Parameters 15

An example of a graph where all inequalities are strict can be seen in Figure 2.2.

111098

7

6
3

4

5

1

2

12 13 14

16

15
17

18

19

20

21

Figure 2.2: A chordal graph where the inequalities of (2.6) are strict. This figure appears in [28].

ForG the graph in Figure 2.2, the following are the values of the aforementioned

parameters, with D∗ and S∗ the corresponding optimum sets, this example is

taken from [28].

γ(G) = 7, D∗ ={3, 5, 8, 11, 14, 17, 19}

ρn(G) = 8, D∗ ={3, 5, 8, 10, 12, 14, 17, 19}

τc(G) = 9, D∗ ={3, 5, 7, 9, 11, 13, 16, 17, 19}

α2(G) = 7, S∗ ={1, 2, 8, 11, 14, 20, 21}

αn(G) = 8, S∗ ={(1, 3), (2, 5), (6, 7), (9, 10), (12, 13), (15, 16), (17, 20),

(19, 21)}

αc(G) = 9, S∗ ={(1, 3), (2, 5), (4, 6, 7), (8, 9), (10, 11), (13, 14), (15, 16, 18),

(17, 20), (19, 21)}.

We will, as well, define the vertex-cover number as the size of the minimum vertex

cover set of G. We shall denote the vertex cover number of G by β(G). The

problem of computing this parameter was proven to be NP-complete for general

graphs [67].

Finally, it is worth mentioning that a generalization of the neighborhood-

covering number and the neighborhood-independence number was defined

16 Chapter 2. Preliminaries

in [65]. A vertex z is said to k-neighborhood-cover an edge xy if dG(z, x) 6 k

and dG(z,y) 6 k, that is, z must k-dominate both points of the edge. A k-

neighborhood-covering set of a graph G is a set of vertices that k-neighborhood-

covers all edges of the graph. The k-neighborhood-covering number ρn(G,k) is the

minimum cardinality of a k-neighborhood-covering set1. An edge set I ⊆ E(G)

is a k-neighborhood-independent set if no pair of distinct edges are k-neighborhood-

covered by a same vertex of V(G). The k-neighborhood-independence number

αn(G,k) of a graphG is the maximum cardinality of a k-neighborhood-independent

set. Clearly for any graph G and any positive integer k, the following inequality

must hold:

αn(G,k) 6 ρn(G,k)

.

2.3 Some Special Graph Classes

In this section we shall present some important graph classes that will be used

later on. Some of these definitions have already been given in Chapter 1. In

Figure 2.3 we can see the relationships between most of the graph classes

considered in this section.

2.3.1 Perfect Graphs

In the 1960’s, Berge defined the class of perfect graphs by means of a min-max

type equality [4]. We have shown in inequality (2.1), that for any graph G, the

chromatic number is always at least the size of the maximum complete subgraph.

Berge defined χ-perfect graphs as those graphs G for which χ(G ′) = ω(G ′) for

all induced subgraphs G ′ of G. He defined as well α-perfect graphs as those

where inequality (2.2) holds with equality for all induced subgraphs; that is,

α(G ′) = θ(G ′) holds for all induced subgraphsG ′. Clearly a graph is χ-perfect if

1Note that this definition can be easily extended to include isolated vertices and hence leads to a
generalization of the neighborhood-independence and neighborhood-covering parameters used in
this thesis.

2.3. Some Special Graph Classes 17

H
C

H
perfect

neighborhood-perfect

cli
que-perfect

balanced

Figure 2.3: Containment relations among neighborhood-perfect, hereditary-clique-helly, clique-
perfect, balanced and perfect graphs and their intersections. The shaded region corresponds to an
empty set.

and only if its complement is α-perfect. In his work Berge posed two conjectures

regarding the structures of these classes and their relationships.

The weaker of these conjectures is known now as the Perfect Graph Theorem,

and it states that the class of perfect graphs is closed under complementation

(or equivalently that the class of χ-perfect and α-perfect graphs coincide). This

conjecture was proven in 1972 by Lovasz [74]. Since then the term perfect graphs

is used to refer indistinctly to α- and χ-perfection.

The stronger conjecture due to Berge was later known as the Strong Perfect

18 Chapter 2. Preliminaries

Graph Theorem, and it states that a graph is perfect if and only if it contains no

odd hole and no odd antihole. This fact was proved in 2005 by Chudnovsky et

al. [32]. In addition, an O(n9)-time algorithm was devised in [31] that decides

whether or not a given graph G having n vertices has an odd hole or an odd

antihole.

Perfect graphs have already been characterized by means of the integrality of

their fractional set packing polytopes. That is, Chvatal had proven in 1975 that

a graph is perfect if and only if its clique-matrix is perfect [33]. The fractional

set polytope of a {0, 1}-matrix A is P(A) = {x ∈ Rn : Ax 6 1, 0 6 x 6 1}, and A is

perfect when P(A) is integral (i.e., all its extreme points have integer coordinates).

2.3.2 Neighborhood-Perfect Graphs

The class of neighborhood-perfect graphs was defined by Lehel and Tuza en 1986

[70] by means of a min-max type equality very similar to that used in the defi-

nition of perfect graphs (hence its name). A graph G is neighborhood-perfect

when the inequality (2.3) turns into an equality for all induced subgraphs. That

is when αn(G
′) = ρn(G

′) for all induced subgraphs G ′ of G.

It was seen by Lehel and Tuza that odd holes and odd antiholes are not

neighborhood-perfect, and hence the Strong Perfect Graph Theorem implies

that all neighborhood-perfect graphs are also perfect.

The computational complexity of the problem of recognizing neighborhood-

perfect graphs is still unknown in general, but many partial results on this

direction have been given. These and other algorithmic properties of this class

are studied in Chapter 4. In Chapter 3, we give a summary of previous results

on structural characterizations of the class and prove new characterizations of

neighborhood-perfect graphs restricted to several other graph classes.

2.3.3 Clique-Perfect Graphs

Graphs for which the inequality (2.4) holds with equality for all induced sub-

graphs were defined by Guruswami and Pandu Rangan to be clique-perfect

2.3. Some Special Graph Classes 19

[56]. This is, a graph G is clique-perfect if αc(G
′) = τc(G

′), for all induced

subgraph G ′ of G. It is important to mention that clique-perfect graphs are not

all perfect (although they were conjectured to be when they were defined) since,

for example, the antiholes that have a number of vertices multiple of 3 are all

clique-perfect (Reed, 2001, see [43]). There are as well perfect graphs that are

not clique-perfect; a simple example of such a graph is 0-pyramid, which is

perfect but is not clique-perfect because τc(P) = 2 but αc(P) = 1. Although

neighborhood-perfect graphs and clique-perfect graphs are very much related

[56, 69] there are graphs that are neighborhood-perfect and not clique-perfect

and vice versa. For example the 3-pyramid is clearly not neighborhood-perfect

[69], but it is clique-perfect. An example of a graph that is neighborhood-perfect

but not clique-perfect can be found in Figure 2.3.

Unlike the class of perfect graphs, the complete characterization of clique-perfect

graphs by forbidden induced subgraphs is not known. The algorithmic com-

plexity of determining whether or not a graph is clique-perfect, for general

graphs, is not known either. Nevertheless partial results in both of these direc-

tions have been obtained. In [12, 13, 17, 20, 21], forbidden induced subgraph

characterizations of clique-perfectness restricted to two subclasses of claw-

free graphs, Helly circular-arc graphs, diamond-free graphs, two superclasses

of triangle-free graphs, P4-tidy graphs and complements of line graphs were

proved, leading to polynomial-time (or even linear-time) recognition algorithms

for clique-perfectness within the same graph classes.

2.3.4 Helly Property and Hereditary Clique-Helly Graphs

A family F of sets has the Helly property if every nonempty subfamily of F of

pairwise intersecting members has nonempty intersection. A graph is called

clique-Helly if the family of all its cliques has the Helly property. Clique-Helly

graphs have been considered in many papers [59, 45, 87, 9, 73], among others. A

hereditary clique-Helly graph is a graph such that each of its induced subgraphs is

clique-Helly. Prisner characterized hereditary clique-Helly graphs both by for-

20 Chapter 2. Preliminaries

bidden submatrices of their clique-matrices and by minimal forbidden induced

subgraphs [86]. He proves that a graph is hereditary clique-Helly if and only

if it contains no induced 0-, 1-, 2-, or 3-pyramid (see Figure 2.1). In the same

work he gave a O(n2m)-time recognition algorithm for the class. Moreover

he proved that every clique of a hereditary clique-Helly graphs has an edge

that does not belong to any other edge; we shall call this edge a proper edge.

Clearly this implies that if G is hereditary clique-Helly, and m is the number

of edges of G, the number of maximal cliques cannot be greater than m plus

the number of isolated vertices. Thus, by means of an algorithm devised in

[96] that enumerates the cliques of a graph one after another in O(nm) time

per clique, he concluded that in O(m2n) time one can decide whether or not

a graph is hereditary clique-Helly and if affirmative, output a clique-matrix

of it. Prisner proved as well that if a graph G has the property that for every

induced subgraph G ′ of G, all cliques of G ′ have a proper edge, then Gmust be

hereditary clique-Helly. This together with the observation that all cliques of a

hereditary clique-Helly graph have a proper edge, gives a characterization of

the class.

It was proved in [69] that if a graph G is such that all its cliques have proper

edges, then αn(G) = αc(G) and ρn(G) = τc(G). This evidently implies that

in the class of hereditary clique-Helly graphs, the class of clique-perfect and

neighborhood-perfect graphs must coincide. Nevertheless there are graphs that

are hereditary clique-Helly and are not clique-perfect or neighborhood-perfect

[13] (see Figure 2.3). Moreover, clearly every odd cycle is hereditary clique-Helly,

but not perfect.

We shall denote the class of hereditary clique-Helly graphs by HCH from now

on.

2.3.5 Balanced Graphs

In 1969, Berge defined a {0, 1}-matrix to be balanced if it contains no edge-vertex

incidence matrix of any cycle of odd length as a submatrix. Balanced graphs

2.3. Some Special Graph Classes 21

were defined as those graphs whose clique-matrix is balanced. These graphs

were considered by Berge and Las Vergnas in 1970 [8] but the name ‘balanced

graphs’ appears explicitly for the fist time in [7]. It was proven in [8] that

balanced graphs are a subclass of perfect graphs. From this same work, it

follows that balanced graphs are as well a subclass of clique-perfect graphs.

Moreover, from [5] it follows that balanced graphs are hereditary clique-Helly

graphs. Thus by the observations made in Section 2.3.4, balanced graphs are also

neighborhood-perfect, for they are clique-perfect and hereditary clique-Helly.

Balanced graphs were characterized by a family of forbidden induced sub-

graphs known as extended odd suns [16]. Nevertheless this characterization is

not by minimal forbidden induced subgraphs, because some extended odd suns

contain other extended odd suns as induced subgraphs. In fact the problem

of characterizing balanced graphs by minimal forbidden induced subgraphs

is still open. Partial results in this direction can be found in [18, 19, 20], where

minimal forbidden induced subgraph characterization of balanced graphs re-

stricted to co-bipartite graphs, line graphs and their complements, some classes

of circular-arc graphs, paw-free graphs and P4-tidy graphs are given. The best

time complexity of a recognition algorithm for the whole class of balanced

graphs is O(m9 + n), which is achieved by computing a clique-matrix using the

algorithm in [96] and then relying on the algorithm in [105] to decide whether

or not such clique-matrix is balanced (details of the derivation can be found

in [18]). In fact, it was shown in [88] that there is a strong tie between the

time complexities of the problem of recognizing balanced graphs and that of

recognizing balanced matrices; namely, any recognition algorithm for balanced

graphs having time complexity O(np) with p < 9 would improve on the time

complexity for the recognition of balanced {0, 1}-matrices given in [105], which

is the best currently known. Linear-time recognition algorithms of balancedness

were found for graphs that are P4-tidy or paw-free [20] as well as for co-bipartite

graphs and for line graphs and their complements [18].

22 Chapter 2. Preliminaries

2.3.6 Circular-arc Graphs and Helly Circular-arc Graphs

Given a finite family F of sets, the intersection graph of F is a graph having as

vertices the sets of F and where two vertices are adjacent if and only if their

corresponding sets intersect. A circular-arc graph is a the intersection graph of a

set of arcs on a circle. Such a set of arcs is called a circular-arc model of the graph.

This class of graphs was first studied by Tucker [97, 99, 100, 101]. Graphs of this

class can be recognized in linear time [78].

A Helly circular-arc graph is a circular-arc graph that admits a circular-arc model

having the Helly property [52]. In [72, 66] a linear-time recognition algorithm

for Helly circular-arc graphs is given, as well as a characterization by forbidden

induced subgraphs (called obstacles) of Helly circular-arc graphs within the

class of circular-arc graphs. In [13], a characterization by minimal forbidden

induced subgraphs and a polynomial-time recognition algorithm are given for

clique-perfect graphs within the class of Helly-circular arc graphs.

From now on we shall denote the class of Helly circular-arc graphs as HCA.

2.3.7 Modular Decomposition of a Graph and Superclasses of

Cographs

Let G be a graph. We shall say that a vertex v of G distinguishes between two

vertices x and y of G if it is adjacent to one of them and nonadjacent to the other.

A setM of vertices shall be called a module of G if there is no vertex of V(G) \M

that distinguishes any pair of vertices ofM, or equivalently every vertex of G

not in M is either adjacent to all vertices of M or to none of them. The empty

set, the singletons {v} for each v ∈ V(G) and V(G) are the trivial modules of G. A

graph is said to be prime if it has more than two vertices and it has only trivial

modules (for example, P4 is a prime graph.) A nonempty module is strong if,

for every other moduleM ′ of G, eitherM ′ ⊆M,M ⊆M ′ orM ∩M ′ = ∅. The

modular decomposition tree T(G) of a graph G is a rooted tree having one node for

each strong module of G and such that a node h representing a strong module

2.3. Some Special Graph Classes 23

M has as its children the nodes representing the maximal strong modules of

G properly contained inM. Clearly the root of the tree represents the module

V(G), and its leaves are the singletons {v}, for each v ∈ V(G).

For each node h of T(G), we note the module represented by h asM(h). Note

that by construction if we take every leaf of the tree and we associate it with

the only vertex of its module, the set of verticesM(h) corresponds to the set of

leaves that have h as an ancestor in T(G).

For each node h of T(G), we denote the induced subgraph G[M(h)] by G[h] and

call it the graph represented by h. Each node of T(G), that is not a leaf, is a parallel,

series or neighborhood node, abbreviated P-node, S-node and N-node, respectively.

If G[h] is disconnected, then h is a P-node; if G[h] is disconnected, then h is a

S-node; and, if both G[h] and G[h] are connected, then h is a N-node. Thus, if

h is an internal node of T(G) and h1, . . . ,hk are the children of h in T(G), then

one of the following conditions holds:

• If G[h] is disconnected, then h is a P-node and G[h1], . . . ,G[hk] are the

components of G[h].

• If G[h] is disconnected, then h is an S-node and G[h1], . . . ,G[hk] are the

anticomponents of G[h].

• IfG[h] andG[h] are both connected, then h is an N-node andM(h1, . . . ,M(hk)

are the maximal strong modules of G[h] properly contained inM(h).

In all of these cases, it holds that {M(h1), . . . ,M(hk)} is a disjoint partition of the

vertices inM(h) [50, 24]. An example of a modular decomposition tree together

with the graph it represents, can be seen in Figure 2.4.

Let h be a node of T(G) and let h1, . . . ,hk be its children. We shall denote as

π(h) the graph having vertex set {h1, . . . ,hk} and such that hi is adjacent to hj

if and only if there is some edge in G joining a vertex ofM(hi) and a vertex of

M(hj). SinceM(hi) andM(hj) are both modules of G[h], then clearly there is

an edge between them if and only if every vertex ofM(hi) is adjacent to every

24 Chapter 2. Preliminaries

S

P

S

1 2

S

3 4

P

5 N

6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 2.4: A graph with its modular decomposition tree

vertex of M(hj). Hence G[h] coincides with the graph that arises from π(h)

by successively substituting hi by G[hi], for each hi. It is easy to see that, if

h is an N-node, then π(h) is a prime graph. We shall denote by π(G) the set

{π(h) : h is an N-node of T(G)}. The following result shows that every induced

prime subgraph of a graph G is also an induced subgraph of a graph in π(G)

Theorem 2.1 ([46]). Let Z be a prime graph. A graph G is Z-free if and only if each

graph of π(G) is Z-free.

In the rest of this work we shall denote |V(G[h])| by n(h), for every h ∈ V(T(G)).

If h is an N-node, then we shall note |V(π(h))| by nπ(h). A fact that will be used

in later chapters is that since T(G) has n leaves and each internal node has at

least two children, T(G) must have less than 2n nodes. An important property

that will be used extensively in Chapter 4 is that the sum of nπ(h), for all the

N-nodes h of T(G), is at most 2n [2]

In this thesis we shall assume that each N-node h of the modular decomposition

tree T(G) is accompanied by a description of the prime graph π(h) by means of

an adjacency list. There are linear-time algorithms to compute the rooted tree

T(G) [40, 79, 41, 94]; moreover in [2] it is shown that the adjacency lists of each

π(h), for every N-node h, can be added also in linear time. For a survey on the

algorithmic aspects of modular decompositions, see [58].

2.3. Some Special Graph Classes 25

A cograph is a P4-free graph. In [91], Seinsche proved a property of cographs

that imply that they are perfect, namely that for any cograph G either G or G

is disconnected. This property clearly implies that a modular decomposition

tree T(G) of a cograph may only contain S-nodes and P-nodes. If G is a cograph,

T(G) is called a cotree. Using the fact that cotrees have no N-nodes, linear-time

recognition algorithms and simple polynomial and linear-time algorithms to

solve classical graph theory problems where given for cographs [35, 36, 37].

The classes of P4-tidy graphs and tree-cographs are superclasses of cographs, and

have well understood modular decomposition trees.

P4-tidy

The class of P4-tidy graphs extends many other generalizations of cographs, that

arise by limiting the number of induced P4’s that occur in a graph. For example,

it contains as a subclass the class of P4-sparse graphs, which consists of those

graphs G such that every set of five vertices induces at most one P4 in G [64].

A graph G is P4-tidy if for each 4-vertex set A that induces a P4 in G, there is at

most one vertex v such that G[A ∪ {v}] is a graph with two induced P4’s. There

is a structure theorem for P4-tidy graphs that extends Seinsche’s theorem in

cographs. To state this theorem, we shall first define two families of graphs

called starfishes and urchins.

A starfish is a graph whose vertex set can be partitioned in three disjoint sets, S,

C and R, where each of the following conditions holds:

• S = {s1, . . . , st} is a stable set and C = {c1, . . . , ct} is a clique, for t > 2.

• R is allowed to be empty. If it is not, then all vertices of R are adjacent to

all vertices of C and nonadjacent to all vertices of S.

• si is adjacent to cj if and only if i = j.

An urchin is a graph whose set can be partitioned intro three sets S, C and R

satisfying the first two conditions stated above, but instead of satisfying the

third one, it must satisfy that:

26 Chapter 2. Preliminaries

• si is adjacent to cj if and only if i 6= j.

It is clear that an urchin is the complement of a starfish and vice versa. Given

G, a starfish or an urchin, and a partition (S,C,R), we shall call S the ends of G,

C the body of G and R the head of G. A fat urchin (resp. fat starfish) arises from

an urchin (resp. starfish), with partition (S,C,R), by substituting exactly one

vertex of S ∪ C by a K2 or a 2K1. In other words, by adding a true or false twin

to a vertex of S ∪ C.

Now that we have defined starfishes and urchins, we can state the structural

theorem of P4-tidy graph that we shall use in Chapters 3 and 4.

Theorem 2.2 ([53]). If G is a P4-tidy graph, then exactly one of the following state-

ments holds:

1. G or G is disconnected.

2. G is isomorphic to C5, P5, P5, a starfish, a fat starfish, an urchin, or a fat urchin.

The above theorem implies that if we take a P4-tidy graph G and an N-node h

of T(G), then π(h) is isomorphic to C5, P5, P5, a prime starfish or a prime urchin.

