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Funciones holomorfas de tipo acotado e ideales de

polinomios homogéneos en espacios de Banach

Definimos el concepto de sucesión coherente de ideales de polinomios en espacios de Banach,

que nos permite relacionar ideales de polinomios homogéneos de diferentes grados. A cada sucesión

coherente A, podemos asociarle un espacio de Fréchet de funciones enteras de tipo acotado, HbA.

Extendemos a HbA un resultado de Godefroy y Shapiro sobre hiperciclicidad de operadores de

convolución.

También estudiamos el concepto de sucesión multiplicativa de ideales de polinomios a valores

escalares. Esto nos permite asociar un álgebra de funciones enteras de tipo acotado HbA a cada

sucesión coherente y multiplicativa de ideales de polinomios, A. Probamos que, bajo ciertas condi-

ciones naturales, el espectro del álgebra asociada, MbA, puede ser dotado de una estructura de

dominio de Riemann sobre el bidual del espacio de Banach. Además la extensión de cada función

de HbA al espectro es una función A-holomorfa de tipo acotado en cada componente conexa.

Investigamos cómo definir álgebras de funciones holomorfas asociadas a sucesiones de ideales

de polinomios en abiertos arbitrarios de un espacio de Banach. Como aplicación probamos que el

álgebra de funciones holomorfas nucleares de tipo acotado en un conjunto abierto es un álgebra de

Fréchet localmente m-convexa.

Para el álgebra de funciones de tipo acotado, caracterizamos la envoltura holomorfa en término

del espectro. Las evaluaciones en puntos de la envoltura son siempre continuas, pero mostramos un

ejemplo de un abierto balanceado de c0 en el que las extensiones a la envoltura no son necesariamente

de tipo acotado, respondiendo una pregunta hecha por Hirschowitz. Probamos que para abiertos

balanceados y acotados, las extensiones a la envoltura son de tipo acotado.

Palabras clave: Ideales de polinomios, funciones holomorfas de tipo acotado, operadores hiper-

ćıclicos, operadores de convolución, envolturas holomorfas, dominios de Riemann.
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Holomorphic functions of bounded type and ideals of

homogeneous polynomials on Banach spaces

We define the concept of coherent sequence of polynomial ideals on Banach spaces, which allows

to relate ideals of homogeneous polynomials of different degrees. To each coherent sequence A, we

can associate a Fréchet space of entire mappings of bounded type, HbA. We extend to HbA a result

of Godefroy and Shapiro about hypercyclicity of convolution operators.

We also consider the concept of multiplicative sequence of scalar valued polynomial ideals.

This allows us to associate an algebra of entire functions of bounded type HbA to each coherent and

multiplicative sequence of polynomial ideals A. We prove that, under some natural conditions, the

spectrum of the associated algebra, MbA, can be endowed with a structure of Riemann domain over

the bidual of the Banach space. Moreover, the extension of each function in HbA to the spectrum

is an A-holomorphic function of bounded type in each connected component.

We investigate how to define algebras of holomorphic functions associated to sequences of poly-

nomial ideals on arbitrary open sets of a Banach space. As an application we show that the algebra

of nuclearly holomorphic functions of bounded type on an open set is a locally m-convex Fréchet

algebra.

For the algebra of all bounded type functions, we characterize the envelope of holomorphy

in terms of the spectrum of the algebra. The evaluations at points of the envelope are always

continuous, but we show an example of a balanced open subset of c0 where the extensions to the

envelope are not necessarily of bounded type, answering a question posed by Hirschowitz in 1972.

We show that for bounded balanced sets, the extensions to the envelope are of bounded type.

Keywords: Polynomial ideals, holomorphic functions of bounded type, hypercyclic operators,

convolution operators, envelopes of holomorphy, Riemann domains.
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Introduction

In [Gro55], Grothendieck investigated different classes of linear operators, such as nuclear, integral

or absolutely summing operators, which played a key role in the development of modern Banach

space theory. The investigations of Grothendieck awoke the interest in the possible translation of the

classical theory of operators ideals on Hilbert spaces to the Banach space framework. This became

a very fruitful area of research, as it can be see, for example, in the monographs [Pie80, DF93].

It should not be a surprise that, in the nonlinear setting, important classes of mappings come

out naturally in the same spirit. Indeed, generalizations of the typical classes of linear operator

were defined for multilinear mappings and homogeneous polynomials. Let us recall that a function

P on a Banach space E is a k-homogeneous polynomial if there exists a k-linear mapping A

on E × · · · × E such that P (x) = A(x, . . . , x) for every x ∈ E. In some sense, the theory of

homogeneous polynomials and multilinear mappings may be seen as an extension of the linear

theory. In [Pie84], Pietsch took the first step towards a theory of multilinear operator ideals. This

notion was immediately adapted to define ideals of homogeneous polynomials, for example, by

Braunss in his thesis [Bra84] or Hollstein in [Hol86].

On the other hand, in the sixties the theory of holomorphic functions on infinite dimensional

spaces started to develop into a field in its own right. Gupta, in his thesis [Gup68], was interested

on differential and convolution operators on spaces of holomorphic functions and needed to define

nuclear polynomials and holomorphic functions, which were since then intensively studied. Aware

of the importance of having a theory which include as particular cases several classes of holomorphic

functions (he was mostly interested in the spaces of continuous holomorphic functions and of nuclear

holomorphic functions), Nachbin defined holomorphy types (see [Nac69]). A holomorphic function

on a Banach space E is, locally, an infinite sum of homogeneous polynomials on E, its Taylor series

expansion. Holomorphy types determine spaces of holomorphic functions whose derivatives pertain

to a certain class of polynomials Pθ (where θ could make reference, for example, to the compact,

nuclear or continuous polynomials) and satisfy certain growth conditions relative to the underlying

spaces of homogeneous polynomials Pθ. Shortly after the definition of holomorphy types, several

new examples emerged, as the integral [Din71] or Hilbert-Schmidt [Dwy71] types.

As far as we know, in every example of holomorphy type which appears in the literature, the

spaces Pθ of polynomials may be thought of as polynomial ideals. Thus, one of the aims of this

work is to define a variant of the concept of holomorphy type which is more closely related to

the theory of polynomial ideals. After that, we study different classes of holomorphic functions

of bounded type on Banach spaces, associated to sequences polynomial ideals. Examples of such

spaces of holomorphic functions were already constructed (L∞ factorable operators in [Hol86],

p-Schatten operators in [Bra92, BJ90]). Also, different authors studied the relationship between

holomorphy types and sequences of polynomial ideals with certain properties. For example, it was

shown in [Hol86] that a sequence of polynomial ideals constructed via factorization through an

1



2 INTRODUCTION

ideal of operators is a holomorphy type, and in [BBJP06] the authors proved that if a sequence

of ideals has the so called “property B”, which is related with stability under differentiation, then

it is a holomorphy type and gave some conditions for the converse implication. As we will see,

differentiation and multiplication by powers of linear functionals are intrinsic operations for the

polynomial ideal structures. Moreover, they are, in some sense, dual to each other, a fact that will

be relevant to our study of adjoint polynomial ideals.

We start by relating a linear operator ideal with ideals of homogeneous polynomials of a fixed

degree n > 1. Many of the well known polynomial ideals can be considered as the n-homogeneous

analogous to some operator ideal. This is the case, for example, of the ideals of nuclear, integral

or compact polynomials. However, the extension of a linear operator ideal to higher degrees is not

always obvious. For example, many extensions of the ideal of absolutely r-summing operators have

been developed, among them, the absolutely, the multiple and the strongly r-summing polynomials

and the r-dominated polynomials.

In order to shed some light on what makes a particular n-homogeneous extension of an operator

ideal natural, we introduce the concept of compatibility between a polynomial ideal and an operator

ideal. An n-homogeneous polynomial ideal An and an operator ideal A turn out to be compatible

if any time we take a polynomial P ∈ An and we fix n− 1 variables of its associated n-linear map,

the resulting operator is in A and if every operator in A multiplied by n− 1 linear functionals is a

polynomial in An. Note that the operation of fixing variables to the n-linear map is analogous to

differentiating P . Compatibility relates each polynomial ideal with one operator ideal; that is, it

is proved that a Banach ideal of n-homogeneous polynomials is compatible with one and only one

Banach ideal of operators. Most (but not all) ideals of polynomials usually studied are shown to

be compatible with the ideal of operators one would expect. On the other hand, given an ideal of

operators A, there are many polynomial ideals compatible with it. Indeed, there is a greatest and

a smallest polynomial ideal compatible with A, which are always different as polynomial ideals. It

is also shown that compatibility is preserved under several natural ideal operations, such as taking

adjoints, maximal or minimal hulls and composing with some operator ideal.

The polynomial extension of an operator ideal A usually gives rise to a sequence of polynomial

ideals A = {Ak}k, each Ak an ideal of k-homogeneous polynomials. Therefore, it is also interesting

to study the relationship between different Ak’s. To this end, the concept of coherence of a sequence

of polynomial ideals is also introduced. A coherent sequence A allow us to define a space of entire

mappings of bounded type HbA associated to A. As particular cases of the spaces HbA we have

the classical space of all continuous holomorphic functions of bounded type Hb, and the spaces

of holomorphic functions of nuclear [Gup70], weakly continuous on bounded sets [Aro79], integral

[DGMZ04] or Hilbert-Schmidt [Dwy71, Pet01] bounded type, among others. In these spaces we will

address questions about the Borel transforms and duality. Whenever the ideals of the sequence are

minimal we will describe the dual of HbA as a space of holomorphic functions of exponential type.

This will allow us to characterize convolution operators and to prove that they are hypercyclic

whenever they are not a scalar multiple of identity, extending a theorem of Godefroy and Shapiro

[GS91]. Most of the spaces of holomorphic functions mentioned are in fact algebras, so it is also

interesting to investigate when the spaces HbA are algebras. With this goal in mind, we define

multiplicative sequences as an extension of the concept of coherence. If a coherent sequence is also

multiplicative, HbA becomes an algebra, and, in those cases we will study its spectrum. In many

cases, it is shown that the spectrum has a structure of analytic manifold (modeled on the bidual

of the base space), and that the functions in HbA extend analytically to it.
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Finally, we concentrate in the algebra of all analytic functions of bounded type on a general

domain U . We focus on the problem of finding the largest open set to which all those functions

uniquely extend and to determine whether these extensions are of bounded type. As it could

be expected, to properly pose and study the problem, we must expand our investigations to the

Riemann domains framework. Loosely speaking, if X is a Riemann domain over the Banach space

E, the Hb-envelope of holomorphy of X is the largest Riemann domain (over E) “containing X”

to which every holomorphic function of bounded type on X has a unique extension. Our problem

translates, then, to the characterization of the Hb-envelope of holomorphy of a Riemann domain

modeled on a Banach space E. In several complex variables it is well known that the envelope of

holomorphy of a domain X is the spectrum of the algebra of holomorphic functions on X, H(X).

The envelope of holomorphy for the space of all holomorphic functions on a Riemann domain over

a Banach space was first constructed by Hirschowitz [Hir72] using germs of holomorphic functions.

There he also showed that this construction could be adapted to obtain the Hb-envelope, that

is, the envelope of holomorphy for the space of bounded type functions. He also asked wether

the extensions to the Hb-envelope should necessarily be of bounded type or not. We will answer

this question by the negative. To obtain this answer we need to characterize the Hb-envelope of

holomorphy of X in terms of the spectrum of Hb(X). Under the hypothesis of symmetric regularity,

the spectrum was shown in [AGGM96, DV04] to be a Riemann domain over the bidual of the base

space E. Thus, in general, the spectrum cannot be the Hb-envelope of holomorphy of X. Even

in the case that E is reflexive, the spectrum is usually too large to be the Hb-envelope of X. For

example, in the case X = E, the spectrum may have an infinite number of connected components.

Still, it is proved that the Hb-envelope may be identified with a part of the spectrum, and this

is achieved without the assumption of symmetric regularity of E. We can then obtain a simpler

characterization of the Hb-envelope for a balanced open subset U , in terms of its polynomial hull

and to prove that if U is also bounded then the extensions of bounded type functions on U to

the Hb-envelope of U are of bounded type. However, we will show an example of an unbounded

balanced open set U and a bounded type function on U , such that its extension to the Hb-envelope

of U is not of bounded type.

We now describe the contents of each chapter of this thesis.

Chapter 1: Preliminaries

In the first chapter, we define the basic concepts and describe some properties about polynomials,

polynomial ideals, tensor norms and holomorphic mappings on Banach spaces which we will need

in the rest of this work.

Chapter 2: Compatible ideals

In this chapter we define the compatibility of a quasi-normed ideal of homogeneous polynomials

and a quasi-normed ideal of linear operators. Most examples of polynomials ideals where defined

as generalizations of an ideal of linear operators and, in almost every case, they are compatible

with that ideal of operators. For instance, the ideals of n-homogeneous nuclear, integral, extendible

or approximable polynomials are compatible with the correspondent ideal of operators. However,

the ideal of absolutely p-summing polynomials is not compatible with the ideal of absolutely p-

summing operators. This fact has the following consequence: if n ≥ 2, then every absolutely

summing n-homogeneous polynomial from E to E is weakly compact if and only if E is reflexive
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(Corollary 2.1.25). In contrast, in the linear case, it is well known that every absolutely summing

linear operator on a Banach space E is weakly compact.

It is shown that there are many polynomial ideals compatible with a given operator ideal A.

Moreover an n-homogeneous polynomial ideal An is compatible with A if and only if FA
n →֒ An →֒

MA
n , where FA

n and MA
n are, respectively, the smallest and the greatest ideal of n-homogeneous

polynomials compatible with A (Section 2.2). In the following sections the compatibility is shown

to be preserved by several procedures usually performed with ideals. It is proved that:

• If we compose compatible ideals with closed operator ideals, we obtain compatible ideals

(Proposition 2.3.1).

• The interpolation of compatible ideals gives compatible ideals (Proposition 2.4.3).

• If A and An are compatible, so are their adjoints ideals (Proposition 2.6.1) and their maximal

and minimal hulls (Corollaries 2.6.3 and 2.6.2).

The theory of polynomial and operators ideals is closely related to the theory of tensor products

of Banach spaces. So we also investigate which are the conditions which relate the tensor norms

associated to compatible ideals. The concept of compatibility helps us to prove a conjecture of

Floret and Hunfeld [FH02] about the existence of certain mixed tensor norms. This is contained

in Section 2.5.

In the last section we show that compatibility may be applied to obtain some polynomial

characterizations of Banach spaces. For example, the compatibility may be used to prove that a

Banach space E is Asplund if and only if every Pietsch integral polynomial on E is nuclear (this

result was originally proven in [CG04], see Corollary 2.7.3).

Chapter 3: Coherent sequences and holomorphic mappings

We define the concept of coherent sequence of polynomial ideals. This is an adaptation of the

concept of compatibility in order to relate polynomial ideals of different degrees. Indeed, {Ak}∞k=1

is a coherent sequence if for every P ∈ Ak(E,F ), a ∈ E and γ ∈ E′, the polynomial dk−1P (a) is in

Ak−1(E,F ) and the polynomial γP belongs to Ak+1(E,F ). In addition, there is a condition that

control the norms of dk−1P (a) and γP . Moreover, since the only scalar ideal of linear operators is

E′, compatibility is a trivial concept in the scalar case. But there are many interesting examples

of coherent sequences of scalar valued ideals.

The chapter is divided in two sections. In the first one, we give examples of coherent sequences,

we show that coherence is preserved by several operations of the ideals and we relate the coherence

of a sequence with properties of the associated tensor norms. Many of these properties and examples

are similar to the ones given in the previous chapter, and are thus shown only once.

In the second section, given a coherent sequence A = {Ak}, we define a Fréchet space of

holomorphic functions of bounded type HbA associated to it. A holomorphic function f is in

HbA(E,F ) if the polynomials of the Taylor series of f at 0 belong to the Ak’s and the series has an

infinite “A-radius of convergence”. Several spaces of holomorphic functions that were previously

studied are particular cases of the spaces of functions we define. For example, bounded type

holomorphic functions of nuclear, Hilbert-Schmidt or integral type.

Given f ∈ Hb(E) and ϕ ∈ Hb(E)′ the product ϕ ∗ f ∈ Hb(E) is defined in [ACG91] by

ϕ ∗ f(x) = ϕ(f(x+ ·)). For the spaces HbA it is shown that:
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• Under the additional assumption of weakly differentiability (Definition 3.2.15) of the coherent

sequence A, the application Tϕ(f) = ϕ ∗ f is continuous in HbA(E) (Theorem 3.2.17).

• Any convolution operator in HbA(E), that is, an operator which commutes with translations,

is of the form Tϕ for some ϕ ∈ HbA(E)′ (Corollary 3.2.18).

We also prove that most of the examples of coherent sequences are weakly differentiable.

The Borel transform for a space Ak(E) of k-homogeneous polynomials is the mapping Bk :

Ak(E)′ → Pk(E′), defined by Bk(ϕ)(γ) = ϕ(γk). In many cases, the dual of a space of polyno-

mials may be identified, through the Borel transform, with another space of polynomials. This

is the case of nuclear, approximable, Hilbert-Schmidt polynomials and, in general, any minimal

ideal of polynomials. In these cases, we characterize the dual of HbA(E) as a space of exponential

type holomorphic functions on E′. This is applied to obtain the following generalization to infi-

nite dimensional spaces of a theorem of Godefroy and Shapiro [GS91] about the hypercyclicity of

convolution operators on H(Cn):

• If E′ is separable and {Bk(E
′)}k is a coherent sequence and {Ak(E)}k is such that Ak(E)′ =

Bk(E
′) for every k, then every convolution operator T : HbA(E) → HbA(E) which is not a

scalar multiple of the identity is hypercyclic (Theorem 3.2.38).

Some results of [AB99, Pet01, Pet06] are particular cases of the above theorem.

We also introduce the space of Schatten-von Neumann bounded type functions using interpola-

tion theory (based on prior work in [CKP92] on multilinear forms), and show that the above result

may be applied to that space.

At the end of this chapter, we show how bounded type functions associated to a coherent

sequence may be defined on balls and more general domains of Banach spaces.

Chapter 4: Multiplicative sequences and algebras of holomorphic functions

In this chapter we are interested in algebras of holomorphic functions of bounded type associated

to sequences of polynomial ideals. It is an immediate consequence of the definition that if A is a

coherent sequence then the product of a polynomial in A and some power of a linear functional is

again in A. However, the product of two polynomials in A is not necessarily in A (see Example 4.1.1).

We thus introduce multiplicative sequences of polynomial ideals, which are both coherent and closed

under products of polynomials. When A is a multiplicative sequence, then HbA(E) becomes a B0-

algebra. In the final section of this chapter we will show that several examples are actually locally

multiplicatively convex Fréchet algebras. Almost every example of coherent sequence considered so

far is also multiplicative. Moreover, multiplicativity is preserved by interpolation of ideals, taking

maximal and minimal hulls and composition with closed ideals of operators. Multiplicativity is

not preserved by taking adjoints. To obtain the multiplicativity of the adjoint sequence, we should

have a property “dual” to being closed under multiplication of polynomials. At first sight, it is not

clear what this property should be. Surprisingly, weakly differentiability, which was defined in the

previous chapter to deal with convolution operators, is the desired property. Indeed, if a sequence

of polynomial ideals is weakly differentiable, then the sequence of adjoints ideals is multiplicative

(Proposition 4.1.17). The converse is true if we have density of finite type polynomials. We also

relate the multiplicativity condition with properties of the associated tensor norms, and we show

that polynomial ideals associated to natural symmetric tensor norms (in the sense of [CG]) are

multiplicative.
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In the second section we use multiplicativity to obtain another characterization of convolution

operators on HbA.

In the third section we study the spectrum MbA(E) of the algebra HbA(E). It is shown in

[AGGM96] that whenever E is symmetrically regular the spectrum of Hb(E) (the algebra of all

holomorphic functions of bounded type) is a Riemann domain spread over the bidual E′′ (actually

they show this fact for functions defined on arbitrary open sets of E). Moreover, in [Din99, Section

6.3] it is proved that the extensions to each connected component of the spectrum may be considered

a function of bounded type. We establish those results for A-entire functions of bounded type, for

several multiplicative sequences A. As in the case of Hb, the Aron-Berner extension plays a crucial

role there. So we begin by studying when a sequence is closed under the Aron-Berner extension

(or AB-closed). Symmetric regularity was used in [AGGM96] to obtain symmetric Aron-Berner

extensions of multilinear forms. But most sequences of ideals of polynomials (different to {Pk})
are regular, that is, the multilinear forms associated to polynomials have symmetric Aron-Berner

extensions. Thus, the assumption of symmetric regularity on the space is not necessary for most

of our results:

• Let A be an AB-closed multiplicative sequence which is regular at a Banach space E. Then

(MbA(E), π) is a Riemann domain over E′′ and each connected component of (MbA(E), π) is

homeomorphic to E′′ (Theorem 4.3.14).

• If A is also weakly differentiable at E, then, for every function f ∈ HbA(E), the extension

f̃ to MbA(E) results an A-holomorphic function of bounded type when restricted to each

connected component of MbA(E) (Theorem 4.3.19).

These results may be applied for example when A is the sequence of integral or extendible polynomi-

als, or the maximal ideals associated to natural tensor norms. Finally, we address a Banach-Stone

type question on these algebras: if HbA(E) and HbB(F ) are (topologically and algebraically) iso-

morphic, what can we say about E and F? We obtain results in this direction which allow us to

show, for example, that if E or F is reflexive and A and B are any of the sequences of nuclear,

integral, approximable or extendible polynomials, then if HbA(E) is isomorphic to HbB(F ) it follows

that E and F are isomorphic.

In the last section, we investigate conditions of the sequence of ideals A under which the spaces

HbA(U) of A-holomorphic functions of bounded type on an open set are an algebra. To achieve

this, we need to seek for better bounds on the norms of products of homogeneous polynomials in

the ideals Ak. The obtained bounds will allow us to show that in several cases the spaces HbA are

locally m-convex algebras.

Chapter 5: Envelopes of holomorphy

In this last chapter the algebra Hb of bounded type holomorphic functions on general domains is

studied in more detail. We consider the problem of extending holomorphic functions of bounded

type defined on an open subset U of a Banach space, to larger domains and determining if these

extensions are also of bounded type.

In the first section we study the Hb-envelope of holomorphy of a Riemann domain. We also

consider two alternative definitions of the envelope: the first one requires that extensions be also of

bounded type (we call it the Hb-Hb-envelope). The second one requires that evaluations on points

of the envelope be continuous functionals on Hb(X) (we call this one the strong Hb-envelope).
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Although the spectrum is known to have an analytic structure only in the symmetrically regular

case, we are able to give a characterization of the strong Hb-envelope of holomorphy of X as a

subset of the spectrum Mb(X), much in the spirit of the several complex variables theory, for

domains over arbitrary Banach spaces. We show that the Hb-envelope and the strong Hb-envelope

coincide (Theorem 5.1.7), and that whenever the Hb-Hb-envelope exists, it must also coincide with

the classical Hb-envelope (Theorem 5.1.11).

In the second section we study extensions of holomorphic functions of bounded type on an open

subset of E. We give a precise description of the Hb-envelope of a balanced open set U , which turns

out to be a (possibly larger) open subset of E. We prove some good properties of the extensions

of functions of Hb(U) to the envelope. In particular, we show:

• Let U be a bounded balanced open set and f ∈ Hb(U). Then the extension of f to the

Hb-envelope of U is of bounded type (Theorem 5.2.11).

However, this is not true for unbounded balanced open sets:

• There exist an unbounded open balanced subset U of c0, and a function f ∈ Hb(U) such that

the extension of f to the Hb-envelope of U is not of bounded type (Example 5.2.8).

This example answers a question posed by Hirschowitz [Hir72, Remarque 1.8]. This, in particular,

also shows that the Hb-Hb-envelope does not always exist and that the canonical extension of a

function of bounded type to the spectrum of Hb(U) is not necessarily of bounded type.

The entire functions of bounded type on a Banach space extend naturally to the bidual via

the Aron-Berner extension [AB78]. Thus it is also a natural problem to find the largest set of E′′

to which every bounded type function on a given set U ⊂ E extends. In section 3 we address

this problem. We define the AB-Hb-envelope of a domain U on E, which is, roughly speaking,

the largest domain Y over E′′ such that every bounded type function on U extend uniquely to

Y in such a way that this extension coincides locally with the Aron-Berner extension. We give a

characterization of this envelope in the case U is an open and balanced subset of a symmetrically

regular space.

In section 4 we consider Banach spaces for which finite type polynomials are dense in Hb(E).

When they are also reflexive, they are called Tsirelson-like spaces following [Vie07]. We characterize

the density of finite type polynomials in terms of the spectrum of Hb(U) (more precisely, in terms

of π(Mb(U)), the projection of the spectrum on E′′). We also show that Tsirelson-like spaces are

precisely the spaces where the holomorphic convexity of some U is equivalent to all the elements

of the spectrum being evaluations on points in U , extending some results of [Muj01] and [Vie07].

This means that Tsirelson-like spaces are the only spaces that behave as in the several complex

variables theory. We also give a Banach-Stone type result which generalizes some results in [Vie07]

and [CGM05].

In the last section we present some properties of the spectrum of Hb(U), somehow extending

the study of [AGGM96] and [CGM05]. Even though, for a symmetrically regular space E, the

extension of a bounded type entire function to the spectrum Mb(E) is of bounded type on each

sheet of the spectrum, we prove that usually it is not of bounded type on the whole spectrum.

More precisely, our result is:

• On any symmetrically regular Banach space in which there is a polynomial which is not

weakly continuous on bounded sets, there exist homogeneous polynomials whose extensions

are not of bounded type on the whole spectrum Mb(E) (Proposition 5.5.2).
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Then we concentrate in the case U = Bℓp to show that the structure of the spectrum in not what

one may expect from the case U = E, with E a symmetrically regular Banach space. In the latter

case, Mb(E) is the disjoint union of copies of E′′. However, we show that Mb(Bℓp) is not a disjoint

union of “unit balls”. Finally, for p ∈ N, we are able to distinguish a part of the spectrum where the

canonical extensions are of bounded type and which turns out to be a Hb-domain of holomorphy.



Chapter 1

Preliminaries

1.1 Polynomials on Banach spaces

Throughout this work E, F and G will be complex Banach spaces. BE and SE will denote the unit

ball and the unit sphere of E, respectively.

Definition 1.1.1. Let n ∈ N. An application P : E → F is an n-homogeneous polynomial if there

exist an n-linear mapping Φ : E × k. . . × E → F such that P (x) = Φ(x, . . . , x) for every x ∈ E. In

this case we will say that P is a polynomial associated to Φ and denote P = Φ̂.

Given a polynomial P there are many n-linear mappings which satisfy condition on Defini-

tion 1.1.1, but there exists only one which is symmetric (an n-linear mapping Φ is symmetric if

Φ(x1, . . . , xn) = Φ(xσ(1), . . . , xσ(n)) for every x1, . . . , xn and every permutation σ of {1, . . . , n}).
This symmetric n-linear form, which will be denoted by

∨
P , may be obtained from P via the po-

larization formula:

∨
P (x1, . . . , xn) =

1

2nn!

