UNIVERSIDAD DE BUENOS AIRES
 Facultad de Ciencias Exactas y Naturales
 Departamento de Matemática

Tesis de Licenciatura

Teorema de Representación de MV-Álgebras

Guillermo Walter Herrmann

Director: Roberto Cignoli

Contents

Introducción 4
Abstract 9
1 Effect Algebras 11
1.1 Basic notions 11
1.2 Effect algebras with the Riesz descomposition property 18
1.3 Phi-Symmetric Effect Algebras 21
1.4 Bibliographical remarks 29
2 MV-algebras 31
2.1 MV and Boolean algebras 31
2.1.1 Basic notions 31
2.1.2 Homomorphism and ideals 36
2.1.3 Subdirect representation theorem 41
2.1.4 MV-equations 43
2.1.5 Boolean algebras 46
2.2 MV and MV-effect algebras 49
2.3 Bibliographical remarks 52
3 MV-Pairs and MV-Algebras 55
3.1 Bibliographical remarks 68

Introducción

Puisqu'on ne peut être universel en sachant tout ce qui se peut savoir sur tout, il faut savoir peu de tout. Car il est bien plus beau de savoir quelque chose de tout que de savoir tout d'une chose; cette universalité est la plus belle. Si on pouvait avoir les deux, encore mieux, mais s'il faut choisir, il faut choisir celle là...

Blaise Pascal: Pensées, 37 [éd. Brunschvicg]

... En aquel Imperio, el Arte de la Cartografía logró tal Perfección que el mapa de una sola Provincia ocupaba toda una Ciudad, y el mapa del Imperio, toda una Provincia. Con el tiempo, esos Mapas Desmesurados no satisficieron y los Colegios de Cartógrafos levantaron un Mapa del Imperio, que tenía el tamaño del Imperio y coincidía puntualmente con él. Menos Adictas al Estudio de la Cartografía, las Generaciones Siguientes entendieron que ese dilatado Mapa era inútil y no sin Impiedad lo entregaron a las Inclemencias del Sol y de los Inviernos. En los desiertos del Oeste perduran despedazadas Ruinas del Mapa, habitadas por Animales y por Mendigos; en todo el País no hay otra reliquia de las Disciplinas Geográficas.

Suárez Miranda: Viajes de varones prudentes, Libro Cuarto, Cap. XLV, Lérida, 1658.

Jorge Luis Borges: Museo.

Gejza Jenča demuestra en [17] que dado un MV-par (B, G), y una relación de equivalencia \sim_{G}, la effect álgebra B / \sim_{G} es una MV-effect álgebra. Nuestro
principal objetivo es presentar esta demostración, con todos los resultados necesarios para su deducción.

En la sección 1.1 del capítulo 1, se estudian las propiedades básicas de las effect álgebras.
En la sección 1.2 se definen las propiedades de descomposición e interpolación de Riesz sobre effect álgebras; y damos una demostración de la proposición que dice que: "Toda effect álgebra que satisface la propiedad de descomposición de Riesz, cumple con la propiedad de interpolación de Riesz". También se demuestra que dada una effect álgebra que satisface la propiedad de descomposición de Riesz, al pasar al conjunto cociente vía una relación de congruencia de effect álgebras, dicho conjunto cociente también verifica la propiedad de descomposición de Riesz.
Luego, en la última sección del primer capítulo, se definen las propiedades elementales de las álgebras ϕ-simétricas, con el propósito de mostrar que en una effect álgebra con una estructura de reticulado, son equivalentes las propiedades de ϕ-simetría y de descomposición de Riesz.

En la sección 2.1 del capítulo 2, presentamos las propiedades elementales de las MV-álgebras, con el fin de dar una caracterización de las MV-álgebras como álgebras de Boole. En la sección 2.2 se definen las MV-effect álgebras, y probamos que toda MV-effect álgebra es una MV-álgebra (teorema 2.2.5), basándonos en los resultados publicados en los artículos de Chovanec y Kôpka [6] y [7]. Hacemos notar al lector, que en el libro [9] hay otra demostración del teorema 2.2.5, donde al demostrarse la propiedad asociativa correspondiente a las MV-álgebras, se supone erróneamente, que la suma entre los elementos tomados en consideración está siempre definida. Asimismo, en [10] y [11], se demuestra el teorema 2.2.5 en el contexto más general de las Pseudoeffect algebras.

En el capítulo tercero, se define la noción de MV-par (B, G), donde B es un álgebra de Boole, y G un subgrupo del grupo de automorfismos de B, que satisfacen ciertas condiciones. Dada \sim_{G} una relación de equivalencia sobre B asociada a G, se demuestra que dado un MV-par (B, G), la effect álgebra resultante B / \sim_{G}, es una MV-effect álgebra, y en virtud del teorema 2.2.5, al que hicimos alusión en el párrafo anterior, es una MV-álgebra. Damos además, una caracterización de B / \sim_{G} como álgebra de Boole, apoyándonos
en la caracterización de las MV-álgebras como álgebras de Boole mencionada más arriba al hacer mención de los contenidos del capítulo segundo.
Luego, y a modo de ejemplo, tomando un álgebra de Boole B finita con n átomos, y el grupo de automorfismos de B, demostramos que el conjunto B / \sim_{G} es isomorfo a la MV-álgebra L_{n+1}. Además, considerando el álgebra de Boole de las partes finitas y cofinitas de los números naturales, y su grupo de automorfismos, probamos que el conjunto B / \sim_{G} es isomorfo a $\Sigma(\mathbb{Z})$, conocida por ser el primer ejemplo de MV-álgebra no semisimple.

Por último indicamos que la demostración dada del teorema 2.2.5, en cuanto se refiere a la propiedad asociativa; el ejemplo 3.5, la caracterización dada en el Corolario 3.11, el ejemplo 3.13, así como las demostraciones de los ejemplos 3.2 y 3.12 , las incluimos en el presente trabajo, y declaramos no haberlas visto en las publicaciones que hemos tenido a nuestro alcance.

Buenos Aires. Diciembre de 2010.

Guillermo W. Herrmann
guillermo_herrmann@yahoo.com.ar

Abstract

Some properties of effect algebras, effect algebras with the Riesz descomposition property, ϕ-symmetric effect algebras, MV-algebras, Boolean algebras and MV-effect algebras are studied.
An MV-pair is a pair (B, G) where B is a Boolean algebra an G is a subgroup of the automorphism group of B satisfying certain conditions. Let \sim_{G} be the equivalence relation on B naturally associated with G. For every MV-pair (B, G), the effect algebra B / \sim_{G} is an MV-effect algebra, a proof of this fact is given. Moreover, we present a characterization of B / \sim_{G} as a Boolean algebra.

Chapter 1

Effect Algebras

1.1 Basic notions

Definition 1.1.1 An effect algebra is a system $(E ; \oplus, 0,1)$ consisting of a set E with two special elements $0,1 \in E$, called zero and the unit, an with a partially defined binary operation \oplus satisfying the following conditions for all $p, q, r \in E$.
(E1) (Commutative Law) If $p \oplus q$ is defined, then $q \oplus p$ is defined and $p \oplus q=q \oplus p$.
(E2) (Associative Law) If $p \oplus q$ and $(p \oplus q) \oplus r$ are defined, then $q \oplus r$ and $p \oplus(q \oplus r)$ are defined and $(p \oplus q) \oplus r=p \oplus(q \oplus r)$.
(E3) (Orthosuplementation Law) For every $p \in E$ there exist a unique $p^{\prime} \in E$ such that $p \oplus p^{\prime}$ is defined and $p \oplus p^{\prime}=1$.
(E4) (Zero-one Law) If $p \oplus 1$ is defined, then $p=0$.
In an effect algebra, when we write an equation such as $p \oplus q=r$, we are asserting both that $p \oplus q$ is defined an that $p \oplus q=r$.

Example 1.1.2 Let $\left(B, 0,1, \wedge, \vee,^{c}\right)$ be a Boolean algebra, regarded as a bounded distributive lattice. Then $(B, 0,1, \oplus)$ with $a \oplus b:=a \vee b$ iff $a \wedge b=0$, for all $a, b \in B$, is an effect algebra.

Example 1.1.3 [13] Let R be a (not necessarily commutative) ring with unity 1 and let E be the set of idempotents ${ }^{1}$ in R. If $e, f \in E$, let $e \oplus f:=e+f$ iff $e f=f e=0$. Then $(E, 0,1, \oplus)$ is an effect algebra.

Example 1.1.4 An ordered Abelian group is an Abelian group ($G ;+, 0$) equipped with a partial order \leq which is translation-invariant, that is, given any $x, y, z \in G$, if $x \leq y$ then $x+z \leq y+z$. The positive cone of a partially ordered Abelian group G is the set G^{+}of all positive elements in G. If G is a partially ordered Abelian group and $u \in G$, we define the interval

$$
G^{+}[0, u]:=\{g \in G: 0 \leq g \leq u\} .
$$

If G is a partially ordered Abelian group an $u \in G^{+}$, then the interval $G^{+}[0, u]$ can be organized into an effect algebra $\left(G^{+}[0, u] ; \oplus, 0, u\right)$ such that $p \oplus q$ is defined if and only if $p+q \leq u$, in wich case $p \oplus q=p+q$.

An effect algebra of the form $G^{+}[0, u]$, or isomorphic to such an effect algebra, is called an interval effect algebra with unit u of the group G. ${ }^{2}$

Lemma 1.1.5 Let E be an effect algebra and $p, q \in E$. Then:
(i) $p^{\prime \prime}=p$.
(ii) $1^{\prime}=0$ and $0^{\prime}=1$.
(iii) For each $p \in E, p \oplus 0$ is defined and $p \oplus 0=p$.
(iv) $0 \leq p \leq 1$ for all $p \in E$.
(v) If $p \oplus q$ is defined, then $q \oplus(p \oplus q)^{\prime}$ is defined, and $p=\left(q \oplus(p \oplus q)^{\prime}\right)^{\prime}$.

[^0](vi) (Cancellation Law) If $p \oplus r$ and $q \oplus r$ are defined and $p \oplus r=q \oplus r$, then $p=q$.
(vii) $p \oplus q=0$ then $p=q=0$.

Proof. (i): note that by (E1) and (E3), $p^{\prime} \oplus p=p \oplus p^{\prime}=1$; hence, $p=p^{\prime \prime}$.
(ii): Since by (E3) $1 \oplus 1^{\prime}$ is defined, (E4) implies that $1^{\prime}=0$, and by (i) we have that $0^{\prime}=1^{\prime \prime}=1$.
(iii): By (ii) $1 \oplus 0=1$; hence by (E3), (E1) and (E2):

$$
1=1 \oplus 0=\left(p^{\prime} \oplus p\right) \oplus 0=p^{\prime} \oplus(p \oplus 0)
$$

then by (E3) and (i) we conclude that $p \oplus 0=p^{\prime \prime}=p$.
(iv) Clearly by (iii) and (E_{3}).
(v): If $p \oplus q$ is defined, then by (E3) and (E2) we have that:

$$
1=(p \oplus q) \oplus(p \oplus q)^{\prime}=p \oplus\left(q \oplus(p \oplus q)^{\prime}\right),
$$

and then (iv) follows from (E3) and (i).
(vi): Suppose that $p \oplus r=q \oplus r$, by (iv) and (E1) we have that:

$$
p=\left(r \oplus(p \oplus r)^{\prime}\right)^{\prime}=\left(r \oplus(q \oplus r)^{\prime}\right)^{\prime}=q
$$

(vii): Finally suppose that $p \oplus q=0$, then by (v) and (ii), $q \oplus(p \oplus q)^{\prime}=q \oplus 1$, and by (E4), $q=0$; hence by (iii) $0=p \oplus 0=p$.

The binary relation \leq defined on E by the prescription $p \leq q$ iff there is r such $p \oplus r=q$ is a partial order on E , called the natural order of E. Indeed, reflexivity follows from (iii) of Lemma 1.1.5, transitivity from (E2), and antisymmetry from (iii), (vi) and (vii) of Lemma 1.1.5.

Definition 1.1.6 The effect algebra E is lattice ordered iff, as a bounded partially ordered $\leq \operatorname{set}(E, \leq, 0,1)$, it forms a lattice $(E, \leq, 0,1, \wedge, \vee)$, i.e., $p \wedge q$ and $p \vee q$ exist for all $p, q \in E$.

Lemma 1.1.7 Let E be an effect algebra an let $p, q \in E$. Then:
(i) $p \leq q$ if and only if $q^{\prime} \leq p^{\prime}$.
(ii) $p \oplus q$ is defined if and only if $p \leq q^{\prime}$.

Proof. (i) Suppose $p \leq q$, and take r such that $p \oplus r=q$. By (v) and (i) in Lemma 1.1.5, $p^{\prime}=r \oplus(p \oplus r)^{\prime}=r \oplus q^{\prime}$, and this show that $q^{\prime} \leq p^{\prime}$. On the other hand, if $q^{\prime} \leq p^{\prime}$, by what we have just proved and (i) of Lemma 1.1.5, we have $p=p^{\prime \prime} \leq q^{\prime \prime}=q$.
(ii) Suppose first that $p \oplus q$, then by (v) in Lemma 1.1.5, $q^{\prime}=p \oplus(p \oplus q)^{\prime}$, hence $p \leq q^{\prime}$. Suppose now that $p \leq q^{\prime}$, i.e., that there is r such that $p \oplus r=q^{\prime}$; then $1=q \oplus q^{\prime}=q \oplus(p \oplus r)$, hence by (E2) and (E1), $p \oplus q$ is defined.

Definition 1.1.8 Let E be an effect algebra and $p, q \in E$. We say that p is orthogonal to q and write $p \perp q$ iff $p \leq q^{\prime}$.

If $p, q \in E$ with $p \leq q$, there exist $r \in E$ with $p \perp r$ and $p \oplus r=q$. By the cancellation law, r is uniquely determined, and we can formulate the following definition:

Definition 1.1.9 If $p, q \in E$ with $p \leq q$, we define the difference $q \ominus p$ to be the unique element in E that satisfies $p \oplus(q \ominus p)=q$.

Proof of the next Lemma is omitted since it follow directly from Definition 1.1.9 and previously developed facts about effect algebras.

Lemma 1.1.10 Let E be an effect algebra and $p, q \in E$ with $p \leq q$. Then:
(i) $p=q$ if and only if $q \ominus p=0$.
(ii) $p=0$ if and only if $q \ominus p=q$.
(iii) $q \ominus p \leq q$ and $p=q \ominus(q \ominus p)$.
(iv) Let $r \in E$ such that $r \leq q \ominus p$, then:

$$
p \leq q \ominus r
$$

and,

$$
(q \ominus p) \ominus r=(q \ominus r) \ominus p .
$$

(v) $q \ominus p=\left(p \oplus q^{\prime}\right)^{\prime}$.
(vi) $p \oplus q^{\prime}=(q \ominus p)^{\prime}$.

Proposition 1.1.11 (The De Morgan laws) Let E be an effect algebra, $p, q \in E$. Then
(i) If $p \wedge q$ exists in E, then $p^{\prime} \vee q^{\prime}$ exists in E and $(p \wedge q)^{\prime}=p^{\prime} \vee q^{\prime}$.
(ii) If $p \vee q$ exists in E, then $p^{\prime} \wedge q^{\prime}$ exists in E and $(p \vee q)^{\prime}=p^{\prime} \wedge q^{\prime}$.

Proof. Follows from Lemma 1.1.5 and Lemma 1.1.7.
Definition 1.1.12 Let E and P be effect algebras. A mapping $\phi: E \rightarrow P$ is said to be
(i) a morphism iff satisfies the properties: $\phi\left(1_{E}\right)=1_{P}$ and given $p, q \in E$ with $p \perp q$ then $\phi(p) \perp \phi(q)$ and $\phi(p \oplus q)=\phi(p) \oplus \phi(q)$;
(ii) a homomorphism iff ϕ is a morphism and $p, q \in E$ with $p \wedge q=0$ implies $\phi(p) \wedge \phi(q)=0$;
(iii) a monomorphism iff ϕ is a morphism and $p, q \in E$ with $\phi(p) \leq \phi(q) \Rightarrow p \leq q ;$ and,
(iv) an isomorphism iff ϕ is a surjective monomorphism.

