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1 Introduccion

1.1 Ideas y objetivos generales

El objetivo principal de este trabajo es extender la teoria de Ind-objetos
de Grothendieck a 2-categorias. El interés de esta extension radica en que,
en un trabajo futuro, se estudiaran aplicaciones de este desarrollo a la teoria
de homotopias y a la teoria de la forma fuerte (strong shape theory).

En este primer paso nos abocamos a entender la categoria de Ind-objetos
de una categoria C y demostrar sus principales propiedades que son ser
cerrada por colimites filtrantes (pequenos) y que estos son libres en el sen-
tido dado por la propiedad universal que la caracteriza salvo equivalencia de
categorias.

También estudiamos las nociones acerca de 2-categorias necesarias para
encarar la generalizacion mencionada al comienzo.

Utilizando las construcciones conocidas de colimites filtrantes y de limites
en la cateogria de conjuntos que denotaremos por Ens, puede darse una
descripcién explicita de los morfismos de la categoria Ind(C) que resulta
muy util a la hora de realizar ciertas demostraciones.

Los primeros resultados, inéditos, del Yoga de la teoria de 2-Ind-objetos
son que, en el caso en que C es una 2-categoria, Ind(C) resulta una 2-categoria
y, por lo tanto, los morfismos entre dos Ind-objetos X e Y resultan ser objetos
de una categoria que llamaremos Hom(X,Y).

Con el proposito de describir esta categoria segun los lineamientos del
caso 1-categorias, repasamos (siguiendo [I]) en este trabajo los bilimites y
bicolimites en la categoria Cat indexados por una categoria y realizamos
construcciones explicitas de los bicolimites filtrantes y de los bilimites.

Por tltimo, introducimos la 2-categoria de 2-Ind-objetos de una 2-categoria
C. La diferencia entre este caso y el de Ind-objetos de una 2-categoria es que
aqui el diagrama que describe al Ind-objeto ya no viene dado por una cate-
goria filtrante de indices sino por una 2-categoria 2-filtrante de indices. Por
lo tanto, para poder dar una descripcion explicita de la categoria de morfis-
mos entre dos 2-Ind-objetos fue necesario estudiar los bilimites y bicolimites
en Cat pero ahora indexados por una 2-categoria y construir los bicolimites
2-filtrantes y los bilimites.

Queda para un trabajo futuro probar propiedades andlogas a las de la
categoria Ind(C) con C una categoria para las 2-categorias Ind(C) y 2—Ind(C)
con C una 2-categoria.



1.2 El contenido de este trabajo

Las secciones [0] y [§] de este trabajo contienen resultados inéditos. En ellas
se introducen respectivamente las nociones de Ind-objeto y de 2-Ind-objeto
de una 2-categorfa C. En las secciones [3] ] y 5] repasamos la teoria necesaria
para definir estos conceptos. Mas precisamente:

e En la seccién |3] explicamos la teoria de Ind-objetos en una categoria C
desarrollada por A. Grothendieck en [2] y realizamos demostraciones
explicitas de varios hechos, que no se encuentran en la literatura. Em-
pezamos por definir las nociones de Ind-objeto y de morfismo de Ind-
objetos que dan lugar a la categoria Ind(C). En esta primera parte
también damos una descripcién explicita de los morfismos de Ind-
objetos que facilita el posterior trabajo con los mismos. Luego mostra-
mos dos propiedades importantes de la categoria Ind(C), el hecho
de que C es una subcategoria plena de Ind(C) y que alli cada Ind-
objeto es el colimite de su diagrama. También damos una equiva-
lencia de categorias entre Ind(C) y la subcategoria plena de la cate-
goria de funtores contravariantes de C en Ens formada por aquellos
que son colimites filtrantes de funtores representables. Esta equivalen-
cia nos sirve para probar que Ind(C) tiene todos los colimites filtrantes
(pequenios). Por ultimo, caracterizamos por una propiedad universal a
la categoria Ind(C), salvo equivalencia de categorias. Estas dos ultimas
propiedades nos permiten pensar a Ind(C) como una completaciéon de
C por colimites filtrantes.

e Luego, en la seccién [4] damos en primer lugar las definiciones bésicas
de la teoria de 2-Categorias para luego utilizarlas en las secciones
posteriores. A continuacién, estudiamos el caso particular de Cat®”
definiendo explicitamente su estructura de 2-categoria. FEsto serd
usado en la seccion |§| para probar que Ind(C) es una 2-categoria en
el caso en que C es una 2-categoria. También enunciamos las defini-
ciones relacionadas con la nocién de categoria 2-filtrante, que aparecera
en las secciones [7] y [8| Por tltimo definimos los pseudoconos asociados
a un 2-funtor; esta nocion generaliza el concepto de cono a 2-categorias
y puede ser utilizada para definir los bilimites y bicolimites en la 2-
categoria Cat.

e El objetivo de la seccion [5| es definir y construir los bilimites y los
bicolimites en Cat indexados por una categoria (la construccién de los
bicolimites se hace solamente para el caso en que la categoria de indices
es filtrante). Aqui de nuevo desarrollamos demostraciones explicitas de



muchos hechos tomados como ciertos sin demostracion en la
literatura. En este punto nos parecié oportuno e interesante hacer
una comparaciéon entre dos enfoques diferentes. Uno de ellos se basa en
la teoria de fibraciones de Grothendieck expuesta en [I] que introduci-
mos brevemente al principio de esta seccion para facilitar su lectura.
Este enfoque consiste en definir al bilimite como la categoria de sec-
ciones cartesianas de una fibracion y al bicolimite como la categoria de
fracciones de una categoria fibrada. La segunda generaliza de forma
mas visible las definiciones y construcciones en Ens de los limites y los
colimites como conos universales, y consiste en definirlos como pseudo-
conos universales y construirlos con la misma “filosofia” con la que se
construyen en Ens los limites y los colimites filtrantes. Al final de la
seccion probamos que ambas definiciones y construcciones son equiva-
lentes.

Los desarrollos de la seccién [6] son inéditos. Aqui definimos los Ind-
objetos de una 2-Categoria C y los morfismos entre ellos, y probamos
que dan lugar a una 2-Categoria Ind(C). Usando las construcciones
hechas en la seccién [f], damos una descripcién explicita de la categoria
Hom(X,Y) de morfismos entre dos Ind-objetos.

Anélogamente a lo hecho en la seccién [f] en la seccidn [7] repasamos y
generalizamos la construccion de los bilimites y bicolimites en Cat pero
ahora indexados por una 2-categoria (la construccién de los bicolimites
se hace solamente para el caso en que la 2-categoria de indices es 2-
filtrante). En esta seccién seguimos a [3]

Finalmente, en la tltima seccién de este trabajo, también inédita pero
inconclusa, definimos la 2-categoria 2 — Ind(C) cuyos objetos son los 2-
Ind-objetos de una 2-categoria C. Utilizando las construcciones hechas
en [7} damos una descripcién de la categoria de morfismos entre 2-Ind-
objetos Hom(X,Y).



2 Background

2.1 Previous definitions and concepts

In this work, we assume that the reader is familiar with the concepts
of category, functor, natural transformation, limit, colimit, filtered category,
full and faithfulness, equivalence of categories and ends.

We also take for granted the constructions of limits and filtered colimits
in the category of sets and the Yoneda lemma. All these concepts from basic
category theory can be found in [4].

Finally, we recall explicitly the following result:

Lemma 2.1. Given a functor F : C? — Ens, we can consider its diagram
['r, which is a category whose objects are the pairs (x,C) with x € FC, and
an arrow f between (z,C) and (2',C") is given by an arrow f : C — C'
in C such that F(f)(x') = x. F is the colimit of its diagram, in the sense

F = colim hom(—,C)
(x,C)EFF

2.2 Terminology

To avoid confusion, it is necessary to establish certain notations that will
be used throughout this work:

e We are going to denote by Ens the category of all sets and functions
between them.

e We are going to denote by Cat the category of all small categories and
functors between them. But we will also consider this category as a
2-category with 2-cells the natural transformations between functors.

e Since we are working with 2-categories, sometimes we will want to
consider a set of morphisms between two objects as a category. To
avoid confusion with the set of morphisms, we are going to adopt the
notation hom(—, —) for the set and Hom(—, —) for the category.

e We are going to denote by CP the category of functors between D and

C.

e There is no standard terminology in the literature for the several higher-
dimensional notions of limits and colimits. We use here “bilimit” and
“bicolimit”, notions that we define precisely, and which correspond to
the concept denoted Lim (with capital L) in [I].



3 Ind-objects of a category C

In this section, we take as reference [2] where Grothendieck develops his
theory of Ind-objects, and the appendix of [5] where the authors set out the
main definitions and properties about Ind-objects.

On the following pages, we do many of the proofs of the statements
in [5] and others not found in detail in the literature. We conclude the
section proving a characterization of the category Ind(C) up to equivalence
of categories.

3.1 Definition of the category Ind(C)

Definition 3.1. Let C be any category. An Ind-object of C is a small filtered
system X = (C)iey, t.e. a functor X : J — C, with J a small filtered
category.

Definition 3.2. Let X = (C;)ics, Y = (Da)aer be two Ind-objects of C. We
define
hom(X,Y) = lim colimhom(C;, D,).
i€Jor  ael
Using the constructions of limits and filtered colimits in E€ns, we are going
to give a description of the morphisms between two Ind-objects:

Proposition 3.3. The morphisms of Ind-objects between X and Y as in
definition are pairs (¢, (fi)ies) quotient by an equivalence relation ~,
where J 5 T is a function between the objects of J and the ones of T, and
the f; are morphisms C; A Dy in C satisfying the following condition:
For all i ﬂj in J, Ja € T and arrows (i) — a, ¢(j) — a such that the
following diagram commutes:

C; 5 D w(d)

The relation ~ is defined as (¢, (fi)ics) ~ (¥, (gi)ics) if and only if for
all i € J,3a € T and arrows ¢(i) — «, (i) — a such that the following
diagram commutes:



fi
Ci —— Dy)

Qil \LY(u)

D) 5 Da -

Proof. Note that the limit and the colimit in definition [3.2| are computed in
Ens and therefore we can make explicit constructions of them.
The diagram associated to the colim hom(C;, D,,) for i € J fixed is

el
['———¢&ns
a+——— hom(C;, D,,)
a = fr—>Y(u).

where Y (u), is defined as Y (u).(f) = Y (u) o f.
Using the construction of filtered colimits in Ens, we have that

ng%n hom(C;, Dy) = H hom(C;, Da)/N

acl

where (f,a)~(g,3) if and only if 3y € T' and arrows a — v, a — 7 such
that Y(u) o f = Y (v) o g. We will denote the equivalence classes by [f, a].
The diagram associated to the lim colim hom(C;, D,,) is

ieJor el
JoP Ens
; : H hom(C;, Da)/N

ael
8 i X(¢)"
where X (¢)*[f, o] = [foX(¢),a]. It can be easily checked that X (¢)* is well
defined.