∑

εi=±1

ε1 . . . εnP
( n∑

i=1

εixi
)
.

Conversely, to each symmetric n-linear form we can associate an n-homogeneous polynomial. Thus

there exist a one to one and onto correspondence between n-homogeneous polynomials and n-linear

symmetric forms. We also denote TP :
⊗n,sE → F the linearization of P :

TP

(∑

j

xj ⊗ · · · ⊗ xj

)
=
∑

j

P (xj).

The following norm is defined for n-homogeneous polynomials:

‖P‖ = sup
x∈BE

‖P (x)‖.

An n-homogeneous polynomial P is continuous if and only if ‖P‖ <∞. It is easy to see that ‖P‖
is the least constant such that ‖P (x)‖ ≤ ‖P‖‖x‖n for every x ∈ E. We will denote by Pn(E,F ) the

Banach space of all continuous n-homogeneous polynomials from E to F , or Pn(E) when F = C.

Then (Pn(E,F ), ‖ · ‖) is a Banach space. We will convey that P0(E,F ) = F .

Denote by Lns (E,F ) the space of continuous n-linear symmetric forms from E to F . It is a

Banach space with the norm ‖Φ‖ = sup{‖Φ(x1, . . . , xn)‖ : x1, . . . , xn ∈ BE}. Then the polarization

formula implies that

‖P‖ ≤ ‖
∨
P‖ ≤ nn

n!
‖P‖.

9
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Thus the application
Pn(E,F ) → Lns (E,F )

P 7→
∨
P

is a Banach space isomorphism.

Example 1.1.2. Maybe the simplest class of polynomials is the class of finite type polynomi-

als, Pn
f (E,F ). An n-homogeneous polynomial P is of finite type if there exist γ1, . . . , γk ∈ E′,

y1, . . . , yk ∈ F such that P (x) =
∑
γj(x)

nyj for every x in E. If E is finite dimensional then

every polynomial on E is of finite type. The closure of finite type polynomials in Pn(E,F ) are

the approximable polynomials. The space of approximable polynomials is denoted by Pn
A(E,F ).

Every homogeneous polynomial on c0 is approximable (see [Din99, Propositions 1.59 and 2.8]), but

there, in general, are plenty of non approximable polynomials. For example, the 2-homogeneous

polynomial P (x) =
∑

k x
2
k on ℓ2 is not approximable.

Given P ∈ Pn(E,F ) and a ∈ E, we define the polynomial Pak ∈ Pn−k(E,F ) by

Pak(x) =
∨
P (ak, xn−k) =

∨
P (

k︷ ︸︸ ︷
a, . . . , a,

n−k︷ ︸︸ ︷
x, . . . , x).

We say that Pak is the polynomial obtained from P by fixing k variables at a. For k = 1, we write

Pa instead of Pa1 . The k-differential of a polynomial is the application dkP : E → Pk(E,F ) defined

by
dkP (x)

k!
(y) =

(
n

k

)
∨
P (xn−j, yj).

Then we have that P (x+ y) =
∑n

k=0

(n
k

)∨
P (xn−k, yk) =

∑n
k=0

dkP (x)
k! (y).

1.2 Ideals of homogeneous polynomials

The definition of polynomial ideals appeared first in [Bra84, Hol86] as an adaption of the definition

of ideals of multilinear mappings given by Pietsch [Pie84] (for more on this subject see [Flo01,

Flo02, FGa03, FH02]). A quasi-normed ideal of continuous n-homogeneous polynomials

is a pair (An, ‖ · ‖An) such that:

(i) An(E,F ) = An ∩ Pn(E,F ) is a linear subspace of Pn(E,F ) and ‖ · ‖An(E,F ) is a norm on it.

(ii) If T ∈ L(E1, E), P ∈ An(E,F ) and S ∈ L(F,F1), then S ◦ P ◦ T ∈ An(E1, F1) and

‖S ◦ P ◦ T‖An(E1,F1) ≤ ‖S‖‖P‖An(E,F )‖T‖n

(iii) z 7→ zn belongs to An(C,C) and has norm 1.

We now recall the definition of the ideals of polynomials which may be encountered in the

following chapters.

• Continuous polynomials, P.

The ideal of all continuous polynomials, with the usual norm of polynomials is a Banach ideal

of homogeneous polynomials. Other polynomial ideals with the usual norm of polynomials

are:
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– Finite type polynomials, Pf and approximable polynomials, PA, which were already de-

fined in Example 1.1.2.

– Compact polynomials, PK and weakly compact polynomials, PWK .

A polynomial P ∈ Pn(E,F ) is (weakly) compact if it maps bounded sets of E on

relatively (weakly) compact sets on F . PK and PWK are complete normed polynomial

ideals.

– Weakly continuous on bounded sets polynomials, Pw.

A polynomial P ∈ Pn(E,F ) is weakly continuous on bounded sets if the restriction of

P to any bounded set of E is continuous when the weak topology is considered on E

and the norm topology on F .

– Weakly sequentially continuous polynomials, Pwsc.

• Nuclear polynomials, PN .

A polynomial P ∈ Pk(E;F ) is said to be nuclear if it can be written as P (x) =
∑∞

i=1 γi(x)
kyi,

where γi ∈ E′, yi ∈ F for all i and
∑∞

i=1 ‖γi‖k ‖yi‖ <∞. The space of nuclear k-homogeneous

polynomials from E into F will be denoted by Pk
N (E;F ). It is a Banach space when we

consider the norm

‖P‖Pk
N (E;F ) = inf

{
∞∑

i=1

‖γi‖k ‖yi‖
}

where the infimum is taken over all representations of P as above.

• Integral polynomials, PPI and PGI .
A polynomial P ∈ Pk(E,F ) is Pietsch-integral if there exists a regular F -valued Borel

measure µ, of bounded variation on (BE′ , w∗) such that

P (x) =

∫

BE′

γ(x)n dµ(γ)

for all x ∈ E. The space of k-homogeneous Pietsch-integral polynomials is denoted by

Pk
PI(E,F ) and the integral norm of a polynomial P ∈ Pk

PI(E,F ) is defined as

‖P‖Pk
PI (E,F ) = inf {|µ|(BE′)} ,

where the infimum is taken over all measures µ representing P .

The definition of Grothendieck-integral polynomials is analogous, but taking the measure

µ to be F ′′-valued. The space of Grothendieck-integral polynomials is denoted by Pk
GI(E,F ).

For scalar valued polynomials, PGI = PPI and will be denoted by PI .

• Extendible polynomials, Pe.
A polynomial P : E → F is extendible if for any Banach space G containing E there

exists P̃ ∈ Pk(G,F ) an extension of P . We will denote the space of all such polynomials by

Pk
e (E,F ). For P ∈ Pk

e (E,F ), its extendible norm is given by

‖P‖Pk
e (E,F ) = inf{c > 0 : for all G ⊃ E there is an extension of P to G

with norm ≤ c}.
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• Multiple r-summing polynomials, Mr.

We need to recall the definition of the weak r-norm of a sequence: for x1, . . . , xm ∈ E, we

define

wr
(
(xi)mi=1

)
= sup

γ∈BE′

(∑

i

|γ(xi)|r
)1/r

.

A k-homogeneous polynomial P from E to F is multiple r-summing if there exists C > 0

such that for every choice of finite sequences (x
ij
j )

mj

ij=1 ⊂ E, j = 1, . . . , k, the following holds



m1,...,mk∑

i1,...,ik=1

‖
∨
P (xi11 , . . . , x

ik
k )‖r




1
r

≤ C · wr((xi11 )m1
i1=1) · · ·wr((x

ik
k )mk

ik=1).

The least of such constants C is called the multiple r-summing norm and denoted ‖P‖Mk
r (E,F ).

• r-dominated polynomials, Dr.

A k-homogeneous polynomial P from E to F is r-dominated if there exists C > 0 such that

for every finite sequence (xi)mi=1 ⊂ E the following holds

(
m∑

i=1

‖P (xi)‖ r
k

)k
r

≤ C · wr((xi)mi=1)
k.

The least of such constants C is called the r-dominated (quasi) norm (which is a norm

for r ≥ n) and denoted ‖P‖Dk
r (E,F ).

• Absolutely p-summing polynomials, Πp.

A k-homogeneous polynomial P from E to F is absolutely p-summing if there exists C > 0

such that for every finite sequence (xi)mi=1 ⊂ E the following holds

(
m∑

i=1

‖P (xi)‖p
) 1

p

≤ C · wp((xi)mi=1)
k.

The least of such constants C is called the absolutely p-summing norm.

• Strongly p-summing polynomials, Sp.
A k-homogeneous polynomial P from E to F is strongly p-summing if there exists C > 0

such that for every finite sequence (xi)mi=1 ⊂ E the following holds

(
m∑

i=1

‖P (xi)‖p
) 1

p

≤ C sup
Q∈B

Pk(E)

(∑

i

|Q(xi)|p
)1/p

.

The least of such constants C is called the strongly p-summing norm.

• r-factorable polynomials, Lr and strongly r-factorable polynomials, SLr.
A k-homogeneous polynomial P from E to F is r-factorable (strongly r-factorable) if there

exist a measure space (Ω, µ), a linear operator S ∈ L(E,Lr(Ω)) and Q ∈ Pk(Lr(Ω), F ′′)

(Q ∈ Pk(Lr(Ω), F )) such that P = Q ◦S (JF ◦P = Q ◦S). The quasi-norm considered is the

infimum of ‖Q‖Pk‖S‖kL over all factorizations of P .
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• ∞-compact polynomials: K∞.

A k-homogeneous polynomial P from E to F is ∞-compact if there exist a linear operator

S ∈ L(E, c0) and Q ∈ Pk(c0, F ) such that P = Q ◦ S. The norm considered is the infimum

of ‖Q‖Pk‖S‖kL over all factorizations of P .

There are also several ways to construct new polynomial ideals from given ones. We describe

some of the procedures which will be used later.

Composition Ideals

Let An be an ideal of n-homogeneous polynomials and B and C operator ideals. Following [Flo01],

we say that a polynomial P is in the composition ideal C ◦ An ◦ B if it admits a factorization

P = S ◦Q◦T , with S ∈ C, Q ∈ An and T ∈ B. The ideals being normed, we define the composition

quasi-norm

‖P‖C◦An◦B = inf{‖S‖C‖Q‖An‖T‖nB : all factorizations of P}. (1.1)

This quasi-norm is actually a λ-norm for some 0 < λ ≤ 1 [Flo01]. We say that the composition

ideal C ◦ An ◦ B is normed whenever the composition quasi-norm (1.1) is a norm.

A normed ideal of linear operators (polynomials) is closed if the norm considered is the usual

linear operator (polynomial) norm. If B and C are closed operator ideals and An is normed, then

C ◦ An ◦ B is normed. If B is t-normed, C is r-normed and An is s-normed, then C ◦ An ◦ B is

λ-normed, with 1
λ = n

t + 1
s + 1

r .

For example, Dn
r = Pn ◦ Πr and Lnr = Pn ◦ Lr (see [Sch91, Flo01]).

Minimal hull

Given a Banach ideal of n-homogeneous polynomials An, the minimal ideal Amin
n is defined as

A
min
n = F ◦ An ◦ F ,

where F is the ideal of approximable operators; and

‖P‖Amin
n

= inf ‖S‖F‖Q‖An‖T‖nF ,

where the infimum is taken over all factorizations P = SQT with S, T ∈ F , Q ∈ An.

Proposition 1.2.1. [Flo01]

• Amin
n ⊂ An with ‖ · ‖An ≤ ‖ · ‖Amin

n
.

• (Amin
n )min 1

= Amin
n .

• Amin
n is the smallest ideal of n-homogeneous polynomials such that Amin

n (M,N)
1
= An(M,N)

for every finite dimensional Banach spaces M,N .

• If E′ and F have the metric approximation property, then Amin
n (E,F )

1→֒ An(E,F ) and

Amin
n (E,F )

1
= Pf (E,F )

‖·‖An .

A Banach polynomial ideal is minimal if Amin
n = An.

For example, the ideals nuclear and approximable polynomials are minimal. Moreover Pmin
PI =

Pmin
GI = PN and Pmin = PA.
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Maximal hull

The maximal hull Amax
n of a normed polynomial ideal An is defined as the class of all P ∈ Pn(E,F )

such that

‖P‖Amax
n (E,F ) := {‖QFL ◦ P ◦ JEM‖An(M,L) : M ∈ FIN(E), L ∈ COFIN(F )} <∞,

where FIN(E) (COFIN(F )) denotes the set of finite dimensional (codimensional) subspaces of E

(F ), and QFL (JEM ) denote the projection from F onto L (injection from M into E).

Amax
n is the largest normed ideal of n-homogeneous polynomials that coincides isometrically

with An in finite dimensional spaces [Flo01, FH02].

A normed polynomial ideal An is called maximal if Amax
n = An.

Proposition 1.2.2. [Flo01]

• An ⊂ Amax
n with ‖ · ‖Amax

n
≤ ‖ · ‖An .

• (Amax
n )max 1

= Amax
n .

• Amax
n is the greatest ideal of n-homogeneous polynomials such that Amax

n (M,N)
1
= An(M,N)

for every finite dimensional Banach spaces M,N .

• (Amax
n )min 1

= Amin
n and (Amin

n )max 1
= Amax

n .

• If B, C are maximal ideals of linear operators and An is maximal, then C◦An ◦B is maximal.

For example, P,PI ,Pe,Dr,Mr,Pr are maximal ideals. Also, Pmax
N = PI and Pmax

A = P.

1.2.1 Symmetric tensor products

The theory of normed ideals of operators is closely related to the theory of tensor product of

Banach spaces. This relationship begun with the work of Grothendieck (see [Gro55]), who defined

the projective and injective norms on the (full) 2-fold tensor product of two Banach spaces E and

F :

Definition 1.2.3. Let E,F be a Banach space and denote by E⊗F the (full) 2-fold tensor product

of E and F .

1. The projective tensor norm of order 2, π, is the norm,

π(z,E ⊗ F ) = inf{
m∑

j=1

‖xj‖‖yj‖ : m ∈ N, z =
m∑

j=1

xj ⊗ yj}.

2. The injective tensor norm of order 2, ε, is the norm,

ε(z,E ⊗ F ) = sup{
∣∣∣
m∑

j=1

γ(xj)ϕ(yj)
∣∣∣ : γ ∈ BE′ , ϕ ∈ BF ′},

if z =
∑m

j=1 xj ⊗ yj.

We will denote by E⊗̂πF and E⊗̂εF the completion of the normed spaces (E⊗F, π) and (E⊗F, ε),
respectively.
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Grothendieck also proved the following theorem, relating the tensor product of Banach spaces

with some spaces of operators on E:

Theorem 1.2.4. (E⊗̂πF )′
1
= L(E,F ′) and (E⊗̂εF )′

1
= LGI(E,F ′).

Ryan, in his thesis [Rya80], introduced norms on the symmetric tensor product of Banach spaces

to study homogeneous polynomials. The projective and injective tensor norms for the symmetric

tensor product are defined as follows:

Definition 1.2.5. Let E be a Banach space and denote by
⊗n,sE the n-fold symmetric tensor

product of E.

1. The projective symmetric tensor norm, πs is the norm,

πs(z,
⊗n,s

E) = inf





m∑

j=1

|λj|‖xj‖n : m ∈ N, z =
m∑

j=1

λjx
n
j



 ,

where, xnj = ⊗nxj = xj ⊗ · · · ⊗ xj .

2. The injective symmetric tensor norm, εs is the norm,

εs(z,
⊗n,s

E) = sup




∣∣∣
m∑

j=1

λjγ(xj)
n
∣∣∣ : γ ∈ BE′



 ,

if z =
∑m

j=1 λjx
n
j .

The following results relate symmetric tensor norms with ideals of polynomials, see [Flo97]

([Vil03] or [CL05] for 4 ).

Theorem 1.2.6. Let E,F be Banach spaces.

1. Pn(E,F )
1
= L(

⊗̂n,s

πs
E,F ), where

⊗̂n,s

πs
E denotes the completion of (

⊗n,sE, πs). In particu-

lar, Pn(E)
1
=
(⊗̂n,s

πs
E
)′

.

2. Pn(E,F ′)
1
=
(⊗̂n,s

πs
E ⊗π F

)′
, where π denotes the two fold full projective tensor norm.

3. If E′ has the approximation property,
⊗̂n,s

πs
E′ 1

= PN (E), where we associate z =
∑m

j=1 λj ⊗n

γj ∈
⊗n,sE′ with the polynomial P z ∈ Pn(E) such that, P z(x) =

∑m
j=1 λjγj(x)

n for every

x ∈ E.

4. Pn
PI(E,F )

1
= LPI(

⊗̂n,s

εs
E,F ). The same is true if we replace Pietsch integral by Grothendieck

integral mappings. In particular, Pn
I (E)

1
=
(⊗̂n,s

εs
E
)′

.

5. Pn
A(E)

1
=
⊗̂n,s

εs
E′.

More generally, “reasonable” symmetric tensor norms are defined as follows.

Definition 1.2.7. A symmetric tensor norm of order n (or just s-tensor norm), α, is an assignment,

to each Banach space E of a norm α(·,⊗n,sE) on the n-fold symmetric tensor product
⊗n,sE

such that

(1) εs ≤ α ≤ πs on
⊗n,sE.

(2) α satisfies the metric mapping property, i.e., for every T ∈ L(E,F ),

‖ ⊗n,s T‖L(
Nn,s

α E→
Nn,s

α F ) ≤ ‖T‖nL(E,F ).
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An s-tensor norm α is called finitely generated if for every E and z ∈⊗n,sE,

α(z,
⊗n,s

E) = inf{α(z,
⊗n,s

M) : M ∈ FIN(E), z ∈
⊗n,s

M}.

For example, πs and εs are finitely generated s-tensor norms, see [Flo97].

Given an s-tensor norm α of order n, we may define a finitely generated s-tensor norm of order

n, α′, by ⊗n,s

α′
M

1
=
(⊗n,s

α
M ′
)′

for M ∈ FIN(M). α′ is called the dual norm of α. It follows that π′s = εs and ε′s = πs and that

for any finitely generated α, α′′ = α.

Also, given a scalar normed ideal of n-homogeneous polynomials, An, we can define a finitely

generated s-tensor norm α by ⊗n,s

α
M

1
= An(M

′),

for M ∈ FIN(M) and for z ∈⊗n,sE,

α(z;
⊗n,s

E) := inf
{
α(z;

⊗n,s
M) : M ∈ FIN(E), z ∈

⊗n,s
M
}
.

α is called the s-tensor norm associated to An. Note that An(M) =
⊗n,s

α M ′ =
(⊗n,s

α′ M
)′

for

every M ∈ FIN(M).

For example, the s-tensor norm associated to P and PA is εs and the s-tensor norm associated

to PI and PN is πs.

Theorem 1.2.8. Representation Theorems [Flo01, FH02]

• A normed ideal of n-homogeneous polynomials An is maximal if and only if An(E) =
(⊗̂n,s

α′ E
)′

,

where α is the s-tensor norm associated to An. The norm α′ is sometimes called the predual

norm to An.

• If An is a Banach ideal of n-homogeneous polynomials with associated s-tensor norm α. Then

the natural map ⊗̂n,s

α
E′ −→ An(E),

is a metric surjection for every Banach space E, and it is also an isometry if E has the

bounded approximation property.

We denote by η (or ηn if we want to specify the order) to the s-tensor norm which is dual to

the s-tensor norm associated to the ideal of extendible polynomials. Then, Pn
e (E) =

(⊗̂n,s

η E
)′

.

We know recall the definition of adjoint ideal ([Flo01]).

Definition 1.2.9. Let An be a normed ideal of n-homogeneous polynomials, with associated s-

tensor norm α. We may define the adjoint (or dual) ideal, A∗
n, by

A
∗
n(E)

1
=
(⊗̂n,s

α
E
)′
.

By the Representation theorem 1.2.8, A∗
n is a maximal ideal and A∗∗

n = Amax
n . Also, if E has

the bounded approximation property, then An(E)′
1
= A∗

n(E
′).

For example, P∗ = P∗
A = PI and P∗

N = P∗
I = P.

The above constructions may be carried out for vector valued ideals also and some representation

theorems can be proved, see Sections 2.5 and 2.6, and [Flo01, Section 7].
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1.3 Holomorphic functions on Banach spaces

We refer to [Muj86, Din99] for all the material of this section, except the analytic structure of the

spectrum which may be found in [AGGM96, DV04]. Let U ⊂ E be a an open subset. A mapping

f : U → F is holomorphic on U if it is continuous and Gateaux-holomorphic on U , that is, for each

ϕ ∈ F ′, x0 ∈ U and x ∈ E, the function λ 7→ ϕ◦f(x0 +λx) is holomorphic on some neighbourhood

of 0. The set of all holomorphic mappings on U will be denoted H(U,F ) (or H(U) if F = C). The

following are equivalent:

a. f is holomorphic on U .

b. f is Fréchet differentiable at each point x0 ∈ U , that is, there exist T ∈ L(E,F ) such that

lim
x→x0

f(x) − f(x0) − T (x− x0)

‖x− x0‖
= 0

c. The Taylor series expansion of f at x0 converges uniformly on a neighbourhood of each point

x0 ∈ U , that is, there are k-homogeneous polynomials dkf(x0)
k! ∈ Pk(E,F ), k ≥ 0, such that

f(x) =
∑∞

k=0
dkf(x0)

k! (x).

The polynomial dkf(x0)
k! is called the k-differential of f at x0 and the first differential (or just the

differential) of f at x0, d
1f(x0) coincides with the operator T of b. The radius of convergence of f

at x0, R, is defined as the supremum of all r > 0 such that the Taylor series of f at x0 converges

uniformly on the ball B(x0, r). The Cauchy-Hadamard formula states that 1
R = lim sup ‖dkf(x0)

k! ‖ 1
k .

We also have the Cauchy Integral Formula which states that

dkf(a)

k!
(x) =

1

2πi

∫

|λ|=r

f(a+ λx)

λk+1
dλ,

where f is a holomorphic function on the open subset U , a ∈ U , x ∈ E and r > 0 is such that

a + λx ∈ U for every |λ| ≤ r. As a corollary we have the Cauchy Inequality:
∣∣dkf(a)

k! (x)
∣∣ ≤

1
rk sup|λ|=r

∣∣f(a+ λx)
∣∣. In the case V ⊂ U is balanced, we have that

∥∥dkf(0)
k!

∥∥
V
≤ ‖f‖V , where, for

a function g : V → C, ‖g‖V denotes the supremum of |g| on V .

A subset A ⊂ U is U -bounded (denoted by A ⊂⊂ U) if it is bounded and bounded away

from the boundary of U (i.e. dist(A,U c) > 0). A function f : U → F is a holomorphic function of

bounded type if f maps U -bounded sets to bounded sets of F . For example, the function g : c0 → C,

g(x) =
∑

n x
n
n, where x = (xn)n, is entire (i.e. holomorphic on E) but it is not bounded in the unit

ball of E, thus it is not a bounded type function on E. It is a consequence of a theorem of Josefson

and Nissenzweig that on every infinite dimensional Banach space there are holomorphic functions

which are not of bounded type.

The space of holomorphic functions of bounded type on U is denoted by Hb(U,F ) (or Hb(U)

if F = C). Let Un = {x ∈ U : ‖x‖ ≤ n, dist(x,U c) ≥ 1
n}. Then we may define on Hb(U,F ), the

seminorms qn(f) = ‖f‖Un := sup{|f(x)| : x ∈ Un}. The space (Hb(U,F ), (qn)n) is a Fréchet space.

In case F = C, Hb(U) is a locally m-convex Fréchet algebra1.

It is known that for balanced open sets U , polynomials are dense in Hb(U) (see for example

[Muj86, Theorem 7.11]).

1A locally m-convex Fréchet algebra, or just Fréchet algebra, Y , is a Fréchet space which is an algebra and whose

topology may be given by seminorms q which are submultiplicative, i.e. q(xy) ≤ q(x)q(y) for every x, y ∈ Y .
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The entire functions of bounded type may be characterized as the entire functions such that

‖dkf(x0)
k! ‖ 1

k → 0 as k → ∞. In this case the topology of Hb(E,F ) may be described with the

seminorms pr(f) :=
∑∞

k=0 r
k‖dkf(x0)

k! ‖ 1
k , r > 0.

A Riemann domain (X, p) spread over a Banach space E is a Hausdorff topological space X

and a local homeomorphism p : X → E. If r > 0, x ∈ X and there exists a neighborhood V of x

such that p|V is an homeomorphism onto Br(p(x)), then V is denoted as Br(x). The distance of a

point x ∈ X to the boundary is defined as the distX(x) = sup{r > 0 : Br(x) exists}. A function

f : X → C is holomorphic on X if for each x ∈ X and r < distX(x), the function f ◦ (p|Br(x))
−1 is

holomorphic. For x ∈ X and r < distX(x), we define dkf(x)
k! =

dk(f◦(p|Br(x))
−1)(x)

k! .

A subset A ⊂ X is X-bounded if p(A) is bounded and distX(A) = inf{distX(x) : x ∈ A} is

positive. f : X → C is holomorphic of bounded type on X if it is holomorphic and it is bounded on

each X-bounded subset. The set of all holomorphic functions of bounded type on X is denoted by

Hb(X). The space Hb(X) is a Fréchet algebra when it is considered with the topology of uniform

convergence on X-bounded sets.

1.3.1 The Aron-Berner extension

There is a natural way to extend linear functionals on E to w∗-continuous linear functionals on

the bidual E′′. Aron and Berner [AB78] showed that this extension may be carried out also for

homogeneous polynomials and holomorphic functions of bounded type.

Let A ∈ Lns (E) be a symmetric n-linear form. The Aron-Berner extension of A, AB(A) is an

n-linear form on E′′. For x1, . . . , xn−1 ∈ E, note that A(x1, . . . , xn−1, ·) belongs to E′. Thus for

each z ∈ E′′, we may define z : Lns (E) → Ln−1
s (E) by,

z(A)(x1, . . . , xn−1) = z(A(x1, . . . , xn−1, ·)).

Similarly, for each 1 ≤ k < n, we can define z : Lks(E) → Lk−1
s (E). Thus the Aron-Berner extension

of A is defined by

AB(A)(z1, . . . , zn) = z1 ◦ · · · ◦ zn(A).

The Aron-Berner extension is not, in general, symmetric. Moreover, we have chosen an order to

pick the variables of A, and in general, the extension obtained depends on this order. However, it

has the following properties:

• If x ∈ E and z1, . . . , zn−1 ∈ E′′ then

AB(A)(x, z1, . . . , zn−1) = AB(A)(z1, x, . . . , zn−1) = · · · = AB(A)(z1, . . . , zn−1, x).

• It is w∗-w∗-continuous in the first variable (the last variable which is extended).

• If (xαk
)αk

⊂ E are nets converging to zk ∈ E′′, k = 1, . . . , n, then

AB(A)(z1, . . . , zn) = lim
α1

. . . lim
αn

A(xα1 , . . . , xαn).

• ‖AB(A)‖ = ‖A‖.