Definition 1.1.13 Let E be an effect algebra. A relation \sim on E is an effect algebra congruence or a congruence on an effect algebra iff the following conditions are satisfied.
(C1) \sim is an equivalence relation.
(C2) If $p_{1} \sim p_{2}, q_{1} \sim q_{2}$ and $p_{1} \oplus q_{1}, p_{2} \oplus q_{2}$ exist, then $p_{1} \oplus q_{1} \sim p_{2} \oplus q_{2} .{ }^{3}$
(C3) If $p \sim q \oplus r$, then there are q_{1}, r_{1} such that $q_{1} \sim q, r_{1} \sim r, q_{1} \oplus r_{1}$ exist and $p=q_{1} \oplus r_{1}$.
(C4) If $p \sim q$, the $p^{\prime} \sim q^{\prime}$.
If \sim is a congruence on an effect algebra E , we denote the equivalence class containing $p \in E$ by $[p]$ and denote the set of congruence classes by E / \sim. We define $[p] \oplus[q]$ iff there exist $p_{1}, q_{1} \in E$ such that $p_{1} \sim p, q_{1} \sim q$ and $p_{1} \perp q_{1}$ and put $[p] \oplus[q]=\left[p_{1} \oplus q_{1}\right]$. According to (C2), $[p] \oplus[q]$ is well defined. We say that $[\mathrm{p}]$ is less than or equal to $[\mathrm{q}]$ and write $[p] \leq[q]$ iff there exists an element $r \in E$ such that $[p] \perp[r]$ and $[p] \oplus[r]=[q]$.

Lemma 1.1.14 Let \sim be a congruence on an effect algebra E. For all $p, q \in E$, the following are equivalent.
(i) $[\mathrm{p}] \leq[q]$.
(ii) There is $p_{1} \sim p$ such that $p_{1} \leq q$.
(iii) There is $q_{1} \sim q$ such that $p \leq q_{1}$.

Proof. $(i i) \Rightarrow(i)$ and $i i i) \Rightarrow(i)$ are trivial.
$(i) \Rightarrow(i i):$ As $[p] \leq[q]$, there is $r \in E$ such that $[p] \oplus[r]=[q]$. This implies that there are $p_{0}, r_{0} \in E$ such that $p_{0} \sim p, r_{0} \sim r, p_{0} \perp r_{0}$, and $p_{0} \oplus r_{0} \sim q$. By the (C3) property, there are p_{1}, r_{1} such that $p_{1} \sim p_{0}, r_{1} \sim r_{0}, p_{1} \perp r_{1}$, and $p_{1} \oplus r_{1}=q$.
$(i) \Rightarrow(i i i):$ Suppose $[p] \leq[q]$, then there exists $r \in E$ such that
$[p] \oplus[r]=[q]$, then there are $p_{0}, r_{0} \in E$ such that $p_{0} \sim p, r_{0} \sim r, p_{0} \perp r_{0}$, and $p_{0} \oplus r_{0} \sim q$. By the (C3) property, there are p_{1}, r_{1} such that

[^1]$p_{1} \sim p_{0}, r_{1} \sim r_{0}, p_{1} \perp r_{1}$, and $p_{1} \oplus r_{1}=q$. Then $p_{1} \sim p$ and $p_{1} \leq q$, and by Lemma 1.1.7 (i) $q^{\prime} \leq p_{1}^{\prime}$, hence there exists $v \in E$ such that $q^{\prime} \oplus v=p_{1}^{\prime}$. By (C4) property $\left[p_{1}^{\prime}\right]=\left[p^{\prime}\right]=\left[q^{\prime} \oplus v\right]=\left[q^{\prime}\right] \oplus[v]$, hence $\left[p^{\prime}\right] \leq\left[q^{\prime}\right]$. As $(i) \Rightarrow(i i)$, there is $w \sim p^{\prime}$ such that $w \leq p^{\prime}$ and by Lemma 1.1.7 (i) $p \leq w^{\prime}$. By (C4) property, $w \sim q^{\prime}$ iff $w^{\prime} \sim q$ and we can put $q_{1}=w^{\prime}$.

Theorem 1.1.15 If E is an effect algebra and \sim is an effect algebra congruence, then E / \sim is an effect algebra.

Proof. Clearly, \oplus is commutative.
To prove associativity, assume that $[p] \oplus[q]$ and $([p] \oplus[q]) \perp[r]$. Then there exist $p_{1}, q_{1} \in E$ such that $p_{1} \sim p, q_{1} \sim q, p_{1} \perp q_{1}$ and $[p] \oplus[q]=\left[p_{1} \oplus q_{1}\right]$. By definition $[r] \perp\left[p_{1} \oplus q_{1}\right]$ so there exist $r_{1}, v \in E$ such that $r_{1} \sim r$, $v \sim p_{1} \oplus q_{1}, r_{1} \perp v$ and

$$
([p] \oplus[q]) \oplus[r]=\left[p_{1} \oplus q_{1}\right] \oplus[r]=\left[v \oplus r_{1}\right]
$$

Now $v \sim p_{1} \oplus q_{1}, v \perp r_{1}$ imply by Lemma 1.1.7 (ii) that $v \sim p_{1} \oplus q_{1}$ and $v \leq r_{1}^{\prime}$, and by Lemma 1.1.14 there exists $r_{2} \sim r_{1}^{\prime}$ such that $p_{1} \oplus q_{1} \leq r_{2}$. By Lemma 1.1.7 (ii) we have that $p_{1} \oplus q_{1} \perp r_{2}^{\prime}$ and by (C4) $r_{2}^{\prime} \sim r_{1}$. Since $p_{1} \perp q_{1}, r_{2}^{\prime} \perp p_{1} \oplus q_{1}$ we have by (E2) that $q_{1} \perp r_{2}^{\prime},[q] \perp[r]$ and $[q] \oplus[r]=\left[q_{1} \oplus r_{2}^{\prime}\right]$. Moreover, $p_{1} \perp\left(q_{1} \oplus r_{2}^{\prime}\right)$ so $[p] \perp([q] \oplus[r])$ and

$$
\begin{gathered}
([p] \oplus[q]) \oplus[r]=\left[v \oplus r_{1}\right]=\left[\left(p_{1} \oplus q_{1}\right) \oplus r_{2}^{\prime}\right] \\
=\left[p_{1} \oplus\left(q_{1} \oplus r_{2}^{\prime}\right]=\left[p_{1}\right] \oplus\left[q_{1} \oplus r_{2}^{\prime}\right]=[p] \oplus([q] \oplus[r])\right.
\end{gathered}
$$

To show the orthosuplementation law, clearly $[p] \oplus\left[p^{\prime}\right]=\left[p \oplus p^{\prime}\right]=[1]$ for every $p \in E$. To prove the uniqueness of $[\mathrm{p} ']$ assume that $[p] \oplus[q]=[1]$. Then there exist $p_{1}, q_{1} \in E$ such that $p_{1} \sim p, q_{1} \sim q$ and $p_{1} \oplus q_{1} \sim 1$. Also, there exists a $r \in E$ such that $p_{1} \oplus q_{1} \oplus r=1$ so $q_{1} \oplus r=p_{1}^{\prime}$. Since $p_{1} \oplus q_{1} \sim p_{1} \oplus q_{1} \oplus r, r \perp p_{1} \oplus q_{1}$ we have by Lema 1.1.7 (ii) that $p_{1} \oplus q_{1} \leq r^{\prime}$, and by Lemma 1.1.14 there exists $v \sim r^{\prime}$ such that $p_{1} \oplus q_{1} \oplus r \leq v$; then $p_{1} \oplus q_{1} \oplus r \perp v^{\prime}$ and by (C4) $v^{\prime} \sim r$. But then $v^{\prime}=0$ and hence $r \sim 0$. Now $q_{1} \sim q, r \sim 0, q_{1} \perp r$ imply by (C2) and (C4) that

$$
q=q \oplus 0 \sim q_{1} \oplus r=p_{1}^{\prime} \sim p^{\prime}
$$

Hence, $[q]=\left[p^{\prime}\right]$.
Now, to prove the zero-one law, we assume that $[p] \perp[1]$. Then there exist $p_{1}, q \in E$ such that $p_{1} \sim p, q \sim 1, p_{1} \perp q$. Now $q \sim 1, q \perp p_{1}$ imply that there exists $p_{2} \in E$ such that $p_{2} \sim p_{1}, p_{2} \perp 1$. Hence, $p_{2}=0$. Therefore, $p \sim p_{1} \sim p_{2}$ so $[p]=[0]$.

1.2 Effect algebras with the Riesz descomposition property

Definition 1.2.1 An effect algebra E has the Riesz descomposition property if, for $p_{1}, p_{2}, q_{1}, q_{2} \in E, p_{1} \oplus p_{2}=q_{1} \oplus q_{2}$ implies the existence of $\omega_{i j} \in E$ such that $p_{i}=\omega_{i 1} \oplus \omega_{i 2}$ and $q_{j}=\omega_{1 j} \oplus \omega_{2 j}$ for all $i, j \in\{1,2\}$.

Lemma 1.2.2 Let E be an effect algebra. The following conditions are equivalent:
(i) For $p, q_{1}, q_{2} \in E$ with $p \leq q_{1} \oplus q_{2}$, there exist $p_{1}, p_{2} \in E$ such that $p=p_{1} \oplus p_{2}$ and $p_{i} \leq q_{i} i=1,2$.
(ii) E has the Riesz descomposition property.

Proof. (i) \Rightarrow (ii): Let $p_{1}, p_{2}, q_{1}, q_{2} \in E$ and $p_{1} \oplus p_{2}=q_{1} \oplus q_{2}$. Then we have $p_{2} \leq q_{1} \oplus q_{2}$. By (i), there exist $\omega_{11}, \omega_{12} \in E$ such that $p_{1}=\omega_{11} \oplus \omega_{12}$ and each $\omega_{1 j} \leq q_{j}$. Set $\omega_{2 j}=q_{j} \ominus \omega_{1 j}$ for each j, so $q_{j}=\omega_{1 j} \oplus \omega_{2 j}$. Since

$$
p_{1} \oplus p_{2}=q_{1} \oplus q_{2}=\omega_{11} \oplus \omega_{21} \oplus \omega_{12} \oplus \omega_{22}
$$

we also have $p_{2}=\omega_{21} \oplus \omega_{22}$.
(ii) $\Rightarrow(i):$ Let $p, q_{1}, q_{2} \in E$ and $p \leq q_{1} \oplus q_{2}$. Set $v_{1}=p$ and
$v_{2}=\left(q_{1} \oplus q_{2}\right) \ominus p$, so that v_{1}, v_{2} are elements such that $v_{1} \oplus v_{2}=q_{1} \oplus q_{2}$. By (ii), there exist $\omega_{11}, \omega_{12}, \omega_{21}, \omega_{22}$ such that each $v_{i}=\omega_{i 1} \oplus \omega_{i 2}$ and each $q_{j}=\omega_{1 j} \oplus \omega_{2 j}$. Then $p=v_{1}=\omega_{11} \oplus \omega_{12}$. we also have $\omega_{1 j} \leq \omega_{1 j} \oplus \omega_{2 j}=q_{j}$.

1.2. EFFECT ALGEBRAS WITH THE RIESZ DESCOMPOSITION PROPERTY19

Definition 1.2.3 A partially ordered set X is said to have the Riesz interpolation property if, for $p_{1}, p_{2}, q_{1}, q_{2} \in E$ such that $p_{i} \leq q_{j}$ for all i, j, there exists $r \in E$ such that $p_{i} \leq r \leq q_{j}$ for all i, j.

Lemma 1.2.4 Let X be a partially ordered set.
(i) If X is a lattice, then X has interpolation.
(ii)If X is finite, bounded an has interpolation, then it is a lattice.

Proof. (i) Suppose X is a lattice an let $x, y, p, q \in X$. Then $x, y \leq p, q$ iff $x \vee y \leq p \wedge q$ and, if $x \vee y \leq p \wedge q$, then any element $z \in X$ with $x \vee y \leq z \leq p \wedge q$ satisfies $x, y \leq z \leq p, q$.
(ii)Let X be finite and bounded with interpolation property, let $p, q \in X$ an let $U:=\{x \in X / x \leq p, q\}$. By induction on the number of elements in U , there exists $z \in X$ such that $z \leq p, q$ and $x \leq z$ for all $x \in U$. Thus, $z=p \wedge q$. A similar argument shows that any two elements $x, y \in X$ have a supremum $x \vee y$ in X .

Proposition 1.2.5 Every effect algebra with the Riesz descomposition property has the Riesz interpolation property.

Proof. Suppose $p_{1}, p_{2}, q_{1}, q_{2} \in E$ such that $p_{i} \leq q_{j}$ for all i, j. Let $q_{1} \ominus p_{1}$, $q_{1} \ominus p_{2}, q_{2} \ominus p_{1}$ and $q_{2} \ominus p_{2}$. We have that $q_{2} \ominus p_{1} \leq q_{2}=p_{2} \oplus\left(q_{2} \ominus p_{2}\right)$, then Lemma 1.2.2 there exist $r_{1}, r_{2} \in E$ such that $q_{2} \ominus p_{1}=r_{1} \oplus r_{2}$ and $r_{1} \leq p_{2}$, $r_{2} \leq q_{2} \ominus p_{2}$.

Let $p_{2} \ominus r_{1}$ and $\left(q_{2} \ominus p_{2}\right) \ominus r_{2}$. Thus,

$$
q_{2}=p_{1} \oplus\left(q_{2} \ominus p_{1}\right)=p_{2} \oplus\left(q_{2} \ominus p_{2}\right)
$$

implies that:

$$
p_{1} \oplus r_{1} \oplus r_{2}=r_{1} \oplus\left(p_{2} \ominus r_{1}\right) \oplus r_{2} \oplus\left(\left(q_{2} \ominus p_{2}\right) \ominus r_{2}\right),
$$

hence,

$$
p_{1}=\left(p_{2} \ominus r_{1}\right) \oplus\left(\left(q_{2} \ominus p_{2}\right) \ominus r_{2}\right),
$$

by the cancellation law.

In the same way,

$$
q_{1}=p_{1} \oplus\left(q_{1} \ominus p_{1}\right)=p_{2} \oplus\left(q_{1} \ominus p_{2}\right),
$$

implies that:

$$
\left(p_{2} \ominus r_{1}\right) \oplus\left(\left(q_{2} \ominus p_{2}\right) \ominus r_{2}\right) \oplus\left(q_{1} \ominus p_{1}\right)=\left(r_{1} \oplus\left(p_{2} \ominus r_{1}\right)\right) \oplus\left(q_{1} \ominus p_{2}\right),
$$

then, by cancellation law,

$$
\left.\left(q_{2} \ominus p_{2}\right) \ominus r_{2}\right) \oplus\left(q_{1} \ominus p_{1}\right)=r_{1} \oplus\left(q_{1} \ominus p_{2}\right) .
$$

By the Riesz descomposition property there exist $\omega_{11}, \omega_{12}, \omega_{21}, \omega_{22} \in E$ such that:

$$
\begin{gathered}
q_{1} \ominus p_{1}=\omega_{11} \oplus \omega_{12}, \\
\left(q_{2} \ominus p_{2}\right) \ominus r_{2}=\omega_{21} \oplus \omega_{22}, \\
r_{1}=\omega_{11} \oplus \omega_{21},
\end{gathered}
$$

and

$$
q_{1} \ominus p_{2}=\omega_{12} \oplus \omega_{22} .
$$

Hence,

$$
q_{2} \ominus p_{1}=r_{1} \oplus r_{2}=\omega_{11} \oplus \omega_{21} \oplus r_{2},
$$

and

$$
q_{2} \ominus p_{2}=r_{2} \oplus\left(q_{2} \ominus p_{2}\right) \ominus r_{2}=r_{2} \oplus \omega_{21} \oplus \omega_{22} .
$$

Also, $\omega_{11} \leq q_{1} \ominus p_{1}$ and $q_{1} \ominus p_{1} \perp p_{1}$. By Lemma 1.1.7 $\left(q_{1} \ominus p_{1}\right)^{\prime} \leq \omega_{11}^{\prime}$ and $p_{1} \leq\left(q_{1} \ominus p_{1}\right)^{\prime}$, then $p_{1} \leq \omega_{11}^{\prime}$ by transitivity, and $p_{1} \perp \omega_{11}$.

We have that $p_{1} \leq p_{1} \oplus \omega_{11} \leq p_{1} \oplus\left(q_{1} \ominus p_{1}\right)=q_{1}$. Also, $p_{2} \oplus r_{2} \oplus \omega_{21} \leq p_{2} \oplus\left(q_{2} \ominus p_{2}\right)=q_{2}=p_{1} \oplus\left(q_{2} \ominus p_{1}\right)=p_{1} \oplus \omega_{11} \oplus \omega_{21} \oplus r_{2}$, so $p_{2} \leq p_{1} \oplus \omega_{11}$ by the cancellation law. Then we conlude that:

$$
p_{1} \oplus \omega_{11} \leq p_{1} \oplus\left(q_{2} \ominus p_{1}\right)=q_{2},
$$

and

$$
p_{1}, p_{2} \leq p_{1} \oplus \omega_{11} \leq q_{1}, q_{2} .
$$

This completes the proof.
The opposite implication of the last proposition is not true. The fourelement effect algebra D, called diamond, consists of 0 , two atoms ${ }^{4} p, q$ with $p \neq q$ such that $p=p^{\prime}$ and $q=q^{\prime}$, and the unit $1=p \oplus p^{\prime}=q \oplus q^{\prime}$, that trivially satisfies the Riesz interpolation property but it is not satisfies de Riesz descomposition property. If p and q are two atoms in the diamond D, then $p \oplus q$ is not defined because if $p \oplus q=q \oplus q$, so $p=q$ by the cancellation law, contradicting $p \neq q$.