Now, using the construction of limits in £€ns, we have that

lim colim hom(C;, D,) =

ieJop  ael

{[fiaai]ieJ S H <H hOm(C’u Da)/~>‘

i€eJ a€el

11



Vit j e dlfioX(0),ay] = [fia] | =

{[fi;ai]iej € H (H hom(C;, Da)/N>

ieJ ael

Ja € T and arrows o; — o, a; — a|Y (v) o fj 0 X(¢) = Y(u) o fl}

vi e,

Then it’s clear that the function ¢ of the statement is the one that
sends 7 to «;, the f; are the ones above and the last relation means that
the pentagon in the statement commutes. Furthermore, since they are el-
ements of a product, two morphisms [f;, a;ic, [i, Bilics are equal if and
only if [fi,as] = [, 3] Vi € J & Vi € J Ja € T’ and morphisms o; — «,
B; — a such that Y (u) o fi = Y (v) o g;, that is, the square in the statement
commutes. [

Remark 3.4. Note that it is not required that J - I is a functor.

Definition 3.5. Let C be any category. The category Ind(C) is defined with
objects the Ind-objects of C, arrows the morphisms of Ind-objects
defined in identities Idy = (Id,(Idc,)ies) and composition
(¥, (9:)ies) © (¢, (fi)ies) = (0 9, (gi © fi)ics) following the notation in 3.3

It can be easily checked that it s indeed a category.
The following is the key fact of the construction of Ind(C).

Corollary 3.6. [of proposition Every morphism of Ind-objects between
X = (Cy)ieg andY = (Dy)aer induces a morphism between the colimits of the
corresponding — systems,  wherever these  colimits exist  (this s,

whenever we have a functor C L, & with & having the colimits coel?]m(f(C’i))
and colz’lm (f(Dy,))).
aE

Proof. To simplify the notation, we can omit the functor f. Let (¢, (fi)ics) be
a morphism between X and Y. Because of the universal property of colijm Ci,
1€

we only need to prove that Vi A 7, :\So(i) ofi= 5‘<p(j) o fj o X(¢) where S\W)

and Xp(j) are the inclusions of Colilgn D,; but because of the definition of
ae

(¢, (fi)ies), we know that o € T' and arrows (i) — o, ¢(j) — a such that
the following diagram commutes:

fi
Ci Dy

X(4)

C;




Then, using this and the definition of the coli%n D, we have that the
ac

following diagram commutes which is what we wanted to prove:

fi X coli
C; —=> Doy —= €0 Da

Y(U)L L Tm

DSO(J')

Tfj.

To verify the correct definition, let’s suppose that (¢, (fi)ics) ~ (¥, (gi)ics)
and verify that the induced morphisms are equal. Because of the unicity of

the arrow between coth C; and Coli%n D,, given by the first part of the proof,
US ae

we only need to check that the morphism G induced by (1, (g;)ics) makes
the following diagram commutative:

C;

fi
— T
C; D) i
X Ap(i)
colim C} G colim D, .
ieJ acl

But (o, (fi)ics) ~ (¥, (gi)ics), so for all i € J Ja € T and arrows
©(i) = a, (i) = a such that the following diagram commutes:

Then the next diagram commutes which is what we wanted to prove:

13



]

Remark 3.7. This application is the value on arrows of the functor f to be
defined in proposition [3.19

Remark 3.8. In the particular case & = &ns®™”, we have a functor

Ind(C) L €nsC which we will use in the next subsection.

3.2 Ind(C) has all small filtered colimits

The fact that Ind(C) has all small filtered colimits is taken for granted in the
literature. In [2] Grothendieck gives the hint for a proof, which we follow.

Remark 3.9. Any object C of C can be considered as an Ind-object with
the index category {x}. By abuse, we will write C' to refer to this Ind-object.

O
Definition 3.10. We define the functor h : C — Ind(C) by the formulas:
h(C)=C
e L D) = (1dg.y, f).
It can be checked that it is indeed a functor.

The following proposition is easy to prove:

Proposition 3.11. The functor h is full and faithful and injective on objects.
Then, we can identify C with a full subcategory of Ind(C).
O

14



Proposition 3.12. Given any Ind-object X = (C});ey, the following formula
holds in Ind(C):
X = colimCj;.
ieJ
Proof. Let’s begin by proving that X is a cone: Let ¢ 4, j be a morphism of
J, we want to see that the following diagram commutes in hom(C;, X)

C;

Cj

where ¢ and j represent the functors from {%} to J which send * to i and j
respectively. More specifically, we want to see that (j o Idy,y, Idg, o X(¢)) ~

(i,1dc,) ie. Tk, 7 S kandi 2 ke J/ X(é1) o X(¢) = X (o). Let’s take
Jj =k, ¢1 = 1d;, ¢ = ¢, then the previous equality is clearly satisfied.
Now, to conclude the proof, let’s see that it is universal: We want to see
that if
C; (3.1)

(Id{uy,X () Y = (Da)aer

A)

Cj

is another cone, then 3!(¢p, (¢;)ics) : X — Y such that the following diagram

commutes:
(v, f3)

C; (3.2)
_(plodies) 2y,

X ®,(gi)ies)

Let’s take ¢(i) = o; and g; = f; Vi € J. As commutes, one has that
(avis fi) ~ (0 o Idgy, fj 0 %) then (¢, (gi)ies) is a morphism of Ind-objects.
The commutativity of is clearly satisfied and the unicity can be easily
checked. O

Definition 3.13. Let C be a category and C € Ob(C). We define the
contravariant functor which is representable by C' (implicit in deﬁnitz’on

15



and proposition as

hom(—,C)
CP——E&ns

D+——hom(D,C)
pLp——r

Proposition 3.14. Let X and Y be two Ind- objects of C. Let’s denote
F = col?]m hom(—,C;) and G = COZ%W hom(—, D,). Then there is a bijection
IS ac

between hom(F,G) in Enst™ and hom(X,Y) in Ind(C).

Proof. We construct the bijection composing the bijections below (each
horizontal arrow represents a bijection):

icJop

limits in Ens

(0i)ics € H G(Cy) |

Vi % j € J, colim hom(—, Da)(X(6))(6;) = 6

nat. of the Yoneda functor

u.p. of C(l)é{]m hom(—, C;)

]

Remark 3.15. In the previous bijection, the way down is exactly the
application constructed in corollary [3.6]

0
Proposition 3.16. Ind(C) and (Ens®™); are equivalent categories, where

(EnsC™); is the full subcategory of Ens®™ consisting of those functors which
are filtered colimit of representable ones.

16



Proof. Let F : Ind(C) — (Ens®”); be the functor of remark More
explicitly, F' sends an Ind-object X = (C});cs into C?éiJm hom(—,C;) and a
morphism between X and Y to the corresponding natural transformation
according to the bijection given in proposition |3.14] Then, it’s enough to see
that this functor is full and faithful and essentialy surjective on objects [4]
p.91 Theorem 1. The full and faithfulness is inmediat from remark [3.14] and
this functor is clearly surjective. Then Ind(C) and (Ens®™); are equivalent
categories. O

Proposition 3.17. The category Ind(C) has all small filtered colimits.
Proof. By [3.16] it’s enough to check that (Ens®”); has all small filtered col-

imits. Thus, we want to see that if F = colillgn F, and
aE
F, = col}m hom(—,C{") Va € T" then F is a filtered colimit of representable
1€Jq

functors. By lemma [2.1] it suffices to chech that the diagram I'p of F' is
filtered.

Let (z,C), (y, D) be two objects of I'p. Using the construction of filtered
colimits in Ens and the fact that colimits of functors are taken pointwise,
r = [2/,a] with 2’ € F,C and y = [y, 8] with ¥/ € F3D. Plus, for being I'
filtered, we have

a
N
v in I
7
g
thus we have 2" = (Fu)c(2') € F,C, v" = (Fv)p(y') € F,D where (Fu)c
and (Fv)p are notation for the transition morphisms of coli%n F,(C) and
ae
colign F,(D) and should not be confused with the functor F' itself. Now, using
ae

again the construction of filtered colimits in Ens, we have that =" = [z, 1]
with 2" € hom(C,C}) and y" = [y",j] with y” € hom(C,C]). And for
being J, filtered, we have

kE in J,.
Then we have 2 = (F,¢)c(2") € [C,C}] and y* = (F,4)p(y") € hom(D,C}).

Finally, by taking £ = C}, f = 2", g = y" and z = [[idg, k], ], we have
that the first axiom of filtered category is satisfied: we are going to check
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that F'(f)(z) =z (F(g)(z) = y can be checked in a similar way). F'(f)(z) is
defined by the universal property of F'E as F(f)(z) = [F, flidg, k],7]; and
F. flidg, k] is defined by the universal property of F,E as F, flidg, k| = [f, k.
Then, F(f)(x) = |[[f k],7], thus we only have to check that
([f,k],7) ~ (2',a) in FC: But we have

o u
\
Vs

v

then we can conclude the proof by checking  that
[z",i] = 2" = (Fu)c(2') = [f, k] in G,C, but this is satisfied because we
have

\¢
k
et
where (G,¢)c(a") = 2™ = f.
f
Now, let (4 C)—_(y,D) be two morphisms of I'r. Since y € F'D, we
T
have vy = [v,of with ¢/ € F,D. And  since

Ffly) =z =Fg(y), [Fuf(y) o] = [Fag(y'), o] in FC. Then, 3

such that (F,) (Fof(V')) = (Fy)o(Fag(y')) in FC. For being I' filtered,

we have a4u>ﬂ, o~y with wu = wv. Let’s take ¢ = (Fu)p(y') in

F.D = col}m hom(D,C]). Then y" = [y",i] with ¥ € hom(D,C7). Let’s
1€y

remark that F, f(y") = F,g(y"). In effect,

Ef(y") Ef(Fuo)p() =
(Fuu)o(Faf(¥)) = (Fu)o(Fu)o(Faf(y)) =
(Fu)e(Fo)e(Fag¥)) = (Fu)e(Fagy)) =
Eg(Fuw)p¥)) = Fg")

18



where the second and the sixth equalities hold because of the
naturality of F,, and F,, respectively. Then, [y o f,i] = [y o g,i] in
F.C= col}m hom(C,C;), thus 3

i€Jy

such that (F,¢).(y" o f) = (Fy¢).(y" o g). For being J, filtered, we have
¢ .
i P with ¢ = i, Let’s take y" = (F,9¢).(y") € hom(D,CY).