• AB(A) is separately w∗-continuous on each variable if and only if AB(A) is symmetric.
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A Banach space E is symmetrically regular if the Aron-Berner extension of each symmetric multi-

linear form is symmetric. For example, any reflexive Banach space, ℓ∞ and c0 are symmetrically

regular; ℓ1 is not symmetrically regular.

The restriction of AB(A) to the diagonal is unique, that is, the application E′′ ∋ z 7→
AB(A)(z, . . . , z) does not depend on the order of the variables chosen to extend A. Thus if

P ∈ Pn(E,F ), then its Aron-Berner extension AB(P ) ∈ Pn(E′′, F ′′) is uniquely defined as

AB(P )(z) := AB(
∨
P )(z, . . . , z). Davie and Gamelin proved that the Aron-Berner extension AB :

Pn(E) → Pn(E′′) is an isometry [DG89]. Moreover, they extended Goldstine’s theorem proving

that BE is polynomial-star dense in BE′′ , that is, for each z ∈ BE′′ there exists a net (xα)α ⊂ BE ,

such that P (xα) → P (z) for every polynomial P .

Given a holomorphic function f on E, we may extend each of the homogeneous polynomials

in the Taylor series of f to obtain a holomorphic function on some neighbourhood of E′′. This

procedure works fine for functions of bounded type:

• The Aron-Berner extension induces a continuous and multiplicative homomorphism AB :

Hb(E) → Hb(E
′′).

In contrast we have the following result: a holomorphic function f on c0 is extendible to a holo-

morphic function on ℓ∞ if and only if f belongs to Hb(c0).

The spectrum of Hb.

Let (X, p) be a Riemann domain over E. We will denote by Mb(X) the spectrum of the algebra

Hb(X), that is, the set of all non-zero continuous, linear and multiplicative functionals on Hb(X).

Thus, for each ϕ ∈Mb(X) there exists an X-bounded set B such that φ(f) ≤ supx∈B |f(x)|, for all

f ∈ Hb(X). In this case, we will write ϕ ≺ B. By a fundamental sequence of X-bounded sets we

will mean a sequence {An}n of X-bounded subsets such that if B is another X-bounded subset,

then there exists n0 such that B ⊂ An0 . We denote Xr := {x ∈ X : distX(x) ≥ 1
r and ‖p(x)‖ ≤ r}.

Note that {Xn}n∈N is a fundamental sequence of X-bounded sets.

For the case X = E, we can define an application π : Mb(E) → E′′ by π(ϕ) = ϕ|E′ . By the

Aron-Berner extension, the evaluations δz at points z ∈ E′′ are continuous homomorphisms, and

thus, E′′ is identified with a part of Mb(E). Note that π(δz) = z for every z ∈ E′′, therefore π is

surjective. In general, π is not injective. Indeed, the following holds:

• If there exists a polynomial P which is not weakly continuous on bounded sets then there

exists ϕ ∈Mb(E) such that ϕ 6= δπ(ϕ).

For a general Riemann domain (X, p), the mapping π : Mb(X) → E′′ is defined by π(ϕ)(γ) =

ϕ(γ ◦ p). If E is symmetrically regular, this mapping π provides the local homeomorphism that

makesMb(X) a Riemann domain over E′′ [AGGM96, DV04]. We briefly describe their construction.

Given f ∈ Hb(X), z ∈ E′′, the function X ∋ x 7→ AB
(dkf(x)

k!

)
(z) is holomorphic of bounded type.

For ϕ ∈Mb(E) such that ϕ ≺ Xn and z ∈ E′′, with ‖z‖ < 1
n , we may define ϕz ∈Mb(X) by2

ϕz(f) =
∞∑

k=0

ϕ
(
x 7→ AB

(dkf(x)

k!

)
(z)
)
.

If E is symmetrically regular, the Aron-Berner extensions of symmetric multilinear mappings are

symmetric, and this allows to prove that the sets Vϕ,r := {ϕz : ‖z‖ < r, } ⊂Mb(E), ϕ ∈Mb(X), ϕ ≺
2For X = E we may simply define ϕz(f) = ϕ(f(z + ·)), see [Din99, Section 6.3].



20 CHAPTER 1. PRELIMINARIES

Xr, constitute a neighbourhood basis for a Hausdorff topology onMb(X). Moreover, sup{distX(A) :

ϕ ≺ A} ≤ distMb(X)(ϕ). It is also proved π(ϕz) = π(ϕ) + z, and from this it is easy to see that π

is a local homeomorphism and therefore we have:

Theorem 1.3.1. [AGGM96, Corollary 2.4] and [DV04, Propositons 1.5 and 2.3] Let (X, p) is a

Riemann domain over a symmetrically regular Banach space E. Then (Mb(X), π) is a Riemann do-

main over E′′. Moreover, every bounded type holomorphic function f on X extend to a holomorphic

function f̃ on Mb(X) via its Gelfand transform (i.e. f̃(ϕ) = ϕ(f)).

In the case X = E, the connected component containing ϕ ∈ Mb(E) is the sheet of ϕ, S(ϕ) =

{ϕz : z ∈ E′′}. Therefore each connected component of Mb(E) is homeomorphic to E′′. It was

shown in [Din99, Section 6.3] that the extensions of bounded type entire functions on E to the

spectrum are of bounded type on each connected component of Mb(E) (see Proposition 5.5.2). In

contrast, if E is not symmetrically regular, the sets Vϕ,r do not even define a topology in Mb(E).



Chapter 2

Compatible polynomial ideals on

Banach spaces

In this chapter, in order to investigate the relationship between an operator ideal and its natural

polynomial extensions, we define the concept of compatibility. We study the stability of these

properties for maximal and minimal hulls, adjoint and composition ideals. We also relate these

concepts with conditions on the underlying tensor norms and with interpolation spaces. The content

of this chapter appears in [CDM09].

2.1 Definitions and general results

Many examples of polynomial ideals appear as generalizations of ideals of operators. We intend to

clarify the relationship between an ideal of operators and its possible generalization to higher de-

grees. In particular, we are interested in properties that are shared by the operator and polynomial

ideals.

Next lemma shows that any polynomial ideal is closed by the combined operation of fixing

variables followed by multiplication by a power of a linear functional.

Lemma 2.1.1. Let An be an ideal of n-homogeneous polynomials and P ∈ An(E,F ). If T1, . . . , Tn ∈
L(G,E), then the n-homogeneous polynomial given by Q(·) =

∨
P (T1(·), . . . , Tn(·)) belongs to An(G,F ).

Moreover, if 0 < j < n, γ ∈ E′, and a ∈ E, then

(a) γjPaj belongs to An(E,F ).

(b)
(
γjP

)
aj belongs to An(E,F ).

Proof. The first assertion follows from the polarization formula. Statement (a) follows from this

fact and the equality

γ(x)jPaj (x) =
∨
P (γ(x)a, . . . , γ(x)a, x . . . , x).

To prove (b), we expand
(
γjP

)
aj as

(
γjP

)
aj (x) =

1(n+j
j

)
j∑

i=0

(
j

i

)(
n

j − i

)
γ(a)iγ(x)j−i

∨
P (aj−i, xn−j+i)

=
1(n+j
j

)
j∑

i=0

(
j

i

)(
n

j − i

)
γ(a)i

(
γj−i Paj−i

)
(x),

21
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and use (a).

This result suggests that the operations of fixing a variable or multiplying by a linear functional

are inherent to the structure of polynomial ideals. These natural operations have been considered

by several authors to relate spaces of polynomials of different degrees. In particular, the operation of

fixing a variable is intrinsic to the definition of holomorphy type [Nac69] (see also [Din71, BBJP06]).

It also motivated the definition of ideal of polynomials “closed under differentiation” [BP05] and

the polynomial property (B) [BBJP06]. On the other hand, the operation of multiplying by a

linear functional originated the concept of ideal of polynomials “closed for scalar multiplication”

introduced in [BP05]. Our purpose is to relate ideals of polynomials with ideals of operators in this

chapter and ideals of polynomials of different degrees in the next one. In both cases, this can be

done by the natural operations mentioned above. The following definition consider the joint effect

of both operations with control of the ideal norms.

Definition 2.1.2. Let A be a quasi-normed ideal of linear operators. We say that the quasi-normed

ideal of n-homogeneous polynomials An is compatible with A (or that An and A are compatible)

if there exist positive constants A and B such that for every Banach spaces E and F , the following

conditions hold:

(i) For each P ∈ An(E,F ) and a ∈ E, Pan−1 belongs to A(E;F ) and

‖Pan−1‖A(E,F ) ≤ A‖P‖An(E,F )‖a‖n−1

(ii) For each T ∈ A(E,F ) and γ ∈ E′, γn−1T belongs to An(E,F ) and

‖γn−1T‖An(E,F ) ≤ B‖γ‖n−1‖T‖A(E,F )

We will sometimes write An ∼ A to denote that A and An are compatible.

Note that we could have defined analogously a notion of compatibility between two (or more)

quasi-normed ideals of homogeneous polynomials of different degrees. However we will restrict

ourselves to compare an operator ideal with an ideal of polynomials in this chapter and in the next

one a full sequence of k-homogeneous polynomial ideals {Ak}k∈N.

Although the definition of compatibility involves constants which relate the norms of the opera-

tors and the homogeneous polynomials, when the ideals are complete those constants automatically

exist. This means that if we can define the operations of fixing variables and multiplying by func-

tionals, then they are uniformly (in the Banach spaces E,F ) bounded. This is proved in the next

result.

Proposition 2.1.3. Let An,A be Banach ideals of n-homogeneous polynomials and linear operators

respectively. Suppose that for every Banach spaces E,F ,

(a) if a ∈ E and P ∈ An(E,F ) then Pan−1 ∈ A(E,F ), and

(b) if γ ∈ E′ and T ∈ A(E,F ) then γn−1T ∈ An(E,F ).

Then An is compatible with A, that is, the norm conditions in Definition 2.1.2 are automatically

satisfied.

Proof. Let us first prove that there exists a constant A > 0 (independent of the spaces E,F ) such

that, for every a ∈ E and P ∈ An(E,F ), ‖Pan−1‖A(E,F ) ≤ A‖a‖n−1‖P‖An(E,F ). We will prove this

proposition in three steps:
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(1) For fixed E,F and a ∈ E, the application

φan−1 : An(E,F ) → A(E,F )

P 7→ Pan−1 ,

is continuous.

Proof. Just apply the Closed Graph Theorem.

(3) For fixed E,F the mapping,

φ : E → L(An(E,F ),A(E,F ))

a 7→ φan−1(P ) = Pan−1 ,

is continuous. Thus here exists a constant A = AE,F > 0 such that, for every a ∈ E and

P ∈ An(E,F ), ‖Pan−1‖A(E,F ) ≤ A‖a‖n−1‖P‖An(E,F ).

Proof. By (1), the application φ is well defined. Step (2) then follows from the Multilinear

Closed Graph Theorem.

(2) There exists a constant A > 0 (independent of the spaces E,F ) such that, for every a ∈ E

and P ∈ An(E,F ), ‖Pan−1‖A(E,F ) ≤ A‖a‖n−1‖P‖An(E,F ).

Proof. Suppose that there exist Banach spaces Ek, Fk and ak ∈ Ek, with ‖ak‖ < 1
2k and

‖φan−1
k

‖ > k, where

φan−1
k

: An(Ek, Fk) → A(Ek, Fk)

P 7→ Pan−1
k

.

Let Pk ∈ Ak(Ek, Fk) such that ‖φan−1
k

(Pk)‖ > k‖Pk‖An(Ek,Fk). Define the spaces E =
⊕

k Ek
and F =

⊕
k Fk normed in any way such that the applications

Ek
ik→֒ E

πk→ Ek

Fk
ı̃k→֒ F

π̃k→ Fk,

have norm one. Let Qk be the polynomials Qk = ı̃k ◦ Pk ◦ πk ∈ An(E,F ). Since ‖ak‖ < 1
2k ,

we may define a =
∑

k ak ∈ E and also φan−1 : An(E,F ) → A(E,F ). Note that for every

x ∈ E,

φan−1(Qk)(x) =
∨
Qk(a

n−1, x) = ı̃k ◦
∨
P k(πk(a)

n−1, πk(x)) =
(
ı̃k ◦ (Pk)an−1 ◦ πk

)
(x).

Thus,

‖φan−1(Qk)‖A(E,F ) = ‖ı̃k ◦ (Pk)an−1 ◦ πk‖A(E,F ) ≥ ‖π̃k ◦ ı̃k ◦ (Pk)an−1 ◦ πk ◦ ik‖A(Ek ,Fk)

= ‖(Pk)an−1‖A(Ek ,Fk) > k.

Therefore φan−1 cannot be continuous, which contradicts (1).

The fact that there exist a constant B > 0 (independent of the Banach spaces E,F ) such that

for every γ ∈ E′ and every T ∈ A(E,F ), ‖γn−1T‖An(E,F ) ≤ B‖γ‖n−1‖T‖A(E,F ) can be proved

analogously.
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Even though it is not necessary to obtain the constants A and B to show that two Banach ideals

are compatible, we will also seek “good” constants mostly for two reasons: the first one is that

this kind of bounds will allow us in the next chapter to define holomorphic mappings associated to

sequences of ideals and the second is that they provide a bound for the norm of the derivatives of

homogeneous polynomials in different ideals.

The following lemma show a kind of converse to conditions (i) and (ii) of Definition 2.1.2.

Lemma 2.1.4. Let An be an ideal of n-homogeneous polynomials compatible with A and T ∈
L(E,F ). Then the following are equivalent:

a) T ∈ A(E,F ).

b) γn−1T belongs to An(E,F ) for all γ ∈ E′.

c) γn−1T belongs to An(E,F ) for some nonzero γ ∈ E′.

d) There exist P ∈ An(E,F ) and a ∈ E such that T = Pan−1 .

e) For each 0 6= a ∈ E, there exist P ∈ An(E,F ) such that T = Pan−1 .

Proof. The definition of compatibility implies that a) ⇒ b), a) ⇒ c), d) ⇒ a) and e) ⇒ a). Clearly

b) ⇒ c) and e) ⇒ d). So it sufices to prove that c) ⇒ a) and that a) ⇒ e).

c) ⇒ a): Suppose that Q = γn−1T belongs to An(E,F ) and choose a ∈ E such that γ(a) 6= 0.

Then Qan−1 ∈ A(E,F ), since An is compatible with A. Now,

Qan−1 =
1

n
γn−1(a)T +

n− 1

n
γn−2(a)T (a)γ.

So, we can express T as

T =
n

γn−1(a)
Qan−1 − n− 1

γ(a)
T (a)γ. (2.1)

Since T is a linear combination of a finite type operator and Qan−1 , we conclude that it belongs to

A(E,F ).

a) ⇒ e): Take T ∈ A(E,F ) and 0 6= a ∈ E and choose γ ∈ E′ such that γ(a) = 1. By equation

(2.1), T can be written as

T =
(
n(γn−1T ) − (n− 1)T (a)γn

)
an−1

and the polynomial P = n(γn−1T ) − (n− 1)T (a)γn belongs to An(E,F ).

The previous lemma allows to infer relationships between operator ideals from compatible poly-

nomial ideals.

Proposition 2.1.5. Let A1
n, . . . ,A

k
n,Bn be quasi-normed ideals of n-homogeneous polynomials com-

patible with A1, . . . ,Ak,B respectively. If for some E and F ,
⋂
j A

j
n(E,F ) ⊂ Bn(E,F ), then⋂

j Aj(E,F ) ⊂ B(E,F ).

Proof. For u ∈ ⋂j Aj(E,F ) and a nonzero γ ∈ E′, we have γn−1u ∈ ⋂j A
j
n(E,F ). Thus, γn−1u ∈

Bn(E,F ), and by Lemma 2.1.4, u ∈ B(E,F ).

The above proposition was proved, with a different terminology, by Botelho and Pellegrino

[BP05, Proposition 2] (see also [BBJP06]).

Note that we only need that A satisfies (ii) and B satisfies (i) in the definition to obtain the

conclusions of the proposition (in fact, none of the norm inequalities in (i) and (ii) are necessary).
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The previous proposition asserts that an ideal of n-homogeneous polynomials An can be com-

patible with at most one operator ideal A. We will see later that given an operator ideal there are

always many polynomial ideals compatible with it.

Before presenting examples, we need some technical results that will be frequently used through-

out this work.

Let σ :
⊗nE →⊗n,sE be the symmetrization operator

σ(x1 ⊗ · · · ⊗ xn) =
1

n!

∑

η∈Sn

xη(1) ⊗ · · · ⊗ xη(n),

where Sn denotes the set of all permutations of {1, . . . , n}.
The following result can be derived from [Har97, Corollary 3]. However, we provide a simple

proof for the sake of completeness.

Lemma 2.1.6. Let σ :
⊗nE →⊗n,sE be the symmetrization operator. Then, for any symmetric

n-tensor norm α and all a, b ∈ E we have

α
(
σ(a⊗ b⊗ · · · ⊗ b);

⊗n,s
E
)
≤ e‖a‖‖b‖n−1.

Proof. Let r ∈ C be a primary root of the unit: rn = 1 and rj 6= 1 for every 1 ≤ j < n. Let us see

that for all t > 0

σ(a⊗ b⊗ · · · ⊗ b) =
1

n2

n−1∑

j=0

rjtn−1
(
a+

rj

t
b
)n
.

Indeed, if P ∈ Pn(E), 〈P, σ(a ⊗ b⊗ · · · ⊗ b)〉 =
∨
P (a, b, · · · , b), and

〈
P,

1

n2

n−1∑

j=0

rjtn−1
(
a+

rj

t
b
)n〉

=
1

n2

n−1∑

j=0

rjtn−1P
(
a+

rj

t
b
)

=
1

n2

n−1∑

j=0

rjtn−1
n∑

i=0

(
n

i

)
∨
P
(
an−i,

(rj
t
b
)i)

=
tn−1

n2

n∑

i=0

(
n

i

)
1

ti

∨
P (an−i, bi)

n−1∑

j=0

rj(i+1)

=
tn−1

n2

(
n

n− 1

)
1

tn−1

∨
P (a, bn−1)n

=
∨
P (a, b, · · · , b).

Suppose that ‖a‖ = ‖b‖ = 1. Then for all t > 0 we have that

α
(
σ(a⊗ b⊗ · · · ⊗ b);

⊗n,s
E
)

≤ 1

n2

n−1∑

j=0

tn−1
∥∥r

j

t
b+ a

∥∥n

≤ 1

n2

n−1∑

j=0

tn−1
(1
t

+ 1
)n

=
1

n
tn−1

(1
t

+ 1
)n
.

Choosing t = 1
n−1 we obtain

α
(
σ(a⊗ b⊗ · · · ⊗ b);

⊗n,s
E
)
≤
(

n

n− 1

)n−1

≤ e.
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Thus for all a, b ∈ E,

α
(
σ(a⊗ b⊗ · · · ⊗ b)

)
= ‖a‖‖b‖n−1α

(
σ
( a

‖a‖ ⊗ b

‖b‖ ⊗ · · · ⊗ b

‖b‖
))

≤ e‖a‖‖b‖n−1.

From the previous proof we obtain the useful expression

σ(a⊗ b⊗ · · · ⊗ b) =
1

n2

1

(n− 1)n−1

n−1∑

j=0

rj
(
(n− 1)rjb+ a

)n
. (2.2)

Corollary 2.1.7. a) For any normed ideal An of n-homogeneous polynomials, γ, φ ∈ E′ and y ∈ F ,

we have

‖γφn−1y‖An(E,F ) ≤ e‖γ‖‖φ‖n−1‖y‖.

b) Let P ∈ Pn(E,F ), and a, b ∈ E. Then

∨
P (a, bn−1) =

1

n2

1

(n− 1)n−1

n−1∑

j=0

rjP
(
(n− 1)rjb+ a

)

and

‖
∨
P (a, bn−1)‖ ≤ e‖P‖‖a‖‖b‖n−1 .

Proof. a) Define T ∈ L(C, F ) as T (c) = cy. Then

‖γφn−1y‖An(E,F ) ≤ ‖γφn−1‖An(E,C)‖T‖L(C,F ) = ‖γφn−1‖An(E,C)‖y‖L(C,F )

Since we always have the norm one inclusion
⊗n,s

πs
E′ →֒ An(E,C), we obtain ‖γφn−1‖An(E,C) ≤

πs
(
σ(γ ⊗ φ⊗ · · · ⊗ φ);

⊗n,sE′
)
≤ e‖γ‖‖φ‖n−1, which ends the proof.

b) This follows from expression (2.2) and the previous lemma.

Now we show that most classical ideals of polynomials are compatible with the operator ideal

generally associated to it.

Example 2.1.8. Continuous homogeneous polynomials: Pn ∼ L.

As a consequence of the previous corollary, for each n, Pn is compatible with the ideal L of all

continuous linear operators with constants A = e and B = 1.

Similarly, the ideals of approximable, compact, weakly compact, weakly sequentially continu-

ous and weakly continuous on bounded sets n-homogeneous polynomials are compatible with the

corresponding operator ideals, with constants A = e and B = 1.

Example 2.1.9. Nuclear polynomials: Pn
N ∼ LN

Let P ∈ Pn
N (E,F ). For a ∈ E, it is immediate that Pan−1 is nuclear and ‖Pan−1‖Pk−1

N (E;F ) ≤
‖a‖n−1‖P‖Pk

N (E;F ). Also, by Corollary 2.1.7 a), we have that if T ∈ LN (E,F ) is a nuclear operator

then ‖γn−1T‖Pk+1
N (E;F ) ≤ e‖γ‖n−1‖T‖Pk

N (E;F ) for any γ ∈ E′. Therefore, the ideal of nuclear

polynomials is compatible with the ideal of nuclear operators with constants A = 1 and B = e.
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Example 2.1.10. Integral polynomials: Pn
PI ∼ LPI and Pn

GI ∼ LGI
The integral polynomials are compatible with the ideal of integral operators, with constants

A = 1 and B = e, as we will see in Sections 2.5 and 2.6.

Example 2.1.11. Extendible polynomials: Pn
e ∼ Le

The sequence of extendible polynomials is compatible with the ideal of extendible operators,

with constants A = e and B = 1:

(i) Take P ∈ Pn
e (E,F ) and a ∈ E, suppose E ⊂ G. If P̃ ∈ Pn(G,F ) is any exten-

sion of P to G, by the polarization formula, (P̃ )an−1 is an extension of Pan−1 to G with norm

‖(P̃ )an−1‖ ≤ e‖P̃‖‖a‖n−1 (by Corollary 2.1.7 b)). This implies that Pan−1 is extendible and

‖Pan−1‖Le ≤ e‖P‖Pn
e
‖a‖n−1.

(ii) Let T ∈ Lne (E,F ) and γ ∈ E′. If γ̃ is an extension of γ and T̃ an extension of T to G ⊃ E,

then γ̃n−1T̃ is an extension of γn−1T to G with norm at most ‖γ‖n−1‖T‖. Thus γn−1T ∈ Pn
e (E,F )

and ‖γn−1T‖Pn
e
≤ ‖γ‖n−1‖T‖Pn

e
.

Example 2.1.12. Multiple r-summing polynomials: Mn
r ∼ Πr

We will prove that Mn
r is compatible with the ideal of absolutely r-summing operators with

constants A = B = 1 as an immediate consequence of Example 3.1.9.

Example 2.1.13. r-dominated polynomials: Dn
r ∼ Πr

The ideals of r-dominated polynomials are compatible with the ideal of absolutely r-summing

operators with constants A = e and B = 1. This is a particular case of the composition ideals

considered in Section 2.3.

We will see a lot more of examples of compatible ideals later in this chapter. Now we see that

not all the usual polynomial extensions of an operator ideal are compatible.

Example 2.1.14. The ideal of absolutely 1-summing polynomials is not compatible with the ideal

of absolutely 1-summing operators: Πn
1 ≁ Π1.

We show that the ideal of absolutely 1-summing 2-homogeneous polynomials is not a compatible

extension of the ideal of absolutely 1-summing operators, exhibiting a 2-homogeneous absolutely

1-summing polynomial that does not verify condition (i).

Let P : ℓ2 → ℓ2 ⊗π ℓ2 be the polynomial given by P (x) = x⊗ x. Suppose that (xk)k is a weakly

1-summing sequence in ℓ2, then by Orlicz Theorem (see [DJT95, Theorem 3.12]), (xk)k is strongly

2-summing. Therefore
∑

‖P (xk)‖ =
∑

π(xk ⊗ xk, ℓ2 ⊗ ℓ2) =
∑

‖xk‖2 <∞

which means that P is absolutely 1-summing. On the other hand, let (en)n denote the canonic

basis in ℓ2. Let us see that Pe1 is not absolutely 1-summing. Note that Pe1(en) = e1⊗en+en⊗e1
2 does

not converge to 0 in ℓ2 ⊗ ℓ2-norm. To see this, take e′1 + e′n ∈ ℓ′2, then ‖(e′1 + e′n)
2‖P2(ℓ2) = 2 and

π(Pe1(en), ℓ2 ⊗ ℓ2) = sup{|Q(Pe1(en))| : Q ∈ P2(ℓ2), ‖Q‖ ≤ 1} ≥ 1

2
(e′1 + e′n)

2(Pe1(en))

=
1

2
(e′1 + e′n)(e1).(e

′
1 + e′n)(en) =

1

2

Thus the linear operator Pe1 is not completely continuous and therefore it is not absolutely 1-

summing (see [DJT95, Theorem 2.17]).

The same example shows, for real Banach spaces, the following (see [Dim03, Example 3.4]):
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Example 2.1.15. Strongly 1-summing polynomials are not compatible with the ideal of absolutely

1-summing operators.

2.1.1 Existence of a compatible operator ideal

We know that there can be more than one ideal of polynomials compatible with a given polynomial

ideal, for example the ideals of 2-dominated and multiple 2-summing 2-homogeneous polynomials

are both compatible with the ideal of absolutely 2-summing operators (we will see in the next

section that this is true for every operator ideal). Also, by Proposition 2.1.5 there exist at most one

operator ideal compatible with a given polynomial ideal. On the other hand not every polynomial

ideal is compatible with the commonly associated operator ideal (e.g. the absolutely 1-summing

polynomials above).

So it is natural to ask wether every polynomial ideal must have a (necessarily unique) compatible

operator ideal or not. We will now answer this question affirmatively, proving the following:

Theorem 2.1.16. Let An be a Banach ideal of n-homogeneous polynomials. Then there exists

a unique Banach ideal of operators A compatible with An. This operator ideal can be normed to

obtain compatibility constants 1 ≤ A,B ≤ e.

The proof will be given in several steps. First, we need the following Lemma, which is a variation

of Lemma 2.1.1.

Lemma 2.1.17. Let An a normed ideal of n-homogeneous polynomials and P ∈ An(E,F ). If

T1, . . . , Tn−1, S ∈ L(G,E), then the n-homogeneous polynomial Q(·) =
∨
P (T1(·), · · · , Tn−1(·), S(·))

belongs to An(G,F ). If T1 = · · · = Tn−1 then ‖Q‖An(G,F ) ≤ e‖T‖n−1
L(G,E)‖S‖L(G,E)‖P‖An(E,F ).

