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Introducción

En [33], Daniel Quillen probó el siguiente resultado,

Theorem (Terema A de Quillen). Sea F : C → D un funtor entre categoŕıas pequeñas.
Si las fibras F/d son contráctiles, F es una equivalencia homotópica.

La demostración involucraba conjuntos bisimpliciales y un argumento diagonal. Más
tarde, en [34], Quillen dió una demostración diferente de este teorema, usando la sucesión
espectral de Grothendieck y homoloǵıa con coeficientes locales. Aunque en esta segunda
prueba, se asumı́a que C y D eran posets, Quillen observó que todo se pod́ıa generalizar a
categoŕıas pequeñas sin cambios esenciales.

En este trabajo extendemos la segunda prueba al caso general donde C y D son cate-
goŕıas pequeñas. De hecho usando las mismas ideas, mostramos que el siguiente resultado
es cierto

Theorem. Sea F : C → D un funtor entre categoŕıas pequeñas. Para todo n ≥ 1, si cada
fibra F/d es n-conexa entonces F es una (n+ 1)-equivalencia.

Esto hab́ıa sido probado en el contexto de posets por Bjorner [4] y Barmak [3]. También
exhibimos una versión homológica de este resultado.

En el Caṕıtulo 1, damos una breve introducción sobre conjuntos simpliciales y espa-
cios clasificantes de categoŕıas pequeñas. También explicamos algunas ideas debidas a K.
Brown acerca de como simplificar la estructura celular de conjuntos simpliciales y espa-
cios clasificantes. Usando estas ideas damos una demostración distinta de un resultado
debido a Dwyer y Kan [12], que describe el tipo homotópico del producto libre de dos
categoŕıas . Finalmente revisamos la descripción de Quillen del grupo fundamental de
una categoŕıa pequeña y explicamos como obtener una presentación expĺıcita del mismo
cuando la categoŕıa está presentada por un grafo y relaciones.

El Caṕıtulo 2 contiene una introducción básica a las sucesiones espectrales. El objetivo
del mismo es probar la sucesión espectral de Grothendieck, que precisaremos para probar
el Teorema A.

El Caṕıtulo 3 trata acerca de homoloǵıa con coeficientes locales. La misma generaliza
la homoloǵıa con coeficientes en un grupo fijo G, y brinda una manera de tratar con prob-
lemas que puedan surgir de espacios con grupo fundamental no trivial. Definimos también
homoloǵıa con coeficientes locales para una categoŕıa pequeña. Sorprendentemente, es-
tos grupos de homoloǵıa son los mismos que se obtienen al derivar a izquierda el funtor
coĺımite. Mostramos que un espacio conexo con homoloǵıa con coeficientes locales trivial
es contráctil. Esto es una consecuencia de un resultado puramente algebraico: si Z es
Z[G] playo, G = 1. Usando homoloǵıa con coeficientes locales y la sucesión espectral de
Grothendieck describimos la sucesión espectral de André que usamos en la demostración
del Teorema A.
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Finalmente en el Caṕıtulo 4, ya con todos los lemas previos a nuestra disposición,
probamos los resultados principales de este trabajo.

Un apéndice contiene teoŕıa básica sobre categoŕıas y álgebra homológica.
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Introduction

In [33], Daniel Quillen proved the following result

Theorem (Quillen’s Theorem A). Let F : C → D be a functor between small categories.
If every fiber F/d is contractible, F is a homotopy equivalence.

The proof involves bisimplicial sets and a diagonal argument. Later, in [34], Quillen
gave a different proof of this theorem, using Grothendieck spectral sequence and homology
with local coefficients. Though in this second proof, C and D were assumed to be posets,
Quillen observed that everything could be generalized to small categories without essential
change.

In this work we extend this second proof to the general case where C and D are small
categories. In fact we show that by using the same ideas the following more general result
is true,

Theorem. Let F : C → D be a functor between small categories. For any n ≥ 1, if every
fiber F/d is n-connected then F is an (n+ 1)-equivalence.

This has been proved in the particular context of posets by Bjorner [4] and Barmak
[3]. We also exhibit an homological version of this result.

In Chapter 1, we give a brief introduction to simplicial sets and classifying spaces
of small categories. Some ideas due to K. Brown on how to simplify the cell structure
of simplicial sets and classifying spaces are also explained. Using these ideas we give a
different proof of a simple result by Dwyer and Kan [12], describing the homotopy type
of the free product of two categories . Finally, we recall Quillen’s description of the
fundamental group of a small category and explain how to obtain an explicit presentation
of the fundamental group when the category is presented by a graph and relations.

Chapter 2 contains the most basic theory of spectral sequences. The aim is to prove
Grothendieck spectral sequence, which will be used to prove Theorem A.

Chapter 3 deals with homology with local coefficients. This generalizes homology
with coefficients in a fixed group G, and provides a way to deal with problems arising
from non-simply connected spaces. We define homology with local coefficients for small
categories. Interestingly, this is the same as left deriving the colimit functor. We show
that a connected space that has zero homology groups with coefficients in any local system
is contractible. This is a consequence of a purely algebraic result: if Z is Z[G] flat, G = 1.
Using homology with local coefficients and Grothendieck spectral sequence we describe
André spectral sequence, used in the proof of Theorem A.

Finally in Chapter 4 we put all the pieces together and prove the main results of this
work.

There is also an appendix, which contains some basic category theory and homological
algebra.
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Chapter 1

Simplicial Sets and Classifying
Spaces of Small Categories

This chapter begins by recalling the notion of simplicial sets. These are combinatorial
models of topological spaces, that provide greater flexibility than other structures (such
as simplicial complexes), at the cost of an apparent greater complexity. We will associate
to a small category its nerve, which is a simplicial set. The geometric realization of the
nerve is called the classifying space of the category. Then, we will describe some methods
to simplify the homotopy type of these spaces. Finally, we will recall how to describe the
fundamental group of a classifying space algebraically. General references for this chapter
are [28] and [19].

1.1 Simplicial Sets

A simplicial set is a collection of simplices together with maps that show how these sim-
plices are glued to each other. Formally,

Definition 1. A simplicial set K is defined by providing the following information:
A collection {Kn}n≥0 of sets
Maps between these sets, di : Kn → Kn−1 and si : Kn → Kn+1 for 0 ≤ i ≤ n, satisfying

the so called simplicial identities,
didj = dj−1di for i < j
sisj = sj+1si for i ≤ j
disj = id if i = j or i = j + 1
disj = sj−1di for i < j
disj = sjdi−1 for i > j + 1

The maps di are called faces, and the maps sj degeneracies. Elements of Kn are refered
to as n-simplices. There is a natural notion of morphism,

Definition 2. A morphism f : K → L of simplicial sets is a collection {fn}n≥0 of maps,
fn : Kn → Ln, commuting with faces and degeneracies.

To better understand this definition let us present an example. Given L a simplicial
complex whose vertices are totally ordered, we can form a simplicial set ss(L) in the
following manner. Take ss(L)n = {(v0, · · · , vn)/{vi} is a simplex of L and vi ≤ vi+1} and
define face and degeneracies by,
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di((v0, · · · , vn)) = (v0, · · · , v̂i, · · · , vn)

(omit vertex i), and

sj((v0, · · · , vn)) = (v0, · · · , vj , vj , · · · , vn)

(repeat vertex j).
With this example in mind, it is easy to interpret the simplicial maps and identities.

The i-face of an n-simplex is the (n − 1)-simplex that doesn’t include vertex i (the face
opposed to vertex i). Degeneracies are simply a way of thinking an n-simplex as an (n+1)-
simplex. They are useful because they allow to consider morphisms that map simplices of
higher dimensions to lower dimensions.

Simplicial sets with morphisms so defined form the category sSet. There is an alter-
native definition of simplicial set: a contravariant functor from the simplex category ∆ to
Set.

Definition 3. The simplex category ∆, has as its objects the non-empty finite totally
ordered sets, and as its morphisms, ordered preserving maps.

Many algebraic structures can be presented by generators and relations. The analogue
for categories is to give a graph and relations between paths. A brief explanation of what
presenting a category means is given in the appendix.

∆ admits a presentation from which it is immediate that sSet = Set∆
op

. Denote by n
the totally ordered set with n + 1 elements and the coface and codegeneracy maps in ∆,
δi : n− 1→ n and σj : n+ 1→ n

δi(x) =

{
x if x < i
x+ 1 if x ≥ i

σj(x) =

{
x if x ≤ j
x− 1 if x > j

The simplex categroy is presented by the coface and codegeneracy maps subject to the
cosimplicial identities, the opposites of the simplicial identities given in the definition of
simplicial set. A proof of this assertion can be found in [26].

It is then clear that a simplicial set is just a contravariant functor from ∆ to Set, and
that a morphism of simplicial sets is a natural transformation between functors. So we
have sSet = Set∆

op
.

This is convenient for many reasons. First, as sSet is a functor category over Set, it
has all small limits and colimits and they are are computed pointwise. Second, take now
the simplicial complex consisting of the nonempty subsets of n with the obvious ordering
on the vertices. Interpreted as a simplicial set it is the contravariant functor [−, n]. So by
Yoneda (see section A.1.3) defining a morphism from it to a simplicial set K is equivalent
to choosing an n-simplex in K.

Minor modifications in the definition provide useful notions. For example, instead of
∆ consider now the subcategory generated by injective morphisms ∆inj . An element of

Set∆
op
inj is referred to as a semi-simplicial set. It is somehow a midpoint between simplicial

complexes and simplicial sets.
Replacing Set by any other category C and defining sC as C∆op

gives the definition of
simplicial object in C. So there are such things as simplicial topological spaces, simplicial
groups or even simplicial simplicial sets.
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Geometric Realization

Simplicial sets model topological spaces. The idea is to think of an n-simplex as an n-cell,
and glue simplices together according to the face and degeneracy maps.

First recall that there is a standard functor θ : ∆→ Top, that maps n to the standard
n-simplex ∆n (the convex hull of the standard basis in Rn+1), the coface δi to the map that
inserts a zero on place i, and the codegeneracy σj to the map that sums the components
j and j + 1, that is,

θ(δi)(v0, · · · , vn−1) = (vo, · · · , 0
placei

, · · · , vn−1)

and

θ(σj)(v0, · · · , vn+1) = (v0, · · · , vj + vj+1, · · · , vn+1).

By Yoneda (see section A.1.3), a simplicial set K : ∆op → Set is colimit of representable
functors,

X = colim
ΓX

[−, n]

As said before [−, n] is the n-simplex thought of as a simplicial set. Therefore its
geometric realization should equal ∆n, the standard n-simplex. It is then natural to
define the geometric realization of X, noted |X|, in the following way,

|X| = colim
ΓX

∆n

This is the colimit of the functor from ΓX to Top that maps (n, x) to ∆n and a
morphism f to θ(f).

Taking geometric realization defines a functor | · | : sSet → Top. Colimits in Top are
easy to describe so the geometric realization of X is exactly

|X| =
∐
n≥0

Xn ×∆n/ ∼

where Xn is given the discrete topology, and ∼ is the equivalence relation generated
by

(dixn, un−1) ∼ (xn, θ(δ
i)un−1)

(sjxn, un+1) ∼ (xn, θ(σ
j)un+1)

for all xn, un−1, un+1.
There is another approach to the geometric realization functor: it is the left adjoint

to the singular set functor S : Top → sSet defined by taking S(X)n = {α : ∆n → X : α
continuous} and as expected di(α) = αθ(δi), sj(α) = αθ(σj). As a consequence | · | pre-
serves colimits and then it is relatively easy to show that |X| admits a CW structure
having one cell in dimension n for each nondegenerate simplex (a simplex is called de-
generate if it is in the image of some degeneracy, and nondegenerate otherwise). For a
reference consider, [19].
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1.2 Nerves of Small Categories

To each small category C corresponds a simplicial set NC called its nerve. This was first
defined by Segal in [39], though he attributed the idea to Grothendieck.

Definition 4. Given C a small category, NC is the simplicial set having as 0-simplices
Ob(C), as n-simplices the n-tuples of composable arrows, NCn = {(f1, · · · , fn) :such that
cod(fi) = Dom(fi+1)}, the faces and degeneracy maps,

di(f1, · · · , fn) =


(f2, · · · , fn) if i = 0 n > 1
cod(f1) if i = 0 n = 1
(f1, · · · , fn−1) if i = n n > 1
Dom(f1) if i = n n = 1
(f1, · · · , fifi+1, · · · , fn) if i > 0 n > 1

If n > 0,
sj(f1, · · · , fn) = (f1, · · · , fj , Idcod(fj), · · · , fn)

and s0(a) = (ida).

The nerve is a functor N : Cat → sSet in an obvious way, if F : C → D is in Cat,
N(F )(f1, · · · , fn) = (F (f1), · · · , F (fn)) defines a morphism between simplicial sets. The
classifying space is defined as the composition of the nerve and the geometric realization,
B = | · | ◦N : Cat→ Top

For example if C is the following category,

A B

α

β

there are 2 0-simplices, 2 non-degenerate 2-simplices and no other nondegenerate sim-
plices. The classifying space of this category is S1.

If we now consider,

A B

α

α−1

it is clear that the n-skeleton of this space is Sn. Thus its classifying space is the
colimit of the sequence of inclusions Sn ⊂ Sn+1, i.e. S∞.

In general the nerve of a category has many non-degenerate simplices. In fact it will
have infinitely many unless the category has a finite number of objects and morphisms,
and is acyclic (i.e. there are no non identity endomorphisms, and given two distinct objects
there are morphisms in only one direction). It would be convenient to have some tools to
simplify this construction, preserving the homotopy type of the space.

1.3 Discrete Morse Theory for Simplicial Sets

In [8] K.S. Brown, based on previous work by himself and R. Geoghegan [7], showed how
to produce from a simplicial set K, together with what he called a collapsing scheme on
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K a CW complex homotopy equivalent to |K|, but having less cells. He then proceeded
to show that any monoid presented by a complete rewritting system had an associated
collapsing scheme in a natural way. In [10] this notion was generalized for categories by
M.G. Citterio, as Brown noted it could be.

This was completely previous to the more known work of Forman [14] and Chari [9] on
discrete morse theory. However, collapsing schemes and acyclic matchings are essentially
the same thing.

In this section we follow [10] and [8]. We begin by giving an intuitive idea of what
a collapsing scheme is by means of a concrete example. Basically, while constructing the
geometric realization of a simplicial set, we will change the order in which we glue cells
and make deformations throughout the process, leaving the homotopy type of the final
space unchanged. A collapsing scheme will indicate how to do this in an orderly fashion.

Suppose we were constructing the geometric realization of the simplicial set K associ-
ated to the simplicial complex

{0, 1, 2, 3, 01, 02, 12, 13, 23, 012, 123}.

We start with a point representing the 0-simplex 0, which will be called essential. Now
we adjoin the 0-simplex 1, the 1-simplex 01, and contract the segment joining 0 and 1 to
the point 0. This space is homotopy equivalent to the realization of the subcomplex

{0, 1, 01}.

We mark 1 as a redundant 0-simplex, and 01 as a collapsible 1-simplex: 01 collapses and
allows us to forget about 1, making it redundant. We do this again with 2 and 02. Now,
we adjoin the point 3, the segment 13 (remembering that 1 has been contracted to 0), and
collapse 13 to 1. Note that the order was important here: first we collapsed 01, and then
13 (later we will say that 1 has lower height than 3). In order not to get confused through
all the deformations, we keep track of them: formally associate 1 to 01, 2 to 02, and 3 to
13 by means of a function c that will map redundant to collapsible simplices. So far we
have a space homotopy equivalent to the realization of

{0, 1, 2, 3, 01, 02, 13}.