And clearly if π(h) is isomorphic to a C5, P5 or P5, then h has five children, each

representing a vertex ofG. If on the other hand π(h) is a prime starfish or urchin,

then each of the children of h in T(G) is a leaf, with the possible exception of

one child, hR, that represents the head of the urchin or starfish, and the other

possible exception of a child representing a 2K1 or K2 (if π(h) is a fat starfish or

fat urchin). It was shown in [53] that it can be decided in O(nπ(h)) time whether

or not π(h) is a starfish (or an urchin) and if so, find its partition.

The theorem stated above leads to linear-time recognition algorithms for the

class of P4-tidy graphs, as well as polynomial-time algorithms for many well

known optimization problems in the same graph class [53].

Tree-cographs

The class of tree-cographs is another generalization of the class of cographs. But,

instead of limiting the number of P4’s, this class introduces N-nodes to the

2.4. Complexity Theory and Approximation Algorithms 27

modular decomposition tree, such that the corresponding module induces a

tree or complement of a tree in the graph.

Tree-cographs were defined in [95] recursively as follows:

• Every tree is a tree-cograph.

• If G is a tree-cograph, then G is a tree-cograph.

• The disjoint union of tree-cographs is a tree-cograph.

This definition is completely analogous to the recursive definition of cographs

(see [35]), but instead of using single vertices as the building blocks, the building

blocks for tree-cographs are all the trees. It is easy to see that if G is a tree-

cograph, then if h is an N-node of T(G), π(h) must be a tree or the complement

of a tree. Suppose we have a tree-cograph G, such that T(G) has an N-node h.

As clearly the class of tree-cographs is hereditary, G[h] must be a tree-cograph.

But as h is not an S-node or a P-node, G[h] must be a necessarily a co-connected

tree or a connected co-tree and hence the prime graph π(h) is a tree or a co-tree.

Recent research related to tree-cographs includes [14, 15, 22, 77, 82].

2.4 Complexity Theory and Approximation Algorithms

In this subsection we shall give some basic notions of complexity theory and

approximation algorithms that we shall need in Chapter 4.

One of the most important factors used to classify different computational

problems is the amount of resources required to solve them. These resources are

generally measured in the amount of operations needed to compute the answer

(time complexity) and the amount of space needed to perform these operations

(space complexity). The primary concern of computational complexity theory

is to determine these classifications. In particular, the most basic task is to

determine which problems can be efficiently solved and which cannot.

We shall say that an algorithm runs in polynomial time if there is a polynomial P

such that for each input I, the number of operations that the algorithm performs

28 Chapter 2. Preliminaries

with this input is less than or equal to P(|I|), where |I| is the size of the input

I. A problem can be solved in polynomial time if there is an algorithm that

solves it and runs in polynomial time. A problem can be efficiently solved if

it can be solved in polynomial time. The complexity class P is the class of all

computational problems that can be solved in polynomial time.

While many problems are known to be in P, many others are neither known to

be in P, nor proven to be outside P. Many of such problems are known to be

in the class NP. The class of NP problems is the class of all problems whose

solutions can be verified in polynomial time. Several other equivalent definitions

exist, the one which motivates the name of the class states that a problem is NP

if there is a non-deterministic Turing machine that solves it in polynomial time.

Hence it is a Non-deterministic Polynomial problem. Clearly all problems in P

are in NP as well. One of the most fundamental open questions in complexity

theory is whether or not P = NP.

While the P vs. NP problem is still open, one may still classify computational

problems as those that are in P and those that are NP-hard. NP-hard problems

are, in a sense, those problems that are at least as hard to solve as any NP

problem. A problem Π is said to be NP-hard if every problem in NP can be

efficiently reduced to Π, where an efficient reduction usually means a polynomial-

time reduction [67, 34, 71]. Given two decision problem (with “yes”/“no”

outputs) Π1 and Π2, a polynomial-time reduction2 from Π1 to Π2 is a function F

that transforms inputs of Π1 into inputs of Π2, such that F can be computed in

polynomial time and satisfies that Π1(I1) is affirmative if and only if Π2(F(I1)) is

affirmative, where I1 is any input of Π1. Hence, it is easy to see that if we can

solveΠ2 in polynomial time and there is a polynomial-time reduction fromΠ1 to

Π2, that immediately implies that we can also solveΠ1 in polynomial time. Thus,

the existence of a polynomial-time algorithm to solve any NP-hard problem

would imply that P = NP. And consequently if it is proved that P 6= NP, then

no efficient algorithm would exist to solve NP-hard problems. This means that

unless one intends to prove NP = P, one should refrain from trying to come up
2Also called Karp-reduction. See [34] for the related notion of Cook-reductions.

2.4. Complexity Theory and Approximation Algorithms 29

with an efficient algorithm to solve exactly an NP-hard problem. A subclass of

NP-hard problems are the NP-complete problems, which are those problems in

NP that are as well NP-hard.

Many important optimization problems, in which one looks for an optimum among

all plausible solutions, are known to be NP-hard (in the sense that their asso-

ciated decision problem is NP-hard). For example determining most of the

parameters presented in Section 2.2 is NP-hard for general graphs. A proof

that a optimization problem is NP-hard usually serves as an indicator that

one should relax the specifications of the problem if one wishes to find ‘good’

solutions. This idea leads to consider approximate solutions instead of exact ones,

that is solutions that are not optimal but that are within a small factor C > 1

from optimal. An approximation algorithm is said to be a C-approximation algo-

rithm if the solution that the algorithm finds is at most C times worse than the

optimal solution. In this case, C is called the approximation ratio. A large amount

of research has been dedicated to finding efficient (close to 1) approximation

algorithms for a variety of optimization problems.

The approximation complexity of a problem is the closest to 1 factor Copt for which

there can exist polynomial-time Copt-approximation algorithms. Classifying

approximation problems by their approximation complexity has been widely

investigated. Some NP-hard problems admit a polynomial-time approximation

scheme (PTAS), which means that they can be approximated, in polynomial

time, to wtihin any constant close to 1 (but not 1). The class of problems that

admit a C-approximation algorithm is called APX. This class was identified by

Papadimitriou and Yannakakis [85].

The approximation complexity of several approximation problems is still open,

namely for these problems the known upper and lower bounds for Copt do not

match. Clearly upper bounds for Copt are given by finding polynomial-time

approximation algorithms for the problem. On the other hand proving lower

bounds is usually a much more difficult task. Numerous combinatorial opti-

mization problems were shown NP-hard to approximate to within a factor even

30 Chapter 2. Preliminaries

marginally lower than the best known efficient algorithm [76, 3, 60, 61]. In partic-

ular, the problem of Minimum Vertex Cover is perhaps the one that underscores

the limitations of known technique for proving hardness of approximation (see

[42]). Håstad proved in his celebrated paper [61] an inapproximability result

for Minimum Vertex Cover with constant 7
6 , and this result was later improved

to an inapproximability result with constant 1.3606 . . . by Dinur and Safra [42].

The approximation algorithm having the best approximation complexity for this

problem is a 2-approximation algorithm discovered independently by Gavril

and Yannakakis [84, 51]. This means that the Copt for this problem is in between

2 and 1.3606 . . . , although it is conjectured to be 2.

For more information on complexity theory we refer the reader to the classic

books of Papadimitriou and Steiglitz [84], and Garey and Johnson [51]. For

more information on approximation algorithms, we refer to the book by Vazi-

rani [103], that covers the basic techniques used in modern research on these

subjects.

Chapter 3

Partial Characterizations of

Neighborhood-Perfect Graphs

In this chapter we shall explore characterizations of neighborhood-perfect

graphs by forbidden induced subgraphs, restricted to certain classes of graphs.

In Section 3.1 we shall show results on this subject that have already been given.

In Section 3.2 we shall characterize minimaly non-neighborhood-perfect graphs

with disconnected complement, that is graphs that are not neighborhood-perfect

but are the join of two non-null neighborhood-perfect graphs. We shall also

state properties of αn(G) and ρn(G) when G is the join of two graphs; these

properties shall be used throughout the rest of the thesis. In Sections 3.3 and 3.4

we shall characterize neighborhood-perfect graphs restricted to the classes of

P4-tidy and tree-cographs. Finally in Section 3.5 we prove that the classes of

neighborhood-perfect and clique-perfect graphs coincide when restricted to

the class of hereditary clique-Helly graphs. Using this fact, we characterize

neighborhood-perfect graphs restricted to subclasses of hereditary clique-Helly

graphs and related classes.

31

32 Chapter 3. Partial Characterizations

3.1 Known Characterizations

In this section we shall present known partial characterizations of neighborhood-

perfect graphs, so as to give a broader view of what has been done on this topic.

As was already stated in Chapter 1, in 1986 Lehel and Tuza defined neighborhood-

perfect graphs and in the same article gave a characterization for neighborhood-

perfect graphs restricted to the class of chordal graphs. Moreover they point out

a characterization restricted to triangle-free graphs.

Theorem 3.1 ([70]). Let G be a chordal graph, then it is neighborhood-perfect if and

only if it has no induced odd suns.

Corollary 3.2 ([70]). All interval graphs are neighborhood-perfect.

Theorem 3.3 ([70]). If G is a triangle-free graph, then it is neighborhood-perfect if and

only if it is bipartite.

Lehel and Tuza also define trivially neighborhood-perfect graphs as those graphs

satisfying that the neighborhood number is exactly 1 for all induced subgraphs.

Theorem 3.4 ([70]). The class of trivially neighborhood-perfect graphs is equivalent to

class of trivially perfect graphs.

In [57] the authors define the class of minimally non-neighborhood-perfect

graphs and characterize those that have αn = 1. They also give a characteri-

zation of neighborhood-perfect graphs restricted to the class of cographs and

prove that all line graphs of bipartite graphs are neighborhood-perfect.

A minimally non-neighborhood-perfect graph is a graph G satisfying that αn(G) <

ρn(G) and αn(G
′) = ρn(G

′) for all proper induced subgraph G ′.

Theorem 3.5 ([57]). IfG is minimally non-neighborhood-perfect and αn(G) = 1, then

G is a 0-pyramid or 3-pyramid.

Theorem 3.6 ([57]). A cograph is neighborhood-perfect if and only if it does not contain

a 3-pyramid as induced subgraph.

3.1. Min. non Neighborhood-Perfect with Disc. Complement 33

Theorem 3.7 ([57]). The line graph of any bipartite multigraph is neighborhood-

perfect.

An extension of Theorem 3.7 characterizing exactly all graphs with neighborhood-

perfect line graph was given in [69].

0-pyramid G3 3-pyramid

Figure 3.1: Minimal forbidden induced subraphs for neighborhood-perfect line graphs.

Theorem 3.8 ([69]). Let G be the line graph of some graph. Then G is neighborhood-

perfect if and only if it contains no odd hole and none of the graphs in Figure 3.1 as an

induced subgraph.

To prove this characterization the author first proves that the line graph of any

balanced hypergraph is neighborhood-perfect; it is in the middle of this proof

that he implicitly states Theorem 3.27.

3.2 Minimally Non-Neighborhood-Perfect Graphs

with Disconnected Complement

In the following sections we shall give new results on characterizations of

neighborhood-perfect graphs restricted to graph classes that have been charac-

terized by their modular decomposition tree. In that respect we shall first state

some results on the neighborhood number and independence neighborhood

number of the join of two non-null graphs. And furthermore, we character-

ize those graphs that are not neighborhood-perfect but are the join of two

neighborhood-perfect graphs.

34 Chapter 3. Partial Characterizations

Theorem 3.9. If G and H are graphs, then

ρn(G∨H) = min{γ(H) + 1,γ(G) + 1, ρn(H), ρn(G)}. (3.1)

Proof. It is immediate to see that

ρn(G∨H) 6 min{γ(H) + 1,γ(G) + 1, ρn(H), ρn(G)},

for we can easily find neighborhood sets of G∨H with all four amounts consid-

ered. Simply take a minimum dominating set of either G or H and any vertex in

the other graph or, instead, take a minimum neighborhood set in G or H.

Let us then prove that indeed the inequality above cannot hold strictly.

By contradiction let us say that we have a neighborhood set of S of G∨H, with

size strictly less than min{γ(H)+1,γ(G)+1, ρn(H), ρn(G)}. Hence, as S has fewer

vertices than ρn(G) and ρn(H), it must have at least one vertex in each G and

H. For if not, there would be uncovered edges in the subgraphs corresponding

to G or H in the join. Thus if we take SG = S ∩ V(G) and SH = S ∩ V(H), then

|SH| 6 |S|− 1 and |SG| 6 |S|− 1. But as we are assuming that |S|− 1 < γ(G) and

|S|− 1 < γ(H), we have that neither SG nor SH can be dominating sets of G and

H respectively. This means that there must be at least some v ∈ V(G) and some

w ∈ V(H) such that v /∈ NG[SG] and w /∈ NH[SH]. And then if we take the edge

(v,w) in G ∨ H, it cannot be covered by S, for there is no vertex in SH or SG

adjacent to both vertices and S = SG ∪ SH. Thus, S is not a neighborhood set of

the join, reaching the contradiction that proves the theorem.

The following fact is easy to prove but still useful.

Lemma 3.10. If G1, . . . ,Gk are graphs and k > 2, then

γ(G1 ∨ · · ·Gk) = min{2,γ(G1), . . . ,γ(Gk)}.

Proof. Let G = G1 ∨ · · · · · ·Gk. Clearly, γ(G) 6 min{2,γ(G1), . . . ,γ(Gk)} since

3.2. Min. non Neighborhood-Perfect with Disc. Complement 35

any dominating set of any of the graphs G1, . . . ,Gk as well as any set {v1, v2}

where v1 ∈ V(G1) and v2 ∈ V(G2) are dominating sets of G1 ∨ · · ·Gk. Hence,

if the formula were false, then γ(G) < min{2,γ(G1), . . . ,γ(Gk)}, which means

that γ(G) = 1 and γ(G1), . . . ,γ(Gk) are greater than 1 all of them. Therefore,

G has a universal vertex but none of G1, . . . ,Gk has a universal vertex, which

contradiction the fact that G = G1 ∨ · · ·∨Gk.

We now give a formula of the neighborhood number for the join of more than

two graphs.

Corollary 3.11. If G1,G2, . . . ,Gk are graphs and k > 2, then

ρn(G1 ∨ · · ·∨Gk) = min{3,γ(G1) + 1, · · · ,γ(Gk) + 1, ρn(G1), · · · , ρn(Gk)}.

Proof. The formula is valid when k = 3 because Theorem 3.9 and Lemma 3.10

imply

ρn(G1 ∨G2 ∨G3) = min{γ(G1 ∨G2) + 1,γ(G3) + 1, ρn(G1 ∨G2), ρn(G3)}

= min{min{2,γ(G1),γ(G2)}+ 1,γ(G3) + 1,

min{γ(G1) + 1,γ(G2) + 1, ρn(G1), ρn(G2)}, ρn(G3)}

= min{3,γ(G1) + 1,γ(G2) + 1,γ(G3) + 1, ρn(G1), ρn(G2)}, ρn(G3)}

Moreover, if the formula is valid when k = t for some t > 3, then it is also valid

when k = t+ 1 since Theorem 3.9 and Lemma 3.10 imply

ρn(G1 ∨ · · ·∨Gt+1) = min{γ(G1 ∨ · · ·∨Gt) + 1,γ(Gt+1) + 1,

ρn(G1 ∨ · · ·∨Gt), ρn(Gt+1)}

= min{min{2,γ(G1), · · · ,γ(Gt)}+ 1,γ(Gt+1) + 1,

min{3,γ(G1) + 1, · · · ,γ(Gt), ρn(G1), · · · , ρn(Gt)},

ρn(Gt+1)}

= min{3,γ(G1) + 1, · · · ,γ(Gt+1) + 1, ρn(G1), . . . , ρn(Gt+1)}.

36 Chapter 3. Partial Characterizations

By induction, the formula is valid for every k > 3.

Theorem 3.12. If G and H are graphs, then

αn(G∨H) = min{α2(G),α2(H)}. (3.2)

Proof. Let us first note that if a neighborhood-independent set of G∨H has size

larger than 1, then it must have no edges belonging to E(G) or E(H). For in

the join all edges between vertices of G are in the closed neighborhood of any

vertex of H and likewise between the edges of H and the vertices of G. Similarly

it cannot have any vertices, for every vertex in G is in the closed neighborhood

of every vertex of H.

Now, let us prove that αn(G∨H) > min{α2(G),α2(H)}, by finding a neighbor-

hood-independent set of G∨H of that size. Without loss of generality, suppose

α2(G) 6 α2(H). Let IG be an 2-independent set of G and IH be one of H, both

of size α2(G). Clearly as both IH and IG are independent sets in H and G, then

they are also independent sets in G ∨ H and so IH ∪ IG induces a complete

bipartite subgraph of G∨H. LetM be a perfect matching between IG and IH in

G∨H. Clearly |M| = |IG| = |IH| = α2(G). We will proceed to show thatM is a

neighborhood-independent set.

Suppose to the contrary that there are two edges inM, e1 and e2, such that there

exists a vertex u of V(G∨H) satisfying e1, e2 ⊆ N[u]. Let us write e1 = v1w1 and

e2 = v2w2, with v1, v2 ∈ IG and w1,w2 ∈ IH. As u is a vertex of the join then u

must belong to V(G) or V(H). If u ∈ V(G), then v1uv2 is a path of length 2 from

v1 to v2, in G. If u ∈ V(H), then w1uw2 is a path of length 2 in H that connects

w1 andw2. In both cases we reach a contradiction, because both IG and IH were

2-independent sets. Therefore,Mmust be a neighborhood-independent set of

size α2(G) and the inequality αn(G∨H) > min{α2(G),α2(H)} must hold.

Now, if αn(G ∨ H) = 1, then by the previous inequality we have the equality

we were looking for. Let us then suppose that αn(G ∨ H) > 1, which by the

first observation of this proof implies that any neighborhood-independent set

3.2. Min. non Neighborhood-Perfect with Disc. Complement 37

of the join must be a matching between vertices of G and H. Let M be any

neighborhood-independent set of size αn(G∨H). We define YH and YG as the

sets of vertices ofH and G respectively such that YH = {w ∈ V(H) : ∃e ∈M,w ∈

e} and YG = {v ∈ V(G) : ∃e ∈M, v ∈ e}. Clearly |YH| = |YG|, for every edge inM

has one vertex in G and one in H. We shall see now that both are 2-independent

sets.

Suppose again by contradiction that there are two vertices in YG, v1 and v2, such

that dG(v1, v2) 6 2. This implies that there must exist a vertex u ∈ V(G) such

that v1, v2 ∈ NG[u] which clearly also means that v1, v2 ∈ NG∨H[u]. If we now

take w1 and w2 in YH such that viwi ∈M for each i ∈ {1, 2}, then clearly v1w1

and v2w2 cannot be neighborhood-independent edges, because if u ∈ V(G),

then bothw1,w2 ∈ NG∨H[u]. This contradicts the fact thatM is a neighborhood-

independent set. The contradiction proves that YG must be a 2-independent

set of G. By the same reasoning YH must be a 2-independent set of H. Hence

as |YG| 6 α2(G) and |YH| 6 α2(H), then |M| = |YH| = |YG| 6 min{α2(G),α2(H)}

and therefore αn(G∨H) 6 min{α2(G),α2(H)}, proving the reverse inequality

and the theorem.

We state the following immediate consequence for future reference.

Corollary 3.13. If G1, . . . ,Gk are graphs and k > 3, then

αn(G1 ∨ · · ·∨Gk) = 1.

Proof. Since every two vertices of G1 ∨ · · ·∨Gk−1 are at distance at most two,

α2(G1 ∨ · · ·Gk−1) = 1. Hence, Theorem 3.12 implies that αn(G1 ∨ · · ·∨Gk) =

min{α2(G1 ∨ · · ·∨Gk−1),α2(Gk)} = 1.

As we have already stated, minimally non-neighborhood-perfect graphs were

defined in [57]. Here we shall characterize the minimum non-neighborhood-

perfect graphs that have a disconnected complement (that is, that they are

formed by the join of two non-null graphs).