JRE—

Y
Finally, by taking £ = C}, h = y" and z = [[idg, k],~] we have that the
second axiom of filtered category is satisfied: let’s check first that ho f = hog,

(Fy09)(y") o f = Fyppoy”of=
FypoF,poy”of = FypoFoy og=
Egppoy”og = hoyg
To conclude the proof, we have to verify that Fh(z) = y. In effect, since

Fh(z) = [Fyhlidg, k], 7] = [[h, k], 7], we need to check that [[h, k], 7] = [¢/, ¢
in F'D. But we have

then it’s enough to check that (Fyu)p(y') = (Fiq) plh, k], which is the same
as [y",i] = [h, k] in F,D. Let’s consider for this

PP
\k

T

and note that (F,p¢).(y") =y = h = (Fyid).h. O

Corollary 3.18. Ind(Ind(C)) = Ind(C) i.e. there is an equivalence of
categories between them.

Proof. We proved in that the functor h : Ind(C) — Ind(Ind(C)) is full
and faithful. In addition, it follows from propositions and that it
is essentially suryective. Then it is an equivalence of categories. O

?
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3.3 Universal property of h: C — Ind(C)

Proposition 3.19. The functor h : C — Ind(C) defined in has the
following universal property:

C —™% Ind(C) (3.3)
7

R

&

which means that given any functor f : C — & into a category having
colimits of the form col?']mf(Ci) for any small filtered system in C, there
1€

is an extension (which preserves filtered colimits) f : Ind(C) — &.
Proof. Let’s define f on objects as f(X) = CQhJIIl f(Cy) if X = (C))ies and
1€

on arrows as the application of proposition . It can be checked that f is
indeed a functor.
This f makes the diagram (3.3) strictly commutative:

fon(C) = f(C)

Foh(C L D) =F((Idgy, F)) = f(F)

because f(F) makes the following diagram commutative:

f(@x AL f<D>x
1) (D)
ldgc) F(C) o AR -~ f(D)
Aj@ Ajm
f(C) G f(D)

which is the definition of f(Id.,, F).
It only remains to prove that f preserves filtered colimits: we are going
to see first that colijm f(C)=f (colijm C;) i.e. that f (CQIiJm C;) is a universal
1€ 1€ 1€

cone for (f(C;))ics. To prove that it is a cone, we can note that the following
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diagram commutes because f is a functor:

f(Cs)
()
F((Tdgy X(9)) Fleolim C;)
)
F(¢5)

where \;, A\; are the inclusions to CQliJHl C;. Now, let’s prove that it is
1€
universal: let E' be another cone for (f(C}))ies with inclusions (g;)ics, then
we want to see that 3G : f (colijm C;) — E such that the following diagram
1€

commutes:

f(colimCy) ¢ .

icJ

But because of the definition of f, this diagram results:

f(Ci) 9:

A
; ) G
c%lJm fG) S g

And for this one it’s clear that 3!G' wich makes it commutative.
Now, using the first part and the proposition [3.17, we have that

f(colim X,,) = f(col%]m Ci) = coliJm f(C;) = colim colim f(C®) = colim f(X,)
1€ 1€

ael acl’ i€y ael’
where the Ind-object CQth C; is the filtered colimit of the Ind-objects X,. [
1€
Proposition 3.20. Let £ be any category with small filtered colimits. Then

composition with the functor h : C — Ind(C) induces an equivalence of
categories:

h*: Hom(Ind(C), &)+ = Hom(C,E), g+~ goh.



A quasi-inverse for this equivalence is given by the assignment f — f (Here
Hom stands for the category of functors and natural transformations, and
“+7 stands for the full subcategory of those functors that preserve filtered
colimits).

Proof. To prove that h* is an equivalence of categories we can check that it
is full and faithful and each object f € Hom(C, ) is isomorphic to h*(g) for
some object g € Hom(Ind(C),E):

Full and faithful: Let § : goh = ¢'oh € Hom(C,E) be a natu-
ral transformation with ¢, € Hom(Ind(C),€);. We want to see that
I'n:g = g/h*(n) = 0: by definition, (h*(n))c = Nn), then ny) has
to be equal to 8. Now, if X is any Ind-object of C, X = cci)éijm C; and

Nx CQliJHl goh(C;) — coliJm g o h(C;) because g and ¢’ preserve filtered col-
1€ 1€

imits. And to be 7 natural, it has to make the following diagram
commutative:

li . nx 3 ! .
colimg o h(C;) X c?é{]mg o h(C}) (3.4)
g(%(fz‘)z'eJ)i \Lg/(%(fi)ieJ)
. . /
cglellgng o h(D,) e C(O)élellgng o h(D,).
But we have:
3 . nx : ! .
cci)éljmg o h(C}) ccl)é{]mg o h(C})
i X
\ (4) /
oc,
goh(C;) g o h(C;)
9(e,(fi)ies) (2) goh(fi)l 1) ig'oh(fi) (3) g (e,(fi)ies)
go h(Dw(i)) ? g o h(Dgo(i))
/ (i)
() \
Ap(i) N

»(i)

colilgng o h(D,) colim ¢’ o h(D,,)
ac [}

ny er

where (1) commutes because of the naturality of § and both (2) and (3)
commute because of the construction of the induced morphism between the
colimits made in remark and the fact that ¢ and ¢’ are functors which
preserve filtered colimits.

Then commutes if and only if (4) and (5) both do, if and only if the

following diagram commutes for every X € Ind(C)
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Oc.

g o h(C;) : g o h(Ci)
1 . 1 ! .
C(i)éljmg o h(C}) — c?é{]mg o h(C}).

Then, because of the universal property of cQIiJm g o h(C;), to prove that
1€

7 is unique, we only have to check that the following diagram commutes for
alli % jin J

0c

g o h(Ci) —g' o h(C})
\
goh(X(4) (1) goh(X(®) () colimg’on(C;)
g0 h(C;) g'© h(C;)

J

But (2) commutes because of the definition of C?gm g oh(C;) and (1)
commutes because of the naturality of 6.

Then, if there is an 7 such that h*(n) = 6, this 7 is unique; and defined
as we said before, 7 results a natural transformation and h*(n) = 6 which is
what we wanted to see.

Now, let’s see that if f € Hom(C,&),3g € Hom(Ind(C),E)+/ h*(g) = f:
We only need to take ¢ = f as in the proof of proposition [3.19|

O

Corollary 3.21. While the extension f given in the diagram (3.3) is not
unique, it is characterized by the equation foh = f up to a unique natural
1somorphism.

Proof. 1t easily follows from the proof of the fact that A* is full and faithful.
O

As usual, from proposition [3.20] it follows:

Corollary 3.22. The category Ind(C) is characterized by proposition
up to an equivalence of categories (and not up to an isomorphism).

O
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Corollary 3.23. Given any functor F : C — D, the formula
Ind(F)((Cy)ieg) = (F(C}))ics defines a filtered colimit preserving functor
Ind(F) : Ind(C) — Ind((D)) commuting with the canonical functors h, i.e.
hoF = Ind(F)oh. We have Ind(Ide) = Idmac) and for any composition
F o G, we have Ind(F o G) = Ind(F) o Ind(G).

Proof. Let’s denote f = ho F. We see that f = Ind(F) (Ind(F) is the
canonical choice of f of proposition |3.19):

F((Chies) = colim f(Gi) = colim A o F(C;) = (F(Ci))ie-

Then Ind(F) is a functor and preserves filtered colimits. It is immediate
that ho F' = Ind(F') o h and that the assignment is functorial in F. O

The following proposition generalizes the case & = Ens®” considered in
proposition [3.16]

Proposition 3.24. Let C LoEbea full and faithful functor, where £ is a
category with colimits of the form colgm f(C) for any small filtered system in
1€

C (to simplify notation, we omit to indicate f as if C were a full subcategory
of £). Consider the functor Ind(C) L& Then:

1. f s full and faithful if VO € C and Y = (Dy)aer € Ind(C), the

following two conditions are satisfied:

o V(' — colz’lgnDa in €, there is a factorization:
ac

. colim D
C acl’ @

N

D,

o V(O D, that become equal in the colimit, there is [ and
a — B in I’ such that the two arrows become already equal in

Dﬁ.‘

C D, — cgézlana

N

,Dﬁ
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2. f is an equivalence of categories if in addition every object in & is a
small filtered colimit of objects D € C

Under these conditions, £ has all small filtered colimits.

Proof. 1. We want to see that VF(X) L fY)yin & 31 X S Y such
that f(G) = F: If X = (C)ics and Y = (Dgy)aer, we have Vi € J,

C; = colim C; — colim D,,, thus using the first condition, we have
e ael

Ai colim C; __F_ colim D
, colim collim
OZ el ieJ ! a€cl’ @

EN
D,,

and using that f is full and faithful, we know that 3! C; LN D,, such
that f(fi) = ¢;. It is straightforward to check that G = (¢, (fi)ics)
with (i) = «; is the morphism that we are looking for.

2. Given E € &, we know that £ = colim f(D,), then by taking

acl

X = colimD, we have that £ = f(X). This proves that f is

a€el’
surjective on objects, but any full and faithful functor that is surjective

on objects is an equivalence of categories.

[]

Remark 3.25. This proposition is useful to recognize when a given category
€ is actually equivalent to Ind(C).
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4 2-Categories

In this section we give the definitions and set the notation of 2-categories
that we will use in later sections.