We have depleted all 0-simplices and there remains two 1-simplices: 12 and 23. We adjoin
12 (noting that both 1 and 2 are identified with 0) and 012. Now, we can clearly deform
the resulting space (which is a 2-disk), to the point 0 (in the general case we would be
deforming a 2-simplex into one of its horns). Finally, do the same for 23 and 123 (noting
again that 1, 2 and 3 have been identified with a point). Set 12 and 23 as redundant, 012
and 123 as collapsible, and let c(12) = 012, and c(23) = 123. The resulting space is a point
(as there was only one essential simplex), and it is homotopy equivalent to the geometric
realization of K.

For the general case, take K a simplicial set and begin to form its geometric realization
by putting together some of the 0-simplices of K: the essential 0-simplices. Then choose
a subset of the rest: the redundant 0-simplices (those we will say to have height 1), and
for every simplex x there, pick a 1-simplex, say c(x) (the collapsible of x), such that c(x)
has x as one of its faces and the other face an essential 0-simplex. Contract all these
1-simplices to essential 0-simplices (note that we need for c to be injective so as not to
change the homotopy type). Repeat this process by selecting a subset of the rest of the
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0-simplices (those which we will call of height 2), in a way that for every x of height 2 the
faces of c(x), are essential, or redundant of lower height. Repeat again this process for
every possible height, exhausting every simplex. Then go on to the 1-skeleton, some of
the simplices there will be essential, some already collapsed, for the rest choose collapsible
2-simplex and proceed as before. Repeat the process for every dimension, the final space
will be homotopy equivalent to |K| and have one n-cell for every essential n-simplex.

The next definition organizes all the information needed to do this.

Definition 5. A pre-collapsing scheme on a simplicial set K is defined by providing the
following, for every n ≥ 0,

A partition of the nondegenerate n-simplices of K in three sets: En, Rn and Cn, such
that C0 is empty.

A bijective function cn : Rn → Cn+1.
A function ιn : Rn → n+ 1, such that dιn(x) = x for every element of Rn.

The elements of En, Rn and Cn are respectively called the essential, redudant and
collapsible n−simplices. The function cn assigns to a redundant simplex, a collapsible
simplex, and ι specifies which face of c(x) is x.

If x, y are redundant n-simplices such that dic(x) = y for i 6= ιn(x), y needs to be
glued before x. Define then a relation by setting x > y. The height of a redundant n-
simplex is the supremum over all the lengths of chains starting at x, x > y1 > · · · > yn
(we understand that the length of z0 > z1 > · · · > zn is n + 1). If the height of every
redundant simplex is finite the process essentially described above works, and we call the
pre-collapsing scheme a collapsing scheme.

Note that asking for the height to be finite is the same as asking that there are no
infinite descending chains x > y > z > · · · .

In our first example, we considered K to be the simplicial set associated to the complex

{0, 1, 2, 3, 01, 02, 12, 13, 23, 012, 123}.

We had set E0 = {0}, R0 = {1, 2, 3}, R1 = {12, 23}, C1 = {01, 02, 13}, C2 = {012, 123},
c0(1) = 01, c0(2) = 02, c0(3) = 13, c1(12) = 012, c1(23) = 123, ι0 = ι1 = 0. In this case,
3 > 1 and 23 > 12.

Theorem 6 (Brown’s theorem). Let K be a simplicial set together with a collapsing
scheme, as specified above. Then its geometric realization X = |K| admits a quotient CW -
complex Y , with as many n-cells as essential n-simplices. The quotient map q : X → Y is
a homotopy equivalence. It maps each open essential cell of X homeomorphically onto the
corresponding cell of Y , and it maps each collapsible (n+ 1)-cell into the n-skeleton of Y .

The proof is elementary, and is essentialy a verification that the definition of collapsing
scheme gives us a coherent way of collapsing simplices.

Proof. Define Xe
0 as the essential 0-cells, X+

n as the space obtained from Xe
n by gluing the

redundant n-cells and the collapsible (n+1)-cells, and Xe
n+1 as the one obtained from X+

n

by adjoining the essential (n+ 1)-cells.
The idea is to show that jn : Xe

n → X+
n is a strong deformation retract. First, choose

strong deformation retractions from ∆n to Λni for every n, i (where Λni is the geometric
realization of the smallest subsimplicial set of [−, n] containing all the faces dj(idn) except
the ith one)
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Factor the inclusion Xe
n ↪→ X+

n , in the following manner,

Xe
n ↪→ Xe,1

n ↪→ Xe,2
n ↪→ Xe,3

n · · · ↪→ X+
n

Where we first adjoin redundant simplices of height 1, with their respective collapsible
(n+1)-simplices, and we go on, adjoining redundants of higher height with their respective
collapsibles.

X+
n is the colimit of this sequence of closed cofibrations. If we show that every Xe,k

n ↪→
Xe,k+1
n is a strong deformation retract, then it is standard that the colimit deformation

retracts on Xe
n (see [17] A.5.8)

The following square is how Xe,k+1
n is obtained from Xe,k

n as an adjunction space.
As the top horizontal arrow is a strong deformation retract, the bottom one is a strong
deformation retract too, by basic properties of adjunction spaces.⊕

Λnιn(τ)
τ∈Rn,k+1

⊕
∆n

τ∈Rn,k+1

Xe,k
n Xe,k+1

n

jn,k

(1.1)

So, jn : Xe
n ↪→ X+

n is a strong deformation retract (and also a cofibration, as it is
an inclusion of a subcomplex). Let rn be the respective retraction. Now, consider the
diagram,

Xe
0 X+

0
Xe

1 X+
1

Xe
2 X+

2

Y0 Y0 Y1 Y1 Y2 Y2

· · ·

· · ·

j0 i0 j1 i1 j2

id i0 id i1 id

id r0 r0 r0r1 r0r1 r0r1r2

Where Y0 is Xe
0 , and Yn is defined as the pushout of the square it first appears in. Call

Y the colimit of the bottom row.
The top row is a sequence of closed cofibrations, and the bottom row too, as closed

cofibrations are stable under pushouts. The vertical maps are homotopy equivalences, as
pushouts of homotopy equivalences along cofibrations are homotopy equivalences. As in
this case the topological colimit equals the homotopy colimit, the induced map of X on
Y is a homotopy equivalence (see [45])

Every vertical map is a quotient. Just note that retractions are quotient maps, com-
position of quotients is a quotient, and if

A B

C D

a

b c

d

(1.2)

is an adjunction space (with A a closed subspace), if b is a quotient, then so is c.
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So, as every vertical arrow is a quotient, the induced map on the colimits is a quotient
too.

The structure for Y as a CW complex is immediate: Each Yn+1 is obtained from Yn
by adjoining n+ 1 cells, because Xe

n+1 is obtained from X+
n by adjoining n+ 1 cells and

composition of pushouts is a pushout.

As an example, we see that a category with a terminal object is contractible, i.e.
has a contractible classifying space. Let C be a small category, c a terminal object in
it. Define E0 as consisting only of c. There will be no other essential simplices. Take
Rn = {(f1, · · · , fn) : cod(fn) 6= c} and Cn = {(f1, · · · , fn) : cod(fn) = c}. Define
cn(f1, · · · , fn) = (f1, · · · , fn, cod(fn) → c). If x is in Rn, and i 6= n + 1, di(c(x)) is either
collapsible or degenerate, so this is in fact a collapsing scheme, with only one essential
0-simplex.

In order to produce more interesting examples we need to introduce rewriting systems.
But first, we state the relation between collapsing schemes and acyclic matchings.

Acyclic Matchings = Collapsing Schemes

Now we show how a collapsing scheme is exactly an acyclic matching.
We will understand that a matching M in a graph G (see the appendix) is a collection

of disjoint arrows from G, where two arrows are disjoint if they don’t share source nor
target. A path in a graph is a sequence of composable arrows. A matching M in a graph
G will be called acyclic, if in the graph formed from G by reversing the arrows in M , there
are no infinite paths.

Now, take K a simplicial set and consider the graph G(K), whose vertices are all
nondegenerate simplices, where for each n-simplex x, and each 0 ≤ i ≤ n, we draw an
arrow from x to di(x) if di(x) is nondegenerate.

A collapsing scheme determines an acyclic matching. For each redundant n-simplex x,
pick the arrow from cn(x) to x determined by dιn(x). The resulting collection of arrows is
a matching, because redundant and collapsible simplices were disjoint, and every cn was
a well defined injective function. The fact that height is well defined means exactly that
the matching is acyclic.

This assignment from collapsing schemes to acyclic matchings is clearly bijective.
The proof of theorem 6 is really constructive, it tells us how to attach the essential

simplices together. For example if x is an essential 1-simplex, to attach it we need to
specify two points. Look at x in G(K), and follow the arrows from x. If d0(x) is essential,
we are done, one of the points is d0(x). If not, it is redundant, and has an arrow going
away from it. Follow that arrow, until you get to an essential 0-simplex. That is the point
to consider. For simplices of higher dimensions, just follow the arrows from that simplex
until you arrive to an essential simplex (degenerate faces should also be considered), the
information carried in the middle (especially the chosen retractions into horns used in the
proof), specifies how to attach the simplex.

Rewriting Systems

In section A.1.4 we give some necessary definitions that we will use in this section.
Let G be a (directed) graph, and R a relation on Free(G). That is, given a, b objects

of G, Ra,b is a relation on the set of words from a to b. We will think of elements (w1, w2)
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of Ra,b as rules for rewriting words, and call them rewriting rules. Usually we shall note
(w1, w2) by w1 → w2. More generally we will write w1 → w2, if we can go from w1 to w2

by applying a rewriting rule on some subword of w1, i.e. if there are words (some possibly
empty) s, t, u, v such that w1 = sut, w2 = svt and u→ v. We then say that w2 is obtained
from w1 by rewriting or reduction.

A word is call reducible if some rewriting rule can be applied to it, and irreducible
otherwise. If we can apply a finite sequence of reductions starting at word w1 and ending
at word w2, we write w1 ⇒ w2.

Definition 7. A complete rewriting system (G,R) is a relation R on a graph G such that,
there are no infinite reduction sequences

w1 → w2 → w3 → · · ·

and whenever w ⇒ u and w ⇒ v, there is a word z such that u⇒ z and v ⇒ z.

Under these conditions, starting from any word w, and no matter which rewriting rules
we apply, we will eventually arrive to the same irreducible word, r(w).

Moreover, if we define a relation on Hom(a, b) in Free(G) by setting w1 ∼ w2 iff
r(w1) = r(w2), then this relation is the smallest congruence containing R. So, in the
category presented by G and R, we can take r(w) as a representative of the class of w,
that is, the arrows of the category presented by G and R, (G|R), can be taken to be the
irreducible words.

It is important to distinguish now that if w is a word from a to b, and v a word from b
to c, we note wv their concatenation (the composition v◦w in Free(G)) and v∗w = r(wv),
there composition in (G|R).

We are now ready to show how to associate a collapsing scheme to the nerve of (G|R),
when (G,R) is a complete rewriting system. For simplicity, we assume that the arrows of
G, are themselves irreducible words (otherwise we could do without them).

Every object will be an essential 0-simplex. An n-simplex, τ = (w1, · · · , wn) will be
essential if,

1. w1 has length one

2. wiwi+1 is reducible

3. Every proper initial subword of wiwi+1 is irreducible

If τ = (w1, · · · , wn) is not essential, let k be the least such that (w1, · · · , wk) is essential,
and call this min(τ).

Clearly, k = 0 iff w1 has length greater than one. In that case, set τ as redundant.
Write w1 = sw where s has length one. Observe that s, w are irreducible words, because
they are subwords of an irreducible word. Set then cn(τ) = (s, w,w2, · · · , wn) and ιn(τ) =
min(c(τ)) = 1.

Assume now that w1 has length one. . Then 1 ≤ k < n.
If wkwk+1 is irreducible define τ to be collapsible. If not, some proper initial subword of

wkwk+1 is reducible. As no subword of wk is reducible, there must be a reducible subword
wku of wkwk+1. Take u to be minimal such that wku is reducible. Write wk+1 = uv. Set
τ as redundant, cnτ = (w1, · · · , wk, u, v, · · · , wn), and ιn(τ) = min(c(τ)) = k + 1.

Note that in every case, if τ is redundant, min(cn(τ)) = ι(τ) = min(τ) + 1.
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Proposition 8. The data above give a collapsing scheme for the nerve of (G|R).

It is clear from how we defined things, that we are in presence of a pre-collapsing
scheme. What we really have to check, is that there are no infinite descending chains of
redundant simplices. The following lemma, will say exactly that.

If τ = (w1, · · · , wn), define word(τ) = w1 · · ·wn.
On the set of words of Free(G) define the following relation, w > v if v is a strict

subword of w or if w ⇒ v. Note that there cannot be an infinite descending chain
w1 > w2 > w3 > · · · , because length must eventually stabilize, and there cannot be an
infinite reduction sequence of words, as the rewrite system is complete.

Lemma 9. If τ, τ ′ are redundant n-simplices, and τ > τ ′, then either word(τ ′) < word(τ)
or they are equal and min(τ ′) > min(τ)

This will prove our proposition as for any infinite descending sequence of redundant
simplices

τ1 > τ2 > τ3 > · · ·

word(τi) must eventually stabilize, and then min(τi) must start to grow strictly. As
this number is bounded by n− 1, the sequence must be finite.

So let’s prove the lemma.

Proof. Let c(τ) = (w1, · · · , wn+1), and ι(τ) = i. Observe that ι(τ) = min(c(τ)) =
min(τ) + 1. From the description of redundant simplices, we note that wiwi+1 is an irre-
ducible word. Then τ = (w1, · · · , wiwi+1, · · · , wn), as wi+1 ∗ wi = r(wiwi+1) = wiwi+1).
Let j = ι(τ ′). Note that j 6= i.

If j = 0 or j = n, then word(τ ′) is a strict subword of word(τ), so word(τ) > word(τ ′).
If not, j > i. This is because (w1, · · · , wi) is essential, as min(c(τ)) = i. In this case

word(τ) = word(τ ′), but j − 1 > i− 1, so min(τ ′) > min(τ).

As a particular nice application found in [10],

Lemma 10. The classifying space of a free category (G|∅) is homotopy equivalent to the
geometric realization of the graph, |G|

In particular the classifying space of N0 = (	 |∅) is homotopy equivalent to S1.

Proof. Clearly if the relation R is empty, the presentation is a rewriting system, where
every arrow is irreducible. As no composition of nonidentity arrows is reducible, the
essential simplices are exactly the objects and the arrows.

Every small category C has an obvious presentation by a complete rewriting system.
Take G as the underlying graph of C, and direct every word (f1, · · · , fn) to (fn · · · f1). Call
this presentation (G(C)|R(C)). Unsurprisingly every nondegenerate simplex of the nerve
of C turns out to be essential, under this rewriting system. So, by taking the obvious
presentation, we simplify nothing.

Consider now two categories C and D with the same objects. We shall denote by
BC ∨ BD, the union of these spaces at the common points of the 0-skeleton. On the
other hand, we define C ∗ D as the free product of these categories. Formally, C ∗ D is the
category presented by (G(C)∨G(D)|R(D)∪R(C)), where G(C)∨G(D) denotes the union
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of the graphs that share the same vertices (take both sets of arrows, and the common set
of vertices).

Then, we have the following result

Lemma 11. If C,D are small categories with the same objects, B(C ∗ D) is homotopy
equivalent to BC ∨BD

Proof. Consider (G(C)∨G(D)|R(D)∪R(C)). This is a complete rewriting system for C∗D.
We claim that an essential simplex (w1, w2, · · · , wn) has every wi either an arrow from C
or an arrow from D. Suppose w1 = f is an arrow from C (we know it must be an arrow
of the graph). As, fw2 must be reducible, w2 = gu where g is a nonidentity arrow from C
and u is a word (if g where in D, fw2 would be irreducible). As every proper subword of
fw2 must be irreducible w2 must equal g (because fg is reducible).