38 Chapter 3. Partial Characterizations

For that purpose we shall first define a subclass of neighborhood-perfect graphs,

the strongly neighborhood-perfect graphs.

Definition 3.14. We shall say that a graph G, is strongly neighborhood-perfect if

α2(G
′) = ρn(G

′) for every induced subgraph G ′ of G.

Definition 3.15. We shall say that a graphG, is minimally non-strongly neighbor-

hood-perfect when α2(G) < ρn(G), but α2(G
′) = ρn(G

′) for every proper induced

subgraph G ′, of G. That is, it is not strongly neighborhood-perfect, but all its proper

induced subgraphs are.

Observation 3.16. Clearly all strongly neighborhood-perfect graphs are neighbor-

hood-perfect. It follows from the string of inequalities: α2(G) 6 γ(G) 6

αn(G) 6 ρn(G), that holds for every graph G, and the equality demanded

by the definition of strongly neighborhood-perfect graphs. Moreover it is also

true that if G is neighborhood-perfect, then it is strongly neighborhood-perfect

if and only if α2(G
′) = αn(G

′) for every induced subgraph G ′.

We shall see which graphs satisfy that α2(G
′) = αn(G

′) for every induced

subgraph G ′. But before giving this characterization we shall prove a useful

general property of chordal Pk-free graphs.

Lemma 3.17. Any k-walkW in a Pk-free chordal graph must have at least two vertices

that are 2 steps from each other inW and either are adjacent or the same vertex.

Proof. Let G be a Pk-free chordal graph and W be a k-walk in G. Since G is

Pk-free, then W cannot be an induced path. This means that there must exist an

integer p such that p > 2 and there are at least two vertices of W which are p

steps from each other and are either adjacent in G or the same vertex in G. We

choose p as small as possible. If we show that p = 2, then the assertion of the

lemma follows.

Let us suppose by contradiction that p is greater that 2. But if we take the two

vertices inW that are p steps from each other and consider the sub-walk ofW

3.2. Min. non Neighborhood-Perfect with Disc. Complement 39

joining them (of length p). As the minimality of p implies that the vertices that

are at fewer than p steps from each other in W are different and nonadjacent,

this sub-walk must induce Cp or Cp+1 in G, depending on whether the two

vertices are the same or adjacent. But as the graph was chordal and p was

greater than 2, this results in a contradiction, proving the lemma.

Lemma 3.18. A graph G satisfies α2(G
′) = αn(G

′) for every induced subgraph G ′ if

and only if G is P6-free chordal.

Proof. If G is a graph, let S ⊆ V(G) ∪ E(G) be a neighborhood-independent set

of size αn(G) and of minimum number of edges. We shall show that S must

contain only vertices and therefore be a 2-stable set of G, proving the lemma

(for α2(G) 6 αn(G) is clearly true for all graphs).

Assume to the contrary that there is an edge e = xy ∈ S. As e cannot be replaced

by x in S, maintaining the neighborhood-independence (for S had minimum

number of edges), then there must exist an s ∈ S (an edge or vertex), such that

N[x] ∩N[s] 6= ∅. But as e, s ∈ S, then N[x] ∩N[y] ∩N[s] = ∅, which means that

there is a vertex x ′ ∈ N[x] ∩N[s] such that x ′ /∈ N[y]. Moreover x ∈ N[x] ∩N[y],

which implies that x /∈ N[s], meaning that there must be a vertex x ′′, such that

x ′′ /∈ N[x] and either x ′′ ∈ s if s is an edge or x ′′ = s if s is a vertex. But as x ′′ ∈ s

(or x ′′ = s), and x ′ ∈ N[s], then x ′′ ∈ N[x ′] and x ′′ /∈ N[x]. By a symmetry

argument, there must be vertices y ′ and y ′′, such that y ′ ∈ N[y] − N[x] and

y ′′ ∈ N[y ′]−N[y]. But then x ′′ x ′ x y y ′ y ′′ form a 6-walk where no two vertices

that are two steps from each other are adjacent or the same. This together with

Lemma 3.17, results in a contradiction, proving that no edge can belong to S

and therefore Smust be a 2-independent set of size αn(G).

Using the previous characterization, we shall state the following corollary, fully

characterizing strongly neighborhood-perfect graphs by forbidden induced

subgraphs.

Corollary 3.19. If G is a graph, the following statements are equivalent:

40 Chapter 3. Partial Characterizations

1. G is strongly neighborhood-perfect

2. G is neighborhood-perfect ∩ {C4,C6,P6}-free

3. G is odd-sun-free ∩ P6-free chordal

Proof. Clearly, by Observation 3.16, G is strongly neighborhood-perfect if and

only if G is neighborhood-perfect and α2(G
′) = αn(G

′) for every induced sub-

graph G ′, which, by Lemma 3.18, holds if and only if G is neighborhood-perfect

and P6-free chordal. But, as all odd holes are forbidden induced subgraphs of

neighborhood-perfect graphs [70], then G is neighborhood-perfect and P6-free

chordal if and only if it is neighborhood-perfect and {C4,C6,P6}-free, proving

(1) if and only if (2). Moreover, by [70] a chordal graph is neighborhood-perfect

if and only if it is odd-sun-free, clearly implying (2) if and only if (3).

We shall now prove the main result of this section, a characterization of min-

imally non-neighborhood-perfect graphs with disconnected complement (ie.,

formed by the join of two non-null subgraphs).

Theorem 3.20. The only minimally non-neighborhood-perfect graphs with discon-

nected complement are C4 ∨ 2K1, C6 ∨ 3K1 and P6 ∨ 3K1.

Proof. Clearly a graph with disconnected complement can be thought of as

the join of two non-null graphs. Let us consider we have a minimally non-

neighborhood-perfect graph G∨H. By minimality G and Hmust be neighbor-

hood-perfect, but asG∨H is minimally non-neighborhood-perfect, ρn(G∨H) 6=

αn(G∨H) which, by Theorem 3.9 and Theorem 3.12, implies that G or Hmust

satisfy α2 6= ρn (because α2(W) < γ(W) + 1 is true for all graphsW).

We shall note that if a graph is neighborhood-perfect but does not satisfyα2 = ρn,

then it is neighborhood-perfect but not strongly neighborhood-perfect, which,

by (1) if and only if (2) in Corollary 3.19, means that the graph must contain a

C4, C6 or P6 as induced subgraph.

Let us then suppose that both G and H do not satisfy αn = ρn. This means

that both must contain a C4, C6 or P6 as induced subgraph. If one of them

3.3. P4-tidy and P4-sparse Graphs 41

contains an induced C4, then G ∨ H must have C4 ∨ 2K1 = 3K2 as a proper

induced subgraph, contradicting the minimality of G∨H. On the other hand

if none contain an induced C4, then they must contain an induced C6 or P6,

meaning that both must have at least an independent set of size 3. Hence G∨H

must contain a P6 ∨ 3K1 or C6 ∨ 3K1 as a proper induced subgraph, but by

Theorem 3.9 and Theorem 3.12, both have ρn = 3 6= 2 = αn, meaning that they

are not neighborhood-perfect. In both cases we have found a contradiction,

therefore it cannot occur that both G and H do not satisfy αn = ρn.

We need only to consider the case where one of the graphs does not satisfy

α2 = ρn. Let us say that G has an induced subgraph G ′, isomorphic to C4, C6

or P6. Now, if only G does not satisfy α2(G) = ρn(G), then α2(G) < ρn(G) and

α2(H) = ρn(H). Hence α2(G) < α2(H) 6 α(H), because if not G∨Hwould be

neighborhood-perfect. Thus we can take H ′ = (α2(G
′) + 1)K1 as an induced

subgraph of H, for α2(G
′) 6 α2(G) < α(H). Then once again G ′ ∨H ′ must be a

3K2, C6 ∨ 3K1 or P6 ∨ 3K1. But now as G ′∨H ′ is an induced subgraph of G∨H,

by minimality G∨H = G ′ ∨H ′, proving the theorem.

3.3 P4-tidy and P4-sparse Graphs

In this section we shall characterize the neighborhood-perfect graphs, restricted

to the class of P4-tidy graphs and as a corollary we shall deduce the characteri-

zation restricted to the class of P4-sparse graphs. For this we will strongly rely

on the characterization of minimally non-neighborhood-perfect graphs with

disconnected complement shown in the previous section.

Let us then begin by stating the values of αn(G) and ρn(G) for a connected and

co-connected P4-tidy graph.

Theorem 3.21. If G is a nontrivial connected and co-connected P4-tidy graph, then

one of the following statements holds:

1. G is isomorphic to C5, ρn(G) = 3 and αn(G) = 2.

2. G is isomorphic to P5 or P5 and αn(G) = ρn(G) = 2.

42 Chapter 3. Partial Characterizations

3. G is a starfish with t ends or a fat starfish arising from one, and

αn(G) = ρn(G) = t.

4. G is an urchin or a fat urchin with at least 3 ends, and

ρn(G) = 2, αn(G) = 1.

Proof. Since G is P4-tidy, connected and co-connected, it follows by Theorem 2.2

that G is isomorphic to C5, P5, P5, a starfish, a fat starfish, an urchin or a fat

urchin. The values of ρn and αn for C5, P5 and P5 can be easily checked by

simple inspection.

We shall then consider first the case where G is a starfish with partition (S,C,R),

such that |S| = t, or a fat starfish arising from the substitution of a vertex c of C

by a K2, or by the substitution of a vertex s from S by a K2 or 2K1. In all cases

there is a neighborhood set of size t formed by taking t vertices from C. If G

is a starfish without substitution of a vertex of C then we take all C, if on the

other hand it is a starfish where a vertex c of C has been substituted by a K2 or

2K1, we take only one of the vertices by which c has been substituted. If G is

a fat starfish arising by substituting a vertex c of C by a 2K1, then C− {c} ∪ {s},

where s was the only neighbor of c in S, is a neighborhood set of size t of G.

Thus ρn(G) 6 t. Now in all previous cases, if we take t edges that connect S to

C, we get a neighborhood-independent set of size t. In the cases where a vertex

has been substituted by a K2 or 2K1, we choose only one of the two edges from

S to C involved and all the other edges from S to C. In the case of a starfish

that is not fat, we take all edges from S to C. Thus we have found in all cases

a neighborhood-independent set of size t, implying that αn(G) > t. And as

αn(G) 6 ρn(G), we have that αn(G) = ρn(G) = t.

Let us now note that an urchin (or fat urchin) of less than 3 ends is also a starfish

(or fat starfish). Therefore if we assume without loss of generality that G is not a

starfish, the only possibility remaining is that G is an urchin with at leas 3 ends.

If G is an urchin or fat urchin with partition (S,C,R), and |S| = t > 3, we shall

see that αn(G) = 1 and ρn(G) = 2. As there is no universal vertex in G, then

3.3. P4-tidy and P4-sparse Graphs 43

ρn(G) > 2. Moreover, if we take two vertices of C, taking care of not taking any

vertex from the substituting K2 or 2K1 in case G is a fat urchin, we clearly obtain

a neighborhood set. Hence clearly ρn(G) = 2. Now let us see that indeed we

cannot have a neighborhood-independent set of size 2. This becomes clear if

we observe that in all cases, if G is an urchin or a fat urchin, all vertices and

edges are in at least the neighborhood of t− 1 vertices of C. That is, except for

the vertices in S (or, eventually, of the K2 or 2K1 substituting a vertex of S), all

the rest of the vertices are adjacent to all vertices in C, and these are adjacent

to t − 1 vertices of C. Moreover all edges between vertices of R ∪ C are in the

neighborhood of t vertices of C, and all edges between vertices of S and C are

in the neighborhood of t − 1 vertices of C. Thus, if we take any two edges or

vertices of G, as t > 3, then there must at least be one vertex of C that includes

them both in its neighborhood. Therefore, αn(G) = 1.

Theorem 3.22. If G is a P4-tidy graph, then it is neighborhood-perfect if and only if it

is {3-pyramid, 0-pyramid,C5}-free.

Proof. If G is neighborhood-perfect, then it cannot contain as induced subgraph

a 3-pyramid, 0-pyramid or C5 because none of these graphs are neighborhood-

perfect and the class of neighborhood-perfect graphs is hereditary. We must

then only prove that ifG does not contain those graphs then it must be neighbor-

hood-perfect.

Suppose that G is a P4-tidy graph which is not neighborhood-perfect. Then

it must contain a minimally non-neighborhood-perfect graph as induced sub-

graph; let H be such subgraph. The minimality of H implies that it must be

connected. If H is disconnected, then H is a minimally non-neighborhood-

perfect graph with disconnected complement, which by Theorem 3.20 means

that it must be C4 ∨ 2K1 = 3-pyramid , C6 ∨ 3K1 or P6 ∨ 3K1. But as the class of

P4-tidy graphs is hereditary, Hmust be P4-tidy, which implies that it cannot be

C6 ∨ 3K1 or P6 ∨ 3K1. This is because both graphs contain four vertices with

at least two companion vertices, namely any consecutive four vertices of the

44 Chapter 3. Partial Characterizations

C6 or the center vertices of the P6, and therefore are not P4-tidy. Hence if H is

disconnected, then H can only be 3-pyramid.

Let us suppose now that both H and H are connected. As H is minimally non-

neighborhood-perfect, then αn(H) must be different from ρn(H). Which means,

by Theorem 3.21, that H must be a C5 or an urchin or fat urchin with at least

3 ends. Lastly, if H is an urchin or fat urchin with at least 3 ends, then it must

have αn(H) = 1 and ρn(H) = 2. But by Theorem 3.5, the only minimally non-

neighborhood-perfect graphs with αn(H) = 1 are the 3-pyramid and 0-pyramid

and the only one of these that is an urchin is the 0-pyramid.Therefore, as H is

connected and co-connected, it must be a C5 or a 0-pyramid.

We conclude that H must be isomorphic to 3-pyramid, C5 or 0-pyramid and

since, by construction, H is an induced subgraph of G, this proves the theorem.

Corollary 3.23. Let G be a P4-sparse graph, then it is neighborhood-perfect if and only

if it is {3-pyramid, 0-pyramid}-free.

Proof. As the class of P4-sparse graphs is subclass of the class of P4-tidy graphs,

this characterization is a direct consequence of Theorem 3.22 and the fact that the

only forbidden induced subgraph of the class of neighborhood-perfect graphs

restricted to P4-tidy graphs that is not P4-sparse is C5.

3.4 Tree-cographs

In this section we shall develop a characterization by forbidden induced sub-

graphs of those tree-cographs that are neighborhood-perfect. Tree-cographs

were defined in Chapter 2. We shall work with the modular decomposition

of a tree-cograph and strongly rely on the characterization of minimally non-

neighborhood-perfect graphs with disconnected complement, given in Theo-

rem 3.20.

3.4. Tree-cographs 45

Theorem 3.24. If G is a connected and co-connected tree-cograph, then one of the

following statements holds:

1. G is a tree and ρn(G) = αn(G) = ν(G) = τ(G),

2. G is a connected co-tree and ρn(G) = 2.

Proof. By the definition of tree-cographs, if G is connected and co-connected,

then Gmust be a tree with connected complement or a connected co-tree.

If G is a tree then it is bipartite. It was already noted in [70, 89] that for any

bipartite graph G, αn(G) = ν(G) and ρn(G) = τ(G), which by the König-

Egerváry theorem implies that αn(G) = ν(G) = τ(G) = ρn(G).

If G is a connected co-tree, then G has at least one leaf; that leaf and its only

neighbor in G clearly form a neighborhood set of G of size 2. Moreover as G has

connected complement, there cannot be a neighborhood set of size 1, for this

would imply the existence of a universal vertex in G and an isolated vertex in G.

Hence ρn(G) = 2, proving the theorem.

Corollary 3.25. There are no connected and co-connected tree-cographs that are mini-

mally non-neighborhood-perfect.

Proof. If a graph G is connected and co-connected, then, by Theorem 3.24, G

is a tree or a co-tree. Moreover a tree cannot be non-neighborhood-perfect.

If G is a co-tree, then ρn(G) = 2, which means that if G is minimally non-

neighborhood-perfect, then αn(G) must be 1. But by Theorem 3.5, the only

minimally non-neighborhood-perfect graphs with αn(G) = 1 are the 0-pyramid

and the 3-pyramid, none of which are co-trees. Hence if G is a minimally

non-neighborhood-perfect graph, G cannot be a connected and co-connected

tree-cograph.

Theorem 3.26. If G is a tree-cograph, then G is neighborhood-perfect if and only if G

is {3-pyramid,P6 ∨ 3K1}-free.

46 Chapter 3. Partial Characterizations

Proof. It is clear that if G is neighborhood-perfect, it cannot have 3-pyramid or

P6 ∨ 3K1 as induced subgraphs, for they are both minimally non-neighborhood-

perfect graphs. We shall now prove that if it does not have those graphs as

subgraphs, then it is neighborhood-perfect.

Suppose that G is not neighborhood-perfect. Hence Gmust contain an induced

subgraph H that is minimally non-neighborhood-perfect. Clearly by minimality,

H cannot be disconnected. If H has disconnected complement, then it is a

minimally non-neighborhood-perfect graph with disconnected complement,

and by Theorem 3.20, it must be C4∨2K1 = 3-pyramid, C6∨3K1 or P6∨3K1. But

C6 ∨ 3K1 is not a tree-cograph, because it is clearly neither a tree, nor a co-tree,

nor the disjoint union of two tree-cographs nor the join of two tree-cographs.

Thus if H has disconnected complement, it must be 3-pyramid or P6 ∨ 3K1.

On the other hand if H has a connected complement, then it will be a connected

and co-connected tree-cograph. However by Corollary 3.25, if H is minimally

non-neighborhood-perfect, then it cannot be a connected and co-connected

tree-cograph. Hence H can only be 3-pyramid or P6 ∨ 3K1, and as H was by

construction an induced subgraph of G, this proves the theorem.

3.5 Subclasses of Hereditary Clique-Helly Graphs

and Related Graph Classes: Relation with Clique-

Perfectness

As was already stated in Chapter 1 it was shown in [69] that in the class of

hereditary clique-Helly graphs, the parameters involved in the definitions

of clique-perfectness coincide with those in the definition of neighborhood-

perfectness. This clearly means that if a graph is hereditary clique-Helly, then it

is clique-perfect if and only if it is neighborhood-perfect. This fact together with

partial characterizations of clique-perfect graphs allows us to obtain several

partial characterizations of neighborhood-perfect graphs.

3.5. Subclasses of HCH and Related Graph Classes 47

For the sake of clarity, we shall first explicitly write the proof of the equivalence

of both classes in the context of hereditary clique-Helly graphs.

Theorem 3.27 ([69]). If G is a hereditary clique-Helly graph, then αn(G
′) = αc(G

′)

and ρn(G
′) = τc(G

′) for every induced subgraph G ′ of G.

Proof. As proved by Prisner in [86], a graph is hereditary clique-Helly if and

only if it is hereditary maximal clique irreducible,which means that every induced

subgraph satisfies that every maximal clique has a proper edge, an edge that is

not contained in any other maximal clique. The class of hereditary clique-Helly

graphs is obviously hereditary, which means that it is sufficient to prove the

equalities for G.

If T = {v1, . . . , vs} is a clique transversal of G, then as every edge belongs to

at least one maximal clique, T must also be a neighborhood set, implying

τc(G) > ρn(G). Note that this last inequality holds for any graph G. Now let

N = {w1 . . .wk} be a neighborhood set of G. If e is a proper edge of a maximal

clique C, then there must be at least one vertex wi such that e ∈ N[wi], but then

wi ∈ C. As every maximal clique of G has at least one proper edge, then N

must be a clique transversal of G. Therefore τc(G) 6 ρn(G), and τc(G) = ρn(G)

follows.

Let S be a neighborhood-independent set, where S = {s1, . . . , st} and sj ∈ V(G)∪

E(G) for each j ∈ {1 . . . t}. Now for every sj we take Cj to be the maximal clique

in G that includes sj. Clearly, by definition of neighborhood-independence,

{C1, . . . ,Ct} is a clique-independent set. Thus αc(G) > αn(G). Note that this

inequality hods for every graph G. On the other hand let {C1, . . . ,Ct} is a set

of pairwise independent maximal cliques of G. If we take a proper edge or

each maximal clique, we will clearly obtain a neighborhood-independent set of

edges. Therefore αc(G) 6 αn(G), and αc(G) = αn(G) follows.