Proposition 1.2.6 Let E be an effect algebra satisfying the Riesz descomposition property. If \sim is an effect algebra congruence, then E / \sim also satisfies the Riesz descomposition property.

Proof. Let Riesz descomposition property hold. Assume that:

$$
[p] \oplus[q]=[r] \oplus[v] .
$$

Without loss of generality we may assume that $p \perp q$ and $r \perp v$, that is, $p \oplus q \sim r \oplus v$. By (C3), there are r_{1}, v_{1} such that $r_{1} \sim r, v_{1} \sim v$, and $p \oplus q=r_{1} \oplus v_{1}$. By the Riesz descomposition property, there are $\omega_{i j}, i, j=1,2$ such that $p_{i}=\omega_{i 1} \oplus \omega_{i 2}(i=1,2)$ and $q_{j}=\omega_{1 j} \oplus \omega_{2 j}(j=1,2)$, and then $\left[p_{i}\right]=\left[\omega_{i 1}\right] \oplus\left[\omega_{i 2}\right](i=1,2)$, and $\left[q_{j}\right]=\left[\omega_{1 j}\right] \oplus\left[\omega_{2 j}\right](j=1,2)$. This completes the proof.

1.3 Phi-Symmetric Effect Algebras

Proposition 1.3.1 (i) Let E be an effect algebra, $a, b, c \in E, a, b \leq c$. If $a \vee b$ exists in E, then $(c \ominus a) \wedge(c \ominus b)$ exists in E, and

$$
c \ominus(a \vee b)=(c \ominus a) \wedge(c \ominus b)
$$

[^2]In particular, if $a \perp b$ and we put $c=a \oplus b$, then

$$
(a \oplus b) \ominus(a \vee b)=a \wedge b
$$

(ii) Let E be a lattice ordered effect algebra, $a, b, c \in E, a \leq c, b \leq c$. Then

$$
c \ominus(a \wedge b)=(c \ominus a) \vee(c \ominus b)
$$

In particular, if we put $c=a \vee b$,

$$
(a \vee b) \ominus(a \wedge b)=((a) \ominus a) \vee((a \vee b) \ominus b)
$$

(iii) In a lattice ordered effect algebra, for $c \leq a, b$

$$
(a \wedge b) \ominus=(a \ominus c) \wedge(b \ominus c)
$$

Proof. (i)From the inequalities

$$
\begin{aligned}
& a \leq a \vee b \leq c, \\
& b \leq a \vee b \leq c,
\end{aligned}
$$

we have:

$$
c \ominus(a \vee b) \leq c \ominus a
$$

and

$$
c \ominus(a \vee b) \leq c \ominus b
$$

For any other $\omega \in E$ with $\omega \leq c \ominus a, \omega \leq c \ominus b, a=c \ominus(c \ominus a) \leq c \ominus \omega$, $b=c \ominus(c \ominus b) \leq c \ominus \omega$, therefore,

$$
a \vee b \leq c \ominus \omega \leq c,
$$

and so

$$
\omega=c \ominus(c \ominus \omega) \leq c \ominus(a \vee b)
$$

wich implies that $c \ominus(a \vee b)$ is the greatest lower bound of the set $\{c \ominus a, c \ominus b\}$.
(ii) From the inequalities:

$$
a \wedge b \leq a \leq c
$$

and

$$
a \wedge b \leq b \leq c
$$

it follows that $c \ominus a \leq c \ominus(a \wedge b)$ and $c \ominus b \leq c \ominus(a \wedge b)$.
For $\omega \in E$ with $c \ominus a \leq \omega, c \ominus b \leq \omega$, then:

$$
c \ominus a=(c \ominus a) \wedge c \leq \omega \wedge c \leq c \leq c
$$

which gives $c \ominus(\omega \wedge c) \leq a$, and similarly $c \ominus(\omega \wedge c) \leq b$, therefore:

$$
c \ominus(\omega \wedge c) \leq a \wedge b
$$

Then we obtain $c \ominus(a \wedge b) \leq \omega \wedge c \leq \omega$ wich implies that $c \ominus(a \wedge b)$ is the least upper bound of the set $\{c \ominus a, c \ominus b\}$.
(iii) From $c \leq a \wedge b \leq a, b$ it follows that

$$
(a \wedge b) \ominus c \leq(a \ominus c) \wedge(b \ominus c) \leq a \wedge b
$$

If $\omega \in E$ is such that $\omega \leq a \ominus b, b \ominus c$, then $\omega \oplus c \leq a, b$, hence $\omega \leq(a \wedge b) \ominus c$. Hence $(a \wedge b) \ominus c$ is the greatest lower bound of $\{a \ominus c, b \ominus c\}$.

Proposition 1.3.2 Let E be a lattice ordered effect algebra, $a, b \in E$. Then $((a \vee b) \ominus a) \wedge((a \vee b) \ominus b)=0$.

Proof. In Proposition 1.3.1 (i) put $c=a \vee b$.
Proposition 1.3.3 Let E be a lattice ordered effect algebra, $c \leq a, c \leq b$. Then $(a \ominus c) \vee(b \ominus c)=(a \vee b) \ominus c$.

Proof. From $c \leq a \leq a \vee b, c \leq b \leq a \vee b$ we get

$$
a \ominus c \leq(a \vee b) \ominus c, b \ominus c \leq(a \vee b) \ominus c
$$

Let $\omega \in E$ be such $a \ominus c, b \ominus c \leq \omega$. Then:

$$
a \ominus c \leq \omega \wedge((a \vee b) \ominus c) \leq(a \vee b) \ominus c
$$

imply

$$
((a \vee b) \ominus c) \ominus(\omega \wedge((a \vee b) \ominus c)) \leq((a \vee b) \ominus c) \ominus(a \ominus c)=((a \vee b) \ominus a) ;
$$

and similarly,

$$
((a \vee b) \ominus c) \ominus(\omega \wedge((a \vee b) \ominus c)) \leq((a \vee b) \ominus b)
$$

Therefore,

$$
((a \vee b) \ominus c) \ominus(\omega((a \vee b) \ominus c)) \leq((a \vee b) \ominus a) \wedge((a \vee b) \ominus b)=0
$$

by Proposition 1.3.2. Hence:

$$
(a \vee b) \ominus c \leq \omega,
$$

which gives the desired result.
Corollary 1.3.4 Let E be a lattice ordered effect algebra. Then:

$$
(a \ominus(a \wedge b)) \wedge(b \ominus(a \wedge b))=0
$$

Proof. In Proposition 1.3.1(iii) put $c=a \wedge b$.

Proposition 1.3.5 Let E be a lattice ordered effect algebra. If $x \perp y$ and $x \perp z$, then
(i) $x \oplus(y \wedge z)=(x \oplus y) \wedge(x \oplus z)$.
(ii) $x \oplus(y \vee z)=(x \oplus y) \vee(x \oplus z)$.

Proof. (i) By Proposition 1.3.1 (iii),

$$
((x \oplus y) \wedge(x \oplus z)) \ominus x=((x \oplus y) \ominus x) \wedge((x \oplus z) \ominus x)=y \wedge z
$$

whence:

$$
(x \oplus y) \wedge(x \oplus z)=x \oplus(y \wedge z)
$$

(ii) By Proposition 1.3.3,

$$
((x \oplus y) \vee(x \oplus z)) \ominus x=((x \oplus y) \ominus x) \vee((x \oplus z) \ominus x)=v \vee z
$$

whence:

$$
(x \oplus y) \vee(x \oplus z)=x \oplus(y \vee z)
$$

Definition 1.3.6 ${ }^{5}$ Let E be a lattice ordered effect algebra. The mapping

$$
\begin{gathered}
\phi: E \times E \rightarrow E \\
\phi(p, q):=p \ominus\left(p \wedge q^{\prime}\right)=\left[p^{\prime} \oplus\left(p \wedge q^{\prime}\right)\right]^{\prime}
\end{gathered}
$$

is called the Sasaki mapping on E.
Theorem 1.3.7 (Parallelogram Theorem) ${ }^{6}$ Let E be a lattice ordered effect algebra and $p, q \in E$. Then:

$$
\begin{equation*}
p=(p \wedge q) \oplus \phi\left(p, q^{\prime}\right) \tag{i}
\end{equation*}
$$

and

$$
q=(p \wedge q) \oplus \phi\left(q, p^{\prime}\right)
$$

(ii)

$$
\begin{gathered}
p \vee q=p \oplus \phi(p, q) \\
=q \oplus \phi\left(q^{\prime}, p\right)=(p \wedge q) \oplus \phi\left(p, q^{\prime}\right) \oplus \phi\left(p^{\prime}, q\right) \\
=(p \wedge q) \oplus \phi\left(q, p^{\prime}\right) \oplus \phi\left(q^{\prime}, p\right) .
\end{gathered}
$$

[^3](iii)
\[

$$
\begin{gathered}
\phi\left(p, q^{\prime}\right) \oplus \phi\left(p^{\prime}, q\right)=\phi\left(q, p^{\prime}\right) \oplus \phi\left(q^{\prime}, p\right) \\
=(p \vee q) \ominus(p \wedge q)=\phi\left(p^{\prime}, q\right) \vee \phi\left(q^{\prime}, p\right) .
\end{gathered}
$$
\]

(iv)

$$
\phi\left(p, q^{\prime}\right) \wedge \phi\left(q, p^{\prime}\right)=0
$$

and

$$
\phi\left(p^{\prime}, q\right) \wedge \phi\left(q^{\prime}, p\right)=0
$$

Proof. Part (i) follows from the facts that $\phi\left(p, q^{\prime}\right)=p \ominus(p \wedge q)$ and $\phi\left(q, p^{\prime}\right)=q \ominus(p \vee q)$.

For part (ii), there exists $k \in E$ with $p \vee q=p \oplus k$. Thus,

$$
p \oplus k \oplus(p \vee q)^{\prime}=1,
$$

so

$$
p \oplus\left(p^{\prime} \wedge q^{\prime}\right) \oplus k=u
$$

and $k=\phi\left(p^{\prime}, q\right)$. By symmetry,

$$
p \vee q=q \oplus \phi\left(q^{\prime}, p\right),
$$

and the remaining parts of (ii) follow from (i).
All but the last equality in part (iii) follows from part (ii). To prove the las equality, note that, since $p \wedge q \leq p$, there exists $k \in E$ with

$$
p \vee q=(p \wedge q) \oplus k
$$

Thus,

$$
(p \wedge q) \oplus k \oplus(p \vee q)^{\prime}=1
$$

so,

$$
(p \wedge q) \oplus(p \vee q)^{\prime} \oplus k=1
$$

and

$$
k=\left[(p \wedge q) \oplus(p \vee q)^{\prime}\right]^{\prime} .
$$

Then:

$$
p \vee q=(p \wedge q) \oplus\left[(p \wedge q) \oplus(p \vee q)^{\prime}\right]^{\prime}=(p \wedge q) \oplus\left[(p \wedge q) \oplus\left(p^{\prime} \wedge q^{\prime}\right)\right]^{\prime}
$$

Also by proposition 1.3.5.

$$
(p \wedge q) \oplus\left(p^{\prime} \wedge q^{\prime}\right)=\left[p \oplus\left(p^{\prime} \wedge q^{\prime}\right)\right] \wedge\left[q \oplus\left(p^{\prime} \wedge q^{\prime}\right)\right]=\left[\phi\left(p^{\prime}, q\right)\right]^{\prime} \wedge\left[\phi\left(q^{\prime}, p\right)\right]^{\prime}
$$

So:

$$
p \vee q=(p \wedge q) \oplus\left[\phi\left(p^{\prime}, q\right) \vee \phi\left(q^{\prime}, p\right)\right]
$$

that is,

$$
(p \vee q) \ominus(p \wedge q)=\phi\left(p^{\prime}, q\right) \vee \phi\left(q^{\prime}, p\right)
$$

(iv) The first part follows from Corollary 1.3.4, the second by symmetry.

Definition 1.3.8 An effect algebra is ϕ-symmetric iff it is lattice ordered and $\phi(p, q)=\phi(q, p)$, i.e. $p \ominus\left(p \wedge q^{\prime}\right)=q \ominus\left(q \wedge p^{\prime}\right)$, for all elements $p, q \in E$.

Theorem 1.3.9 For a lattice ordered effect algebra E, the following conditions are mutually equivalent:
(i) E is ϕ-symmetric.
(ii) $a, b, c \in E \Rightarrow a \ominus(a \wedge b)=(a \vee b) \ominus b$.
(iii) E has the Riesz descomposition property.
(iv) $x, y, z \in E$ with $y \perp z \Rightarrow x \wedge(y \oplus z) \leq(x \wedge y) \oplus(x \wedge z)$.
(v) $x, y, z \in E$ with $y \perp z \Rightarrow x \wedge(y \oplus z) \leq(x \wedge y) \oplus z$.
(vi) $a \leq(a \wedge b) \oplus\left(a \wedge b^{\prime}\right)$ for all $a, b \in E$.
(vii) $a, b \in E$ with $a \wedge b=0 \Rightarrow a \perp b$.

Proof. That $(i) \Rightarrow$ (ii) follows immediately from the facts that $a \ominus(a \vee b)=\phi\left(a, b^{\prime}\right)$ and $\phi\left(b^{\prime}, a\right)=(a \vee b) \ominus b$ in Theorem 1.3.7.

To prove $(i i) \Rightarrow(i i i)$, assume (ii) and suppose $a, b, c \in E$ with $b \perp c$ and $a \leq b \oplus c$. Then $a, b \leq b \oplus c$, so

$$
a \vee b \leq b \oplus c
$$

and

$$
a \ominus(a \wedge b)=(a \vee b) \ominus b \leq(b \oplus c) \ominus b=c
$$

Let $b_{1}:=a \wedge b$ and $c_{1}:=a \ominus(a \wedge b)$. Then $b_{1} \leq b, c_{1} \leq c$, and $a=b_{1} \oplus c_{1}$.
To prove $(i i i) \Rightarrow(i v)$, assume (iii) and the hypotheses of (iv). Thus, since

$$
x \wedge(y \oplus z) \leq y \oplus z
$$

there are elements $y_{1} \leq y$ and $z_{1} \leq z$ with

$$
x \wedge(y \oplus z)=y_{1} \oplus z_{1} .
$$

Therefore, $y_{1}, z_{1} \leq x \wedge(y \oplus z) \leq x$, so $y_{1} \leq x \wedge y$ and $z_{1} \leq x \wedge z$, and it follows that

$$
x \wedge(y \oplus z)=y_{1} \oplus z_{1} \leq(x \wedge y) \oplus(x \wedge z)
$$

That $(i v) \Rightarrow(v)$ is obvious.
To prove $(v) \Rightarrow(v i)$, assume(v) and let $a, b \in E$. Then, by (v),

$$
a=a \wedge 1=a \wedge\left(b \oplus b^{\prime}\right) \leq(a \wedge b) \oplus b^{\prime},
$$

so by (v) again,

$$
a=a \wedge\left[b^{\prime} \oplus(a \wedge b)\right] \leq\left(a \wedge b^{\prime}\right) \oplus(a \wedge b)
$$

That $(v i) \Rightarrow(v i i)$ is obvious.

Next we prove that (vii) $\Rightarrow(i)$. Assume (vii). Replacing q by q' in Theorem 1.3.7. we have

$$
\phi(p, q) \oplus \phi\left(p^{\prime}, q^{\prime}\right)=\phi(q, p) \vee \phi\left(p^{\prime}, q^{\prime}\right)
$$

by part (iii) and $\phi\left(p^{\prime}, q^{\prime}\right) \wedge \phi(q, p)=0$ by part (iv). Therefore, by (vii), $\phi\left(p^{\prime}, q^{\prime}\right) \perp \phi(q, p)$, so

$$
\phi(q, p) \vee \phi\left(p^{\prime}, q^{\prime}\right)=\phi(q, p) \oplus \phi\left(p^{\prime}, q^{\prime}\right)
$$

by Proposition 1.3.1. part (i). Hence

$$
\phi(p, q) \oplus \phi\left(p^{\prime}, q^{\prime}\right)=\phi(q, p) \oplus \phi\left(p^{\prime}, q^{\prime}\right)
$$

and

$$
\phi(p, q)=\phi(q, p)
$$

follows from the cancellation law. Therefore $(v i i) \Rightarrow(i)$, and we have proved that Conditions (i) trought (vii) are mutually equivalent.

Corollary 1.3.10 A finite effect algebra with the Riesz descomposition property is ϕ-symmetric.