So, every essential n-simplex, is either an essential n-simplex of (G(C)|R(C)) or of
(G(D)|R(D)), and the way in which this simplices are glued is exactly how they are glued
in (G(C)|R(C)) and in (G(D)|R(D)). Then, the space homotopy equivalent to B(C ∗ D),
is a CW whose cell structure is the of the cell structures of C and D, with the same
0-skeleton. And this last space, is BC ∨BD

We’ve found this last result as proposition 3.8 from [12], though the proof is different.
For a different example, where this technique fails, consider the monoid M = (a|a2 =

a). If we think of this as a presentation of a category, with a2 → a, we have a complete
rewriting system. In the collapsing scheme associated, every nondegenerate n-simplex is
essential, but the monoid is contractible!

To see this, first note the following,

Proposition 12. If F,G : C → D are functors between small categories, and η : F → G
is a natural transformation between them, then, B(F ) is homotopic to B(G)

Proof. Let I be the category with two objects and one morphism between them (0 →
1). A natural transformation form F to G is exactly a functor H : C × I → D,such
that H(−, 0) = F and H(−, 1) = G. Taking classifying spaces we have an homotopy
between B(F ) and B(G), as B(I) is the unit interval. The technical detail here, is that
|N(C × I)| = |NC| × |NI| because the nerve commutes with products and as |NI| = [0, 1]
is locally compact. See [18].

Following [35], we’ll say that a monoid M has a black hole if there is an element z in
M such that for every y in M , zy = z. Note that a monoid has a black hole iff there is
natural transformation between idM and e, where we think of M as a category with only
one object, idM as the identity functor of this category, and e as the functor that maps
every arrow to the identity e of the monoid,

∗ ∗

∗ ∗

z

y e

z

(1.3)

Then, in a monoid with a black hole, the identity is homotopic to a constant, so BM
is contractible.
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In our example M = (a|a2 = a), a is a black hole, so M is contractible. Our rewriting
system fails to simplify this, and in fact there are no nonempty acyclic matchings, as in
the graph G(M) no arrow can be reversed without creating a loop.

Note that the 2-skeleton of BM is the dunce cap, the simplest example of a contractible
space that is not collapsible.

The even dimensional skeletons of BM have been considered as higher dimensional
dunce hats, as they are also contractible but not collapsible. See [1],[37] and [35]. BM
could be thought of as an infinite dimensional dunce hat: it is contractible but it admits
no collapsing scheme.

As a final example, consider the monoid M = (a, b|ab). This is the so called bicyclic
monoid. it is exactly the category presented as,

∗

a

b

With (b, a)→ 1 (remember we read words from left to right). In this case, the complete
rewriting system yields 4 essential simplices, the point ∗, (a), (b), and ((b), (a)). We can
enlarge the acylic matching, by choosing the arrow from ((b), (a)) to (a), and end up
having only one essential 1-simplex, and one essential 0-simplex, so |M | is homotopic to
S1.

1.4 The Fundamental Group of a Small Category

The fundamental group of a small category can be computed algebraically, within the
category. This was first done in [33]. A friendly exposition can be found in [11], and we
will follow it closely.

Definition 13. A local system of sets in a small category C is a functor F : C → Set such
that F (f) is an isomorphism for every arrow f in C.

Local systems of sets are a full subcategory of SetC , that we denote by Cov(C). Anal-
ogously, replacing Set by Ab we get the definition of local system of abelian groups, that
we will need later.

Recall that if X is a topological space, the coverings q : E → X of X constitute a
category Cov(X), where a morphism from q1 to q2, is a continuous function σ : E1 → E2,
such that q1 = q2σ.
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There is an appropiate definition of covering in the simplicial setting, which we will
need in this section.

Definition 14. A map f : E → X of simplicial sets is called a simplicial covering iff
f : E(0)→ X(0) is onto and for every n-simplex τ in X, every ι : 0→ n in ∆ and every
0-simplex v in E such that X(ι)(τ) = f(v), there exists a unique n-simplex τ̃ in E, such
that f(τ̃) = τ and E(ι)(τ̃) = v.

Basically, this says that given τ an n-simplex of X, we can choose a unique lifting of
τ provided we first produce a lifting of a 0 face of τ .

The following result can be found in [18] or in [41].

Lemma 15. The geometric realization functor transforms simplicial converings into topo-
logical coverings.

The next theorem is the most relevant result in this section.

Theorem 16. Let C be a small category. Then, there is a natural equivalence of categories,

Cov(BC) ' Cov(C)

Proof. We will define explicit functors between these categories and show that they give
an equivalence between them. For simplicity assume C is connected.

Given q : E → BC, define F (q) : C → Set as follows,

F (q)(c) = q−1(c)

where we think of the object c of C as a point in BC. If f : c→ d is a morphism in D,
and x is a point in F (q)(c), consider the lifting γ of the path defined by f in BC starting at
x, and define F (f)(x) as γ(1). This is clearly a point in F (d). F (f) is a bijective function,
because paths are reversible. This defines a functor F : Cov(BC)→ Cov(C).

Given now T : C → Set that inverts morphisms, consider the category ΓT whose objects
are pairs (c, x), where c is an object of C and x an element of T (c), and a morphism from
(c, x) to (d, y) is an arrow h : c → d in C such that T (h)(x) = y. There is a projection
functor pT : ΓT → C, that maps (c, x) to c. We will define G : Cov(C) → Cov(BC)
as G(T ) = BpT . This is a well defined functor provided B(pT ) is a covering. In fact,
NpT : NΓT → NC is a simplicial covering, as we now show. Let τ be an n-simplex of NC,
that is,

τ = c0
f1→ c1

f2→ c2 · · ·
fn→ cn

Suppose we are given (ci, xi) in Np−1
T (ci). Then, as T inverts morphisms the lifting τ̃

is uniquely determined,

τ̃ = · · · (ci−1, (Tfi)
−1(xi))

fi→ (ci, xi)
fi+1→ (ci+1, T fi+1(xi)) · · ·

As the geometric realization of a simplicial covering is a covering, B(pT ) is a covering.
Finally the pair F,G provides an equivalence of categories. That FG ' idCov(C) is

immediate. FG maps a morphism inverting functor T to the functor that assigns to the
object c of C, the set {c} × F (c) and this set is naturally isomorphic to F (c).

Showing that GF ' idCov(BC) requires more work. Let q : E → BC be a covering, and
assume for simplicity that E is connected. We want to show that this covering is naturally
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isomorphic to BpF (q) : BΓF (q) → BC. Point the spaces by choosing c in C, x in q−1(c),
and (c, x) in ΓF (q)

Consider the diagram

BΓF (q) E

BC

BpF (q) q

If we show that BΓF (q) is connected, and that Imπ1(BpF (q)) = Imπ1(q), then, as the
spaces are connected and locally path connected, we would get an isomorphism by general
properties of coverings. We need the following result, which we prove at the end of this
proof.

Lemma 17. Let X be a CW complex, γ a path in X from the 0-cell a to the 0-cell b.
Then γ is path homotopic to α1 ∗ · · · ∗αn where αi is βi or β̃i, and βi is the characteristic
function of a certain 1-cell of X.

BΓF (q) is connected. Take (c, x), (d, y) in ΓF (q). As E is connected, we can take γ a
path in E from x to y, as in the previous lemma (a covering of a CW complex admits a
natural CW structure, by lifting cells).

So we have a diagram in C (where some arrows could be identities),

a0 a1 an

c b0 b1 bn−1 d

· · ·
f0 g0 f1 g1 fn gn

And this diagram lifts to a diagram of paths in E, and connects x and y,

ã0 ã1 ãn

x b̃0 b̃1 ˜bn−1
y

· · ·
f̃0 g̃0 f̃1 g̃1 f̃n g̃n

But this means, that we have a similar diagram in ΓF (q), that connects (c, x) and (d, y).

(a0, ão) (a1, ã1) (an, ãn)

(c, x) (b0, b̃0) (b1, b̃0) (bn−1, ˜bn−1) (d, y)

· · ·
f0 g0 f1 g1 fn gn

So BΓF (q) is connected. To show that Imπ1(BpF (q)) = Imπ1(q), choose [w] in
π1(BC, c), and with the same idea as before it can be seen that the lifting of w to one
covering is a closed path iff the lifting to the other covering is a closed path.

Finally, the isomorphism between the coverings is natural. First, any point (d, y) in
BΓF (q) is mapped to y. To verify this, take a path in C from c to d, lift it to E starting at
x, and then take path in E from the endpoint of this lifting to y. Represent this path using
liftings of arrows of C as before and by uniqueness of liftings of paths (d, y) is mapped to
y. Naturallity is now obvious by using uniqueness of liftings.

For more details consult [11]

Next is the proof of the lemma that was just used.
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Proof. We will only sketch an idea, a detailed proof can be found in [11]. First, by
cellular approximation, we can assume that X is 1-dimensional. Then, X is the geometric
realization of a 1-dimensional simplicial complex K. If γ : |I| → |K| is the path, where I
is a one simplex, take ϕ : sdNI → K a simplicial approximation to γ, where sdN is a good
enough barycentric subvidision of I (see [40] chapter 3 sections 3 and 4) . Necessarily,
ϕ(0) = γ(0) and ϕ(1) = γ(1), therefore, ϕ and γ are path homotopic ([40], chapter 3,
section 4, lemma 2). The restriction of ϕ to each subinterval of the barycentric subdivision
of I, is path homotopic to a characteristic map of a 1-cell of X or to the inverse of one of
them.

Given f : X → Y a continuous function between topological spaces, f induces a
functor f∗ : Cov(Y ) → Cov(X), by taking pullbacks of coverings along f . If F : C → D
is a functor, F induces another functor F∗ : Cov(D)→ Cov(C), by precomposing with F .
Under the previous equivalence F∗ and (BF )∗ are identified.

By Π1(X) we will understand the fundamental grupoid of a topological space X. Recall
that for a connected, locally path connected, and semi-locally simply connected space X,
the functor

W : Cov(B)→ SetΠ1(X)

defined, similarly as before, by taking fibers and lifting paths, is an equivalence of
categories (see [46] Theorem 3.3.2). In particular this is true for CW complexes (eventually
considering each connected component).

So by the previous result we have a chain of equivalences of categories,

SetΠ1(BC) ' Cov(BC) ' Cov(C) ' SetS−1C ,

where S−1C is the localization of C (i.e. we add formal inverses to every arrow, see
the appendix), and the last equivalence follows from the universal property that defines it
(see section A.1.4)

Recall that every category is equivalent to a skeleton (a skeleton of a category C is a
full subcategory, having exactly one object for each isomorphism type) . Assume that C
is connected. If now we pick an object c in C, the grupoid S−1C is equivalent to the full
subcategory generated by c, and that is the automorphism group of c considered as cate-
gory with one object. We shall note this by Aut(c, S−1C). Similarly, the grupoid Π1(BC)
is equivalent to π1(BC, c)op (in the fundamental groupoid composition is understood from
right to left, and in the fundametal group, from left to right).

So, we get an equivalence

Setπ1(BC,c)op ' SetAut(c,S−1C)

To recover the groups, we look at automorphisms of the forgetful functor. Remember
that if G is a group, a functor from G to Set is exactly a left G-set.

Lemma 18. Let G be a group. U : SetG → Set the forgetful functor. Then, Aut(U) ' G,
in a natural way.

Proof. Given g in G, define `g : U → U as left multiplication by g, i.e. given X G-set, x in
X, `g(x) = gx. If f : X → Y is a morphism of G-sets, `gf(x) = gf(x) = f(gx) = f`g(x),
so `g is natural, and an automorphism of U its inverse being `g−1 .
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This defines a map ϕ : G → Aut(U). ϕ is a morphism, since ϕ(gh) = `gh = `g`h =
ϕ(g)ϕ(h).

It is clearly a monomorphism, since considering G as a left G set, `g(e) = g. If η is an
automorphism of U , let g = ηG(e). Given X a left G-set, x in X, consider rx : G → X,
defined as rx(g) = gx. This is a morphism, and by naturality ηXrx(e) = rxηG(e), so
ηX(x) = gx = `g(x).

For an easier proof (in fact, the same proof), just note that U ' [G,−] and use
Yoneda.

Note that the following diagram commutes,

SetAut(c,S
−1C) Setπ1(BC,c)op

Set

U U

As the top arrow is an equivalence, this induces an isomorphism between the automor-
phism groups of the forgetful functors and we have the following theorem,

Theorem 19. If C is a connected small category, its fundamental group is the automor-
phism group of any object in the localization of the category,

π1(BC, c) ' Aut(c, S−1C)op

So to compute the fundamental group of a small category, formally invert every arrow
and look at the automorphism group of any object.

Notice that what we did in this section is functorial on C. Then we have the following
result,

Lemma 20. Let F : C → D a functor between small categories. Then, F induces an
isomorphism on the fundamental grupoids iff

F∗ : Cov(D)→ Cov(C)

is an equivalence of categories.

Some Applications

If M = (G|R) is a presented monoid, to compute the fundamental groups of its classifying
space, it is enough to consider (G|R) as a presentation for a group. So the fundamental
group of the classifying space of N0 = (x|∅) is Z. But we saw in the previous section that
BN0 ' S1. We have then, the following known result,

Proposition 21.
π1(S1, x) = Z

This last example can be generalized to presentations of small categories. Before
stating this, an example is given.

Consider the category C presented by the following graph,
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a

b c d

f

g

hx1

x2

x3

x4

Subject to the relations

hx2
2 = h

fx3h = g

x4
1f = f

x4x1gx2x4x1gx2 = idc

hx4g = x3

Pick the following maximal tree in the graph,

a

b c d

f

g

h

Every arrow from the graph not in the tree will correspond to a generator of the
fundamental group. So we have four generators x1, x2, x3, x4. The relations between them
are just the relations given above, where we delete the arrows in the maximal tree.

x2
2 = e

x3 = e

x4
1 = e

x4x1x2x4x1x2 = e

x4 = x3

And this group is D4. So, from a presented category we immediately get a presentation
of its fundamental group.

A graph is said to be connected if its geometric realization is connected. This means
that any two vertices c, d can be joined by a sequence of arrows that may or may not be
composable, i.e. c → x0 ← x1 → x2 · · · → d. A graph is acyclic if it contains no cycles,
where a cycle is a sequence of different arrows c→ x0 ← x1 → x2 · · · → c, that start and
end at the same vertex. A tree is a connected acyclic graph. By Zorn’s lemma every graph
has a maximal tree. Moreover, a tree is maximal iff it contains every vertex. Note that in
a tree there is exactly one path between any two vertices (since it is simply connected).

Proposition 22. Let C be a connected small category, presented by a graph G and re-
lations R. Take T a maximal tree in G. Then, if c is an object of G, π1(BC, c) can
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be presented by generators Arr(G) \ Arr(T ), satisfying the following relations: for every
((f1, · · · , fn), (g1, · · · , gm)) in R, delete the arrows in T , obtain ((fi1 , · · · , fik), (gj1 , · · · , gjl)),
and impose fi1 · · · fik = gj1 · · · gjl.
Proof. We will show that the opposite of such presented group, call it G, is isomorphic
to Aut(c, S−1C). This is obvious because of our definitions, we are just translating all the
information of the presentation of the localization to point, in a canonical way, through
the tree.

If a is any object of G, as we have formally inverted every arrow, the unique sequence
of arrows in T from c to a, can now be composed, eventually inverting some of them. Call
such morphism `a.

Take x : a→ b, in Arr(G) \Arr(T ), and map it to `−1
b x`a. To verify that this defines

a morphism from ϕ : G → Aut(c, S−1C) it is enough to check that the relations used to
present G are satisfied.

