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Introduccion

Puisqu’on ne peut étre universel en sachant tout ce qui se peut savoir sur tout, il faut
savoir peu de tout. Car il est bien plus beau de savoir quelque chose de tout que de savoir
tout d’une chose; cette universalité est la plus belle. Si on pouvait avoir les deux, encore

mieux, mais s’il faut choisir, il faut choisir celle la...
Blaise Pascal: Pensées, 37 [éd. Brunschvicg]

... En aquel Imperio, el Arte de la Cartografia logré tal Perfeccion que el mapa de una
sola Provincia ocupaba toda una Ciudad, y el mapa del Imperio, toda una Provincia. Con
el tiempo, esos Mapas Desmesurados no satisficieron y los Colegios de Cartografos
levantaron un Mapa del Imperio, que tenia el tamano del Imperio y coincidia
puntualmente con él. Menos Adictas al Estudio de la Cartografia, las Generaciones
Siguientes entendieron que ese dilatado Mapa era initil y no sin Impiedad lo entregaron
a las Inclemencias del Sol y de los Inviernos. En los desiertos del Oeste perduran
despedazadas Ruinas del Mapa, habitadas por Animales y por Mendigos; en todo el Pais
no hay otra reliquia de las Disciplinas Geogrificas.

Suarez Miranda: Viajes de varones prudentes, Libro Cuarto, Cap. XLV, Lérida, 1658.
Jorge Luis Borges: Museo.

Gejza Jenca demuestra en [17] que dado un MV-par (B, G), y una relacién
de equivalencia ~¢, la effect algebra B/, es una MV-effect algebra. Nuestro
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6 CONTENTS

principal objetivo es presentar esta demostracién, con todos los resultados
necesarios para su deduccién.

En la seccién 1.1 del capitulo 1, se estudian las propiedades basicas de las
effect dlgebras.
En la seccién 1.2 se definen las propiedades de descomposicién e interpolacién
de Riesz sobre effect dlgebras; y damos una demostracion de la proposicion
que dice que: “Toda effect algebra que satisface la propiedad de
descomposicion de Riesz, cumple con la propiedad de interpolacion de Riesz”.
También se demuestra que dada una effect algebra que satisface la propiedad
de descomposicién de Riesz, al pasar al conjunto cociente via una relacién
de congruencia de effect algebras, dicho conjunto cociente también verifica la
propiedad de descomposicién de Riesz.
Luego, en la ultima seccién del primer capitulo, se definen las propiedades
elementales de las algebras ¢-simétricas, con el propdsito de mostrar que
en una effect dlgebra con una estructura de reticulado, son equivalentes las
propiedades de ¢-simetria y de descomposicién de Riesz.

En la seccion 2.1 del capitulo 2, presentamos las propiedades elementales
de las MV-algebras, con el fin de dar una caracterizaciéon de las MV-édlgebras
como algebras de Boole. En la seccién 2.2 se definen las MV-effect dlgebras,
y probamos que toda MV-effect dlgebra es una MV-algebra (teorema 2.2.5),
basandonos en los resultados publicados en los articulos de Chovanec y Kopka
[6] v [7]. Hacemos notar al lector, que en el libro [9] hay otra demostracién del
teorema 2.2.5, donde al demostrarse la propiedad asociativa correspondiente
a las MV-dlgebras, se supone erroneamente, que la suma entre los elementos
tomados en consideracién estd siempre definida. Asimismo, en [10] y [11], se
demuestra el teorema 2.2.5 en el contexto mas general de las Pseudoeffect
algebras.

En el capitulo tercero, se define la nociéon de MV-par (B, G), donde B es
un algebra de Boole, y G un subgrupo del grupo de automorfismos de B, que
satisfacen ciertas condiciones. Dada ~g una relacién de equivalencia sobre
B asociada a G, se demuestra que dado un MV-par (B, G), la effect dlgebra
resultante B/~¢, es una MV-effect dlgebra, y en virtud del teorema 2.2.5,
al que hicimos alusion en el parrafo anterior, es una MV-algebra. Damos
ademds, una caracterizacién de B/~ como algebra de Boole, apoydndonos
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en la caracterizacién de las MV-algebras como algebras de Boole mencionada
mas arriba al hacer mencion de los contenidos del capitulo segundo.

Luego, y a modo de ejemplo, tomando un algebra de Boole B finita con
n atomos, y el grupo de automorfismos de B, demostramos que el conjunto
B/~ esisomorfo a la MV-dlgebra L, ;. Ademads, considerando el dlgebra de
Boole de las partes finitas y cofinitas de los niimeros naturales, y su grupo de
automorfismos, probamos que el conjunto B/~ es isomorfo a ¥(7Z), conocida
por ser el primer ejemplo de MV-dlgebra no semisimple.

Por 1ltimo indicamos que la demostracion dada del teorema 2.2.5, en
cuanto se refiere a la propiedad asociativa; el ejemplo 3.5, la caracterizacién
dada en el Corolario 3.11, el ejemplo 3.13, asi como las demostraciones de

los ejemplos 3.2 y 3.12, las incluimos en el presente trabajo, y declaramos no
haberlas visto en las publicaciones que hemos tenido a nuestro alcance.

Buenos Aires. Diciembre de 2010.

Guillermo W. Herrmann

guillermo_herrmann@yahoo.com.ar






Abstract

Some properties of effect algebras, effect algebras with the Riesz descompo-
sition property, ¢-symmetric effect algebras, MV-algebras, Boolean algebras
and MV-effect algebras are studied.

An MV-pair is a pair (B, G) where B is a Boolean algebra an G is a subgroup
of the automorphism group of B satisfying certain conditions. Let ~¢g be the
equivalence relation on B naturally associated with G. For every MV-pair
(B, G), the effect algebra B/ ~¢ is an MV-effect algebra, a proof of this fact
is given. Moreover, we present a characterization of B/ ~¢g as a Boolean
algebra.






Chapter 1

Effect Algebras

1.1 Basic notions

Definition 1.1.1 An effect algebra is a system (E;@®,0,1) consisting of a
set E with two special elements 0,1 € E, called zero and the unit, an with
a partially defined binary operation @ satisfying the following conditions for
all p,q,r € F.

(E1) (Commutative Law) If p @ ¢ is defined, then ¢ @ p is defined and
PHI=qDp.

(E2) (Associative Law) If p@ ¢ and (p @ ¢) & r are defined, then ¢ & r and
p@ (q®r) are defined and (p B q) Br=pd (¢S 7).

(E3) (Orthosuplementation Law) For every p € FE there exist a unique
p' € E such that p ® p’ is defined and p & p’ = 1.

(E4) (Zero-one Law) If p & 1 is defined, then p = 0.

In an effect algebra, when we write an equation such as p @ q = r, we are
asserting both that p ® ¢ is defined an that p @& g =r.

11



12 CHAPTER 1. EFFECT ALGEBRAS

Example 1.1.2 Let (B,0,1,A,V,%) be a Boolean algebra, regarded as a
bounded distributive lattice. Then (B,0,1,®) with a®b := aVbiff aAb = 0,
for all a,b € B, is an effect algebra.

Example 1.1.3 [13] Let R be a (not necessarily commutative) ring with
unity 1 and let E be the set of idempotents! in R. Ife, f € E,lete® f := e+ f
iff ef = fe=0. Then (E,0,1,®) is an effect algebra.

Example 1.1.4 An ordered Abelian group is an Abelian group (G;+,0)
equipped with a partial order < which is translation-invariant, that is, given
any x,y,z € G, if <y then z + 2z <y + 2. The positive cone of a partially

ordered Abelian group G is the set GT of all positive elements in G. If G is
a partially ordered Abelian group and u € G, we define the interval

Gt0,u] :={9€eG:0<g<u}.

If G is a partially ordered Abelian group an uw € G¥, then the interval
GT]0,u] can be organized into an effect algebra (G1[0,u];®,0,u) such that
p D q is defined if and only if p+ q < u, in wich case p® q=p+q.

An effect algebra of the form G*[0,u], or isomorphic to such an effect
algebra, is called an interval effect algebra with unit u of the group G.2

Lemma 1.1.5 Let E be an effect algebra and p,q € E. Then:
(i) p" =p

(ii) I’ = 0 and 0/ = 1.

(iii) For each p € E, p® 0 is defined and p & 0 = p.
(iv)o<p<lforallpekFE.

(v) If p @ q is defined, then ¢ @ (p @ q)’ is defined, and p = (¢ ® (p® q)’)’.

!An element f of a ring R is said to be idempotent if 2 = f.

2An effect algebra with the Riesz descomposition property is an interval effect algebra,
cf. [9].
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(vi) (Cancellation Law) If p @& r and ¢ & r are defined and p & r = ¢ & r,
then p = q.

(vil) p® g = 0 then p = ¢ = 0.
Proof. (i): note that by (E1) and (E3), p’ @ p =p @ p’ = 1; hence, p = p".

(ii): Since by (E3) 1@ 1’ is defined, (E4) implies that 1’=0, and by (i) we
have that 0/ = 1" = 1.
(iii): By (ii) 1 ® 0 = 1; hence by (E3), (E1) and (E2):
l=100=0p'®p e0=p @ (ps0);
then by (E3) and (i) we conclude that p ® 0 = p” = p.

(iv) Clearly by (iii) and (Ej).

(v): If p® ¢ is defined, then by (E3) and (E2) we have that:

I=(pageped =pe(gePaq)),
and then (iv) follows from (E3) and (i).

(vi): Suppose that p@® r =g @ r, by (iv) and (E1) we have that:

p=re@per))=0ra@er)) =q

(vii): Finally suppose that p@q = 0, then by (v) and (ii), ¢®(p®q)’ = ¢P1,
and by (E4), ¢ = 0; hence by (iii) 0 =p® 0 = p. O

The binary relation < defined on E by the prescription p < ¢ iff there
is r such p @ r = ¢ is a partial order on E, called the natural order of E.
Indeed, reflexivity follows from (iii) of Lemma 1.1.5, transitivity from (E2),
and antisymmetry from (iii), (vi) and (vii) of Lemma 1.1.5.

Definition 1.1.6 The effect algebra E is lattice ordered iff, as a bounded
partially ordered < set (E,<,0,1), it forms a lattice (E,<,0,1,A,V), i.e.,
pAqand pV q exist for all p,q € E.
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Lemma 1.1.7 Let E be an effect algebra an let p,q € E. Then:

(i) p < qif and only if ¢/ < p'.

(i) p @ q is defined if and only if p < ¢.

Proof. (i) Suppose p < ¢, and take r such that p@®r = ¢. By (v) and (i) in
Lemma 1.1.5, p' =r® (p®r) =7 @ ¢, and this show that ¢ < p’. On the
other hand, if ¢ < p/, by what we have just proved and (i) of Lemma 1.1.5,
we have p=p" < ¢" =q¢.