4.1 Basic definitions

Definition 4.1. A 2-category A has objects A (0-cells). For every pair of
objects A, B there is a category Hom(A, B) whose objects are f : A — B
(1-cells) and whose morphisms are o : f = g (2-cells). The composition
in Hom(A, B) is known as vertical composition. For each object A it has
Idy : A — A and Idsg, : Ida = Idy. For any objects A, B,C, there is a
functor x : Hom(B,C) x Hom(A,B) — Hom(A,C) known as
horizontal composition. This composition s associative and has an iden-
tity Idrq,. We are going to denote the vertical composition as 3 o« and the
horizontal composition as v

Remark 4.2. For every 2-category C, there is an underlying category with
objects the 0-cells of C, morphisms the 1-cells of C, identities ids and
composition given by the functor * evaluated on objects.

O
Remark 4.3. Given a configuration as follows,
f u
la \al
A : B : C
B 4o
h w .
using the functoriality of %, it’s clear that (f o a)(d o) = (0f3) o (y«)
O

Remark 4.4. Cat is a 2-category. Its objects are the categories. Given two
categories C, D, the category Hom(C, D) has objects the functors between C
and D, and morphisms the natural transformations between those functors.
The compositions are given by: if we have the following configuration

F F’
% In
C < D & £
4o’ 8
H H
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we define (0" 0 0)¢ = 0, 0 0 and (nf)c = G'(0¢c) © Nrc.
0J

Definition 4.5. Let C and D 2-categories. A 2-functor between C and D
is a function F' : Ob(C) — Ob(D) and for each pair of objects A and B of
C, a functor Fap : Hom(A, B) — Hom(F A, F'B) preserving the horizontal
composition, more specifically: Fac(af) = Fpe(a)Fap(f).

f u Ff Fu
Ja % JFa VF~y
v F v
A—2 B C FA g FB—7F FC
(%] o VI3 JFo
h w Fh Fw

Remark 4.6. The concepts of 2-category and 2-functor are those of
V-category and V-functor in the case V = Cat (see [6] and [7]).

O

Definition 4.7. Let C and D be two 2-categories and F and G two 2-functors

between them. A pseudonatural transformation 60 : F = G is a family of

1-cells of D (0c : FC — GC)ecc and a family of invertible 2-cells of D

(0f:0p o Fop(f) — Gep(f) o GC)CLDGC satisfying the following conditions:
PNT 0. 0,4, = idbc.

PNT 1.
Fc-">ce
FCD(f)J/ ﬂﬁf lGCD(f) FCLGC
FD “on GD = FCD(gf)l ﬂ&gf lGCD(gf)
FDE(Q)J/ ﬂﬁg \LGDE(Q) FE “on GE
FE TE> GE
PNT2.
FC—"—GC FC—"—~GC
" Fep(v) o Gep(v)
ep(f)| = |Fepl(g) ﬂef Gepl(9) = Fep(f) /ﬂ\efGCD(f) = |Geblg)
FD oD GD FD o GD

Where the compositions in PNT1 and PNTZ2 are computed in Hom(FC,GD).
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4.2 Cat®” as a 2-category

The purpose of this subsection is to prove that Cat®” is a 2-category. Its
0-cells are the functors F' : C% — Cat, and the category Hom/(F,G) is the end
Jo Hom(FC,GC) which is taken by considering the bifunctor
Hom(F—,G—) :C x C? — Cat.

Remark 4.8. This definition has as motivation the fact that for two functors
F.G :C — &ns, the end fC hom(FC,GC) is the set of natural transforma-
tions between I and G.

Given a bifunctor B : CxC% — Cat, one can construct the end [, B(C, C)
as the category with objects (z¢)cec where z¢ € B(C, C) verify that for ev-
ery C L ¢ in C, B(ide, f)(x¢) = B(f,ider)(xer); and arrows (z¢ 2% yo)oee
that verify that for every C' L ¢ in C, B(ide, f)(¢pc) = B(f,idc) ().

In this particular case where B = Hom(F—,G—), this construction im-
plies that the objects of Hom(F,G) are the natural transformations between
F and G, and an arrow between two natural transformations 6 and ¢ is a

family of natural transformations 6o e 6, such that for every C' Lcrine ,
and a € FC'

O Gf Ff 0c

FC" Weor GC'"Videy GC = FC'Vidry F'C We GC

0., Gf Ff 0,
i.e.Gf((Yer)a) = (Vo) Fs
It only remains to construct the “composition” functor

Hom(G,H) x Hom(F,G) — Hom(F, H). This functor is a particular case
of the composition that exists in V¢, since the functors from C to V form
a V-category when C is a V-category. However, since in this work we deal
only with the particular case of Cat-categories, we will explicitly construct
the composition in this context. The functor is obtained by the universal
property of the end Hom(F, H): consider the following diagram (we replace
Hom by H to make the diagrams smaller),

H(GC,HC) x H(FC,GC) —*~ H(FC,HC)

y / H(F—,H-)(idc,f)

H(G,H)x H(F,G) - P = H(F, H) H(FC,HC")

m (F—,H=)(f,idcr)

H(GC', HC') x H(FC',GC") $H(FC’,HO’)
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of which we have to prove that the exterior hexagon commmutes. To see
that, we complete the hexagon to

H(GC, HC) x H(FC,GO)

/

H(GC,HC) x H(F,G) H(FC,HC)
ﬂy H(f)s«xid w;
2)
H(G,H)x H(F,G) () H(GC,HC") x H(F,G) H(FC, HC')

idX o
Tor Xid G(f)*xid

H(GC',HC') x H(F,G) H(GC,HC") x H(FC, GO

1dX T

/

Qv

®)
H(GC', HC") x H(FC',GC")

/

H(FC’, HC")

Now (1) commutes because of the definition of the end Hom(G, H), and
we will see that (2) and (3) also commute. For (2), consider

H(GC,HC) x H(FC,GC)

idxmg \

\

H(GC,HC) x H(F,G) H(FC,HC)
J{H(f)*xid H(f)«xid lH(f)*
H(GC,HC") x H(F,G) H(FC,HC")

/

idxXmo /

H(GC,HC") x H(FC,GC)

where the left diagram commutes trivially and the commutativity of the right
one is left to the reader. For (3), consider



H(GC,HC") x H(FC,GC)

/\

H(GC!, HC') x H(FC, GC H(FC, HC)
H(GC', HC') x H(F,G) H(GC'.HC') x H(FC,GC")

\
|
H(GC’ HC') x H(FC' GC’) /

H(FC',HC")

where the commutativity of the small diagrams is also left to the reader.
This concludes the proof of the fact that Cat®” is a 2-category and also
gives a description of the horizontal composition there.

4.3 Notions of 2-filteredness

Let’s start by recalling ([2] and [4]) the definition of pseudo-filteredness for
a category.

Definition 4.9. A category I is pseudo-filtered if it satisfies the following
two axioms:
PS1 Every diagram of the form

can be completed to a commutative one of the form

/ \
\ /’
PS2 Every diagram of the form i j can be inserted on one of the

u
L — .
form 4 j—"=k where wu=wv.
v



For the next three definitions, we take as reference [3].

Definition 4.10. Let A be a 2-category. A is pre-2-filtered if it satisfies the
following azxioms:

F1. A 1A
Given E\ there exists an invertible 2-cell Eg\ R /UC .
g B B
F2. f/A\m f/A\uz
Given any 2-cells E nv Ci , E b C
N 7 ~,
g B v1 g B v2
Cl w1
N\
there exists P C'  with invertible 2-cells o, 3 such that
Cy "7
u1 Cl w1
A A/ \C
By
f/ u1 f/ N /w2
E mi Cl w1 = E i CQ
NPT g\ Ao
B o (O B
v2 /'UJQ
Cy

Where the compositions in F2 are computed in Hom(E,C).

Remark 4.11. When A is a trivial 2-category (the only 2-cells are the
identities), axiom F2 is vacuous and F1 corresponds to axiom PS1 in the
definition of pseudo-filtered category, while axiom PS2 may not hold. Thus,
a category which is pre-2-filtered as a trivial 2-category may not be pseudo-

filtered.

OJ

Definition 4.12. Let A be a 2-category. A is pseudo-2-filtered if it is pre-
2-filtered and satisfies the stronger form of axiom F1:

FF1. i A f2, A fi, A & f2, A &
Given £1 B there exist E1 mb C Ey »t C |
gl\ 92\ 91\ %'U 92\ %U
B B B B

with 1 and 7y invertible 2-cells (the same w and v for both pairs (f1,q1)
and (fa,92)).
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Definition 4.13. Let A be a 2-category. A is 2-filtered when it is pseudo-2-
filtered, mon empty and satisfies in addition the following axiom.:

F0. A
Given two 0-cells A, B in A, there exists \C .

B o
Remark 4.14. When A is a trivial 2-category, axiom FO0 is the first of
the usual axioms in the definition of filtered category, while axiom FF1 is

equivalent to the conjunction of the two axioms PS1 and PS2 in the definition
of pseudo-filtered category.

Proof. 1t is clear that FO is the first of the usual axioms of filtered category.
Now, let’s see that FF1 is equivalent to the conjunction of PS1 and PS2:
Suppose that A satisfies FF1, then PS1 is clearly satisfied. And if we have

i J , we can apply FF1 to

thus we have

u ] u’ v j u’
'd/ \k d 'd/ \k
1 an 1 .

Then, we have

i : Jj e . and w'u = v'id = v'v which proves that PS2

is also satisfied. Now, suppose that A satisfies PS1 and PS2. Then, given

A A
f1 f2
/ /
Ey ~_ and Ey ~_

g1 B g2 B

by PS1, we have the following commutative diagrams

A A

fi U1 f2 uz2

. / \ . 5, / \ 0
5 e

1 1
gl\AB/M N
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/\
\/

uvy

And, by PS2, we have p—> % _ ~ where wuv; = wvv,. Then we have

VU2
the following commutative diagrams as we wanted:

fl/fwl ywz

and

\ %1 gz\ %2

4.4 Pseudocones
For the next definition we take as reference [3].

Definition 4.15. A pseudoco-cone for a 2-functor F : A — Cat with vertex
the category X is a pseudonatural transformation F L X between F and the
2-functor which is constant at X. More specifically: it is a family of func-
tors (hy : FA — X)aea and a family of invertible natural transformations
(hu:hpo Fu— ha),up, satisfying the following equations:

PCO.  hiq, = idy,.