Suppose ((f1, · · · , fn), (g1, · · · , gm)) is in R. Write

fn · · · f1 = tkxktk−1 · · · t1x1t0

where ti is a composition of arrows of T (possibly empty), and xi is an arrow not in the
tree. Define ai = dom(ti) and a = cod(tk). Similarly

gm · · · g1 = ulylul−1yl−1 · · ·u1y1u0

where ui is a composition of arrows in T , and yi is an arrow not in T . Define too,
bi = dom(ui) and note that a = cod(ul) and a0 = b0

Note that ϕ(xi) = `−1
ai xiti−1`ai−1 since ti−1`ai−1 is the unique path in T joining c and

the domain of xi. Also `−1
ak

= `−1
b tk, for simliar reasons. Similarly ϕ(yi) = `−1

ai yiui−1`bi−1
,

and `−1
bl

= `−1
b ul

ϕ(xk · · ·x1) = `−1
ak
xktk−1`ak−1

`−1
ak−1

xk−1tk−2`ak−2
· · · `−1

a1 x1t0`a0

= `−1
b tkxktk−1 · · · t1x1t0`a0

= `−1
b fn · · · f1`a0

= `−1
b gm · · · g1`a0

= `−1
b ulylul−1yl−1 · · ·u1y1u0`a0

= `−1
bl
ylul−1`bl−1

`−1
bl−1

yl−1ul−2`bl−2
· · · `−1

b1
y1u0`b0

= ϕ(yl · · · y1)

To see that ϕ is onto, note that any automorphism z of c can be thought of as a path
c→ a0 ← a1 → a2 · · · ← c, where some arrows will be inverted. Then it is easily checked
(by the same methods as above) that z is the image of the arrows in this path not in the
tree. It is also easy to see that ϕ is a monomorphism: if ϕ(x1 · · ·xk) = idc any reduction
of the word ϕ(x1 · · ·xk) translates into that x1 · · ·xk is equal to different word. When
through reductions we reach idc we see that x1 · · ·xk was actually equal to the empty
word.

It is important to notice that all these ideas are extremely similar (if not the same) to
those used for giving a characterization of the fundamental group of a simplicial complex,
i.e. the edge-path grupoid. The following application is inspired by this thought (see [40],
chapter 3 section 7, corollary 5).
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Proposition 23. Let K be a connected simplicial complex of dimension 1. If T is a max-
imal tree in K, then the fundamental group of K is a free group with as many generators
as the edges of K not in T .

Proof. When we say that a 1 dimensional simplicial complex T is a tree, we mean that
given any orientation on its edges the resulting graph is a tree according to our definion
(this turns out to be the same as asking for T to be simply connected).

Choose an orientation on the edges of K. Call G the resulting graph, and C the free
category generated by G with no relations. Then, by the methods of the previous section,
we know that BC is homotopy equivalent to the geometric realization of G which is by
definition |K|. On the other hand, the fundamental group of C admits a presentation with
one generator for each arrow of G not in T (that is, each edge of K not in T ) and no
relations.

As another example, we can compute the fundamental group of ∆iny, the subcategory
of ∆ having only injective morphisms quite easily. Recall that it is presented by the arrows
δin : n− 1→ n , where 0 ≤ i ≤ n, subject to the relations

δjn+1δ
i
n = δin+1δ

j−1
n

for i < j. δin is just the map that omits element i.
Choose the maximal tree

0 1 2 3 · · ·
δ01 δ02 δ03 δ04

The relation δjn+1δ
0
n = δ0

n+1δ
j−1
n , implies δjn+1 = δj−1

n . Then, if j > 0, δjn+1 = δj−1
n =

· · · = δn−1−k
j−k . If n + 1 ≥ j, δjn+1 = 1 and if j = n + 2, δn+2

n+1 = δ1
0 . But, the relation

δn+2
n+1δ

n+1
n = δn+1

n+1δ
n+1
n implies δ1

0δ
1
0 = δ1

0 , so δ1
0 = 1, and ∆iny has a trivial fundamental

group. In chapter 3 we will see that in fact ∆iny is contractible.
Finally, the next intuitive result will be used in the final chapter.

Lemma 24. Let F : J → C be a morphism inverting functor between small categories
such that J is connected and has trivial fundamental group. Then, colimF is isomorphic
to each object in the diagram, i.e. if

{F (j)
τj→ colimF}j∈J

is a univeresal cone, τj is an isomorphism for every j.

Proof. As F inverts morphisms, it factors through S−1J ,

J C

S−1J

F

q F̃

Fix x in J . Since S−1J is simply connected, given any of its objects j, there is a
unique isomorphism αj : j → x. Then,
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{F̃ (j)
F̃αj→ F̃ (x)}j∈S−1J

is a cone over F̃ . Precomposing with q gives a cone over F ,

{F (j)
F̃αj→ F (x) }j∈J

As every map F̃ (αj) is an isomorphism, the cone is trivially universal.
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Chapter 2

Spectral Sequences

Spectral sequences are a fundamental tool in both algebraic topology and homological
algebra.

The most important functors in homological algebra, like Ext and Tor, involve resolu-
tions of two variables, which lead to double complexes. There is a spectral sequence that
tells us how to “compute” the homology of these double complexes.

On the other hand, given filtration of a topological space X,

X0 ⊆ X1 ⊆ X2 ⊆ · · ·X

there is a spectral sequence that says in which way the homology of the filtration
relates to the homology of the total space.

In this chapter we will recall the very basic of n spectral sequences. Then we will
describe Grothendieck’s Spectral Sequence, that we will use in the proof of Quillen’s
theorem A. We will follow [29], [36], [22] and [20]. For the last section we will assume
some familiarity with homological algebra.

2.1 Definitions and Basic Properties

We begin by defining bigraded modules over a ring.

Definition 25. An R bigraded module M is a collection

{M(p,q)}(p,q)∈Z2 ,

of R modules. A morphism f : M → N of R bigraded modules of bidegree (a, b), is a
collection

{f(p,q)}(p,q)∈Z2

of R module morphisms f(p,q) : M(p,q) → N(p+a,q+b). Addition of morphisms with the same
bidegree is done pointwise (f + g)(p,q) = f(p,q) + g(p,q). We define deg(f) to be the bidegree
of a morphism between bigraded modules.

With this structure it is clear that bigraded modules are an abelian category. The
kernel, Ker(f), of a morphism f of bidegree (a, b) is the bigraded module

Ker(f)(p,q) = Ker(f(p,q)),
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its image Im(f), is the bigraded module

Im(f)(p,q) = Im(f(p−a,q−b).

If M is a bigraded module, we say that the bigraded module N is a submodule of
M if N(p,q) is a submodule of M(p,q). In that case we can define the quotient M/N as
(M/N)(p,q) = M(p,q)/N(p,q).

Recall that a differential object in an abelian category C is a pair (M,d), where M
is an object of C and d : M → M satisfies dd = 0. Differential objects in an abelian
category are again an abelian category. The homology of (M,d), is defined as H(M,d) =
Ker(d)/Im(d).

Definition 26. A bigraded module with differential, is a pair (M,d), where M is a bigraded
module, and d : M → M is a morphism, such that dd = 0. The homology of (M,d) is
defined as,

H(M,d) = Ker(d)/Im(d)

A spectral sequence is a sequence of bigraded modules with differential (Er, dr)r≥1 such
that Er+1 = H(Er, dr).

In a similar manner as was done with R modules, spectral sequence can be defined
in more general contexts. Starting with any abelian category C, form the category of
bigraded objects of C, which will be an abelian category, and then consider sequences of
differential objects in that category, such that every object is the homology of the previous
one.

Definition 27. A spectral sequence in C is a sequence of bigraded differential objects of
C, E = ((Er, dr))r≥1, such that H(Er, dr) = Er+1.

Later we will need this level of generality.
One should think of a spectral sequence as a book with infinite pages. As pages are

turned, letters (the modules) become more clear and precise, eventually converging to
something. We will usually refer to Er as the r-th page of the spectral sequence. Note for
example that if Er(p,q) = 0, as a subquotient of zero is zero, Es(p,q) = 0 for s > r. It is also

common to say that we have a first quadrant spectral sequence, if E1
(p,q) = 0 unless p ≥ 0

and q ≥ 0.
If instead of bigraded modules, we considered graded modules (that is we index our

set of modules by Z), we get again an abelian category. The differential objects of this
category (C, d), with deg(d) = −1 are exactly the chain complexes of R modules. We shall
usually note a chain complex by C, and understand that d is implicit.

One of the slickest ways to construct spectral sequences are exact couples, invented by
Massey in [27]. They arise naturally from filtrations of chain complexes.

Definition 28. An exact couple is an exact triangle of bigraded modules. More precisely,
it is a digram like the following,

D D

E

α

βγ

Where D,E are bigraded modules, α, β, γ are morphisms, Im(α) = Ker(β),Im(β) =
Ker(γ) and Im(γ) = Ker(α).
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Notice that if d = βγ : E → E, by exactness dd = 0. So (E, d) is a bigraded module
with differential.

We now describe how exact couples arise from filtrations of chain complexes.

Definition 29. A filtration F of an object M in an abelian category A, is a collection
F pM of nested subobjects of M , that is,

· · · ⊆ F pM ⊆ F p+1M ⊆ · · ·M

As an example, if X is a topological space, and

· · · ⊆ Xn ⊆ Xn+1 ⊆ · · ·X

is a filtration indexed by Z of subspaces of X, we have an induced filtration on S(X)
the singular chain complex of X, by setting FnS(X) = S(Xn).

Lemma 30. A filtration F of a chain complex C determines an exact couple

D D

E

α

βγ

Where deg(α) = (1,−1), deg(β) = (0, 0) and deg(γ) = (−1, 0).

Proof. Set D(p,q) = Hp+q(F
pC), and E(p,q) = Hp+q(F

pC/F p−1C). The inclusion F pC →
F p+1C, and the quotient F p → F p/F p−1 induce maps D(p,q) → D(p+1,q−1) and D(p,q) →
E(p,q) (remember that taking homology is functorial). These maps are α and β respectively.
Finally, the short exact sequence,

0→ F p−1 → F p → F p/F p+1 → 0,

induces a connecting morphism E(p,q) → D(p−1,q). This morphism is γ.
Exactness follows immediately from the fact that a short exact sequence of chain

complexes induces a long exact sequence in the homology.

Given an exact couple, we can arrive at a new one by a natural process called derivation,

Lemma 31. Given an exact couple

D D

E

α

βγ

we have a new exact couple,

D′ D′

E′

α′

β′γ′
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called the derived couple, where D′ = Im(α), E′ = H(E, d), and α′, β′, γ′ are to be
defined below.

We shall also note d′ = β′γ′.

Proof. Define β′ : D′ → E′, as the unique morphism that completes this diagram,

D Ker(d) E′

D′

β p

α
β′

That is, β′(α(x)) = p(β(x)), where p : Ker(d) → Ker(d)/Im(d) = E′ is the quotient
morphism. Note that this is well defined by exactness, because dβ(x) = βγβ(x) = 0, and
β(Ker(α)) = β(Im(γ)) = 0.

Similarly, γ′ is defined as the unique morphism completing this diagram,

Ker(d) D′

E′

γ

p
γ′

So, γ′(p(x)) = γ(x). Again, this is all well defined by exactness: If x is in Ker(d),
βγ(x) = 0, so γ(x) is in Ker(β) = Im(α) = D′, and if p(x) = 0, x = βγ(z) for some z.
But then γ(x) = γβγ(z) = 0.

α′ is just the corestriction of α.
Now we have to show exactness at each place. This is routine and somewhat tedious.
First note that α′γ′(p(x)) = αγ(x) = 0. If x = α(z) is in D′, β′α′(x) = p(β(α(z)) =

p(d(z)) = 0, and γ′β′(x) = γβ(z) = 0. So, Im(γ′) ⊆ Ker(α′), Im(α′) ⊆ Ker(β′), and
Im(β′) ⊆ Ker(γ′).

1. Ker(α′) ⊆ Im(γ′).

Take x in Ker(α′) ⊆ D′, so α(x) = 0, and x = α(z) for certain z. As Ker(α) =
Im(γ), we get x = γ(y) for some y. But d(y) = βγ(y) = β(α(z)) = 0. So y is in
Ker(d). Then, γ′(p(y)) = γ(y) = x.

2. Ker(β′) ⊆ Im(α′)

Take x in Ker(β′) ⊆ D′, so x = α(z) for some z, and β′(x) = pβ(z) = 0, meaning
that β(z) = βγ(y) for certain y. Then β(z − γ(y)) = 0 so z − γ(y) is in Ker(β) =
Im(α), and we can get a w such that α(w) = z − γ(y). Finally, x = α(z) =
αα(w) + αγ(y) = αα(w), so x = α′(α(w)).

3. Ker(γ′) ⊆ Im(β′)

Take x = p(z) in Ker(γ′). So, γ(z) = 0, and z is in Ker(γ) = Im(β). Take y such
that β(y) = z. Then, β′(αy) = pβ(y) = p(z) = x.

Note that from the proof we know how bidegrees change, deg(α) = deg(α′), deg(γ′) =
deg(γ) and deg(β′) = deg(β)− deg(α).
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Hence, if we are given an exact couple,

D D

E

α

βγ

we immediately obtain a spectral sequence by taking successive derivatives, i.e. define
(E1, d1) = (E, d), and (Er+1, dr+1) = (E(r), d(r)), where the superscript (r) stands for
taking r derivatives.

If our exact couple comes from a filtration F of a chain complex C, we shall say that
the spectral sequence is induced by the filtration F of C. Note that in this case

deg(α(r)) = (1,−1)

deg(γ(r)) = (−1, 0)

deg(β(r)) = −(r − 1)deg(α) = (1− r, r − 1)

deg(dr) = deg(β(r)γ(r)) = deg(β(r)) + deg(γ(r)) = (−r, r − 1)

Moreover,
Dr

(p,q) = Im(Hp+q(F
p−r+1C)→ Hp+q(F

p)),

where the map is induced by the inclusion F p−r+1C → F pC.

2.2 Convergence

We will try to understand now what could it mean for a spectral sequence to converge.

Definition 32. If M is an R module, N ⊆ N ′ submodules of M , we say that N ′/N is a
subquotient of M . That is, a subquotient of a module is a quotient of a submodule. Mutatis
mutandis we get similar definitions for bigraded modules (or in fact, any abelian category)

If (Er, dr) is a spectral sequence of bigraded R modules, Er+1 is a subquotient of
Er. In particular E2 = Z2/B2 =cycles/boundaries, where Z2 = Ker(d1) and B2 =
Im(d1) are submodules of E1. E3 is a subquotient of E2, and by the correspondence
theorem, there are unique submodules B3 ⊆ Z3 such that Z3 ⊆ Z2, and B2 ⊆ B3, and
(Z3/B2)/(B3/B2) = E3. Continuing like this, we get sequence of boundaries and cycles,

B2 ⊆ · · · ⊆ Br ⊆ · · ·

· · ·Zr ⊆ · · · ⊆ Z2

such that every Bi is a submodule of every Zj , and there is an isomorphism between
Zr/Br and Er. Hence, the following definition is natural,
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Definition 33. Let (Er, dr) be a spectral sequence of bigraded R modules. Set Z∞ = ∩Zr
and B∞ = ∪Br. The quotient E∞ = Z∞/B∞ is called the limit term of the spectral
sequence

For each p, q, Er(p,q) gets closer to the limit E∞(p,q) as r grows. For example,

Lemma 34. If Er(p,q) = Es(p,q) for s > r, then Er(p,q) is E∞(p,q).

That is, if a point stabilizes, it is the limit term.

Proof. If Er(p,q) = Er+1
(p,q), the expression of Er+1

(p,q) as a subquotient of E1
(p,q) must be the

same as the one of Er(p,q). So, Zr(p,q) = Zr+1
(p,q) and Br

(p,q) = Br+1
(p,q). But this is true for every

s > r. So Z∞(p,q) = Zr(p,q) and B∞(p,q) = Br
(p,q), and hence E∞(p,q) = Er(p,q).

Our guiding example is the spectral sequence induced by a filtration F on a chain
complex C. In that case, there is an obvious filtration on the graded module {Hn} of
homology modules of C: Take (ΦpH)n as the image of ιp : F pC → C in the n-th homology
group, that is, Im(Hn(ιp)).