(ii) Suppose first that p @ ¢, then by (v) in Lemma 1.1.5, ¢ = p® (p® q)’,
hence p < ¢'. Suppose now that p < ¢/, i.e., that there is r such that p®r = ¢';
then 1 =q¢@® ¢ =q® (p®r), hence by (E2) and (E1), p ® ¢ is defined. O

Definition 1.1.8 Let E be an effect algebra and p,q € F. We say that
p is orthogonal to ¢ and write p L ¢ iff p < ¢'.

If pq € EF with p < ¢, there exist r € E withp L r and p®r = q.
By the cancellation law, r is uniquely determined, and we can formulate the

following definition:

Definition 1.1.9 If p,q € E with p < ¢, we define the difference ¢ © p to
be the unique element in E that satisfies p® (¢ © p) = q.

Proof of the next Lemma is omitted since it follow directly from Definition
1.1.9 and previously developed facts about effect algebras.

Lemma 1.1.10 Let E be an effect algebra and p, ¢ € F with p < q. Then:
(i) p=qif and only if g & p = 0.
(ii) p=01if and only if & p = q.

(i) gep<qgand p=qS (¢ p).
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(iv) Let r € E such that r < ¢ © p, then:
p<qgor

and,
(gop)or=(qor)op.

V)gop=@peq).
(vi)p® ¢ = (qgop).

Proposition 1.1.11 (The De Morgan laws) Let E be an effect algebra,
p,q € E. Then

(i) If p A q exists in E, then p' V ¢/ exists in F and (p Aq) =p' V.
(ii) If p V ¢ exists in F, then p' A ¢ exists in E and (pV q)' =p' A {¢.
Proof. Follows from Lemma 1.1.5 and Lemma 1.1.7. U

Definition 1.1.12 Let F and P be effect algebras. A mapping ¢ : E — P
is said to be

(i) a morphism iff satisfies the properties: ¢(1g) = 1p and given p,q € E
with p L ¢ then ¢(p) L ¢(q) and ¢(p & q) = &(p) & ¢(q);

(ii) a homomorphism iff ¢ is a morphism and p,q € E with p A g = 0
implies ¢(p) A ¢(q) = 0;

(iii) a monomorphism iff ¢ is a morphism and p,q € E with
¢(p) < ¢(q) = p < ¢; and,

(iv) an isomorphism iff ¢ is a surjective monomorphism.

Definition 1.1.13 Let E be an effect algebra. A relation ~ on E is an
effect algebra congruence or a congruence on an effect algebra iff the following
conditions are satisfied.
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(C1) ~ is an equivalence relation.

(C2) If p1 ~ pa, 1 ~ g2 and p1 ® q1, p2 ® ¢2 exist, then p; & q1 ~ pa O ¢2.°

(C3) If p ~ q @ r, then there are ¢;,r; such that ¢; ~ ¢, 11 ~ 71, ¢ ©ry
exist and p = ¢ ® 1.

(C4) If p~ q, the p' ~ ¢'.

If ~ is a congruence on an effect algebra E, we denote the equivalence class
containing p € E by [p| and denote the set of congruence classes by E/.. We
define [p] ® [qg] iff there exist p;,q1 € F such that p; ~p,q1 ~ ¢ and p; L ¢
and put [p] ® [¢] = [p1 ® @1]. According to (C2), [p] ® [g] is well defined. We
say that [p] is less than or equal to [q] and write [p] < [¢] iff there exists an
element r € F such that [p] L [r] and [p] ® [r] = [q].

Lemma 1.1.14 Let ~ be a congruence on an effect algebra E. For all
p,q € E, the following are equivalent.

(i) [p]< [q]-

(ii) There is p; ~ p such that p; < q.

(iii) There is ¢ ~ g such that p < ¢.

Proof. (ii) = (i) and iii) = (i) are trivial.

(i) = (i1): As [p] < [q], thereis r € E such that [p]|®|r] = [¢]. This implies

that there are pg,r9 € E such that pg ~ p,rg ~ r,pg L 19, and py B rg ~ q.
By the (C3) property, there are py, 7 such that p; ~ pg, 71 ~ ro,p1 L 71, and

p1br=gq.

(1) = (#i1): Suppose [p] < [q], then there exists r € E such that
[p] @ [r] = [g], then there are pg, ry € E such that pg ~ p, 79 ~ r,pg L 19, and
po @ ro ~ q. By the (C3) property, there are py,r; such that

3A relation ~ on F is a weak congruence iff (C1) and (C2) are satisfied.
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p1 ~ po,r1 ~ ro,p1 L 71, and p1 & 11 = ¢. Then p; ~ p and p; < ¢, and by
Lemma 1.1.7 (i) ¢’ < p), hence there exists v € F such that ¢ & v = p}. By
(C4) property [pi] = [p'] = [¢'®v] = [¢'| & [v], hence [p'] < [¢]. As (i) = (i),
there is w ~ p’ such that w < p’ and by Lemma 1.1.7 (i) p < w'. By (C4)
property, w ~ ¢ iff w’ ~ ¢ and we can put ¢; = w'. O

Theorem 1.1.15 If E is an effect algebra and ~ is an effect algebra con-
gruence, then E/. is an effect algebra.

Proof. Clearly, @ is commutative.

To prove associativity, assume that [p] @ [q] and ([p] @ [¢]) L [r]. Then
there exist p1,q1 € E such that py ~ p,q1 ~ q,p1 L ¢ and [p|®[q] = [p1 D q1]-
By definition [r] L [p; & ¢1] so there exist r,v € E such that r ~ r,
ve~p®q,ry Lvand

(leld)elrl=meal®lr]=ver]

Now v ~ p; @ q1,v L ry imply by Lemma 1.1.7 (ii) that v ~ p; ® ¢; and
v < rj], and by Lemma 1.1.14 there exists ry ~ 7} such that p; ® ¢; < re. By
Lemma 1.1.7 (ii) we have that p; & ¢; L 7} and by (C4) 7}, ~ r;. Since
L,y L p @ q we have by (E2) that ¢; L 75, [q] L [r] and
lq] @ [r] = [¢1 @ rb]. Moreover, p; L (¢1 @ 15) so [p] L ([¢] ® [r]) and

(Pleld)ell=ven]=Ipneaq)er

=P @@y = ®laory =& (qder])

To show the orthosuplementation law, clearly [p] & [p'] = [p @ p'] = [1] for
every p € E. To prove the uniqueness of [p’] assume that [p] @ [¢] = [1].
Then there exist py,q1 € E such that p; ~ p,¢4 ~ q and p1 & ¢ ~ 1.
Also, there exists a r € E such that py & ¢1 ®r = 1so ¢ & r = p}. Since
MmOG ~p1Pq@r,r L p1®q we have by Lema 1.1.7 (ii) that p; ® ¢ <17,
and by Lemma 1.1.14 there exists v ~ r’ such that p; & ¢; ® r < v; then
p1®q @r Lo and by (C4) v/ ~ r. But then v = 0 and hence r ~ 0. Now
@1~ q,7r ~0,q1 L rimply by (C2) and (C4) that

q=q®0~q®r=p~p
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Hence, [q]=[p’].

Now, to prove the zero-one law, we assume that [p] L [1]. Then there exist
p1,q € E such that py ~ p,qg ~ 1,p1 L q. Now ¢ ~ 1,¢ L p; imply that
there exists po € F such that p, ~ p1,po L 1. Hence, po = 0. Therefore,
p~p1~pzso [p] = 0] =

1.2 Effect algebras with the Riesz descompo-
sition property

Definition 1.2.1 An effect algebra E has the Riesz descomposition property
if, for p1,p2, 1,42 € E,p1 ®p2 = q1 D q2 implies the existence of w;; € E such
that p; = wi ® wie and ¢ = wyj; B wy, for all 4, j € {1,2}.

Lemma 1.2.2 Let E be an effect algebra. The following conditions are
equivalent:

(i) For p,q1,qo € E with p < ¢; @ g2, there exist p;,p2 € E such that
p=p1@®prand p; < g 1=1,2.

(ii) £ has the Riesz descomposition property.

Proof. (i) = (ii): Let p1,p2,q1,q2 € E and p1 @ ps = ¢1 @ 2. Then we
have ps < ¢1 @ q2. By (i), there exist wy1,wi2 € E such that p; = wyg @ wis
and each wy; < ¢;. Set wy; = q; © wy; for each j, so g¢; = wy; @ way;. Since

P1D P2 =q1 D g2 = wi1 D wa D wia D war

we also have py = way D was.

(17) = (i): Let p,q1,q2 € F and p < q1 @ q2. Set v; = p and
ve = (q1 ® q2) © p, so that vy, ve are elements such that v, ® vy = ¢ @ ¢o.
By (ii), there exist wyy, wie,ws;,wss such that each v; = w;; @ wye and each
q; = wi; D waj. Then p = vy = w1 D wiz. we also have wy; < wy; G wyy = ¢g;.
J
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Definition 1.2.3 A partially ordered set X is said to have the Riesz in-
terpolation property if, for pi, p2, g1, g2 € E such that p; < g; for all 7, j, there
exists 7 € I/ such that p; <r < g; for all 7, j.

Lemma 1.2.4 Let X be a partially ordered set.
(i) If X is a lattice, then X has interpolation.
(ii)If X is finite, bounded an has interpolation, then it is a lattice.

Proof. (i) Suppose X is a lattice an let z,y,p,q € X. Then z,y < p,q iff
xVy < pAqand, if tVy < pAgq, then any element 2z € X with xVy < 2z < pAg
satisfies =,y < z < p, q.

(ii)Let X be finite and bounded with interpolation property, let p,q € X
an let U := {z € X/z < p,q}. By induction on the number of elements in
U, there exists z € X such that z < p,q and © < z for all z € U . Thus,
z =pAq. A similar argument shows that any two elements x,y € X have a
supremum z V y in X. U

Proposition 1.2.5 Every effect algebra with the Riesz descomposition
property has the Riesz interpolation property.

Proof. Suppose p1,p2, q1,92 € E such that p; < g; for all 4,j. Let ¢ © p1,
¢1 ©p2, @2 ©p1 and g, © p. We have that ¢ ©py < g2 = p2 ® (g2 © p2), then
Lemma 1.2.2 there exist r1,7y € E such that gs © p1 = r1 ® ry and r; < po,
re < G2 © Pa.

Let po © 71 and (g2 © pa) © 9. Thus,
G2 =p1®(20p1) = p2 D (g2 © p2)
implies that:
PO O =110 (pO711) D2 ® ((¢2 © p2) ©12),

hence,
p1=(p20711)® ((q2 © p2) ©1a),
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by the cancellation law.