Now that we have written the proof, we shall proceed to use this result to prove

several partial characterizations of neighborhood-perfect graphs.

48 Chapter 3. Partial Characterizations

3.5.1 Helly Circular-arc Graphs

In this subsection we will provide a characterization by forbidden induced sub-

graphs of neighborhood-perfect graphs restricted to the class of Helly circular-

arc graphs. To do this we shall show the minimal forbidden subgraphs that

characterize clique-perfectness of graphs in HCH and see that these graphs are

also non-neighborhood-perfect.

viking2-vikingTkSkodd holesC70-pyramid

Figure 3.2: Minimal forbidden induced subraphs for the classes of clique-perfect and neighborhood-
perfect graphs restricted to the class of HCA graphs. Dotted lines represent any induced path of
odd lenght at least 1.

All of the following definitions and the theorem characterizing clique-perfectness

of HCA graphs can be found in [13].

A viking is a graphG such thatV(G) = {a1, . . . ,a2k+1,b1,b2}, k > 2, a1 . . .a2k+1a1

is an odd cycle with only one chord a2a4; b1 is adjacent to a2 and a3; b2 is adja-

cent to a3 and a4, and there are no other edges in G.

A 2-viking is a graph G such that V(G) = {a1, . . . ,a2k+1,b1,b2,b3}, k > 2,

a1 . . .a2k+1a1 is an odd cycle with only two chords a2a4 and a3a5; b1 is adjacent

to a2 and a3; b2 is adjacent to a3 and a4; b3 is adjacent to a4 and a5, and there

are no other edges in G.

Define the graph Sk, k > 2, as follows: V(Sk) = {a1, . . . ,a2k+1,b1,b2,b3},

a1 . . .a2k+1a1 is an odd cycle with only one chord a3a5; b1 is adjacent to a1

and a2; b2 is adjacent to a4 and a5; b3 is adjacent to a1, a2, a3 and a4, and there

are no other edges in Sk.

Define the graph Tk, k > 2, as follows: V(Sk) = {a1, . . . ,a2k+1,b1,b2,b3,b4,b5},

a1 . . .a2k+1a1 is an odd cycle with only two chords, a2a4 and a3a5; b1 is adjacent

to a1 and a2; b2 is adjacent to a1,a2 and a3; b3 is adjacent to a1,a2,a3,a4,b2 and

3.5. Subclasses of HCH and Related Graph Classes 49

b4; b4 is adjacent to a3,a4 and a5; b5 is adjacent to a4 and a5, and there are no

other edges in Tk.

Then the following theorem holds:

Theorem 3.28 ([13]). Let G be a HCA graph. Then G is clique-perfect if and only if

it does not contain a 0-pyramid, an antihole of length seven, an odd hole, a viking, a

2-viking or one of the graphs Sk or Tk.

Lemma 3.29 ([13]). If G is an HCA graph that has an HCA representation with no

two arcs covering the circle, then G is HCH.

Finally, we shall state the characterization of the class of HCH graphs by forbid-

den induced subgraphs, due to Prisner, that was mentioned in Section 2.3.4.

Theorem 3.30 ([86]). If G is a graph, G is hereditary clique-Helly if and only if it does

not contain as an induced subgraph 0-pyramid, 1-pyramid, 2-pyramid, or 3-pyramid.

Theorem 3.31. If G is a Helly circular-arc graph, then G is neighborhood-perfect if

and only if G is clique-perfect.

Proof. It suffices to prove the following equivalence for each HCA graph H: H

is minimally non-neighborhood-perfect if and only if H is minimally clique-

imperfect. By Theorem 3.27, the equivalence holds whenever H is HCH. Since,

by virtue of Theorem 3.28 and Theorem 3.30, the only non-HCH HCA mini-

mally clique-imperfect graph is the 0-pyramid, which is also minimally non-

neighborhood-perfect, it only remains to show that the only minimally non-

HCH HCA minimally non-neighborhood-perfect graph is the 0-pyramid.

Let H be a non-HCH HCA minimally non-neighborhood-perfect graph. By

Lemma 3.29 all HCA representations of H must have two arcs covering the

circle. This clearly implies that ρn(H) 6 2, because if we take in any HCA

representation any vertices that represent two arcs that cover the whole circle,

we have a neighborhood-covering set of size 2. This means that αn(H) 6 2. If

αn(H) = 2, then αn(H) = ρn(H) and the theorem holds. Let us suppose then that

50 Chapter 3. Partial Characterizations

αn(H) = 1. But by Theorem 3.5 the only minimally non-neighborhood-perfect

graphs with αn(H) = 1 are the 0-pyramid and 3-pyramid, and as was seen in

[72] the 3-pyramid is not HCA. Hence H is the 0-pyramid, which completes the

proof of the theorem.

3.5.2 Gem-Free Circular-arc Graphs

In this subsection we shall prove a characterization of neighborhood-perfect

graphs restricted to the class of gem-free circular-arc graphs. Circular-arc graphs

were defined in Chapter 2 and the gem graph can be seen in Figure 2.1. There

is a characterization of clique-perfect graphs restricted to the class of gem-free

circular-arc graphs, in [19].

Theorem 3.32 ([19]). If G is gem-free circular-arc, then G is clique-perfect if and only

if it has no odd holes.

Corollary 3.33. If G is a gem-free circular-arc graph, then G is neighborhood-perfect

if and only if G has neither odd holes nor 3-pyramid as induced subgraphs.

Proof. The “only if” part of the statement is clear because odd holes and the

3-pyramid are both non-neighborhood-perfect. For the converse, we assume G

is a circular-arc graph and has none of these as induced subgraphs, and prove

that it is neighborhood-perfect. Since G is gem-free and 3-pyramid-free, it must

be HCH, because the 0-pyramid, 1-pyramid and 2-pyramid all have an induced

gem. Thus, by Theorem 3.32 it is clique-perfect, but this means that it must also

be neighborhood-perfect, by Theorem 3.27.

3.5.3 Subclasses of HCH Graphs

We shall now give two characterizations of neighborhood-perfect graphs re-

stricted to two subclasses of HCH. Both are based in previously proven charac-

terizations in clique-perfect graphs and are therefore immediate consequences

of those characterizations and Theorem 3.27.

3.5. Subclasses of HCH and Related Graph Classes 51

Let G be a graph and C be a cycle of G not necessarily induced. An edge of C

is non-proper (or improper) if it forms a triangle with some vertex of C. If C has

no improper edges, we will say that C is a proper cycle. Let us then define an

r-generalized sun r > 3 as a graph Gwhose vertex set can be partitioned in two

sets: a cycle C of r vertices, with all its non-proper edges {ej}j∈J (where J can be

empty) and a stable set U = {uj}j∈J, such that for each j ∈ J, uj is only adjacent

to the endpoint of ej. An r-generalized sun is said to be odd if r is odd.

Diamond-Free Graphs

Theorem 3.34. [10, 13] If G is a diamond-free graph, then it is clique-perfect if and

only if no induced subgraph of G is an odd generalized sun or, equivalently, G has no

proper odd cycles.

Corollary 3.35. If G is a diamond-free graph, then it is neighborhood-perfect if and

only if no induced subgraph of G is an odd generalized sun or, equivalently, G has no

proper odd cycles.

Proof. The statement is a direct result of Theorem 3.34 and the fact that diamond-

free graphs are HCH by Theorem 3.30.

HCH Claw-Free Graphs

Theorem 3.36 ([12]). If G is a hereditary clique-Helly and claw-free graph, then it is

clique-perfect if and only if no induced subgraph of G is an odd hole or an antihole of

length 7.

Corollary 3.37. If G is hereditary clique-Helly and claw-free, then it is neighborhood-

perfect if and only if no induced subgraph of G is and odd hole or an antihole of length

7.

3.5.4 Some Relations with Balanced Graphs

Balanced graphs were described in Chapter 1 as graphs with balanced clique-

matrix. We state in this chapter some relations between the class of balanced

52 Chapter 3. Partial Characterizations

graphs and neighborhood-perfect graphs. We begin by a theorem already

mentioned in Chapter 1.

Theorem 3.38 ([8, 69]). All balanced graphs are neighborhood-perfect.

Proof. As was already stated in [20], it follows from Proposition 7 in [5] that

balanced graphs are HCH. Moreover, by [8] every balanced graphG has τc(G) =

αc(G), and as it is a hereditary class, this means it is clique-perfect. Therefore by

Theorem 3.27, Gmust be neighborhood-perfect.

We will now show two classes of graphs restricted to which neighborhood-

perfect graphs coincide with balanced graphs, namely chordal graphs and paw-

free graphs. The equivalence among statements 1, 3 and 4 for chordal graphs G

was implicitly proved in [70]. In addition, the equivalence of statements 2 and 3

was implicitly stated in [10], the proof given here is due to Bonomo [11].

Theorem 3.39 ([11, 10, 70]). If G is a chordal graph, then the following assertions are

equivalent:

1. G is neighborhood-perfect.

2. G is clique-perfect.

3. G is balanced.

4. G is odd-sun-free.

Proof. One of the main results of [70] is the equivalence between statements (1)

and (3) for every chordal graph G. Moreover, in [70], the authors prove that if

G is chordal, then it is a neighborhood-perfect graph, if and only if its clique-

tree (K,E) is a balanced hypergraph. Note that, following their terminology, a

clique-tree is defined as a hypergraph having as vertices the maximal cliques of

G and as hyperedges the set of cliques that share a common vertex of G. Clearly

if we take the incidence matrix of (K,E) and transpose it, we obtain the clique

matrix of G, which is balanced if and only if (K,E) is. Thus if G is chordal, then

it is neighborhood-perfect if and only if it is balanced. Hence, statements (1),

(3) and (4) are equivalent.

3.5. Subclasses of HCH and Related Graph Classes 53

The chain of inclusions balanced ⊆ clique-perfect ⊆ odd-sun-free, holds always,

because we have already seen that odd-suns are not clique-perfect, and that

balanced graphs are all clique-perfect. Hence, (3)⇒ (2)⇒ (4). Since statements

(3) and (4) are equivalent, this completes the proof of the theorem.

Theorem 3.40. If G is a paw-free graph, then the following assertions are equivalent:

1. G is neighborhood-perfect.

2. G is balanced.

3. G is perfect and HCH.

4. G has no odd holes and contains no induced 3-pyramid.

5. Each component of G is either bipartite or is the join of a complete bipartite graph

and a complete graph.

Proof. The equivalence of (2), (3), (4) and (5) was already proven in Theorem

3.3 of [20]. We shall then prove only the equivalence between (1) and (2). If G is

balanced, then it is clearly neighborhood-perfect (Theorem 3.38). Conversely, if

G is neighborhood-perfect then it cannot contain an odd hole nor an induced

3-pyramid, and, as a consequence of the equivalence of (4) and (2), Gmust be

balanced. We have then proved the equivalence between (1) and (2), which

completes the proof of the theorem.

54 Chapter 3. Partial Characterizations

Chapter 4

Algorithmic and Complexity

Results on

Neighborhood-Perfect Graphs

In this chapter we will work with three types of problems. The first one is the

problem of finding αn(G) and ρn(G) for a graph G. The next one is the problem

of finding sets of vertices and edges that form a minimum neighborhood set

and a maximum neighborhood-independent set. And finally we shall study

the problem of recognizing neighborhood-perfect graphs. All three of these

problems shall be examined in different graph classes. The first and second one

were already mentioned and studied for several graph classes.

We shall begin this chapter by mentioning in Section 4.1 previously studied

results on these problems. In Section 4.2 we shall present linear-time algorithms

for the recognition problem when the input graph is restricted to be a P4-tidy

graph or a tree-cograph, as well as several polynomial-time algorithms that

arise from characterizations seen in Chapter 3. In Section 4.3 we shall give two

linear-time algorithms for the second problem mentioned (and therefore for the

55

56 Chapter 4. Algorithmic and Complexity Results

first one as well), when the input graph is a P4-tidy or a tree-cograph. Finally in

Section 4.4 we shall prove that the problems of determining αn(G) and ρn(G)

are NP-complete even if G is the complement of a bipartite graph.

4.1 Known Results

The problem of finding αn(G) and ρn(G) has been studied for graphs G in the

classes of neighborhood-perfect chordal graphs and strongly chordal graphs, as

well as in the class of cographs.

Theorem 4.1 ([70]). There is a polynomial-time algorithm that, given any neighborhood-

perfect chordal graph G, determines αn(G) and ρn(G).

Theorem 4.2 ([27]). There is a linear-time algorithm that, given a strongly chordal

graph G with a strong elimination order, can compute αn(G) and ρn(G).

Theorem 4.3 ([57]). There is a linear-time algorithm that, given a cograph G, finds

αn(G) and ρn(G).

On the problem of determining the optimal sets, that is a minimum neighborhood

set and a maximum neighborhood-independent set, we have found explicit

results in interval graphs only. However the algorithm described in Theorem 4.3

can be easily modified to obtain said optimal sets in linear time for cographs.

Theorem 4.4 ([70]). There is a linear-time algorithm, that given an interval graph G,

determines a maximum neighborhood-independent set and a minimum neighborhood

set of G.

The time complexity of the problems of determining αn and ρn have been

studied in split graphs, planar graphs and line graphs.

Theorem 4.5 ([27]). The problems of determining αn(G) and ρn(G) with G a split

graph are NP-complete.

Theorem 4.6 ([56]). The problems of determining αn(G) and ρn(G) with G a planar

graph such that ∆(G) = 3 are NP-complete.

4.2. Recognition Algorithms 57

Theorem 4.7 ([56]). The problems of determining αn(G) and ρn(G) with G a line

graph such that ∆(G) = 3 are NP-complete.

Additionally a generalization of αn(G) and ρn(G) was defined in [65], of which

we have already spoken briefly in Section 2.2. In this paper results on αn(G,k)

and ρn(G,k) where given forG restricted to chordal graphs and strongly chordal

graphs.

Theorem 4.8 ([65]). The problems of determining αn(G,k) and ρn(G,k) for any fixed

k are NP-complete even if G is a chordal graph.

Theorem 4.9 ([65]). There is a linear-time algorithm, that given a strongly chordal

graph G, determines αn(G,k) and ρn(G,k) for any fixed k, provided that a strong

elimination order of G is given as input.

A refinement of this result was given in [23], where a linear-time algorithm to

find these parameters was presented if the input graph is restricted to the class

of doubly chordal graphs without 0-pyramid (a superclass of strongly chordal

graphs). Note that this algorithm does not require the strong elimination order

to be given as an input, and that the best known algorithms for finding such

orders have time complexity O(n2) [93] or O(m log(n)) [83].

Theorem 4.10 ([23]). There is a linear-time algorithm, that given a doubly chordal

graph G, that does not have a 0-pyramid as an induced subgraph, determines αn(G,k)

and ρn(G,k) for any fixed k.

4.2 Recognition Algorithms

In this section we address the problem of recognizing neighborhood-perfect

graphs and give several polynomial-time algorithms to solve it, restricted to

certain graph classes. Our main results shall be that recognition problem is

linear-time solvable when restricted to P4-tidy graphs and tree-cographs.

58 Chapter 4. Algorithmic and Complexity Results

4.2.1 P4-tidy Graphs

Let us first remember that, as was said in Section 2.3.7, it follows from Theo-

rem 2.2 that if h is an N-node of the modular decomposition tree of a P4-tidy

graph G, then π(h) must be isomorphic to C5, P5, P5, a prime starfish or a prime

urchin. Moreover in O(nπ(h)) time it can be decided whether or not π(h) is a

starfish (resp. urchin) and, if affirmative, its partition can be found within the

same time bound.

We shall present a linear-time algorithm that decides whether any given P4-

tidy graph is neighborhood-perfect or not. For this purpose, the algorithm

performs a simple traversal of the modular decomposition tree of the input

graph, which, we shall show, makes the algorithm terminate in O(n) time

provided the modular decomposition tree is given as an input. The algorithm

will strongly rely on the characterization by forbidden induced subgraphs

proven in Theorem 3.22.

In order to simplify the recognition algorithm, we shall first define a boolean

function C : V(T(G)) −→ {True, False}, where T(G) is the modular decompo-

sition tree of G, and, for each node h of T(G), C(h) = True if and only if G[h]

contains an induced C4. We shall prove that, given as input the modular de-

composition tree T(G) of any P4-tidy graph G, Algorithm 1 can be implemented

so as to compute C(h) for each node h of T(G) in O(n) overall time. Once we

have proved so, we shall use Algorithm 1 as a subroutine in Algorithm 2, which

recognizes those neighborhood-perfect graphs in the class of P4-tidy graphs.

4.2. Recognition Algorithms 59

Algorithm 1: Computes C(h) for every node of T(G), withG P4-tidy graph

Input: A P4-tidy graph G and its modular decomposition tree T(G)

Output: The modular decomposition tree T(G) with the value C(h)

attached to each node h of it, where C(h) = True if and only if

G[h] contains an induced C4

1 Step 1:

2 Traverse the nodes of T(G) in post-order, and in each node h do:

3 if h is a leaf then C(h) := False

4 else if (C(h ′) is True for any child h ′ of h) or

5 (h is a P-node having at least two nonleaf children) or

6 (π(h) is P5) or

7 (π(h) is a starfish or an urchin and any vertex of its body represents 2K1)

then

8 C(h) := True

9 else C(h) := False

10 Step 2:

11 Output C(h) for every node h of T(G)

60 Chapter 4. Algorithmic and Complexity Results

Algorithm 2: Recognition of neighborhood-perfectness of P4-tidy
Input: A P4-tidy graph G

Output: Determines whether or not G is a neighborhood-perfect graph

Initialization: Build the modular decomposition tree T(G) of G and compute

C(h) for every node h of T(G) using Algorithm 1

1 Step 1:

2 Traverse every node h of T(G) in any order and do:

3 if h is an N-node then

4 if π(h) is a C5 or an urchin with at least 3 ends then

5 output “G is not neighborhood-perfect” and stop

6 else if π(h) is a fat starfish such that a vertex of its body represents 2K1 and

C(hr) is True where hr is the only vertex of its head then

7 if C(hr) is True for hr the child representing the head of π(h) then output

“G is not neighborhood-perfect” and stop

8 else if h is an S-node then

9 if h has at least three nonleaf children then

10 output “G is not neighborhood-perfect” and stop

11 else if h has exactly two nonleaf children h1 and h2 and at least one of C(h1)

and C(h2) is True then

12 output “G is not neighborhood-perfect” and stop

13 Step 2:

14 output “G is neighborhood-perfect”

Below, we prove that these two algorithms are indeed correct and run in linear

time.

Theorem 4.11. Algorithm 1 correctly computes C(h) for every node h of any given

modular decomposition tree T(G) in O(n) time, whenever G is a P4-tidy graph.

Proof. Clearly the algorithm sets C(h) correctly for each leaf h of T(G). Let

h be any nonleaf node of T(G) and suppose, without loss of generality, that

the algorithm correctly sets C(h ′) for each of the nodes h ′ visited before h. It

4.2. Recognition Algorithms 61

is then easy to check that if the algorithm sets C(h) to True, G[h] contains an

induced C4. Conversely, suppose that G[h] contains an induced C4 and we

shall prove that the algorithm correctly sets C(h) to True. Thus, if any vertex

h ′ of π(h) represents a graph containing an induced C4, then C(h ′) is set to

True and consequently also C(h) is set to True. Hence, we assume without

loss of generality, that every vertex of π(h) represents a C4-free graph. Since

G[h] contains an induced C4, Theorem 2.1 implies that π(h) is P5, an edgeless

graph, a complete graph, a starfish or an urchin. If π(h) contains an induced

C4, necessarily π(h) is isomorphic to P5 and the algorithm correctly sets C(h)

to True. Thus, we assume without loss of generality, that π(h) is C4-free. In

particular,G[h] is not P5. If there is a nonsimplicial vertex h ′ of π(h) representing

a non-complete graph, then G[h] is a starfish or an urchin and h ′ is a vertex of

the body representing a non-complete graph; if so, Theorem 2.2 implies that h ′

represents 2K1 and the algorithm correctly sets C(h) to True. Hence, we assume

without loss of generality, that every nonsimplicial vertex of π(h) represents

a complete graph. We conclude that each induced C4 of G[h] arises from two

adjacent simplicial vertices h1 and h2 of π(h), each of which represents a non-

complete graph. Necessarily, h is a P-node and h1 and h2 are nonleaves. Also in

this case the algorithm correctly sets C(h) to True. This completes the proof of

the correctness of the algorithm.