Recall now that in this case, E1
(p,q) = Hp+q(F

pC/F p−1C). If we set n = p + q,

this “looks like” (ΦpH)n/(Φ
p−1H)n, where we just commuted the operations filtration

“F ∼ Φ” and homology. The idea will be that the spectral sequence will converge when
we can commute homology and filtration at least in the limit. But first the following
condition will be convenient, as it will discard trivial filtrations.

Definition 35. A filtration Φ of a graded module H is called bounded if for each n there
are integers s(n) and t(n) such that Φs(n) = 0 and Φt(n) = Hn.

A weaker condition could be used, see [29]. Now, we can give a precise meaning to
what we said.

Definition 36. A spectral sequence (Er, dr) converges to a graded module H, if there is
some bounded filtration Φ of H, such that E∞(p,q) ' ΦpHn/Φ

p−1Hn, where n = p+ q.
This will be noted as Er(p,q) =⇒ Hn.

Hence, when the spectral sequence converges it will only determine factors ΦpHn/Φ
p−1Hn,

and some extension problems could remain. But in some cases these problems can be
avoided. Suppose for example that E2

(p,q) =⇒ Hn, and the limit term E∞ had all zeroes

except maybe in line zero (q = 0). Then ΦpHn = Φp−1Hn if n 6= p. As Φ is bounded,
ΦpHn = 0 if p < n and ΦpHn = E∞(p,q) = Hn if p ≥ n, and no extension problems arise.

Our main convergence theorem is the following (theorem 10.14 of [36]),

Theorem 37. If F is a bounded filtration on a chain complex of R modules C, and
(Er, dr) is the spectral sequence induced by F ,

1. For each p, q, E∞(p,q) = Er(p,q) for large r (depending on p and q).

2. E2
(p,q) =⇒ Hn(C), where the filtration on H(C) is the one induced by F .

Most homological spectral sequences arising in topology are first quadrant spectral
sequences with bidegree (−r, r− 1). In these cases, for every position (p, q), there is a big
enough r such that the differentials coming in and out of that position are zero, and thus
E∞(p,q) = Er(p,q).
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Proof. Given n, if p < s(n) or p > t(n) and q = n − p, E1
(p,q) = 0, and consequently

Er(p,q) = 0 for any r. Given now p, q, remember that the differential dr has bidegree

(−r, r − 1). So we have,

Er(p+r,q−r+1) → Er(p,q) → Er(p−r,q+r−1),

where the arrows are the respective differentials. So if r is large enough, the differentials
coming in and out of the (p, q) position will be zero. More precisely, if r > p−s(p+ q−1),
Er(p−r,q+r−1) = 0 and if r > t(p + q + 1) − p, Er(p+r,q−r+1) = 0. Hence if r is big enough,
Es(p,q) = Er(p,q) for s > r and by lemma 34, we have 1.

From the r-th page of the spectral sequence, consider the exact diagram

Dr
(p+r−2,q−r+2) Dr

(p+r−1,q−r+1) Er(p,q) Dr
(p−1,q)

αr βr γr

Recall that

Dr
(p,q) = Im(Hp+q(F

p−r+1C)→ Hp+q(F
pC))

Therefore, if n = p+q, and r > t(n)−p+2, we have (F p+r−2C)n = (F p+r−1C)n = Cn,
so,

Dr
(p+r−2,q−r+2) = Im(Hn(F p−1C)→ Hn(C)) = (Φp−1H)n

Dr
(p+r−1,q−r+1) = Im(Hn(F pC)→ Hn(C)) = (ΦpH)n

On the other hand, if r > p− s(n),

Dr
(p−1,q) = Im(Hn(F p−rC → Hn(F p−1C)) = 0,

as F p−rC = 0
And by exactness we arrive at 2 (αr is an inclusion).

2.3 Double Complexes

We will need double complexes in the next section. Essentially they are chain complexes
of chain complexes. Associated to them are two obvious filtrations that under some con-
ditions converge to the homology of the “total complex”.

Definition 38. A double complex of R modules C is a collection

{C(p,q)}(p,q)∈Z2

of R modules, together with maps

dv(p,q) : C(p,q) → C(p,q−1),

dh(p,q) : C(p,q) → C(p−1,q),

such that dvdv = dhdh = dvdh + dhdv = 0.
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For simplicity we omit subscripts of differentials dv, dh.If M is a chain complex over
the category of chain complexes of R modules, that is, we have a diagram,

C(p−1,q−1) C(p,q−1) C(p+1,q−1)

C(p−1,q) C(p,q) C(p+1,q)

C(p−1,q+1) C(p,q+1) C(p+1,q+1)

· · · · · · · · ·

· · · · · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

dhdh

dhdh

dhdh

dv

dv

dv

dv

dv

dv

in order to make it into a double complex, we add a sign (−1)dv(p,q) whenever p is odd.
This process is reversible, and thus a double complex is the same as a chain complex of
chain complexes. Homology groups don’t change when we use this trick, as kernels and
images remain the same.

If C is a double complex, we define its total complex as,

Tot(C)n =
⊕
p+q=n

C(p,q)

and take d = dv + dh as its differential. That is, we are adding all modules in every
diagonal n, and applying d means moving left and down in each place. The relations
dvdv = dhdh = dvdh + dhdv = 0 ensure that this is a chain complex.

If C is a double complex, by taking vertical homology we obtain a new chain complex:
for every q, (Hq(C, d

v), dh) is a chain complex where (Hq(C, d
v))p is the q-th homology

group of column p (vertical homology at the point (p, q)), and where the differentials are
induced by dh. Similarly, we could first take horizontal homology, and arrive at the chain
complex (Hp(C, d

h), dv), where (Hp(C, d
h))q is the p-th homology group of row q.

Associated to a double complex we have two filtrations HV and V H of the total
complex Tot(C),

(HV pTot(C))n =
⊕
i≤p

C(i,n−i)

(V HpTot(C))n =
⊕
j≤p

C(n−p,p)

Differentials restrict well to these submodules so indeed we have filtrations of the chain
complex Tot(C). Note that if we have a first quadrant bicomplex, i.e. C(p,q) = 0 unless
p ≥ 0 and q ≥ 0, both of these filtrations are bounded so theorem 37 applies, and the
spectral sequences induced by them will converge to the homology of the total complex.

Lemma 39. Let C be a first quadrant double complex, HV the filtration described above.
Then there is a second quadrant spectral sequence such that,
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1.
E2

(p,q) = Hp(Hq(C, d
v), dh) =⇒ Hp+q(Tot(C))

where the filtration is induced by HV

2. For each p, q, E∞(p,q) = Er(p,q) for large r (depending on p and q)

3. deg(dr) = (−r, r − 1)

Similarly, for the filtration V H,

1.
E2

(p,q) = Hp(Hq(C, d
h), dv) =⇒ Hp+q(Tot(C))

where the filtration is induced by V H

2. For each p, q, E∞(p,q) = Er(p,q) for large r (depending on p and q)

3. deg(dr) = (−r, r − 1)

Note that the (p, q) position of the second page of the spectral sequence induced by HV
is just standing at position (p, q) of the double complex, and taking first vertical homology
and then horizontal homology. For the filtration V H it will be first taking horizontal and
then vertical homology, but at place (q, p), there is a “transposition” going on.

Proof. This is all a consequence of theorem 37, because as noted, both filtrations are
bounded, C being a first quadrant bicomplex. To verify what the second page looks like,
just note that HV pTot(C)/HV p−1Tot(C) is the p-th column of C, and that d = βγ is
identified with dv This shows that E1

( p, q) = (Hq(C, d
v))p, it is then immediate to see that

E2
( p, q) = Hp(Hq(C, d

v), dh).

2.4 Grothendieck Spectral Sequence

Grothendieck spectral sequence can be understood as a chain rule for derived functors.
Given F : A → B and G : B → C additive functors between abelian categories, it will
relate the derived functors of GF with those of G and F . Some basic definitions and
constructions of homological algebra are reviewed in section A.2, for a real treatment,
consider [47] or [36].

We start with a previous definition,

Definition 40. If B,C are abelian categories, B with enough projectives, F : B → C a
right exact additive functor, an object b of B is said to be left F -acyclic if LnF (b) = 0 for
every n > 0.

Theorem 41 (Grothendieck spectral sequence). Let F : A → B, G : B → C be right
exact additive functors between abelian categories, A,B with enough projectives, and such
that F maps projective objects into left G-acyclic ones.

Then, for any a in A, we have a first quadrant spectral sequence (Er, dr), such that

1. E2
(p,q) = LpGLqF (a) =⇒ Lp+qGF (a)

2. For each p, q, E∞(p,q) = Er(p,q) for large r (depending on p and q).

34



3. deg(dr) = (−r, r − 1)

Proof. The strategy is the following: Take a in A and a projective resolution (P, α). Apply
F to P , and construct a certain chain complex of chain complexes, that can be thought
of as a projective resolution of F (P ). Then, consider the double complex associated to it,
the two standard filtrations described before, and apply lemma 39 . One of the spectral
sequences has the second page we want, and the other converges to what we are looking
for. As both are converging to the homology of the total complex, we will be done.

Take a in A, and a projective resolution (P, α) of a. Apply F to P ,

F (P0) F (P1) F (P2) · · ·

and factor it as

F (P0) B0 F (P1) Z1 B1 F (P2) Z2 B2 · · ·

where
Bn = Im(F (Pn+1)→ F (Pn))

Zn+1 = Ker(F (Pn+1)→ F (Pn)).

Now we will fill this diagram with projective resolutions. Consider first, projective reso-
lutions R0 → B0 and T0 → F (P0)/B0 and apply the horseshoe lemma to the diagram

F (P0)/B0 F (P0) B0

T0 R0

thus obtaining a projective resolution Q0 → F (P0) as in lemma 78. Now, pick projec-
tive resolutions R1 → B1 and T1 → Z1/B1, and by considering

Z1/B1 Z1 B1

T1 R1

produce a projective resolution K1 → Z1 by applying the horseshoe lemma. Then,
obtain a projective resolution Q1 → F (P1) by applying the horseshoe lemma to

B0 F (P1) Z1

R0 K1

Proceeding inductively, we get
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F (P0) B0 F (P1) Z1 B1 F (P2) Z2 B2 · · ·

Q0 R0 Q1 K1 R1 Q2 K2 R2 · · ·

Now consider the double complex G(Q), induced by applying G to the chain complex
of chain complexes

Q0 ← Q1 ← Q2 ← · · ·

Note that G(Q)(p,q) = G((Qp)q). This is a first quadrant bicomplex, so lemma 39
applies. As F maps projective objects to left G-acyclic ones, and L0G = G, when we
compute the second page of the spectral sequence induced by the filtration HV , we get

GF (a) L1GF (a) L2GF (a) · · ·

0 0 0 · · ·

0 0 0 · · ·

· · · · · · · · ·

Then E2 = E∞, and we get that Hn(TotG(Q)) = LnGF (a).
Consider now the second filtration V H. To compute E2, take first horizontal and then

vertical homology and transpose.
Note that pointwise, every horizontal map we got from applying the horseshoe lemma

was either an inclusion or a projection from a direct sum. As additive functors preserve
direct sums, we get that G will preserve this inclusions and projections. So, we have the
diagram of chain complexes

G(Q0) G(R0) G(Q1) G(K1) G(R1) G(Q2) · · ·

Hence Ker(Qp → Qp−1) = G(Kp) and Im(Qp+1 → Qp) = G(Rp), so when taking
horizontal homology we get G(Kp)/G(Rp) and this is G(Tp), because again G preserves
direct sums. That is, as (Kp)q = (Rp)q

⊕
(Tp)q, and G preserves sums, G((Kp)q) =

G((Rp)q)
⊕
G((Tp)q).

But Tp was chosen as a projective resolution of Zp/Bp = LpF (a). So starting from
(p, q), when we take horizontal and then vertical homology we arrive at LqGLpF (a).
Transposing this we arrive at the desired description of the second page.

As a consequence, we obtain the following results, which could have been proven in an
elementary way.
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Lemma 42. If F : A → B , and G : B → C are additive right exact functors between
abelian categories, A,B with enough projectives,

1. If G is exact, Ln(GF ) ' GLn(F )

2. If F is exact and preserves projectives Ln(GF ) ' Ln(G)F
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Chapter 3

Homology with Local Coefficients

Our aim in this chapter is to give a homological version of Whitehead’s theorem. Recall
that this result states that if f : X → Y is a continuous function between connected CW
complexes, f is a homotopy equivalence iff πn(f) is an isomorphism for every n. If instead
we know that Hn(f) is an isomorphism, f need not be a homotopy equivalence: there
are noncontractible CW complexes that have the homology of a point, these are called
acyclic spaces, see example 2.38 of [21]. But if we assume that both X and Y are simply
connected, the result holds: f is a homotopy equivalence iff Hn(f) is an isomorphism for
every n.

So spaces having non-trivial fundamental group pose a problem. To deal with them,
we have homology with local coefficients. The homology version of Whitehead’s theorem
will state that f is a homotopy equivalence iff π1(f) is an isomorphism, and f induces and
isomorphism on every homology group with any local coefficient system.

The classical reference for homology with local coefficients is [42]. We will also follow
[48] and [13].

3.1 Definitions

In this section we will present two alternative but equivalent definitions of homology with
local coefficients.

Definition 43. A local coefficient system on a topological space X is a functor F :
Π1(X)→ Ab from the fundamental grupoid of X to the category Ab of abelian groups.

Associated to a local coefficient system F we have a chain complex C(X,F ) defined as

C(X,F )p =
⊕

∆p σ→X

F (σ(e1))

where e1 = (1, 0, · · · , 0) is the first vector of the canonical base of Rp+1, ∆p is the
convex hull of this basis, and the direct sum is taken over all continuous σ : ∆p → X.

We denote an arbitrary element of the direct sum⊕
∆p σ→X

F (σ(e1))
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as
∑

σ g[σ], where g is an element of the group F (σ(e1)). If σ : ∆p → X is a continuous
function, we define diσ : ∆p−1 → X as σθ(δi) (see chapter 1), i.e. the restriction of σ to
the i-th face of ∆p.

The differential δp : C(X,F )p → C(X,F )p−1 is defined as

δp(g[σ]) = F ([σ([e1 e2])])(g)[d0σ] +
∑
k 6=1

(−1)kg[dkσ]

where [e1 e2] is the affine path from e1 to e2 in ∆p. Note that this is well defined
because diσ(e1) = σ(e1) for i 6= 0, and d0σ(e1) = σ(e2) = σ([e1 e2])(2). A standard
computation shows that δδ = 0, so (C(X,F ), δ) is a chain complex of abelian groups.

Definition 44. Given F a local coefficent system on a topological space X, we denote

Hn(X,F )

the n-th homology group of the chain complex (C(X,F ), δ), and refer to it as the n-th
homology group of X with coefficient system F

Note that if F (x) = G for any x in X and F (α) = idG for any path α, then Hn(X,F ) =
Hn(X,G), the classical homology of X with coefficients in the group G.

Moreover, we have functoriality in the following sense: if f : X → Y is a continuous
map, and F a local coefficient system on Y , f induces an obvious morphism Hn(X, f∗F )→
Hn(Y, F ) where f∗F = FΠ1(f) since,

g[σ]→ g[fσ]

is a chain map. The reader should be careful, since our notation is not standard, we
note f∗ instead of f∗, see section A.1.2 for further comments.

In some way the universal cover X̃ → X of a space, untwists it: it has trivial funda-
mental group and the same higher homotopy groups as X. As this solves the problems
arising from a non-trivial fundamental group, it may be expected that by somehow twitch-
ing the homology of X̃ we could arrive at the homology of X with local coefficients. The
following alternative definition of homology with local coefficients makes this clear.