In the same way,

G =p1D(@1Sp1) =p2® (1 ©p2),

implies that:

(P2em) @ (20p2) ©72) D (1 Op1) = (r1 @ (P2071)) @ (1 © P2),

then, by cancellation law,

(2O p2)OT2) B (1O p1) =71 D (1 © pa).

By the Riesz descomposition property there exist wii,wis, wor,wee € E
such that:
¢1 © p1 = w11 G wig,

(g2 © p2) © 19 = Wa1 B wo,

ry = w11 b wa1,

and
q1 © p2 = Wiz D wae.
Hence,
G2 Op1 =11 Dry=wi ©wa D re,
and

©OPr=T2D (2O p2) © T2 = T2 P Wy D wan.

Also, w3 < 1 ©py and ¢ ©p; L p1. By Lemma 1.1.7 (¢ © p1)’ < wi; and
p < (g1 ©p1), then p; < Wi, by transitivity, and p; L wy;.

We have that p; <p1 w1 < p1 @ (1 ©p1) = ¢1. Also,

P2BTePwan <P2® (O p) =@ =p1P(@Sp1)=p Pwi B wn Sy,

S0 pa < p1 @ wyy by the cancellation law. Then we conlude that:

P @win <p1®(ROp) =g,
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and
P1,P2 < p1 ©wit < q1, Q2.

This completes the proof. O

The opposite implication of the last proposition is not true. The four-
element effect algebra D, called diamond, consists of 0, two atoms? p, ¢ with
p # ¢ such that p = p/ and ¢ = ¢/, and the unit 1 = p & p’ = ¢ P ¢, that
trivially satisfies the Riesz interpolation property but it is not satisfies de
Riesz descomposition property. If p and ¢ are two atoms in the diamond D,
then p@® q is not defined because if p®q = ¢P ¢q, so p = g by the cancellation
law, contradicting p # q.

Proposition 1.2.6 Let E be an effect algebra satisfying the Riesz de-
scomposition property. If ~ is an effect algebra congruence, then E/ ~ also
satisfies the Riesz descomposition property.

Proof. Let Riesz descomposition property hold. Assume that:

[p] @ [q] = [r] @ [v].

Without loss of generality we may assume that p 1 ¢ and r 1L v, that
is, p®q ~ r®wv. By (C3), there are ry,v; such that r; ~ r, v; ~ v, and
p®q = r1Dv;. By the Riesz descomposition property, there are w;;, i,7 = 1,2
such that p; = wjy B wip (i = 1,2) and ¢; = wy; B wy; (j = 1,2), and then
pi] = [wi] ® [wie] (1 =1,2), and [g;] = [w1;] D [we;] (j = 1,2). This completes
the proof. O

1.3 Phi-Symmetric Effect Algebras

Proposition 1.3.1 (i) Let E be an effect algebra, a,b,c € E, a,b < c. If
a Vb exists in E, then (¢c©a) A (¢ ©b) exists in E, and

coO(aVvVb)=(coa)A(cob)

1A nonzero element p € E is called an atom if E[0,p] = {z € E:0 <z < p} = {0,p}.



22 CHAPTER 1. EFFECT ALGEBRAS

In particular, if @ 1. b and we put ¢ = a @ b, then
(adb)o(aVb)=aANb
(ii) Let E be a lattice ordered effect algebra, a,b,c € E, a < ¢,b < c¢. Then
coO(aNb)=(ce&a)V (cab)
In particular, if we put ¢ = a V b,
(aVvbd)e(and)=((a)©a)V ((aVbd)Ob)
(iii) In a lattice ordered effect algebra, for ¢ < a,b

(anb)o=(acc)N(bec)

Proof. (i)From the inequalities

a<aVb<c,
b<aVvb<ec,
we have:
co(aVvb)<coa
and

coO(aVvb) <cob.

For any other w € F withw <c¢Sa,w<cSba=cS(c6a)<cOHw,
b=co (cob) <cOw, therefore,

aVb<cow<ec,

and so
w=cO (cow)<co(aVb),

wich implies that ¢© (aVb) is the greatest lower bound of the set {cSa, cOb}.
(ii) From the inequalities:

aNb<a<c¢
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and
anNnb<b<e

it follows that coa <c© (aAb)and cob<co (a AD).
For w € F with coa <w,c6b < w, then:

coa=(coa)ANc<wAc<c<g,
which gives ¢ & (w A ¢) < a, and similarly ¢ & (w A ¢) < b, therefore:
co(wAc)<aAb.

Then we obtain ¢ & (a Ab) < w A ¢ < w wich implies that ¢ & (a A b) is the
least upper bound of the set {cSa,c S b}.

(iii) From ¢ < a A b < a,b it follows that
(anb)ec<(acc)N(bec)<aAb

If we FEissuchthat w <a6bbSe, then wd e < a,b, hence w < (aAb)Se.
Hence (a A b) © ¢ is the greatest lower bound of {a © ¢,b & c}. O

Proposition 1.3.2 Let E be a lattice ordered effect algebra, a,b € E.
Then ((aVb) & a)A((aVb)eb)=0.

Proof. In Proposition 1.3.1 (i) put c=a V b. O

Proposition 1.3.3 Let E be a lattice ordered effect algebra, ¢ < a,c < b.
Then (acc)V(boc)=(aVd) e

Proof. Fromc<a<aVbc<b<aVbweget
acc<(avb)oceboc<(aVd) e
Let w € E be such a © ¢,b S ¢ < w. Then:
acc<wA((avb)oc) <(aVb)oc
imply

((avb)ec)o(wA((avd)ece)<((avb)oc)e(acc)=((aVd)Sa);
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and similarly,
((avb)ec)s(wA((avb)ec) <((aVbd)eb).
Therefore,
((avb)oc)s(w((avb)ec) <((avb)oa)A((avb)ob) =0
by Proposition 1.3.2. Hence:
(aVvb)ec<w,
which gives the desired result. O
Corollary 1.3.4 Let E be a lattice ordered effect algebra. Then:

(@ (aNb)) A (b (a b)) =0.

Proof. In Proposition 1.3.1(iii) put ¢ = a A b. O

Proposition 1.3.5 Let E be a lattice ordered effect algebra. If z 1 y and
x L z, then

Drzd(ynz)=(xdy) A(zd2).

i{)zd(yVz)=(xdy) V(xdz).
Proof. (i) By Proposition 1.3.1 (iii),
(zoy)rn@@ez))or=(zdy) o) (z@z)or)=yAz,

whence:
(x@YAN(z®2)=2D (YA=2).

(ii) By Proposition 1.3.3,

(r@y)VEdz)ocr=((rdy)ox)V(rdz)ox)=0vVz2,
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whence:
(zdy)V(rdz)=xd (yV2).

O
Definition 1.3.6° Let E be a lattice ordered effect algebra. The mapping
op:ExFE—FE

op.a) =pe(nd)=p®&PAd)
is called the Sasaki mapping on E.

Theorem 1.3.7 (Parallelogram Theorem)® Let E be a lattice ordered
effect algebra and p,q € E. Then:

(i)

p=0pNq) Do(pq)
and

q=(PNq) ©dqp)
(ii)

pVa=p®o(p.q)
=qDo(d,p)=(pNq) ®o(p,d) ® o, q)
=(Nq) ®o(q.0) ® o, p).

°If E is an orthomodular lattice an p € E, the Sasaki projection ¢, : E — E is defined
by ép(q) == p A (p' V q) for all g. Thus, defining a b := a V b exactly when a L b,
(p(0)) =p'V(PAL) =D B (A), 50 ¢p(q) = (' ®(pAG)) =pS (pAq'). This suggest
this definition. It is well-known that in an orthomodular lattice, the Sasaki projection is
a self-adjoint and idempotent residuated mapping. Recall that a mapping o : E — FE' is
a residuated if there is a mapping 8 : F — F, called the residual of « , such that, for all
z,y € E, a(z) <y < x < B(y). A residuated mapping o : E — E is called self-adjoint
if its residual has the form S(y) = [a(y)] for all y € E. Evidently, is self-adjoint iff
aly) Ly L a(y) for all x,y € E [1].

In the literature, there are various parallelogram rules, laws, or conditions involving
the similarity, in one sense or the other, of the intervals [p A ¢, p] and [g,p V q], or of the
differences (pV ¢) © g and p© (p A ¢q) in a lattice. In our present context, these conditions
can be studied in terms of the Sasaki mapping [1].
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(i)
o(p,qd") ® o', q) = 0(q,p") ® o(d, p)
=(pVvae@nrg =900, q Vol p).

o(p,d) N (g, p') =0
o', a) No(d,p) = 0.
Proof. Part (i) follows from the facts that ¢(p,q¢') = p © (p A q¢) and
o(q,p") =q© (pVa).
For part (ii), there exists k € E with pV ¢ = p @ k. Thus,
p@ke(pVve) =1

SO
p® P NGBk =u,

and k = ¢(p', q). By symmetry,

pVqg=qdo(d.p),

and the remaining parts of (ii) follow from (i).

All but the last equality in part (iii) follows from part (ii). To prove the
las equality, note that, since p A ¢ < p, there exists k € E with

pVag=({PANq) ® k.
Thus,
AN @k®(pVaq) =1,

S0,
pAg)@®(pVe) ®k=1,

and
k=[prhg® (V.
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Then:

pVa=@pAg)@[prg)@ (Ve =@rdalprg® @A)

Also by proposition 1.3.5.

pr)@d @A) =W A Nad @A) =00, Q)] Ao, p)]

So:

pVa=(ANq @[, 9 Vo p)
that is,

(pva)eng =00, q)Vold,p)

(iv) The first part follows from Corollary 1.3.4, the second by symmetry.
O

Definition 1.3.8 An effect algebra is ¢-symmetric iff it is lattice ordered
and ¢(p, q) = ¢(q,p) , i.e. p©(pAG) =qS(gNAp'), for all elements p,q € E.

Theorem 1.3.9 For a lattice ordered effect algebra F, the following con-
ditions are mutually equivalent:

(i) E is ¢-symmetric.

(ii) a,b,ce E=>a© (aNb)=(aVb)Ob.

(iii) E has the Riesz descomposition property.

(iv) z,y,z€ Ewithy Lz=2A(ydz2) < (xAy)d(zA=2).
(V) z,y,z€ Ewithy L z=2A(y@2) < (xAy)® 2.

(vi)a < (aAb)® (aANV) for all a,b € E.
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(vii) a,b € EwithaAb=0=a Lb.