In particular, if S ∈ L(G,E), γ1, . . . , γk ∈ E′, k < n and a ∈ E, then γ1 . . . γk(Pak ◦ S) ∈
An(G,F ); and if γ ∈ E′ then:

(a) γn−1(Pan−1◦S) ∈ An(G,F ) with ‖γn−1(Pan−1◦S)‖An(G,F ) ≤ e‖γ‖n−1‖a‖n−1‖P‖An(E,F )‖S‖L(G,E).

(b) γ(Pa ◦ S) ∈ An(E,F ) with ‖γ(Pa ◦ S)‖An(E,F ) ≤ e‖γ‖‖a‖‖P‖An(E,F )‖S‖n−1.

Proof. It remains to prove the norm inequality in the case T1 = · · · = Tn−1 = T , since the rest was

proved in Lemma 2.1.1. Suppose moreover that ‖S‖ = ‖T‖ = 1.

As in Corollary 2.1.7, we can write Q in the following useful way:

Q(x) =
1

n2

1

(n− 1)n−1

n−1∑

j=0

rjP
(
(n− 1)rjT (x) + S(x)

)
,

where r is a primary root of the unit. Thus, defining, for each 0 ≤ j ≤ n− 1, the linear operator

Sj(x) = (n− 1)rjT (x) + S(x),

we have that

Q =
1

n2

1

(n − 1)n−1

n−1∑

j=0

rj
(
P ◦ Sj

)
.

Therefore, Q belongs to An(G,F ).
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For the estimation of the norm, it is enough to consider the case ‖S‖ = ‖T‖ = 1. Since

‖Sj‖ ≤ n, for every j = 0, . . . , n − 1, we obtain

‖Q‖An(G,F ) ≤
1

n2

1

(n − 1)n−1
n‖P‖An(G,F )n

n =
nn−1

(n− 1)n−1
‖P‖An(G,F ) ≤ e‖P‖An(G,F ).

For the particular cases, just note that γn−1 (Pan−1 ◦ S) (x) =
∨
P (γ(x)a, · · · , γ(x)a, S(x)), and

γ(Pa ◦ S)(x) =
∨
P (γ(x)a, S(x), · · · , S(x)).

As a consequence of this lemma we obtain the following.

Lemma 2.1.18. Let An be an ideal of n-homogeneous polynomials, let T ∈ L(E,F ) and fix a

nonzero γ0 ∈ E′. Then γn−1
0 T ∈ An(E,F ) if and only if γn−1T ∈ An(E,F ) for every γ ∈ E′.

Proof. Pick a ∈ E such that γ0(a) 6= 0. By Lemma 2.1.17, γn−1
(
γn−1
0 T

)
an−1 ∈ An(E,F ). We have

γn−1
(
γn−1
0 T

)
an−1 (x) =

γ(x)n−1

n

(
γ0(a)

n−1T (x) + (n− 1)γ0(a)
n−2γ0(x)T (a)

)
.

Therefore

(
γn−1T

)
(·) =

n

γ0(a)n−1

(
γn−1(·)(γn−1

0 T )an−1(·) − n− 1

n
γn−1(·)γ0(·)γ0(a)

n−2T (a)

)
,

and then γn−1T belongs to An(E,F ).

Now we can define, for a fixed polynomial ideal An, an operator ideal A, and a complete norm

on it. This norm also has some interesting properties that we present in the following proposition.

Proposition 2.1.19. Let An be an ideal of n-homogeneous polynomials. Define, for each pair of

Banach spaces E and F ,

A(E,F ) =
{
T ∈ L(E,F )/ γn−1T ∈ An(E,F ) for all γ ∈ E′

}
,

with ‖|T‖|A(E,F ) = supγ∈SE′
‖γn−1T‖An(E,F ). Then

(a) A is an ideal of operators and A(E,F ) = {Pan−1 ∈ L(E,F )/ P ∈ An(E,F ), a ∈ E}.

(b) ‖| · ‖|A(E,F ) is a norm on A(E,F ) and verifies

‖|T‖|A(E,F ) ≥ ‖T‖L(E,F ), for every T ∈ A(E,F ).

Moreover,
(
A(E,F ), ‖| · ‖|A(E,F )

)
is a Banach space.

(c) ‖|S ◦ T‖|A(E,F1) ≤ ‖S‖L(F,F1)‖|T‖|A(E,F ) for every S ∈ L(F,F1) and T ∈ A(E,F ).

(d) If E0 is a subspace of E with norm 1 inclusion i : E0 →֒ E, then

‖|T ◦ i‖|A(E0,F ) ≤ ‖|T‖|A(E,F ), for all T ∈ A(E,F ).
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Proof. (a) Clearly the sum and multiplication by scalars of members of A is again in A. So, to

prove that A is an ideal of operators, we have to show that it behaves well with compositions.

Consider T ∈ A(E,F ), R ∈ L(E1, E) and S ∈ L(F,F1). Let us prove that S ◦T ◦R ∈ A(E1, F1).

Let γ ∈ E′ such that γ ◦R 6= 0. Then γn−1T ∈ An(E,F ) and η = γ ◦R ∈ E′
1. By Lemma 2.1.18,

it suffices to show that ηn−1
(
S ◦ T ◦R

)
∈ An(E1, F1). This follows from the equalities:

(
ηn−1

(
S ◦ T ◦R

))
(x) = γn−1

(
R(x)

)
S
(
T
(
R(x)

))
=
(
S ◦ (γn−1T ) ◦R

)
(x).

Therefore A is an ideal of operators.

To prove the equivalent definition of A, suppose T = Pan−1 with P ∈ An(E,F ) and a ∈ E.

Then by Lemma 2.1.17, γn−1T belongs to An(E,F ), for all γ ∈ E′, and thus T ∈ A(E,F ).

Conversely, if T ∈ A(E,F ) then γn−1T ∈ An(E,F ) for every γ ∈ E′. Let a ∈ E such that

γ(a) = 1, then P = nγn−1T − (n− 1)T (a)γn is in An(E,F ) and Pan−1 = T .

(b) It is straightforward to prove that we defined a norm.

Let T ∈ A(E,F ), take x ∈ SE such that ‖T (x)‖ > ‖T‖L(E,F ) − ε and γ ∈ SE′ such that

|γ(x)| = 1. Then,

‖|T‖|A(E,F ) ≥ ‖γn−1T‖An(E,F ) ≥ ‖γn−1T‖Pn(E,F ) ≥ ‖γ(x)n−1T (x)‖ > ‖T‖L(E,F ) − ε.

Since this is true for every ε > 0, we have that ‖|T‖|A(E,F ) ≥ ‖T‖L(E,F ).

Let us see that
(
A(E,F ), ‖| · ‖|A(E,F )

)
is complete. Suppose

∑
k∈N

‖|Tk‖|A(E,F ) is convergent.

Then
∑

k∈N
‖Tk‖L(E,F ) is convergent. Therefore there exists T ∈ L(E,F ) such that

∑
k Tk → T in

L(E,F ).

For each γ ∈ SE′, we know that γn−1Tk ∈ An(E,F ) and ‖γn−1Tk‖An(E,F ) ≤ ‖|Tk‖|A(E,F ). Thus,∑
k γ

n−1Tk converges in An(E,F ) and its limit has to be γn−1T . Therefore, T belongs to A(E,F ).

Moreover, since

sup
γ∈SE′

∥∥∥∥∥∥
γn−1

∑

k≥N

Tk

∥∥∥∥∥∥
An(E,F )

≤ sup
γ∈SE′

∑

k≥N

∥∥γn−1Tk
∥∥

An(E,F )
≤
∑

k≥N

‖|Tk‖|A(E,F ) → 0,

as N → ∞, we have that
∑

k Tk → T in
(
A(E,F ), ‖| · ‖|A(E,F )

)
.

(c) For every S ∈ L(F,F1) and T ∈ A(E,F ), we have:

‖|S ◦ T‖|A(E,F1) = sup
γ∈SE′

‖γn−1S ◦ T‖An(E,F1) = sup
γ∈SE′

‖S ◦ (γn−1T )‖An(E,F1)

≤ ‖S‖L(F,F1) sup
γ∈SE′

‖γn−1T‖An(E,F ) = ‖S‖L(F,F1)‖|T‖|A(E,F ).

(d) Let T ∈ A(E,F ) and γ ∈ E′
0. Consider γ̃ ∈ E′ a Hahn-Banach extension of γ preserving its

norm. Then
∥∥∥γn−1(T ◦ i)

∥∥∥
An(E0,F )

=
∥∥∥(γ̃ ◦ i)n−1(T ◦ i)

∥∥∥
An(E0,F )

=
∥∥(γ̃n−1T ) ◦ i

∥∥
An(E0,F )

≤ ‖γ̃n−1T‖An(E,F ).

Taking supremum we have that

‖|T ◦ i‖|A(E0,F ) ≤ ‖|T‖|A(E,F ).
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The following proposition shows that the norm defined on A is “almost ideal”, in the sense that

satisfies the ideal condition up to a constant.

Proposition 2.1.20. The norm ‖| · ‖|A defined on Proposition 2.1.19 verifies the “almost ideal”

property: for Banach spaces E and F , there exists a constant c > 0 such that, for all Banach spaces

E1, F1 and all operators R ∈ L(E1, E), T ∈ A(E,F ) and S ∈ L(F,F1), it follows that

‖|S ◦ T ◦R‖|A(E1,F1) ≤ c‖S‖L(F,F1)‖|T‖|A(E,F )‖R‖L(E1,E).

Proof. The left composition was proved in Proposition 2.1.19 (c).

For a fixed Banach space E1 and a fixed operator R ∈ L(E1, E), consider

(
A(E,F ), ‖| · ‖|A(E,F )

)
→

(
A(E1, F ), ‖| · ‖|A(E1,F )

)

T 7→ T ◦R

An application of the Closed Graph Theorem gives the existence of a constant cE1,R > 0 such that

‖|T ◦R‖|A(E1,F ) ≤ cE1,R‖|T‖|A(E,F ).

If we apply again the Closed Graph Theorem for

L(E1, E) → L(A(E,F ),A(E1 , F ))

R 7→ θR(T ) = T ◦R,

we obtain that there is a constant cE1 > 0 such that

‖|T ◦R‖|A(E1,F ) ≤ cE1‖|T‖|A(E,F )‖R‖L(E1,E). (2.3)

Now suppose that the result is not true. Then there are Banach spaces Ek, and Rk ∈ L(Ek, E),

‖Rk‖L(Ek,E) = 1, for all k ∈ N, such that

‖|T ◦Rk‖|A(Ek ,F ) > k.

Let E0 =
⊕

k∈N
Ek, and R̃k ∈ L(E0, E), R̃k = Rk ◦ πk, where πk : E0 → Ek is the (norm one)

projection. Denote by ik : Ek →֒ E0 the (norm one) inclusion. So we have

k < ‖|T ◦Rk‖|A(Ek ,F ) = ‖|T ◦Rk ◦ πk ◦ ik‖|A(Ek ,F )

= ‖|T ◦ R̃k ◦ ik‖|A(Ek ,F ) ≤ ‖|T ◦ R̃k‖|A(E0,F ),

the last inequality following from Proposition 2.1.19(d). Also, by (2.3),

‖|T ◦ R̃k‖|A(E0,F ) ≤ cE0‖|T‖|A(E,F )‖R̃k‖L(E0,E) ≤ cE0‖|T‖|A(E,F ),

which leads to a contradiction.

Now we present a result that shows how to convert an “almost ideal” norm into an ideal norm.

Proposition 2.1.21. Let A be an operator ideal with norm ‖| · ‖|A that verifies the “almost ideal”

property. Then we can define an equivalent norm ‖ · ‖A which is an ideal norm on A.
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Proof. We first define a norm ‖ · ‖′
A

in the following way. For T ∈ A(E,F ), let

‖T‖′
A(E,F ) = sup{‖|S ◦ T ◦R‖|A(E1,F1) : E1, F1 Banach spaces, ‖S‖L(F,F1) = ‖R‖L(E1,E) = 1}.

It is easy to see that ‖ · ‖′
A

is a norm on A equivalent to ‖| · ‖|A. Also, it is clear that verifies the

ideal property:

‖S ◦ T ◦R‖′
A(E1,F1)

≤ ‖S‖L(F,F1)‖T‖′A(E,F )‖R‖L(E1,E).

Last, if κ = ‖idC‖′A(C,C) then the norm ‖ · ‖A defined by

‖T‖A(E,F ) =
1

κ
‖T‖′

A(E,F )

is an ideal norm equivalent to ‖| · ‖|A.

Remark 2.1.22. When applying the previous proposition to our context (that is, An a polynomial

ideal and (A, ‖| · ‖|A) as in Proposition 2.1.19), using Proposition 2.1.19 (ii), we can simplify the

definition of ‖ · ‖′
A
:

‖T‖′
A(E,F ) = sup{‖|T ◦R‖|A(E1,F ) : E1 Banach space, ‖R‖L(E1,E) = 1}.

Then considering

‖T‖A(E,F ) =
‖T‖′

A(E,F )

‖idC‖′A(C,C)

we obtain an ideal norm on A equivalent to ‖| · ‖|A. Moreover,

κ = ‖z 7→ z‖′
A(C,C) = sup{‖|(z 7→ z) ◦ ϕ‖|A(E1,C) : E1 Banach space, ϕ ∈ SE′

1
}

= sup{‖|ϕ‖|A(E1,C) : E1 Banach space, ϕ ∈ SE′
1
}

= sup{‖γn−1ϕ‖An(E1,C) : E1 Banach space, ϕ, γ ∈ SE′
1
}.

Thus by Corollary 2.1.7 we have that 1 ≤ κ ≤ e.

We now can prove the existence, for any polynomial ideal, of a compatible operator ideal:

Proof. (of Theorem 2.1.16) Consider the normed ideal (A, ‖ · ‖A), with

A(E,F ) =
{
T ∈ L(E,F )/ γn−1T ∈ An(E,F ) for all γ ∈ E′

}

and ‖ · ‖A given by Remark 2.1.22 (ii). By the equivalence with ‖| · ‖|A and Proposition 2.1.19 (b),

for each E and F Banach,
(
A(E,F ), ‖ · ‖A(E,F )

)
is a Banach space.

Let us check that An is compatible with A.

It is clear, by definition, that if T ∈ A(E,F ) and γ ∈ E′ then γn−1T ∈ An(E,F ). On the

other hand take P ∈ An(E,F ) and a ∈ E. By Proposition 2.1.19 (a), Pan−1 belongs to A(E,F ).

By Proposition 2.1.3 we conclude that An is compatible with A. We can moreover estimate the

constants of compatibility. For the first one, by Lemma 2.1.17 (a),

‖Pan−1‖A(E,F ) =
1

κ
sup

E1 Banach

R∈SL(E1,E)

sup
‖γ‖=1

∥∥∥γn−1(Pan−1 ◦R)
∥∥∥

An(E1,F )
≤ e

κ
‖a‖n−1‖P‖An(E,F ).

For the other constant we have,

‖γn−1T‖An(E,F ) = ‖γ‖n−1

∥∥∥∥
γn−1

‖γ‖n−1
T

∥∥∥∥
An(E,F )

≤ ‖γ‖n−1‖|T‖|A(E,F ) ≤ κ‖γ‖n−1‖T‖A(E,F ).

The fact that A is the only ideal of operators compatible with An follows from Proposition

2.1.5.
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Thus every polynomial Banach ideal is compatible with an operator ideal. We showed that

absolutely 1-summing polynomials are not compatible with absolutely 1-summing operators. Then

the question that comes up now is which is the ideal of linear operators which is compatible with

the absolutely 1-summing polynomials.

As the following example shows, the unique compatible operator ideal may be far from “natu-

ral”. Note, however, that this unnatural compatibility has some interesting consequences.

Example 2.1.23. The ideal Πn
p of absolutely-p-summing n-homogeneous polynomials is compatible

with L, the ideal of continuous linear operators, with constants A = e and B = 1.

Proof. Obviously, for P ∈ Πn
p (E,F ) and a ∈ E, Pan−1 belongs to L(E,F ) and

‖Pan−1‖L(E,F ) ≤ e‖P‖Pn(E,F )‖a‖n−1 ≤ e‖P‖Πn
p (E,F )‖a‖n−1.

For the other condition, let T ∈ L(E,F ) and γ ∈ E′, then, for all x1, . . . , xm ∈ E,

( m∑

j=1

∥∥(γn−1T )(xj)
∥∥p
) 1

p ≤ ‖γ‖




m∑

j=1

( |γ(xj)|
‖γ‖ ‖γ‖n−2‖T‖‖xj‖n−1

)p



1
p

≤ ‖γ‖n−1‖T‖




m∑

j=1

( |γ(xj)|
‖γ‖

)p



1
p (

max
1≤j≤m

‖xj‖
)n−1

≤ ‖γ‖n−1‖T‖ sup
x′∈BE′




m∑

j=1

|x′(xj)|p



n
p

= ‖γ‖n−1‖T‖ωp
(
(xj)

m
j=1

)n
.

Thus, γn−1T is absolutely p-summing and

‖γn−1T‖Πn
p (E,F ) ≤ ‖T‖L(E,F )‖γ‖n−1.

Corollary 2.1.24. Suppose that Πn
p (E,F ) ⊂ An(E,F ) and that An is compatible with A1. Then

A1(E,F ) = L(E,F ).

Proof. This is just a special case of Proposition 2.1.5.

It is well known that every absolutely summing operator is weakly compact (see for example

[DJT95, Theorem 2.17]). In [Bot02] it was shown that not every dominated polynomial is weakly

compact by exhibiting an example of a polynomial from ℓ1 to ℓ1. We now show how the concept of

compatible ideals can be easily applied to prove that not every absolutely p-summing homogeneous

polynomial is weakly compact.

Corollary 2.1.25. E is reflexive if and only if every absolutely p-summing n-homogeneous poly-

nomial (from E to E, n ≥ 2) is weakly compact.

Proof. We know from the examples that the weakly compact homogeneous polynomials are com-

patible with the weakly compact operators (LWK ∼ Pn
WK). Suppose that Πn

p (E,E) ⊂ Pn
WK(E,E).

Then, by the previous Corollary, we have that L(E,E) = LWK(E,E) and thus E must be reflexive.

Conversely, if E is reflexive, every homogeneous polynomial is weakly compact.

Analogously we can prove that every absolutely p-summing n-homogeneous polynomial from E

to F (n ≥ 2) is weakly compact if and only if every linear operator from E to F is weakly compact.



34 CHAPTER 2. COMPATIBLE IDEALS

2.2 The smallest and the largest compatible ideals

Consider a normed ideal A of linear operators. In this section we define normed ideals of n-

homogeneous polynomials, MA
n and FA

n , compatible with A with the following property: if An is

another ideal compatible with A then for each E,F ,

FA
n (E,F ) ⊂ An(E,F ) ⊂ MA

n (E,F ).

In other words, MA
n y FA

n are, respectively, the largest and the smallest ideal of n-homogeneous

polynomials compatible with A.

Define, for Banach spaces E and F ,

MA
n (E,F ) =

{
P ∈ Pn(E,F ) / Pan−1 ∈ A(E,F ), ∀ a ∈ E

}
(2.4)

with norm

‖P‖MA
n (E,F ) := sup

‖a‖=1
‖Pan−1‖A(E,F ).

Also, we define

FA
n (E,F ) =

{
P ∈ Pn(E,F ) / P =

m∑

i=1

γn−1
i Ti, Ti ∈ A(E,F ), γi ∈ E′

}
(2.5)

with norm

‖P‖FA
n (E,F ) := inf

{
m∑

i=1

‖γi‖n−1‖Ti‖A(E,F )

}
,

where the infimum is taken over all possible representations of P as in equation (2.5).

In the case of A being complete, we define also

NA
n (E,F ) =

{
P ∈ Pn(E,F ) / P =

∞∑

i=1

γn−1
i Ti

}
(2.6)

where Ti ∈ A(E,F ), γi ∈ E′ and
∑∞

i=1 ‖γi‖n−1‖Ti‖A(E,F ) <∞, with norm

‖P‖NA
n (E,F ) := inf

{
∞∑

i=1

‖γi‖n−1‖Ti‖A(E,F )

}
,

where the infimum is taken over all possible representations of P as in equation (2.6).

Remark 2.2.1. It is easy to prove the following isometric identifications for the previously defined

ideals:

MA
n (E,F )

1
= Pn−1(E,A(E,F )),

FA
n (E,F )

1
= Pn−1

f (E,A(E,F )),

NA
n (E,F )

1
= Pn−1

N (E,A(E,F )).

Now we show that these polynomial ideals are the extreme cases among those compatible with

A:
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Proposition 2.2.2. Let A be a normed ideal of linear operators. Then:

a) MA
n is the largest normed ideal of n-homogeneous polynomials compatible with A.

b) FA
n is the smallest normed ideal of n-homogeneous polynomials compatible with A.

c) If A is complete, then NA
n is the smallest Banach ideal of n-homogeneous polynomials com-

patible with A.

Moreover, in all the cases compatibility constants are A = B = 1.

Proof. a) It is clear that MA
n is a normed ideal of n-homogeneous polynomials. Moreover, if An is

compatible with A and P ∈ An(E,F ), then Pan−1 ∈ A(E,F ). Therefore P ∈ MA
n (E,F ) and hence

An ⊂ MA
n .

It remains to verify that MA
n is compatible with A. Condition (i) is clearly satisfied with

constant A = 1.

To see that MA
n satisfies (ii), let T ∈ A(E,F ), γ ∈ E′ and a ∈ E. We have

(γn−1T )an−1 =
1

n
γ(a)n−1T +

n− 1

n
γ(a)n−2T (a)γ.

Then, (γn−1T )an−1 ∈ A(E,F ) and therefore, γn−1T ∈ MA
n(E,F ). Moreover, by the triangle

inequality,

‖(γn−1T )an−1‖A(E,F ) ≤ ‖γ‖n−1‖T‖A(E,F )‖a‖n−1.

Thus (ii) is satisfied with constant B = 1.

The proof of b) is a simpler version of the proof of c).

c) It is easy to see that NA
n is a normed ideal of n-homogeneous polynomials. Completeness

follows from Remark 2.2.1.

We now prove that if An is a Banach ideal of n-homogeneous polynomials compatible with A

(with constants Ã and B̃) then NA
n (E,F ) ⊂ An(E,F ). Consider P ∈ NA

n (E,F ) with representation

P =
∑∞

i=1 γ
n−1
i Ti, where Ti ∈ A(E,F ), γi ∈ E′. For every k ∈ N, by the compatibility of An with

A, we have that
∑k

i=1 γ
n−1
i Ti ∈ An(E,F ). Moreover, the series is convergent in An(E,F ) since

∞∑

i=1

‖γn−1
i Ti‖An(E,F ) ≤ B̃

∞∑

i=1

‖γi‖n−1‖Ti‖A(E,F ).

Hence P ∈ An(E,F ) and ‖P‖An(E,F ) ≤ B̃‖P‖NA
n (E,F ).

Finally, we prove that NA
n is compatible with A. It is immediate that (ii) is satisfied with

constant B = 1. To prove (i), consider a ∈ E, and P ∈ NA
n (E,F ) and choose a representation

P =
∑∞

i=1 γ
n−1
i Ti. Then

Pan−1 =
∞∑

i=1

[
1

n
γi(a)

n−1Ti +
n− 1

n
γi(a)

n−2Ti(a)γi

]
.

For each k ∈ N,
∑k

i=1

[
1
nγi(a)

n−1Ti +
n−1
n γi(a)

n−2Ti(a)γi
]
∈ A(E,F ), and

∞∑

i=1

∥∥∥∥
1

n
γi(a)

n−1Ti +
n− 1

n
γi(a)

n−2Ti(a)γi

∥∥∥∥
A(E,F )

≤
(

∞∑

i=1

‖γi‖n−1‖Ti‖A(E,F )

)
‖a‖n−1,

for every representation of P . Since A is a complete ideal, we obtain that Pan−1 ∈ A(E,F ) and

‖Pan−1‖A(E,F ) ≤ ‖a‖n−1‖P‖NA
n (E,F ),

for every a ∈ E. Thus (i) is satisfied with constant A = 1.
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Remark 2.2.3. Note that if A is any operator ideal, the polynomial ideals MA
n , FA

n and NA
n are

always different. Indeed, in the scalar valued case we have:

MA
n (E) = Pn(E), FA

n (E) = Pn
f (E) and NA

n (E) = Pn
N (E)

with equivalent norms. This means, in particular, that for any operator ideal, there are always

several different polynomial ideals compatible with it.

The following proposition is an immediate consequence of the definition of MA
n , FA

n and NA
n .

It provides a kind of converse of Proposition 2.1.5 for the special cases of largest and smallest

compatible ideals:

Proposition 2.2.4. Let A and B be normed operator ideals. If for some E and F , A(E,F ) ⊂
B(E,F ), then for all n ≥ 1, MA

n (E,F ) ⊂ MB
n (E,F ) and FA

n (E,F ) ⊂ FB
n (E,F ). If A and B are

complete, then we have also that NA
n (E,F ) ⊂ NB

n (E,F ).

Proposition 2.2.2 allows us to obtain the following characterization of all the polynomial ideals

which are compatible with a given operator ideal.

Proposition 2.2.5. Let A be a normed operator ideal and An a normed ideal of n-homogeneous

polynomials. Then the following are equivalent

(i) An is compatible with A with constants A and B

(ii) For every Banach space E,F , we have inclusions

FA
n (E,F )

j1→֒ An(E,F )
j2→֒ MA

n (E,F ),

with ‖j1‖ ≤ A and ‖j2‖ ≤ B.

2.3 Composition ideals

In this section we relate the compatibility concept with composition ideals. We prove that if we

have compatible ideals and compose them with closed operator ideals then the resulting ideals are

compatible. A similar result follows if we compose any operator ideal with a closed polynomial

ideal.

Proposition 2.3.1. Let A be a normed ideal of linear operators and An a normed ideal of n-

homogeneous polynomials compatible with A with constants A and B. If C and B are closed operator

ideals, then C ◦ An ◦ B is compatible with C ◦ A ◦ B with constants A and B.

The proof is analogous to the proof of Proposition 3.1.21, so we will not do it here.

Now we turn our attention to the composition of a closed polynomial ideal with arbitrary oper-

ator ideals. As a particular case, if B is an operator ideal, the composition ideal Pn◦B is analogous

to the Pietsch Factorization method of multilinear mappings. In [BBJP06] the authors norm the

polynomial ideal obtained by this method considering in equation (1.1) all the factorizations of the

multilinear operator P̌ rather that the factorizations of P . That is, the norm for the polynomial

ideal keeps the multilinear essence of Pietsch method. Although for a fixed n the norm given by

(1.1) and the norm in [BBJP06] are equivalent, the equivalence constants depend on n. Therefore,

compatibility constants for Pn ◦B do not follow from the analogous properties of the norm defined

in [BBJP06]. The following proposition can be proved as Proposition 3.1.22.
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Proposition 2.3.2. Let An be a closed ideal of n-homogeneous polynomials compatible with a closed

operator ideal A. If B and C are normed ideals of linear operators, then C ◦ An ◦ B is compatible

with C ◦ A ◦ B with constants A = e and B = 1.