PC1. A
Y \
Y1 et
hp
B X = B houft
hott
v e
C C
PC2. A A
WJ/ ha
U = v
fthy Mha
B X =

hp
Where the compositions in PC'1 and PC2 are computed m Hom(FA, X).
A morphism h % 1 of pseudoco-cones (with the same vertez) is a modi-

fication (i.e. a family of natural transformations (ha = 14)aca) satisfying
the following equation:
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PCM. 4 A

X\ la
u 1 u
im\ i e,

B X = B 2] X .

B

Where the compositions are computed in Hom(FA, X).

Remark 4.16. There is the dual concept of pseudocones: It is a

pseudonatural transformation X 2 F between the 2-functor which is con-
stant at X and F. More specifically: it is a family of functors (hs : X —
FA)seq and a family of invertible natural transformations (h, : hsy —

Fuohg),up. , satisfying the following equations:

PCO.  hig, = idy,.

PC1. A
B X = B houll
T / T /
C C
PC2. A A
TW
U :> v
Jhy Jhy
B —

For simplicity, we are going to call pseudoco—cones also pseudocones since

this abuse does not cause any confusion.
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5 Bilimits and bicolimits in Cat indexed by a
category

In this section, we construct the bilimits and the bicolimits in Cat indexed
by a category with two different approaches and then compare them to see
that both give the same construction. The first one is based on [I] Exposé
VI where Grothendieck constructs the bilimits and the bicolimits associated
to a fibration. And the second one is more related with the usual definitions
of limits and colimits as universal cones and consists on defining the bilimits
and the bicolimits as universal pseudocones.

5.1 Basic definitions about Grothendieck fibrations

Definition 5.1. Let F,G,E three categories, m : F — € and ' : G — & two
functors. We define Homg(F,G) as the category with objects the functors
u: F — G such that the following diagram commutes:

- g
N
£

and morphisms the E—morphisms of functors, i.e. the morphisms of functors
which are sent by 7' in identity morphisms.

f

We will use the following terminology. Let F and £ be two categories,
m: F — & a functor, £ and n objects of &£ and f : £ — 1 a morphism of
E. We are going to say that an object x of F is over & if n(z) = £; and a
morphism m of F is over f if m7(m) = f. We say that f lifts to an arrow in
F when there exists m over f.

Definition 5.2. A morphism m : x — y of F over £ EN n s cartesian if
Vp:z—y over f 3lqg: z— x over ide such that mq = p:

m

r——=Y
A
Alg ///p
z
!

§——1"

35



Definition 5.3. A fibered category F over & is a functor w : F — & such that
Vf:&—ne& and y overn, there exists a cartesian mosphism m : x — y
over f; and such that the composition of two cartesian morphisms of F is a
cartesian morphism of F. In this case, we say that w: F — & is a fibration.

Definition 5.4. A choice of x and x i y for each f and each y over n as
in the previous definition is called a cleavage.

Definition 5.5. Let £ be an object of £. We define the fiber of F in & as the
subcategory of F whose objects are the ones of F over & and whose morphisms
are the ones of F over ide. We are going to denote this fiber Fr.

Remark 5.6. If F': ' — Cat is a functor, and v : « — [ is an arrow of [,
we will denote by u* = F'(u) the action of F' on w.

Remark 5.7. If I : I'? — Cat is a functor, there is a natural way to
construct a fibered category I'r over I' associated to F' as follows:

Objects of I'p: (x, ) with o € T" and = € Fa

Morphisms of I'z: A morphism between (x, «) and (y, ) is a pair (u, )
where @ % € T and 2 5 u*(y)

Then we have the fibration: 1, (z,a) (u, p)
Fol ]
Ty r a U

Proof. Let’s prove that io is a fibration:

r

The composition in I'g is given by (v,v) o (u, ) = (v o u,u* (1)) o ).

It can be checked that a morphism (u, ) is cartesian if and only if ¢
is an isomorphism. Then it’s clear that the composition of two cartesian
morphisms is a cartesian morphism.

To conclude the proof, if we have u : a —  in I' and (y, 3) over 3, we
can take the cartesian morphism (u, idy«()) : (u*(y), @) — (y,3) over u. 0O

Remark 5.8. When F' takes values in Ens — Cat, we obtain exactly the
diagram ['g of lemma [2.1] which is in this case a discrete fibration.

Remark 5.9. This construction has a canonical cleavage: given o — 3 € I’
’U,,Z'du*
and (y,3) € I'r over (3, we take (u*y, a) (i) (y, 5).
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Remark 5.10. There are also the dual concepts: co-cartesian and co-fibered.
And using them, one can make the corresponding construction in remark
for I': ' — Cat a covariant functor.

OJ

5.2 Bilimits
5.2.1 With Grothendieck fibrations

Definition 5.11. Let m : F — & be a fibration. Homegme(E,F) is the
category of cartesian sections of F which is described by:

Objects: p : &€ — F which sends cartesian morphisms into cartesian
morphisms and make the following diagram commutative:

E—">F

N

&
Morphisms: 6 : p = p' such that wo 0 = id.

Definition 5.12. Let # : F — & be a fibration. Grothendieck defines

LimF = Homcare (€, F).

gor

Remark 5.13. In general, Lim F and lég)l Fe defined as a universal cone are
gop

not equivalent categories ([1], Exposé VI).

5.2.2 With pseudocones

When the 2-category A in remark is trivial the definition of pseudocone
yields:

Definition 5.14. A pseudocone for a functor F : I'P? — Cat with vertex
the category X is a family of functors (he : X — F())aer and a family of
invertible natural transformations (hy : he — F(u) o hﬁ)aiﬁer satisfying the
following conditions:

PCO.  hig, = idp,.

PC1. (6] 6]
[t N
u h1LlJ/ u
h
154 . = B hed X
v holt v
hey Ry
Y Y
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Definition 5.15. Let F : T'? — Cat be a functor, we define bilim Fa as the

aelor

‘ : : . h
universal pseudocone associated to F' i.e. a pseudocone bilim Fao = F' such
aelor

that if X A F s another pseudocone, then 3! h | R\ = X\ i.e. A makes, for
each o € I, the following diagram strictly commutative

o he

QZEZ%Z'L Fa - Fa
X

Aa

X

Proposition 5.16. Given a functor F : I'? — C, billnga exists and can
agloP

be constructed as follows:

Objects: (Ta)acr| Ta € Fa and Yo = 3 € T, an isomorphism
Lo 2% F(u)(xp) in Fa given in a functorial way.

Morphisms: A morphism [ : (2a)aer — (Ya)aer 1S a family (x4 Iy Ya)aer
such that Voo = 3 € T, the following diagram commutes:

fa

‘,'UCY ya
‘Pul lwu
F(u)(5) o F()(99) -

And the composition is given by: (fa)aer © (ga)aecr = (fa © Ja)acr-

Proof. We define ho((a)aer) = Za, ha((Ta ELY Ya)acr) = fo and

(hw)(@a)aer = @u- It’s clear that billimFa X Fisa pseudocone. Let’s
aeloP

check that it is universal: Let XNZ/\> F' be another pseudocone. One can
check the universality by taking h(z) = (Aa(2))acr With @, = (M), and
h(f) = ()‘a(f))aef‘~ UJ

5.2.3 The relation between the two definitions

We are going to prove that if we take the fibration associated to F' : I'? — Cat

as in and make the Grothendieck construction of Lim F, we obtain the
gop
universal pseudocone for F"

r
In iid every morphism f € I' is cartesian, thus the objects of Lim F
gop
r
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must send every morphism in a cartesian one. Then they can be described
as follows:
p:I'——Tp
ar—— (24, Q)
a S Br—(u, pu)

where ¢, is an isomorphism Vu € I'. But this is exactly the same definition

given in [5.16| Now, the morphisms of Lim F are the natural transformations
gop

. . . a= 9,1179(21 .
0:p=1p | o0 =id, ie Va €T there 1spa0 Y )p'a such that ¢0 = id

and Yo = 3 € T, the following diagram commutes:

O
P ——=p'a

p(U)l J{p’(u)

—_— I
But this means that (66), = ¢(6a) 0 Op(a) = 04 0id,, thus 0} = id,Va € T
and ¢ o 02 = u*(63) o b, thus having a morphism of Lim F is equiva-
gor

lent to having Va € T,0, : x, — o/, (it is 62) such that YVa = 8 € T,
@ 06, = u*(03) o w2 which is also the same definition given in [5.16 It can
be checked that the composition is the same too.

5.3 Bicolimits
5.3.1 With Grothendieck fibrations

For this subsection, we take as reference [1], Exposé VI and [§].

Definition 5.17. [Category of fractions] Let F be a category and S a set of
morphisms of F. F[S™1] is the category defined by the following universal

property:

(57 (5.1)

39



where p is a functor that sends the morphisms in S to isomorphisms. More,
specifically: VF L, D that sends the morphisms in S to isomorphisms,
AN FISY L D such that 0'p =2 6.

Remark 5.18. If S’ is another set of morphisms of F which contains S
as a subset and such that any morphism that are in S’ but not in S is
an isomorphism, then F[S™1] = F[S'7!]. Also, this equality holds if every
morphism of S’ is a composite of morphisms in S; that is, given S, we can
close S under compositions and isomorphisms and obtain the same category
of fractions.

O

Definition 5.19. If 7 : F — &£ is a co-fibration and S is the set of co-

cartesian morphisms of F, Grothendieck defines LimF = FIS™Y.
£

In the next pages, we are going to make an explicit construction of Lim F
£
in the case that the category & is pseudo-filtered.

Proposition 5.20. Let F be a co-fibered category over £ and suppose that
E satisfies the following properties:
L1. Every diagram of the form

can be completed to a commutative one:

~

L2. For every pair of morphisms wu,v : - —=- such that exists a mor-
phism t satisfying ut = vt, there is a morphism w such that wu = wwv.

Then the set S of co-cartesian morphisms of F satisfies the following
properties:

Fr1. The composition of two morphisms of S is a morphism of S.

Fr2. Every diagram of the form

7
N
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with s € S, can be completed to a commutative one:

S
witht € S.

Fr3.  For every pair of morphisms w,v : -—%- such that exists
s €S | us=ws, there is a morphism t € S such that tu = tv.