Proof. That (i) = (ii) follows immediately from the facts that
as (aVb)=¢(a,b) and ¢(V',a) = (a VvV b) ©bin Theorem 1.3.7.

To prove (ii) = (iit), assume (ii) and suppose a,b,c € E with b L ¢ and
a<b®c Thena,b<b®c, so

avVb<bde

and
ao(aNb)=(aVvb)ebl (bdc)sb=c.

Let by :=aAband ¢; :=a S (aAb). Then by < b,c; < ¢, and a = by @ ¢.
To prove (iii) = (iv), assume (iii) and the hypotheses of (iv). Thus, since
TN (yd2) <ydz,
there are elements y; < y and z; < z with
TAN(YDz)=y1 D 2.

Therefore, y1,21 <z A(y@z) <z,80 1y <z Ayand z; < x Az, and it
follows that
tAYyd2)=p®&xn < (xAY)® (@A z2)

That (iv) = (v) is obvious.
To prove (v) = (vi), assume(v) and let a,b € E. Then, by (v),
a=alNl=aN(bab)<(and)®V,
so by (v) again,

a=aAb®(@nd)] <(aNV)D(aND).

That (vi) = (vit) is obvious.
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Next we prove that (vii) = (i). Assume (vii). Replacing q by ¢’ in
Theorem 1.3.7. we have

o(p.q) @ o(p',q") = ¢(q,p) Vo0, ¢)

by part (iii) and ¢(p',¢') A ¢(q,p) = 0 by part (iv). Therefore, by (vii),
o', q') L ¢(q,p), so

o(g,p) Vo',qd') = olq,p) © oW, q)

by Proposition 1.3.1. part (i). Hence

o(p,q) © o', q") = o(q,p) © O, ),

and
o(p,q) = ¢(q,p)

follows from the cancellation law. Therefore (vii) = (i), and we have proved
that Conditions (i) trought (vii) are mutually equivalent. O

Corollary 1.3.10 A finite effect algebra with the Riesz descomposition
property is ¢-symmetric.

Proof. Let F be a finite effect algebra with the Riesz descomposition
property. By proposition 1.2.5, F' has the interpolation, whence it is lattice
ordered by Lemma 1.2.4. Consequently, F' is ¢-symmetric by Part (iii) of
Theorem 1.3.9. U

1.4 Bibliographical remarks

As a general reference for this chapter, we mention the book [9].

An effect algebra is based on a partial binary operation ¢. The operation
@ goes back to the original ideas or G. Boole [3], who supposed that
a + b will denote the logical disjunction and ab the logical conjunction of a,b,
respectively. In fact, Boole only wrote a+b when ab = 0, and this is all that is
needed for probability theory: if ab = 0, then P(a+b) = P(a)+ P(b), where
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P is a probability measure. Therefore, + can be introduced as a partially
defined binary operation.

Effect algebras were introduced as abstraccions of the algebra of Hilbert-
space effect operators, used in the study of the theory of measurement in
quantum mechanics, by Foulis and Bennett in [14].

Lemma 1.1.14 appears in [17].

Theorem 1.1.15 is due to [15].

Lemma 1.2.2 is taken from [9], Lemma 2.1.4 from [1] and Proposition 2.1.6
from [§].

The third section of this chapter is based on the paper [1].



Chapter 2

MYV -algebras

2.1 MYV and Boolean algebras

2.1.1 Basic notions

Definition 2.1.1.1 An MV-algebra is an algebra M = (M, +,*,0, 1), where
M is a nonempty set, 0 and 1 are constants, + is a total binary operation,
and * is a unary operation satisfying the following axioms.

(MV1) (a+b)+c=a+ (b+c).

(MV2) a+b=10b+a.

(MV3)a+0=a

(MV4) (a*)* = a.

(MV5) a+1=1.

(MV6) (a* +b)* +b = (a+b")* + a.

31
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(MV7) a+a* = 1.
(MV8) 0* = 1.
Example 2.1.1.2 A singleton {0} is a trivial example of an MV-algebra.

Example 2.1.1.3If (B, 0, 1, A, V. ) is a Boolean algebra, then (B, V,°,0, 1)
is an MV-algebra, where V, ¢, 0 and 1 denote, respectively, the join, the com-
plement, the smallest and the greatest elements in B.

Example 2.1.1.4 Consider the real unit interval:
0,1]]={z €eR:0<z<1},andforall z,y € [0,1], let z+y := min{l, z+y}
and z* := 1 — x. It is easy to see that [0, 1] := ([0,1],+,*,0,1) is an MV-
algebra.

Example 2.1.1.5 A subalgebra of an MV-algebra M is a subset S of M
containing the zero element of M, closed under the operations of M, an
equipped with the restriction to S of these operations. The rational numbers
in [0, 1], and, for each integer n > 2, the n-element set

L,:={0,1/(n—1),....,(n —2)/(n—1),1}

yield examples of subalgebras of [0, 1].

Example 2.1.1.6 Given an MV-algebra M and a set X, the set MX of
all functions f : X — M becomes an MV-algebra if the operations + and *
and the element 0 are defined pointwise. The continous functions from [0, 1]

into [0, 1] form a subalgebra or the MV-algebra [0, 1],
Definition 2.1.1.7 On each MV-algebra M we define the operations o
and - as follows:
zoy:= (7 +y’)

r—y:=xoy"

As a consequence of (MV4), we can write:

(MV9) 4y = (z* oy*)*.
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Axiom (MV6) can now be written as:
(MV6’) (z —y)+y=(y—2) + =

Note that in the MV-algebra [0, 1] we have z o y = max(0,z + y — 1) and
r—y=mazx(0,z —y).

Lemma 2.1.1.8 Let M be an MV-algebra an z,y € M. Then the following
conditions are equivalent:

(i) 2" +y=1.

(ii) 0 y* = 0.

(ill) y =z + (y — ).

(iv) There is an element z € M such that = + z = y.

Proof. (i) = (i1): By (MV4) and (MVT7).

(17) = (¢ii): Immediate from (MV3) and (MV6’).

(7i1) = (iv): Take z =y — x.

() = (i): By (MV9) and (MVT7), 2* + 2+ z = 1. O

Let M be an MV-algebra. For any two elements = and y of M let us agree
to write

Ty
iff © and y satisfy the above equivalent conditions (i)-(iv). It follows that
< is a partial order, called the natural order of M. Indeed, reflexivity is

equivalent to (MVT7), antisymmetry follows from conditions (ii) and (iii),
and transitivity follows from condition (iv).

An MV-algebra whose natural order is total is called an MV-chain.
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Lemma 2.1.1.9 In every MV-algebra M the natural order < has the
following properties:

(i) z <y if and only if y* < x*.

(ii) If x <y then foreach z € M, x4+ z2<y+zandxoz <yoz.

(iii) x oy < z if and only if z < y* + 2.

Proof. (i): This follows from Lemma 2.1.1.8 (i), since * +y = y** + x*.

(ii): The monotonicity of + is an easy consequence or Lemma 2.1.1.8 (iv);
using (i), one immediately proves the monotonicity of o.

(iii): It is sufficient to note that z o y < z is equivalent to
l=(zxoy) +z=x"+y" +z d

Proposition 2.1.1.10 On each MV-algebra M the natural order deter-
mines a lattice structure. Specifically, the join x V y and the meet z A y of
the elements x and y are given by

) aVvy=(roy)+y=(z—y) +y,
(i) Ay = (2" Ay")* =z o (2" +y)
Proof. To prove (i), by (MV6’) and Lemma 2.1.1.8, = < (z —y) + y and
y < (z—y)+y. Suppose x < z and y < z. By (i) and (iii) in Lemma 2.1.1.8,
*+z=1and z = (2 —y) +y. Then by (MV6’) we can write
(=y)+y) +2=(z-y)" -y +y+(z-y)

=y—(r—y))+@@—-y) + -y
=@y—(r—y))+2"+y+ (2 —y)
=@y—(z-y))—a"+z=1

It follows that (z — y) + y < z, which completes the proof of (i). We now
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immediately obtain (ii) as a consequence or (i) together with Lemma 2.1.1.9
(). O

Proposition 2.1.1.11 The following equations hold in every MV-algebra:
() zo(yVz)=(roy)V(xo2),
(i) z+(yANz)=(x+y) A(w+ 2).

Proof. By Lemma 2.1.1.9 (ii), xoy < zo(yVz)and xoz < xo(yV 2).
Suppose zoy <t and zoz < t. Then by Lemma 2.1.1.9 (iii), y < 2* +t and
z < x* +t, whence y V z < ¥ 4+ t. One more application of Lemma 2.1.1.9
(iii) yields (y V z) o x < t, which completes the proof of (i). It is now easy
tosee that (ii) es a consequence of (i), using Lemma 2.1.1.9 (i), together with
(MV4) and (MV9). O

Proposition 2.1.1.12 Every MV-algebra satisfies the equation

(z—y)Ay—7)=0

Proof. By making repeated use of (MV6) and its variants, together with
the basic properties of the operations + and o we obtain:

(x—y) A (y—2)
=(@-ylo((z—y)+(y—2)
=zoy'o(y+a"+(y—x)
=zo (@ + (y—a))o (@ +—2) +y)
=y —2)o((y—z) +a)o((z"+(y—2) +y")
=yozto((y—xz) +z)o((xo(y—2))+y")
=z"o(z+(y—xz))oyo(y + (zo(y" +x)))
=a"o(z+(y—x))o(xo(y +z))o((xo(y +z)) +y) =0,
since by (MV7) and (MV9), z* o z = 0. O
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Let M be an MV-algebra. For each x € M, we let Oz = 0, and for each
integer n > 0, (n+ 1)z = nz + x.

Lemma 2.1.1.13 Let x and y be elements of an MV-algebra M. If
x Ay = 0 then for each integer n > 0, nx A ny = 0.

Proof. If xt Ay = 0 then by monotonicity (Lemma 2.1.1.9) and distributivity
(Proposition 2.1.1.11),
r=x+ @Ay =(@+x)\(x+y) >2xAy,

whence:
0=z Ay >2zANvy,

in the same way y > 2y A x. Then:
O=axANy>2c A2y Nz Ny=2xAN2.
It follows that 0 = 2z A 2y and similarly:
O=4dx Ny Ndx =8x N8y = ....
The desired conclusion now follows from:

nr Any <2"x A2"y = 0.

2.1.2 Homomorphism and ideals

Let M and N be MV-algebras. A function f : M — N is said to be a
homomorphism iff f(0) = 0, for each x,y € M f(x +y) = f(x) + f(y), and
f(z*) = f(x)*. Following current usage, if f is one-one we shall equivalently
say that f is an injective homomorphism, or an embedding. If the homomor-
phism f : M — N is onto N we say that f is surjective. By isomorphism we
shall mean a surjective one-one homomorphism.