Example 2.3.3. Let 1 < r < ∞, the ideal of r-dominated n-homogeneous polynomials Dn
r is the

composition ideal Pn ◦Πr [Sch91], where Πr is the ideal of absolutely r-summing operators. Thus,

by above proposition, Dn
r is compatible with Πr, with constants A = e and B = 1.

Similarly, for 1 ≤ r ≤ ∞, the ideal Pn
r of r-factorable n-homogeneous polynomials is compatible

with the ideal of r-factorable operators with constants A = e and B = 1.

2.4 Interpolation of ideals

In this section we will show that interpolation of compatible ideals give as a result new compatible

ideals. We first recall some facts about interpolation theory (see [BL76]).

Let X0 and X1 be two normed spaces. We say that X = (X0,X1) is a compatible couple if they

are both subspaces of a Hausdorff topological vector space. Then we can form their sum X0 +X1

and their intersection X0 ∩X1. If we define

‖a‖X0∩X1 = max{‖a‖X0‖a‖X1}, ‖a‖X0+X1 = inf
a=a0+a1

{‖a0‖X0‖a1‖X1},

then X0 +X1 and X0∩X1 become normed spaces, which are complete if X0 and X1 are comlete. A

normed space X is an intermediate space between X0 and X1 (or with respect to X) if X0 ∩X1 ⊂
X ⊂ X0 +X1 with continuous inclusions.

Example 2.4.1. For An,Bn any pair of normed ideal of n-homogeneous polynomial, E,F any

Banach spaces, the couple (An(E,F ),Bn(E,F )) is a compatible couple, since they are included in

the space of continuous n-homogeneous polynomials Pn(E,F ).

If An be any normed ideal n-homogeneous polynomial, then An(E,F ) is an intermediate space

for the compatible couple (Pn
N (E,F ),Pn(E,F )).

Remark 2.4.2. Let A be a normed ideal of operators, and An an normed ideal n-homogeneous

polynomials, then Proposition 2.2.5 may be rephrased as: An is compatible with A (at (E,F )) if

and only if An(E,F ) is an intermediate space for the couple (FA
n (E,F ),MA

n (E,F )).

Let X and Y be two compatible couples, then we say that two spaces X and Y are interpolation

spaces with respect to X and Y if X and Y are intermediate spaces with respect to X and

Y respectively, and if T : X → Y (this means that T |X0 : X0 → Y0 and T |X1 : X1 → Y1

are continuous) implies that T : X → Y is continuous. If ‖T‖X,Y ≤ ‖T‖θX0,Y0
‖T‖1−θ

X1,Y1
, with

0 ≤ θ ≤ 1 (‖T‖X,Y ≤ max{‖T‖X0,Y0, ‖T‖X1,Y1}) then X and Y are called exact interpolation

spaces of exponent θ (exact interpolation spaces).

An interpolation functor (or interpolation method) is a functor F from the category of com-

patible couples into the category of normed (Banach) spaces such that if X and Y are compatible

couples then F (X) and F (Y ) are interpolation spaces with respect to X and Y . Also, F (T ) = T

for all T : X → Y . We shall say that F is an exact interpolation functor (of exponent θ) if F (X)

and F (Y ) are exact interpolation spaces (of exponent θ) with respect to X and Y .

The most commonly used functors of interpolation are the complex method and the real methods

K and J . We will briefly describe and apply the complex method in Section 3.2.5.
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If A0
n and A1

n are normed ideals of n-homogeneous polynomials and F is an exact interpolation

functor (or exact of exponent θ) and for each Banach spaces E, F , we denote F (An)(E,F ) :=

F (An(E,F )) then F (An) is a normed ideal of n-homogeneous polynomials since the ideal prop-

erties can be rephrased as the continuity of certain linear operators. Similarly, the compatibility

conditions can be described by the continuity of the linear operators

An(E,F ) → A(E,F )

P 7→ Pan−1

and
A(E,F ) → An(E,F )

T 7→ γn−1T,

for every a ∈ E, γ ∈ E′. Thus we have:

Proposition 2.4.3. For i = 0, 1, let Ain be an ideal of n-homogeneous polynomials compatible with

the operator ideal Ai with constants Ai and Bi, and let F is an exact interpolation functor (of

exponent θ). Then, the polynomial ideal F (An) is compatible with the operator ideal F (A) with

constants max{A0, A1} (A1−θ
0 Aθ1) and max{B0, B1} (B1−θ

0 Bθ
1).

2.5 Relation with tensor norms

The aim of this section is to relate the concepts of compatibility with tensor norm properties. Given

an operator ideal A, a symmetric n-tensor norm α and Banach spaces E and F , we can define

An(E,F ) :
1
= A(

⊗n,s
α E,F ), where we identify P with the linear operator TP (i.e, P ∈ An(E,F ) if

and only if TP ∈ A(
⊗n,s

α E,F ) and ‖P‖An(E,F ) = ‖TP ‖A(
Nn,s

α E,F )). Since α is a tensor norm and

A an operator ideal, it is easy to see that An is a normed ideal of n-homogeneous polynomials. We

have also

Proposition 2.5.1. Let α be a symmetric n-tensor norm and A an operator ideal. Then, the

polynomial ideal An(E,F ) = A(
⊗n,s

α E,F ) is compatible with A, with constants A = e and B = e.

Proof. Let us check condition (i) of Definition 2.1.2. Take P ∈ An(E,F ). For a ∈ E, we define

Φan−1 : E →⊗n,s
α E by

Φan−1(x) = σ(a⊗ · · · ⊗ a⊗ x).

By Lemma 2.1.6, Φan−1 is continuous and

α
(
Φan−1(x);

⊗n,s
E
)
≤ e‖a‖n−1‖x‖.

Moreover, Pan−1(x) = (TP ◦ Φan−1)(x). Then, Pan−1 belongs to A(E,F ) and

‖Pan−1‖A(E,F ) ≤ ‖TP ‖A(E,F )‖Φan−1‖L(E,
Nn,s

α E) ≤ e‖a‖n−1‖P‖An(E,F ),

which gives condition (i) with A = e.

Now we prove condition (ii). For γ ∈ E′, define Ψγn−1 :
⊗n,s

α E → E, as Ψγn−1(xn) = γ(x)n−1x.

To see that Ψγn−1 is continuous, it is enough to consider the case α = εs. If z =
∑m

i=1 x
n
i , we

have

‖Ψγn−1(z)‖E =

∥∥∥∥∥
m∑

i=1

γ(xi)
n−1xi

∥∥∥∥∥
E

= sup
ϕ∈BE′

∣∣∣∣∣
m∑

i=1

γ(xi)
n−1ϕ(xi)

∣∣∣∣∣

= sup
ϕ∈BE′

|〈γn−1ϕ, z〉| ≤ sup
ϕ∈BE′

‖γn−1ϕ‖Pn
I (E)εs(z)
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By Corollary 2.1.7, ‖γn−1ϕ‖Pn
I (E) ≤ e‖γ‖n−1‖ϕ‖, so Ψγn−1 is continuous and

‖Ψγn−1‖ ≤ e‖γ‖n−1.

Take now u ∈ A(E,F ). Since Tγn−1u = u ◦ Ψγn−1 , we have Tγn−1u ∈ A(
⊗n,s

α E,F ). Therefore,

γn−1u ∈ An(E,F ) and

‖γn−1u‖An(E,F ) ≤ ‖u‖A(E,F )‖Ψγn−1‖ ≤ e‖γ‖n−1‖u‖A(E,F ),

from which (ii) follows, with constant B = e.

The previous proposition gives a simple way to obtain a great variety of compatible polynomial

ideals from a fixed operator ideal. Recall that, on the other hand, given a polynomial ideal, there

exists only one operator ideal compatible with it.

We use the results of this section to prove that the ideals Pn
PI and Pn

GI of Piestch and Grothendieck

integral polynomials are compatible with the ideals of Piestch and Grothendieck integral operators.

First, recall that Pn
PI(E,F ) = LPI(

⊗n,s
εs
E,F ) and Pn

GI(E,F ) = LGI(
⊗n,s

εs
E,F ) isometrically

[CL05, Vil03].

Corollary 2.5.2. The ideals Pn
PI and Pn

GI are compatible with the ideals of Piestch and Grothendieck

integral operators respectively, with constants A = 1 and B = e.

Proof. By Proposition 2.5.1 we have the compatibility with constants A = B = e. But in this case

it is easy to see that we can take A = 1. Indeed, let Φan−1 be the operator defined in the proof of

Proposition 2.5.1 and take x ∈ E. Then

εs
(
Φan−1(x),

⊗n,s
E
)

= εs
(
σ(a⊗ · · · ⊗ a⊗ x),

⊗n,s
E
)

= sup
γ∈BE′

|γ(a)n−1γ(x)| ≤ ‖a‖n−1‖x‖.

Therefore ‖Φan−1‖ = ‖a‖n−1.

If A is a maximal operator ideal, by the representation theorem [DF93, Section 17] there exists

a finitely generated (2-fold) tensor norm β such that:

A(E,F )
1
= (E ⊗β F

′)′ ∩ L(E,F )

A(E,F ′)
1
= (E ⊗β F )′

In this case, we write A = Lβ and say that A is dual to the tensor norm β. Floret [Flo01]

extends these concepts to the polynomial setting with the introduction of mixed tensor norms. We

recall his definitions:

Definition 2.5.3. (i) A mixed tensor norm δ of order n+1 is an assignment of a norm on
⊗n,sE⊗F

to each pair (E,F ) such that

(a) δ(
⊗n,s 1 ⊗ 1,

⊗n,s C ⊗ C) = 1

(b) δ satisfies the metric mapping property.

(ii) A polynomial ideal An is dual to the tensor norm δ (we write An = Pn
δ ) if for every E,F ,

An(E,F )
1
= (

⊗n,s
E ⊗ F ′, δ)′ ∩ Pn(E,F )

An(E,F
′)

1
= (

⊗n,s
E ⊗ F, δ)′
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A polynomial ideal An is maximal if and only if it is dual to a finitely generated mixed tensor

norm δ (see [Flo01, 7.8]).

Following [FH02], if α is a symmetric n-tensor norm and β is a 2-fold tensor norm, we denote

(α, β) the mixed tensor norm on
⊗n,sE ⊗ F given by

(⊗n,s
E ⊗ F, (α, β)

)
1
=
⊗n,s

α
E ⊗β F.

If A = Lβ and An is the polynomial ideal given by An(E,F ) = A(
⊗n,s

α E,F ), it follows that

An is dual to (α, β). In particular, if α and β are finitely generated, An is maximal.

In [FH02, 4.2], it is conjectured that not every maximal ideal is dual to a mixed tensor norm of

the form (α, β). We now show that this conjecture is true, presenting a maximal polynomial ideal

that is not dual to any (α, β) norm. First we need the following result, which is of independent

interest:

Proposition 2.5.4. Let A be an operator ideal and An an ideal of n-homogeneous polynomials

compatible with A. If An = Pn
(α,β) for some 2-fold tensor norm β and some symmetric n-tensor

norm α, then:

a) A = Lβ;
b) An(E,F ) = A(

⊗n,s
α E,F ).

Proof. We have An(E,F ) =
(⊗n,s

α E ⊗β F
′
)′ ∩ Pn(E,F ) = Lβ(

⊗n,s
α E,F ). Then, by Proposition

2.5.1, An is compatible with Lβ. By uniqueness of the compatible operator ideal (Proposition 2.1.5),

A = Lβ.

In [CDSP07] it is shown that the ideal of r-dominated n-linear forms is maximal and a finitely

generated n-tensor norm is presented to which it is dual. Using the same ideas we prove an

analogous statement for vector-valued polynomials.

For z ∈⊗n,sE ⊗ F we define

δnr (z,
⊗n,s

E ⊗ F ) = inf
{
wr((xi)

m
i=1)

nℓu((yi)
m
i=1) : z =

m∑

i=1

xni ⊗ yi

}
,

where 1
u + n

r = 1 and ℓu((yi)
m
i=1) = (

∑m
i=1 ‖yi‖u)

1
u .

Proceeding as in [DF93, 12.5] it can be seen that δnr is a finitely generated mixed tensor norm.

Also, we have:

Lemma 2.5.5. Dn
r is dual to the mixed tensor norm δnr . In particular, Dn

r is a maximal polynomial

ideal.

Proof. We show that Dn
r (E,F

′) = (
⊗n,sE ⊗ F, δnr )′. In a similar way it can be proved that

Dn
r (E,F ) = (

⊗n,sE ⊗ F ′, δnr )′ ∩ Pn(E,F ).

Let P ∈ Dn
r (E,F

′) and z ∈ (
⊗n,sE⊗F, δnr ). For any representation z =

∑m
i=1 x

n
i ⊗yi, we have

|〈P, z〉| =

∣∣∣∣∣
m∑

i=1

P (xi)(yi)

∣∣∣∣∣ ≤ ℓu((yi)
m
i=1)ℓ r

n
((P (xi))

m
i=1)

≤ ‖P‖Dn
r (E,F ′)wr((xi)

m
i=1)

nℓu((yi)
m
i=1).

This is true for any representation of z, thus P ∈ (
⊗n,sE ⊗ F, δnr )′ and ‖P‖(

Nn,s E⊗F,δn
r )′ ≤

‖P‖Dn
r (E,F ′).
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Conversely, let P ∈ (
⊗n,sE ⊗ F, δnr )′, choose ε > 0 and a sequence (xi)

m
i=1 ⊂ E. Then for each

i = 1, . . . ,m there exists an element yi ∈ BF , such that ‖P (xi)‖ ≤ P (xi)(yi)+ ε
m . Also, we can find

a sequence (λi)
m
i=1 of positive numbers, with ℓu

(
(λi)

m
i=1

)
= 1, such that

∑m
i=1 λi(P (xi)(yi) + ε

m) =

ℓ r
n

((
P (xi)(yi) + ε

m

)m
i=1

)
. Then

(
m∑

i=1

‖P (xi)‖
r
n

)n
r

≤
(

m∑

i=1

(
P (xi)(yi) +

ε

m

) r
n

)n
r

=

m∑

i=1

λi

(
P (xi)(yi) +

ε

m

)

≤
〈
P,

m∑

i=1

xni ⊗ λiyi
〉

+ ε

≤ ‖P‖(
Nn,s E⊗F,δn

r )′wr((xi)
m
i=1)

nℓu((λiyi)
m
i=1) + ε

Since ℓu((λiyi)
m
i=1) ≤ 1 and this is valid for any ε > 0, we have that P ∈ Dn

r (E,F
′) and

‖P‖Dn
r (E,F ′) ≤ ‖P‖(

Nn,s E⊗F,δn
r )′ .

Corollary 2.5.6. For any n ≥ 2, the ideal of r-dominated n-homogeneous polynomials Dn
r is

maximal but is not dual to any mixed tensor norm of the form (α, β).

Proof. We have seen that Dn
r is maximal in the previous lemma. Suppose that there exists n such

that Dn
r = Pn

(α,β), for some 2-fold tensor norm β and some symmetric n-tensor norm α.

Since the ideal of r-dominated polynomials is compatible with the ideal of absolutely r-summing

operators, the previous proposition would assure that Dn
r (E,F ) = Πr(

⊗n,s
α E,F ). Now consider

E = F = ℓ1 and P ∈ Pn(ℓ1, ℓ1) given by

P (x) =
∞∑

j=1

xnj ej.

Since P factors through the absolutely 1-summing inclusion ℓ1 →֒ ℓ2, P is r-dominated for all r ≥ 1

(in particular, for r ≥ n). However, we have that TP (enj ) = ej , and therefore TP ∈ L(
⊗n,s

α ℓ1, ℓ1)

cannot be weakly compact (independently of the choice of α). Consequently, TP is not absolutely r-

summing, which leads to a contradiction. Therefore, there is no α and β such that Dn
r = Pn

(α,β).

Note that the previous corollary also gives the following:

Corollary 2.5.7. There are mixed tensor norms that are not equivalent to any (α, β)-norm.

Since there are mixed tensor norms that are not of the form (α, β), it is now desirable to

point out conditions on a mixed tensor norm (or a sequence of mixed tensor norms) that ensure

compatibility (or coherence) with an operator ideal.

For a ∈ E and γ ∈ E′ we define the following mappings:

ΦF
an−1 : E ⊗ F → ⊗n,sE ⊗ F ΨF

γn−1 :
⊗n,sE ⊗ F → E ⊗ F

x⊗ y 7→ σ(an−1 ⊗ x) ⊗ y xn ⊗ y 7→ γ(x)n−1x⊗ y

Note that each of the conditions (i) and (ii) of Definition 2.1.2 can be seen as dual to continuity

properties of the mappings defined above when we consider F ′ instead of F . This allows us to state

the following result.
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Proposition 2.5.8. Let β be a 2-fold tensor norm and δ a mixed tensor norm of order n + 1.

Then, Pn
δ is compatible with Lβ (with constants A and B) if and only if the mappings ΦF ′

an−1

and ΨF ′

γn−1 are β-to-δ and δ-to-β continuous for every E and F , (with ‖ΦF ′

an−1‖ ≤ A‖a‖n−1 and

‖ΨF ′

γn−1‖ ≤ B‖γ‖n−1).

2.6 Maximal, minimal and adjoint ideals

In this section we show that compatibility is preserved by some other natural procedures usually

applied to polynomial ideals. First we consider the adjoint of a polynomial ideal. We show how to

construct the adjoint of a vector-valued normed polynomial ideal. This is vector-valued version of

[Flo01, 4.3] (see also the Preliminaries 1.2.1).

Let An be a normed ideal of n-homogeneous polynomials. For each pair of Banach spaces E and

F , we define the adjoint ideal A∗
n(E,F ) as a vector-valued version of [Flo01, 4.3]: for M ∈ FIN(E),

N ∈ FIN(F ) we define λ the mixed tensor norm of order n+ 1 given by

(⊗n,s
M ⊗N,λ

)
1
= An(M

′, N).

That is, z =
∑

i x
n
i ⊗ yi ∈ ⊗n,sM ⊗ N is associated to P z ∈ An(M

′, N), where P z(x′) =∑
i x

′(xi)
nyi; and λ(z;

⊗n,sM ⊗N) := ‖P z‖An(M ′,N).

For z ∈⊗n,sE ⊗ F , we define

λ(z;
⊗n,s

E ⊗ F ) := inf
{
λ(z;

⊗n,s
M ⊗N)

}
,

where the infimum is taken over all M ∈ FIN(E), N ∈ FIN(F ) such that z ∈ ⊗n,sM ⊗ N .

Finally, the adjoint ideal A∗
n is

A
∗
n(E,F ) :=

(⊗n,s
E ⊗ F ′, λ

)′⋂
Pn(E,F ).

Proposition 2.6.1. Let A be a normed operator ideal. If An is a normed ideal of n-homogeneous

polynomials compatible with A with constants A and B, then A∗
n is compatible with A∗ with constants

B and A.

The proof is analogous to Proposition 3.1.30.

To take maximal hulls of the ideals A and An also preserves the compatibility. Indeed, since

Amax
n coincides with A∗∗

n , we have the following:

Corollary 2.6.2. If An is compatible with A with constants A and B, then Amax
n is compatible with

Amax with constants A and B.

The results of this section allows us to obtain a different proof of the compatibility of the ideal

of Grothendieck integral polynomials. Since Pn
GI = (Pn

N )max, it is an immediate consequence of

Corollary 2.6.2, and Example 2.1.9 that the Grothendieck integral polynomials are compatible with

the ideal of Grothendieck integral operators with constants A = 1 and B = e. The same conclusion

follows using that Pn
GI = (Pn)∗ and Proposition 2.6.1 and Example 2.1.8.

The reciprocal of Proposition 2.6.1 and Corollary 2.6.2 is false in general, see Remark 3.1.33.

Now we consider the minimal hull of a polynomial ideal. Since F is a closed operator ideal, the

following corollary is just a particular case of Proposition 2.3.1.
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Corollary 2.6.3. If An is a Banach polynomial ideal compatible with a Banach operator ideal A,

with constants A and B, then Amin
n is compatible with Amin with constants A and B.

Finally, we relate the results of this section with the largest and smallest compatible polynomial

ideals defined in Section 2.2.

Proposition 2.6.4. Let A be a normed operator ideal. Then:

(i)
(
MA

n

)max 1
=
(
MAmax

n

)
;

(ii)
(
NA
n

)min 1
=
(
NAmin

n

)
.

Proof. We only prove (i) (the proof of (ii) is similar).

Since MA
n is compatible with A with constants A = B = 1, its maximal hull

(
MA

n

)max
is also

compatible with Amax with constants A = B = 1 by Corollary 2.6.2. Therefore
(
MA

n

)max ⊂ MAmax

n ,

and by Proposition 2.2.5 the inclusion has norm 1.

Conversely, forM,N ∈ FIN we have A(M,N)
1
= Amax(M,N). As a consequence, MA

n (M,N) =

MAmax

n (M,N) isometrically, which implies that MAmax

n ⊂
(
MA

n

)max
with norm one inclusion.

Thus, the last proposition states in particular that if A is a maximal (respectively minimal)

normed operator ideal then MA
n (respectively NA

n ) is maximal (respectively minimal).

We also have the following result that establishes a duality relationship between the smallest

and largest Banach polynomial ideals compatible with an operator ideal.

Proposition 2.6.5. Let A be a normed operator ideal. Then
(
NA
n

)∗
= MA∗

n .

Proof. Let M,N ∈ FIN . Then

(
NA
n

)∗
(M,N) = NA

n (M ′, N ′)′

= Pn−1
N

(
M ′,A(M ′, N ′)

)′

= Pn−1
(
M,A(M ′, N ′)′

)

= Pn−1
(
M,A∗(M,N)

)

= MA∗

n (M,N),

where second and last identities follow from Remark 2.2.1 and all equalities are isometric.

Since every adjoint ideal is maximal, we have
(
NA
n

)∗
=
(
MA∗

n

)max
. Therefore,

(
MA∗

n

)max
=

MA∗

n , by Proposition 2.6.4 (see the above comments).

2.7 Some applications

Suppose that we know how to characterize some property of a Banach space E in terms of linear

operators on (or into) it. We now show how the notion of compatibility may be useful to generalize

this kind of characterization in terms of homogeneous polynomials on (or into) E.

Banach spaces whose duals are isomorphic to ℓ1(Γ)

Lewis and Stegall [LS73] characterized Banach spaces whose duals are isomorphic to ℓ1(Γ) for some

set Γ in terms of nuclear and absolutely summing operators on E. Specifically they proved
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Theorem 2.7.1. Let E be a Banach space then the following are equivalent:

(i) E′ is isomorphic to ℓ1(Γ) for some set Γ.

(ii) For every Banach space F , Π1(E,F ) ⊂ LN (E,F ).

(iii) For every Banach space F , Π1(E,F ) ∩ LK(E,F ) ⊂ LN (E,F ).

This characterization was generalized by Cilia, D’Anna and Gutierrez [CDG04], using 1-dominated

polynomials. We will now show this result and some similar characterizations using the concept of

compatibility (see also [BP05] for more results in this direction).

Theorem 2.7.2. Let E be a Banach space then the following are equivalent:

(i) E′ is isomorphic to ℓ1(Γ) for some set Γ.

(ii) For every Banach space F , FΠ1
n (E,F ) ⊂ Pn

N (E,F ), for every (or for some) n.

(iii) For every Banach space F , FΠ1
n (E,F ) ∩ FLK

n (E,F ) ⊂ Pn
N (E,F ), for every (or for some) n.

(iv) For every Banach space F , Dn
1 (E,F ) ⊂ Pn

N (E,F ), for every (or for some) n.

(v) For every Banach space F , Dn
1 (E,F ) ∩ Pn

K(E,F ) ⊂ Pn
N (E,F ), for every (or for some) n.

Proof. (i) ⇒ (ii): by the theorem of Lewis and Stegall above, we have that Π1(E,F ) ⊂ LN (E,F )

for every Banach space F . By Proposition 2.2.4 we have that FΠ1
n (E,F ) ⊂ Pn−1

N (E,LN (E,F )) =

Pn
N (E,F ).

(ii) ⇒ (iii) is clear.

(iii) ⇒ (i): by Proposition 2.1.5 and the theorem of Lewis and Stegall.

(i) ⇒ (iv): it shown in [Sch91] that Dn
1 (E,F ) = Pn◦Π1(E,F ). On the other hand, Pn◦LN (E,F ) ⊂

PN (E,F ), indeed if T =
∑
γjyj ∈ LN (E,G), ‖γj‖E′ = 1, (‖yj‖G)j ∈ ℓ1 and Q ∈ Pn(G,F ) then

P (x) = QT (x) = Q(
∑

γj(x)yj) =
∑

j1,...,jn

γj1 . . . γjn
∨
Q(yj1 , . . . , yjn)

=
1

2nn!

∑

j1,...,jn

∑

ε1,...,εn=±1

ε1 . . . εn(ε1γj1 + · · · + εnγjn)n
∨
Q(yj1 , . . . , yjn).

Since (‖ε1γj1 + · · · + εnγjn‖n)j1,...,jn ∈ ℓ∞ and (‖Q(yj1 , . . . , yjn)‖)j1,...,jn ∈ ℓ1, we conclude that P

is nuclear (this was proved in [CDG04, Proposition 4]). We know that Π1(E,F ) ⊂ LN (E,F ) for

every Banach space F , and this implies easily that Dn
1 (E,F ) = Pn ◦Π1(E,F ) ⊂ Pn ◦ LN (E,F ) ⊂

PN (E,F ) for every Banach space F .

(iv) ⇒ (v) is clear.

(v) ⇒ (i) by Proposition 2.1.5 and the theorem of Lewis and Stegall.

Asplund spaces

Alencar proved in [Ale85, Theorem 1.3] that a Banach space is Asplund if and only if LPI(E,F ) ⊂
LN (E,F ) for every Banach space F and in that case LPI(E,F )

1
= LN (E,F ). In [Ale85] he proved

that if E is Asplund then Pn
PI(E,F ) = Pn

N (E,F ) with equivalent norms for every Banach space

F and every n (the isometry was proved by Carando and Dimant in [CD00, Theorem 1.4]). The

converse (which was first showed by Cilia and Gutierrez in [CG04], see also [CG05] and [BP05]) is

an easy Corollary of those results and Proposition 2.1.5.

Corollary 2.7.3. E is Asplund if and only if for some n ∈ N, Pn
PI(E,F ) ⊂ Pn

N (E,F ) for every

Banach space F .
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Proof. We have already seen in the examples that Pn
PI and Pn

N are compatible with LPI and LN
respectively. Thus Pn

PI(E,F ) ⊂ Pn
N (E,F ) for every Banach space F implies by Proposition 2.1.5

that LPI(E,F ) ⊂ LN (E,F ). Therefore by [Ale85, Theorem 1.3], E is Asplund. The converse is

proved in [Ale85].

Note that we can arrive to the same conclusion using any polynomial ideals compatible with

LPI and LN .

L∞-spaces

Stegall and Retheford [SR72] showed that a Banach space E is an L∞-space if and only if every ab-

solutely 1-summing operator on E is Grothendieck integral. Cilia, D’Anna and Gutierrez [CDG02]

proved a similar characterization but using 1-dominated homogeneous polynomials. They proved

that a Banach space E is an L∞-space if and only if every 1-dominated n-homogeneous polynomial

from E to F is G-integral, for every F and some n. One implication ([CDG02, Proposition 3.1]) is

also a corollary of Proposition 2.1.5.