Start from a pointed space (X,x) with a universal cover (X̃, x̃) (any locally path
connected, semilocally simply connected space has one). Remember that the fundamental
group π1(X,x) is isomorphic to the group of deck transformations of X̃ by mapping
[α] in π1(X,x) to the unique deck transformation that sends x̃ to α̃(1), where α̃ is the
unique lifting of α starting from x̃. This means that π1(X,x) acts on the left of X̃ by
automorphisms. This action is free as any deck transformation that fixes a point is the
identity. Therefore, there is a natural left Z[π1(X,x)] module structure on every S(X̃)n,
and as the differential respect the action, S(X̃) turns out to be a chain complex of left
Z[π1(X,x)] modules.

On the other hand, note that the categoryAbΠ1(X) is naturally equivalent toAbπ1(X,x)op ,
since π1(X,x)op is a skeleton of the grupoid Π1(X), and the equivalence is given by restrict-
ing functors. Then, F a local system of coefficients on X is the same as a right Z[π1(X,x)]
module, since Abπ1(X,x)op is naturally identified with the category of such structures: the
abelian group F (x) has a right π1(X,x) action, g[α] = F ([α])(g). Alternatively, if we are
given a right Z[π1(X,x)] module F , we can extend F to a system of local coefficients by
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previously choosing paths from x to every point in X. So we can go from local systems
to right Z[π1(X,x)] modules and back, and we will do so from now on.

Then, given F a right Z[π1(X,x)], we can consider

F ⊗
Z[π1(X,x)]

Sn(X̃)

and these abelian groups will form a chain complex, since tensoring against a modules
is functorial, i.e. (idF ⊗ δ)(idF ⊗ δ) = 0. Call H ′n(X,F ) the n-th homology group of
this complex. It is isomorphic to Hn(X,F ) (so in particular, the second definition has no
ambiguities), as shown by the next theorem by Eilenberg. For its proof we will follow [13]
and [48].

Theorem 45 (Eilenberg). Let F : Π1(X) → Ab be a system of local coefficients on X.
Then, Hn(X,F ) is isomorphic to H ′n(X,F )

Proof. We will show an isomorphism on the chain complex level. Assume that X is
connected, and for every y in X̃ choose a path `y from x̃ to y. Note that up to path
homotopy there is a unique choice.

Define
U : F ⊗

Z[π1(X,x)]
S(X̃)n −→ C(X,F )n

by mapping g ⊗ σ to F ([p`σ(e1)])(g)[pσ]. Note that p`σ(e1) is a path in X from x to
pσ(e1) and g is in F (x). Moreover, U is clearly bilinear, so to check that it is well defined
it suffices to show that it respects the action, i.e. U(g[η] ⊗ σ) = U(g ⊗ [η]σ) for [η] in
π1(X,x). Let h be the deck transformation induced by [η], η̃ the lifting of η to a path
starting at x̃, y = σ(e1) and ỹ = h(y).

First,

U(g[η]⊗ σ) = U(F ([η])(g)⊗ σ) = F ([p`y])(F ([η])(g))[σ]

= F ([ηp`y])(g)[σ]

and,

U(g ⊗ [η]σ) = U(g ⊗ hσ) = F ([p`ỹ])(g)[phσ] = F ([p`ỹ])[σ]

as ph = p. Finally note that as X̃ is simply connected (the key step, we untwisted the
space), [`ỹ] = [η̃h(`y)] as both are paths between the same points. Projecting this to X
we get that [ηp`y] = [p`ỹ]. Then, U is a well defined group morphism.

We must verify that U commutes with the differential. Define y = σ(e1), and z = σ(e2).

U(δ(g ⊗ σ)) = U(g ⊗
∑

(−1)kdkσ)

= F ([p`z])(g)[pd0σ] +
∑
k 6=1

(−1)kF ([p`y])(g)[pdkσ]
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δ(U(g ⊗ σ)) = δ(F ([p`y])(g)[pσ])

= F ([pσ([e1 e2])])(F ([p`y]))(g)[dopσ] +
∑
k 6=1

(−1)kF ([p`y])(g)[dkpσ]

= F ([p`ypσ([e1 e2])])(g)[dopσ] +
∑
k 6=1

(−1)kF ([p`y])(g)[dkpσ]

First note that dipσ = pdiσ for all i. And again, as X̃ is simply connected [`yσ([e1 e2])] =
[`z] as both are paths between the same points. So their projection over X is the same,
and we have that U is a chain map.

We will construct an inverse V to U . First, choose for each y in X a point ỹ in the
fiber p−1(y). Define y = σ(e1), and consider

V (g[σ]) = F ([p`ỹ]
−1)(g)⊗ σ̃

where σ̃ is the unique lifting of σ such that σ̃(e1) = ỹ. Trivially, this is a well defined
group morphism, and UV = id. Consider now V U . Define z = σ(e1), and y = p(z). Then,
it is immediate to check that V U(g⊗σ) = (g[α]⊗ [α]−1σ) = (g⊗σ), where α = p`z(p`ỹ)

−1.

Clearly, Z[π1(X,x)] is a right module over itself. The singular classical homology of
the universal cover can be recovered from the homology of X with this coefficient system.

Lemma 46. H(X,Z[π1(X,x)]) = H(X̃)

Proof. This is immediate, since

Z[π1(X,x)] ⊗
Z[π1(X,x)]

S(X̃) ' S(X̃)

as S(X̃) is a free Z[π1(X,x)] left module.

Finally, note that if X is simply connected, a right Z[π1(X,x)] module F , is just an
abelian group, and idX : X → X is a universal cover, so then

F ⊗
Z[π1(X,x)]

S(X̃) = F ⊗
Z
S(X)

so the homology of X with coefficients in the local system F is the classical homology
of X with coefficients in the group F (x). In particular if X is n-connected, we know that
for 0 < i ≤ n, Hi(X) = 0 for coefficients in any group, so

Lemma 47. If X is n-connected, n ≥ 1,

Hi(X,F ) = 0

for 0 < i ≤ n and any local system of coefficients F .
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3.2 Homology Whitehead Theorem with Local Coefficients

Before proving the promised result, we need to recall some basic theorems. Remember
that a space is n-connected if it is nonempty and its first n homotopy groups are nonzero,
−1-connected means nonempty. A pair (X,A) is n-connected if πi(X,A) = 0 for i ≤ n
and A intersects every path component of X. For further definitions, and a proof of the
following result, see [20].

Theorem 48 (Hurewicz). If a space X is (n − 1)-connected, n ≥ 2, then H̃i(X) = 0
for i < n and πn(X) ' Hn(X). If a pair (X,A) is (n − 1)-connected, n ≥ 2, with A
1-connected, then Hi(X,A) = 0 for i < n and πn(X,A) ' Hn(X,A).

This theorem tells us that the first nonzero homotopy and homology groups of a simply
connected space occur in the same dimension and are isomorphic. A similar statement
holds for a simply connected pair (X,A) with A 1-connected.

A map f : X → Y is said to be n-connected if πi(f) is an isomorphism for i < n and
an epimorphism for i = n, equivalently (Mf , X) is n-connected, where Mf is the mapping
cylinder of f . Recall that Mf is constructed as the following pushout,

X Y

X × I Mf

f

ι0 ιo

f

We define r : Mf → Y by mapping [(x, t)] to f(x) and [y] to y, and ι : X → Mf by
ι(x) = [(x, 1)]. It turns out that r is a homotopy equivalence (actually Y is a deformation
retract of Mf ), ι a closed cofibration, in particular a subspace, and

X

Mf

Y
ι

r

f

commutes. So f can be replaced by ι. This is the standard way to replace a map by
a closed cofibration.

Lemma 49. If f : X → Y is a map between simply connected nonempty spaces, and Hi(f)
is an isomorphism for i < n and an epimorphism for i = n then f is an n-equivalence.

Proof. First, by replacing Y with Mf we can assume f is a closed subspace. From the long
exact sequence of homotopy groups of the pair (Y,X) we see that (Y,X) is 1-connected.
If Hi(f) is an isomorphism for i < n and an epimorphism for i = n, from the long exact
sequence of homology for the pair (Y,X), we have that Hi(Y,X) = 0 for i ≤ n. By
theorem 48, πi(Y,X) = 0 for i ≤ n. And then, using again the long exact sequence of
homotopy groups, we have that f is an n-equivalence.
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Theorem 50 (Homology Whitehead with Local Coefficients). Let f : X → Y be a
continuous map, such that π1(f) is an isomorphism, and for any local coefficient system
F on Y , f induces an isomorphism Hi(X, f∗F )→ Hi(Y, F ) for i < n and an epimorphism
at dimension n. Assume that X,Y have universal covers. Then, f is an n-equivalence.

Proof. Consider the diagram,

X̃ Ỹ

X Y

f̃

p q

f

where f̃ is some lifting of f . Choose Z[π1(Y, y)] as local coefficient system on Y . Then,
since π1(f) is an isomorphism, f∗Z[π1(Y, y)] = Z[π1(X,x)], and by lemma 46, f̃ induces
an isomorphism

Hi(X̃) ' Hi(X, f∗Z[π1(Y, y)]) ' Hi(Y,Z[π1(Y, y)]) ' Hi(Ỹ )

for i < n and an epimorphism for i = n. By lemma 49, applied to f̃ , f̃ is n-connected.
Considering that for i ≥ 2, πi(p) and πi(q) are isomorphisms, the diagram

πi(X̃) πi(Ỹ )

πi(X) πi(Y )

πi(f̃)

πi(p) πi(q)

πi(f)

shows that f is an n-equivalence.

3.3 Simplicial Homology with Local Coefficients

In the simplicial setting, we have analogous defintions. If F : C → Ab, is a functor we can
define the following chain complex.

C(C, F )n =
⊕

(f1,··· ,fn)

F (d1(f1))

where the sum is taken over all n-simplices σ = (f1, · · · , fn) of the nerve of C. An
arbitraty element of this group will be written as

∑
σ g[σ]. The differential is defined as,

δn(g[σ]) = F (f1)(g)[d0σ] +
∑
k 6=1

(−1)kg[dkσ]

This makes (C(C, F ), δ) into a chain complex, and its homology will be noted as
H(C, F ). Observe that for this definition F need not invert morphisms.

Note that as a consequence of the description of the fundamental group of a small
category, there is an equivalence between the categories of local systems of abelian groups
on C, i.e. functors F : C → Ab that invert morphisms, and systems of local coefficients on
BC. We will freely go from one to the other.
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Theorem 51. If F is a local coefficient system on BC, then

H(C, F ) ' H(BC, F )

This is Milnor’s theorem for homology with local coefficients. A careful modification
of any of its proofs will work, we choose to omit it. See appendix 2 of [18], [33] or theorem
2.27 of [21].

There is an alternative algebraic description of the homology groups with local coef-
ficients in small categories: they are the left derived functors of the colimit functor. See
[18].

Theorem 52. Let C be a small category, then

{Hn(C,−)}

{LncolimC}

are isomorphic δ-functors from AbC to Ab.

It is crucial for this description that we consider the whole category AbC and not just
the functors that invert morphisms, as we shall see later. Before proving it, we need to
establish some lemmas.

Recall that AbC is an abelian category by computing everything pointwise.

Lemma 53. Let C be a small category, and let C0 be the subcategory of C with the same
set of objects and only the identity morphisms. Let ι : C0 → C be the inclusion. Then, for
every N in AbC0, and evey i > 0 Hi(ι

∗(N)) = 0.

Compare this lemma with the notion of acyclic object. In the appendix we defined ι∗,
see section A.1.2.

Proof. Clearly, N is just a collection of abelian groups indexed by the objects of C. Note
that if i > 0, Hi(C0, N) =

⊕
cHi(c,N(c)) = 0 as Hi(c,N(c)) is just the homology of a

point because theorem 51 applies.
Moreover, from the definition of ι∗,

ι∗(N)(c) =
⊕
α:a→c

N(a)

where the sum is taken over all arrows with codomain c. And if f : c → d is a
morphism, ι∗(N)(f) is defined by mapping the N(a) factor associated to α : a→ c, to the
N(a) factor associated to fα through idN(a). Then, if σ = (f1, · · · , fn) is an n-simplex,
and x0 = dom(f1),

C(C, ι∗(N))n =
⊕
σ

⊕
a
α→x0

N(a) '
⊕
(α,σ)

N(a) = C(C0, N)n+1

This identification commutes with the differential, so C(C, ι∗(N)) is isomorphic to the
chain complex obtained by shifting C(C0, N) one position to the right, deleting C(C0, N)0.
Then, if i > 0, Hi(C, ι∗(N)) = Hi+1(C0, N) = 0.
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As a consequence, we have the following lemma.

Lemma 54. If C is a small category, AbC has enough projectives.

Proof. Take N : C → Ab. It is clear that the counit of the adjunction ι∗ a ι∗ gives a map
ι∗ι∗(N)→ N that is an epimorphism, as for every a in C,⊕

α:a→c
N(a)→ N(a)

is an epimorphism by considering the arrow α = ida
Now, take an epimorphism P → ι∗(N) with P projective in AbC0 . This can be done

because projective objects in AbC0 are those that are pointwise projective, and Ab has
enough projectives.

Finally, consider the composition ι∗(P )→ ι∗ι∗(N)→ N . The first arrow is an epimor-
phism since left adjoints are right exact and P → ι∗(N) is an epimorphism. Therefore the
composition is also an epimorphism. Finally, ι∗(P ) is projective by lemma 73, since ι∗ is
exact (it is precomposition with ι and kernels and cokernels are computed pointwise).

Proof of Theorem 52. The functors {Hn(C,−) can be factored as

AbC → Ch(Ab)≥0 → Ab

by first taking the chain complex C(C,−) and then homology groups. Since the first
of this arrows is exact and the second a δ functor, the composition is a delta functor. In
particular H0(C,−) is exact.

Now we show that H0(C,−) and colimC are naturally isomorphic. Take N : C → Ab,
colimCN and H0(C, N) are both the cokernel of the pair

d0, d1 :
⊕
f

N(dom(f))⇒
⊕
c

N(c).

This shows in particular that colimC is right exact. As we saw before AbC has enough
projectives, so colimC can be derived, resulting in a universal δ-functor {LncolimC}.

Finally, if we knew that {Hn(C,−)} was a universal δ functor, we would be done
because universal δ-functors that are naturally isomorphic at dimension zero, are naturally
isomorphic as δ-functors. By lemma 77, it is enough to show that the functors Hn(C,−)
are coeffaceable. Take N : C → Ab. In the proof of lemma 53, we saw that ι∗ι∗(N)→ N
is an epimorphism, and by lemma 53, Hn(C, ι∗ι∗(N)) = 0 for n > 1.

So the homology groups of a small category with arbitrary coefficients measure by
how much colimC is not exact. It is clear now that considering every possible functor
N : C → Ab, and not just those inverting morphisms was essential: a 1-connected not
contractible category C has H1(C, N) = 0 for every local system N , but this does not
imply that L1colimC = 0, otherwise colimC would be exact and Hi(C, N) = 0 for every N
and i ≥ 1, meaning by Hurewicz that C would be contractible.

A category C is said to be of homological dimension 0 if colimC is exact or equivalently
H1(C,−) = 0. For a review about homological dimension of small categories consider [23].

A contractible category, need not have homological dimension zero, as evidenced by
the free category C generated by,
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a b

c

α

β

and the functor N : C → Ab defined as,

Z 0

0

0

0

After some calculation it follows that H1(C, N) = Z, and BC is homotopy equivalent
to its graph, which is contractible.

It is true however that a connected category of homological dimension zero is con-
tractible.

Theorem 55. Let C be a connected category of homological dimension zero. Then C is
contractible, i.e. BC is contractible.

Proof. First, by lemma 46, B̃C the universal cover of BC is acyclic. As it is also simply
connected, it is contractible. Then, since πk(B̃C) ' πk(BC) for k ≥ 2, BC is a K(G, 1),
where G = π1(BC, x).