The kernel of a homomorphism f : M — N is the set
Ker(f) = f7(0) = {w € M: f(z) = 0}
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An ideal of an MV-algebra M is a subset I of M satisfyin the following
conditions:

(11) 0 € I,
(I2)Ifxel,ye M and y <z theny € I,
(I3) Ifr el andy el thenz+yel.

The intersection of any family of ideals of M is still an ideal of M. For
every subset W C M the intersection of all ideals I O W is said to be the
ideal generated by W, and will be denoted (W) .

The proof of the next lemma is immediate, and will be ommitted.

Lemma 2.1.2.1 Let W be a subset of an MV-algebra M. If W = (), then
(W) ={0}. If W # (), then

(Wy={zxeM:x<w +..+wgw,..w €W}

In particular, for each element z of an MV-algebra M, the ideal (z) = ({z})
is called the principal ideal generated by z, and we have

(z) ={zr €M :nz>zneNy}

Note that (0) = {0} and (1) = M. Further, for every ideal J of an MV-
algebra M and each z € M we have

(Ju{z})={zeM:z<nz+aneNae J}

An ideal I of an MV-algebra M is proper ift I # M. We say that [ es
prime iff it es proper and satisfies the following condition:

(I4) For each x and y in M, either (x —y) € [ or (y — z) € 1.

An ideal I of an MV-algebra M is called mazimal iff it is proper and for
each ideal J # I, if I C J then J = M.
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We denote by Z(M), P(M) and M (M) the sets of ideals, prime ideals and
maximal ideals of M respectively.

We omit the straighforward proof of the followings statements.

Lemma 2.1.2.2 Let M, N be MV-algebras, and f : M — N a homomor-
phism. Then the following properties hold:

(1) f(z) < h(y) iff 2 —y € Ker(f).
(ii) f is injective iff Ker(f) = {0}.
(iii) Ker(f) # M iff N is nontrivial® .

(iv) Ker(f) € P(M) iff N is nontrivial and the image f(M), as a subal-
gebra of N, is an MV-chain.

The following function d plays the role of a distance function in MV-
algebras.

Definition 2.1.2.3 The distance function d : M x M — M is defined by

d(r,y) = (r—y)+ (y — )

In the MV-algebra [0,1] , d(z,y) = |z —y|. In every Boolean algebra the
distance function coincides with the symmetric difference operation.

Proposition 2.1.2.4 In every MV-algebra M we have:
(i) d(z,xz) = 0.

(ii) If d(z,y) = 0 then = = y.

(iif) d(z,y) = d(y, z).

(iv) d(z, z) < d(z,y) + d(y, z).

L An MV-algebra M is said nontrivial iff its universe M has more than one element.
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(v) d(z,y) = d(z",y").
(vi) d(zx + s,y +t) < d(z,y) + d(s,1).
Proof.(i), (iii) and (v): Immediately follow by definition.

(ii): Follows from the fact that x +y = 0 implies z = 0 = y and by Lemma
2.1.1.8 (iii).

(iv): Note first that
(@=2)+(@-y+H-2)=@"Vy)+(EVy 2y +y=1

Hence,
(—2)<(@—y)+({y—2).

In an entirely similar fashion:

(z—2) < (y—2)+ (2 —y),

whence (iii) follows from de monotonicity if + (Lemma 2.1.1.9).

(vi): In the same way that the proof of (iv), note that:
((z+s)=(y+1)" + (@ —y)+(s—1)

=(x+s)+@Vy+EtVve)>(x+s)*+r+s=1.

As an immediate consequence we have:

Proposition 2.1.2.5 Let I be an ideal of an MV-algebra M. Then the
binary relation =; on M defined by = =; y iff d(z,y) € I is a congruence
relation. (Stated otherwise, =; is an equivalence relation such that x = = and
y =; timply 2* =; s* and x +y =; s +t.) Moreover, [ ={z € M : x =; 0}.
Conversely, if =; is a congruence on M, then {x € M : z =; 0} is an ideal,
and z =; y iff d(x,y) = 0.

Therefore, the correspondence I —=; is a bijection from the set of ideals of
M onto the set of congruences on M.
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Given x € M, the equivalence class of x with respect to =; will be denoted
by x/I, and the quotient set M/ =; by M/I. Since =; is a congruence,
defining on the set M /I the operations

(x/I)" :=a" /I

and
x/I+y/I = (z+y)/I,

the system (M/I,+,*,0/I) becomes an MV-algebra, called the quotient al-
gebra of M by ideal I. Moreover, the correspondence x — x/I defines a
homomorphism f; from M onto the quotient algebra M /I, which is called
the natural homomorphism from M onto M/I. Note that Ker(fr) = 1.

The proof of the following lemma is straighforward.

Lemma 2.1.2.6 If M, N, and S are MV-algebras, and f : M — N and
g : M — S are surjective homomorphisms, then Ker(f) C Ker(g) if and
only if there is a surjective homomorphism A : N — S such that ho f = g,
i.e., h(f(z)) = g(z) for all z € M. This homomorphism % is an isomorphism
if and only if Ker(f) = Ker(g).

As an inmediate consequence we have

Theorem 2.1.2.7 Let M and N ve MV-algebras. If h : M — N is a
surjective homomorphism, then there is an isomorphism f : M/Ker(h) - N
such that f(z/Ker(h)) = h(x) for all z € M.

Proposition 2.1.2.8 Let J be an ideal of an MV-algebra. For every
a € M\J there is a prime ideal P of M such that J C P and a ¢ P.

Proof. A routine application of Zorn’s Lemma shows that there is an ideal
I of M which is maximal with respect to the property that J C I and
a ¢ I. We shall show that [ is a prime ideal. Let x and y be elements of
M, and suppose that both + —y ¢ I and y — « ¢ I. By the maximality
assumption the ideal generated by I and x — y must contain the element a,
then a < s+ p(s — y) for some s € I and some integer p > 1. Similarly,
there is an element ¢ € I and an integer ¢ > 1 such that a <t + q(y — z).
Let u = s+t and n = max(p,q). Then v € I, a < u+ n(z —y) and
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a < u+n(y —x). Hence by Proposition 2.1.1.12, Proposition 2.1.1.11 (ii)
and Lemma 2.1.1.13, we have:

a<(utn(x—y)Au+nly—z)=ut+@®(z—y) Anly—1z))=u,
whence a € I, a contradiction. O

Corollary 2.1.2.9 Every proper ideal of an MV-algebra is an intersection
of prime ideals.

2.1.3 Subdirect representation theorem

Let T" a non empty set. The direct product of a family {M;};cr of MV-
algebras denoted by I1;cr M;, is the MV-algebra obtained by endowing the set-
theoretical cartesian product of the family with the MV-operations defined
pointwise. In other words, IL;epM; is the set of all functions f : I' — (J,.p M;
such that f(i) € M;, for all i € ', with the operations * and + defined by

£7(0) =
and

(f +9)(@) = f(i) + g(2)

The zero element of 1l;crM; is the fuction i € I' — 0; € M;. For each j € T,
the map 7, : [Liep M; — M, is defined by

mi(f) = f()-

Each 7; is a homomorphism onto M; called the j* projection function. In
particular, for each MV-algebra M and a nonempty set X, the MV-algebra
M~ is the direct product of the family {M,}.cx, where M, = M for all
reX.

Definition 2.1.3.1 An MV-algebra M is a subdirect product of a family
{M;}icr of MV-algebras if and only if there exists a one-one homomorphism
h : M — Il,erM; such that, for each j € I', the composite map 7; o h is an
homomorphism onto M;.
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The following result is a particular case of a theorem of Universal Algebra,
due to Birkhoff [2].

Theorem 2.1.3.2 An MV-algebra M is a subdirect product of a family
{M;}icr of MV-algebras if and only if there is a family {J;}ier of ideals of
M such that

(i) M; = M/ J, for each i € T,
and

() Nier = {0}

Proof. Supposing first that M is a subdirect product of a family {M,}ier
of MV-algebras, let h : M — Il;cr M; be a one-one homomorphism as given
by Definition 2.1.3.1; for each j € I', let J; = Ker(m; o h). By Theorem
21.2.7, M; = M/J;. If v € (\;er Ji, then m;(h(z)) = 0 for all j € T'. This
implies h(z) = 0, and since h is injective, x = 0. Therefore (,.. J; = {0},
and conditions (i) and (ii) hold true.

Conversely, Suppose {J; }ier to be a family of ideals of M satisfying con-
ditions (i) and (ii). Let ¢ be an isomorphism of M/J; onto M;, as given by
condition (i). Let ghe function h : M — IL;cr M; be defined as follows: for
each z € M, (h(x))(i) = e(x/J;). Tt follows from (ii) that Ker(h) = {0},
whence, by Lemma 2.1.2.2 (ii), h is injective. Since for each i € T the map
a € M — a/J; € A/J; is surjective, then m; o h maps M onto M;. Thus, M
is a subdirect product of the family {M,}ier, as required. O

Theorem 2.1.3.3 (Chang’s Sufdirect Representation Theorem) Every
nontrivial MV-algebra s a subdirect product of MV-chains.

Proof. By Theorem 2.1.3.2 and Lemma 2.1.2.2 (iv), an MV-algebra M is
a subdirect product of a family of MV-chains if an only if there is a family
{P;}ier of prime ideals of M such that (. P; = {0}. Now apply Corollary
2.1.2.9 to the ideal {0}. O
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2.1.4 MV-equations

As we shall see, an important consequence of Chang’s Subdirect Represen-
tation Theorem is that in order to prove that an equation holds in all MV-
algebras it is sufficient to check that the equation holds in al MV-chains. To
give a precise formulation to this result we shall now develop the necessary
syntactic machinery.

Definition 2.1.4.1 By a string (or, word) over a nonempty set S we
understand a finite list of elements of S.

For each natural number ¢ > 1, let S; := {0,*, 4+, z1, ..., zy, (,)}. An MV-
term in the variables x1, ..., x; is a string over .S; arising from a finite numbber

of applications of the following rules:

(T1) The elements 0 and x;, for ¢ = 1,...,t, considered as one-element
strings, are MV-terms.

(T2) If the string 7 is an MV-term, then so is 7*.

(T3) If the strings 7 and o are MV-terms, then so is (7 + o).

In other wors, a string 7 over S; is an MV-term if and only if there is a
finite list of strings over Sy, say 71, 7o, ..., T, such that 7, = 7 and for each
i € {1,...,n}, 7; satisfies at least one of the following conditions:

(i) , =0 or 7; = x;, for some 1 < j <t,

(ii) there is j < i such that 7; = 77,

(iii) there are j < ¢ and k < ¢ such that 7, = (7; + 7).