Proof. Let F be a finite effect algebra with the Riesz descomposition property. By proposition 1.2.5, F has the interpolation, whence it is lattice ordered by Lemma 1.2.4. Consequently, F is ϕ-symmetric by Part (iii) of Theorem 1.3.9.

1.4 Bibliographical remarks

As a general reference for this chapter, we mention the book [9].
An effect algebra is based on a partial binary operation \oplus. The operation \oplus goes back to the original ideas or G. Boole [3], who supposed that $a+b$ will denote the logical disjunction and $a b$ the logical conjunction of a, b , respectively. In fact, Boole only wrote $a+b$ when $a b=0$, and this is all that is needed for probability theory: if $a b=0$, then $P(a+b)=P(a)+P(b)$, where

P is a probability measure. Therefore, + can be introduced as a partially defined binary operation.

Effect algebras were introduced as abstraccions of the algebra of Hilbertspace effect operators, used in the study of the theory of measurement in quantum mechanics, by Foulis and Bennett in [14].

Lemma 1.1.14 appears in [17].
Theorem 1.1.15 is due to [15].
Lemma 1.2.2 is taken from [9], Lemma 2.1.4 from [1] and Proposition 2.1.6 from [8].

The third section of this chapter is based on the paper [1].

Chapter 2

MV-algebras

2.1 MV and Boolean algebras

2.1.1 Basic notions

Definition 2.1.1.1 An $M V$-algebra is an algebra $\mathcal{M}=(M,+, *, 0,1)$, where M is a nonempty set, 0 and 1 are constants, + is a total binary operation, and $*$ is a unary operation satisfying the following axioms.
(MV1) $(a+b)+c=a+(b+c)$.
(MV2) $a+b=b+a$.
(MV3) $a+0=a$
$(\mathrm{MV} 4)\left(a^{*}\right)^{*}=a$.
$($ MV5 $) a+1=1$.
(MV6) $\left(a^{*}+b\right)^{*}+b=\left(a+b^{*}\right)^{*}+a$.
(MV7) $a+a^{*}=1$.
$(\mathrm{MV} 8) 0^{*}=1$.
Example 2.1.1.2 A singleton $\{0\}$ is a trivial example of an MV-algebra.
Example 2.1.1.3 If $\left(B, 0,1, \wedge, \vee,{ }^{c}\right)$ is a Boolean algebra, then $\left(B, \vee,{ }^{c}, 0,1\right)$ is an MV-algebra, where $\vee,{ }^{c}, 0$ and 1 denote, respectively, the join, the complement, the smallest and the greatest elements in B.

Example 2.1.1.4 Consider the real unit interval: $[0,1]=\{x \in \mathbb{R}: 0 \leq x \leq 1\}$, and for all $x, y \in[0,1]$, let $x+y:=\min \{1, x+y\}$ and $x^{*}:=1-x$. It is easy to see that $[0,1]:=\left([0,1],+,^{*}, 0,1\right)$ is an MValgebra.

Example 2.1.1.5 A subalgebra of an MV-algebra M is a subset S of M containing the zero element of M, closed under the operations of M, an equipped with the restriction to S of these operations. The rational numbers in $[0,1]$, and, for each integer $n \geq 2$, the n-element set

$$
L_{n}:=\{0,1 /(n-1), \ldots,(n-2) /(n-1), 1\}
$$

yield examples of subalgebras of $[0,1]$.
Example 2.1.1.6 Given an MV-algebra M and a set X, the set M^{X} of all functions $f: X \rightarrow M$ becomes an MV-algebra if the operations + and ${ }^{*}$ and the element 0 are defined pointwise. The continous functions from $[0,1]$ into $[0,1]$ form a subalgebra or the MV-algebra $[0,1]^{[0,1]}$.

Definition 2.1.1.7 On each MV-algebra M we define the operations \circ and - as follows:

$$
\begin{gathered}
x \circ y:=\left(x^{*}+y^{*}\right)^{*} \\
x-y:=x \circ y^{*}
\end{gathered}
$$

As a consequence of (MV4), we can write:
(MV9) $x+y=\left(x^{*} \circ y^{*}\right)^{*}$.

Axiom (MV6) can now be written as:
$($ MV6') $(x-y)+y=(y-x)+x$.
Note that in the MV-algebra $[0,1]$ we have $x \circ y=\max (0, x+y-1)$ and $x-y=\max (0, x-y)$.

Lemma 2.1.1.8 Let M be an MV-algebra an $x, y \in M$. Then the following conditions are equivalent:
(i) $x^{*}+y=1$.
(ii) $x \circ y^{*}=0$.
(iii) $y=x+(y-x)$.
(iv) There is an element $z \in M$ such that $x+z=y$.

Proof. $(i) \Rightarrow(i i)$: By (MV4) and (MV7).
$(i i) \Rightarrow(i i i)$: Immediate from (MV3) and (MV6').
$(i i i) \Rightarrow(i v)$: Take $z=y-x$.
$(i v) \Rightarrow(i):$ By (MV9) and (MV7), $x^{*}+x+z=1$.
Let M be an MV-algebra. For any two elements x and y of M let us agree to write

$$
x \leq y
$$

iff x and y satisfy the above equivalent conditions (i)-(iv). It follows that \leq is a partial order, called the natural order of M. Indeed, reflexivity is equivalent to (MV7), antisymmetry follows from conditions (ii) and (iii), and transitivity follows from condition (iv).

An MV-algebra whose natural order is total is called an MV-chain.

Lemma 2.1.1.9 In every MV-algebra M the natural order \leq has the following properties:
(i) $x \leq y$ if and only if $y^{*} \leq x^{*}$.
(ii) If $x \leq y$ then for each $z \in M, x+z \leq y+z$ and $x \circ z \leq y \circ z$.
(iii) $x \circ y \leq z$ if and only if $x \leq y^{*}+z$.

Proof. (i): This follows from Lemma 2.1.1.8 (i), since $x^{*}+y=y^{* *}+x^{*}$.
(ii): The monotonicity of + is an easy consequence or Lemma 2.1.1.8 (iv); using (i), one immediately proves the monotonicity of \circ.
(iii): It is sufficient to note that $x \circ y \leq z$ is equivalent to $1=(x \circ y)^{*}+z=x^{*}+y^{*}+z$.

Proposition 2.1.1.10 On each MV-algebra M the natural order determines a lattice structure. Specifically, the join $x \vee y$ and the meet $x \wedge y$ of the elements x and y are given by
(i) $x \vee y=\left(x \circ y^{*}\right)+y=(x-y)+y$,
(ii) $x \wedge y=\left(x^{*} \wedge y^{*}\right)^{*}=x \circ\left(x^{*}+y\right)$.

Proof. To prove (i), by (MV6') and Lemma 2.1.1.8, $x \leq(x-y)+y$ and $y \leq(x-y)+y$. Suppose $x \leq z$ and $y \leq z$. By (i) and (iii) in Lemma 2.1.1.8, $x^{*}+z=1$ and $z=(z-y)+y$. Then by (MV6') we can write

$$
\begin{gathered}
((x-y)+y)^{*}+z=\left((x-y)^{*}-y\right)+y+(z-y) \\
=\left(y-(x-y)^{*}\right)+(x-y)^{*}+(z-y) \\
=\left(y-(x-y)^{*}\right)+x^{*}+y+(z-y) \\
=\left(y-(x-y)^{*}\right)-x^{*}+z=1 .
\end{gathered}
$$

It follows that $(x-y)+y \leq z$, which completes the proof of (i). We now
immediately obtain (ii) as a consequence or (i) together with Lemma 2.1.1.9 (i).

Proposition 2.1.1.11 The following equations hold in every MV-algebra:
(i) $x \circ(y \vee z)=(x \circ y) \vee(x \circ z)$,
(ii) $x+(y \wedge z)=(x+y) \wedge(w+z)$.

Proof. By Lemma 2.1.1.9 (ii), $x \circ y \leq x \circ(y \vee z)$ and $x \circ z \leq x \circ(y \vee z)$. Suppose $x \circ y \leq t$ and $x \circ z \leq t$. Then by Lemma 2.1.1.9 (iii), $y \leq x^{*}+t$ and $z \leq x^{*}+t$, whence $y \vee z \leq x^{*}+t$. One more application of Lemma 2.1.1.9 (iii) yields $(y \vee z) \circ x \leq t$, which completes the proof of (i). It is now easy tosee that (ii) es a consequence of (i), using Lemma 2.1.1.9 (i), together with (MV4) and (MV9).

Proposition 2.1.1.12 Every MV-algebra satisfies the equation

$$
(x-y) \wedge(y-x)=0
$$

Proof. By making repeated use of (MV6) and its variants, together with the basic properties of the operations + and \circ we obtain:

$$
\begin{gathered}
(x-y) \wedge(y-x) \\
=(x-y) \circ\left((x-y)^{*}+(y-x)\right) \\
=x \circ y^{*} \circ\left(y+x^{*}+(y-x)\right. \\
=x \circ\left(x^{*}+(y-x)\right) \circ\left(\left(x^{*}+(y-x)\right)^{*}+y^{*}\right) \\
=(y-x) \circ\left((y-x)^{*}+x\right) \circ\left(\left(x^{*}+(y-x)\right)^{*}+y^{*}\right) \\
=y \circ x^{*} \circ\left((y-x)^{*}+x\right) \circ\left(\left(x \circ(y-x)^{*}\right)+y^{*}\right) \\
=x^{*} \circ\left(x+(y-x)^{*}\right) \circ y \circ\left(y^{*}+\left(x \circ\left(y^{*}+x\right)\right)\right) \\
=x^{*} \circ\left(x+(y-x)^{*}\right) \circ\left(x \circ\left(y^{*}+x\right)\right) \circ\left(\left(x \circ\left(y^{*}+x\right)\right)^{*}+y\right)=0,
\end{gathered}
$$

since by (MV7) and (MV9), $x^{*} \circ x=0$.

Let M be an MV-algebra. For each $x \in M$, we let $0 x=0$, and for each integer $n \geq 0,(n+1) x=n x+x$.

Lemma 2.1.1.13 Let x and y be elements of an MV-algebra M. If $x \wedge y=0$ then for each integer $n \geq 0, n x \wedge n y=0$.

Proof. If $x \wedge y=0$ then by monotonicity (Lemma 2.1.1.9) and distributivity (Proposition 2.1.1.11),

$$
x=x+(x \wedge y)=(x+x) \wedge(x+y) \geq 2 x \wedge y
$$

whence:

$$
0=x \wedge y \geq 2 x \wedge y
$$

in the same way $y \geq 2 y \wedge x$. Then:

$$
0=x \wedge y \geq 2 x \wedge 2 y \wedge x \wedge y=2 x \wedge 2 y
$$

It follows that $0=2 x \wedge 2 y$ and similarly:

$$
0=4 x \wedge 4 y \wedge 4 x=8 x \wedge 8 y=\ldots
$$

The desired conclusion now follows from:

$$
n x \wedge n y \leq 2^{n} x \wedge 2^{n} y=0
$$

2.1.2 Homomorphism and ideals

Let M and N be MV-algebras. A function $f: M \rightarrow N$ is said to be a homomorphism iff $f(0)=0$, for each $x, y \in M f(x+y)=f(x)+f(y)$, and $f\left(x^{*}\right)=f(x)^{*}$. Following current usage, if f is one-one we shall equivalently say that f is an injective homomorphism, or an embedding. If the homomor$\operatorname{phism} f: M \rightarrow N$ is onto N we say that f is surjective. By isomorphism we shall mean a surjective one-one homomorphism.

The kernel of a homomorphism $f: M \rightarrow N$ is the set

$$
\operatorname{Ker}(f):=f^{-1}(0)=\{x \in M: f(x)=0\}
$$

An ideal of an MV-algebra M is a subset I of M satisfyin the following conditions:
(I1) $0 \in I$,
(I2) If $x \in I, y \in M$ and $y \leq x$ then $y \in I$,
(I3) If $x \in I$ and $y \in I$ then $x+y \in I$.
The intersection of any family of ideals of M is still an ideal of M. For every subset $W \subseteq M$, the intersection of all ideals $I \supseteq W$ is said to be the ideal generated by W, and will be denoted $\langle W\rangle$.

The proof of the next lemma is immediate, and will be ommitted.
Lemma 2.1.2.1 Let W be a subset of an MV-algebra M. If $W=\emptyset$, then $\langle W\rangle=\{0\}$. If $W \neq \emptyset$, then

$$
\langle W\rangle=\left\{x \in M: x \leq \omega_{1}+\ldots+\omega_{k}, \omega_{1}, \ldots, \omega_{k} \in W\right\}
$$

In particular, for each element z of an MV-algebra M, the ideal $\langle z\rangle=\langle\{z\}\rangle$ is called the principal ideal generated by z, and we have

$$
\langle z\rangle=\left\{x \in M: n z \geq x, n \in \mathbb{N}_{0}\right\}
$$

Note that $\langle 0\rangle=\{0\}$ and $\langle 1\rangle=M$. Further, for every ideal J of an MValgebra M and each $z \in M$ we have

$$
\langle J \cup\{z\}\rangle=\{x \in M: x \leq n z+a, n \in \mathbb{N}, a \in J\}
$$

An ideal I of an MV-algebra M is proper iff $I \neq M$. We say that I es prime iff it es proper and satisfies the following condition:
(I4) For each x and y in M, either $(x-y) \in I$ or $(y-x) \in I$.
An ideal I of an MV-algebra M is called maximal iff it is proper and for each ideal $J \neq I$, if $I \subseteq J$ then $J=M$.

We denote by $\mathcal{I}(M), \mathcal{P}(M)$ and $\mathcal{M}(M)$ the sets of ideals, prime ideals and maximal ideals of M respectively.

We omit the straighforward proof of the followings statements.
Lemma 2.1.2.2 Let M, N be MV-algebras, and $f: M \rightarrow N$ a homomorphism. Then the following properties hold:
(i) $f(x) \leq h(y)$ iff $x-y \in \operatorname{Ker}(f)$.
(ii) f is injective iff $\operatorname{Ker}(f)=\{0\}$.
(iii) $\operatorname{Ker}(f) \neq M$ iff N is nontrivial ${ }^{1}$.
(iv) $\operatorname{Ker}(f) \in \mathcal{P}(M)$ iff N is nontrivial and the image $f(M)$, as a subalgebra of N, is an MV-chain.

The following function d plays the role of a distance function in MValgebras.

Definition 2.1.2.3 The distance function $d: M \times M \rightarrow M$ is defined by

$$
d(x, y):=(x-y)+(y-x)
$$

In the MV-algebra $[0,1], d(x, y)=|x-y|$. In every Boolean algebra the distance function coincides with the symmetric difference operation.

Proposition 2.1.2.4 In every MV-algebra M we have:
(i) $d(x, x)=0$.
(ii) If $d(x, y)=0$ then $x=y$.
(iii) $d(x, y)=d(y, x)$.
(iv) $d(x, z) \leq d(x, y)+d(y, z)$.

[^4](v) $d(x, y)=d\left(x^{*}, y^{*}\right)$.
(vi) $d(x+s, y+t) \leq d(x, y)+d(s, t)$.

Proof.(i), (iii) and (v): Immediately follow by definition.
(ii): Follows from the fact that $x+y=0$ implies $x=0=y$ and by Lemma 2.1.1.8 (iii).
(iv): Note first that

$$
(x-z)^{*}+(x-y)+(y-z)=\left(x^{*} \vee y^{*}\right)+(z \vee y) \geq y^{*}+y=1
$$

Hence,

$$
(x-z) \leq(x-y)+(y-z)
$$

In an entirely similar fashion:

$$
(z-x) \leq(y-x)+(z-y),
$$

whence (iii) follows from de monotonicity if + (Lemma 2.1.1.9).
(vi): In the same way that the proof of (iv), note that:

$$
\begin{gathered}
((x+s)-(y+t))^{*}+(x-y)+(s-t) \\
=(x+s)^{*}+(x \vee y)+(t \vee x) \geq(x+s)^{*}+x+s=1 .
\end{gathered}
$$

As an immediate consequence we have:

Proposition 2.1.2.5 Let I be an ideal of an MV-algebra M. Then the binary relation \equiv_{I} on M defined by $x \equiv_{I} y$ iff $d(x, y) \in I$ is a congruence relation. (Stated otherwise, \equiv_{I} is an equivalence relation such that $x \equiv x$ and $y \equiv_{I} t$ imply $x^{*} \equiv_{I} s^{*}$ and $x+y \equiv_{I} s+t$.) Moreover, $I=\left\{x \in M: x \equiv_{I} 0\right\}$. Conversely, if \equiv_{I} is a congruence on M, then $\left\{x \in M: x \equiv_{I} 0\right\}$ is an ideal, and $x \equiv_{I} y$ iff $d(x, y)=0$.
Therefore, the correspondence $I \rightarrow \equiv_{I}$ is a bijection from the set of ideals of M onto the set of congruences on M.