Consider now the chain complex S(B̃C), and augment it to a chain complex S by
defining S−1 = Z, and ε : S0(B̃C) → Z as ε(

∑
x nxx) =

∑
x nx. Regard Z as a left Z[G]

module, and note that S is a complex of Z[G] modules, since S(B̃C) is one too. Moreover,
since the fundamental group acts freely on S(B̃C) and B̃C is connected and acyclic, S is
in fact a free resolution of Z as a left Z[G] module. Therefore, if M is a right Z[G] module,

H(BC,M) = H(M ⊗
Z[G]

S(B̃C)) = TorZ[G](M,Z)

Therefore, if C has homological dimension zero, Z is Z[G] flat. The following lemma
shows that this implies that G = 1, so C is contractible.

Lemma 56. Let G be a group. If Z is Z[G] flat, then G = 1.

Proof. Suppose first that G is abelian. Then, by considering BG, the same argument as
in the last proof, and Hurewicz theorem,

G = H1(BG) = H1(BG,Z) = TorZ[G](Z,Z) = 1

For the general case, suppose G is not trivial and consider 1 < H < G, with H
abelian. Let F be a free resolution of Z as a left Z[G] module. By Lagrange theorem,
every free Z[G] module is a projective Z[H] module: write G as a disjoint union ∪g∈IHg,
then Z[G] ' ⊕g∈IZ[Hg] as left Z[H] modules, and each Z[Hg] is isomorphic to Z[H]. So
F may be considered as a projective resolution of Z as a left Z[H] module. Take now M
a right Z[H] module.
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M ⊗
Z[H]

F = M ⊗
Z[H]

(Z[G] ⊗
Z[G]

F ) = (M ⊗
Z[H]

Z[G]) ⊗
Z[G]

F

So,
TorZ[H](M,Z) = TorZ[G](M ⊗

Z[H]
Z[G],Z) = 1

Then, Z is Z[H] flat. Since H is abelian, H = 1, a contradiction.

A category C is called filtered if every finite diagram has a cone, that is

1. C is not empty.

2. Given a, b in C there is an object c and arrows a→ c, b→ c in C.

3. Given two arrows α1, α2 : a→ b, there is an arrow β : c→ d, such that βα1 = βα2.

It is well known that if C is a small filtered category, colimC : SetC → Set commutes
with finite limits. This holds when we replace Set by Ab, and means that C has homologial
dimension zero. So we have,

Proposition 57. Every small filtered category is contractible

The same result can be found in [33], though the proof is different.
In [24], J.R. Isbell gave a characterization of categories of homological dimension zero,

and used it to prove a particular case of a conjecture by U. Oberst posed in [32]. This
conjecture stated that a category had homological dimension zero iff each of its components
was filtered. Later in [25], Isbell and B. Mitchell exhibited a counterexample: the category
∆iny has homological dimension zero but it is not filtered.

Then, we have,

Proposition 58. ∆iny is contractible.

To end this section, note that if X is a K(G, 1) its homology with coefficients in a local
system is the same as the group homology of G with coefficients. The classical reference
for group cohomology is [6].

3.4 André Spectral Sequence

Having described the homology of a small category as derived functors, we can apply
Grothendieck spectral sequence. We follow [18].

We begin with a functor F : C → D between small categories. Now, note that the
following triangle commutes

AbD

Ab

AbC

ΓD ΓC

F∗
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where ΓC and ΓD are the diagonal functors described in section A.1.2. As colimC a ΓC ,
colimD a ΓD, and F ∗ a F∗ we have that

colimC ' colimD ◦ F ∗

since composition of right adjoints is a right adjoint, and adjoints are unique up to
natural isomorphism. By lemma 53 AbC and AbD have enough projectives, and lemma
73 implies that F ∗ preserves projectives, so in particular maps projectives into colimD
acyclic objects (projective objects are colimD acyclic), and as it is a left adjoint it is right
exact. So, we are able to apply Grothendieck spectral sequence.

Theorem 59 (André Spectral Sequence [2]). Let F : C → D be a functor between small
categories. For any N : C → Ab, we have a first quadrant spectral sequence (Er, dr), such
that

1. E2
(p,q) = LpcolimD ◦ LqF ∗(N) =⇒ Lp+qcolimC(N)

2. For each p, q, E∞(p,q) = Er(p,q) for large r (depending on p and q).

3. deg(dr) = (−r, r − 1)

Finally, we shall describe what the left derived functors of F ∗ look like. Take d in D.
Consider the commutative diagram,

AbC AbD

AbF/d Ab

F ∗

pr∗ evd

colimF/d

where F/d is the category over d (the definition can be found in section A.1.2), evd :
AbD → Ab is the evaluation functor and pr : F/a → C is the projection on the first
component.

The functor evd is exact, so Ln(evd ◦ F ∗) = evd ◦Ln(F ∗). Since the following diagram
commutes,

AbC0 AbC

Ab(F/d)0 AbF/d

ι∗

pr∗ pr∗

ι∗

(note that if F/d were any other arbitrary category, the diagram would not commute)
pr∗ : AbC → AbF/d maps enough projectives into colimF/d acyclic objects (recall that the
projectives we used where those in the image of ι∗), and it is also exact, so Ln(colimF/d)◦
pr∗ = Ln(colimF/d ◦ pr∗). Then, we have

Ln(colimF/d) ◦ pr∗ = evd ◦ Ln(F ∗)

Evaluating at a functor N : C → Ab and using theorem 52

Hn(F/d,Npr) = LnF
∗(N)(d)
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For simplicity, we state theorem 59 in terms of homology groups by applying theorem
52.

Theorem 60 (André Spectral Sequence [2]). Let F : C → D be a functor between small
categories. For any N : C → Ab, we have a first quadrant spectral sequence (Er, dr), such
that

1. E2
(p,q) = Hp(D, d Hq(F/d,Npr)) =⇒ Hp+q(C, N)

2. For each p, q, E∞(p,q) = Er(p,q) for large r (depending on p and q).

3. deg(dr) = (−r, r − 1)
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Chapter 4

Quillen’s Theorem A

Quillen’s original proof of Theorem A uses bisimplicial sets, i.e. simplicial objects in
the category of simplicial sets. In [34] he gave a different proof of this theorem, using
Grothendieck spectral sequence and homology with local coefficients. Though in this
second proof, C and D were assumed to be posets, Quillen observed that everything could
be generalized to small categories without essential change. In this chapter, we follow
Quillen’s approach, and generalize this second proof for categories. Moreover, we prove
a stronger result concerning n-equivalences, theorem 63. This has been proved in the
particular context of posets by Bjorner [4] and Barmak [3]. We also exhibit an homological
version of the result.

We follow Quillen’s approach closely, and begin with some previous definitions and
lemmas.

Let F : C → D be a functor between small categories, d an object of D. We denote by
F/d the category having as objects the pairs (c, α : F (c)→ d), where c is an object of C,
α a morphism in D, and as morphisms

f : (c1, α1 : F (c1)→ d)→ (c2, α2 : F (c2)→ d)

where f : c1 → c2 is a morphism in C, satisfying α2F (f) = α1. The categories F/d are
called the fibers of F . We shall say that the fibers of F are n-connected if B(F/d) is
n-connected for every d in D.

Lemma 61. Let F : C → D be a functor betwen small categories. Let the fibers of F be
n-connected.

1. If n = −1, C is nonempty iff D is nonempty.

2. If n = 0, F induces an isomorphism between π0(C) and π0(D).

3. If n = 1, F induces an isomorphism in the fundamental groupoids.

Proof. If n = −1 this is obvious.
Suppose n = 0. It suffices to show that π0(F ) is a bijection when we restrict F to the

1-skeletons. First take a1, a2 objects of C, such that F (a1) can be connceted to F (a2) by
morphisms in D,
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F (a1) c1 c2 cn−1 F (a2)

b1 b2 bn

· · ·

As F/ci is 0-connected we can take di in C, and maps F (di) → ci. Now, F/bi+1 is 0-
connected so we can join the objects (di, F (di)→ ci → bi+1) and (di+1, F (di+1)→ ci+1 →
bi+1) by arrows in F/bi+1, meaning in particular that di and di+1 can be joined by arrows
in C. Similarly d1 can be joined to a1 and dn−1 to a2. Then, a1 can be connected to a2

by a path of arrows in C. Finally, if d is an object of D, F/d is nonempty so F is onto on
objects. So π0(F ) is a bijection.

Consider now the case n = 1. We shall show that F∗ : Cov(D) → Cov(C) is an
equivalence. Consider the diagram

SetD SetC

Cov(D) Cov(C)

F∗

F∗

The idea will be to verify that the left adjoint of F∗ : SetD → SetC coresctricts to the
categories of coverings, i.e. F ∗(N) inverts morphisms if N does, and gives an equivalence
between them.

Take E : C → Set a morphism inverting functor, and g : d → d′ an arrow in D, and
universal cones,

{E(c)
τ(c,α)→ F ∗(E)(d)}(c,α)∈F/d

{E(c)
τ ′
(c,α)→ F ∗(E)(d′)}(c,α)∈F/d′

As F/d and F/d′ are 1-connected and E inverts morphisms, by lemma 24 every map
τ, τ ′ is an isomorphism. But for any (c, α) in F/d, F ∗(E)(g) satisfies F ∗(E)(g)τ(c,α) =
τ ′(c,gα), so F ∗(E)(g) is an isomorphism.

The fact that F∗F
∗ ' idCov(C) and F ∗F∗ ' idCov(D) is immediate from the definitions.

Note that in the last part of this proof, we could have replaced Set by any category
having all small colimits, such as Ab. We obtain,

Lemma 62. If F : C → D is a functor between small categories with 1-connected fibers,
then

F ∗ : AbC → AbD

preserves morphism inverting functors. Its restriction to the categories of local systems,
gives an equivalence of categories, together wih F∗.
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The following theorem was the reason of everything we have done so far. As noted, it
is a minor improvement of Quillen’s Theorem A.

Theorem 63. Let F : C → D be a functor between small categories, with n-connected
fibers, n ≥ 1. Then, F induces an (n+ 1)-equivalence between the classifying spaces.

Proof. By lemma 61 we can restrict to each connected component, and F induces an
isomorphism between the fundamental groups of the classifying spaces in each of them.
So we assume that C and D are connected. If we now show that F induces an isomorphism
up to dimension n and an epimorphism in dimension (n+ 1) for the homology groups of
the classifying spaces with arbitrary local systems of coefficients we would be done by
theorem 50.

Take then N a local system of coefficients on C. By theorem 60, we have a first
quadrant spectral sequence (Er, dr) such that

1. E2
(p,q) = Hp(D, d Hq(F/d,Npr)) =⇒ Hp+q(C, N)

2. For each p, q, E∞(p,q) = Er(p,q) for large r (depending on p and q).

3. deg(dr) = (−r, r − 1)

Since the fibers are n-connected, and Npr inverts morphisms, by theorem 51 and
lemma 47, E2

(p,q) = 0 if 1 ≤ q ≤ n. Moreover, recall from the description in theorem 59
that

E2
(p,0) = Hp(D, L0F

∗(N)) = Hp(D, F ∗(N))

Noting the bidegree of the diferentials and the zeroes present, we have that for k ≤ n+1,
E2

(k,0) = E∞(k,0). More precisely, stand at point (k, 0). At sheet r ≥ 2, this point receives

a differential from a module located (k + r, 1 − r) that is zero because it is outside the
first quadrant, since 1 − r < 0. It also sends a differential to a module M at position
(k − r, r − 1). If r > k M is zero because again, it is not in the first quadrant. Suppose
then that r ≤ k. As 2 ≤ r ≤ k ≤ n+ 1, we have that 1 ≤ r − 1 ≤ n. This means that M
is located in the horizontal band of zeroes.

This means we have isomorphisms

Hk(D, F ∗(N)) ' Hk(C, N)

for k ≤ n. If k = n+ 1, the only nonzero elements in the (n+ 1) diagonal are E∞(0,n+1)

and Hn+1(D, F ∗(N)). Recall that we had a bounded filtration Φp := ΦpHn+1(C, N), such
that

Φp/Φp−1 = E∞(p,n+1−p)

By boundeness, this means that Φp = 0 if p < 0, Φp = E∞(0,n+1) if 0 ≤ p ≤ n, and

Φn+1 = Hn+1(C, N). Then, we have the extension problem,

0→ E∞(0,n+1) → Hn+1(C, N)→ Hn+1(D, F ∗(N))→ 0

But this means that the map Hn+1(C, N)→ Hn+1(D, F ∗(N)) is an epimorphism, and
we are done.
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There is an alternative to using Grothendieck spectral sequence, that may be more
illuminating, specially since the isomorphisms arising from the spectral sequence seem
obscure. We want to show that if the fibers of F : C → D are n-connected, and N is a
local system of coefficients in D, then the arrow Hk(C, NF ) → Hk(D, N) induced by F
is an isomorphism for k ≤ n and an epimorphism for k = n + 1. Consider the following
commutative diagram,

colimC ◦ F∗ colimD

H0(C,−) ◦ F∗ H0(D,−)

where the vertical arrows are isomorphisms, by theorem 52. Since F∗ is exact, Hk(C,−)◦
F∗ and Lk(colimC) ◦F∗ are δ-functors, Lk(colimD) and Hk(D,−) universal δ-functors, by
universal property we have the following commutative diagram for every k,

Lk(colimC) ◦ F∗ Lk(colimD)

Hk(C,−) ◦ F∗ Hk(D,−)

where the vertical arrows are isomorphisms. Then, it suffices to show that

Lk(colimC) ◦ F∗ → Lk(colimD)

is an isomorphism for k ≤ n and an epimorphism for k = n + 1 whenever we evaluate in
a local system of coefficients. But F∗, F

∗ give an equivalence of categories, so it is enough
to show that

Lk(colimC)→ Lk(colimD) ◦ F ∗

is an isomorphism for k ≤ n and an epimorphism for k = n+ 1 whenever we evaluate
in a local system of coefficients. In Chapter 3 we had shown that colimC ' colimD ◦ F ∗,
so we consider

Lk(colimD ◦ F ∗)→ Lk(colimD) ◦ F ∗

With care it can be shown that this map is induced in the following manner: given N :
C → Ab, take P → N a projective resolution. Consider now a projective resolution Q →
F ∗(N). There is a map F ∗(P )→ Q, since F ∗ preserves projectives. Then, the morphism is
the induced arrow from Lk(colimD◦F ∗)(N) = Hk(colimDF

∗(P )) to Lk(colimD)◦F ∗(N) =
Hk(colimDQ).

Now, if the fibers are n-connected, and N is a local system of coefficients, Lk(F
∗)(N) =

0 for 0 < k ≤ n.
If the fibers are contractible they are n-connected for every n, and we can choose

Qk = F ∗(Pk) for 0 ≤ k ≤ n + 1, since this first section of the resolution is exact. This
shows that the induced map is an isomorphisms for k ≤ n and it is rather immediate that
it is also an epimorphism for k = n+ 1.
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Theorem 64 (Quillen’s Theorem A). Let F : C → D be a functor between small cate-
gories with contractible fibers. Then F induces a weak homotopy equivalence between the
classifying spaces.

For any small category, consider now the functor ZD : D → Ab that is constantly Z
and maps arrows to idZ. One can prove a homological version of lemma 24:

Lemma 65. Let F : J → C be a morphism inverting functor between small categories,
such that J is connected and H1(J ,ZJ ) = 0. Then, if the induced functor on the local-
izaton S−1C satisfies F̃ (αβ) = F̃ (βα) for every pair of endomorphisms α, β, we have that
colimF is isomorphic to each object in the diagram, i.e. if

{F (j)
τj→ colimF}j∈J

is a univeresal cone, τj is an isomorphism for every j.

Proof. Proceed as in the proof of the original, now factoring F by (S−1C)ab, the abelianiza-
tion of the localization obtained by taking the quotient generated by the relations αβ = βα
for every pair of endomorphisms αβ.