Corollary 2.7.4. If for some n ∈ N, Dn
1 (E,F ) ⊂ Pn

GI(E,F ) for every Banach space F then E is

an L∞-space.

Proof. We have already seen in the examples that Pn
GI and Dn

1 are compatible with LGI and Π1

respectively. Thus Dn
1 (E,F ) ⊂ Pn

GI(E,F ) for every Banach space F implies by Proposition 2.1.5

that D1(E,F ) ⊂ LGI(E,F ). Therefore by [SR72], E is an L∞-space.





Chapter 3

Coherent sequences of polynomial

ideals and holomorphic mappings of

bounded type

In this chapter we relate sequences of polynomial ideals of different degrees. We define the concept

of coherence of a sequence of homogeneous polynomials of different degrees and study some of their

basic properties. We associate to each coherent sequence a Fréchet space of entire mappings of

bounded type.

For the case of scalar valued functions we study convolution operators. A result of Godefroy and

Shapiro states that the convolution operators on the space of entire functions on Cn, which are not

multiples of identity, are hypercyclic. We determine conditions on the coherent sequence that assure

the hypercyclicity of convolution operators on spaces of holomorphic functions on a Banach space.

Some known results come out as particular cases of this setting. We also consider holomorphic

functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von

Neumann classes.

We also study spaces of holomorphic mappings associated to coherent sequences on balls and

more general open sets. Most of the content of this chapter belong to the articles [CDM07, CDM09,

CDM].

3.1 Coherent sequences

In this chapter we relate sequences of polynomial ideals of different degrees. Our goal is to define

holomorphic functions of a given type as a series of homogeneous polynomials pertaining to ideals

which are related to each other, much in the spirit of holomorphy types defined by Nachbin [Nac69].

As in the previous chapter, the relationship between the ideals of polynomials in the sequence

is given by the operations of fixing a variable or multiplying by a linear functional, motivated by

Proposition 2.1.1.

A difference with the previous chapter is that compatibility has no sense for scalar ideals. This

is because the only scalar ideal of 1-homogeneous polynomials is the ideal of all continuous linear

forms, thus every scalar ideal of homogeneous polynomials is compatible with it.

Definition 3.1.1. Consider the sequence {Ak}Nk=1, where for each k, Ak is a quasi-normed ideal

of k-homogeneous polynomials and N is eventually infinite. We say that {Ak}k is a coherent

47
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sequence of polynomial ideals if there exist positive constants C and D such that for every

Banach spaces E and F , the following conditions hold for k = 1, . . . , N − 1:

(i) For each P ∈ Ak+1(E,F ) and a ∈ E, Pa belongs to Ak(E;F ) and

‖Pa‖Ak(E,F ) ≤ C‖P‖Ak+1(E,F )‖a‖

(ii) For each P ∈ Ak(E,F ) and γ ∈ E′, γP belongs to Ak+1(E,F ) and

‖γP‖Ak+1(E,F ) ≤ D‖γ‖‖P‖Ak(E,F )

Let A be a linear operator ideal. We say that the sequence of k-homogeneous polynomial ideals

{Ak}k is a coherent sequence associated to A if {Ak}k is a coherent sequence and A1 = A.

Also, we say that the sequence of k-homogeneous polynomial ideals {Ak}k is coherent at (E,F )

(or simply at E when F = C) if conditions (i) and (ii) are fulfilled for fixed Banach spaces E and

F .

Note that if {Ak}Nk=1 is a coherent sequence, then for each k = 1, . . . , N , the polynomial ideal

Ak is compatible with A = A1 with constants A ≤ Ck−1 and B ≤ Dk−1. Nevertheless, in most of

the natural examples one obtains better estimates.

As mentioned before, our definitions of compatibility and coherence are related to other concepts

studied by several authors. Indeed, property (i) in Definition 2.1.2 implies the polynomial ideal to

be closed under differentiation; property (ii) in Definition 3.1.1 implies that the polynomial ideal is

closed for scalar multiplication (see [BP05]) and property (i) in Definition 3.1.1 is what in [BBJP06]

is called “polynomial property (B)”. Also, coherent sequences are always global holomorphy types.

Although we are working with complex Banach spaces, it is clear that Definition 3.1.1 (and

also Definition 2.1.2) make sense for polynomial ideals on real Banach spaces. However, Botelho,

Braunss, Junek and Pellegrino showed that in the real case, no sequence of closed polynomial ideals

is coherent, in particular the sequence of ideals of all polynomials is not coherent:

Proposition 3.1.2. [BBJP06, Proposition 8.5] For real Banach spaces, there exists no coherent

sequence of closed polynomial ideals. Specifically, given any sequence of closed polynomial ideals,

there exists no constant C > 0 such that condition (i) in Definition 3.1.1 is satisfied.

Proof. Suppose that such a c > 0 exists. In [Har97], Harris defines the constants cn,n−1, as the

infimum of all constants K which satisfy that

‖dn−1P‖ = n! sup
‖a‖=1

‖Pa‖ ≤ K‖P‖,

and shows that there exist n-homogeneous polynomials Pn ∈ Pn((R2, ‖ · ‖1)) such that

n! sup
‖a‖=1

‖(Pn)a‖ = cn,n−1‖Pn‖.

Therefore there exist an ∈ BR2 such that n!‖(Pn)an‖ = cn,n−1‖Pn‖.
On the other hand, Revesz and Sarantopoulos [RS03] proved that there exist a constant K > 0

such that cn,n−1 ≥ Kn! lnn for every n ∈ N. Thus, Kn! lnn‖Pn‖ ≤ cn,n−1‖Pn‖ = n!‖(Pn)an‖ ≤
cn!‖Pn‖ for every n, which is a contradiction.
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Therefore, the concept of coherence for real Banach spaces is too restrictive, since the most

natural sequence of polynomial ideals fails to fulfill it. Note that even in this case, the ideal of all

polynomials of a fixed degree is compatible with the ideal of all operators. This means that the

concept of compatibility could be interesting also in the real case.

The following lemma show a kind of converse to conditions (i) and (ii) of Definition 3.1.1.

Lemma 3.1.3. Let {Ak}k be a coherent sequence of normed ideals of homogeneous polynomials

and P ∈ Pk(E,F ). Then the following are equivalent:

a) P ∈ Ak(E,F ).

b) γP belongs to Ak+1(E,F ) for all γ ∈ E′ (or for some nonzero γ ∈ E′).

c) For each 0 6= a ∈ E, there exists Q ∈ Ak+1(E,F ) such that P = Qa.

d) There exists Q ∈ Ak+1(E,F ) and a ∈ E such that P = Qa.

Proof. a) ⇒ b), c) ⇒ a) and d) ⇒ a) by the definition of coherence. c) ⇒ d) is obvious.

b) ⇒ a): Let R = γP ∈ Ak+1(E,F ) and choose a ∈ E such that γ(a) = 1. Proceeding as in the

proof of [AS76, Proposition 5.3], we can write P as

P =

k+1∑

j=1

(
k + 1

j

)
(−1)j−1γj−1Raj . (3.1)

By the coherence of {Ak}k, γj−1Raj belongs to Ak(E,F ) for each j and we conclude that so does

P .

a) ⇒ c): Let P ∈ Ak(E,F ) and 0 6= a ∈ E and take γ ∈ E′ such that γ(a) = 1. It is not difficult

to check that, for each j = 1, . . . , n+1, we have
(
γjPaj−1

)
a

= γj−1
(
γP
)
aj . Then, by equation (3.1)

we obtain

P =

k+1∑

j=1

(
k + 1

j

)
(−1)j−1

(
γjPaj−1

)
a

=



k+1∑

j=1

(
k + 1

j

)
(−1)j−1γjPaj−1



a

.

Clearly, Q =
∑k+1

j=1

(
k+1
j

)
(−1)j−1γjPaj−1 belongs to Ak+1(E,F ) by the coherence of the sequence {Ak}.

We present a result which is the analogous to Proposition 2.1.5 for coherent sequences of poly-

nomial ideals (see also [BP05, BBJP06]).

Proposition 3.1.4. Let {Ak}k and {Bk}k be coherent sequences. If for some E and F and some

k0, Ak0(E,F ) ⊂ Bk0(E,F ), then Ak(E,F ) ⊂ Bk(E,F ) for all k ≤ k0.

As a corollary, we obtain that there can be at most one coherent sequence {Bk}nk=1 with

Bn = An.

Let us see some examples of coherent sequences.

Example 3.1.5. Continuous homogeneous polynomials: P.

The sequence {Pk}∞k=1 is a coherent sequence with constants C = e and D = 1. Both results follow

from Corollary 2.1.7.

Similarly, the sequences of approximable, compact, weakly compact, weakly sequentially con-

tinuous and weakly continuous on bounded sets polynomials are coherent with the corresponding

operator ideals.
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Example 3.1.6. Nuclear polynomials: PN
As in Example 2.1.9 it is easy to show that the sequence of nuclear polynomials is coherent

with the ideal of nuclear operators with constants C = 1 and D = e.

Example 3.1.7. Integral polynomials: PPI and PGI
The sequence of integral polynomials is coherent with the ideal of integral operators, with

constants C = 1 and D = e, as we will see in Section 3.1.3.

Example 3.1.8. Extendible polynomials: Pe
As in Example 2.1.11 we can show that the sequence of extendible polynomials is coherent with

the ideal of extendible operators, with constants C = e and D = 1.

Example 3.1.9. Multiple r-summing polynomials: Mr

We set M1
r to be the ideal of absolutely r-summing operators, Πr. Let P ∈ Mk

r (E,F ). For

a ∈ E, it is immediate that Pa is multiple r-summing and ‖Pa‖Mk−1
r

≤ ‖a‖‖P‖Mk
r
. Also for any

γ ∈ E′, we have

(γP )∨(x1, . . . , xk+1) =
1

k + 1

k+1∑

j=1

γ(xj)
∨
P (x1, . . . , x̃j , . . . , xk+1)

where x̃j means that this coordinate is omitted. Then, by the triangle inequality,



m1,...,mk+1∑

i1,...,ik+1=1

‖(γP )∨(xi11 , . . . , x
ik+1

k+1 )‖r



1
r

≤

≤ 1

k + 1

k+1∑

j=1



m1,...,mk+1∑

i1,...,ik+1=1

|γ(xijj )|r
∥∥∥∥
∨
P (xi11 , . . . , x̃

ij
j , . . . , x

ik+1

k+1 )

∥∥∥∥
r



1/r

=
1

k + 1

k+1∑

j=1




mj∑

ij=1

|γ(xijj )|r
m1,...,mk+1∑

i1,...,ĩj ,...,ik+1=1

∥∥∥∥
∨
P (xi11 , . . . , x̃

ij
j , . . . , x

ik+1

k+1 )

∥∥∥∥
r



1/r

≤ 1

k + 1

k+1∑

j=1




mj∑

ij=1

|γ(xijj )|r‖P‖rMk
r

k+1∏

l=1, l 6=j

wr((x
il
l )ml
il=1)

r




1/r

≤ ‖γ‖‖P‖Mk
r
wr((x

i1
1 )m1

i1=1) · · ·wr((x
ik+1

k+1 )
mk+1

ik+1=1).

Hence, γP is multiple r-summing with ‖γP‖Mk+1
r

≤ ‖γ‖‖P‖Mk
r
.

Therefore, {Mk
r}k is a coherent sequence associated with the ideal of absolutely r-summing

operators with constants C = D = 1. Consequently, compatibility constants are also A = B = 1

as we said in Example 2.1.12.

Example 3.1.10. r-dominated polynomials: Dr

The sequence of ideals of r-dominated polynomials is coherent with the ideal of absolutely r-

summing operators with constants C = e and D = 1. We will prove this as a particular case of the

composition ideals in Section 3.1.2.

As in the case of compatibility, not all the usual polynomial extensions of an operator ideal

form a coherent sequence.
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Example 3.1.11. The sequence of absolutely p-summing polynomials is not coherent.

This is a consequence of Example 2.1.23, since if the sequence were coherent then the absolutely

p-summing polynomials should be compatible with the absolutely p-summing operators.

One could still wonder which should be the sequence of ideals A1, . . . ,An+1 which is coherent

with An+1 = Πn+1
p . A reasoning similar to the proof of 2.1.23 proves:

Example 3.1.12. The sequence {L,P2, . . . ,Pn,Πn+1
p } is coherent with constants C = e and

D = 1.

From this example and Proposition 3.1.4 we have

Corollary 3.1.13. Suppose that {A1, . . . ,An+1} is a coherent sequence and that Πn+1
p (E,F ) ⊂

An+1(E,F ). Then Ak(E,F ) = Pk(E,F ) for every k = 1, . . . , n.

In particular, every absolutely p-summing (n + 1)-homogeneous polynomial from E to F is

weakly compact then every k-homogeneous polynomial from E to F is weakly compact, for each

k ≤ n.

To end this section we will prove that, as in the previous example, given a Banach ideal of

(n + 1)-homogeneous polynomials An+1, there always exist Banach ideals A1, . . . ,An such that

{Ak}n+1
k=1 is a coherent sequence. The steps to prove this will be the same as in Subsection 2.1.1.

We will state all the preliminary results, but we will just prove the few differences with the results

of that subsection.

Lemma 3.1.14. Let An an ideal of n-homogeneous polynomials. Let Q ∈ Pn−1(E,F ) and fix a

nonzero γ0 ∈ E′. Then γ0Q ∈ An(E,F ) if and only if γQ ∈ An(E,F ) for every γ ∈ E′.

Proof. Let 0 6= γ ∈ E′ and pick a ∈ E such that γ0(a) 6= 0. We will prove by induction that for

1 ≤ k ≤ n, γγn−k0 Qan−k belongs to An(E,F ). The Lemma follows taking k = n.

For k = 1, γγn−1
0 Qan−1 = γγn−1

0 Q(a) ∈ An(E,F ) since it is a finite type polynomial.

Suppose that γγn−k0 Qan−k belongs to An(E,F ) (with k < n), then, using Lemma 2.1.17, we

deduce that γγn−k−1
0 (γ0Q)an−k ∈ An(E,F ). But

γγn−k−1
0 (γ0Q)an−k = αγ0(a)γγ

n−k−1
0 Qan−k−1 + (1 − α)γγn−k0 Qan−k ,

for some α ∈ (0, 1). Therefore

γγn−k−1
0 Qan−k−1 =

1

αγ0(a)

(
γγn−k−1

0 (γ0Q)an−k − (1 − α)γγn−k0 Qan−k

)
∈ An(E,F ).

As we did in Section 2.1.1 we now define, for a fixed polynomial ideal An+1, another polynomial

ideal An, and a complete norm on it.

Proposition 3.1.15. Let An+1 be an ideal of (n + 1)-homogeneous polynomials. Define, for each

pair of Banach spaces E and F ,

An(E,F ) =
{
P ∈ Pn(E,F )/ γP ∈ An+1(E,F ) for all γ ∈ E′

}
,

with ‖|P‖|An(E,F ) = supγ∈SE′
‖γP‖An+1(E,F ). Then
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(a) An is an ideal of n-homogeneous polynomials and

An(E,F ) = {Qa ∈ Pn(E,F ) : Q ∈ An+1(E,F ), a ∈ E} .

(b) ‖| · ‖|An(E,F ) is a norm on An(E,F ) and verifies

‖|P‖|An(E,F ) ≥ ‖P‖Pn(E,F ), for every P ∈ An(E,F ).

Moreover,
(
An(E,F ), ‖| · ‖|An(E,F )

)
is a Banach space.

(c) ‖|S ◦ P‖|An(E,F1) ≤ ‖S‖L(F,F1)‖|P‖|An(E,F ) for every S ∈ L(F,F1) and P ∈ An(E,F ).

(d) If E0 is a subspace of E with norm 1 inclusion i : E0 →֒ E, then

‖|P ◦ i‖|An(E0,F ) ≤ ‖|P‖|An(E,F ), for all P ∈ An(E,F ).

Proof. We will only show how to prove that An(E,F ) ⊂ {Qa ∈ Pn(E,F )/ Q ∈ An+1(E,F ), a ∈ E}.
The rest of the proof is analogous to Proposition 2.1.19.

Let P ∈ An(E,F ), we will show that there exists Q ∈ An+1(E,F ) and a ∈ E, such that Qa = P .

For every γ ∈ E′, we know that γP ∈ An+1(E,F ). Let a ∈ E, γ ∈ E′ such that γ(a) = 1, and

define

Q =

n∑

k=0

αkγ
k+1Pak ,

where α0 = n + 1 and (k + 1)αk = −(n − k + 1)αk−1. Since An is an ideal of polynomials, we

have by Lemma 2.1.17 that γkPak belongs to An(E,F ) for every k = 0, . . . , n and thus γk+1Pak ∈
An+1(E,F ). Therefore Q ∈ An+1(E,F ). An easy computation shows that Qa = P .

The following results may be proved as Propositions 2.1.20 and 2.1.21.

Proposition 3.1.16. The norm ‖| · ‖|An defined on Proposition 3.1.15 satisfies the “almost ideal”

property: for Banach spaces E and F , there exists a constant c > 0 such that, for all Banach spaces

E1, F1 and all operators R ∈ L(E1, E), P ∈ An(E,F ) and S ∈ L(F,F1), it follows that

‖|S ◦ P ◦R‖|An(E1,F1) ≤ c‖S‖L(F,F1)‖|P‖|An(E,F )‖R‖nL(E1,E).

Proposition 3.1.17. Let An be an n-homogeneous polynomial ideal with norm ‖|·‖|An that satisfies

the “almost ideal” property. Then we can define an equivalent norm ‖ · ‖An which is an ideal norm

on An.

Proof. Define a norm for P ∈ An(E,F ),

‖P‖′
An(E,F ) = sup{‖|S ◦ P ◦R‖|An(E1,F1) : E1, F1 Banach spaces, ‖S‖L(F,F1) = ‖R‖L(E1,E) = 1}.

Then ‖ · ‖′
An

is a norm on An equivalent to ‖| · ‖|An . Moreover,

‖S ◦ P ◦R‖′
An(E1,F1)

≤ ‖S‖L(F,F1)‖P‖′An(E,F )‖R‖L(E1,E).

So, if we let κn = ‖z 7→ zn‖′
An(C,C), then the norm ‖ · ‖An defined by ‖P‖An(E,F ) = 1

κn
‖P‖′

An(E,F ),

is an ideal norm equivalent to ‖| · ‖|An .
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As in Remark 2.1.22 we can see that in the case (An, ‖| · ‖|An) is the polynomial ideal given in

Proposition 3.1.15, we can simplify the definition of ‖ · ‖′
An

:

‖P‖′
An(E,F ) = sup{‖|P ◦R‖|An(E1,F ) : E1 Banach space, ‖R‖L(E1,E) = 1}.

Then ‖·‖An(E,F ) =
‖·‖′

An(E,F )

κn
is an ideal norm on An equivalent to ‖|·‖|An . Moreover, using Corollary

2.1.7 we see that 1 ≤ κn ≤ e. Now it is not difficult to prove the main result.

Theorem 3.1.18. Let An+1 be a Banach ideal of (n + 1)-homogeneous polynomials. Then there

exists polynomial ideals A1, . . . ,An such that {A1, . . . ,An,An+1} is a coherent sequence. The poly-

nomial ideals Ak are uniquely determined by An+1 and they can be normed to obtain constants of

coherence 1 ≤ C,D ≤ e.

To finish this subsection we mention that analogously to Proposition 2.4.3 it can easily be

proven that interpolation of coherent sequences is again coherent:

Proposition 3.1.19. Let {A0
k}k and {A1

k}k be coherent sequences of polynomial ideals with con-

stants C0, D0 and C1, D1, respectively. Let F is an exact interpolation functor of exponent θ. Then,

the polynomial ideal F (An) is compatible with the operator ideal F (A) with constants C1−θ
0 Cθ1 and

D1−θ
0 Dθ

1.

3.1.1 The smallest and greatest coherent sequence associated to an operator

ideal

In this subsection we show that given an operator ideal A, the ideals FA
k and MA

k defined in Section

2.2 are the smallest and the greatest sequences of polynomial ideals coherent with A.

Let A be a linear operator ideal. If {Ak}k is any coherent sequence of normed ideals of ho-

mogeneous polynomials with A1 = A, then for each k ∈ N, Ak is compatible with A. Thus, by

Proposition 2.2.2 we have

FA
k (E,F ) ⊂ Ak(E,F ) ⊂ MA

k (E,F ),

for every Banach spaces E and F . Therefore, if we show that {MA
k }k and {FA

k }k are coherent

sequences (note that MA
1 = FA

1 = A), we can conclude that they are, respectively, the largest

and the smallest coherent sequence associated to A. Analogously, if A is complete, we obtain that

{NA
k }k is the smallest coherent sequence of Banach polynomial ideals associated to A. However,

in the three cases the coherence constants obtained are larger than the compatibility constants of

Proposition 2.2.2.

Proposition 3.1.20. Let A be a normed operator ideal. Then:

(a) The sequence {MA
k }k is coherent with constants C = e and D = 1. Thus, {MA

k }k is the

largest coherent sequence associated to A.

(b) The sequence {FA
k }k is coherent with constants C = 1 and D = e. Thus, {FA

k }k is the

smallest coherent sequence associated to A.

(c) If A is complete, the sequence {NA
k }k is coherent with constants C = 1 and D = e. Thus,

{NA
k }k is the smallest coherent sequence of Banach ideals associated to A.
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Proof. We prove conditions (i) and (ii) of Definition 3.1.1 for the sequences {MA
k }k and {NA

k }k.
The case (b) follows similarly.

(a) (i) Let P ∈ MA
k (E,F ) and a ∈ E. We have to show that Pa ∈ MA

k−1(E,F ) with

‖Pa‖MA

k−1(E,F ) ≤ e‖a‖‖P‖MA

k (E,F ). For this, we need to prove that (Pa)bk−2 ∈ A(E,F ) for all

b ∈ SE and ‖(Pa)bk−2‖A(E,F ) ≤ e‖a‖‖P‖MA

k (E,F ).

As in Lemma 2.1.6 we take r ∈ C a primitive (k− 1)-root of 1. Then, for each x ∈ E and t > 0,

we have

(Pa)bk−2(x) = (Px)
∨(a, bk−2)

=
1

(k − 1)2

k−2∑

j=0

rjtk−2Px

(
rj

t
b+ a

)

=
1

(k − 1)2

k−2∑

j=0

rjtk−2P
( rj

t
b+a)k−1

(x).

Since P ∈ MA
k (E,F ), (Pa)bk−2 belongs to A(E,F ) .

Choosing t = 1
k−2 we obtain, for ‖a‖ = ‖b‖ = 1, that

‖(Pa)bk−2‖A(E,F ) ≤ 1
(k−1)2

k−2∑

j=0

tk−2

∥∥∥∥P( rj

t
b+a)k−1

∥∥∥∥
A(E,F )

≤ 1
(k−1)2

k−2∑

j=0

(
1

k − 2

)k−2

(k − 1)k−1‖P‖MA

k (E,F )

≤ e‖P‖MA

k (E,F ).

Therefore, for each a ∈ E,

‖Pa‖MA

k−1(E,F ) = sup
‖b‖=1

‖(Pa)bk−2‖A(E,F ) ≤ e‖a‖‖P‖MA

k (E,F ).

(ii) Let P ∈ MA
k (E,F ), γ ∈ E′ and a ∈ E. Then

(γP )ak = 1
k+1

(
P (a)γ + kγ(a)Pak−1

)
.

This implies that (γP )ak ∈ A(E,F ) and thus γP ∈ MA
k+1(E,F ). Moreover,

‖γP‖MA

k+1(E,F ) = sup
‖a‖=1

‖(γP )ak‖A(E,F )

≤ 1

k + 1
sup
‖a‖=1

(
‖P‖Pk(E,F )‖γ‖ + k‖γ‖‖Pak−1‖A(E,F )

)

≤ ‖γ‖‖P‖MA

k (E,F ).

(c) (i) For P ∈ NA
k+1(E,F ), fix a representation P =

∑∞
i=1 γ

k
i Ti and let a ∈ E. Then

Pa =
1

k + 1

∞∑

i=1

(
Ti(a)γ

k
i + kγi(a)(γ

k−1
i Ti)

)
.
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The partial sums of the above series belong to NA
k (E,F ). Furthermore,

1

k + 1

∞∑

i=1

∥∥∥
(
Ti(a)γ

k
i + kγi(a)(γ

k−1
i Ti)

)∥∥∥
NA

k (E,F )

≤
∞∑

i=1

‖a‖‖Ti‖L(E,F )‖γi‖k + k‖a‖‖γi‖k‖Ti‖A(E,F )

k + 1

≤ ‖a‖
∞∑

i=1

‖γi‖k‖Ti‖A(E,F ).

Then, Pa belongs to NA
k (E,F ) and, since the above inequality is valid for every representation of

P , we obtain that

‖Pa‖NA

k (E,F ) ≤ ‖a‖‖P‖NA

k+1(E,F ).

(ii) Let P ∈ NA
k (E,F ). Suppose first that P = γk−1T , with γ ∈ E′ and T ∈ L(E,F ). Let

φ ∈ E′. Then, proceeding as in Lemma 2.1.6 and Corollary 2.1.7 we obtain the expression

(φP )(x) = (φγk−1T )(x) =
1

k2

k−1∑

j=0

tk−1rj
(
rj

t
γ(x) + φ(x)

)k
T (x),

where t > 0 and r ∈ C is a primary k-root of the unit. This means that φP ∈ NA
k+1(E,F ) and

‖φP‖NA

k+1(E,F ) ≤ e‖φ‖‖γ‖k−1‖T‖A(E,F ).

Consider now P ∈ NA
k (E,F ) and a representation P =

∑∞
i=1 γ

k−1
i Ti with γi ∈ E′ and Ti ∈

L(E,F ). Then the finite sums
∑m

i=1 φγ
k−1
i Ti belong to NA

k+1(E,F ) and the series converges since

∞∑

i=1

‖φγk−1
i Ti‖NA

k+1(E,F ) ≤ e‖φ‖
∞∑

i=1

‖γi‖k−1‖Ti‖A(E,F ).

Thus P ∈ NA
k+1(E,F ). The above inequality is valid for every representation of P , hence

‖φP‖NA

k+1(E,F ) ≤ e‖φ‖‖P‖NA

k (E,F ).

3.1.2 Composition ideals

This subsection is devoted to show that the composition of a coherent sequence of polynomial

ideals with two fixed operator ideals is still coherent in the following situations: if either both

linear operator ideals are closed or the polynomial ideal is closed. For the first case we have the

following:

Proposition 3.1.21. Let {Ak}k be a coherent sequence of normed polynomial ideals with constants

C and D, and let C and B be closed ideals of linear operators. Then {C ◦ Ak ◦ B}k is a coherent

sequence with constants C and D.
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Proof. We check condition (i) of Definition 2.1.2: Let P ∈ C ◦Ak ◦B(E,F ). Then P = SQT with

S ∈ C(F̃ , F ), T ∈ B(E, Ẽ) y Q ∈ Ak(Ẽ, F̃ ).