As for the complexity of the algorithm, it is clear that each node is seen only

once, and that every node is traversed after all of its children. Hence, as T(G)

has at most 2n nodes, the algorithm can easily be implemented to check for

every node h if C(h ′) is True for some child h ′ or if h is a P-node with at least

two nonleaf children, all in O(n) time. Moreover, π(h) is P5, an urchin or starfish

only if h is an N-node. In O(nπ(h)) time it can be checked if any N-node of a

P4-tidy graph is P5, C5, P5 or an urchin or starfish and in these cases find their

partitions. Thus, it can be verified for all nodes h if π(h) is P5 or if it is a starfish

or urchin with a vertex of its body representing a 2K1, in O(
∑

h N-node nπ(h))

time. As was already stated in Chapter 2, the sum of nπ(h) for all N-nodes is at

62 Chapter 4. Algorithmic and Complexity Results

most 2n. Therefore the whole algorithm can be implemented in O(n) time.

Theorem 4.12. Algorithm 2 correctly determines if a P4-tidy graph G is neighborhood-

perfect, in linear time. Moreover, it works in O(n) time if the modular decomposition

tree of G is given as part of the input.

Proof. In order to prove that Algorithm 2 correctly decides neighborhood-

perfectness of any given P4-tidy graph, we shall prove that it outputs that the

graph is neighborhood-perfect if and only if it is {C5, 0-pyramid, 3-pyramid}-free.

This together with Theorem 3.22 will imply the correctness of the algorithm.

Suppose that Algorithm 2 outputs that G is not neighborhood-perfect. Hence

the algorithm stopped in Step 1. If it stopped in line 5, then clearly G contains

an induced C5 or 0-pyramid. stopped in line 7 or line 10, then h is an S-node

and consequently each of its nonleaf children represents a non-complete graph.

On the one hand, if the algorithm stopped in line 7, then any set consisting of a

pair of nonadjacent vertices of each of the three nonleaf children of h induces

2K1 ∨ 2K1 ∨ 2K1 = 3-pyramid in G. On the other hand, if the algorithm stopped

in line 10, then the vertices of an induced C4 of the graph represented by h1

or h2 together with a pair of nonadjacent vertices of the graph represented by

the other one induce C4 ∨ 2K1 = 3-pyramid in G as well. We conclude that if

the algorithm outputs that G is not neighborhood-perfect, then G contains an

induced C5, 0-pyramid or 3-pyramid.

Let us now prove that, conversely, if G contains any of the three forbidden

induced subgraphs, then the algorithm outputs that G is not neighborhood-

perfect.

Suppose first that G contains an induced C5 or an induced 0-pyramid. By

Theorem 2.1, there is some N-node h of T(G) such that π(h) contains an induced

C5 or 0-pyramid. By Theorem 2.2, π(h) is C5 or an urchin with at least three

ends and the algorithms outputs that G is not neighborhood-perfect in Line 5.

Finally, let us consider the case when G contains an induced 3-pyramid. Let h

be a node of T(G) such that G[h] contains an induced 3-pyramid but none of

4.2. Recognition Algorithms 63

the graphs represented by its children does. Clearly h cannot be a P-node, so it

must be an N-node or S-node. If h is an N-node and G[h] contains an induced

3-pyramid, then π(h) must be an urchin or a starfish. However, if π(h) were

an urchin, it would contain a 0-pyramid. Hence, without loss of generality, let

us suppose that it is not an urchin. Suppose π(h) is a starfish with partition

(S,C,R) with the nodes of S and C being leafs of T(G) and R consisting on a

single node hr. By hypothesis, clearly the 3-pyramid cannot be entirely in hr,

C, or S. Since every vertex of a graph represented by a node in S has degree at

most 2 in G[h], no vertices of graphs represented by nodes in S can be vertices

of any induced 3-pyramid of G[h]. Now, as each vertex of a graph represented

by a vertex of C are adjacent to every vertex of the graph represented by hr, and

3-pyramid has no universal vertex, then each induced 3-pyramid must have at

least two nonadjacent vertices belonging to graphs represented by a vertex of C.

But this is only possible if G[h] is a fat urchin where some node of C represents

2K1. If this is the case, then an induced 3-pyramid can only be formed if there

is an induced C4 in the graph represented by hr. To conclude if h is an S-node,

since 3-pyramid = C4 ∨ 2K1 = 2K1 ∨ 2K1 ∨ 2K1, the only two possibilities for

G[h] to have an induced 3-pyramid while none of its children have it, are that

there are more than three children representing non-complete graphs or two

children, one containing a C4 and the other one representing a non-complete

graph. In all cases the algorithm outputs that G is not neighborhood-perfect,

which completes the proof of the correctness of the algorithm.

The time complexity of the algorithm can easily be seen to be O(n +m) and

O(n) if the decomposition tree is given. It was already mentioned in Chapter 2

that the modular decomposition tree of P4-tidy graphs can be found in linear

time and within the same time bound a partition of the N-nodes that correspond

to urchins or starfish can be given. It was already proven in Theorem 4.11 that

Algorithm 1 runs in O(n) time. In Step 1 we traverse every node h of T(G), and

all the operations corresponding to each node h can be carried out in O(nπ(h))

time once that C(h) has been determined. Hence, as the sum of nπ(h) over all

64 Chapter 4. Algorithmic and Complexity Results

nodes h is at most 2n, the algorithm runs in O(n +m) time and even in O(n)

time if the modular decomposition tree T(G) is already given in the input.

4.2.2 Tree-cographs

In this subsection we shall present an algorithm, similar to the one proposed

in Section 4.2.1, to decide neighborhood-perfectness of tree-cographs in linear

time.

As was already pointed out in Chapter 2, the N-nodes of the modular decompo-

sitions of tree-cographs represent only trees and complement of trees. Moreover

neighborhood-perfect tree-cographs were characterized in Theorem 3.26 as tree-

cographs having no 3-pyramid or P6 ∨ 3K1 as induced subgraphs. We shall

use this characterization and the modular decomposition of tree-cographs to

achieve a linear-time recognition algorithm.

We shall first define two functions defined on the nodes h of the modular

decomposition tree T(G) of a graph G. Let P : V(T(G)) −→ {True, False}, such

that P(h) = True if and only if G[h] has an induced P6. And let α : V(T(G)) −→

N, such that α(h) = α(G[h]).

Algorithm 3 computes both P(h) and α(h) for all nodes in a modular decom-

position tree T(G) of a tree-cograph. It computes as well C(h) as was defined

in Section 4.2.1, all in O(n) time, given the modular decomposition tree. It uses

the fact that computing α(T) can be done in O(|V(T)| time), for any tree T [90].

4.2. Recognition Algorithms 65

Algorithm 3: Computes α(h), P(h) and C(h) for every node h of T(G),

with G a tree-cograph
Input: A P4-tidy graph G and its modular decomposition tree T(G)

Output: C(h), P(h) and α(h) for every node h of T(G)

1 Step 1:

2 Traverse the nodes of T(G) in post-order, and in each node h do:

3 if h is a leaf then C(h) := P(h) := False and α(H) := 1

4 else if h is a P-node with children h1, . . . ,hk then

5 C(h) :=
∨k
i=1 C(hi), P(h) :=

∨k
i=1 P(hi), α(h) :=

∑k
i=1 α(hi)

6 else if h is a S-node with children h1, . . . ,hk then

7 α(h) := max{α(hi) : 1 6 i 6 k}, P(h) :=
∨k
i=1 P(hi),

8 if h has at least two nonleaf children then C(h) := True

9 else C(h) :=
∨k
i=1 C(hi)

10 else if π(h) is a tree with children h1, . . . ,hk then

11 compute α(G[h]) in linear time and assign it to α(h) C(h) := False

12 if the longest path in π(h) is of length at least 6 then P(h) := True

13 else P(h) := False

14 else if π(h) is a co-tree with children h1, . . . ,hk then

15 α(h) := 2, P(h) := False

16 if π(h) has an induced matching of size at least 2 then

17 C(h) := True

18 else C(h) := False

19 Step 2:

20 Output C(h), P(h) and α(h) for every node h of T(G)

Algorithm 4 is a linear-time algorithm, that uses Algorithm 3, to determine

whether any given tree-cograph is neighborhood-perfect.

66 Chapter 4. Algorithmic and Complexity Results

Algorithm 4: Recognition of neighborhood-perfectness of tree-cograph
Input: A tree-cograph G

Output: Determines whether G is a neighborhood-perfect graph

Initialization: Build the modular decomposition tree T(G) of G and compute

C(h), P(h), and α(h) for every node h of T(G) using Algorithm 3

1 Step 1:

2 Traverse every node h of T(G) in any order and do:

3 if h is an S-node then

4 if h has at least three nonleaf children then

5 output “G is not neighborhood-perfect” and stop

6 else if h has exactly two nonleaf childen h1 and h2 then

7 if C(h1) or C(h2) is True then

8 output “G is not neighborhood-perfect” and stop

9 else if P(h1) is True and α(h2) > 3 or vice versa then

10 output “G is not neighborhood-perfect” and stop

11 if h is an N-node, with π(h) a co-tree then

12 if G[h] contains an induced matching of size at least 3 then

13 output “G is not neighborhood-perfect” and stop

14 Step 2:

15 output “G is neighborhood-perfect”

We shall proceed to prove that both Algorithm 3 and Algorithm 4 are both cor-

rect and run in the previously stated time bounds.

Theorem 4.13. Algorithm 3 correctly computes C(h), P(h) and α(h) for every node

h of a given modular decomposition tree T(G) in O(n +m) time, whenever G is a

tree-cograph.

Proof. The nodes of T(G) are traversed in post-order, meaning that when the

algorithm computes the functions C, P, and α for h, all the children of h have

already been processed. It is clear that if h is a leaf, the functions are correctly

computed. Let us prove then that for each node h that is not a leaf, the functions

4.2. Recognition Algorithms 67

are correctly computed, assuming they were correctly computed for the children

of h.

If h is a P-node, then clearly the maximum independent set of G[h] is the union

of the maximum independent sets of each connected component, moreover it

contains an induced P6 or C4 if and only if one of the connected components

has one.

If h is an S-node, then clearly the maximum independent set of G[h] is an

independent set of one of the graphs represented by its children. It is as well

clear that as P6 has a connected complement, it must be contained in one of the

connected components ofG[h], which are the graphs represented by the children

of h. As for the C4, since it can be formed by the join of two 2K1, it can be and

induced subgraph of G[h] if and only if it is and induced subgraph of the graph

represented by some of the children of h or if there are two nonleaf children

of G (because the join of one non-edge from each of the graphs represented by

them form an induced C4). Thus the only case that remains to be considered is

when h is an N-node.

If h is an N-node, with π(h) a tree, then, as G[h] is a tree, it cannot contain an

induced C4, and it contains an induced P6 if and only if there are two vertices

at distance 5 or more. If h is an N-node and π(h) is a co-tree with connected

complement, then α(G[h]) = 2 because it cannot be greater than 2 (π(h) would

contain a C3) and if it were 1, then π(h) would be complete and therefore have a

disconnected complement. SimilarlyG[h] cannot contain an induced P6, because

it has three independent vertices that would form a C3 in the complement of

π(h). Finally as C4 = 2K2, π(h) = G[h] contains an induced C4 if and only if

π(h) contains an induced matching of size 2.

To prove that the algorithm runs in O(n +m) time, we shall see that for ev-

ery node of T(G), it performs O(nπ(h)) operations, except for the N-nodes h

with π(h) isomorphic to a co-tree, in which the number of operations is in

O(nπ(h) +mπ(h)). As mentioned in Chapter 2 the sum of nπ(h) over all nodes

of T(G) is at most 2n, since all edges in π(h), for h an N-node are in one-to-one

68 Chapter 4. Algorithmic and Complexity Results

correspondence with edges of G, and two graphs represented by two differ-

ent N-nodes are vertex-disjoint, the sum ofmπ(h) for all N-nodes with π(h) a

co-tree must be at mostm.

It is clear that if h is a leaf, a P-node, or an S-node, then the number of operations

is proportional to nπ(h). If h is an N-node with π(h) isomorphic to a tree, then

using any of the algorithms in [80, 81, 90] a maximum cardinality independent

set can be found in O(nπ(h)) time. And using the algorithm, suggested by

Dijkstra in the sixties and formally proved in [25], to find a maximum path

in trees it can be easily tested if the longest path in π(h) has size greater or

equal to 6 in O(nπ(h)) time. The last case to consider is the if h is an N-node,

with π(h) isomorphic to a co-tree. Because π(h) has O((nπ(h)2) edges, then in

O(mπ(h)) time it can be complemented. Once complemented, in O(nπ(h) time

the size of the greatest induced matching can be determined using any of the

algorithms in [48, 106, 55]. This fact together with the observations made in the

last paragraph imply that the whole algorithm can be implemented to run in

O(n+m) time.

Theorem 4.14. Algorithm 4 correctly determines whether any given tree-cograph G is

neighborhood-perfect, in O(n+m) time.

Proof. To prove the correctness of this algorithm, we shall apply the same rea-

soning as in the proof of Theorem 4.12, but using the subgraph characterization

of neighborhood-perfect graphs among tree-cographs proved in Theorem 3.26.

We will then prove that the algorithm outputs that the graph G is neighborhood-

perfect if and only if G is {(P6 ∨ 3K1), 3-pyramid}-free.

Let see first that if the algorithm outputs that the graph is not neighborhood-

perfect, then it must contain one of the forbidden induced subgraphs. It must

stop in Step 1. If it stops in line 5, then clearly G[h] must contain an induced

3-pyramid = 2K1 ∨ 2K1 ∨ 2K1, if it stops in line 8 then it must contain an

induced C4 ∨ 2K1 = 3-pyramid. Moreover if it stops in line 10, then one of the

two children of h contains an induced P6 and the other one has an independent

4.2. Recognition Algorithms 69

set of size at least 3, implying that G[h] contains an induced P6 ∨ 3K1. Lastly if

it stops in line 13, then G[h] is a co-tree that includes a 3K2 = 3-pyramid.

To conclude the if and only if proof, suppose now that G contains one of the

two forbidden induced subgraphs, and let us see that the algorithm must then

output that G is not neighborhood-perfect. Clearly if G contains one of the

forbidden induced subgraphs, then there must be a node h of T(G) such that

G[h] contains the induced subgraph, but none of its children does. Clearly h

cannot be a P-node. Moreover, h cannot be an N-node with π(h) isomorphic to

a tree, because both forbidden graphs have cycles. Thus hmust be a S-node or

an N-node with π(h) isomorphic to a co-tree. If h is a S-node and G[h] contains

an induced 3-pyramid, then, as was shown in the proof of Theorem 4.12, either

h has three nonleaf children or has exactly two nonleaf children one of which

contains an induced C4. On the other hand if h is an S-node but G[h] contains

an induced P6 ∨ 3K1, then as both P6 and 3K1 are not the join of any other graph,

there must be two children of h, one representing a graph containing an induced

P6 and the other one a graph having an independent set of size at least 3. All of

these cases are considered in lines 5, 8 and 10. Finally if h is an N-node, with

π(h) a co-tree, then clearly G[h] cannot contain an induced 3K1 ∨ P6, because

the complement of a 3K1 would be a C3, and G[h] is a co-tree. If iG[h] contains

an induced 3-pyramid, then it could only be because in the complement of π(h)

there is an induced 3K2, which is the same as saying that π(h) has an induced

matching of size at least 3. Again this is tested in line 13. So we have proved

that if G contains one of the forbidden induced subgraphs, then the algorithm

outputs that G is not neighborhood-perfect, concluding the proof of the if and

only if.

To see that the algorithm runs in O(n+m) time, we shall use the same argument

as in Theorem 4.13. First recall that as was mentioned in Chapter 2 we can

construct the modular tree in linear time and, as was already proven, run

Algorithm 3 in linear time. Now, for every node h in T(G), if h is a P-node or a

N-node with π(h) a tree, the algorithm does no operations. If h is an S-node,

70 Chapter 4. Algorithmic and Complexity Results

then it clearly can determine determine the number of children hi of h and

check the values of C(hi), P(hi) and α(hi) for all of them, in O(nπ(h)) time.

Finally if h is an N-node, with π(h) a co-tree, then, asmπ(h) ∈O((nπ(h))2), we

can complement π(h) in O(mπ(h)) time. Once complemented, we can use any

of the linear-time algorithms in [48, 106, 55], to compute a maximum induced

matching of π(h) in O(nπ(h)) time. Thus the algorithm makes at most a number

of operations proportional to nπ(h) for every node h and to mπ(h) for the

N-nodes with π(h) a co-tree, which implies that it runs in O(n+m) time for the

whole graph.

4.2.3 Recognition in Other Graph Classes

In this subsection we shall present several results on the recognition problem of

neighborhood-perfect graphs in different graphs classes, based on the charac-

terizations proved in Section 3.5, namely we shall prove that it can be solved

in polynomial time restricted to the classes of paw-free graphs, diamond-free

graphs, claw-free HCH graphs, HCA graphs and balanced graphs.

Corollary 4.15. There is a linear-time algorithm, that given any paw-free graph G,

decides whether G is neighborhood-perfect.

Proof. By Theorem 3.40, G is neighborhood-perfect if and only if each compo-

nent of G is either bipartite or is the join of a complete bipartite graph and a

complete graph. Based on this characterization it is clear that we can in linear

time check if any component of G is bipartite or if the non universal vertices of

the component form a complete bipartite graph. This algorithm was already

proposed to recognize balanced paw-free graphs in [20].

Corollary 4.16. There is a polynomial-time algorithm, that given any diamond-free

graph G, determines whether G is neighborhood-perfect.

Proof. As was proven in Corollary 3.35, in the class of diamond-free graphs,

neighborhood-perfectness and clique-perfectness coincide. Moreover in [20], it

4.2. Recognition Algorithms 71

was proven that restricted to the class of diamond-free graphs, clique-perfectness

and balancedness are the same. Recalling from Chapter 2 that recognizing bal-

anced graphs is polynomial-time solvable, recognizing neighborhood-perfect

graphs in the class of diamond-free graphs can be done in polynomial time.

Corollary 4.17. There is a polynomial-time algorithm to determine, given any chordal

graph G, if G is neighborhood-perfect.

Proof. By Theorem 3.39, G is neighborhood-perfect if and only if it is balanced.

Thus, as there is a polynomial-time algorithm to determine whether or not G is

balanced, there is one to determine if it is neighborhood-perfect.

Corollary 4.18. There is a polynomial-time algorithm to determine, given any claw-free

HCH graph G, if G is neighborhood-perfect.

Proof. By Corollary 3.37, claw-free HCH neighborhood-perfect graphs are ex-

actly claw-free HCH clique-perfect graphs. It was also proven in [12] that if

G is claw-free HCH, then it is clique-perfect if and only if it is perfect. Thus,

restricted to the class of claw-free HCH graphs, clique-perfect, neighborhood-

perfect and perfect graphs coincide. Therefore as there is a polynomial-time

algorithm to recognize perfect graphs, there is a polynomial-time algorithm to

determine if G is neighborhood-perfect.

Corollary 4.19. There is a polynomial-time algorithm to determine, given a hereditary

circular-arc graph G, if G is neighborhood-perfect.

Proof. As was proved in Theorem 3.31,G is neighborhood-perfect if and only if it

is clique-perfect. But in [13], a O(n19)-time algorithm is given to recognize clique-

perfectness of graphs in the HCA class, therefore the same algorithm can be

used to recognize whether any given HCA graph is neighborhood-perfect.