Given $x \in M$, the equivalence class of x with respect to \equiv_{I} will be denoted by x / I, and the quotient set M / \equiv_{I} by M / I. Since \equiv_{I} is a congruence, defining on the set M / I the operations

$$
(x / I)^{*}:=x^{*} / I
$$

and

$$
x / I+y / I:=(x+y) / I,
$$

the system $\left(M / I,+,{ }^{*}, 0 / I\right)$ becomes an MV-algebra, called the quotient algebra of M by ideal I. Moreover, the correspondence $x \rightarrow x / I$ defines a homomorphism f_{I} from M onto the quotient algebra M / I, which is called the natural homomorphism from M onto M / I. Note that $\operatorname{Ker}\left(f_{I}\right)=I$.

The proof of the following lemma is straighforward.
Lemma 2.1.2.6 If M, N, and S are MV-algebras, and $f: M \rightarrow N$ and $g: M \rightarrow S$ are surjective homomorphisms, then $\operatorname{Ker}(f) \subseteq \operatorname{Ker}(g)$ if and only if there is a surjective homomorphism $h: N \rightarrow S$ such that $h \circ f=g$, i.e., $h(f(x))=g(x)$ for all $x \in M$. This homomorphism h is an isomorphism if and only if $\operatorname{Ker}(f)=\operatorname{Ker}(g)$.

As an inmediate consequence we have
Theorem 2.1.2.7 Let M and N ve MV-algebras. If $h: M \rightarrow N$ is a surjective homomorphism, then there is an isomorphism $f: M / \operatorname{Ker}(h) \rightarrow N$ such that $f(x / \operatorname{Ker}(h))=h(x)$ for all $x \in M$.

Proposition 2.1.2.8 Let J be an ideal of an MV-algebra. For every $a \in M \backslash J$ there is a prime ideal P of M such that $J \subseteq P$ and $a \notin P$.

Proof. A routine application of Zorn's Lemma shows that there is an ideal I of M which is maximal with respect to the property that $J \subseteq I$ and $a \notin I$. We shall show that I is a prime ideal. Let x and y be elements of M, and suppose that both $x-y \notin I$ and $y-x \notin I$. By the maximality assumption the ideal generated by I and $x-y$ must contain the element a, then $a \leq s+p(s-y)$ for some $s \in I$ and some integer $p \geq 1$. Similarly, there is an element $t \in I$ and an integer $q \geq 1$ such that $a \leq t+q(y-x)$. Let $u=s+t$ and $n=\max (p, q)$. Then $u \in I, a \leq u+n(x-y)$ and
$a \leq u+n(y-x)$. Hence by Proposition 2.1.1.12, Proposition 2.1.1.11 (ii) and Lemma 2.1.1.13, we have:

$$
a \leq(u+n(x-y)) \wedge(u+n(y-x))=u+(n(x-y) \wedge n(y-x))=u
$$

whence $a \in I$, a contradiction.
Corollary 2.1.2.9 Every proper ideal of an MV-algebra is an intersection of prime ideals.

2.1.3 Subdirect representation theorem

Let Γ a non empty set. The direct product of a family $\left\{M_{i}\right\}_{i \in \Gamma}$ of MValgebras denoted by $\Pi_{i \in \Gamma} M_{i}$, is the MV-algebra obtained by endowing the settheoretical cartesian product of the family with the MV-operations defined pointwise. In other words, $\Pi_{i \in \Gamma} M_{i}$ is the set of all functions $f: \Gamma \rightarrow \bigcup_{i \in \Gamma} M_{i}$ such that $f(i) \in M_{i}$, for all $i \in \Gamma$, with the operations * and + defined by

$$
f^{*}(i):=f(i)^{*}
$$

and

$$
(f+g)(i):=f(i)+g(i)
$$

The zero element of $\Pi_{i \in \Gamma} M_{i}$ is the fuction $i \in \Gamma \rightarrow 0_{i} \in M_{i}$. For each $j \in \Gamma$, the map $\pi_{j}: \Pi_{i \in \Gamma} M_{i} \rightarrow M_{j}$ is defined by

$$
\pi_{j}(f):=f(j)
$$

Each π_{j} is a homomorphism onto M_{j} called the $j^{\text {th }}$ projection function. In particular, for each MV-algebra M and a nonempty set X, the MV-algebra M^{X} is the direct product of the family $\left\{M_{x}\right\}_{x \in X}$, where $M_{x}=M$ for all $x \in X$.

Definition 2.1.3.1 An MV-algebra M is a subdirect product of a family $\left\{M_{i}\right\}_{i \in \Gamma}$ of MV-algebras if and only if there exists a one-one homomorphism $h: M \rightarrow \Pi_{i \in \Gamma} M_{i}$ such that, for each $j \in \Gamma$, the composite map $\pi_{j} \circ h$ is an homomorphism onto M_{j}.

The following result is a particular case of a theorem of Universal Algebra, due to Birkhoff [2].

Theorem 2.1.3.2 An $M V$-algebra M is a subdirect product of a family $\left\{M_{i}\right\}_{i \in \Gamma}$ of $M V$-algebras if and only if there is a family $\left\{J_{i}\right\}_{i \in \Gamma}$ of ideals of M such that
(i) $M_{i} \cong M / J_{i}$ for each $i \in \Gamma$,
and
(ii) $\bigcap_{i \in \Gamma}=\{0\}$.

Proof. Supposing first that M is a subdirect product of a family $\left\{M_{i}\right\}_{i \in \Gamma}$ of MV-algebras, let $h: M \rightarrow \Pi_{i \in \Gamma} M_{i}$ be a one-one homomorphism as given by Definition 2.1.3.1; for each $j \in \Gamma$, let $J_{j}=\operatorname{Ker}\left(\pi_{j} \circ h\right)$. By Theorem 2.1.2.7, $M_{j} \cong M / J_{j}$. If $x \in \bigcap_{i \in \Gamma} J_{i}$, then $\pi_{j}(h(x))=0$ for all $j \in \Gamma$. This implies $h(x)=0$, and since h is injective, $x=0$. Therefore $\bigcap_{i \in \Gamma} J_{i}=\{0\}$, and conditions (i) and (ii) hold true.

Conversely, Suppose $\left\{J_{i}\right\}_{i \in \Gamma}$ to be a family of ideals of M satisfying conditions (i) and (ii). Let ϵ_{i} be an isomorphism of M / J_{i} onto M_{i}, as given by condition (i). Let ghe function $h: M \rightarrow \Pi_{i \in \Gamma} M_{i}$ be defined as follows: for each $x \in M,(h(x))(i)=\epsilon_{i}\left(x / J_{i}\right)$. It follows from (ii) that $\operatorname{Ker}(h)=\{0\}$, whence, by Lemma 2.1.2.2 (ii), h is injective. Since for each $i \in \Gamma$ the map $a \in M \rightarrow a / J_{i} \in A / J_{i}$ is surjective, then $\pi_{i} \circ h$ maps M onto M_{i}. Thus, M is a subdirect product of the family $\left\{M_{i}\right\}_{i \in \Gamma}$, as required.

Theorem 2.1.3.3 (Chang's Sufdirect Representation Theorem) Every nontrivial MV-algebra s a subdirect product of MV-chains.

Proof. By Theorem 2.1.3.2 and Lemma 2.1.2.2 (iv), an MV-algebra M is a subdirect product of a family of MV-chains if an only if there is a family $\left\{P_{i}\right\}_{i \in \Gamma}$ of prime ideals of M such that $\bigcap_{i \in \Gamma} P_{i}=\{0\}$. Now apply Corollary 2.1.2.9 to the ideal $\{0\}$.

2.1.4 MV-equations

As we shall see, an important consequence of Chang's Subdirect Representation Theorem is that in order to prove that an equation holds in all MValgebras it is sufficient to check that the equation holds in al MV-chains. To give a precise formulation to this result we shall now develop the necessary syntactic machinery.

Definition 2.1.4.1 By a string (or, word) over a nonempty set S we understand a finite list of elements of S.

For each natural number $t \geq 1$, let $S_{t}:=\left\{0,{ }^{*},+, x_{1}, \ldots, x_{t},(),\right\}$. An $M V$ term in the variables x_{1}, \ldots, x_{t} is a string over S_{t} arising from a finite numbber of applications of the following rules:
(T1) The elements 0 and x_{i}, for $i=1, \ldots, t$, considered as one-element strings, are MV-terms.
(T2) If the string τ is an MV-term, then so is τ^{*}.
(T3) If the strings τ and σ are MV-terms, then so is $(\tau+\sigma)$.
In other wors, a string τ over S_{t} is an MV-term if and only if there is a finite list of strings over S_{t}, say $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$, such that $\tau_{n}=\tau$ and for each $i \in\{1, \ldots, n\}, \tau_{i}$ satisfies at least one of the following conditions:
(i) $\tau_{i}=0$ or $\tau_{i}=x_{j}$, for some $1 \leq j \leq t$,
(ii) there is $j<i$ such that $\tau_{i}=\tau_{j}^{*}$,
(iii) there are $j<i$ and $k<i$ such that $\tau_{i}=\left(\tau_{j}+\tau_{k}\right)$.

Those strings τ_{i} that belong to every formation sequece for τ are said to be the subterms of τ.

The following result is known as the unique readability theorem; its proof
es precisely the same as for the classical propositional calculus, and is left as exercise.

Theorem 2.1.4.2 Every term τ_{i} in the variables x_{1}, \ldots, x_{n} satisfies precisely one of the above conditions (i)-(iii). Moreover, both term τ_{j} of case (ii) and the pair $\left(\tau_{j}, \tau_{k}\right)$ are uniquely determined.

We shall henceforth write $\tau\left(x_{1}, \ldots, x_{2}\right)$ to signify that τ is an MV-term in te variables x_{1}, \ldots, x_{2}.

Definition 2.1.4.3 Let M be an MV-algebra, τ an MV-term in the variables x_{1}, \ldots, x_{2} and assume a_{1}, \ldots, a_{t} are elements of M. Substituting an element $a_{i} \in M$ for all occurrences of the variable x_{i} in τ, for $i=1, \ldots, t$, using the unique readatability theorem, and interpreting the symbols $0,+$ and * as the corresponding operations in M, we obtain an element of M, denoted $\tau^{M}\left(a_{1}, \ldots, a_{t}\right)$.

In more detail, proceeding by induction on the number of operation symbols occurring in τ, we define $\tau^{M}\left(a_{1}, \ldots, a_{t}\right)$ as follows:
(i) $x_{i}^{M}=a_{i}$, for each $i=1, \ldots, t$;
(ii) $\left(\sigma^{*}\right)^{M}=\left(\sigma^{M}\right)^{*}$;
(iii) $(\sigma+\rho)^{M}=\left(\sigma^{M}+\rho^{M}\right)$.

Definition 2.1.4.4 An $M V$-equation (for short, an equation) in the variables x_{1}, \ldots, x_{t} is a pair (τ, σ) of MV-terms in the variables x_{1}, \ldots, x_{t}.

Following tradition, we shall write $\tau=\sigma$ instead of (τ, σ). An MV-algebra M satisfies the MV-equation $\tau=\sigma$, in symbols,

$$
M \models \tau=\sigma,
$$

iff

$$
\tau^{M}\left(a_{1}, \ldots, a_{t}\right)=\sigma^{M}\left(a_{1}, \ldots, a_{t}\right)
$$

for all $a_{1}, \ldots, a_{t} \in M$.

Axioms (MV1)-(MV6) are examples of MV-equations, by definition, these equations are satisfied by all MV-algebras.

Lemma 2.1.4.5 Let M, N, M_{i} (for all $i \in \Gamma$) be MV-algebras:
(i) If $M \models \tau=\sigma$ the $S \models \tau=\sigma$ for each subalgebra S of M.
(ii) If $h: M \rightarrow N$ is a homomorphism, then for each MV-term τ in the variables x_{1}, \ldots, x_{s} and each s-tuple (a_{1}, \ldots, a_{s}) of elements of M we have $\tau^{N}\left(h\left(a_{1}\right), \ldots, h\left(a_{s}\right)\right)=h\left(\tau^{M}\left(a_{1}, \ldots, a_{s}\right)\right)$. In particular, when h maps M onto N, from $M \models \tau=\sigma$ it follows that $N \models \tau=\sigma$.
(iii) If $M_{i} \models \tau=\sigma$ for each $i \in \Gamma$, then $\Pi_{i \in \Gamma} M_{i} \models \tau=\sigma$.

Proof. Conditions (i) and (ii) are immediate.
(iii): Let $f_{1}, \ldots, f_{s} \in M=\Pi_{i \in \Gamma} M_{i}$. By hypothesis, for each $i \in \Gamma$ we can write

$$
\begin{gathered}
\tau^{M}\left(f_{1}, \ldots, f_{s}\right)(i)=\tau^{M_{i}}\left(f_{1}(i), \ldots, f_{s}(i)\right)= \\
\sigma^{M_{i}}\left(f_{1}(i), \ldots, f_{s}(i)\right)=\sigma^{M}\left(f_{1}, \ldots, f_{s}\right)(i)
\end{gathered}
$$

whence $\tau^{M}\left(f_{1}, \ldots, f_{s}\right)=\sigma^{M}\left(f_{1}, \ldots, f_{s}\right)$.
Theorem 2.1.4.6 Let M be the subdirect product of a family $\left\{M_{i}\right\}_{i \in \Gamma}$ of $M V$-algebras; let $\tau=\sigma$ be an $M V$-equation. Then $M \models \tau=\sigma$ if and only if $M_{i} \models \tau=\sigma$ for each $i \in \Gamma$.

Proof. Let $h: M \rightarrow \Pi_{i \in \Gamma} M_{i}$ be a one-one homomorphism as given by Definition 2.1.3.1. Suppose that $M \models \tau=\sigma$. Since for each $i \in \Gamma, \pi \circ h$ maps M onto M_{i}, it follows that $M_{i} \models \tau=\sigma$.

Conversely, suppose that $M_{i} \models \tau=\sigma$ for all $i \in \Gamma$. By the above Lemma, $\Pi_{i \in \Gamma} M_{i} \models \tau=\sigma$, and since $h(M)$ is a subalgebra of $\Pi_{i \in \Gamma} M_{i}, h(M) \models \tau=\sigma$. Since h^{-1} maps $h(M)$ onto M, we conclude that $M \models \tau=\sigma$.

Corollary 2.2.4.7 An MV-equation is satisfied by all MV-algebras if and only if it is satisfied by all MV-chains.

Proof. Suppose that $\tau=\sigma$ is satisfied by all MV-chains, an let M be an MV-algebra. If $M=\{0\}$ the, trivially, $\tau^{M}(0, \ldots, 0)=0=\sigma^{M}(0, \ldots, 0)$, whence $M \models \tau=\sigma$. If M is nontrivial the desired conclusion follows from Theorems 2.1.3.3 and 2.1.4.6.

2.1.5 Boolean algebras

We assume that the reader is familiar with the fundamental notions from Boolean algebras. ${ }^{2}$

We have already noted that Boolean algebras are particular cases of MValgebras. In this section we shall caracterize Boolean algebras among MValgebras.

The natural order makes every MV-algebra M into a lattice with a minimum element 0 and maximum 1 . We shall denote this lattice by

$$
L(M)
$$

Recall that the lattice operations of join and meet are definable via the MVoperations by the following formulas:

$$
\begin{gathered}
x \vee y=\left(x \circ y^{*}\right)+y=(x-y)+y \\
x \wedge y=\left(x^{*} \vee y^{*}\right)=x \circ\left(x^{*}+y\right)
\end{gathered}
$$

A lattice is called distributive iff the following distributive laws hold:

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

and

$$
x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)
$$

When M is an MV-chain and $a, b \in M$, then $a \vee b=\max (a, b)$ and $a \wedge b=\min (a, b)$, whence clearly the distributive laws hold in M.

[^5]Using the above join and meet formulas, the distributive laws can bie equivalently reformulated as MV-equations; since these equations are satisfied by all MV-chains, by Corollary 2.1.4.7 we obtain

Proposition 2.1.5.1 For any MV-algebra $M, L(M)$ is a distributive lattice with smallest element 0 and greatest element 1.

Definition 2.1.5.2 An element x of a lattice L with 0 and 1 is said to be complemented iff there is an element $y \in L$ (the complement of x) such that $x \vee y=1$ and $x \wedge y=0$. When L is distributive each $z \in L$ has al most one complement, denoted z^{c}. We further let

$$
B(L)
$$

be the set of all complemented elements of the distributive lattice L. Note that 0 and 1 are elements of $B(L)$, because $0^{c}=1$ and $1^{c}=0$. As a matter of fact, $B(L)$ is a sublattice of L wich is also a Boolean algebra. For any MValgebra M we shall write $B(M)$ as an abbreviation of $B(L(M))$. Elements of $B(M)$ are called the Boolean elements of M.