Proof. F is co-fibered over &, thus, by definition, S satisfies Fr1l. Let’s check
Fr2: Suppose that we have

S

with s € S. Now, we can apply m and we have the following diagram in &:
w(u) o °
. /

which, by L1, can be completed to a commutative diagram:

In addition, for being 7 : F — £ a fibration, we have:

over
w(u) o °
o~

with ¢t,¢' € S. Now, t's is co-cartesian, thus, by definition, we have a com-
mutative diagram:



Then we have a commutative diagram as we wanted:

It remains to check Fr3: Suppose that we have u,v : -—= - in F such
s W

that exists s € S | us = vs. Then we have - ——-—%- such that
TV

muns = muns and L2 says that there exists f € &€ such that fru = f7v. Since
F is fibered over &, there exists t € F co-cartesian over f and composable
with v and v. Then tus = tvs, thus tu = tv because s is co-cartesian.

[]

Definition 5.21. A set S C F which satisfies FR1, FR2 and FR3 is said to
satisfy a calculus of right fractions ([§])

Remark 5.22. If £ is pseudo-filtered, it satisfies L.1 and L2.
O

Definition 5.23. Let F be a category and S a set of morphisms of F satisfy-
ing Fr1, Fr2 and Fr3. For each object x of F, we define S(x) as the category
of morphisms of S with domain x.

Remark 5.24. The category S(z) is filtered.
Proof. To begin the proof, let’s explicit the morphisms and the composition

of S(z): a morphism between z = y and z L 2is given by a commutative
diagram of the form:

r—=1 r—z
v \
z w

is given by



Now, let’s prove that it is filtered: Let z = y,z % 2 be two objects of
S(z). We have the following diagram in F:

Since S satisfies Fr2, we have
S y u
x ~7 TN w
s, T

with r € S. Then we have

T 2>y T—>z
R “ and x "
v i

w w

which proves that S(z) satisfies the first axiom of filtered. To prove the
second axiom, suppose that we have

Since S satisfies Fr3, we have

with v € S, and

is the co-equalizer that we need. O
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Proposition 5.25. [Construction of the category of fractions for a calcu-
lus of right fractions] Let F be a category and S a set of morphisms of F
satisfying Fr1, Fr2 and Fr3. Then the category F[S™' can be described as
follows:

Objects: The objects are the ones of F.

Morphisms: Given x,y objects of F, homgis-—(x,y) = cg(lgnhomf(a:, ).

The composition is given by: let f : x — y and g : y — 2z be two
morphisms of F[S™Y]. Using the construction of filtered colimits in Ens, we
can think f and g as follows:

And, since S satisfies Fr2, we have

LN
S

Y

with t" € S.
We define gf by the following diagram:

x z
£
gflA,

Proof. First note that, because of remark [5.18 we can suppose that all the
identities are in S. Now, we have to check that the category defined at
the statement satisfies the universal property of F[S™!]. We are going
to denote this category also F[S™!]. We have p : F — F[S™!] defined as

p(z) = = and p(x ER y) = x\ Y And given 6 as in definition |5.17]

Fry’id

one can check the universality by taking 6'(x) = 0(x) and ¢'( = " y) =
foz0s

(0(s))~" 2 6(f). O
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Remark 5.26. In the previous proposition, we abuse notation and treat
the elements of C(S)%ir)n homg(x,-) not as equivalence classes, but just as its
y

representatives. However, all the calculations that we have made are consis-
tent with the quotient.

0J

Remark 5.27. In general, Lim F and colgim Fe defined as universal cone are

3
not equivalent categories. But they are equivalent when £ is pseudo-filtered

([1] Exposé VI p. 272).

5.3.2 With pseudocones
The following definition makes explicit the dual case of definition [5.14]

Definition 5.28. A pseudoco-cone for a functor F' : I' — Cat with vertex
the category X is a family of functors (hy : F(a) — X)aer and a family of
invertible natural transformations (hy : hg o F(u) — hy) satisfying the
following conditions:

PCO.  hq, =1idp,.

a>3el

PC1. « Q
ul hyf u
h
3 L Sy = B hut X
v hott v
hy Ty
8 Y

For simplicity, we are going to call pseudoco-cones also pseudocones since
this abuse does not cause any confusion.

Definition 5.29. Let F : I' — Cat be a functor. We define bico%imFa as
[e1S
the universal pseudocone associated to F'. More specifically, it is a pseu-
docone F 2 bz’coéimFa such that if F 2 X is another pseudocone, then
ac

EIIDYE bz’colrz'mFa - X | Aoh = A, 1.6 A makes, for each o € T, the
ac

following diagram strictly commutative

. h
gzellnga - Fo

Ao
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When T is a filtered category, we can make an explicit construction of
bicolim Fa:
ael’
Proposition 5.30. If F' : I' — Cat is a functor and U 1is filtered, then

bz’co{jm Fa exists and can be constructed as follows:
[e1S

Objects: (C,a) where C' € Fa.
Morphisms: A morphism between (C,a) and (D, (3) is a triplet (u, f,v)
and F(u)(C) EN F(v)(D) quotient by ~ where

where o —u
5/”’7
(u, f,v) ~ (', f',0") if and only if 3 v —a _  such that tu = 0u', v = v’
.=
v %
and F(@)(f) = F(0)(f).

Proof. First, we are going to prove that ~ is an equivalence relation: it’s clear
that is reflexive and symmetric. Let’s check that it is transitive: suppose that
(u, f,v) ~ (u, f,0") and (', f',0") ~ (u”, f",0") Then, there is v @

7’/1775
and v such that
P
Td
au = ou',av = ov', F(a)(f) = F(0)(g),uu’ = vu”, a0’ = 00" and F(u)(g) =
b

/

F(0)(h). And for being T filtered, thereis § —a _ , thus we have ~/ —av_ v .
c //b/? 14 >
bi
But, again for being IT" filtered, there is +' a5 _v —“=7. Then, we have
N -~ 7
Y —cot .
V' s !

Now catiu = catu' = chun’ = cbou, catw = catv’ = cbuv’ = cbzf)v” and
F(cau)(f) = F(ca)F(a)(f) = F(ca)F(0)(g) = F(cav)(g) = F(cbu)(g) =
F(cb)F(u)(g) = F(cb)F(v)(h) = F(cbv)(h) which concludes the demostra-
tion of ~ is transitive.

Now, let’s define the composition in bicolrim Fa: Suppose that we have
ac

(C, ) i) (D, 3) (9 (E,9). For being I filtered, thereis v—2_  and
G

av
B o _v—-=n such that cav = «cbu'. Then the composition

(u', g,v") o (u, f,v) is (cau, F(cb)(g) o F(ca)(f),cbv’).
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Let’s see that it is a universal pseudocone: we define

bicolim Fa

hat Fa——="10p

C'—> (Ca (]1)
f——(id, f,id)
and for o = (3, hy : hg o F(u) — hy as follows: (h,)c = (u,idpw)c), id). It

is straightforward to check that is a pseudocone. If A is another pseudocone

for F, one can check the universality of bicolrim Fa by taking ) as follows:
[e1S

MO, @) = \(C) and A(C, @) L7 (D, B)) = A f.
]

Remark 5.31. This construction yields a category equivalent to a usual
construction of filtered colimits of categories as the filtered colimit of the
objects and then of the morphisms.

O

5.4 The relation between the two definitions

We are going to prove that if we take the co-fibration associated to
F : T — Cat as in 5.7, and consider S the set of co-cartesian mosphisms
of I'p, then LimI'p = ['»[S™!] is the universal pseudocone for F. And we

r

will do this in two different ways: using only the universal properties; and
checking that both explicit constructions are the same one.

5.4.1 Using only universal properties

To check that T'x[S™!] is a universal pseudocone, let’s observe first that I'x
satisfies the following universal property:

Proposition 5.32 (Universal propoerty of the Grothendieck construction
Lr). I'r as defined in remark has the following universal property:

Fu| e Tpdelo Sy
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where f, is defined as fo(z) = (x,a) and f,(a) = (id,a), f. is defined as
(fu)e = (u,idy,.). Moreover, if the arrows g, are invertible, the arrow 0
transforms the co-cartesian morphisms into invertible morphisms of X.

Proof. 6 has to be defined as 0(z, ) = fo(x) and 0((u, ¢)) = fa(p) ° (gu)z-
[

Corollary 5.33. It can be checked that Tr[S™!] is the universal pseudocone
by taking he = po fa, hy =id, o f,; and if

Fa

Y

A

FB

is another pseudocone, we take the corresponding 6 in the universal property
of Tr and then the 0’ given by the universal property of T'p[S™1].

5.4.2 Comparing both constructions explicitly

The co-fibration associated to F' is given by:

Objects: (x,«) with x € Fa,a € T

Morphisms: A morphism between (z,«) and (y, ) is a pair (u, ¢) where
a5 Bel and u,x >y e Fp.

Composition: (v,1) o (u, @) = (v o u, 1 o v.p).

It is easy to check that the co-cartesian morphisms are the ones with ¢
isomorphism.

Now, let’s describe T'z[S™1:

Objects: (z, ) with € Fa,a € T'. These objects are the objects of

bicolim Fa.
a€el

Morphisms: homrp,s—1((z, ), (y,3)) = g&iiér)l)hompp((x,a),-). More

specifically: are the equivalence classes of the relation ~ between elements

of the form
(z, ) (y,3)
m A)
(2,7)
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with 1 an isomorphism. Where the relation ~ is given by

(z, @) (y, B) (z, ) (y, B)
<m (v,) h (M A)
(2,7) (2',7)

(5.2)
if and only if 3(v", ") : (y,8) — (2”,~") with ¢" isomorphism and arrows

) M ) Y () such that
wv = V" = W', Qwap = Y = 0wy, wu = wi and Ow,po = Owly'.
The composition is the one described in [5.25]

Let’s see that there is a bijective correspondence between these morphisms

and the ones of bicolrim Fa given by:
[¢1S

(z, @) (. 8)
<N wy T (@) 0y, )
(2,7)
(z,0) (v, 5)
m Gy o) T ().

(vey, )
To check that a is well defined, suppose that two morphisms of I'p[S™!]