72 Chapter 4. Algorithmic and Complexity Results

4.3 Algorithms for Computing Optimal Sets of Ver-

tices and Edges

In this section we shall present two new linear-time algorithms to compute

a maximum neighborhood-independent set, a minimum neighborhood set, a

maximum 2-independent set, and a minimum dominating set of P4-tidy and

tree-cographs. In this subsection we will refer a maximum neighborhood-

independent set, a minimum neighborhood set, a maximum 2-independent

set and a minimum dominating set of a graph as optimal sets of the graph. As

in the previous section, we shall strongly use the properties of the modular

decomposition trees of these two classes.

First we shall present an algorithm that given a subroutine that computes the op-

timal sets of graphs represented by the N-nodes of the modular decomposition

tree (meaning that it computes a maximum neighborhood-independent set, a

minimum neighborhood-independent set, a domination sets), finds optimal sets

for the graphs represented by all the remaining nodes of the modular decompo-

sition tree. This algorithm will be used for both classes of graphs, changing only

the routine that finds optimal sets for the graph represented by the N-nodes

(which have a different characterization in each class). It is also interesting

to note that given any other graph class with a known characterization of its

modular decomposition tree, one needs only to find a routine that finds optimal

sets for the graph represented by the N-nodes from optimal sets of its children,

to obtain an algorithm that finds optimal sets in the whole graph.

Given a graph G and its modular decomposition tree T(G), for any node h of

T(G), let Rn(h) be a list of vertices of G that form a neighborhood set of G[h]

of minimum size, An(h) be a list of vertices and edges forming a maximum

neighborhood-independent set of G[h], A2(h) be a list of vertices forming a

2-independent set of maximum size of G[h], and D(h) be a list of vertices of

G constituting a minimum dominating set of G[h]. We will call these four

lists, optimal lists for the node h. Algorithm 5 will show how to recursively

4.3. Optimal Sets of Vertices and Edges 73

obtain optimal lists for each node h, thus obtaining these lists for the root of

T(G), which we shall call An(G), Rn(G), A2(G) and D(G), respectively. For

this purpose, Algorithm 5 will assume that we have a subroutine that given

any N-node and optimal lists for the children of the N-node, correctly obtains

the lists for the N-node. In all the following algorithms, we shall denote the

concatenation of lists l1, . . . , lk, with 1 6 i 6 k as
∑k
i=1 li. To denote the

concatenation of two lists l1 and l2, we will use l1 + l2. We will denote a list

by listing its elements between ‘〈’ and ‘〉’; for instance, a list whose elements

are x,y, zwill be denoted by 〈x,y, z〉. If l is a list, we will denote by l[i] its i-th

element.

Below, we prove that Algorithm 5 correctly calculates the desired lists, given

that the subroutine used to calculate the lists in the N-nodes works correctly.

Moreover we shall prove that if the N-nodes’ subroutine works in linear time

with respect to π(h) for a N-node h, then the Algorithm 5 works in linear time

with respect to G.

Theorem 4.20. Algorithm 5 obtains correctlyAn(G), Rn(G),A2(G) andD(G), given

that the subroutine for N-nodes is correct.

Proof. The algorithm traverses T(G) in post-order, meaning that before reaching

a node h, all its children have their optimal lists already computed. It is clear

that if h is a leaf, then G[h] is a single vertex and then all optimal lists associated

with h consist in precisely that vertex. Let us now see that if we suppose the

algorithm correctly builds optimal lists for all the children h1, . . . ,hk of an S-

node or P-node, then it correctly computes them for the node itself. If h is a

P-node, then, since the graphs represented by its children are the components of

G[h], it is clear that all optimal sets required can be obtained by simply joining

the lists of the optimal sets for the children. If h is an S-node, it is easy to see

that each of the lists A2(h), D(h), An(h), Rn(h) represent a dominating set, a

2-independent set, a neighborhood-independent set and a neighborhood set of

G[h], respectively. Moreover, since the lengths of these lists match the optimal

74 Chapter 4. Algorithmic and Complexity Results

values (according to Theorems 3.9 and 3.12, lemma 3.10, and corollaries 3.11

and 3.13), the lists build in this way are optimal lists.

Algorithm 5: Computes An(G), Rn(G), A2(G), D(G) of a graph G, if a
subroutine to find optimal lists for the graphs represented by N-nodes of
its modular decomposition tree is given

Input: A graph G
Output: An(G), Rn(G), A2(G) and D(G)
Initialization: Construct T(G), the modular decomposition tree of G

1 Step 1:
2 Traverse the nodes of T(G) in post-order, and in each node h do:
3 if h is a leaf, representing only v ∈ V(G) then
4 An(h) := 〈v〉, Rn(h) := 〈v〉, A2(h) := 〈v〉, D(h) := 〈v〉
5 else if h is a P-node with children h1, . . . ,hk then
6 Rn(h) =

∑k
i=1 Rn(hi), A2(h) =

∑k
i=1A2(hi), D(h) =

∑k
i=1D(hi),

An(h) =
∑k
i=1An(hi)

7 else if h is an S-node with children h1, . . . ,hk then
8 A2(h) := 〈v〉where v is an arbitrary vertex of G[h]
9 D(h) := a list of minimum length among D(h1), . . . ,D(hk), 〈v1, v2〉

for any v1 ∈ V(G[h1]) and v2 ∈ V(G[h2])
10 if k = 2 then
11 An(h) := 〈(A2(h1)[i],A2(h2)[i]) : , 1 6 i 6

min{|A2(h1)|, |A2(h2)|}〉
12 else
13 An(h) := 〈(v1, v2)〉 for any v1 ∈ V(G[h1]) and v2 ∈ V(G[h2])

14

R∗ := a list of minimum length among
D∗(h1), . . . ,D∗(hk),Rn(h1), . . . ,Rn(hk),
where D∗(hi) = D(hi) + 〈v〉 for any v ∈ G[h] \G[hi]

15 if k = 2 then
16 Rn(h) := R

∗

17 else
18 Rn(h) := a list of minimum length between R∗ and {v1, v2, v3},

where vi ∈ V(G[hi)]) for i ∈ {1, 2, 3}

19 else if h is an N-node then
20 Use a graph class specific subroutine to calculate An(h), Rn(h),

A2(h) and D(h)

21 Step 2:
22 Output An(G), Rn(G), A2(G), D(G)

Lemma 4.21. Let c(h) be the number of edges made in line 11 if k = 2, for h and all

the descendants of h in a modular decomposition tree T(G). Hence, for every node h,

4.3. Optimal Sets of Vertices and Edges 75

c(h) + α2(h) 6 n(h), where α2(h) = α2(G[h]).

Proof. To prove this statement, we shall use a structural induction in T(G).

First, let us see that for each leaf h, clearly c(h) = 0, α2(h) = 1, and n(h) = 1.

Now, let us suppose that we have a node h, not a leaf, and that the statement

holds for every child hi, 1 6 i 6 k of h. If h is not an S-node, then clearly

c(h) =
∑k
i=1 c(hi). As every G[hi] ⊆ G[h], the inequality |I ∩ V(hi)| 6 α2(hi)

must hold for every 2-independent set I of G[h]. Hence, by the induction

hypothesis, c(h) + α2(h) 6
∑k
i=1 c(hi) +

∑k
i=1 α2(hi) 6

∑k
i=1 n(hi) = n(h).

If h is an S-node and k > 2, thenα2(h) = 1, implying c(h)+α2(h) = (
∑k
i=1 c(hi))+

1 6
∑k
i=1 c(hi) + α2(h) 6

∑k
i=1 n(hi) = n(h). Hence, suppose that h is an S-

node with two children and suppose, without loss of generality, that α2(h1) 6

α2(h2) and consequently c(h) = c(h1) + c(h2) + α2(h1). Thus, since α2(h) = 1

(because h is an S-node), then c(h) + α2(h) = c(h1) + c(h2) + α2(h1) + 1 6

c(h1) + c(h2) + α2(h1) + α2(h2) 6 n(h1) + n(h2) = n(h).

Theorem 4.22. Algorithm 5 works in O(n+m) time, if the subroutine for N-nodes

works in O(nπ(h) +mπ(h)) time, for every N-node h.

Proof. All nodes are traversed exactly once, so let us see that for every leaf,

S-node and P-node, the algorithm performs O(nπ(h)) operations. If h is a leaf,

then it only creates four lists of size 1. If h is a P-node, then the algorithm

concatenates four times nπ(h) lists. Which, if we suppose is done by loosing the

original lists, can be achieved in O(nπ(h)) time. If h is an S-node, then to obtain

D(h), A2(h), An(h), and Rn(h), clearly it performs at most O(nπ(h)) operations

plus the time of building the edges in line 11, if h is an S-node with exactly two

children. Since, by Lemma 4.21, the number of edges made in all S-nodes is

O(n), the sum of nπ(h) for every node h in T(G) is at most 2n, the sum of all

mπ(h) for all N-nodes is at most m, and finding the modular decomposition

tree can be done in O(n+m) time, the whole algorithm can be implemented to

run in O(n+m) time.

76 Chapter 4. Algorithmic and Complexity Results

4.3.1 P4-tidy Graphs

In this subsection we shall show an algorithm to find in O(nπ(h)) time the

optimal sets for an N-node of the modular decomposition tree T(G) of a P4-tidy

graph G.

Algorithm 6: Computes An(h), Rn(h), A2(h), D(h), for any given N-node

h of the modular decomposition tree T(G) of a P4-tidy graph G
Input: A N-node h of a modular decomposition tree of a P4-tidy graph G

Output: An(h), Rn(h), A2(h) and D(h)

1 Step 1:

2 if π(h) is isomorphic to C5 = v1 . . . v5v1 then

3 An := 〈v1v2, v4v5〉, Rn(h) := 〈v1, v3, v5〉, A2(h) := 〈v1〉, D(h) := 〈v1, v2〉

4 else if π(h) is isomorphic to P5 = v1 . . . v5 then

5 An := 〈v1v2, v4v5〉, Rn(h) := D(h) := 〈v2, v4〉, A2(h) := 〈v1, v4〉

6 else if π(h) is isomorphic to P5 with π(h) = v1 . . . v5 then

7 An := 〈v1v5, v2v3〉, Rn(h) := D(h) = 〈v1, v2〉, A2(h) = 〈v1〉

8 else if π(h) is a starfish with partition (S,C,R) where C = {c1, . . . , ck},

S = {s1, . . . , sk} and c1s1, . . . , cksk are the legs of π(h) then

9 Let vi ∈ V(G[ci]) and wi ∈ V(G[si]) for each i ∈ {1, . . . ,k}

10 A2(h) := 〈w1, . . . ,wk〉, D(h) := 〈v1, . . . , vk〉, An(h) := 〈v1w1, . . . , vkwk〉,

Rn(h) := 〈v1, v2, . . . , vk〉

11 if π(h) is a fat starfish with ci ∈ C representing 2K1 then

12 Replace vi in Rn(h) with wi

13 else if π(h) is an urchin with partition (S,C,R) where C = {c1, . . . , ck},

S = {s1, . . . , sk} and c1s1, . . . , cksk are the legs of π(h) then

14 A2(h) := 〈v1〉, D(h) := 〈v1, v2〉, An := 〈v1w2〉 and Rn(h) := 〈v1, v2〉 for any

v1 ∈ V(G[c1]), v2 ∈ V(G[c2]) and w2 ∈ V(G[s2]).

15 Step 2:

16 Output An(h), Rn(h), A2(h), D(h)

Theorem 4.23. Algorithm 6 correctly findsAn(h), Rn(h),A2(h),D(h), for any given

N-node h of the modular decomposition tree T(G) of any P4-tidy graph G.

4.3. Optimal Sets of Vertices and Edges 77

Proof. It can be checked by simple inspection that if π(h) is isomorphic to C5, P5,

or P5, optimal lists are chosen (recall that if this is the case G[h] = π(h)). If π(h)

is a starfish, then clearly the listsA2(h),D(h),An(h) and Rn(h) computed by the

algorithm correspond to a 2-independent set, a dominating set, a neighborhood-

independent set and a neighborhood set of G[h], respectively. Moreover, such

lists are optimal lists because A2(h) has the same length asD(h), and An(h) has

the same length as Rn(h). If π(h) is an urchin, clearly we cannot dominate all

vertices with only one vertex, but if we take two vertices belonging to different

graphs represented by vertices of C, we obtain a minimum dominating set,

as well as a minimum neighborhood set. In an urchin all vertices are at most

at distance two from each other, and thus all 2-independent sets of G[h] have

size 1. It is also easy to see that if π(h) is an urchin then no two edges can

be neighborhood-independent; so, the maximum neighborhood-independent

set must be composed of at most one edge. Hence, if π(h) is an urchin, then

the lists A2(h), D(h), An(h) and Rn(h) build by the algorithm are optimal lists.

Therefore, as G is P4-tidy, we have seen that for all possible scenarios the

algorithm correctly computes the optimal sets.

Theorem 4.24. Algorithm 6 works in O(nπ(h)) time, for h an N-node in the modular

decomposition tree of any P4-tidy graph G.

Proof. As we was already seen in Chapter 2, if G is a P4-tidy, we can decide

in O(nπ(h)) time whether π(h) is isomorphic to P5, C5, P5, or is a starfish or

urchin, and in the latter two cases obtain its decomposition. It is clear that if

π(h) is isomorphic to a P5, C5, P5, the algorithm performs a constant number

of operations. If π(h) is a starfish, then once it has obtained C and S, and

determined if there is a replaced vertex of C (all in O(nπ(h))) time, it does

only constant time assignments and it generates |C| edges, all of which can be

done in O(nπ(h)) time. Finally if π(h) is an urchin, then once again it performs

a constant number of operations. Therefore in all possible cases it runs in

O(nπ(h)) time.

78 Chapter 4. Algorithmic and Complexity Results

4.3.2 Tree-cographs

In this subsection we will present an algorithm to find the optimal sets of N-

nodes in a modular decomposition tree of a tree-cograph. To this purpose

we shall first give a characterization of co-trees with αn > 1. This character-

ization will allow us to easily identify these graph and find a neighborhood-

independent set of maximum size, all in linear time.

Lemma 4.25. If G is a graph, then αn(G) > 1 if and only if G has two edges xy and

wz such that {x,y,w, z} is a total dominating set of G.

Proof. By definition, αn(G) > 1, if and only if there are two neighborhood-

independent edges xy and wz in G. Moreover, any two edges xy and zw of G,

neighborhood-independent satisfy that every vertex is at least nonadjacent in G

to at least one vertex in {x,y,w, z} different from itself, or equivalently {x,y,w, z}

is a total dominating set of G.

Lemma 4.26. If G is a co-tree with αn(G) > 1, then T ′ must be a path, where T is G

and T ′ is the graph T , with all its leafs erased.

Proof. If G is a co-tree, then clearly T is a tree and hence T ′ must be also a tree.

Let us suppose by contradiction that T ′ is not a path. As paths are trees with at

most two leaves, then T ′ has by our supposition three different leafs x, y, z and,

as |V(T ′)| > 2, these three vertices must form an independent set of T ′ (and thus

of T). The fact that these three vertices are in T ′ implies that they were not leaves

in T , but as they are leaves of T ′, then they must have been adjacent to leaves

in T . Given a tree, all vertices adjacent to leafs must be in all total dominating

sets, because they are the only vertices that can dominate the leafs. Hence x, y

and z are in all total dominating sets of T . Since αn(G) > 1, Lemma 4.25 implies

that there must be a vertex w such that {x,y,w, z} is a total dominating set of T

and without loss of generality xy, wz are edges of G. But this clearly implies

a contradiction, because z is not strongly dominated in T by {x,y,w, z}. The

contradiction came from the supposition that T ′ was not a path.

4.3. Optimal Sets of Vertices and Edges 79

Before stating the characterization, we shall present an inequality that will be

used in the proof of Theorem 4.28.

Theorem 4.27 ([30]). The following inequality holds for every tree T :

γt(T) > (n(T) + 2 − l(T))/2.

Where n(T) is |V(T)|, l(T) is the number of leafs of T and γt(T) is the total dominating

number of T .

Theorem 4.28. If G is a co-tree, then αn(G) > 1 if and only if T ′ is either P2, P3, P4,

or P5 or P6 with no central vertex of T ′ adjacent to a leaf of T , where T = G and T ′ is

the graph T with all its leaves erased.

Proof. Let us first prove that if G is a co-tree with αn(G) > 1, then T ′ is as

described above. By Lemma 4.26, T ′ must be a path. Clearly T ′ cannot have

only 1 vertex, because T would be a star and αn(G) would be one. As we have

already seen in Lemma 4.25, γt(T) 6 4 if T = G. Thus, Theorem 4.27 implies

that 6 > n(T) − l(T), but n(T) − l(T) = n(T ′). Therefore T ′ is Pi with 2 6 i 6 6.

If T ′ = P5 or T ′ = P6, then suppose by contradiction that there is a leaf in T

adjacent to any central vertex of T ′. As was already mentioned in the proof of

Lemma 4.26, this means that there is a central vertex of T ′ that must be in every

total dominating set of T , this is also always true for both leafs of T ′. But then

there cannot be a total dominating set of T of size 4, because all three vertices

are nonadjacent in T and there is no vertex that is adjacent to all three at the

same time. This leads to a contradiction because we have already proved that

γt 6 4. Hence no central vertex of T ′ can be adjacent to a leaf of T if T ′ is a P5 or

P6.

To prove the converse implication, if T ′ is P2, P3 or P4, simply take all vertices of

T ′ plus two, one, or zero leaves of T , respectively, adjacent to different leaves of

T ′, and we shall have a total dominating set of T of size 4. If this set is {x,y,w, z},

then clearly we can always take xy and wz to be non-edges of T and thus edges

80 Chapter 4. Algorithmic and Complexity Results

of G, and by Lemma 4.25, αn(G) > 1. If T ′ is P5 or P6, we can take all vertices of

T ′, except for the central vertices of the path. As no central vertex is adjacent to

leafs of T , then clearly these four vertices must be a total dominating set of T .

Once again it is easy to check that we can find two non-edges of T among these

four vertices, and therefore αn(G) > 1.

Corollary 4.29. It is easy to decide in O(n + m) time whether a co-tree G has

αn(G) > 1 and if so find a neighborhood-independent set of G size 2.

Proof. We use the characterization presented in Theorem 4.28. We can easily

complement G and remove the vertices with degree 1. If the resulting tree is a

path of length 2 to 6, then αn(G) > 1 and, following the instructions of the proof

of Theorem 4.28, we can obtain the two neighborhood-independent edges of

G. As G is a co-tree, m ∈ O(n2) meaning that we can complement G in O(m)

time. Deciding whether a tree becomes a path of bounded size by removing

its leaves and, if so, also computing the corresponding path, can all be done in

O(n). Finally obtaining the edges following the instructions of Theorem 4.28

can be easily done in O(n) time.

Now that we have given this characterization, we shall prove that Algorithm 7

finds the optimal sets for an N-node of the modular decomposition tree of a

tree-cograph, all in O(nπ(h)+mπ(h)) time. In line 8, we check if π(h) has a total

dominating set of size 2. Let us see why this allows us to find the 2-independent

set π(h) that we need.

Lemma 4.30. If G is a graph, then {v1, v2} ⊆ V(G) is a 2-independent set of G if and

only if it is a total dominating set of G.

Proof. The set S = {v1, v2} is a 2-independent set of G if and only if NG[v1] ∩

NG[v2] = ∅. But this means that inG no vertex can be nonadjacent to both v1 and

v2, which is to say that all vertices of G must be adjacent to v1 or v2. Therefore S

is a 2-independent set of G if and only if S is a total dominating set of G of size

2.