Also, Pa(·) = S
∨
Q(T (a), T (·), . . . , T (·)) = SQT (a)T , and QT (a) ∈ Ak−1(Ẽ, F̃ ) since {Ak} is

coherent. Therefore Pa ∈ C ◦ Ak−1 ◦ B(E,F ).

Moreover,

‖Pa‖C◦Ak−1◦B(E,F ) ≤ C‖T (a)‖‖S‖
C( eF ,F )‖Q‖

Ak( eE, eF )‖T‖
k−1

B(E, eE)

≤ C‖a‖‖S‖
C( eF ,F )

‖Q‖
Ak( eE, eF )

‖T‖k
B(E, eE)

,

and this holds for every factorization P = SQT . Hence

‖Pa‖C◦Ak−1◦B(E,F ) ≤ C‖a‖‖P‖C◦Ak◦B(E,F ).

Condition (ii): Again, we take P = SQT with S ∈ C(F̃ , F ), T ∈ B(E, Ẽ) and Q ∈ Ak(Ẽ, F̃ ).

Consider γ ∈ E′ and define the operators

T̃ ∈ B(E, Ẽ × C), T̃ (x) = (T (x), γ(x)) = (i1 ◦ T )(x) + (i2 ◦ γ)(x)
R ∈ Ak+1(Ẽ × C, F̃ ), R(y, λ) = Q(y)λ = (Q ◦ π1)(y, λ) · π2(y, λ),

where i1, i2 are the inclusions

Ẽ
i1→֒ Ẽ × C, C

i2→֒ Ẽ × C,

and π1, π2 are the projections to the first and second coordinate.

We have that SRT̃ belongs to C ◦ Ak+1 ◦ B(E,F ) and

SRT̃ (x) = SR(T (x), γ(x)) = S(γ(x)Q(T (x))) = γ(x)P (x).

As a consequence, γP ∈ C ◦ Ak+1 ◦ B(E,F ).

For the inequality of norms, we may assume that ‖T‖
B(E, eE)

= ‖T‖
L(E, eE)

= 1. Let us consider

in Ẽ × C the norm ‖(y, λ)‖ = max{‖y‖, |λ|} and suppose ‖γ‖ = 1. Then, we have

‖R‖
Ak+1( eE×C, eF )

≤ D‖Q ◦ π1‖Ak( eE, eF )
‖π2‖ ≤ D‖Q‖

Ak( eE, eF )
,

and

‖T̃‖
B(E, eE×C) = ‖T̃ ‖L(E, eE×C) = max{‖T‖

L(E, eE), ‖γ‖} = 1.

Thus we obtain

‖γP‖C◦Ak+1◦B(E,F ) ≤ ‖S‖
C( eF ,F )‖R‖Ak+1( eE×C, eF )‖T̃‖

k+1

B(E, eE×C)

≤ D‖S‖
C( eF ,F )‖Q‖

Ak( eE, eF )

and this is true for every factorization P = SQT with ‖T‖
B(E, eE) = 1. Hence, for a general γ ∈ E′,

‖γP‖C◦Ak+1◦B(E,F ) ≤ D‖γ‖‖P‖C◦Ak◦B(E,F ).

For the second case we can prove:
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Proposition 3.1.22. Let {Ak}k be a coherent sequence of closed polynomial ideals. If B and C

are normed operator ideals, then {C ◦ Ak ◦ B}k is a coherent sequence with constants C = e and

D = 1.

Proof. Condition (i): Let P = SQT , with T ∈ B(E, Ẽ), Q ∈ Ak(Ẽ, F̃ ) and S ∈ C(F̃ , F ). Then

Pa = (SQT )a = SQT (a)T ∈ C ◦ Ak−1 ◦ B(E,F ).

Moreover, by Example 2.1.8,

‖Pa‖C◦Ak−1◦B(E,F ) ≤ ‖S‖
C( eF ,F )

‖QT (a)‖Ak−1( eE, eF )
‖T‖k−1

B(E, eE)

≤ e‖a‖‖S‖
C( eF ,F )‖Q‖

Ak( eE, eF )‖T‖
k
B(E, eE)

.

Since this holds for every factorization P = SQT , we obtain ‖Pa‖C◦Ak−1◦B(E,F ) ≤ e‖a‖‖P‖C◦Ak◦B(E,F ).

Condition (ii): Let P = SQT , T ∈ B(E, Ẽ), Q ∈ Ak(Ẽ, F̃ ) and S ∈ C(F̃ , F ). Define as in

Proposition 3.1.21 the operators

T̃ ∈ B(E, Ẽ × C), T̃ (x) = (T (x), γ(x)) = (i1 ◦ T )(x) + (i2 ◦ γ)(x)
R ∈ Ak+1(Ẽ × C, F̃ ), R(y, λ) = Q(y)λ = (Q ◦ π1)(y, λ) · π2(y, λ).

Then, SRT̃ ∈ C ◦ Ak+1 ◦ B(E,F ) and

SRT̃ (x) = S(R(T (x), γ(x))) = S(Q(T (x)))γ(x) = γ(x)P (x).

Thus γP ∈ C ◦ Ak+1 ◦ B(E,F ).

To prove the inequality of norms we now consider Ẽ × C with the norm ‖(y, λ)‖ = ‖y‖ + |λ|.
Since, for every k, the norm in Ak is the usual polynomial norm,

‖R‖
Ak+1( eE×C, eF ) = sup

‖y‖+|λ|≤1
‖λQ(y)‖ ≤ ‖Q‖

Ak( eE, eF ) sup
‖y‖+|λ|≤1

|λ|‖y‖k

≤ kk

(k + 1)k+1
‖Q‖

Ak( eE, eF ).

Also,

‖T̃‖
B(E, eE×C) = ‖(i1 ◦ T )(·) + (i2 ◦ γ)(·)‖B(E, eE×C) ≤ ‖i1‖‖T‖B(E, eE) + ‖i2‖‖γ‖

= ‖T‖
B(E, eE) + ‖γ‖.

Then,

‖γP‖C◦Ak+1◦B(E,F ) ≤ ‖S‖
C( eF ,F )‖R‖Ak+1( eE×C, eF )‖T̃‖

k+1

B(E, eE×C)

≤ ‖S‖
C( eF ,F )

kk

(k + 1)k+1
‖Q‖

Ak( eE, eF )

(
‖T‖

B(E, eE)
+ ‖γ‖

)k+1
.

If we consider Tt = tT and Qt = t−kQ , we obtain a new factorization of P and thus of γP .

The previous inequality applied to this factorization gives

‖γP‖C◦Ak+1◦B(E,F ) ≤ ‖S‖
C( eF ,F )

kk

(k + 1)k+1

‖Q‖
Ak( eE, eF )

tk

(
t‖T‖

B(E, eE) + ‖γ‖
)k+1

.
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This expression is minimum when t = k‖γ‖
‖T‖

B(E, eE)
. In this case,

‖γP‖C◦Ak+1◦B(E,F )

≤ ‖S‖
C( eF ,F )

kk

(k + 1)k+1

(‖T‖
B(E, eE)

k‖γ‖
)k

‖Q‖
Ak( eE, eF )

(
(k + 1)‖γ‖

)k+1

= ‖γ‖‖S‖
C( eF ,F )‖Q‖

Ak( eE, eF )‖T‖
k
B(E, eE)

.

This is true for each factorization P = SQT and therefore,

‖γP‖C◦Ak+1◦B(E,F ) ≤ ‖γ‖‖P‖C◦Ak◦B(E,F ), (3.2)

which completes the proof.

As a consequence we have the following coherent sequences:

Example 3.1.23. 1. Let 1 < r <∞ and N be the largest integer not greater than r. Then the

sequence of quasi-normed ideals of polynomials {Πr,D2
r ,D3

r , . . . } (the ideals Dn
r are normed

for n ≤ r) which is coherent with constants C = e and D = 1. Indeed, it was proved in

[Sch91] that Pn ◦ Πr.

2. The sequence r-factorable (strongly r-factorable, r-compact) polynomials is coherent since

it is the composition of all the polynomials with the r-factorable (strongly r-factorable, r-

compact) operators [Hol86].

3.1.3 Relation with tensor norms

Suppose that for each k we have a symmetric k-tensor norm αk and set Ak(E,F ) = A(
⊗k,s

αk
E,F ).

By Proposition 2.5.1 each Ak is compatible with A but, in order to obtain a coherent sequence,

some coherence properties for the sequence of tensor norms {αk}k are needed. Let us establish this

coherence. For a ∈ E, γ ∈ E′ we define the following mappings for each k (we omit the dependence

on k in the notation for the sake of simplicity):

Φa :
⊗k−1,sE → ⊗k,sE Ψγ :

⊗k+1,sE → ⊗k,sE

xk−1 7→ σ(a⊗ xk−1) xk+1 7→ γ(x)xk.

Proposition 3.1.24. Let A be an operator ideal. Suppose we have, for each k, a symmetric k-

tensor norm αk and define Ak(E,F ) = A(
⊗k,s

αk
E,F ). Then, {Ak}k is a coherent sequence of

polynomial ideals (with constants C and D) if and only if for every Banach space E the mappings

Φa :
(⊗k−1,s

E,αk−1

)
−→

(⊗k,s
E,αk

)

and

Ψγ :
(⊗k+1,s

E,αk+1

)
−→

(⊗k,s
E,αk

)

are continuous for every k (with ‖Φa‖ ≤ C‖a‖ and ‖Ψγ‖ ≤ D‖γ‖).

Proof. Just note that if P ∈ Pk(E), we have TPa = TP ◦ Φa and TγP = TP ◦ Ψγ .
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Corollary 3.1.25. The sequences {Pk
PI}k and {Pk

GI}k of Piestch and Grothendieck integral poly-

nomials are coherent with constants C = 1 and D = e. Moreover, they are compatible with the

ideals of Piestch and Grothendieck integral operators respectively, with constants A = 1 and B = e.

Proof. Recall that Pk
PI(E,F ) = LPI(

⊗k,s
εs
E,F ) and Pk

GI(E,F ) = LGI(
⊗k,s

εs
E,F ) isometrically

[CL05, Vil03].

As in Corollary 2.5.2, a direct computation shows that the application Φa from the previous

proposition is continuous with C = 1.

Let z =
∑
xk+1
i ∈ ⊗k+1,sE, and define Qz ∈ Pk+1(E,F ) as Qz(φ) =

∑
φ(xi)

k+1. Then

‖Qz‖ = εk+1
s (z). Moreover, by Corollary 2.1.7(b),

∑
γ(xi)φ(xi)

k = |
∨
Qz(γ, φk)| ≤ e‖Qz‖‖γ‖‖φ‖k .

Since this is true for every φ ∈ E′, taking supremum with φ ∈ BE′ , we have that

εks (Ψγ(z)) = εks

(∑
γ(xi)x

k
i

)
≤ e‖γ‖εk+1

s (z).

In Section 2.5 we showed that there are mixed tensor norms that are not equivalent to any

(α, β)-norm (Corollary 2.5.7). We give now a criterion of coherence for ideals which are dual to

mixed tensor norms. For a ∈ E and γ ∈ E′ we define the following mappings:

ΦF
a :
⊗k−1,sE ⊗ F → ⊗k,sE ⊗ F ΨF

γ :
⊗k+1,sE ⊗ F → ⊗k,sE ⊗ F

xk−1 ⊗ y 7→ σ(a⊗ xk−1) ⊗ y xk+1 ⊗ y 7→ γ(x)xk ⊗ y

Proposition 3.1.26. Let A be an operator ideal. Suppose we have, for each k, a mixed tensor

norm δk of order k + 1. Then, Pk
δk

is a coherent sequence of polynomial ideals (with constants C

and D) if and only if the mappings ΦF ′

a and ΨF ′

γ are δk−1-to-δk and δk+1-to-δk continuous for every

k, E and F (with ‖ΦF ′

a ‖ ≤ C‖a‖ and ‖ΨF ′

γ ‖ ≤ D‖γ‖).
Proof. Just note that conditions (i) and (ii) of Definition 3.1.1 are dual to continuity properties of

the mappings defined above when we consider F ′ instead of F .

We finish this subsection proving that if we have a finitely generated k-fold symmetric tensor

norm αk then the sequence of maximal (scalar) ideals associated to αk is coherent if and only if the

sequence of minimal ideals associated to αk is coherent. We will use the Representation Theorem

for maximal polynomial ideals [FH02, Theorem 3.2]. First we need the following lemmata, which

will be useful in Subsection 3.1.5.

Lemma 3.1.27. For each k, let αk be a finitely generated k-fold symmetric tensor norm αk.

Consider Amaxk and Amink maximal and minimal ideals associated to αk. Then the following are

equivalent.

(i) For every Banach space E, if P ∈ Amaxk (E) and a ∈ E then Pa ∈ Amaxk−1 (E) and

‖Pa‖Amax
k−1 (E) ≤ ck‖P‖Amax

k (E)‖a‖.

(ii) For every Banach space E, if P ∈ Amink (E) and a ∈ E then Pa ∈ Amink−1(E) and

‖Pa‖Amin
k−1(E) ≤ ck‖P‖Amin

k (E)‖a‖.

(iii) For every Banach space E, if s =
∑n

j=1 γ
k
j is a tensor in

⊗k,s
αk
E′ and a ∈ E, then

αk−1(
∑

j

γ(a)γk−1
j ) ≤ ckαk(s)‖a‖.
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Proof. The three statements are equivalent if E is a finite dimensional Banach space because for

finite dimensional spaces Amaxk (E)
1
= Amink (E)

1
=
⊗k,s

αk
E′. Since αk is finitely generated, (i) is

implied by (ii) or by (iii) for all Banach spaces.

We now prove that (i) implies (iii). Note that (iii) is equivalent to prove that the bilinear

map ψE :
(
E ×⊗k−1,s

αk
E′, ‖ · ‖∞

)
→ ⊗k−1,s

αk−1
E′, ψE(a,

∑
γkj ) =

∑
γ(a)γk−1

j is continuous of

norm ≤ ck for every Banach space E. If (i) is true then ψS is continuous (with norm ≤ ck) for

every finite dimensional Banach space S. Let M be a finite dimensional subspace of E′ such that∑
γkj ∈⊗k,sM and denote by [a] the subspace of E generated by a. Then

αk−1

(∑
γ(a)γk−1

j ,
⊗k−1,s

M + [a]
)

≤ ck max{αk
(∑

γkj ,
⊗k,s

M + [a]
)
, ‖a‖)}

≤ ck max{αk
(∑

γkj ,
⊗k,s

M
)
, ‖a‖)},

where the second inequality is true by the metric mapping property. Taking the infimum over M

we obtain that ‖ψE‖ ≤ ck and thus we have (iii).

To see that (i) implies (ii), just note that Amink = Amaxk ◦ F and use Proposition 3.1.21 (proof

of condition i).

The following lemma may be proved similarly, moreover it can also be seen as a particular case

of Proposition 4.1.12.

Lemma 3.1.28. For each k, let αk be a finitely generated k-fold symmetric tensor norm αk.

Consider Amaxk and Amink maximal and minimal ideals associated to αk. Then the following are

equivalent.

(i) For every Banach space E, if P ∈ Amaxk (E) and γ ∈ E′ then γP ∈ Amaxk+1 (E) and

‖γP‖Amax
k+l (E) ≤ ck‖P‖Amax

k (E)‖γ‖.

(ii) For every Banach space E, if P ∈ Amink (E) and γ ∈ E′ then γP ∈ Amink+1(E) and

‖γP‖Amin
k+l (E) ≤ ck‖P‖Amin

k (E)‖γ‖.

(iii) For every Banach space E, if s ∈⊗k,s
αk
E′ and γ ∈ E′, then

αk+1(σ(s ⊗ γ)) ≤ ckαk(s)‖γ‖.

We have thus the following corollary for sequences of scalar polynomial ideals:

Corollary 3.1.29. Let A = {Ak}k be a sequence of scalar polynomials ideals, then {Amaxk }k is a

coherent sequence if and only if {Amink }k is coherent.

If moreover A = {Ak}k is coherent then {Amink }k and {Amaxk }k are coherent sequences.

Maximal and minimal hulls will be revisited in the next subsection and the vector valued case

will be treated there.



3.1. Coherent sequences 61

3.1.4 Maximal, minimal and adjoint ideals

In this subsection we study the stability of the coherence conditions under the operation of taking

adjoints, maximal and minimal hulls of the polynomial ideals.

Proposition 3.1.30. Let {Ak}k be a coherent sequence with constants C and D. Then {A∗
k}k is a

coherent sequence with constants D and C.

Proof. Condition (i). By Proposition 3.1.26 it suffices to verify that

ΦF ′

a :
(⊗k−1,s

E ⊗ F ′, λk−1

)
→

(⊗k,s
E ⊗ F ′, λk

)

xk−1 ⊗ y 7→ σ(a⊗ xk−1) ⊗ y

is continuous and that ‖ΦF ′

a ‖ ≤ D‖a‖, for all a ∈ E; where the λk’s are the tensor norms predual

to the ideals A∗
k (see Preliminaries 1.2.1) .

Consider M ∈ FIN(E); N ∈ FIN(F ′) and z =
∑

i x
k−1
i ⊗ yi ∈ ⊗k−1,sM ⊗ N . Then

PΦF ′
a (z) ∈ Ak(M

′
a, N), where Ma = M

⊕
[a]. If x′ ∈M ′

a

PΦF ′
a (z)(x′) =

∑

i

σ(a⊗ xk−1
i )(x′)yi =

∑

i

x′(a)x′(xi)
k−1yi = (aP z)(x′).

Thus,

λk

(
ΦF ′

a (z);
⊗k,s

E ⊗ F ′
)

≤ λk

(
ΦF ′

a (z);
⊗k,s

Ma ⊗N
)

= ‖PΦF ′
a (z)‖Ak(M ′

a,N) = ‖aP z‖Ak(M ′
a,N)

≤ D‖a‖‖P z‖Ak−1(M ′
a,N)

≤ D‖a‖ λk−1

(
z;
⊗k−1,s

M ⊗N
)
.

And hence, λk

(
ΦF ′

a (z);
⊗k,sE ⊗ F ′

)
≤ D‖a‖λk−1

(
z;
⊗k−1,sE ⊗ F ′

)
.

Condition (ii). We must verify that the mapping

ΨF ′

γ :
(⊗k+1,s

E ⊗ F ′, λk+1

)
→

(⊗k,s
E ⊗ F ′, λk

)

xk+1 ⊗ y 7→ γ(x)xk ⊗ y

is continuous and that ‖ΨF ′

γ ‖ ≤ C‖γ‖, for all γ ∈ E′.

Consider γ ∈ E′ and let M ∈ FIN(E), N ∈ FIN(F ′) and zi =
∑
xk+1
i ⊗ yi ∈

⊗k+1,sM ⊗N .

Then PΨF ′
γ (z) ∈ Ak(M

′, N) and, if x′ ∈M ′,

PΨF ′
γ (z)(x′) =

∑

i

γ(xi)xi(x
′)kyi =

∑

i

xi(γ)xi(x
′)kyi = (P z)γ(x

′).

Therefore,

λk

(
ΨF ′

γ (z);
⊗k,s

E ⊗ F ′
)

≤ λk

(
ΨF ′

γ (z);
⊗k,s

M ⊗N
)

=
∥∥PΨF ′

γ (z)
∥∥

Ak(M ′,N)
= ‖(P z)γ‖Ak(M ′,N)

≤ C‖γ‖‖P z‖Ak+1(M ′,N)

= C‖γ‖ λk+1

(
z;
⊗k+1,s

M ⊗N
)
.

Thus, λk

(
ΨF ′

γ (z);
⊗k,sE ⊗ F ′

)
≤ C‖γ‖λk+1

(
z;
⊗k+1,sE ⊗ F ′

)
.
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Since Amax
k coincides with A∗∗

k , the sequence of maximal hulls of the polynomial ideals Ak

preserves the coherence of the original sequence:

Corollary 3.1.31. Let {Ak}k be a coherent sequence with constants C and D. Then {Amax
k }k is a

coherent sequence with constants C and D.

The preservation of coherence under minimal hulls is a particular case of Proposition 3.1.21

since Amin
n = F ◦ Amin

n ◦ F .

Corollary 3.1.32. Let {Ak}k be a coherent sequence of Banach polynomial ideals with constants

C and D. Then {Amin
k }k is a coherent sequence with constants C and D.

Remark 3.1.33. The reciprocal of Proposition 3.1.30 and Corollaries 3.1.31 and 3.1.32 is not true.

A counterexample for the three is the sequence {Ak}k, where

Ak(E,F ) =

{
Pk
N (E,F ) if k is even

Pk
GI(E,F ) if k is odd.

Then {Amax
k }k = {Pk

GI}, {A∗
k}k = {Pk}k and {Amin

k }k = {Pk
N}k are coherent sequences, but {Ak}k

is not.

3.1.5 Sequences of polynomial ideals associated to natural tensor norms

In [CG], natural tensor norms for arbitrary order are introduced and studied, in the spirit of the

natural tensor norms of Grothendieck. We will prove that the sequences of polynomial ideals

associated to the symmetric natural tensor norms are coherent. First we introduce some notation

to recall their definition.

For a symmetric tensor norm αk (of order k), the projective and injective associates (or hulls)

of αk will be denoted, by extrapolation of the 2-fold case, as \αk/ and /αk\ respectively. They are

defined as the tensor norms induced by the following mappings:

(
⊗k,s ℓ1(BE), αk

) 1
։

(
⊗k,s E, \αk/

)
.

(
⊗k,s E, /αk\

) 1→֒
(
⊗k,s ℓ∞(BE′), αk

)
.

Recall that for a symmetric tensor norm of order k, αk, its dual tensor norm α′
k is defined on

finite dimensional normed spaces by

(
⊗k,sM,α′

k

)
:
1
= [
(
⊗k,sM ′, αk

)
]′

and then extended to Banach spaces so that it is finitely generated.

We say that αk is a natural symmetric tensor norm (of order k) if αk is obtained from πk with

a finite number of the operations \ /, / \, ′.
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For k ≥ 3, it is shown in [CG] that there are exactly six non-equivalent natural tensor norms

(note that for k = 2 there are only four). They can be arranged in the following diagram:

πk
↑

\/πk\/
ր տ

/πk\ \εk/
տ ր

/\εk/\
↑
εk

where αk → γk means that γk dominates αk. There are no other dominations.

Therefore, the natural symmetric tensor norms define six different sequences {αk}k of tensor

norms (which we call “natural sequences”), with their corresponding associated polynomial ideals.

We denote by ηk the tensor norm /πk\, which is predual to the space of k-homogeneous extendible

polynomials. Then we have η′k = \εk/, \ηk/ = \/πk\/ and /η′k\ = /\εk/\.
To prove the coherence of the sequence of polynomial ideals associated to the natural symmetric

tensor norms we need the following:

Lemma 3.1.34. For each k, let αk be a finitely generated k-fold symmetric tensor and suppose

that αk−1(
∑

j γj(a)γ
k−1
j ) ≤ ckαk(

∑
j γ

k
j )‖a‖ for every

∑
j γ

k
j ∈⊗k,s

αk
E′ and a ∈ E. Then the same

inequality holds for the sequences {/αk\}k and {\αk/}k.

Proof. For {\αk/}k: if Amaxk is the maximal ideal associated to αk, the identity \αk/ = (/α′
k\)′

and the representation theorem for maximal polynomial ideals [FH02, Section 3.2] show that the

maximal polynomial ideal Bk associated to \αk/ at E is
(⊗k,s

/α′
k\
E
)′

. Thus it consists of all

k-homogeneous polynomials on E which extend to α′
k-continuous polynomials on ℓ∞(BE′), that is,

Bk(E) = {P ∈ Pk(E) : P extends to a polynomial P̃ ∈ A
max
k (ℓ∞(BE′))},

and the norm of P in Bk is given by the infimum of the Amaxk -norms of these extensions. By

Lemma 3.1.27, we may fix variables on the ideals Amaxk ’s, and thus it is easy to see that we may fix

variables for polynomials in the ideals Bk’s and with the same inequality of norms. Using again

Lemma 3.1.27, we obtain the desired result for {\αk/}k.
For {/αk\}k: we denote

ik = ⊗ki :
(
⊗k,s E′, /αk\

) 1→֒
(
⊗k,s ℓ∞(BE′′), αk

)
,

and

̃ : ℓ1(BE′′)
1
։ E.

Then, if a ∈ ℓ1(BE′′) such that ̃(a) = a and ‖a‖ℓ1(BE′′ ) = ‖a‖,

/αk−1\
(∑

j

γj(a)γ
k−1
j

)
= αk−1

(
ik−1

(∑

j

γj(a)γ
k−1
j

))
= αk−1

(∑

j

i(γj)
(
a
)
i(γj)

k−1
)

≤ ckαk
(∑

j

i(γj)
k
)
‖a‖ℓ1(BE′′ ) = ck/αk\

(∑

j

γkj
)
‖a‖.
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The following result is a particular case of Lemma 4.1.15:

Lemma 3.1.35. For each k, let αk be a finitely generated k-fold symmetric tensor and suppose

that αk+1(σ(s ⊗ γ)) ≤ ckαk(s)‖γ‖ for every s ∈ ⊗k,s
αk
E′ and γ ∈ E′. Then the same inequality

holds for the sequences {/αk\}k and {\αk/}k.
As a consequence, since πk and εk satisfy the conditions on previous lemmas, we can use them

together with Lemmas 3.1.27 and 3.1.28 to show the following:

Theorem 3.1.36. Let {αk}k be any of the natural sequences of symmetric tensor norms. Then the

sequences {Amaxk }k and {Amink }k of maximal and minimal ideals associated to {αk}k are coherent.

In the next chapter we will prove more properties of sequences of ideals associated to natural

sequences of tensor norms.

3.2 Holomorphic mappings of bounded type associated to a co-

herent sequence

The space of holomorphic mappings of bounded type Hb(E,F ) is, in some sense, associated to the

sequence {Pk(E,F )}k of all homogeneous polynomials. Analogously, we can define the space of

holomorphic functions of bounded type associated to any coherent polynomial sequence:

Definition 3.2.1. Let A = {Ak}k be a coherent sequence of polynomial ideals at (E,F ). We define

the space of A-entire functions of bounded type by

HbA(E,F ) =

{
f ∈ H(E,F ) :

dkf(0)

k!
∈ Ak(E,F ) and lim

k→∞

∥∥∥d
kf(0)

k!

∥∥∥
1
k

Ak

= 0

}
.

We define in HbA(E,F ) the seminorms {pR}R>0,

pR(f) =

∞∑

k=0

∥∥∥d
kf(0)

k!

∥∥∥
Ak(E,F )

Rk,

for f ∈ HbA(E,F ). Note that a function f ∈ H(E,F ) is in HbA(E,F ) if and only if dkf(0)
k! belongs

to Ak(E,F ) for every k and pR(f) <∞ for every R.

Proposition 3.2.2. Suppose that A is a coherent sequence of Banach ideals of homogeneous poly-

nomials. Then
(
HbA(E,F ), {pn}n∈N

)
is a Fréchet space. Moreover, for each f ∈ HbA(E,F ), the

partial sums of the Taylor series expansion of f about the origin converges to f in HbA(E,F ).

Proof. We only prove that HbA(E,F ) is complete. Let (fn)n be a Cauchy sequence in HbA(E,F ).