ﬁy w

are related as in ((5.2)). Then we have ~" such that wu = w'v/,

/4

v

wv = w'v' and (1) and (2) in the following diagram commute:

’o! WP
W, U, T = Wy UsL Wy 2
0
(1) /
wlg! P wa
0/
/ (2)
It wiy Y
W, 2 WVl = W,LV,Y
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Then the exterior square commutes, thus (u, ™', ¢, v) ~ (u/,¢'~1, ¢, 0)
according to proposition [5.30]

To see the good definition of b, suppose that (u, f,v) ~ («/, f’,v'), and
we want to see that

(z,a) ) (z,q) (v, 8)
(uvf) (’Uaidv*y) - (m A;y)
(vy,7) (viy,7) :
(5.3)
Y &
By proposition [5.30, we have ~" such that wu = w'u', wv = w'v'
_ Ay
and w, f = w. f. 7I/u;
If we take these 4", w and w'; v" = wv = W'V, 0 = 0' =" = id,,,,, and

2" = w,v,y = wivly we have (5.3)).
It only remains to prove that the compositions ab and ba are identities.
For ba = id, we have to check that

(z, ) (y, 3) (z, ) (y, B)

(% (v.)) - Wm %)

(2,7) (vey,y)
and we do it by taking 7" =, 0" =v, w =w'=id,, V" =¢ =0, 0 =id,

and 2" = z.
Finally, ab = id is straightforward.
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6 Ind-objects of a 2-category C

In this section, we define an Ind-object of a 2-category and then we
prove that, in this case, Ind(C) results a 2-category. In the description of
the category Hom(X,Y) for X and Y Ind-objects we use the constructions
of bilimits and bicolimits in Cat made in section [Al

6.1 Definition of the 2-category Ind(C)

Definition 6.1. Let C be any 2-category. An Ind-object of C is a small
filtered system X = (C})icy i.e. a functor X : J — C with J a small filtered
category.

Remark 6.2. An Ind-object of a 2-category C as in the previous definition
is, in particular, an Ind-object of the underlying category of C in the sense
of section 3.5

Definition 6.3. Let C be a 2-category and X = (Cy)icy, Y = (Da)aer two
ind-objects of C. We define the morphisms between X andY as follows:

Hom(X,Y') = bilim bicolim Hom(C}, D,,).

i€ Jopr ael

Remark 6.4. Hom(X,Y) results a category.

OJ

Using the construction of bilimits and bicolimits in Cat indexed by a
category given in section [3, we can give the following description of the
category Hom(X,Y) which is the corresponding to proposition in the
case of 2-categories:

Proposition 6.5. An object of Hom(X,Y") is a triplet (¢, (fi)ics, (<p¢)iijej)
where ¢ : J — I is a function between the objects of J and the ones of T,
fi © Ci — Dyuy morphisms of C and ¢4 @ (fi,0(i)) — ¢*(f;,0(4)) iso-
morphisms of biggéﬁmHom(Ci,Da) given in a functorial way, i.e. Vi 2, ¥

F (i) N and an isomorphism Y (u) o f; 23 Y (v) o fioX(p):
N _—

o(j)

o1



C; P Dy ;)

A morphism of Hom(X,Y') is the equivalence class according to the re-
lation ~ of a family (0;)ic; where 0; : (fi, (i) — (gi,¢ (7)) is a morphism
of bicolFimHom(C'i,Da) such that Vi % J € J, Yyo0b; = ¢*(0;) o @y, ie.

ae
(i) « _  and a morphism Y (u) o f; RN Y (v) o g; such that Vi gj eJ
i)

the following diagram commutes:

Y(u)o f; Y (v)og;

%i l%

Y(v)o fjo X((b}(mj;/(v) o g; 0 X(¢)

The relation ~ is defined as (0;)icq ~ (0i)ics if and only if Vi € J,

33;>u;04 such that uu; = vu2, wvy = vvy and Y(u) o 0; = Y(v) o
where (0;)ic; is given by (i) 1 and Y (uy) o f; iy Y (v1) o gi, (Mi)ics
L=
(i) o
is given by wgzi NEN a and Y (uz) o f; 25 Y (v3) 0 g;.
P(1) w2

Proof. First of all, let’s calculate bicolrim Hom(C;, D,,) for i € J fixed: the
ac

functor in question is

r Cat

a— Hom(C;, D,)
a = fr—">(Y(u)).
where (Y (u)).(f) =Y (u) o f and

V(). (f % g)=(Y(u)of

ldy(u) of
—

Y(u) o g).
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Then, we can describe bicolrim Hom(C;, D,,) as follows:
ac

Objects: (f,a) | f: Cy — D,.

Morphisms: A morphism between (f,«) and (g,3) is the equivalence
class according to the relation ~ of a triplet (u,h,v) where a—» __ and

gl
B

Y(u)o f LR Y (v) o g. The relation ~ is defined as: (u, h,v) ~ (u', 0/, 0') if
and only if 3 7\11}5/ tu = ou',aw = 0" and Y(a) o h =Y (0) o K.

Al
Now, let’s calculate bll}m bico%im Hom(C;, D,,): the functor in question
1€ JoP ac
is
G:J® Cat

—_ bicglrim Hom(C;, D,,)

8 X(o)”

where X (¢)*(f, @) = (f 0 X(¢),a) and X (¢)*(u, h,v) = (u, h oidx),v). It
can be checked that X (¢)* is well defined in biC(élFim Hom(Cj, D,,).

Then, we can describe b11}m bicolrim Hom(C;, D,,) as follows:
e Jop ae

Objects: (fi,i)ics| fi + C; — D,, and Vi 2, j € J an isomorphism
(fir ;) “ ¢*(f;, ;) given in a functorial way. But, taking ¢(i) = o, by
definition, this is exactly what it says in the statement.

Morphisms: To check that the characterization of the morphisms is the
one in the statement, it is enough to follow the definitions. O]

The definitions of pseudocone and bicolimit can be extended naturally to
functors taking values in Cat®”. Since bicolimits in Cat®” are computed by
computing the corresponding bicolimit in Cat for each C' € C, we have the
following lemma which is a consequence of Theorem 1.19 in [3].

Lemma 6.6. Let ' : J — Cat®” a functor, and X € Cat®”. We have an
isomorphism of categories

Hom(bicolim F(i), X) = PC(F, X) = bilim Hom(F (i), X).

i€J ieJop

where PC(F, X) stands for the category of pseudocones for the functor F with
vertex X and the morphisms of pseudocones between them.

O
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Here, a complete treatment generalizing the case of 1-categories developed
in section (3| is in order. However, we leave it for future work, and develope
here directly the generalization of proposition to the 2-categories case:

Proposition 6.7. Let X and Y be two Ind-objects of C, and let

F = bicogimHom(—,Ci) and G = bicolFimHom(—,Da). Then there is an
1€ ac

isomorphism of categories between Hom(F,G) in Cat®™ and Hom(X,Y) in

Ind(C).

Proof. We construct the bijections between the objects and the arrows of
both categories composing the ones below:
On objects:

(0:)ies € bilim bicolim Hom(C;, D,,)

1€ Jop ael’

bilimits in Cat

For each i € J, 0, € G(C;) and Vi gj € J,
an isomorphism 6; =3 G(X (¢))(#;) in a functorial way.

Yoneda
A family of natural transformations Hom(—, C;) %G
and Vi % j € J, an invertible 2-cell of Cat®”
Hom(—, () d G
X(9)| =
Hom(_7 XJ)
given in a functorial way (i.e.. a pseudocone 0
for the functor which sends i — Hom(—, C;)).
u.p. of I

bicolim Hom(—, C;) 2 bicolim Hom/(—, Dy)

ieJ ael

where, in the “Yoneda” biyection ¢? is defined by (&) = G f(god_)l) for
C eCand f:C — C;; and in the way up ¢, is defined as ¢, = (gp‘a)idci.
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On arrows:

6 % ¢ in bilim bicolim H om(C;, Dy,)

ieJop ael

bilimits in Cat

For each i € J, 0; i 0! in GC; such that
vi % 7 € J, the following diagram commutes
0. Vi g’

- -

G(X(9))(0;) Z ) G(x(9))(8)

Yoneda
For each i € J, a 2-cell of Cat®”
0;
Hom(—,C;) Y& G
i
satisfying PCM (i.e.. a morphism of
pseudocones 1) between 6 and ¢').
Lemmal6.6|

a 2-cell of Cat®”

. . % . .
b1(£1}1Hl Hom(—,C}) m b blg(élrlm Hom(—, D,)
0

where, in the “Yoneda” biyection t; is defined by (()¢); = G f(1s) for
C eCand f:C — Cj; and in the way up ¢; is defined as ¢; = ((¢i)c, )idc, -
[

Corollary 6.8. Ind(C) is a 2-category.

Proof. Tts O-cells are the Ind-objects of C, and we have the category Hom(X,Y)
defined above . Finally, since Cat®” is a 2-category, we can compose
there with its horizontal composition, using the isomorphism given in the
previous proposition to go back and forth. O
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As an example, we are going to give an explicit formula for the vertical
composition in Hom(X,Y') and for horizontal composition on the objects
using the description given in proposition [6.5]

The vertical composition is given by (0;)ics o (1:)ics = (0; 0 1;)icy-

If X = (C)ies, Y = (Da)acr, Z = (E))aea, the horizontal composition
on objects is given by: let (¢, (¢a)aer, (Yu),» gcr) be an object of Hom(Y, Z)
and

(o, (fi)ies, ((‘%)iﬁjej) an object of Hom(X,Y'). Then, given i gj eJ

w(i) _u
we have a and an isomorphism Y (u) o f; 2% Y (v) o fioX(o).
w(i) "
Since (i) - a and ¢(j) - «a are in I', we have the corresponding 1,
and 1, which give us

WP@ &
~_ N
—
Y(a) n;j
\ )\
7
ve(j) &
And, since I is filtered, we have
Yep(i) ¢
&'\* M,
el
v(a) g, - N =
\ 4’
g N
Ye(4) !

where pfn; = pf'n;. Then, we define

(¢, (9a)aer, (Pu) gz ger ), (0; (fi)ies, (vo) o)) =

(¥ 0@, (g © fi)ies: (P o p)g)

iLjes
iijeJ)

where (¢ 0 )y = (£, (¢ 0 9)y,n) with

(0 @)s = Z(pOE:) © gy © fi = Z(p0'E;) © gp(s) © fi 0 X(9)
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given by the following diagram:

“’“”%’EW%
Ci > Doty ~ 0> Ex 00
X() ~p \Da Jo Ey(a) ///\E

i == De(j)

by \
e (5)

[l

By,

e

Eye )

A

where the composition has to be made this way: first compose a with
b in Hom(Cy, Ey,), and ¢ with a in Hom(C;, E),). And then compose in
Hom(C;, E)) the second of those compositions, a™! and the first one.