4.3. Optimal Sets of Vertices and Edges 81

Algorithm 7: Computes An(h), Rn(h), A2(h), D(h), for a given N-node h

of the modular decomposition tree T(G) of a tree-cograph G
Input: A N-node h of a modular decomposition tree of a tree-cograph G

Output: An(h), Rn(h), A2(h) and D(h)

1 Step 1:

2 if π(h) is a tree then

3 A2(h) := a maximum 2-independent set of G[h]

4 D(h) := a minimum dominating set of G[h]

5 An(h) := a maximum matching of G[h]

6 Rn(h) := a minimum vertex cover of G[h]

7 else if π(h) is a co-tree then

8 if π(h) has a total dominating set of size 2 then A2(h) := a total dominating

set of G[h] of size 2

9 else A2(h) := 〈v1〉 for any v1 ∈ G[h]

10 if αn(π(h)) > 1 then An(h) := {e1, e2} with e1, e2

neighborhood-independent edges of G[h]

11 else An(h) = {e1} with e1 any edge of π(h)

12 D(h) := 〈vl, vn〉, R\(h) := 〈vl, vn〉, with vl a leaf of G[h] and vn its only

neighbor in G[h]

13 Step 2:

14 Output An(h), Rn(h), A2(h), D(h)

Theorem 4.31. Algorithm 7 correctly finds An(h), Rn(h), A2(h) and D(h), for any

given N-node h of the modular decomposition tree of a tree-cograph G.

Proof. If G is a tree-cograph, then an N-node h of its modular decomposition is

a tree with connected complement or a connected co-tree. In both cases π(h) is

isomorphic to G[h], thus we can find the optimal sets analyzing π(h). If π(h) is

a tree, then as was already seen in [70] a maximum matching of G[h] is also a

maximum neighborhood-independent edge set and a minimum vertex cover

is a minimum neighborhood-cover set. Hence if π(h) is a tree, then clearly

the algorithm computes the correct values for the optimal sets. On the other

82 Chapter 4. Algorithmic and Complexity Results

hand if π(h) is a co-tree, then as was seen in Lemma 4.30, if we find a total

dominating set of size 2 in G[h], we will have a 2-independent set of size 2

of G[h]. Clearly a co-tree cannot have an independent set of size three, thus

αn(π(h)) 6 2. Clearly if there are no 2-independent sets of size 2, then any

node is a maximum 2-independent set. It was already stated in Corollary 4.29

that there is a linear-time algorithm to determine if αn(π(h)) > 1 and if this

is the case to find a neighborhood-independent set of size 2. Thus in line 10,

we correctly obtain An(h). Note that αn(G[h]) 6 2, because if we take a leaf

of G[h] and its only neighbor in G[h], we clearly have a neighborhood set as

well as a dominating set of G(h). Moreover if there were a dominating set or

neighborhood set of size 1, then that would mean an isolated vertex in G[h],

which would contradict the fact that it is a tree.

Theorem 4.32. Algorithm 7 can be implemented to run in O(nπ(h) +mπ(h)) time.

Proof. It is clear that in linear time it can be determined if π(h) is a tree. More-

over, if π(h) is not a tree, then it must be a co-tree because all N-nodes of a

tree-cograph are trees or co-trees. If π(h) is a tree, algorithms for finding mini-

mum vertex cover sets, minimum dominating sets and maximum matchings in

linear time can be found in [80, 81, 90]. Obtaining a 2-independent maximum

set of a tree can also be done efficiently with an algorithm very similar to the

one mentioned in [81] for independent sets. We explicitly state here, for the sake

of completion, this linear-time algorithm for finding a 2-independent maximum

set of a tree T :

Given a tree T , we regard it as a directed tree with an arbitrary root vertex

r and traverse its vertices in post-order. For every vertex i, we determine

Use(i) and NUse(i), where Use(i) is a maximum 2-independent set using ver-

tex i and NUse(i) is defined analogously but without using i. Clearly, if i

is not a leaf, then Use(i) = i ∪
⋃
(NUse(j) : j is a child of i) and NUse(i) =⋃

(max{ Use(j) , NUse(j) : j is child of i)}, where max{A,B} denotes a set with

maximum number of vertices among A and B. If i is a leaf, then clearly

4.4. Complexity Results 83

Use(i) = {i} and NUse(i) = ∅. Hence, Use(i) and NUse(i) for all vertices

i can be determined in overall linear-time. Finally, max{Use(i), NUse(i)}, which

is a maximum 2-independent set of T , can be found in linear time.

Hence, using the algorithms mentioned above, which clearly run in O(nπ(h))

time, we can obtain corresponding to a node h whenever π(h) is a tree. If

π(h) is a co-tree, then, as was already mentioned, we can complement it in

O(mπ(h)) time, then using any of the algorithms mentioned in [68, 30, 63],

we can obtain a maximum total dominating set of π(h), and if it is of size 2,

we can obtain the corresponding total dominating set of G[h] and assign it to

A2(h) (bearing in mind that π(h) andG[h] are isomorphic). Using the algorithm

mentioned in Corollary 4.29, we can find in O(nπ(h)+mπ(h)) time a maximum

neighborhood-independent set of G[h]. Finally, having already complemented

π(h), finding a leaf of G[h] and its neighbor can be done easily in linear time.

Therefore if π(h) is a co-tree, the algorithm can also be implemented to run in

O(nπ(h) +mπ(h)) time.

4.4 Complexity Results

As was already stated, to our knowledge no results have been explicitly given on

the computational complexity of the recognition problem of the whole class of

neighborhood-perfect graphs. On the other hand the problems of determining

αn and ρn were already proven to be NP-complete even for the class of split

graphs in [27]. In this section we present a prove of NP-hardness of these two

problems in the class of co-bipartite graphs. If X and Y are disjoint sets and

F ⊆ X × Y, we shall denote by (X, Y, F) the co-bipartite graph with vertex set

X ∪ Y where X and Y are cliques and the edges between X and Y are those in F.

Theorem 4.33. It is NP-hard to determine the neighborhood-independence number in

co-bipartite graphs.

Proof. We shall prove the NP-hardness of the problem, by showing a polynomial

reduction of the problem of determining the size of a maximum independent set

84 Chapter 4. Algorithmic and Complexity Results

of a graph H. For that purpose, given any graph H, we will define a co-bipartite

graph G such that αn(G) = α(G).

Given any graph H = (V ,E), let G = (X, Y, F) where X = {v ′ : v ∈ V}, Y = V ∪ E

and F = {v ′e : v ∈ V , e ∈ E and v is incident to e} ∪ {v ′v : v ∈ V}; that is, we

connect every vertex in Y to its copy in X and every edge in Y to the copies of

its endpoints in X. Let us first note that as there are no isolated vertices in G,

then in order to determine the neighborhood-independence number we can

restrict our attention to those neighborhood-independent sets consisting only of

edges. Moreover, being X and Y cliques, there is some maximum neighborhood-

independent set having all its edges in F.

Given an independent set S ∈ V of H, let I be the subset of F defined by

I = {v ′v : v ∈ S}. It is easy to see that I is a neighborhood-independent set

because given two different edges v ′v and w ′w of I, there is no vertex adjacent

to all four vertices. In fact, the only vertices in X adjacent to v and w are v ′ and

w ′ respectively and if there were an element of Y adjacent to v, v ′, w, and w ′,

then it would necessarily be an edge e of H joining v to w, which contradicts

the fact that S is an independent set of H. This contradictions proves that I is a

neighborhood-independent set and hence αn(G) > α(H).

Conversely, let I be a neighborhood-independent set of edges in G such that

I ⊆ F. We shall see that S = {v ∈ V : v ′y ∈ I} is an independent set ofH. Suppose,

for a contradiction, that there is an edge e of H joining two vertices v andw of S.

By definition, there are y1,y2 ∈ Y such that v ′y1,w ′y2 ∈ F and, by construction, e

is adjacent in G to all the four endpoints of v ′y1 andw ′y2, which contradicts the

fact that F is a neighborhood-independent set. This contradictions shows that S

is an independent set ofH and thereforeα(H) > αn(G). This completes the proof

of the polynomial reduction of the maximum independent set problem to the

maximum neighborhood-independent set problem in co-bipartite graphs.

To prove the following theorem we will use the following result from [42].

4.4. Complexity Results 85

Theorem 4.34 ([42]). Given a graph G, it is NP-hard to approximate the Minimum

Vertex Cover to within any factor smaller than 10
√

5 − 21 = 1.3606

Theorem 4.35. It is NP-hard to determine the neighborhood number in co-bipartite

graphs.

Proof. To prove that the problem is NP-hard, we shall use Theorem 4.34, and

show that a polynomial-time reduction from a 4
3 -approximation of the Minimum

Vertex Cover problem can be easily obtained. For that purpose, given a graphH,

we will show to build a co-bipartite graphG such that β(H) 6 ρn(G) 6 β(H)+1.

Namely, given any graph H = (V ,E), let G = (X, Y, F) where X = V , Y = E and

F = {ve ∈ V × E : v is incident to e in H}; that is, every vertex in X is joined to

the edges in Y to which it is incident in H.

Given a set vertex cover C ⊆ V of H, then C together with any element of Y is

clearly neighborhood set of G. In fact, all the edges of the cliques X and Y will

clearly be covered by any vertex of X and the vertex of Y, respectively. Moreover

all edges of F will be covered because if ve ∈ F, then e = vw (in H) for some

w ∈ V . Hence, since C was a vertex cover of H, v or w must be in C and both

cover the edge ve inG (because v,w, e is a triangle inG). Thus ρn(G) 6 β(H)+1.

To check the remaining inequality, let S ⊆ X ∪ Y be a neighborhood set of G

with minimum cardinality. If e is any element in S ∩ Y, then e is covering in G

only two edges of F, namely the ve and we, where vw = e (in H). Thus if we

replace e by v or w in S, this set that arises still covers all the the edges of F. If

we apply this procedure successively for all vertices in S ∪ Y, we will obtain at

the end a vertex set of S ′ ⊆ X that is a neighborhood-covering set of F and has

size less than or equal to ρn(G). It turns out that S ′ ⊆ V will be a vertex cover

of H, because for any edge e ∈ E, where e = vw (in H), v or w will be in S ′ for

these are the only vertices in X that cover ve ∈ F. As S ′ is a a vertex cover of H

whose size is less than or equal to ρn(G), β(H) 6 ρn(G).

Now that we have proved that this co-bipartite graph G satisfies β(H) 6

ρn(G) 6 β(H) + 1, it is easy to give a polynomial-time reduction to the prob-

86 Chapter 4. Algorithmic and Complexity Results

lem of approximating β(H) within a factor of 4
3 . Given a graph H, we can in

polynomial (linear) time decide whether it has a vertex cover of size 1 or 2

and, if so, we transform H into an arbitrary co-bipartite graph whose corre-

sponding maximum neighborhood set has size 1 or 2, respectively. If β(H) > 3

we construct in polynomial time G as described above. As proven before

β(H) 6 ρn(G) 6 β(H) + 1, which as β(H) > 3 means that 1 6 ρn(G)
β(H) 6 1 + 1

3 .

This proves the reduction from the problem of approximating the Minimum

Vertex Cover problem less than 10
√

5 − 21 = 1.3606 . . . , as desired.

Chapter 5

Conclusion and Final

Remarks

Throughout this thesis we work on neighborhood-perfect graphs, a variation of

perfect graphs. We study characterizations by forbidden induced subgraphs,

restricted to superclasses of cographs and classes related to the class of hered-

itary clique-Helly graphs. Moreover we studied the recognition problem of

neighborhood-perfect graphs and the problem of finding the parameters in-

volved in the definition of neighborhood-perfectness, both restricted to these

same graph classes.

In Chapter 3 we consider the characterizations mentioned above. The main

results of this chapter are summarized in Table 5.1.

In Section 3.2 we studied how the join operation modifies the two parameters

used in the definition of neighborhood-perfectness. In Theorem 3.9 and Theo-

rem 3.12 we gave two equalities that determine how these parameters change

with the join operation. Using these results, we found in Theorem 3.20 exactly all

graphs that are minimally non-neighborhood-perfect with disconnected comple-

ment. This in turn allowed us to characterize by forbidden induced subgraphs

87

88 Chapter 5. Conclusion and Final Remarks

the neighborhood-perfect graphs restricted to the classes of P4-tidy graphs and

tree-cographs. It seems interesting to note that the techniques used to find this

characterizations could be extended to prove forbidden induced subgraph char-

acterizations of neighborhood-perfectness in graph classes with known modular

decomposition tree, provided that the minimally non-neighborhood-perfect

graphs could be easily identified in the graphs represented by the N-nodes of

this tree.

In Section 3.5 we proved several forbidden induced subgraph characterizations

of neighborhood-perfect graphs restricted to classes that are either contained

in the class of HCH graphs or strongly related to it. In most of these proofs,

we use a result proved by Lehel and explicitly restated here in Theorem 3.27.

This theorem shows how deeply related the classes of clique-perfect graphs

and neighborhood-perfect graph are. Thus, using this relation and known

results on clique-perfectness, we could prove several partial characterizations by

forbidden induced subgraphs of neighborhood-perfect graphs. It is noteworthy

that the relationship observed between neighborhood-perfect graphs and clique-

perfect graphs could eventually be used as well to find characterizations of

clique-perfectness, using results of neighborhood-perfectness. Furthermore,

there are several graph classes for which clique-perfectness has been studied

and in which we believe results on neighborhood-perfectness could be achieved

by using similar techniques as those used in this section (e.g., complement of

line graphs).

In Chapter 4, we studied the algorithmic problems associated with neighborhood-

perfectness. In particular, we studied the problem of recognizing neighborhood-

perfect graphs in Section 4.2 (the main results are summarized in Table 5.2) and,

in the final two sections, the problems of finding αn(G) and ρn(G), for graphs

G belonging to the classes of P4-tidy graphs, tree-cographs and complement of

bipartite graphs (results are summarized in Table 5.3). For P4-tidy graphs and

tree-cographs G, we gave as well linear-time algorithms that find the sets that

achieve the optimum αn(G) and ρn(G). Similarly to the previous chapter, most

89

Graph Class

Minimal forbidden induced
subgraphs for

neighborhood-perfectness Reference

P4-tidy graphs 0-pyramid, 3-pyramid, C5 Theorem 3.22

tree-cographs 3-pyramid, P6 ∨ 3K1 Theorem 3.26

HCA graphs 0-pyramid, C7, odd holes,
vikings, 2-vikings, Sk, Tk

Theorem 3.31

gem-free CA graphs odd holes, 3-pyramid Corollary 3.33

diamond-free graphs odd generalized suns Corollary 3.35

HCH claw-free graphs odd holes, C7 Corollary 3.37

Table 5.1: Minimal forbidden induced subgraph characterizations for neighborhood-perfect graphs
within the graph classes studied in Chapter 3.

Graph Class
Time complexity of recognition of

neighborhood-perfect graphs Reference

P4-tidy graphs linear-time Theorem 4.12

tree-cographs linear-time Theorem 4.14

paw-free graphs linear-time Corollary 4.15

diamond-free graphs polynomial-time Corollary 4.16

chordal graphs polynomial-time Corollary 4.17

claw-free HCH graphs polynomial-time Corollary 4.18

HCA graphs polynomial-time Corollary 4.19

Table 5.2: Time complexity of the recognition problem of neighborhood-perfectness restricted to
several graph classes, results appear in Chapter 4.

Graph Class
Time complexity of
finding αn and ρn Reference

P4-tidy graphs linear-time Theorem 4.24

tree-cographs linear-time Theorem 4.32

complement of bipartite graphs NP-hard Theorems 4.33 and 4.35

Table 5.3: Time complexity of the problem of finding αn and ρn restricted to two superclasses of
cographs and the class of complement of bipartite graphs, results appear in Chapter 4.

90 Chapter 5. Conclusion and Final Remarks

of the algorithmic results on P4-tidy graphs and tree-cographs are based on the

identities proved in Theorems 3.9 and 3.12 and their corollaries. Using both of

these theorems we were able to propose algorithms that work recursively on the

modular decomposition trees of these graphs. We believe that this technique

could be used to solve the recognition problem of neighborhood-perfect graphs

in other classes that have a well understood modular decomposition tree. More-

over, we gave a general algorithm, that given any graph G and its modular

decomposition tree T(G), reduces the problem of finding optimal neighborhood

sets and neighborhood-independent sets in G, to the problem of determining

these sets, as well as a maximum 2-independent set and a minimum dominating

set in the N-nodes of T(G).

It is worth noting that a different approach for obtaining linear-time algorithms

for P4-tidy graphs (and, more generally, in graph classes having bounded clique-

width) was introduced by Courcelle et al in [39]. This approach allows for

linear-time solutions of recognition and optimization problems that are express-

ible in a certain monadic second-order logic. Given the characterizations proven

in Theorems 3.22 and 3.26, it is easy to see that the recognition problem of

neighborhood-perfectness in P4-tidy graphs and tree-cographs can be expressed

in this monadic second-order logic. As the class of tree-cographs also has

bounded clique-width, Courcelle’s metatheorem would imply the existence of a

linear-time algorithm for the recognition problem of neighborhood-perfectness

when the input graph is restricted to both tree-cographs and P4-tidy graphs.

Moreover, the problem of finding a minimum neighborhood-covering set can

be seen to fall as well in the scope of their approach, implying a linear-time

algorithm to solve this problem in any P4-tidy graph or tree-cograph. Neverthe-

less, although Courcelle’s metatheorem is of great theoretical importance, the

algorithm obtained by it is far away from being practical; although it begins by

building a modular decomposition tree of the input graph, the rest of the algo-

rithm may have enormous hidden constants in the linear-time complexity (even

if the input graph has small clique-width) [38]. This combinatorial explosion of

91

the constants seems to be a consequence of the generality of the metatheorem,

given that it requires only a monadic second-order formula and an input graph

to solve the problem. This seems unavoidable if one wishes to obtain results for

general monadic second-order formulas [47]. Therefore, it is clearly of interest

to find more practical algorithms, that can work by only performing a simple

transversal of the modular decomposition trees of the input graph.

Finally, in Section 4.4, we proved that determining αn(G) and ρn(G) is NP-hard

even if the graph G is the complement of a bipartite graph. The reduction

used in this proof was inspired by similar reductions from [56] used to prove

NP-completeness of determining αc and τc. We believe that by further exploring

the similarities between the parameters of clique-perfectness and neighborhood-

perfectness, new results that would help to understand the algorithmic com-

plexity of determining this parameters could be found. Moreover it is worth

studying if the results found for αn(G) and ρn(G) could be extended to the

generalized parameters αn(G,k) and ρn(G,k). In particular we believe that the

algorithmic results for P4-tidy graphs and tree-cographs could be extended to

these parameters in a fairly straightforward way.

92 Chapter 5. Conclusion and Final Remarks

Index

P4-tidy, 25, 43

NP problems, 28

NP-complete, 29

NP-hard, 28

k-independence number, 14

k-neighborhood-covering number, 16

k-neighborhood-independence number,

16

k-sun, 9

anticomponent, 9

antihole, 9

approximation complexity, 29

balanced graphs, 20

bipartite, 10

body, 26

CA, 22

chord, 9

chromatic number, 11

circular-arc, 22

clique matrix, 8

clique-Helly, 19

clique-independence number, 13

clique-perfect, 19

clique-transversal, 13

clique-transversal number, 13

co-bipartite, 10

co-tree, 9

cograph, 25

complement, 7

complete, 8

connected, 9

cotree, 25

cycle, 9

diamond-free graph, 51

domination-number, 14

edge-vertex incidence matrix, 7

ends, 26

graph, 7

HCA, 22

93

94 INDEX

HCH, 20

head, 26

Helly circular-arc, 22, 48

Helly property, 19

hereditary clique-Helly, 19, 51

HCH claw-free graph, 51

hole, 9

independence number, 11

induced matching, 10

join, 10

minimally

non-neighborhood-perfect, 32

modular decomp. tree, 22

module, 22

N-node, 23

neighborhood, 8

neighborhood-covering

number, 12

set, 12

neighborhood-independence

number, 12

neighborhood-independent

set, 12

neighborhood-perfect, 2, 18

P-node, 23

path, 9

perfect graph, 16

Perfect Graph Theorem, 17

polynomial-time, 28

polynomial-time reduction, 28

S-node, 23

stable set, 8

starfish, 25

Strong Perfect Graph Theorem, 18

strongly neighborhood-perfect, 38

subgraph, 7

total dominating number, 80

total dominating set, 9, 78

tree, 9

tree-cograph, 26, 44

triangle, 8

urchin, 25

vertex cover, 10

vertex-cover number, 15

walk, 9

Bibliography

[1] T. Andreae, M. Schughart, and Z. Tuza. Clique-transversal sets of line

graphs and complements of line graphs. Discrete Math., 88(1):11–20, 1991.