Theorem 2.1.5.3 For every element x in an MV-algebra M the following conditions are equivalent:
(i) $x \in B(M)$.
(ii) $x \vee x^{*}=1$.
(iii) $x \wedge x^{*}=0$.
(iv) $x+x=x$.
(v) $x \circ x=x$.
(vi) $x+y=x \vee y$, for all $y \in M$.
(vii) $x \circ y=x \wedge y$, for all $y \in M$.

Proof. The following equivalences are trivial: $(i i) \Leftrightarrow(i i i),(i v) \Leftrightarrow(v)$,
$(v i) \Leftrightarrow(v i i)$. It is also trivial that $(v i) \Rightarrow(i v)$. Further, the equivalent conditions (ii) and (iii) state that x^{*} is the complement of x. Thus, in particular $(i i i) \Rightarrow(i)$.
$(i) \Rightarrow(i i)$: By elementary manipulations, using Lemma 2.1.1.8 and Proposition 2.1.1.11 we have

$$
x^{*}=x^{*}+0=x^{*}+\left(x \wedge x^{c}\right)=\left(x^{*}+x\right) \wedge\left(x^{*}+x^{c}\right)=x^{*}+x^{c} .
$$

Thus,

$$
x^{c} \leq x^{*}
$$

and

$$
1=x \vee x^{c} \leq x \vee x^{*} \leq 1,
$$

and we are done.
$(i i i) \Rightarrow(v i)$: Using Proposition 2.1.2.3, together with the Subdirect Representation Theorem 2.1.3.3 and the inequality $x \vee y \leq x+y$, (which also is an immediate consequence of Theorem 2.1.3.3) we have

$$
\begin{gathered}
d(x+y, x \vee y)=(x+y) \circ(x \vee y)^{*} \\
=(x+y) \circ\left(x^{*} \wedge y^{*}\right) \leq\left((x+y) \circ x^{*}\right) \wedge\left((x+y) \circ y^{*}\right) \\
=x^{*} \wedge y \wedge y^{*} \wedge x .
\end{gathered}
$$

Therefore, $x \wedge x^{*}=0$ implies $d(x+y, x \vee y)=0$, whence $x+y=x \vee y$.
$(i v) \Rightarrow(i i)$: By hypothesis,

$$
1=x^{*}+x=(x+x)^{*}+x=x^{*} \vee x
$$

Corollary 2.1.5.4 $B(M)$ is a subalgebra of the MV-algebra M. A subalgebra B of M is a Boolean algebra iff $B \subseteq B(M)$.

Corollary 2.1.5.5 An MV-algebra M is a Boolean algebra if and only if the operation + is idempotent, i.e., the equation $x+x=x$ is satisfied by M.

2.2 MV and MV-effect algebras

Definition 2.2.1 An $M V$-effect algebra is a lattice ordered effect algebra E in which, for all $a, b \in E,(a \vee b) \ominus b=a \ominus(a \wedge b)$.

Lemma 2.2.2 Let E be an effect algebra and $a, b, c \in E$ then:
(i) If $a \leq b$, then $b \ominus a \leq b$ and $b \ominus(b \ominus a)=a$.
(ii) If $a \leq b \leq c$, then $c \ominus b \leq c \ominus a$ and $(c \ominus a) \ominus(c \ominus b)=b \ominus a$.
(iii) If $a \leq b \leq c$, then $b \ominus a \leq c \ominus a$ and $(c \ominus a) \ominus(b \ominus a)=c \ominus b$.
(iv) If $b \leq c$ and $a \leq c \ominus b$, then $b \leq c \ominus a$ and $(c \ominus b) \ominus a=(c \ominus a) \ominus b$.

Proof. (i) and (ii) follow directly from Definition 1.1.9.
(iii) From (ii) and Definition 1.1.9 we get that

$$
(c \ominus a) \ominus(c \ominus b)=b \ominus a \leq c \ominus a
$$

and by (i),

$$
(c \ominus a) \ominus(b \ominus a)=(c \ominus a) \ominus((c \ominus a) \ominus(c \ominus b))=c \ominus b
$$

(iv) From the hypotheses it follows that $a \leq c \ominus b \leq c$, and from (ii) we obtain

$$
c \ominus(c \ominus b) \leq c \ominus a, i . e ., b \leq c \ominus a
$$

Since by (iii),

$$
(c \ominus b) \ominus a \leq c \ominus a
$$

we get from (iii):

$$
(c \ominus a) \ominus((c \ominus b) \ominus a)=c \ominus(c \ominus b)=b,
$$

therefore,

$$
(c \ominus a) \ominus b=(c \ominus a) \ominus((c \ominus a) \ominus((c \ominus b) \ominus a))=(c \ominus b) \ominus a
$$

Lemma 2.2.3 Let E be a lattice ordered effect algebra, $a, b, c \in E$, $a \leq c, b \leq c$. Then

$$
c \ominus(a \wedge b)=(c \ominus a) \vee(c \ominus b)
$$

Proof. From the inequalities $a \wedge b \leq a \leq c$ and $a \wedge b \leq b \leq c$ it follows that

$$
c \ominus a \leq c \ominus(a \wedge b)
$$

and

$$
c \ominus b \leq c \ominus(a \wedge b)
$$

For $\omega \in E$ with $c \ominus a \leq \omega, c \ominus b \leq \omega$, then

$$
c \ominus a=(c \ominus a) \wedge c \leq \omega \wedge c \leq c \leq c
$$

which gives,

$$
c \ominus(\omega \wedge c) \leq a
$$

and similarly,

$$
c \ominus(\omega \wedge c) \leq b
$$

therefore,

$$
c \ominus(\omega \wedge c) \leq a \wedge b
$$

Then we obtain:

$$
c \ominus(a \wedge b) \leq \omega \wedge c \leq \omega
$$

wich implies that:

$$
c \ominus(a \wedge b)
$$

is the least upper bound of the set $\{c \ominus a, c \ominus b\}$.
Proposition 2.2.4 Let E an MV-effect algebra. We define a binary operation - by $b-a:=b \ominus(a \wedge b)$, then $(a-b)-c=(a-c)-b$ for every $a, b, c \in E$.

Proof. If $c \leq a$, by Part(iv) Lemma 2.2.2,Lemma 2.2.3 and Definition 2.2.1,

$$
\begin{gathered}
(a-b)-c=(a \ominus(a \wedge b)) \ominus((a \ominus(a \wedge b)) \wedge c) \\
=(a \ominus((a \ominus(a \wedge b)) \wedge c) \ominus(a \wedge b) \\
=((a \ominus(a \ominus(a \wedge b))) \vee(a \ominus c)) \ominus(a \wedge b) \\
=((a \wedge b) \vee(a \ominus c)) \ominus(a \wedge b) \\
=(a \ominus c) \ominus((a \ominus c) \wedge(a \wedge b)) \\
=(a \ominus c) \ominus((a \ominus c) \wedge b) \\
=(a \ominus(a \wedge c)) \ominus((a \ominus(a \wedge c)) \wedge b)=(a-c)-b
\end{gathered}
$$

Let $a, b, c \in E$, then:

$$
(a-b)-(c \wedge a)=(a-(a \wedge c))-b
$$

but,

$$
(a-b)-(c \wedge a)=(a-b)-c
$$

and

$$
(a-(a \wedge c))-b=(a-c)-b
$$

Hence,

$$
(a-b)-c=(a-c)-b .
$$

Theorem 2.2.5 Every MV-effect algebra is an MV-algebra.

Proof. Let E be an MV-effect algebra. Let us define $a^{*}:=1-a=1 \ominus a$ and $a+b:=\left(a^{*}-b\right)^{*}$. We have to check the MV-algebra axioms:
(MV4) and (MV8) are immediate.
(MV2) By Proposition 2.2.4,

$$
\begin{gathered}
(a+b)^{*}=a^{*}-b=(1-a)-b \\
=(1-b)-a=b^{*}-a=(b+a)^{*} .
\end{gathered}
$$

Then:

$$
a+b=b+a
$$

(MV1) By Proposition 2.2.4,

$$
\begin{gathered}
((a+b)+c)^{*}=(a+b)^{*}-c=\left(a^{*}-b\right)-c \\
=\left(a^{*}-c\right)-b=(a+c)^{*}-b=((a+c)+b)^{*} .
\end{gathered}
$$

Then, by (MV2):

$$
(a+b)+c=a+(b+c) .
$$

$$
\begin{aligned}
& (\mathrm{MV} 3) a+0=\left(a^{*}-0\right)^{*}=\left(a^{*} \ominus 0\right)^{*}=\left(a^{*}\right)^{*}=a . \\
& (\mathrm{MV} 5) a+1=\left(a^{*}-1\right)^{*}=0^{*}=1 .
\end{aligned}
$$

(MV6) It is immediate that $b-(b-a)=a \wedge b=a-(a-b)$. Then:

$$
\begin{gathered}
a+\left(a+b^{*}\right)^{*}=\left(a^{*}-\left(a+b^{*}\right)^{*}\right)^{*}=\left(a^{*}-\left(\left(a^{*}-b^{*}\right)^{*}\right)^{*}\right)^{*}=\left(a^{*}-\left(a^{*}-b^{*}\right)\right)^{*} \\
=\left(b^{*}-\left(b^{*}-a^{*}\right)\right)^{*}=\left(b^{*}-\left(b+a^{*}\right)^{*}\right)^{*}=b+\left(b+a^{*}\right)^{*} . \\
(\mathrm{MV} 7) a+a^{*}=\left(a^{*}-a^{*}\right)^{*}=\left(a^{*} \ominus a^{*}\right)^{*}=0^{*}=1 .
\end{gathered}
$$

2.3 Bibliographical remarks

In the early twenties Łukasiewicz introduced a propositional calculus in which the propositions may have a truth value any real number between 0 and 1. The basic connectives of this calculus were implication \Rightarrow and negation \sim having as "truth-tables" equations $x \Rightarrow y=\min (1,1-x+y)$ and $\sim x=x \Rightarrow 0=1-x$ for each $x, y \in[0,1]$, respectively.
Moreover, Łukasiewicz conjectured that all tautologies for the calculus can be derived from the following axiom-schemes, using as unique deduction rule modus ponens:
(L1) $\alpha \Rightarrow(\beta \Rightarrow \alpha)$
(L2) $(\alpha \Rightarrow \beta) \Rightarrow((\beta \Rightarrow \gamma) \Rightarrow(\alpha \Rightarrow \gamma))$
(L3) $(\sim \alpha \Rightarrow \sim \beta) \Rightarrow(\beta \Rightarrow \alpha)$
$(\mathrm{L} 4)((\alpha \Rightarrow \beta) \Rightarrow(\beta \Rightarrow \alpha)) \Rightarrow(\beta \Rightarrow \alpha)$
MV-algebras were originally introduced by Chang in [4] with the aim of given an algebraic proof of Lukasiewicz conjecture.

The results of the first section of this chapter are borrowed from [5].
As reference for the second section of this chapter we mention the book [9] and the papers [6] and [7].

Chapter 3

MV-Pairs and MV-Algebras

Let B be a Boolean algebra. We write $\operatorname{Aut}(B)$ for the group of all automorphisms of B. Let G be a subgroup of $\operatorname{Aut}(B)$. For $a, b \in B$, we write $a \sim_{G} b$ iff there exists $f \in G$ such that $b=f(a)$. Obviously, \sim_{G} in an equivalence relation. We write $[a]_{G}$ for the equivalence class of an element a of B. A pair (B, G), where B is a Boolean algebra and G is a subgroup of $\operatorname{Aut}(B)$ is called a $B G$-pair.

Let (P, \leq) be a poset. Let us write,

$$
\max (P)=\{m \in P: m \leq x \Rightarrow x=m\}
$$

that means, $\max (P)$ is the set of all maximals elements of the poset P.
Let B a Boolean algebra, let G be a subgroup ol $\operatorname{Aut}(B)$. For all $a, b \in B$, we write

$$
L(a, b)=\{a \wedge f(b): f \in G\}
$$

and

$$
L^{+}(a, b)=\{g(a) \wedge f(b): f, g \in G\}
$$

Note that $L(a, b) \subseteq L^{+}(a, b)$.

Definition 3.1 Let B be a Boolean algebra, let G be a subgroup of $\operatorname{Aut}(B)$. We say that $(B ; G)$ is an $M V$-pair iff the following two conditions are satisfied.
(MVP1) For all $a, b \in B, f \in G$ such that $a \leq b$ and $f(a) \leq b$, there is $h \in G$ such that $h(a)=f(a)$ and $h(b)=b$.
(MVP2) For all $a, b \in B$ and $x \in L(a, b)$, there exist $m \in \max (L(a, b))$ with $\mathrm{m} \geq x$.

Example 3.2 For every finite Boolean algebra $B,(B, \operatorname{Aut}(B))$ is an MVpair. ${ }^{1}$ Let

$$
A t(B)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}
$$

the set of atoms of B, and $\Lambda=\left\{\sigma \in A t(B)^{A t(B)}: \sigma\right.$ is a bijection $\}$. For every bijection $\sigma \in \Lambda$, we can define $f_{\sigma} \in \operatorname{Aut}(B)$, associated with the permutation σ by:

$$
f_{\sigma}\left(\bigvee a_{i_{j}}\right)=\bigvee \sigma\left(a_{i_{j}}\right)
$$

It is clear that $\operatorname{Aut}(B)=\left\{f_{\sigma}\right\}_{\sigma \in \Lambda}$. Let us see that $(B, \operatorname{Aut}(B))$ is an MVpair. Let us prove (MVP1) $A \subseteq A t(B), C \subseteq A t(B), f \in A u t(B)$ such that $\bigvee A \leq \bigvee C$ and $f(\bigvee A) \leq \bigvee C$. We write $f(A)=\{f(a): a \in A\}$, since

$$
\operatorname{Card}(A)=\operatorname{Card}(f(A))
$$

and

$$
\operatorname{card}(f(A)-A)=\operatorname{card}(A-f(A)),
$$

hence there exist the following bijections

$$
\sigma_{1}: A \rightarrow f(A)
$$

and

$$
\sigma_{2}:(f(A)-A) \rightarrow(A-f(A))
$$

Now we define $\sigma: \operatorname{At}(B) \rightarrow \operatorname{At}(B)$ as follows

$$
\sigma(x)=\left\{\begin{array}{llc}
\sigma_{1}(x) & \text { if } & x \in A \\
\sigma_{2}(x) & \text { if } & x \in f(A)-A \\
x & \text { if } & x \notin A \cup(f(A)-A)
\end{array}\right.
$$

[^6]Then, it is clear that $f_{\sigma}(\bigvee A)=f(\bigvee A)$ and $f_{\sigma}(\bigvee C)=\bigvee C$. This concludes the proof of (MVP1).
Now, let us prove condition (MVP2). Let $A \subseteq A t(B), C \subseteq A t(B)$ and $X=(\bigvee A) \wedge f(\bigvee C)$, with $f \in \operatorname{Aut}(B)$. Suppose first that $\operatorname{card}(A) \leq$ $\operatorname{card}(C)$, then there are $S \subseteq f(C)$ and a bijection

$$
\sigma_{3}: A \rightarrow S
$$

Since

$$
A=(A-S) \cup(A \cap S)
$$

and

$$
S=(S-A) \cup(A \cap S)
$$

then

$$
\operatorname{card}(A-S)=\operatorname{card}(S-A)
$$

then there is a bijection

$$
\sigma_{4}:(A-S) \rightarrow(S-A)
$$

Then, we define $\sigma: A t(B) \rightarrow A t(B)$ as follows

$$
\sigma(x)=\left\{\begin{array}{llc}
\sigma_{3}^{-1}(x) & \text { if } & x \in S \\
\sigma_{4}(x) & \text { if } & x \in A-S \\
x & \text { if } & x \notin S \cup(A-S)
\end{array}\right.
$$

and we obtain the maximal element $m=\bigvee A \wedge f_{\sigma}(f(\bigvee C))=\bigvee A$ such that $m \geq X$.
Suppose now that $\operatorname{card}(A)>\operatorname{card}(C)$. Since

$$
A=(A-f(C)) \cup(A \cap f(C))
$$

and

$$
f(C)=(f(C)-A) \cup(A \cap f(C)),
$$

then

$$
\operatorname{card}(A-f(C))>\operatorname{card}(f(C)-A)
$$

then there are $S \subseteq A-f(C)$ and a bijection

$$
\sigma_{5}:(f(C)-A) \rightarrow S
$$

Now we consider the next permutation $\sigma: \operatorname{At}(B) \rightarrow \operatorname{At}(B)$

$$
\sigma(x)=\left\{\begin{array}{llc}
\sigma_{5}(x) & \text { if } & x \in f(C)-A \\
\sigma_{5}^{-1}(x) & \text { if } & x \in S \\
x & \text { if } & x \notin S \cup(f(C)-A)
\end{array}\right.
$$

Then $m=\bigvee A \wedge f_{\sigma}(f(\bigvee C))$ is the searched maximal element.
Example 3.3 Let B a finite Boolean algebra with three atoms a_{1}, a_{2}, a_{3}. The mapping f given by

x	0	a_{1}	a_{2}	a_{3}	a_{1}^{c}	a_{2}^{c}	a_{3}^{c}	1
$f(x)$	0	a_{2}	a_{3}	a_{1}	a_{2}^{c}	a_{3}^{c}	a_{1}^{c}	1

defines an automorphism of B and $G=\left\{i d, f, f^{2}\right\}$ is a subgroup of $\operatorname{Aut}(B)$. However, (B, G) is not an MV-pair. Indeed, we have $a_{1} \leq a_{3}^{c}$ and $f\left(a_{1}\right)=a_{2} \leq a_{3}^{c}$, but there is not $h \in G$ such that $h\left(a_{1}\right)=f\left(a_{1}\right)$ and $h\left(a_{3}^{c}\right)=a_{3}^{c}$.