Those strings 7; that belong to every formation sequece for 7 are said to
be the subterms of 7.

The following result is known as the unique readability theorem; its proof
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es precisely the same as for the classical propositional calculus, and is left as
exercise.

Theorem 2.1.4.2 Fvery term 7; in the variables xq, ..., x, satisfies pre-
cisely one of the above conditions (i)-(iii). Moreover, both term 7; of case
(i) and the pair (1;,7y) are uniquely determined.

We shall henceforth write 7(z1, ..., x2) to signify that 7 is an MV-term in
te variables x1, ..., xs.

Definition 2.1.4.3 Let M be an MV-algebra, 7 an MV-term in the vari-
ables 1, ..., r9 and assume aq, ..., a; are elements of M. Substituting an ele-
ment a; € M for all occurrences of the variable z; in 7, for i = 1, ..., ¢, using
the unique readatability theorem, and interpreting the symbols 0,4+ and *
as the corresponding operations in M, we obtain an element of M, denoted
™(ay, ..., a).

In more detail, proceeding by induction on the number of operation sym-
bols occurring in 7, we define 7 (ay, ..., a;) as follows:

(i) 2™ = q;, for each i = 1, ..., ¢;

(iii) (o +p)" = (™ + pM).

Definition 2.1.4.4 An MV-equation (for short, an equation) in the vari-
ables x1, ..., x; is a pair (7,0) of MV-terms in the variables x1, ..., .

Following tradition, we shall write 7 = ¢ instead of (7,0). An MV-algebra
M satisfies the MV-equation 7 = o, in symbols,

MET=o0,

iff

™

ar,...,a;) = o (ay, ..., a;)

for all aq,...,a; € M.
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Axioms (MV1)-(MVG6) are examples of MV-equations, by definition, these
equations are satisfied by all MV-algebras.

Lemma 2.1.4.5 Let M, N, M; (for all i € I') be MV-algebras:
(i) If M =7 = o the S = 7 = o for each subalgebra S of M.

(ii)) If h : M — N is a homomorphism, then for each MV-term 7 in the
variables x1,...,xs and each s-tuple (ay,...,as) of elements of M we have
™ (h(a1), ..., h(as)) = h(t™(ay, ...,as)). In particular, when h maps M onto
N, from M = 7 = o it follows that N 7 = 0.

(iii) If M; =7 = o for each ¢ € I', then Il;er M; =7 = 0.
Proof. Conditions (i) and (ii) are immediate.

(iii): Let fi,..., fs € M = Il;erM;. By hypothesis, for each i € I' we can
write

T (1o f) @) = T (L0), s fil0)) =
oMi(f1(1), ..., £s(1) = ™ (f1, ..., £o)(3),
whence 7™M (f1, ..., fs) = oM (f1, ..., fs). O

Theorem 2.1.4.6 Let M be the subdirect product of a family {M;}ier of
MV-algebras; let T = o be an MV-equation. Then M =1 = o if and only if
M; =71 =0 for eachi€T.

Proof. Let h : M — Il,crM; be a one-one homomorphism as given by
Definition 2.1.3.1. Suppose that M = 7 = 0. Since for each i € I, mo h
maps M onto M;, it follows that M; =1 = 0.

Conversely, suppose that M; =7 = o for all i € I'. By the above Lemma,
[LerM; = 7 = o0, and since h(M) is a subalgebra of [L;cpr M;, h(M) =7 = 0.
Since h™! maps h(M) onto M, we conclude that M = 7 = 0. O

Corollary 2.2.4.7 An MV-equation is satisfied by all MV-algebras if and
only if it is satisfied by all MV-chains.
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Proof. Suppose that 7 = ¢ is satisfied by all MV-chains, an let M be
an MV-algebra. If M = {0} the, trivially, 74(0,...,0) = 0 = (0, ...,0),
whence M |= 7 = o. If M is nontrivial the desired conclusion follows from
Theorems 2.1.3.3 and 2.1.4.6. U

2.1.5 Boolean algebras

We assume that the reader is familiar with the fundamental notions from
Boolean algebras.?

We have already noted that Boolean algebras are particular cases of MV-
algebras. In this section we shall caracterize Boolean algebras among MV-
algebras.

The natural order makes every MV-algebra M into a lattice with a mini-
mum element 0 and maximum 1. We shall denote this lattice by

L(M)

Recall that the lattice operations of join and meet are definable via the MV-
operations by the following formulas:

zVy=(zoy)+y=(z—y)+y
rAy=(z"Vy)=x0 (2" +y)
A lattice is called distributive iff the following distributive laws hold:
zA(yVz)=(xAy) V(rAz)
and

eV (yAz)=(xVy AxVz).

When M is an MV-chain and a,b € M, then a Vb = mazx(a,b) and
a A'b=min(a,b), whence clearly the distributive laws hold in M.

2For a detail exposition of Boolean algebras theory see e.g.[12], [16], [18], [19], [20], [21].
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Using the above join and meet formulas, the distributive laws can bie equiv-
alently reformulated as MV-equations; since these equations are satisfied by
all MV-chains, by Corollary 2.1.4.7 we obtain

Proposition 2.1.5.1 For any MV-algebra M, L(M) is a distributive lat-
tice with smallest element 0 and greatest element 1.

Definition 2.1.5.2 An element x of a lattice L with 0 and 1 is said to be
complemented iff there is an element y € L (the complement of x) such that
rVy=1and x Ay =0. When L is distributive each z € L has al most one
complement, denoted z¢. We further let

B(L)

be the set of all complemented elements of the distributive lattice L. Note
that 0 and 1 are elements of B(L), because 0° = 1 and 1° = 0. As a matter
of fact, B(L) is a sublattice of L wich is also a Boolean algebra. For any MV-
algebra M we shall write B(M) as an abbreviation of B(L(M)). Elements
of B(M) are called the Boolean elements of M.

Theorem 2.1.5.3 For every element x in an MV-algebra M the following
conditions are equivalent:

(i) x € B(M).

(ii)) e Va* =1.

(iii) z A z* = 0.

(iv) x + = x.

(v) zox =
(vi)x+y=axVy,forally € M.
(vil) zoy =z Ay, forally € M.

Proof. The following equivalences are trivial: (i7) < (iii), (iv) < (v),
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(vi) < (vii). It is also trivial that (vi) = (iv). Further, the equivalent
conditions (i) and (zii) state that z* is the complement of z. Thus, in
particular (i) = (1).

(1) = (i7): By elementary manipulations, using Lemma 2.1.1.8 and Propo-
sition 2.1.1.11 we have

="+ 0=2"4+(x Nz = (" +2) A (2" +2°) = 2" + 2"

Thus,
¢ < z*

and
=zVz-<zVvze<lI,

and we are done.

(73i) = (vi): Using Proposition 2.1.2.3, together with the Subdirect Rep-
resentation Theorem 2.1.3.3 and the inequality z V y < x 4y, (which also is
an immediate consequence of Theorem 2.1.3.3) we have

dlx+y,xVy)=(r+y)o(zVy)
=@+y)o@ Ay) <((@+y)oz) A((z+y)oy’)
=x"ANyAy Nz
Therefore, x A z* = 0 implies d(x + y,z V y) = 0, whence =z +y =z V y.
(1v) = (i1): By hypothesis,
l=x"+zx=(x+z)+r=2"Vzr.

g

Corollary 2.1.5.4 B(M) is a subalgebra of the MV-algebra M. A subal-
gebra B of M is a Boolean algebra iff B C B(M).

Corollary 2.1.5.5 An MV-algebra M is a Boolean algebra if and only if
the operation + is idempotent, i.e., the equation x + x = x is satisfied by M.
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2.2 MYV and MV-effect algebras

Definition 2.2.1 An MV-effect algebra is a lattice ordered effect algebra F
in which, for all a,b € E, (aVb)©b=a5 (a A\D).

Lemma 2.2.2 Let E be an effect algebra and a,b,c € E then:
(i)Ifa<b, thenboa<band bo (bSa)=a.

(ii) Ifa<b<c¢ thencob<cSaand (cSa)S(coOb) =bSa.

(iii) fa<b<c¢ thenbSa<cSaand (coa)o (bSa)=cOb.
(ivyfb<canda<cob thenb<cSaand (cob)Sa=(coOa)Sbh.
Proof. (i) and (ii) follow directly from Definition 1.1.9.

(iii) From (ii) and Definition 1.1.9 we get that
(cea)o(cab)=bsa<csa
and by (i),
(cea)e(boa)=(coa)o((coa)e(cob)=cob

(iv) From the hypotheses it follows that a < ¢© b < ¢, and from (ii) we
obtain
co(cob)<coaie,b<coa

Since by (iii),
(ceb)oa<coa,

we get from (iii):
(o6 ((cobt)sa)=co(cob) =b,

therefore,
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(coa)cb=(coa)o((coa)c((cob)oa))=(ccb)Sa

Lemma 2.2.3 Let E be a lattice ordered effect algebra, a,b,c € E,
a<cb<c Then
co(aNb)=(coa)V(cab)

Proof. From the inequalities a Ab < a < cand aAb < b < c it follows that

coa<co(aNb)

and
cob<co(aNd).

For w € EF with c6a <w,cob < w, then

coa=(coa)Nc<wAc<c<cg,
which gives,
co (wAc) <a,

and similarly,
co(wAc) <b,

therefore,
co(wAc)<aAb.

Then we obtain:
co(anb) <wANhc<w

wich implies that:
co (aND)

is the least upper bound of the set {cSa,c © b}. Il
Proposition 2.2.4 Let £ an MV-effect algebra. We define a binary op-

eration — by b —a := b S (a A b), then (a — b) — ¢ = (a — ¢) — b for every
a,b,ce k.
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Proof. If ¢ < a, by Part(iv) Lemma 2.2.2 Lemma 2.2.3 and Definition
2.2.1,
(a=b)—c=(ac(and)o ((ac(and))Ac)

=(@e((as(anb))Ac)o (anbd)
=((ao(@ao(and)))V(ecc) o (aNd)
=((anb)V(acc)e(and)
=(aec)e((acc)AN(anb))
=(aec)e((acc)Ab)
=@ (anc)e((ac(anc)Ab)=(a—c)—Db
Let a,b,c € E, then:

(a—b)—(cNa)=(a—(aNc))—b,

but,

(a—b)—(cha)=(a—b)—c
and

(a—(anc)—b=(a—c)—b.
Hence,

(a—b)—c=(a—c)—00

Theorem 2.2.5 Every MV-effect algebra is an MV-algebra.