13

[2] S. Baumann. A linear algorithm for the homogeneous decomposition

of graphs. Report TUM M9615, Fakultät für Mathematik, Technische

Universität München, Munich, Germany, 1996. 24

[3] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and

nonapproximability—towards tight results. SIAM J. Comput., 27(3):804–

915 (electronic), 1998. 30

[4] C. Berge. Färbung von graphen, deren sämtliche bzw. deren ungerade

kreise starr sind. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur.

Reihe, 10(114):88, 1961. 1, 16

[5] C. Berge. Balanced matrices. Math. Programming, 2(1):19–31, 1972. 21, 52

[6] C. Berge. Motivations and history of some of my conjectures. Discrete

Math., 165/166:61–70, 1997. 2

[7] C. Berge and V. Chvátal. Introduction. In Topics on Perfect Graphs, vol-

ume 88 of North-Holland Mathematics Studies, pages vii–xiv. Noth-Holland,

Amsterdam, 1984. 21

95

96 BIBLIOGRAPHY

[8] C. Berge and M. Las Vergnas. Sur un théorème du type König pour

hypergraphes. Ann. New York Acad. Sci., 175:32–40, 1970. 21, 52

[9] A. Bondy, G. Durán, M. C. Lin, and J. L. Szwarcfiter. Self-clique graphs

and matrix permutations. J. Graph Theory, 44(3):178–192, 2003. 19

[10] F. Bonomo. On subclasses and variations of perfect graphs. Doctoral thesis,

Departamento de Computación, FCEyN, Universidad de Buenos Aires,

Buenos Aires, Argentina, 2005. 51, 52

[11] F. Bonomo, 2014. Personal communication. 52

[12] F. Bonomo, M. Chudnovsky, and G. Durán. Partial characterizations of

clique-perfect graphs. I. Subclasses of claw-free graphs. Discrete Appl.

Math., 156(7):1058–1082, 2008. 19, 51, 71

[13] F. Bonomo, M. Chudnovsky, and G. Durán. Partial characterizations

of clique-perfect graphs. II. Diamond-free and Helly circular-arc graphs.

Discrete Math., 309(11):3485–3499, 2009. 19, 20, 22, 48, 49, 51, 71

[14] F. Bonomo, G. Durán, L. N. Grippo, and M. D. Safe. Partial character-

izations of circle graphs. Discrete Appl. Math., 159(16):1699–1706, 2011.

27

[15] F. Bonomo, G. Durán, L. N. Grippo, and M. D. Safe. Probe interval graphs

and probe unit interval graphs on superclasses of cographs. Discrete Math.

Theor. Comput. Sci., 15(2):177–194, 2013. 27

[16] F. Bonomo, G. Durán, M. C. Lin, and J. L. Szwarcfiter. On balanced graphs.

Math. Program., 105(2-3, Ser. B):233–250, 2006. 21

[17] F. Bonomo, G. Durán, M. D. Safe, and A. K. Wagler. Clique-perfectness of

complements of line graphs. In LAGOS’11—VI Latin-American Algorithms,

Graphs and Optimization Symposium, volume 37 of Electron. Notes Discrete

Math., pages 327–332. Elsevier Sci. B. V., Amsterdam, 2011. 19

BIBLIOGRAPHY 97

[18] F. Bonomo, G. Durán, M. D. Safe, and A. K. Wagler. On minimal forbidden

subgraph characterizations of balanced graphs. Discrete Appl. Math.,

161(13-14):1925–1942, 2013. 21

[19] F. Bonomo, G. Durán, M. D. Safe, and A. K. Wagler. Balancedness of

subclasses of circular-arc graphs. Discrete Math. Theor. Comput. Sci., 16(3):1–

22, 2014. 21, 50

[20] F. Bonomo, G. Durán, M. D. Safe, and A. K. Wagler. Clique-perfectness

and balancedness of some graph classes. Int. J. Comput. Math., 91(10):2118–

2141, 2014. 19, 21, 52, 53, 70

[21] F. Bonomo, G. Durán, F. Soulignac, and G. Sueiro. Partial characterizations

of clique-perfect and coordinated graphs: superclasses of triangle-free

graphs. Discrete Appl. Math., 157(17):3511–3518, 2009. 19

[22] F. Bonomo, O. Schaudt, M. Stein, and M. Valencia-Pabon. b-coloring is

NP-hard on co-bipartite graphs and polytime solvable on tree-cographs.

In P. Fouilhoux, L. E. N. Gouveia, A. R. Mahjoub, and V. T. Paschos,

editors, Combinatorial Optimization - Third International Symposium, ISCO

2014, Lisbon, Portugal, March 5-7, 2014, Revised Selected Papers, volume 8596

of Lecture Notes in Computer Science, pages 100–111. Springer, 2014. 27

[23] A. Brandstädt, V. D. Chepoi, and F. F. Dragan. Clique r-domination and

clique r-packing problems on dually chordal graphs. SIAM J. Discrete

Math., 10(1):109–127, 1997. 3, 13, 57

[24] H. Buer and R. H. Möhring. A fast algorithm for the decomposition of

graphs and posets. Math. Oper. Res., 8(2):170–184, 1983. 23

[25] R. W. Bulterman, F. W. van der Sommen, G. Zwaan, T. Verhoeff, A. J. M.

van Gasteren, and W. H. J. Feijen. On computing a longest path in a tree.

Inform. Process. Lett., 81(2):93–96, 2002. 68

[26] K. Cameron. Induced matchings. Discrete Appl. Math., 24(1-3):97–102,

1989. 10

98 BIBLIOGRAPHY

[27] G. J. Chang, M. Farber, and Z. Tuza. Algorithmic aspects of neighborhood

numbers. SIAM J. Discrete Math., 6(1):24–29, 1993. 3, 12, 13, 14, 56, 83

[28] M.-S. Chang, Y.-H. Chen, G. J. Chang, and J.-H. Yan. Algorithmic aspects

of the generalized clique-transversal problem on chordal graphs. Discrete

Appl. Math., 66(3):189–203, 1996. 13, 15

[29] M. Chellali, O. Favaron, A. Hansberg, and L. Volkmann. k-domination

and k-independence in graphs: a survey. Graphs Combin., 28(1):1–55, 2012.

14

[30] M. Chellali and T. W. Haynes. A note on the total domination number of

a tree. J. Combin. Math. Combin. Comput., 58:189–193, 2006. 79, 83

[31] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vušković.

Recognizing Berge graphs. Combinatorica, 25(2):143–186, 2005. 18

[32] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong

perfect graph theorem. Ann. of Math. (2), 164(1):51–229, 2006. 2, 18

[33] V. Chvátal. On certain polytopes associated with graphs. J. Combinatorial

Theory Ser. B, 18:138–154, 1975. 18

[34] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings

of the Third Annual ACM Symposium on Theory of Computing, STOC ’71,

pages 151–158, New York, NY, USA, 1971. ACM. 28

[35] D. G. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible

graphs. Discrete Appl. Math., 3(3):163–174, 1981. 25, 27

[36] D. G. Corneil, Y. Perl, and L. Stewart. Cographs: recognition, applications

and algorithms. In Proceedings of the fifteenth Southeastern conference on com-

binatorics, graph theory and computing (Baton Rouge, La., 1984), volume 43,

pages 249–258, 1984. 25

[37] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm

for cographs. SIAM J. Comput., 14(4):926–934, 1985. 25

BIBLIOGRAPHY 99

[38] B. Courcelle. A multivariate interlace polynomial and its computation

for graphs of bounded clique-width. Electron. J. Combin., 15(1):Research

Paper 69, 36, 2008. 90

[39] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable opti-

mization problems on graphs of bounded clique-width. Theory Comput.

Syst., 33(2):125–150, 2000. 90

[40] A. Cournier and M. Habib. A new linear algorithm for modular decom-

position. In Trees in algebra and programming—CAAP ’94 (Edinburgh, 1994),

volume 787 of Lecture Notes in Comput. Sci., pages 68–84. Springer, Berlin,

1994. 24

[41] E. Dahlhaus, J. Gustedt, and R. M. McConnell. Efficient and practical

algorithms for sequential modular decomposition. J. Algorithms, 41(2):360–

387, 2001. 24

[42] I. Dinur and S. Safra. On the hardness of approximating minimum vertex

cover. Ann. of Math. (2), 162(1):439–485, 2005. 30, 84, 85

[43] G. Durán, M. C. Lin, and J. L. Szwarcfiter. On clique-transversals and

clique-independent sets. Ann. Oper. Res., 116:71–77, 2002. 13, 19

[44] P. Erdős, T. Gallai, and Z. Tuza. Covering the cliques of a graph with

vertices. Discrete Math., 108(1-3):279–289, 1992. 13

[45] F. Escalante. Über iterierte Clique-Graphen. Abh. Math. Sem. Univ. Ham-

burg, 39:59–68, 1973. 19

[46] J.-L. Fouquet and V. Giakoumakis. On semi-P4-sparse graphs. Discrete

Math., 165/166:277–300, 1997. 24

[47] M. Frick and M. Grohe. The complexity of first-order and monadic second-

order logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004. 91

[48] G. Fricke and R. Laskar. Strong matchings on trees. In Proceedings of the

Twenty-third Southeastern International Conference on Combinatorics, Graph

100 BIBLIOGRAPHY

Theory, and Computing (Boca Raton, FL, 1992), volume 89, pages 239–243,

1992. 68, 70

[49] D. R. Fulkerson. On the perfect graph theorem. In Mathematical progam-

ming (Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., 1972), pages

69–76. Math. Res. Center Publ., No. 30. Academic Press, New York, 1973.

2

[50] T. Gallai. Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar,

18:25–66, 1967. 23

[51] M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman

and Co., San Francisco, Calif., 1979. 14, 30

[52] F. Gavril. Algorithms on circular-arc graphs. Networks, 4:357–369, 1974.

22

[53] V. Giakoumakis, F. Roussel, and H. Thuillier. On P4-tidy graphs. Discrete

Math. Theor. Comput. Sci., 1(1):17–41 (electronic), 1997. 26

[54] M. C. Golumbic. Algorithmic graph theory and perfect graphs, volume 57 of

Annals of Discrete Mathematics. Elsevier Science B.V., Amsterdam, second

edition, 2004. 1

[55] M. C. Golumbic and M. Lewenstein. New results on induced matchings.

Discrete Appl. Math., 101(1-3):157–165, 2000. 68, 70

[56] V. Guruswami and C. P. Rangan. Algorithmic aspects of clique-transversal

and clique-independent sets. Discrete Appl. Math., 100(3):183–202, 2000. 3,

13, 19, 56, 57, 91

[57] A. Gyárfás, D. Kratsch, J. Lehel, and F. Maffray. Minimal non-

neighborhood-perfect graphs. J. Graph Theory, 21(1):55–66, 1996. 3, 4,

32, 33, 37, 56

[58] M. Habib and C. Paul. A survey of the algorithmic aspects of modular

decomposition. Comput. Sci. Rev., 4(1):41–59, 2010. 24

BIBLIOGRAPHY 101

[59] R. C. Hamelink. A partial characterization of clique graphs. J. Combinato-

rial Theory, 5:192–197, 1968. 19

[60] J. Håstad. Clique is hard to approximate within n1−ε. Acta Math.,

182(1):105–142, 1999. 30

[61] J. Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859,

2001. 30

[62] S. T. Hedetniemi and R. C. Laskar. Bibliography on domination in graphs

and some basic definitions of domination parameters. Discrete Math.,

86(1-3):257–277, 1990. 14

[63] M. A. Henning and A. Yeo. Total domination in graphs. Springer Mono-

graphs in Mathematics. Springer, New York, 2013. 83

[64] C. T. Hoang. Perfect graphs. Ph.D. thesis, School of Computer Science,

McGill University, Montreal, Canada, 1985. 25

[65] S.-F. Hwang and G. J. Chang. k-neighborhood-covering and -

independence problems for chordal graphs. SIAM J. Discrete Math.,

11(4):633–643, 1998. 12, 13, 16, 57

[66] B. L. Joeris, M. C. Lin, R. M. McConnell, J. P. Spinrad, and J. L. Szwar-

cfiter. Linear-time recognition of Helly circular-arc models and graphs.

Algorithmica, 59(2):215–239, 2011. 22

[67] R. M. Karp. Reducibility among combinatorial problems. In Complexity

of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center,

Yorktown Heights, N.Y., 1972), pages 85–103. Plenum, New York, 1972. 12,

15, 28

[68] R. Laskar, J. Pfaff, S. M. Hedetniemi, and S. T. Hedetniemi. On the

algorithmic complexity of total domination. SIAM J. Algebraic Discrete

Methods, 5(3):420–425, 1984. 83

102 BIBLIOGRAPHY

[69] J. Lehel. Neighbourhood-perfect line graphs. Graphs Combin., 10(4):353–

361, 1994. 3, 4, 5, 19, 20, 33, 46, 47, 52

[70] J. Lehel and Z. Tuza. Neighborhood perfect graphs. Discrete Math.,

61(1):93–101, 1986. 2, 3, 4, 12, 13, 18, 32, 40, 45, 52, 56, 81

[71] L. A. Levin. Universal enumeration problems. Problemy Peredači Informacii,

9(3):115–116, 1973. 28

[72] M. C. Lin and J. L. Szwarcfiter. Characterizations and linear time recogni-

tion of Helly circular-arc graphs. In Computing and combinatorics, volume

4112 of Lecture Notes in Comput. Sci., pages 73–82. Springer, Berlin, 2006.

22, 50

[73] M. C. Lin and J. L. Szwarcfiter. Faster recognition of clique-Helly and

hereditary clique-Helly graphs. Inform. Process. Lett., 103(1):40–43, 2007.

19

[74] L. Lovász. A characterization of perfect graphs. J. Combinatorial Theory

Ser. B, 13:95–98, 1972. 1, 17

[75] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete

Math., 2(3):253–267, 1972. 1

[76] C. Lund and M. Yannakakis. On the hardness of approximating mini-

mization problems. J. Assoc. Comput. Mach., 41(5):960–981, 1994. 30

[77] A. Lyons. Acyclic and star colorings of cographs. Discrete Appl. Math.,

159(16):1842–1850, 2011. 27

[78] R. M. McConnell. Linear-time recognition of circular-arc graphs. Algorith-

mica, 37(2):93–147, 2003. 22

[79] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive

orientation. Discrete Math., 201(1-3):189–241, 1999. 24

BIBLIOGRAPHY 103

[80] S. Mitchell, S. Hedetniemi, and S. Goodman. Some linear algorithms

on trees. In Proceedings of the Sixth Southeastern Conference on Combina-

torics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla.,

1975), pages 467–483. Congressus Numerantium, No. XIV. Utilitas Math.,

Winnipeg, Man., 1975. 68, 82

[81] S. L. Mitchell, E. J. Cockayne, and S. T. Hedetniemi. Linear algorithms on

recursive representations of trees. J. Comput. System Sci., 18(1):76–85, 1979.

68, 82

[82] S. D. Nikolopoulos, L. Palios, and C. Papadopoulos. Counting spanning

trees using modular decomposition. Theoret. Comput. Sci., 526:41–57, 2014.

27

[83] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM J.

Comput., 16(6):973–989, 1987. 57

[84] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms

and complexity. Dover Publications, Inc., Mineola, NY, 1998. 30

[85] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation,

and complexity classes. J. Comput. System Sci., 43(3):425–440, 1991. 29

[86] E. Prisner. Hereditary clique-Helly graphs. J. Combin. Math. Combin.

Comput., 14:216–220, 1993. 20, 47, 49

[87] F. S. Roberts and J. H. Spencer. A characterization of clique graphs. J.

Combinatorial Theory Ser. B, 10:102–108, 1971. 19

[88] M. D. Safe. On structural characterizations of graph classes related to perfect

graphs and the Kőnig property. Doctoral thesis, Departamento de Com-

putación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina,

2011. 21

[89] E. Sampathkumar and P. S. Neeralagi. The neighbourhood number of a

graph. Indian J. Pure Appl. Math., 16(2):126–132, 1985. 2, 12, 45

104 BIBLIOGRAPHY

[90] C. Savage. Depth-first search and the vertex cover problem. Inform.

Process. Lett., 14(5):233–235, 1982. 64, 68, 82

[91] D. Seinsche. On a property of the class of n-colorable graphs. J. Combina-

torial Theory Ser. B, 16:191–193, 1974. 25

[92] P. Seymour. How the proof of the strong perfect graph conjecture was

found. Gaz. Math., 109:69–83, 2006. 2

[93] J. P. Spinrad. Doubly lexical ordering of dense 0-1 matrices. Inform. Process.

Lett., 45(5):229–235, 1993. 57

[94] M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler linear-time modu-

lar decomposition via recursive factorizing permutations. In Automata,

languages and programming. Part I, volume 5125 of Lecture Notes in Comput.

Sci., pages 634–645. Springer, Berlin, 2008. 24

[95] G. Tinhofer. Strong tree-cographs are Birkhoff graphs. Discrete Appl. Math.,

22(3):275–288, 1988/89. 27

[96] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for

generating all the maximal independent sets. SIAM J. Comput., 6(3):505–

517, 1977. 20, 21

[97] A. Tucker. Matrix characterizations of circular-arc graphs. Pacific J. Math.,

39:535–545, 1971. 22

[98] A. Tucker. Perfect graphs and an application to optimizing municipal

services. SIAM Rev., 15:585–590, 1973. 1

[99] A. Tucker. Structure theorems for some circular-arc graphs. Discrete Math.,

7:167–195, 1974. 22

[100] A. Tucker. Coloring a family of circular arcs. SIAM J. Appl. Math., 29(3):493–

502, 1975. 22

BIBLIOGRAPHY 105

[101] A. Tucker. An efficient test for circular-arc graphs. SIAM J. Comput.,

9(1):1–24, 1980. 22

[102] Z. Tuza. Covering all cliques of a graph. Discrete Math., 86(1-3):117–126,

1990. 13

[103] V. V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2001. 30

[104] D. B. West. Introduction to graph theory. Prentice Hall, Inc., Upper Saddle

River, NJ, 1996. 7, 11

[105] G. Zambelli. A polynomial recognition algorithm for balanced matrices.

J. Combin. Theory Ser. B, 95(1):49–67, 2005. 21

[106] M. Zito. Linear time maximum induced matching algorithm for trees.

Nordic J. Comput., 7(1):58–63, 2000. 68, 70

	Resumen
	Abstract
	Acknowledgements
	Nomenclature
	Introduction
	Preliminaries
	Basic Definitions and Notations
	Important Parameters
	Some Special Graph Classes
	Perfect Graphs
	Neighborhood-Perfect Graphs
	Clique-Perfect Graphs
	Helly Property and Hereditary Clique-Helly Graphs
	Balanced Graphs
	Circular-arc Graphs and Helly Circular-arc Graphs
	Modular Decomposition of a Graph and Superclasses of Cographs

	Complexity Theory and Approximation Algorithms

	Partial Characterizations of Neighborhood-Perfect Graphs
	Known Characterizations
	Minimally Non-Neighborhood-Perfect Graphs with Disconnected Complement
	P4-tidy and P4-sparse Graphs
	Tree-cographs
	Subclasses of Hereditary Clique-Helly Graphs and Related Graph Classes: Relation with Clique-Perfectness
	Helly Circular-arc Graphs
	Gem-Free Circular-arc Graphs
	Subclasses of HCH Graphs
	Some Relations with Balanced Graphs

	Algorithmic and Complexity Results on Neighborhood-Perfect Graphs
	Known Results
	Recognition Algorithms
	P4-tidy Graphs
	Tree-cographs
	Recognition in Other Graph Classes

	Algorithms for Computing Optimal Sets of Vertices and Edges
	P4-tidy Graphs
	Tree-cographs

	Complexity Results

	Conclusion and Final Remarks
	Index
	Bibliography