Example 3.4 Let $2^{\mathbb{Z}}$ be the Boolean algebra of all subsets of \mathbb{Z}. Then $\left(2^{\mathbb{Z}}, \operatorname{Aut}\left(2^{\mathbb{Z}}\right)\right)$ is not an MV-pair. Indeed, let $f \in \operatorname{Aut}\left(2^{\mathbb{Z}}\right)$ be the automorphism of $2^{\mathbb{Z}}$ associated with the permutation $f(n)=n+1$. Let $A=B=\mathbb{N}$. We see that $f(A)=A \backslash\{0\}, A \subseteq B$ and $f(A) \subseteq B$. However, there is no $h \in \operatorname{Aut}\left(2^{\mathbb{Z}}\right)$ such that $h(A)=f(A)$ and $h(B)=B$, simply because $A=B$ implies that $h(A)=h(B)$, but $f(A) \neq B$.

Example 3.5 Let \mathcal{A} be the Boolean algebra of all those subsets of \mathbb{N} that are either finite or cofinite, and $\Upsilon=\left\{f \in \mathbb{N}^{\mathbb{N}}: f\right.$ is a bijection $\}$. For every bijection $f: \mathbb{N} \rightarrow \mathbb{N}$, let ψ_{f} be the mapping $\psi_{f}: \mathcal{A} \rightarrow \mathcal{A}$ given by

$$
\psi_{f}\left(\bigcup_{j \in J} n_{j}\right)=\bigcup_{j \in J} f\left(n_{j}\right)
$$

and let

$$
G=\left\{\psi_{f}\right\}_{f \in \Upsilon}
$$

First, we will prove that $G=\operatorname{Aut}(\mathcal{A})$. Trivially, $\operatorname{Aut}(\mathcal{A}) \subseteq G$. To prove the converse inclusion, let $\phi \in \operatorname{Aut}(\mathcal{A})$ and $A \in \mathcal{A}, A=\bigcup_{i \in I}\left\{n_{i}\right\}$. Since $\left\{n_{i}\right\} \subseteq A$ for every $i \in I$, then ${ }^{2} \phi\left(n_{i}\right) \in \phi(A)$ for every $i \in I$, and $\bigcup_{i \in I} \phi\left(n_{i}\right) \subseteq$ $\phi(A)$. Suppose now that there is $B \in \mathcal{A}$ such that $\phi\left(n_{i}\right) \in B$ for every $i \in I$, hence $n_{i} \in \phi^{-1}(B)$. Then $A=\bigcup_{i \in I} n_{i} \subseteq \phi^{-1}(B)$, therefore $\phi(A) \subseteq B$, and we conclude that $\phi(A)=\bigcup_{i \in I} \phi\left(n_{i}\right)$. This yields the desired inclusion.

Let us see that (\mathcal{A}, G) is an MV-pair. Let $A, B \in \mathcal{A}, \psi_{f} \in G$ such that $A \subseteq B, f(A) \subseteq B$. Suppose that A is finite, since

$$
\operatorname{card}(A)=\operatorname{card}(A-f(A))+\operatorname{card}(A \cap f(A))
$$

and

$$
\operatorname{card}(f(A))=\operatorname{card}(f(A)-A)+\operatorname{card}(A \cap f(A))
$$

then

$$
\operatorname{card}(A-f(A))=\operatorname{card}(f(A)-A)
$$

Then we can take a bijection $g:(A-f(A)) \rightarrow(f(A)-A)$, and now we can define $h: \mathbb{N} \rightarrow \mathbb{N}$ as follows:

$$
h(x)=\left\{\begin{array}{llc}
g(x) & \text { if } & x \in A-f(A) \\
g^{-1}(x) & \text { if } & x \in f(A)-A \\
x & \text { if } & x \notin A-f(A) \cup f(A)-A
\end{array}\right.
$$

Then $h(A)=f(A)$ and $h(B)=B$.
Suppose now that A is infinite, so $\operatorname{card}\left(A^{c}\right)<\infty$. Since

$$
\operatorname{card}\left(A^{c}\right)=\operatorname{card}(f(A)-A)+\operatorname{card}\left(A^{c} \cap f(A)^{c}\right),
$$

and

$$
\operatorname{card}\left(f(A)^{c}\right)=\operatorname{card}(A-f(A))+\operatorname{card}\left(A^{c} \cap f(A)^{c}\right)
$$

Then

$$
\operatorname{card}(f(A)-A)=\operatorname{card}(A-f(A))<\infty .
$$

[^7]Let $h: \mathbb{N} \rightarrow \mathbb{N}$ the same function defined previously, so $h(A)=f(A)$ and $h(B)=B$.
It remains to show condition (MVP2). Let $A, B \in \mathcal{A}$ and $X \in L(A, B)$, $X=A \cap f(B)$, we argue by cases as follows:

Case 1: $\operatorname{card}(A)<\infty$ and $\operatorname{card}(A) \leq \operatorname{card}(B)$. Let $S \subseteq f(B)$ and a bijection $g_{1}: S \rightarrow A$. Now we consider the function $h_{1}: \mathbb{N} \rightarrow \mathbb{N}$ defined as follows:

$$
h_{1}(x)=\left\{\begin{array}{llc}
g_{1}(x) & \text { if } & x \in S \\
g_{1}^{-1}(x) & \text { if } & x \in A-S \\
x & \text { if } & x \notin S \cup(A-S)
\end{array}\right.
$$

Then, $M=A \cap h_{1}(f(B))=A$ is an element of $L(A, B)$ such that $M \supseteq X$.
Case 2: $\operatorname{card}(B)<\infty$ and $\operatorname{Card}(B)<\operatorname{Card}(A)$. Since

$$
A=(A-f(B)) \cup(A \cap f(B))
$$

and,

$$
f(B)=(f(B)-A) \cup(A \cap f(B)) .
$$

Then, there are $S \subseteq A-f(B)$ and a bijection $g_{2}: f(B)-A \rightarrow S$. Now we define the function $h_{2}: \mathbb{N} \rightarrow \mathbb{N}$:

$$
h_{2}(x)=\left\{\begin{array}{llc}
g_{2}(x) & \text { if } & x \in f(B)-A \\
g_{2}^{-1}(x) & \text { if } & x \in S \\
x & \text { if } & x \notin S \cup(f(B)-A)
\end{array}\right.
$$

Then, $M=A \cap h_{2}(f(B))=A \cap(f(B) \cup S)$ is the searched maximal element.
There remains to consider

Case 3: $\operatorname{Card}(A)=\operatorname{Card}(B)=\aleph_{0}$. Since $f(B)-A \subseteq A^{c}$ and $A-f(B) \subseteq$ $f(B)^{c}, f(B)-A$ and $A-f(B)$ are finites. First, we suppose that $\operatorname{card}(A-f(B)) \leq \operatorname{card}(f(B)-A)$, then there are
$S \subseteq f(B)-A$ and a bijection $g_{3}: S \rightarrow A-f(B)$. If we consider the function $h_{3}: \mathbb{N} \rightarrow \mathbb{N}$ defined by:

$$
h_{3}(x)=\left\{\begin{array}{llc}
g_{3}(x) & \text { if } & x \in S \\
g_{3}^{-1}(x) & \text { if } & x \in A-f(B) \\
x & \text { if } & x \notin S \cup(A-f(B))
\end{array}\right.
$$

we obtain the maximal element $M=A \cap h_{3}(f(B))=A$, that verifies the condition (MVP2).
Finally, if $\operatorname{card}(A-f(B))>\operatorname{card}(f(B)-A)$, there are $S \subseteq A-f(B)$ and a bijection $g_{4}: f(B)-A \rightarrow S$. Now we define the function $h_{4}: \mathbb{N} \rightarrow \mathbb{N}$

$$
h_{4}(x)=\left\{\begin{array}{llc}
g_{4}(x) & \text { if } & x \in f(B)-A \\
g_{4}^{-1}(x) & \text { if } & x \in S \\
x & \text { if } & x \notin S \cup(f(B)-A)
\end{array}\right.
$$

Then we obtain $M=A \cap h_{4}(f(B))=(A \cap f(B)) \cup(A \cap S)$ that satisfies the condition (MVP2).

Lemma 3.6 Let be a Boolean algebra, let G be a subgroup of $\operatorname{Aut}(B)$. Then the following conditions are equivalent.
(i) (MVP1).
(ii) For all $a, b \in B, f \in G$ such that $a \leq b$ and $a \leq f(b)$, there is $h \in G$ such that $h(b)=f(b)$ and $h(a)=a$.
(iii) For all $a, b \in B, f \in G$ such that $a \wedge b=0$ and $a \wedge f(b)=0$, there is $h \in G$ such that $h(b)=f(b)$ and $h(a)=a$.

Proof. (i) \Rightarrow (ii) Let $a, b \in B, f \in G$ such that $a \leq b$ and $a \leq f(b)$, then $b^{c} \leq a^{c}$ and $f\left(b^{c}\right) \leq a^{c}$. By (i) there is $h \in G$ such that $h\left(b^{c}\right)=f\left(b^{c}\right)$ and $h\left(a^{c}\right)=a^{c}$, so $h(b)=f(b)$ and $h(a)=a$.
(ii) $\Rightarrow(i i i)$ Let $a, b \in B, f \in G$ such that $a \wedge b=0$ and $a \wedge f(b)=0$, then
$a \leq b^{c}$ and $a \leq f\left(b^{c}\right)$. By (ii) there is $h \in G$ such that $h\left(b^{c}\right)=f\left(b^{c}\right)$ and $h(a)=a$.

$$
\begin{aligned}
& (i i i) \Rightarrow(i) \text { Let } a, b \in B, f \in G \text { such that } a \leq b \text { and } f(a) \leq b \text {, then: } \\
& \qquad b^{c} \wedge(b \wedge a)=0, f(a) \wedge b^{c}=0
\end{aligned}
$$

and

$$
b^{c} \wedge f(b \wedge a)=0
$$

By (iii) there exists $h \in G$ such that $h(a)=f(a)$ and $h\left(b^{c}\right)=b^{c}$. This complete the proof.

Lemma 3.7 Let (B, G) be an MV-pair, let $a, b \in B$ and let m be a maximal element of $L(a, b)$. For all $f \in G, f(m)$ is a maximal element of $L^{+}(a, b)$.

Proof. Suppose that there is some element $y \in L^{+}(a, b)$ with $y \geq f(m)$ an write $y=g_{1}(a) \wedge f_{1}(b)$, where $g_{1}, f_{1} \in G$. Since $m \in L(a, b), a \geq m$ and since

$$
\begin{gathered}
a \wedge g_{1}^{-1}\left(f_{1}(b)\right)=g_{1}^{-1}\left(g_{a} \wedge f_{1}(b)\right) \\
=g_{1}^{-1}(y) \geq g_{1}^{-1}(f(m))=\left(g_{1}^{-1} \circ f\right)(m),
\end{gathered}
$$

we see that $a \geq\left(g_{1}^{-1} \circ f\right)(m)$.
By (MVP1), $a \geq\left(g_{1}^{-1} \circ f\right)(m)$ and $a \geq m$ imply that there exists $h \in G$ such that $h(a)=a$ and $h(m)=\left(g_{1}^{-1} \circ f\right)(m)$. We apply h^{-1} to both sides of inequality

$$
a \wedge g_{1}^{-1}\left(f_{1}(b)\right) \geq\left(g_{1}^{-1} \circ f\right)(m)
$$

to obtain

$$
\begin{aligned}
& h^{-1}(a\left.\wedge g_{1}^{-1}\left(f_{1}(b)\right)\right)= \\
& a \wedge h^{-1}\left(g_{1}^{-1}\left(f_{1}(b)\right)\right) \geq h^{-1}\left(\left(g_{1}^{-1} \circ f\right)(m)\right)=m
\end{aligned}
$$

Since m is a maximal element of $L(a, b), a \wedge h^{-1}\left(g_{1}^{-1}\left(f_{1}(b)\right)\right) \geq m$ implies that:

$$
a \wedge h^{-1}\left(g_{1}^{-1}\left(f_{1}(b)\right)\right)=m
$$

After we apply the mapping $g_{1} \circ h$ on both sides of the latter equality we obtain:

$$
y=g_{1}(a) \wedge f_{1}(b)=f(m)
$$

Thus, $f(m)$ is maximal in $L^{+}(a, b)$.
Recall that a Boolean algebra ($B ; \leq, 0,1, \wedge, \vee$), regarded as a bounded distributive lattice, can be organized into an effect algebra $(E ; \oplus, 0,1)$, if the partial binary operation \oplus is defined by $p \oplus q=p \vee q$ iff $p \wedge q=0$, in this case we denote $p \oplus q=p \dot{\vee} q$.

Theorem 3.8 Let (B, G) be an MV-pair. Then \sim_{G} is an effect algebra congruence on B and B / \sim_{G} is an $M V$ - effect algebra.

Proof. Let B be a Boolean Algebra, recall that B can be organized into an effect algebra. ${ }^{3}$

We shall prove that \sim_{G} is an effect algebra congruence on B.

Obviously, \sim_{G} is an equivalence relation.
To prove (C2), Let $a_{1}, a_{2}, b_{1}, b_{2} \in B$ be such that $a_{1} \sim_{G} a_{2}, b_{1} \sim_{G} b_{2}$ and $a_{1} \dot{\vee} b_{1}, a_{2} \dot{\vee} b_{2}$ exist. There are $f_{a}, f_{b} \in G$ such that $f_{a}\left(a_{1}\right)=a_{2}$ and $f_{b}\left(b_{1}\right)=b_{2}$.

We see that $b_{2}^{c} \geq a_{2}$ and that implies

$$
b_{1}^{c}=f_{b}^{-1}\left(b_{2}^{c}\right) \geq f_{b}^{-1}\left(a_{2}\right)=f_{b}^{-1}\left(f_{a}\left(a_{1}\right)\right)=\left(f_{b}^{-1} \circ f_{a}\right)\left(a_{1}\right)
$$

By (MVP1), $a_{1} \leq b_{1}^{c}$ and $\left(f_{b}^{-1} \circ f_{a}\right)\left(a_{1}\right) \leq b_{1}^{c}$ imply that there is $h \in G$ such that

$$
h\left(a_{1}\right)=\left(f_{b}^{-1} \circ f_{a}\right)\left(a_{1}\right)
$$

and

$$
h\left(b_{1}^{c}\right)=b_{1}^{c} .
$$

Therefore,

$$
\begin{aligned}
f_{b}\left(h\left(a_{1} \dot{\vee} b_{1}\right)\right)=f_{b}\left(h\left(a_{1}\right) \dot{\vee} h\left(b_{1}\right)\right) & = \\
f_{b}\left(\left(f_{b}^{-1} \circ f_{a}\right)\left(a_{1}\right) \dot{\vee} b_{1}\right)=f_{a}\left(a_{1}\right) \dot{\vee} f_{b}\left(b_{1}\right) & =a_{2} \dot{\vee} b_{2}
\end{aligned}
$$

and

$$
a_{1} \dot{\vee} b_{1} \sim_{G} a_{2} \dot{\vee} b_{2}
$$

[^8]Let us prove (C3). Let $a_{1}, a_{2} \in B$ such that $a_{1} \dot{\vee} a_{2}$ exists and $a_{1} \dot{\vee} a_{2} \sim_{G} b$. Then There is $f \in G$ such that $f\left(a_{1} \dot{\vee} a_{2}\right)=b$ and we may put $b_{1}=f\left(a_{1}\right)$ and $b_{2}=f\left(a_{2}\right)$.

It is easy to see that \sim_{G} preserves ${ }^{c}$ operation, so (C4) is satisfied.
By Theorem 1.1.15, since \sim_{G} is an effect algebra congruence, B / \sim_{G} is an effect algebra. By (iii) and (vii) of Theorem 1.3.9 B satisfies the Riesz descomposition property, then by Proposition 1.2.6 B / \sim_{G} satisfies the Riesz descomposition property, and by (ii) of Theorem 1.3.9, for $a, b, c \in B, B / \sim_{G}$ satisfies $[a] \ominus([a] \wedge[b])=([a] \wedge[b]) \ominus[b]$.