Proof. Let E be an MV-effect algebra. Let us define a* :=1—-a=16a
and a + b := (a* — b)*. We have to check the MV-algebra axioms:

(MV4) and (MV8) are immediate.

(MV2) By Proposition 2.2.4,
(a+b)*=a"—b=(1—a)—0

=(1=b)—a=b"—a=(b+a)".

Then:
at+b=0>b+a.
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(MV1) By Proposition 2.2.4,
((a+b)+c)*=(a+b)—c=(a"—b)—c

(@ =) —b=(a+ ) —b=((a+c) )"
Then, by (MV2):

(a+b)+c=a+ (b+c).
(MV3) a+0=(a*—0)*=(a* ©0)" = (a*)* = a.
(MV5) a+1=(a*—1)*=0"=1.
(MV6) It is immediate that b — (b—a) =aAb=a— (a —b). Then:

= (b (b =) = (= (b+a)) =b+ (b+a’)

(MV7) a+a* = (a"—a*)" = (a*©a*)" =0"=1.

2.3 Bibliographical remarks

In the early twenties Lukasiewicz introduced a propositional calculus in which
the propositions may have a truth value any real number between 0 and 1.
The basic connectives of this calculus were implication = and negation ~
having as ”truth-tables” equations z = y = min(1,1 — x 4+ y) and
~z=x=0=1-—ux for each x,y € [0, 1], respectively.

Moreover, Lukasiewicz conjectured that all tautologies for the calculus can
be derived from the following axiom-schemes, using as unique deduction rule
modus ponens:

(L) a= (b= «)
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(L2) (a = B) = ((B=17) = (a=1))
(L3) (~a=~ )= (B =q)
(L4) ((a = B) = (B=a)) = (B = a)

MV-algebras were originally introduced by Chang in [4] with the aim of
given an algebraic proof of Lukasiewicz conjecture.

The results of the first section of this chapter are borrowed from [5].

As reference for the second section of this chapter we mention the book [9]
and the papers [6] and [7].






Chapter 3

MYV-Pairs and MV-Algebras

Let B be a Boolean algebra. We write Aut(B) for the group of all automor-
phisms of B. Let G be a subgroup of Aut(B). For a,b € B, we write a ~¢ b
iff there exists f € G such that b = f(a). Obviously, ~¢ in an equivalence
relation. We write [a], for the equivalence class of an element a of B. A pair
(B, G), where B is a Boolean algebra and G is a subgroup of Aut(B) is called
a BG-pair.

Let (P, <) be a poset. Let us write,
mazx(P)={m e P:m<z=x=m}
that means, max(P) is the set of all maximals elements of the poset P.

Let B a Boolean algebra, let G be a subgroup ol Aut(B). For all a,b € B,
we write

L(a,b) ={an f(b): f € G}

and

L*(a,b) = {g(a) A f(b) : f.g € G}

Note that L(a,b) C L*(a,b).

95
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Definition 3.1 Let B be a Boolean algebra, let G be a subgroup of Aut(B).
We say that (B; G) is an M V-pair iff the following two conditions are satisfied.

(MVP1) For all a,b € B, f € G such that a < b and f(a) < b, there is
h € G such that h(a) = f(a) and h(b) = b.

(MVP2) For all a,b € B and x € L(a,b), there exist m € max(L(a,b))
with m> z.

Example 3.2 For every finite Boolean algebra B, (B, Aut(B)) is an MV-
pair.! Let
At(B) ={ay,az,...,a,}

the set of atoms of B, and A = {0 € At(B)4®) : 5 is a bijection}. For every
bijection o € A, we can define f, € Aut(B), associated with the permutation

o by:

fo(\/ aij) = \/O(aij)
It is clear that Aut(B) = {f,}sea. Let us see that (B, Aut(B)) is an MV-
pair. Let us prove (MVP1) A C At(B), C C At(B), f € Aut(B) such that
VA<VCand f(VA) <\/C. We write f(A) = {f(a) : a € A}, since

Card(A) = Card(f(A))

and
card(f(A) — A) = card(A — f(A)),

hence there exist the following bijections
o7 . A— f(A)

and
oy (f(A) = A) = (A= f(4))
Now we define o : At(B) — At(B) as follows

o1(z) if reA
o(x) =4¢ oo(x) if re f(A)—A

v if zd AU(f(A) — A)

'Recall that every finite Boolean algebra B is atomic
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Then, it is clear that f,(\/ A) = f(\V A) and f,(\/ C) =/ C. This concludes
the proof of (MVP1).

Now, let us prove condition (MVP2). Let A C At(B), C C At(B) and

X = (VA A f(VCO), with f € Aut(B). Suppose first that card(A) <
card(C), then there are S C f(C') and a bijection

0'32A—>S.
Since
A=(A-95UANS)
and
S=(S—-A)UANSI)
then

card(A — S) = card(S — A),
then there is a bijection
o1: (A=8) = (S—A)
Then, we define o : At(B) — At(B) as follows
o3t (z) if resS
o(x) =1 o4(x) if reA-S
x if x¢ SU(A-2S)
and we obtain the maximal element m = \/ AA f,(f(\/ C)) =/ A such that
m > X.
Suppose now that card(A) > card(C'). Since
A= (A= f(O)U(ANf(O))

and

(€)= (f(C) = AU (AN f(C)),
then

card(A — f(C)) > card(f(C) — A).
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then there are S C A — f(C) and a bijection
o5 (f(C)—A) =S

Now we consider the next permutation o : At(B) — At(B)
os(x) if re f(C)—A
o(xr) =< ol (x) if zes

x it ¢ SU(f(C)—A)

Then m =\ AN f,(f(\/ C)) is the searched maximal element.

Example 3.3 Let B a finite Boolean algebra with three atoms ay, as, as.
The mapping f given by

r |0|ar|ag|az|aj|as|as|l
flx) |0 ]ay|as|a|a§|as|af|l

defines an automorphism of B and G = {id, f, f*} is a subgroup of Aut(B).
However, (B, G) is not an MV-pair. Indeed, we have a; < a§ and

fla1) = a2 < a§, but there is not h € G such that h(a;) = f(a1) and
h(a$) = aj5.

Example 3.4 Let 22 be the Boolean algebra of all subsets of Z. Then
(22, Aut(2%)) is not an MV-pair. Indeed, let f € Aut(2%) be the automor-
phism of 2Z associated with the permutation f(n) =n+1. Let A= B =N.
We see that f(A) = A\ {0}, A C B and f(A) C B. However, there is no
h € Aut(2%) such that h(A) = f(A) and h(B) = B, simply because A = B
implies that h(A) = h(B), but f(A) # B.

Example 3.5 Let A be the Boolean algebra of all those subsets of N that
are either finite or cofinite, and T = {f € NV : f is a bijection}. For every
bijection f: N — N, let ¢y be the mapping ¢y : A — A given by

ve(lJmy) = Fny)

jeJ jeJ



99

and let
G = {¥r}rer-

First,we will prove that G = Aut(A). Trivially, Aut(A) C G. To prove the
converse inclusion, let ¢ € Aut(A) and A € A, A =J,.;{n:}. Since

{n;} C Aforeveryi € I, then® ¢(n;) € ¢(A) for every i € I, and | J,.; ¢(n;) C
#(A). Suppose now that there is B € A such that ¢(n;) € B for every i € I,
hence n; € ¢~1(B). Then A = |J,.;n; € ¢~ '(B), therefore ¢(A) C B, and
we conclude that ¢(A) = (J,c; ¢(n;). This yields the desired inclusion.

Let us see that (A, G) is an MV-pair. Let A, B € A, ¢y € G such that
A C B, f(A) C B. Suppose that A is finite, since

card(A) = card(A — f(A)) + card(AN f(A))
and
card(f(A)) = card(f(A) — A) + card(AN f(A))

then
card(A — f(A)) = card(f(A) — A).

Then we can take a bijection g : (A — f(A)) — (f(A) — A), and now we can
define h : N — N as follows:

g(x) if reA— f(A)
h(z) =< g Yz) if ref(A)—A
z if x¢ A— fAUFA) - A

Then h(A) = f(A) and h(B) = B.
Suppose now that A is infinite, so card(A¢) < co. Since

card(A°) = card(f(A) — A) + card(A° N f(A)°),

and
card(f(A)°) = card(A — f(A)) + card(A° N f(A)°).

Then
card(f(A) — A) = card(A — f(A)) < oo.

2In every Boolean algebra, we write p < ¢ in case p A ¢ = p, or, equivalently, pV ¢ = q.
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Let h : N — N the same function defined previously, so h(A) = f(A) and
h(B) = B.

It remains to show condition (MVP2). Let A,B € A and X € L(A, B),
X = AN f(B), we argue by cases as follows:

Case 1: card(A) < oo and card(A) < card(B). Let S C f(B) and a
bijection g; : S — A. Now we consider the function h; : N — N defined as
follows:

gi(x) if xes
hi(z) =< gy'(x) if reA-S
x if v¢SU(A-2S5)
Then, M = AN hy(f(B)) = A is an element of L(A, B) such that M O X.
Case 2: card(B) < oo and Card(B) < Card(A). Since
A= (A= f(B)U(AN[(B))

and,
f(B) = (f(B) = A)U (AN f(B)).

Then, there are S C A — f(B) and a bijection g : f(B) — A — S. Now we
define the function hy : N — N:

gp(r) i zef(B)-A
ha(x) = { g5 ' (x) i res
x if x¢SU(f(B)—A)
Then, M = ANhy(f(B)) = AN (f(B)US) is the searched maximal element.

There remains to consider

Case 3: Card(A) = Card(B) = Ny. Since f(B)—A C A°and A— f(B) C
f(B)¢, f(B) — Aand A — f(B) are finites.
First, we suppose that card(A — f(B)) < card(f(B) — A), then there are
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S C f(B)— A and a bijection g3 : S — A— f(B). If we consider the function
hs : N — N defined by:

gs(x) if relS
ha(@) =4 gi'@) it weA-f(B)

x if x¢SU(A—f(B))

we obtain the maximal element M = AN hs(f(B)) = A, that verifies the
condition (MVP2).

Finally, if card(A — f(B)) > card(f(B) — A), there are S C A — f(B) and a
bijection g4 : f(B) — A — S. Now we define the function hy : N — N

ga(x) i xe f(B)-A
hy(z) =< gt (x) if reSs
x if x¢SU(f(B)—A)

Then we obtain M = ANha(f(B)) = (AN f(B))U(ANS) that satisfies the
condition (MVP2).

Lemma 3.6 Let be a Boolean algebra, let G be a subgroup of Aut(B).
Then the following conditions are equivalent.

(i) (MVP1).

(ii) For all a,b € B, f € G such that a < b and a < f(b), there is h € G
such that h(b) = f(b) and h(a) = a.