It would be very tedious to prove that this is indeed the horizontal com-
position that we mentioned before. But, after thinking about it a while, we

are convinced that this is the only way to do it.
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7 Bilimits and bicolimits in Cat indexed by a
2-category

In this section we construct the bilimits and bicolimits in Cat indexed by
a 2-category. We consider the minimal developments necessary to achieve
this aim. The definitions given are forced by the formalisms of 2-categories,
but we have no reference except for the construction in [3] of bicolimits of
2-filtered diagrams of categories. A complete treatment of this constructions
would need a generalization of Grothendieck’s theory of fibered categories to
a theory of 2-fibered 2-categories.

7.1 Bilimits

In this subsection, we are going to give an explicit characterization of the
bilimits in Cat associated to a 2-functor F' : A% — Cat. Throughout this
subsection, A is going to be a 2-category and A is defined as follows:

0-cells: The 0-cells of A.

1-cells: The 1-cells of A inverted.

2-cells: The 2-cells of A.

More specifically, if the configuration of A is

f u
Ja Iy
A J B v C
4p 1

then the configuration of A is

f u
Ja by
A I B u C
1 b

Definition 7.1. Let F' : A% — Cat be a 2-functor. We define Igilﬁ'lm FA as
€Aop
a unversal pseudocone for F. (see remark |4.16

Proposition 7.2. A{)il}"‘m FA can be described as follows:
€Aop
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Objects: (v4)aeca | 24 € FA and VA = B € A, an isomorphism
Pu 4 . . . .
x4 — u*(xg) in FB given in a functorial way.
Morphisms: A morphism f 1 (va)aca — (Ya)aea 1S a family
(x4 I4 Ya)aea such that VA S B € A,

TA Ja Yya

N -

F)(w5) o P ()

commautes and

X Pu
Vu = v, Ta—">u*xp commutes. (7.1)
in .
(v )acB
v¥*rp

And the composition is given by: (fa)aca © (ga)aea = (fa 0 ga)aea.

Proof. We have to prove that the category described in the statement is a
universal pseudocone for F:

We define ha((za)aca) = =4, ha((za 2 ya)aca) = fa and
(hw)(@a)aea = Pu- It’s clear that Eﬂi‘m FA & F satisfies PCO and PC1
€ AP

of the definition of pseudocone; and PC2 is given by the condition ([7.1)).

Let’s check that it is universal: Let X 2 F be another pseudocone. One
can check the universality by taking h(z) = (Aa(2))aca With ¢, = (\y), and

h(f) = (Aa(f))aea. .

7.2 Bicolimits

In this subsection, we are going to give an explicit construction of the 2-
filtered bicolimits in Cat associated to a 2-functor F' : A — Cat. For this
purpose, we take as reference [3]. All the proofs that we omit in here are
given in that article.

Definition 7.3. Let F : A — Cat be a 2-functor. We define bz’goﬁmFA as
c
a universal pseudocone for F (see definition .

From now on A is going to be a pre-2-filtered 2-category.
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Before describing the category bigoﬁm F A, we are going to define a qua-
S
sicategory L(F) (see [3]){]

Definition 7.4. . We define L(F') as follows:

Objects: (x, A) with x € FA

Premorphisms: A premorphism between (x,A) and (y, B) is a triplet
(u, &, v) where A C, B C in A and F(u)(z) 5 F(v)(y) in FC.

Homotopies: A homotopy between two premorphisms (u1,&1,v1) and (ug, £, v2)
is a quadruple (wy,ws, o, B) where C; 5 C, Cy B C are 1-cells of A and

WiV — Waly, Wyl LA wauy are invertible 2-cells of A such that the following
diagram commutes in FC':

F(w)F(up)(z) = F(wyug)(z) —= F(wa) F(uz)(z) = F(wauz)(z)
F(wl)(fl)l lF(wz)(&)
F(w)F(vy)(z) = F(wivr)(y) o F(wz) F(v2)(z) = F(wava)(y)

Definition 7.5. We say that two premorphisms &1, & are equivalent if there
15 a homotopy between them. In that case, we write & ~ &;.

The proof of the following proposition which is the corresponding to
proposition can be found in [3] with all the details.

Proposition 7.6. biﬁoﬁm F A can be described as follows:
€

Objects: (x, A) with x € FA.
Morphisms: The equivalence classes of premorphisms of L(F').
Composition: Is defined by composing representative premorphisms.

OJ

"'We use here the term quasicategory in a naive way. What we mean is explicitly
described in definition [7.4] No claim is made here that this corresponds to the notion of
quasicategory which is found in the literature.
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8 2-Ind-Objects of a 2-category C

In this section we lay the foundations for future work and introduce the
notion of 2-Ind-object. We believe that it can be proved that 2 — Ind(C) is
a 2-category in a similar way as it is proved that Ind(C) is a 2-category in
section [3l

Definition 8.1. Let C be any 2-category. A 2-Ind-object of C is a 2-filtered
system X = (Cy)iey t.e. a 2-functor X : J — C with J a 2-filtered 2-category
(In particular, J is pre-2-filtered).

Definition 8.2. Let C be a 2-category and X = (C;)ics, Y = (Da)aer two
2-Ind-objects of C. We define the morphisms between X and Y as follows:

Hom(X,Y') = bilim bicolim Hom(C;, D).
i€ Jop aecl’

Remark 8.3. Hom(X,Y) results a category.

0J
Proposition 8.4. An object of Hom(X,Y) is a triplet (¢, (fi)ics, (o) o

)
i—jeJ
where ¢ : J — T is a function between the objects of J and the ones of T,

fi + Ci — Dyu morphisms of C and ¢4 : (fi, (i) — ¢*(fj,¢(j)) iso-
morphisms of bicolFimHom(Ci,Da) given in a functorial way, i.e. Vi 2, j
(¢S

F (i) = N and an isomorphism Y (u) o f; 23 Y (v) o fioX(9):

o) v
fi
C; D)
Xw
X(¢) = ‘U Po Da
/f(v)
Cj 7, Dyjy -

A morphism of Hom(X,Y') is an equivalence class according to the re-
lation ~ of a family (0;)ic; where 0; = (fi,0(i)) — (g:,%(2)) is a mor-
phism of bicolFimHom(Ci,Da) such that Vi % JEJ, Pyob; = ¢ (6;) 0wy

ac
I
(i) 7o

Y(u)o f; A Y (v)og; such that Vi ﬁ»j € J the following diagram commutes:

and Vo = ¢’ idy, 0 X(1) 0y = @, ie. (i) v N and a morphism
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Y(u)o f; —2=Y(v) o f; 0 X(¢)

N [

Y(v)og T¢>Y(U) o gjoX(¢)

and Yo = ¢ the following diagram commutes:

P!

(fir (i) (fio X(¢),0(5))

(pd)l /
idfj oX(n)

(f5 0 X (), (7))

The relation ~ is defined as (0;)icq ~ (0i)ics if and only if Vi € J,
= g;%a and 0 : wivy = waovy, M wiup = wolp tnvertible 2-cells such
w2
that the following diagram commutes:

Y('r])oidfi
Y<w1U1) o f; Y(MQUQ) o fi

Y(wl)oeil J{Y(WQ)OW
Y (wyv1) o fj o X(9) Y (wavg) o fj 0 X(¢)

Y(Q)OidfjoX(qb)

where (0;)icy is given by (i) e and Y (uy) o f; & Y (v1) 0 gi, (0i)ics

. al
(i) T
is given by (i) 22 and Y(up)o f; Y (v5) 0 g;.
a
o)

Proof. First of all, let’s calculate bicolim Hom(C;, D,,) for i € J fixed: The

acl’
functor in question is
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Then, we can describe bicolrim Hom(C;, D,,) as follows:
(¢S
Objects: (f,a) | f: Cy — D,.
Morphisms: A morphism between (f,«) and (g,3) is a triplet (u,&,v)

where a—v__ and Y(u) o f 5 Y(v) o g, quotient by ~ where

ﬁ/er
(u,&,v) ~ (v, &, 0") if and only if 3 a homotopy (wq,ws, 8, 1) between them,
i.e.
T
el
Y

and invertible 2-cells 6 : w v = w9, n : wiu = weu' such that the following
diagram commutes:

Y (n)oid
Y(wu) o f — ¥ (wy) o f
Y(wl)ogl iy(wz)of/
Y(wv)og e Y (wav') 0 g

Now, let’s calculate bllJlm bicolrim Hom(C;, D,,): The functor in question
1€ JoP ac

18

G Jeor Cat

j - bicolim Hom(Cy, Dy,)
ac

JRae] X(o)"
$°P LY e X (6)*

where X(¢)*(f7 OZ) = (f © X(¢)a O{), X(gb)*(u, S,U) = (U,f o 7:dX((b)a U) and
(X(0)*)(s,0) = (id,ids 0 X (0),4d). It can be check that X (¢)* is well defined
in bico%im Hom(Cj, D,).

ae

Then, we can describe bll}m bicolrim Hom(C;, D,,) as follows:
1€ JoP ac

Objects: (fi,a)ies | fi : Ci — D,, and Vi 2, j € J an isomorphism
(fis ) “ ¢*(f;, ;) given in a functorial way. But, taking ¢(i) = a;, by
definition, this is exactly what it says in the statement.

Morphisms: To check that the characterization of the morphisms is the
one in the statement, one only has to follow the definitions. m
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We are going to define 2 — Ind(C) as the 2-category with O-cells the 2-
Ind-objects of C, 1-cells the objects of Hom(X,Y") for X, Y 2-Ind-objects and
2-cells the morphisms of Hom(X,Y) for X, Y 2-Ind-objects. It remains to
prove, in future work, that there is a horizontal composition in 2 — Ind(C)
which would complete the proof of the fact that 2 — Ind(C) is a 2-category.

A question which arises naturally is to find the relationship between the
underlying category of Ind(C) and 2 — Ind(C) respectively and the category
of Ind-objects of the underlying category of C.
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