It remains to prove that $B / \sim_{\sim_{G}}$ is a lattice ${ }^{4}$. By Proposition 1.1.11 an effect algebra is a lattice iff it is a (join or meet) semilattice, it suffices to prove that for all $a, b \in B,[a]_{G} \wedge[b]_{G}$ exists in B / \sim_{G}.

Let $a, b \in B$, we shall prove that every common lower bound of $[a]_{G},[b]_{G}$ is under a maximal common lower bound of $[a]_{G},[b]_{G}$. If $[c]_{G} \leq[a]_{G},[b]_{G}$ then, by Lemma 1.1.14, there is $c_{1} \sim_{G} c$ such that $c_{1} \leq a$ and, again by lemma 1.1.14, $b_{1} \sim_{G} b$ such that $c_{1} \leq b_{1}$. As $b_{1} \sim_{G} b$, there is $f \in G$ such that $b_{1}=f(b)$. Thus,

$$
c \sim_{G} c_{1} \leq a \wedge f(b) \in L(a, b) .
$$

By (MPV2), there is $m \in \max (L(a, b))$ with $a \wedge f(b) \leq m$. Obviously, $m \in L(a, b)$ implies that $[m]_{G} \leq[a]_{G},[b]_{G}$. Therefore, for every common lower bound $[c]_{G}$ of $[a]_{G},[b]_{G}$, there is $m \in \max (L(a, b))$ such that

$$
[c]_{G} \leq[m]_{G} \leq[a]_{G},[b]_{G} .
$$

Let us prove that $[m]_{G}$ is a maximal common lower bound of $[a]_{G},[b]_{G}$ in B / \sim_{G}. Suppose that

$$
[m]_{G} \leq[x]_{G} \leq[a]_{G},[b]_{G} .
$$

By Lemma 1.1.14, there are $m_{1} \sim_{G} m, x_{1} \sim_{G} x$ and $b_{1} \sim_{G} b$ such that

$$
m_{1} \leq x_{1} \leq a, b_{1} .
$$

There is $f \in G$ such that $b_{1}=f(b)$. We see that:

$$
x_{1} \leq a \wedge f(b) \in L(a, b) \subseteq L^{+}(a, b)
$$

[^9]There is $g \in G$ such that $m_{1}=g(m)$. By Lemma 3.7, $m_{1}=g(m)$ is a maximal element of $L^{+}(a, b)$. Therefore, $m_{1}=a \wedge f(b)$ and hence $x_{1}=m_{1}$. This implies $[m]_{G}=[x]_{G}$.

Let $\left[m_{1}\right]_{G},\left[m_{2}\right]_{G}$ be a maximal common lower bounds of $[a]_{G},[b]_{G}$. Since B / \sim_{G} satisfies the Riesz descomposition property, by Proposition 1.2.5 $\mathrm{B} / \sim_{\sim_{G}}$ satisfies the Riesz interpolation property. By the Riesz interpolation property, there is $[m]_{G}$ such that $\left[m_{1}\right]_{G},\left[m_{2}\right]_{G} \leq[m]_{G} \leq[a]_{G},[b]_{G}$. Since $\left[m_{1}\right]_{G},\left[m_{2}\right]_{G}$ are maximal, $\left[m_{1}\right]_{G}=[m]_{G}=\left[m_{2}\right]_{G}$. Since every common lower bound of $[a]_{G},[b]_{G}$ is under a maximal one, an there is a single maximal common lower bound of $[a]_{G},[b]_{G},[a]_{G} \wedge[b]_{G}$ exists, and this completes the proof of the theorem.

Corollary 3.9 B / \sim_{G} is an MV-algebra.
Proof. Follows from Theorem 2.2.5.
Corollary 3.10 B / \sim_{G} is a Boolean algebra iff for every $a \in B$, $[a]+[a]=[a]$.

Proof. Follows from Corollary 2.1.5.5.
Corollary 3.11 Let B a finite Boolean algebra and G be a subgroup of Aut (B). Then the following conditions are equivalent.
(i) B / \sim_{G} is a Boolean algebra.
(ii) For every $a \in B,[a]+[a]=[a]$.
(iii) If $a \in G$, then $[a] \wedge[a]^{*}=0 .{ }^{5}$
(iv) $G=\{i d\}$.

Proof. (iv) $\Rightarrow(i)$: is trivial.

[^10]$(i) \Leftrightarrow(i i)$: Follows from Corollary 3.10.
$(i i) \Rightarrow(i i i)$: Follows from Theorem 2.1.5.3.
$($ iii $) \Rightarrow($ iv $)$: Let a_{1}, \ldots, a_{n} the atoms of B. Suppose, without any loss of generality, that there exists $f \in \operatorname{Aut}(B)$ such that $f\left(a_{1}\right)=a_{j}$ for $2 \leq j \leq n$. Then:
$$
f\left(a_{1}\right) \wedge a_{1}^{*}=a_{j} \wedge\left(a_{2} \vee a_{3} \vee \ldots \vee a_{n}\right)=a_{j}
$$
and $a_{j} \in L\left(a_{1}, a_{1}^{*}\right)$. By proof of Theorem 3.8 we know that there is $m \in \max \left(L\left(a_{1}, a_{1}^{*}\right)\right)$ such that $\left[a_{1}\right] \wedge\left[a_{1}\right]^{*}=[m]$. By hypothesis $m=0$ then $a_{j}=0$, a contradiction.

Example 3.12 Let B be the finite Boolean algebra with n atoms $a_{1}, a_{2}, \ldots, a_{n}$, and let G be the group of all automorphisms of B. It is clear that

$$
B / \sim_{G}=\left\{[0],\left[a_{1}\right],\left[a_{1} \vee a_{2}\right], \ldots,\left[a_{1} \vee \ldots \vee a_{n}\right]=[1]\right\}
$$

where: $[0]=\{0\},\left[a_{1}\right]=\operatorname{At}(B),\left[a_{1} \vee a_{2}\right]=\left\{a_{i_{j}} \vee a_{i_{k}}: i_{j} \neq i_{k}, 1 \leq i_{j}, i_{k} \leq n\right\}, \ldots$, $\left[a_{1} \vee a_{2} \ldots \vee a_{n}\right]=\left\{a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right\}$.

Let $r, l \leq n$ we define a binary operation + and ${ }^{*}$ as follows:

$$
\begin{gathered}
{\left[a_{1} \vee \ldots \vee a_{l}\right]+\left[a_{1} \vee \ldots \vee a_{r}\right]:= \begin{cases}{\left[a_{1} \vee \ldots \vee a_{r+l}\right],} & \text { if } r+l<n \\
{[1],} & \text { if } r+l \geq n\end{cases} } \\
{[0]+\left[a_{1} \vee \ldots \vee a_{r}\right]:=\left[a_{1} \vee \ldots \vee a_{r}\right] .}
\end{gathered}
$$

It is not difficult to see that $\left(B / \sim_{G},+, *,[0],\left[a_{1} \vee \ldots \vee a_{n}\right]\right)$ is an MV-algebra isomorphic to $L_{n+1}{ }^{6}$.

Example 3.13 Let (\mathcal{A}, G) be the MV-pair of the Example 3.6. Let $A, B \in$ $\mathcal{A}, A \sim_{G} B$ iff $\operatorname{card}(A)=\operatorname{card}(B)$.
Then:

$$
\mathcal{A} / \sim_{G}=\{[\emptyset],[\{1\}],[\{1,2\}],[\{1,2,3\}], \ldots\} \cup\left\{[\mathbb{N}],\left[\{1\}^{c}\right],\left[\{1,2\}^{c}\right],\left[\{1,2,3\}^{c}\right], \ldots\right\},
$$

[^11]where
\[

$$
\begin{gathered}
{[\emptyset]=\emptyset} \\
{[\{1\}]=\{S \subseteq \mathbb{N}: \operatorname{card}(S)=1\},} \\
{[\{1,2\}]=\{S \subseteq \mathbb{N}: \operatorname{card}(S)=2\}, \ldots} \\
{[\mathbb{N}]=\mathbb{N},} \\
{\left[\left\{1^{c}\right]=\left\{S \subseteq \mathbb{N}: \operatorname{card}\left(S^{c}\right)=1\right\},\right.} \\
{\left[\left\{1,2^{c}\right]=\left\{S \subseteq \mathbb{N}: \operatorname{card}\left(S^{c}\right)=2\right\}, \ldots\right.}
\end{gathered}
$$
\]

The zero element of \mathcal{A} / \sim_{G} is $[\emptyset]$ and the + and ${ }^{*}$ are defined as follows: If $\operatorname{card}(A)=r$ and $\operatorname{card}(B)=k$:

$$
[A]+[B]:=[\{1,2, \ldots, r+l\}]
$$

If $\operatorname{card}(A), \operatorname{card}\left(B^{c}\right)$ are finites and $\operatorname{card}(A)-\operatorname{card}\left(B^{c}\right)<0$:

$$
[A]+[B]:=\left[\left\{1,2, \ldots,-\left(\operatorname{card}(A)-\operatorname{card}\left(B^{c}\right)\right\}^{c}\right],\right.
$$

In any other case:

$$
[A]+[B]:=[\mathbb{N}] .
$$

And:

$$
[A]^{*}:=\left[A^{c}\right] .
$$

\mathcal{A} / \sim_{G} is isomorphic to the MV-algebra:

$$
\Sigma(\mathbb{Z})=\left\{(0, a): a \in \mathbb{Z}^{+}\right\} \cup\left\{(1, b): b \in \mathbb{Z}^{-}\right\} . .^{7}
$$

The proof of this fact is a bit longer, but straightforward.
The zero element of $\Sigma(\mathbb{Z})$ is $(0,0)$ and the operations + and $*$ are defined as follows:

$$
(i, a)+(j, b):= \begin{cases}(0, a+b) & \text { if } i+j=0 \\ (1,(a+b) \wedge 0) & \text { if } i+j=1 \\ (1,0) & \text { if } i+j=2\end{cases}
$$

and:

$$
(i, a)^{*}=(1-i,-a) .
$$

[^12]
3.1 Bibliographical remarks

As a reference for this chapter, we mention the paper [17].

Bibliography

[1] Bennet M K and Foulis D J (1995), Phi-Symmetric Effect Algebras. Foundations of Physics, 25:1699-1722.
[2] Birkhoff G, Lattice Theory, Amer. Math. Soc. Coll. Publ., Vol. 25, Providence, Rhode Island (1967).
[3] Boole G, An investigation of the Laws of Thought, Macmillan (1854), reprinted by Dover Press, Nex York (1967).
[4] Chang C C (1958), Algebraic analysis of many-valued logics. Transactions of the American Mathematical Society, 88: 467-490.
[5] Cignoli R, D'Ottaviano I and Mundici D, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht (2000).
[6] Chovanec F and Kôpka F (1995), D-Lattices. International Journal of Theoretical Physics, 34: 1297-1302.
[7] Chovanec F and Kôpka F (1997), Boolean D-Posets. Tatra Mountains Mathematical Publications, 10: 1-15.
[8] Dvurečenskij A and Pulmanová S (1998), Quotiens of partial abelian monoids and the Riesz descomposition property. Algebra Univers. 47:443-447.
[9] Dvurečenskij A and Pulmanová S, New Trends in quantum Structures, Kluwer Academic Publishers, Dordrecht (2000).
[10] Dvurečenskij A Vetterlein Th (2001), Pseudoeffect algebras I. Basic Properties, International Journal of Theoretical Physics, Vol. 40, No. 3.
[11] Dvurečenskij A Vetterlein Th (2001), Pseudoeffect algebras I. Group Representations, International Journal of Theoretical Physics, Vol. 40, No. 3.
[12] Dwinger, Ph, Introduction to Boolean Algebras, Physica-Verlag, Würzburg (1967).
[13] Foulis D J, Logic and Partially Abelian Groups, Preprint, ArXiv.org, math. LO/0504553 vl, 27 Apr 2005.
[14] Foulis D J and Bennett M K (1994), Effect Algebras and Unsharp Quantum Logics, Foundations of Physics, 24:1331-1352.
[15] Gudder S and Pulmannová S (1997), Quotiens of partial abelian monoids. Algebra Univers. 38:395-421.
[16] Halmos P, Lectures on Boolean Algebras, Van Nostrand, New York (1972).
[17] Jenča G (2007), A representation theorem for MV-Algebras. Soft. Comput. 11:557-564.
[18] Monk J D(Editor), Handbook of Boolean Algebras, 3 vol., NorthHolland, Amsterdam (1989).
[19] Rasiowa H and Sikorski R, The mathematics of Metamathematics, Polish Scietific Publishers, Warsaw (1963).
[20] Sikorski R, Boolean Algebras, third edition, Springer-Verlag, New York (1969).
[21] Sikorski R, Álgebras de Boole, Notas de Lógica Matemática No. 4, Universidad Nacional del Sur, Bahía Blanca (1968).

[^0]: ${ }^{1}$ An element f of a ring R is said to be idempotent if $f^{2}=f$.
 ${ }^{2}$ An effect algebra with the Riesz descomposition property is an interval effect algebra, cf. [9].

[^1]: ${ }^{3} \mathrm{~A}$ relation \sim on E is a weak congruence iff $(\mathrm{C} 1)$ and (C 2$)$ are satisfied.

[^2]: ${ }^{4}$ A nonzero element $p \in E$ is called an atom if $E[0, p]=\{x \in E: 0 \leq x \leq p\}=\{0, p\}$.

[^3]: ${ }^{5}$ If E is an orthomodular lattice an $p \in E$, the Sasaki projection $\phi_{p}: E \rightarrow E$ is defined by $\phi_{p}(q):=p \wedge\left(p^{\prime} \vee q\right)$ for all q. Thus, defining $a \oplus b:=a \vee b$ exactly when $a \perp b$, $\left(\phi_{p}(q)\right)^{\prime}=p^{\prime} \vee\left(p \wedge q^{\prime}\right)=p^{\prime} \oplus\left(p \wedge q^{\prime}\right)$, so $\phi_{p}(q)=\left(p^{\prime} \oplus\left(p \wedge q^{\prime}\right)\right)^{\prime}=p \ominus\left(p \wedge q^{\prime}\right)$. This suggest this definition. It is well-known that in an orthomodular lattice, the Sasaki projection is a self-adjoint and idempotent residuated mapping. Recall that a mapping $\alpha: E \rightarrow E$ is a residuated if there is a mapping $\beta: E \rightarrow E$, called the residual of α, such that, for all $x, y \in E, \alpha(x) \leq y \Leftrightarrow x \leq \beta(y)$. A residuated mapping $\alpha: E \rightarrow E$ is called self-adjoint if its residual has the form $\beta(y)=\left[\alpha\left(y^{\prime}\right)\right]^{\prime}$ for all $y \in E$. Evidently, is self-adjoint iff $\alpha(y) \perp y \Leftrightarrow x \perp \alpha(y)$ for all $x, y \in E[1]$.
 ${ }^{6}$ In the literature, there are various parallelogram rules, laws, or conditions involving the similarity, in one sense or the other, of the intervals $[p \wedge q, p]$ and $[q, p \vee q]$, or of the differences $(p \vee q) \ominus q$ and $p \ominus(p \wedge q)$ in a lattice. In our present context, these conditions can be studied in terms of the Sasaki mapping [1].

[^4]: ${ }^{1}$ An MV-algebra M is said nontrivial iff its universe M has more than one element.

[^5]: ${ }^{2}$ For a detail exposition of Boolean algebras theory see e.g.[12], [16], [18], [19], [20], [21].

[^6]: ${ }^{1}$ Recall that every finite Boolean algebra B is atomic

[^7]: ${ }^{2}$ In every Boolean algebra, we write $p \leq q$ in case $p \wedge q=p$, or, equivalently, $p \vee q=q$.

[^8]: ${ }^{3}$ cf. Example 1.1.2.

[^9]: ${ }^{4}$ If B / \sim_{G} is finite, by Proposition 1.2 .5 and Lemma 1.2.4 $B / \sim_{\sim_{G}}$ is a lattice.

[^10]: ${ }^{5}$ An effect algebra E that satisfies $p \wedge p^{\prime}=0$ for every $p \in E$, is an orthoalgebra. An orthoalgebra is an effect algebra in which the zero-one law is replaced by the stronger (Consistency law) $p \perp p \Rightarrow p=0$, see [14].

[^11]: ${ }^{6}$ cf. examples 2.1.1.3 and 2.1.1.5

[^12]: ${ }^{7}$ The MV-algebra $\Sigma(\mathbb{Z})$ is the first example of a nonsemisimple MV-algebra, see [5].