(iii) For all a,b € B, f € G such that a Ab =0 and a A f(b) = 0, there is
h € G such that h(b) = f(b) and h(a) = a.

Proof. (i) = (i) Let a,b € B, f € G such that a < b and a < f(b), then
b¢ < a® and f(b°) < a“. By (i) there is h € G such that h(b¢) = f(b°) and
h(a®) = a, so h(b) = f(b) and h(a) = a.

(17) = (i4i) Let a,b € B, f € G such that aAb= 0 and a A f(b) = 0, then
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< b and a < f(b°). By (ii) there is h € G such that h(b°) = f(b°) and
(a) = a.

(7ii) = (i) Let a,b € B, f € G such that a < b and f(a) < b, then:

S

°N(bAa)=0, f(a) Nb° =
and
VA f(bAa)=0.

By (iii) there exists h € G such that h(a) = f(a) and h(b°) = 0°. This
complete the proof. O

Lemma 3.7 Let (B,G) be an MV-pair, let a,b € B and let m be a
maximal element of L(a,b). For all f € G, f(m) is a maximal element of

L*(a,b).

Proof. Suppose that there is some element y € L*(a,b) with y > f(m) an
write y = g1(a) A f1(b), where g1, fi € G. Since m € L(a,b), a > m and since

angr ' (fi(b) = g1 (ga A f2(D))

=01 (y) = g0 (f(m)) = (91" 0 f)(m),
we see that a > (g; ' o f)(m).

By (MVP1), a > (g;* o f)(m) and a > m imply that there exists h € G
such that h(a) = a and h(m) = (g;* o f)(m). We apply h~! to both sides of
inequality

a g (f1(b) = (g1 o f)(m)
to obtain
h=Ha gy (fi(D) =
a AhTH gy () = h (g1 o f)(m)) = m.
Since m is a maximal element of L(a,b), a A h™ (g (f1(b))) > m implies
that:

aNhHgr ' (f1(b))) = m.
After we apply the mapping g; o h on both sides of the latter equality we
obtain:

y = gi(a) A fi(b) = f(m).
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Thus, f(m) is maximal in LT (a,b). O

Recall that a Boolean algebra (B; <,0,1, A, V),regarded as a bounded dis-
tributive lattice, can be organized into an effect algebra (E;®,0,1), if the
partial binary operation & is defined by p@® ¢ =pV q iff p A ¢ = 0, in this
case we denote p @ g = pVq.

Theorem 3.8 Let (B,G) be an MV-pair. Then ~¢ is an effect algebra
congruence on B and B/ ~¢ is an MV- effect algebra.

Proof. Let B be a Boolean Algebra, recall that B can be organized into
an effect algebra.?

We shall prove that ~¢ is an effect algebra congruence on B.
Obviously, ~¢ is an equivalence relation.

To prove (C2), Let aj,as,b;,bo € B be such that a1 ~g as, by ~g by
and a;Vby , asVby exist. There are f,, f, € G such that f,(a;) = ap and
fo(b1) = ba.

We see that b5 > ao and that implies

by = fy (05) > fy H(az) = £y (falar)) = (fy " 0 fa)(a1)

By (MVP1), a; < b and (f; ' o f.)(a1) < b imply that there is h € G such
that

h(ar) = (f; " o fa)(ar)

and
h(bS) = b
Therefore,
fo(h(ar1Vby)) = fy(h(ar)Vh(b1)) =
Fo((fy o fa)(a)Vh) = fa(a)V fo(br) = azVbs
and

a1\7b1 ~a GQVbQ.

3cf. Example 1.1.2.
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Let us prove (C3). Let a1, as € B such that a;Va, exists and a;Vay ~¢ b.
Then There is f € G such that f(a;Vaz) = b and we may put by = f(ay)
and b2 = f(CLg).

It is easy to see that ~¢ preserves ¢ operation, so (C4) is satisfied.

By Theorem 1.1.15, since ~¢ is an effect algebra congruence, B/.. is
an effect algebra. By (iii) and (vii) of Theorem 1.3.9 B satisfies the Riesz
descomposition property, then by Proposition 1.2.6 B/, satisfies the Riesz
descomposition property, and by (ii) of Theorem 1.3.9, for a,b,c € B, B/ ~¢
satisfies [a] © ([a] A [b]) = ([a] A [b]) © [B].

It remains to prove that B/., is a lattice’ . By Proposition 1.1.11 an
effect algebra is a lattice iff it is a (join or meet) semilattice, it suffices to
prove that for all a,b € B, [a]g A [b]¢ exists in B/.,.

Let a,b € B, we shall prove that every common lower bound of [a]g, [b]¢ is
under a maximal common lower bound of [d]g, [b]¢. If [c]¢ < [a]q, [b]e then,
by Lemma 1.1.14, there is ¢; ~¢ ¢ such that ¢; < a and, again by lemma
1.1.14, by ~¢g b such that ¢; < b;. As by ~g b, there is f € G such that
by = f(b). Thus,

cr~ge <aA f(b) € L(a,b).
y (MPV2), there is m € max(L(a,b)) with a A f(b) < m. Obviously,
m € L(a,b) implies that [m]e¢ < [a]g,[b]g. Therefore, for every common
lower bound [c|g of [a]g, [b]q, there is m € max(L(a,b)) such that

[cla < [m]e < [d]a, [ble-

Let us prove that [m]g is a maximal common lower bound of [a]g, [b]g in
B/... Suppose that

[mle < [z]e < ld]e, [b]e-

By Lemma 1.1.14, there are my; ~g m, x1 ~¢g x and by ~¢ b such that
miy <z < a,b.
There is f € G such that by = f(b). We see that:
1 <aA f(b) € L(a,b) C L (a,b).

4If B/~ is finite , by Proposition 1.2.5 and Lemma 1.2.4 B/ is a lattice.
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There is g € G such that m; = g(m). By Lemma 3.7, m; = g(m) is a
maximal element of L (a,b). Therefore, m; = a A f(b) and hence x; = m;.
This implies [m]¢ = [7]q.

Let [mi]g, [m2]e be a maximal common lower bounds of [a]g, [b]g. Since
B/ .., satisfies the Riesz descomposition property, by Proposition 1.2.5 B/,
satisfies the Riesz interpolation property. By the Riesz interpolation prop-
erty, there is [m]q such that [mi]q, [me]e < [mle < [a]g, [b]¢. Since [mi]q, [ma]a
are maximal, [m1]g = [m|c = [ma]e. Since every common lower bound of
la]g, [b]¢ is under a maximal one, an there is a single maximal common lower
bound of [alg, [bla, [al¢ A [b]e exists, and this completes the proof of the
theorem. g

Corollary 3.9 B/ ~¢ is an MV-algebra.
Proof. Follows from Theorem 2.2.5. O

Corollary 3.10 B/ ~¢ is a Boolean algebra iff for every a € B,
[a] + [a] = [a].

Proof. Follows from Corollary 2.1.5.5.

Corollary 3.11 Let B a finite Boolean algebra and G be a subgroup of
Aut(B). Then the following conditions are equivalent.

(i) B/ ~¢ is a Boolean algebra.
(ii) For every a € B, [a] + [a] = [a].
(iii) If @ € G, then [a] A [a]* =0.°
(iv) G = {id}.

Proof. (iv) = (i): is trivial.

5An effect algebra E that satisfies p A p’ = 0 for every p € E, is an orthoalgebra.
An orthoalgebra is an effect algebra in which the zero-one law is replaced by the stronger
(Consistency law) p L p = p =0, see [14].
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(1) & (ii) : Follows from Corollary 3.10.
(1) = (uii) : Follows from Theorem 2.1.5.3.

(1ii) = (iv) : Let ay, ..., a, the atoms of B. Suppose, without any loss of
generality, that there exists f € Aut(B) such that f(a;) = a; for 2 < j <n.
Then:

flan) Nal =aj A (aaVazV..Va,) =a,

and a; € L(ay, a}). By proof of Theorem 3.8 we know that there is
m € max(L(ay,a})) such that [ai] A [a1]* = [m]. By hypothesis m = 0 then
a; = 0, a contradiction. O

Example 3.12 Let B be the finite Boolean algebra with n atoms aq, ao, ..., a,,
and let G be the group of all automorphisms of B. It is clear that

B/ ~c={[0],[a1], [a1 V a2l ...,[a1 V ... V a,] = [1]},
where: [0] = {0}, [a1] = AL(B), [m1Vas| = {a;;Vay, : i # ix, 1 <idj, i <0}y,
l[a1 V ag...Va,| ={a1Vas V..Va,}.
Let 7,1 < n we define a binary operation + and * as follows:

a1V ...Va,y], if r+l<n

[al\/...\/al]—l-[al\/---\/ar]::{[1] it r+0l>n

0] + [a1 V... Va,] :=[a1 V... Va,l].

[a1 V...Vl :=[(a; V... V@)

It is not difficult to see that (B/ ~¢q, +, *, [0], [a1V...Va,]) is an MV-algebra
isomorphic to L, °.

Example 3.13 Let (A, G) be the MV-pair of the Example 3.6. Let A, B €
A, A ~¢ B iff card(A) = card(B).
Then:
A/ ~e={[0], {1}], {1, 23], [{1, 2, 3}], . JO{IN], {23, ({1, 23, [, 2, 33, . 3

6cf. examples 2.1.1.3 and 2.1.1.5
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where
[0] =0,
{1}] ={S CN:card(S)=1}
{1,2}] = {S C N: card(S) =2}, ...
[N] =N,
{19 ={S C N: card(S°) =1},
[{1,2] ={S C N: card(S°) =2}, ....

The zero element of A/ ~¢ is [()] and the + and * are defined as follows: If
card(A) = r and card(B) = k:

[A] + [B] := [{1,2,....,7 + 1}]
If card(A), card(B€) are finites and card(A) — card(B¢) < 0:
[A] + [B] :=[{1,2, ..., —(card(A) — card(B°)}‘],

In any other case:

And:
[A]* .= [A“].
A/ ~¢ is isomorphic to the MV-algebra:
Y(Z)={(0,a) :acZ}U{(1,b):beZ }.
The proof of this fact is a bit longer, but straightforward.

The zero element of 3(Z) is (0,0) and the operations + and * are defined as
follows:

(0,a +b) if i+j=0
(i,a) + (4,0) :=< (L, (a+b)A0) if i+j=1
(1,0) if i4+j=2

and:
(i,a)" = (1 —1,—a).

"The MV-algebra Y(Z) is the first example of a nonsemisimple MV-algebra, see [5].
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3.1 Bibliographical remarks

As a reference for this chapter, we mention the paper [17].
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