Using this it follows that F ∗(ZC) ' ZD, and in a similar fashion as in the proof of
theorem 63 we get

Theorem 66. Let F : C → D be a functor between small categories. If the fibers are
homologically n-connected, meaning that Hk(F/d,Z) = 0 for k ≤ n, then F is an homo-
logical (n+ 1)-equivalence, meaning it induces an isomorphism between integral homology
for k ≤ n and an epimorphism for k = (n+ 1).

54



Appendix A

A.1 Some Basic Category Theory

In this section we present some basic definitions that we used throughout our exposition.

Definition 67. A category C is defined by specifying a class Ob(C) of objects, a set
Hom(a, b) of morphisms for each pair a, b in Ob(C), and a composition Hom(b, c) ×
Hom(a, b) → Hom(a, c) for each triple a, b, c. Composition is required to be associa-
tive and each object a to have an identity ida in Hom(a, a), that acts as the identity for
the composition.

Categories appear naturally and everywhere. We shall note Set for the category of Sets
and maps of sets and Top for the category of topological spaces and continuous maps.

An element f of Hom(a, b) is usually noted as f : a → b. Hom(a, b) is also noted as
[a, b].

If C is a category we can form a new category Cop by formally inverting all arrows,
that is Ob(Cop) = Ob(C), HomCop(a, b) = HomC(b, a), f ◦

op
g = gf , and idCop(a) = idC(a).

An object a in a category C is called terminal if for every object b in C, [b, a] has a
unique element. If a is terminal in Cop then we say that a is initial (in C).

A functor is a morphism between categories,

Definition 68. A (covariant) functor F ; C → D between categories C and D, is a mapping
that associates to each object c of C an object F (c) of D, and to every morphism f : a→ b
in C, a morphism F (f) : F (a)→ F (b), such that F respects identities and the composition
operation.

A contravariant functor from C to D will be just a covariant functor from Cop to D.
If c is an object of a category C, it determines two functors [−, c] and [c,−], as follows:

[−, c] maps each object a in C to [a, c], and a morphism f : a → b to the function that
maps s in [b, c] to sf in [a, c]. [c,−] maps each object a in C to [c, a], and a morphism
f : a→ b to the function that maps s in [c, a] to fs in [c, b]

A category is called small if its objects and morphisms are sets. Cat will denote the
category of small categories and functors between them.

A natural transformation is a morphism between functors,

Definition 69. If F,G : C → D are functors, a natural transformation η from F to G,
is specified by providing for each object a of C, an arrow ηa : F (a) → G(a), such that for
each morphism f : a→ b in C, the following square commutes,
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F (a) G(a)

F (b) G(b)

ηa

F (f) G(f)

ηb

If C,D are categories, C small, DC shall denote the functor category, whose objects are
functors from C to D and whose morphisms are natural transformations between them.

If every ηa is an isomorphism, η is called a natural isomorphism (and is in fact an iso-
morphism in the functor category) and the functors are considered equal. A representable
functor is one naturally isomorphic to a functor of the type [c,−] or [−, c].

Two categories C,D are said to be equivalent, if there are functors F : C → D, and
G : D → C, such that GF is naturally isomorphic to idC and FG is naturally isomorphic
to idD.

A.1.1 Limits and Colimits

If F : J → C is a functor, we shall say that {F (j)
αj→ c}j∈J , is a cone over F , if for every

map f : j → k in J , αj = αkF (f).

If {F (j)
αj→ c}j∈J , {F (j)

βj→ d}j∈J , are cones, a morphism from the former to the
latter, is a morphism g : c→ d in C, such that βj = gαj for every j in J .

So, we have a category of cones over F . We define the colimit of F (if it exists) to
be the terminal object in this category. Dually, the limit is defined (if it exists) to be the
initial object in the category of cocones.

We usually note it as,

colim
J

F (j)

.
As an example, the coproduct of two objects a, b in a category C is no more than

the colimit of the functor F : J → C, where J has two objects x, y and no nonidentity
morphisms, and F (x) = a, F (y) = b.

A category C is called bicomplete if it has all small limits, that is every functor F :
J → C, where J is a small category has a limit and a colimit. Set and Top are examples
of bicomplete categories. In case C has all colimits indexed by J , colim : CJ → C is a
functor, in an obvious way.

A.1.2 Adjoint Functors

Adjoint functors appear everywhere, including this appendix.

Definition 70. If F : C → D, and G : D → C, are functors, an adjunction F a G between
them is a collection bijections,

HomD(F (c), d) ' HomC(c,G(d))

natural in c and d.
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F is said to be a left adjoint to G, and G a right adjoint to F . For example, forgetful
or underlying functors tend to have left adjoints which are free constructions.

Composing adjoints functors yields adjoint functos, in a natural way, if F a G and
H a I, HF a GI. Moreover, adjoints are unique up to a natural isomorphism,if F a G
and F a H then H ' G.

One useful property is that left adjoints preserve colimits and right adjoints preserve
limits. Then, if we had additive adjoint functors between abelian categories, the left one
would be right exact, and the right one left exact.

If F : C → D is a functor between small categories, and M has all small colimits, the
functor

F∗ :MD →MC

given by precomposing with F , F∗(T ) = TF has a left adjoint,

F ∗ :MC →MD

defined by mapping a functor N to its left Kan extension along F , i.e.

F ∗(N)(d) = colim
(c,α)∈F/d

N(c)

where F/d, called the fiber over d, is the category having as objects the pairs (c, α :
F (c)→ d). A morphism f : (c, α : F (c)→ d)→ (c′, α′ : F (c′)→ d) is an arrow f : c→ c′

in C such that α = α′F (f). If g : d→ d′ is in D, F ∗(N)(g) is defined by universal property.
Take

{N(c)
τ(c,α)→ F ∗(N)(d)}(c,α)∈F/d

{N(c′)
τ ′
(c′,α′)→ F ∗(N)(d′)}(c′,α′)∈F/d′

universal cones, then F ∗(N)(g) is the unique morphism making the following diagram
commute for every (c, α) in F/d

N(c) F ∗(N)(d)

F ∗(N)(d′)

τ(c,α)

τ ′
(c,gα) F ∗(N)(g)

For a proof, see [26] or [5]. The reader should be careful, as our notation is not standard:
generally F∗ is noted as F ∗ and F ∗ as F∗, however we chose to follow the notation found
in [18]

As an application, if f : J → ∗, where ∗ is the category with only one object and one
morphism, and M has all colimits indexed by J , we have the adjunction

f∗ a f∗
but it is immediate from the definitions that f∗ = colimJ , and f∗ : M → MJ is

defined by f∗(a)(b) = a, f∗(a)(f) = ida. We call f∗ = ΓJ the diagonal functor.
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A.1.3 Yoneda Lemma

The Yoneda lemma is a result that states how every category can be embedded in a
category of functors. Let F : Cop → Set be a functor, c an object of C. Then there is a
natural bijection between the set of natural transformations from [−, c] to F and F (c).
Given a natural transformation θ : [−, c] → F , map it to θc(idc). Now, given x in F (c),
and f : d→ c in C, define θd(f) = F (f)(x), θ is then a natural transformation.

This is a well defined bijection, and moreover it defines an embedding h : C → SetC
op

.
Not all functors are representable, but every functor is a colimit of representable ones.

This is an application (or a restatement) of Yoneda’s lemma. Given F : Cop → Set
define ΓF , as the category having as elements the pairs (c, x), with x in F (c), and as
morphisms f : (c, x) → (d, y), the arrows f : c → d in C, such that F (f)(y) = x. F
is then the colimit of the functor ♦ : ΓF → SetC

op
, defind by ♦((c, x)) = [−, c], and

♦(f : (c, x)→ (d, y))a(g) = gf .
Details can be found in [26].

A.1.4 Presentation of Categories

In this brief appendix a method of constructing categories, analogous to presentation of
groups is shown. We will follow [26]

For a graph, we understand a collection of points (or 0-simplices), and directed arrows
(or 1-simplices) between them. Formally,

Definition 71. A graph G is defined by giving a pair of morphisms in Set,

Arr(G) Ob(G)
d1

d0

Arr(G) are the arrows of G, and Ob(G), the objects or vertices of G
A morphism between graphs D : G→ H, is a pair of set maps,

D : Arr(G)→ Arr(H)

and
D : Ob(G)→ Ob(H)

such that Ddif = diDf for i = 0, 1 and every f in Arr(G).

So we have a category Grph of graphs. Now, given a graph G, we form the free category
induced by it, Free(G), as follows: Objects of Free(G) will be Ob(G), and morphisms
between a, b in Ob(G) will be tuples (f0, · · · , fn) of composable arrows, beginning at a
and ending at b (which we call words from a to b), that is Hom(a, b) = {(f0, · · · , fn) :
d1(f0) = a, d0(fn) = b and d0(fi) = d1(fi+1)} (d1(f) is the domain of f , and d0(f) its
codomain). Composition of morphisms (when defined) will be concatenation of tuples.
That is, if w = (f1, · · · , fn) is a word from a to b, and v = (g1, · · · , gm) is a word from b to
c, the composition v ◦ w is defined as the concatenation wv = (f1 · · · , fn, g1, · · · , gm) We
also add formal identities at each point (that should be regarded as empty words), which
act as identities for concatenation.

If w = (f0, · · · , fn), is a word from a to b we shall say that a subword of w is a substring
of w or ida or idb. We also define the length of w to be n.
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Note that we have a functor Free : Grph→ Cat, and as expected this turs out to be
the left adjoint to the forgetful functor U : Cat → Grph, which assigns to a category its
underlying graph.

Presenting a category will consist of taking a quotient of the free category generated
by some graph.

Given a category C, a relation R on that category will denote an assignment of for each
pair of objects a, b in C, a relation Ra,b in Hom(a, b). If each relation is an equivalence
relation, such that whenever it makes sense, composition respects equivalence, we call R
a congruence.

Now, if we have R a congruence on the category C we can form the quotient category
C/R. Its objects are the objects of C and its morphisms are the equivalence classes of
morphisms of C, that is,

HomC/R(a, b) = HomC(a, b)/Ra,b.

The compatibilty conditions means that composition is well defined in the obvious way.
If instead of having a congruence we had a relation R on C, we can still take the

quotient by previously enlarging the relation R to the smallest congruence containing it.
We are now ready to define what presenting a category means.

Definition 72. A presentation of a category, is a graph G together with a relation R on
Free(G).

A presentation (G,R), presents the category (G|R) := Free(G)/R, and has the ex-
pected universal property, that is, to define a functor from it to any category D it is enough
to define a morphism F : G→ U(D), sucht that F respects the relation R.

In the same way that every group admits a presentation, every category admits a
presentation too. If C is small, let G be its underlying graph, and R the relation on
G consisting of all valid identities, that is, Ra,b = {((f1, · · · , fn), (g1, · · · , gm)) such that
fn · · · f1 = gm · · · g1 and both are morphisms from a to b}. Then, (G|R) = C.

With this in mind it is easy to define what localizing a small category means, that is,
formally inverting every morphism in it: just take a presentation, add one arrow for every
arrow in the graph (but going in the other direction), and add the correspoing inverse
relation. Given a category C, we will denote its localization by S−1C. We have a natural
functor C → S−1C, with the expected universal property: every functor from C that inverts
every morphism factors by S−1C.

A.2 Some Homological Algebra

We will provide some definitions and state some general well known facts. We follow [47].
Recall that an object a in an abelian category C is called projective if given f : b→ c

an epimorphism, and g : a→ c, there exists h : a→ b such that fh = g,

a

b c 0

g

f

h
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An abelian category will be said to have enough projectives, if for every object a there
is an epimorphism p→ a, with p projective.

A functor F : C → D between abelian categories is additive if F (f +g) = F (f) +F (g),
for any f, g.

We say that the diagram,

A B C
a b

is exact at B if Im(a) = Ker(b) (as subobjects of B). An exact sequence of morphisms
is a sequence of morphisms exact at each place. Hooks ↪→ will denote monomorphisms,
and double headed arrows � epimorphisms.

An additive functor F is exact if given any short exact sequence,

0 A B C 0
f g

the sequence,

0 F (A) F (B) F (C) 0
F (f) F (g)

is exact (recall that if F is additive F (0) = 0). It is called right exact if instead

F (A) F (B) F (C) 0
F (f) F (g)

is exact.
The following lemma is quite useful,

Lemma 73. If F a G are adjoint additive functors between abelian categories and G is
exact, then F preserves projectives.

Proof. Take P projective in dom(F ), and an exact diagram,

F (P )

b c 0

g

f

in dom(G). Since G is right exact, the following diagram is exact,

P

G(b) G(c) 0

g

f

But now P is projective, and we can find P → G(b) making the diagram commute.
By adjunction we have an arrow F (P )→ b making the first diagram commute.

60



A projective resolution of an object a of C, is a pair (C,α) such that C is a chain
complex of projective objects, Cn = 0 if n < 0, α : C0 → a, and the augmented complex

· · · C3 C2 C1 C0 a
α

is exact. We will note the resolution (C,α) of a, by C
α→ a

A category with enough projectives has projective resolutions for any object. If F :
C → D is a right exact additive functor, its n-th left derived functor is obtained as follows:
Given an object a, take a projective resolution (C,α), and define LnF (a) = Hn(F (C)),
where F (C) is the chain complex, formed from C by applying F . This turns out to be
well defined and functorial. Note that as F is right exact, L0F is naturally isomorphic to
F .

The natural setting to approach derived functors according to Grothendieck is that of
δ-functors. See [44].

Definition 74. A homological δ-functor between C and D is a collection of additive func-
tors Tn : C → D for n ≥ 0, together with morphisms

δn : Tn(c)→ Tn−1(a)

defined for each short exact sequence 0→ a→ b→ c→ 0, such that

· · · → Tn+1(c)
δ→ Tn(a)→ Tn(b)→ Tn(c)

δ→ Tn−1(a)→ · · · → T0(c)→ 0

is a long exact sequence, and the δ’s are natural, i.e. for each commutative diagram
with exact rows,

0 a b c 0

0 a′ b′ c′ 0

we have commutative squares,

Tn(c′) Tn−1(a′)

Tn(c) Tn−1(a)

δ δ

For example the homology functors Hn from the category of positive chain complexes
Ch(Ab)≥0 (complexes where Ck = 0 if k < 0) to Ab form a δ-functor {Hn}.

A morphism of δ-functors {Sn} → {Tn} is a collection of natural transformation be-
tween them, that commute with the δ’s. A delta functor {Tn} is universal if for every
δ-functor {Sn}, and every natural transformation η : S0 → T0, there is a unique δ-functor
morphism that extends it.

Theorem 75. If C is an abelian category with enough projectives, the left derived functors
of any right exact functor L : C → D form a universal δ-functor.
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That is, in categories with enough projectives, universal delta functors are determined
in level 0. A certain condition guarantees that a δ-functor is universal.

Definition 76. An additive functor T : C → D is coeffaceable if for every c in C there is
an epimorphism u : p → c, such that T (u) = 0. A δ-functor {Tn}is coeffaceable if Tn is
coeffaceable for ever n > 0.

Lemma 77 (see [44]). A coeffaceable δ-functor is universal.

The following is a useful lemma,

Lemma 78 (Horseshoe Lemma). Let A be an abelian category with enough projectives.
If,

0 a′ a a′′ 0
ιa πa

is exact and (P ′, α′), (P ′′, α′′) are projective resolutions of a′ and a′′ respectively, then
we have a projective resolution (P, α) that fits in the following diagram,

0 a′ a a′′ 0

P ′ P ′′P

ιa πa

α′ α′′α

ι π

that is to say, ι and π are morphisms of chain complexes, αι0 = ιaα
′ and α′′π0 = πaα.

Moreover, Pn = P ′n
⊕
P ′′n , and for each n, ιn, πn are the natural inclusion and projec-

tion maps.
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