Then (fn)n is a Cauchy sequence in Hb(E,F ) and therefore there exists f ∈ Hb(E,F ) which is

its limit. Also, for each k, (d
kfn(0)
k! )n is a Cauchy sequence in Ak(E,F ). Thus, dkf(0)

k! belongs to

Ak(E,F ) because dkf(0)
k! = limn

dkfn(0)
k! . Moreover, since (pR(fn))n is a Cauchy sequence, for each

R, ε > 0, there is n0 such that pR(fn) ≤ pR(fn0) + ε, for every n ≥ n0. Then for every N ∈ N,

N∑

k=0

∥∥∥d
kf(0)

k!

∥∥∥
Ak(E,F )

Rk = lim
n

N∑

k=0

∥∥∥d
kfn(0)

k!

∥∥∥
Ak(E,F )

Rk ≤ lim
n
pR(fn) ≤ pR(fn0) + ε

Therefore, pR(f) <∞ and thus f is in HbA(E,F ). It is also clear that fn → f in HbA(E).

Moreover, for each f ∈ HbA(E,F ), and R > 0,
∑

k≥N

∥∥∥d
kf(0)
k!

∥∥∥
Ak(E,F )

Rk → 0 as N → ∞, which

means that the Taylor series of f about the origin converges to f in HbA(E,F ).
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Although the definition of HbA(E,F ) involves the derivatives at 0, the same condition holds for

the derivatives at any point a ∈ E, as the following lemma shows.

Lemma 3.2.3. Let A = {Ak}k be a coherent sequence at (E,F ) and x ∈ E. Then

τx : HbA(E,F ) → HbA(E,F )

f 7→ τxf = f(x+ ·)

is a continuous operator. In particular, for all x ∈ E,

lim
k→∞

∥∥∥d
kf(x)

k!

∥∥∥
1
k

Ak(E,F )
= 0.

Proof. Take f =
∑∞

k=0 Pk ∈ HbA(E,F ) and x ∈ E. Then Pk(x+ y) =
∑k

j=0

(k
j

)
(Pk)xk−j (y).

Thus τxf =

∞∑

k=0

k∑

j=0

(
k

j

)
(Pk)xk−j . Using that the sequence is coherent it is easy to see that this

series converges absolutely:

∞∑

k=0

k∑

j=0

(
k

j

)∥∥(Pk)xk−j

∥∥
Aj(E,F )

≤
∞∑

k=0

(1 + C‖x‖)k‖Pk‖Ak(E,F ) = p
1+C‖x‖

(f). (3.3)

So we can reverse the order of summation to obtain that djτxf(0)
j! =

∑∞
k=j

(k
j

)
(Pk)xk−j . Thus we

have that

pR(τxf) =
∞∑

j=0

Rj
∥∥∥d

jτxf(0)

j!

∥∥∥
Aj(E,F )

≤
∞∑

j=0

Rj
∞∑

k=j

(
k

j

)∥∥(Pk)xk−j

∥∥
Aj(E,F )

=
∞∑

k=0

‖Pk‖Ak(E,F )

k∑

j=0

(
k

j

)
Rj(C‖x‖)k−j ≤ p

R+C‖x‖
(f).

Therefore τxf ∈ HbA(E,F ) and τx is continuous.

As we already mentioned, for each coherent sequence A we can construct the space of A-entire

functions of bounded type. Thus there are plenty of examples. We just present now the following

examples of spaces of holomorphic functions of bounded type which were already defined in the

literature and can be seen as particular cases of the above definition.

Example 3.2.4. Let A be the following coherent sequence: A1 = L, Ak = Pk, k > 1. Then

HbA(E,F ) = Hb(E,F ) the space of entire functions of bounded type from E to F .

Example 3.2.5. If A is the sequence of nuclear polynomial ideals then HbA(E,F ) is the space of

nuclearly entire functions of bounded type HNb(E,F ) defined by Gupta and Nachbin (see [Din99,

Gup70]).

Example 3.2.6. If A is the sequence of integral polynomial ideals then HbA(E) is the space

of integral entire functions of bounded type HbI(E) defined by Dimant, Galindo, Maestre and

Zalduendo in [DGMZ04].

Example 3.2.7. Suppose A is the sequence of extendible polynomials, that is, Ak(E) = Pk
e (E),

k ≥ 1. Then an application of [Car01, Proposition 14] gives that HbA(E) is the space of all

f ∈ H(E) such that, for any Banach space G ⊃ E, there is an extension f̃ ∈ Hb(G) of f .
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Example 3.2.8. Suppose A is the sequence of approximable polynomials, Ak(E) = Pk
A(E), k ≥ 1.

Then HbA(E) is the space Hbc(E) considered in [AB99, Din83].

Example 3.2.9. If A is the sequence of weakly continuous on bounded sets polynomial ideals

then HbA(E) is the space of weakly uniformly continuous holomorphic functions of bounded type

Hbw(E) defined by Aron in [Aro79].

Remark 3.2.10. Note that we have defined A-entire functions of bounded type as entire functions

that have infinite “A-radius” of convergence at zero (and thus at every point). On the other hand,

Hollstein [Hol86] defined, given an operator ideal C the sequence of polynomial ideals [C] = {Pk◦C}.
Then he defined the space of entire functions H

[C]
b , as the entire functions having positive [C]-radius

of convergence at zero. The two definitions are different, indeed, Dineen showed an example of

an entire function of bounded type, f ∈ Hb(E) and r > 0 such that f has “nuclear radius” of

convergence r (that f is holomorphic of nuclearly bounded type on rBE , see Section 3.2.6), but

found x ∈ E such that d2f(x) /∈ P2
N (E) [Din71, Example 11] (in particular H

[N ]
b (E) 6= HNb(E)).

Dineen also found an example of an entire function of bounded type on a Hilbert space E,

f ∈ Hb(E), such that lim supn→∞ ‖dnf(x)
n! ‖

1
n
N < ∞ for every x ∈ E (that is, f is locally of nuclear

bounded type, or, at each point x ∈ E there exist r > 0 such that f belongs to HNb

(
B(x, r)

)
,

see Section 3.2.6) but f is not an entire function of nuclear type because limn→∞ ‖dnf(0)
n! ‖

1
n
N = 1,

[Din71, Example 9].

3.2.1 Schauder decompositions

Recall that a sequence of Banach spaces (En, ‖ · ‖n) is a Schauder decomposition of a Fréchet

space E if the following two conditions hold:

1. Each x ∈ E can be written in a unique way as x =
∑

n xn, with xn ∈ En for all n.

2. The projections pm : E → En, given by pm(
∑∞

n=1 xn) =
∑m

n=1 xn, are continuous.

Galindo, Maestre and Rueda [GMR00] introduced the concept of R-Schauder decompositions.

Let us recall their definition.

Definition 3.2.11. For 0 < R ≤ ∞, we say that a sequence of Banach spaces (En, ‖ · ‖n) is an

R-Schauder decomposition of a Fréchet space E if it is a Schauder decomposition that verifies

the condition: for every sequence (xn)n, with xn ∈ En, the series
∑∞

n=1 xn converges in E if and

only if lim supn ‖xn‖1/n
n ≤ 1

R .

The following is immediate from the definitions:

Proposition 3.2.12. For every Banach spaces E and F , {Ak(E,F )}k is an ∞-Schauder decom-

position of HbA(E,F ).

We can deduce some other consequences from the results on R-Schauder decompositions of the

article [GMR00], combined with known facts about some ideals.

Proposition 3.2.13. Let A be a coherent sequence of polynomial ideals and let E and F be Banach

spaces. Then:

(a) HbA(E,F ) is reflexive if and only if Ak(E,F ) is reflexive, for all k.
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(b) If E is Asplund, HNb(E,F ) is topologically isomorphic to HbI(E,F ).

(c) HbA(E,F ) contains copy of c0 if and only if there exists k ∈ N such that Ak(E,F ) contains

copy of c0.

Proof. The first item follow from [GMR00, Theorems 1 and 8].

The next item is a consequence of [GMR00, Theorem 1] and [CD00, Theorem 1.4].

The last item derive from [GMR00, Lemma 6] and [DD98, Theorem 4].

3.2.2 Weakly differentiable sequences and convolution

In this section we define the concept of weakly differentiable sequence which will be useful for

the study of convolution operators on the space HbA(E) of scalar valued functions. The following

convolution product was defined on the dual space toHb(E) by Aron, Cole and Gamelin in [ACG91]:

if ϕ,ψ ∈ Hb(E)′, then ϕ ∗ ψ ∈ Hb(E)′ is the linear functional given by

ϕ ∗ ψ(f) = ψ(x 7→ ϕ(τxf)).

In this section we also define and investigate an analogous convolution product in HbA(E)′.

We prove that this convolution product is well defined in a few steps. We know from Lemma

3.2.3 that if A be a coherent sequence at E and x ∈ E. Then

τx : HbA(E) → HbA(E)

f 7→ τxf = f(x+ ·)

is a continuous operator. Thus we are able to define:

Definition 3.2.14. Let ϕ ∈ HbA(E)′ and let f ∈ HbA(E). We define ϕ ∗ f : E → C as follows,

ϕ ∗ f(x) = ϕ ◦ τx(f) = ϕ(f(x+ ·)).

Therefore, the desired convolution product can be rewritten as ψ ∗ϕ(f) = ψ(ϕ ∗ f). For this to

be well defined, we must show that ϕ∗ f ∈ HbA(E) and that f → ϕ∗ f is continuous. We will need

the additional condition of weakly differentiability of the sequence A to achieve this. At the end

of this section we will prove that there are plenty of weakly differentiable sequences of polynomial

ideals. When a sequence of polynomial ideals is defined in both the scalar and vector valued case,

one may consider the following property: “for every P ∈ Ak(E), the mapping x 7→ Pxl belongs to

the space of vector-valued polynomials Al(E;Ak−l(E))”. This would mean that the differential of

a polynomial in A is also a polynomial in A. We consider a similar but less restrictive property,

which makes sense when the polynomial ideals are only defined for the scalar case and that could

be read as “the differential of a polynomial in A is weakly in A”. More precisely, we have:

Definition 3.2.15. Let A be a coherent sequence of polynomial ideals and let E be a Banach space.

We say that A is weakly differentiable (at E) if there exists a constant K such that, for P ∈ Ak(E)

and ϕ ∈ Ak−l(E)′, the mapping x 7→ ϕ(Pxl) belongs to Al(E) and

∥∥∥x 7→ ϕ
(
Pxl

)∥∥∥
Al(E)

≤ K l‖ϕ‖Ak−l(E)′‖P‖Ak(E).



68 CHAPTER 3. COHERENT SEQUENCES AND HOLOMORPHIC MAPPINGS

Since dk−lP
(k−l)! (x) =

(
k
l

)
Pxl , the previous condition is equivalent to say that ϕ ◦ dk−lP

(k−l)! belongs to

Al(E) and
∥∥∥ϕ ◦ dk−lP

(k − l)!

∥∥∥
Al(E)

≤
(
k

l

)
K l‖ϕ‖Ak−l(E)′‖P‖Ak(E).

This is what we mean by saying that the differential is weakly in A and what suggested our

terminology.

We will also see in Section 4.1 that the weakly differentiability of a sequence may be seen

as a property which is dual to being close under pointwise multiplication between homogeneous

polynomials of the sequence.

Lemma 3.2.16. For each ϕ ∈ HbA(E)′ and k ≥ 1, there exist constants c, r > 0 such that

‖ϕ|Ak(E)
‖Ak(E)′ ≤ crk for every P ∈ Ak(E).

Proof. Indeed since ϕ is continuous, there are constants c, r > 0 such that |ϕ(g)| ≤ cpr(g), for every

g ∈ HbA(E). In particular, |ϕ(P )| ≤ cpr(P ) = crk‖P‖Ak(E). Then ‖ϕ|Ak(E)
‖Ak(E)′ ≤ crk, for every

k ≥ 1.

Theorem 3.2.17. Let A be a weakly differentiable coherent sequence at E. For each ϕ ∈ HbA(E)′,

the following operator is well defined and continuous:

Tϕ : HbA(E) → HbA(E)

f 7→ ϕ ∗ f

Proof. Take f =
∑∞

k=0 Pk ∈ HbA(E) and x ∈ E. Then

ϕ ◦ τx(f) =

∞∑

k=0

k∑

j=0

(
k

j

)
ϕ
(
(Pk)xj

)
=

∞∑

j=0

∞∑

k=j

(
k

j

)
ϕ
(
(Pk)xj

)
,

since, using Lemma 3.2.16 and the coherence of A it is easy to see that this series is absolutely

convergent.

Let Ql(x) =
∑∞

k=l

(k
l

)
ϕ
(
(Pk)xl

)
. Then ϕ◦τx(f) =

∑∞
l=0Ql(x). We will show that Ql belongs to

Al(E) and that
∑∞

l=0Ql is in HbA(E). To prove this it suffices to show that the series
∑∞

k=l

(k
l

)∥∥∥x 7→
ϕ
(
(Pk)xl

)∥∥∥
Al(E)

converges and that for every R > 0, the series
∑∞

l=0R
l
∥∥∥
∑∞

k=l

(k
l

)
x 7→ ϕ

(
(Pk)xl

)∥∥∥
Al(E)

also converges:

∞∑

l=0

Rl
∥∥∥

∞∑

k=l

(
k

l

)
x 7→ ϕ

(
(Pk)xl

)∥∥∥
Al(E)

≤
∞∑

l=0

Rl
∞∑

k=l

(
k

l

)∥∥∥x 7→ ϕ
(
(Pk)xl

)∥∥∥
Al(E)

≤
∞∑

l=0

Rl
∞∑

k=l

(
k

l

)
K l‖ϕ|Ak−l(E)

‖Ak−l(E)′‖Pk‖Ak(E)

≤ c

∞∑

k=0

‖Pk‖Ak(E)

k∑

l=0

(
k

l

)
(KR)lrk−l

= cp
(KR+r)

(f),

where in the last inequality we used Lemma 3.2.16 and reversed the order of summation. Therefore

Tϕ(f) belongs to HbA(E) and p
R
(Tϕ(f)) ≤ cp

(KR+r)
(f), that is, Tϕ ∈ L(HbA(E),HbA(E)).
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An operator T : HbA(E) → HbA(E) that commutes with translations is said to be a convolution

operator, that is T is a convolution operator if T ◦ τx = τx ◦ T for all x ∈ E. We have the following

characterization of convolution operators:

Corollary 3.2.18. Let A be a coherent sequence and T : HbA(E) → HbA(E) a convolution operator.

Then there exist ϕ ∈ HbA(E)′ such that Tf = ϕ ∗ f for every f ∈ HbA(E). The converse is true

for weakly differentiable sequences.

Moreover, if finite type polynomials are dense in Ak(E) for every k, then each convolution

operator T determines a unique function ϕ ∈ HbA(E)′.

Proof. Let T : HbA(E) → HbA(E) be a convolution operator and let ϕ = T ◦ δ0. Then Tf(x) =

τx(Tf)(0) = T (τxf)(0) = ϕ ◦ τx(f) = ϕ ∗ f(x).

The converse for weakly differentiable sequences is a consequence of the above theorem since,

for each ϕ ∈ HbA(E)′, the mapping f 7→ ϕ ∗ f is a convolution operator.

Moreover, if T (f) = ψ ∗ f = ϕ ∗ f for every f ∈ HbA(E) then ψ(γn) = ψ ∗ γn(0) = T (γn)(0) =

ϕ(γn) for every γ ∈ E′ and n ∈ N and thus density of finite type polynomials imply that ϕ = ψ.

Corollary 3.2.19. Suppose that A be a weakly differentiable coherent sequence and finite type

polynomials are dense in Ak(E) for every k then ϕ 7→ Tϕ is a vector space isomorphism between

HbA(E)′ and the convolution operators on HbA(E).

As a consequence of Theorem 3.2.17 we also have:

Corollary 3.2.20. Suppose that A is a weakly differentiable coherent sequence. If ϕ ∈ HbA(E)′,

then the application

Mϕ : HbA(E)′ → HbA(E)′

ψ 7→ ψ ∗ ϕ,

where ψ∗ϕ(f) = ψ(ϕ∗f), is a continuous linear operator when we consider the strong dual topology

on HbA(E)′.

Proof. Just note that Mϕ is the transpose of Tϕ.

This allows us to define the desired product:

Definition 3.2.21. Let A is a weakly differentiable coherent sequence. For ϕ,ψ ∈ HbA(E)′, the

convolution product ϕ ∗ ψ ∈ HbA(E)′ is defined by

ϕ ∗ ψ(f) = ψ(x 7→ ϕ ◦ τx(f)) = ψ(ϕ ∗ f),

for f ∈ HbA(E).

Now we show that, many sequences of polynomial ideals are weakly differentiable.

Example 3.2.22. The following sequences are weakly differentiable:

(a) A = {Pk}k: if P ∈ Pk(E) and ϕ ∈ Pk−l(E)′ then it is clear that x 7→ ϕ
(
Pxl

)
∈ P l(E) and∥∥x 7→ ϕ

(
Pxl

)∥∥
Pl(E)

≤ el‖ϕ‖Pk−l(E)′‖P‖Pk(E).
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(b) A = {Pk
I }k: if P ∈ Pk

I (E) then x 7→ Pxl ∈ P l
I(E,Pk−l

I (E)) and ‖x 7→ Pxl‖Pl
I(E,Pk−l

I (E))
≤

‖P‖Pk
I (E). This follows from the continuity of

(⊗l,s

εl

E

)
⊗ε

(⊗k−l,s

εk−l

E

)
→

⊗k,s

εk

E

s⊗ t 7→ σ(s⊗ t).

So, for each ϕ ∈ Pk−l
I (E)′, x 7→ ϕ

(
Pxl

)
∈ P l

I(E) and
∥∥x 7→ ϕ

(
Pxl

)∥∥
Pl

I (E)
≤ ‖ϕ‖Pk−l

I (E)′‖P‖Pk
I (E).

(c) A = {Pk
e }k: if P ∈ Pk

e (E) and ϕ ∈ Pk−l
e (E)′ then Q(x) = ϕ

(
Pxl

)
is in P l(E). Let E

J→֒ G

and P̃ an extension of P to G. Then Q̃(y) = ϕ
(
P̃yl ◦ J

)
is an extension of Q to G, and thus

Q is extendible. Moreover, since |Q̃(y)| ≤ el‖y‖l‖ϕ‖‖P̃ ‖, it follows that ‖Q‖e ≤ el‖ϕ‖‖P‖e.

(d) A = {Pk
w}k: it is known (see [Din99, Proposition 2.6]) that if P ∈ Pk

w(E) then dk−lP is

weakly continuous. Thus x 7→ ϕ
(
Pxl

)
∈ P l

w(E) and and has norm ≤ el‖ϕ‖Pk−l(E)′‖P‖Pk(E).

We finish this section with sets of examples of weakly differentiable sequences. The first one

deals with ideals associated to tensor norms and the second one with composition ideals. See also

Lemma 4.2.1 for some examples on minimal ideals.

Lemma 3.2.23. Let A be the sequence of maximal polynomial ideals associated to a sequence of

symmetric tensor norms {αk}k. If A is weakly differentiable, then the same is true for the sequences

of maximal polynomial ideals associated to {\αk/}k and to {/αk\}k.

Proof. Let us denote βk = α′
k. For A the sequence of maximal polynomial ideals associated to

{\αk/}k we have that P belongs to Ak(E) if and only if P ∈
(
⊗k,s
/βk\

E
)′

, and we can proceed just

as we did with the ideal of extendible polynomials (note that polynomials in Ak(E) are those that

extends to a βk-continuous polynomial on ℓ∞(BE′)).

For the sequence of maximal ideals associated to {/αk\}k, P belongs to Ak(E) if and only if

P̃ = P ◦qk belongs to
(
⊗k,s
βk
ℓ1(BE)

)′
= Ak(ℓ1(BE)), where qk is the metric projection ⊗k,s

βk
ℓ1(BE)։

⊗k,s
\βk/

E. Also, transposing qk we obtain a metric injection
(
⊗k,s

\βk/
E
)′

→֒
(
⊗k,s
βk
ℓ1(BE)

)′
. If we take

ϕ ∈
(
⊗k,s

\βk/
E
)′

, we can choose a Hahn-Banach extension ψ of ϕ on ⊗k,s
βk
ℓ1(BE).

Now, if Q(x) = ϕ
(
Pxl

)
, we have

Q ◦ q(z) = ϕ(Pq(z)l) = ψ ((P ◦ q)zl) ,

which belongs to
(
⊗k−l,s
βk

ℓ1(BE)
)′

because A is weakly differentiable. But this means thatQ belongs

to Ak−l(E)

In the previous proof, we only used that A is weakly differentiable in spaces of the form ℓ∞(I)

(for {\αk/}k) and ℓ1(J) ({/αk\}k), where I and J are some index sets.

From the previous lemma and examples (a) and (b) above we have,

Corollary 3.2.24. The sequence of maximal polynomial ideals associated to any of the natural

sequences is weakly differentiable.
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Proposition 3.2.25. Let {Ak}k be a weakly differentiable sequence and C is a normed operator

ideal. Then {Ak ◦ C}k is weakly differentiable.

Proof. Let P = RT ∈ An ◦ C(E,F ), with T ∈ C(E,E1) and R ∈ An(E1, F ), with ‖T‖C(E,E1) = 1.

Take ϕ ∈ An ◦ C(E,F )′ and define ψ ∈ An(E1, F )′ by ψ(Q) = ϕ(QT ). Note that ‖ψ‖An(E1,F )′ ≤
‖ϕ‖An◦C(E,F )′‖T‖nC(E,E1) = ‖ϕ‖An◦C(E,F )′ . Then

ϕ(Pxl) = ϕ(R(Tx)lT ) = ψ(R(Tx)l),

thus x 7→ ϕ(Pxl) =
[
x 7→ ψ(Rxl)

]
◦T belongs to Al ◦C(E,F ), because {Ak} is weakly differentiable

and T ∈ C. Moreover

‖x 7→ ϕ(Pxl)‖Al◦C(E,F ) = ‖
[
x 7→ ψ(Rxl)

]
◦ T‖Al◦C(E,F ) ≤ ‖x 7→ ψ(Rxl)‖An(E1,F )‖T‖lC(E,E1)

≤ K l‖ψ‖An(E1,F )′‖R‖An(E1,F )‖T‖lC(E,E1)

≤ K l‖ϕ‖An◦C(E,F )′‖R‖An(E1,F )‖T‖nC(E,E1)
.

Since this is true for every facotrization of P = RT (with ‖T‖C = 1), we conclude that

‖x 7→ ϕ(Pxl)‖Al◦C(E,F ) ≤ K l‖ϕ‖An◦C(E,F )′‖P‖An◦C(E,F ).

Example 3.2.26. The ∞-factorable (∞-compact) polynomials form a sequence of normed ide-

als which is coherent and weakly differentiable since it is the composition of all the polynomi-

als with the ∞-factorable (∞-compact) operators [Hol86]. We already knew that the sequence of

∞-factorable polynomials is weakly differentiable since it coincide with the extendible polynomials

([KR98, Car99]).

3.2.3 Coherent sequences of minimal ideals and duality

This subsection deals with duality questions for HbA, when the ideals in the sequence are minimal.

We will restrict ourselves to scalar valued functions. Based on duality properties for each space

Ak(E), we characterize the dual of HbA(E) as the space of holomorphic functions of exponential

type ExpB(E′) associated to some sequence B of Banach spaces of polynomials.

Let A = {Ak}k be a coherent sequence at E. The Borel transform β : HbA(E)′ → H(E′)

assigns to each element ϕ ∈ HbA(E)′ the holomorphic function β(ϕ) ∈ H(E′), given by β(ϕ)(γ) =

ϕ(exp ◦γ) = ϕ(eγ).

If ϕ ∈ Ak(E)′, we have two natural ways to identify ϕ with an element in HbA(E)′:

HbA(E)
eϕ−→ C or HbA(E)

ϕ−→ C

f 7−→ ϕ
(
dkf(0)
k!

)
f 7−→ ϕ

(
dkf(0)

)
.

Thus, the Borel transform induces two different “polynomial” Borel transforms: βk : Ak(E)′ →
Pk(E′) where βk(ϕ) = β(ϕ̃) and Bk : Ak(E)′ → Pk(E′) given by Bk(ϕ) = β(ϕ). Note that for

γ ∈ E′, βk(ϕ)(γ) = ϕ
(
γk

k!

)
and Bk(ϕ)(γ) = ϕ

(
γk
)
.

In the polynomial setting it is more common to use the mapping Bk than the mapping βk.

Moreover, it is not necessary to deal with holomorphic functions in order to define the polynomial
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Borel transform Bk. Indeed, for a Banach space of k-homogeneous polynomials Ak(E), we can

define Bk : Ak(E)′ → Pk(E′) by Bk(ϕ)(γ) = ϕ
(
γk
)
, for every γ ∈ E′. Also, we can express the

holomorphic Borel transform β in terms of the Bk’s:

β(ϕ) =

∞∑

k=0

Bk
(
ϕ|Ak(E)

)

k!
.

Remark 3.2.27. In the sequel, the expression

Ak(E)′ = Bk(E
′)

will always mean that the polynomial Borel transform Bk : Ak(E)′ → Bk(E
′) is an isometric

isomorphism.

The following lemma states that in order to have this duality, Ak(E) must be “small”:

Lemma 3.2.28. If Ak(E)′ = Bk(E
′), then finite type polynomials are dense in Ak(E):

Pk
f (E)

Ak
= Ak(E).

Proof. Suppose there exists P ∈ Ak(E) − Pk
f (E)

Ak
. Then there is ϕ ∈ Ak(E)′ such that ϕ(P ) = 1

and ϕ|Pk
f (E) ≡ 0. For every γ ∈ E′, ϕ(γk) = 0 and then Bk(ϕ)(γ) = 0. Thus Bk(ϕ) = 0 and

therefore ϕ = 0 in Ak(E), which is a contradiction.

Since the Taylor expansion about the origin of a function f ∈ HbA(E) converges in HbA(E), we

have

Corollary 3.2.29. Let {Ak(E)}k and {Bk(E
′)}k be coherent sequences such that Ak(E)′ = Bk(E

′).

Then finite type polynomials are dense in HbA(E).

Example 3.2.30. We exhibit two simple situations of coherent sequences where the duality

Ak(E)′ = Bk(E
′) holds.

First, if Pn
A(E) is the space of approximable n-homogeneous polynomials, then Pn

A(E)′ is (iso-

metrically) the space of integral polynomials Pn
I (E′) [Din71].

Second, if E′ has the approximation property, the dual of Pn
N (E) coincides with Pn(E′) [Gup70].

Note that in both cases, the sequence of dual spaces (i.e. {Pn(E′)}n and {PI(E′)}n respectively)

is coherent.

Remark 3.2.31. Now we use results from [Flo01] on minimal, maximal and dual (or adjoint)

polynomial ideals to show how to obtain other examples in which the duality relation Ak(E)′ =

Bk(E
′) holds.

Suppose Ak is a minimal ideal and let αk be its associated k-symmetric tensor norm. If E′ has

the bounded approximation property, then Ak(E) identifies isometrically with ⊗k
s,αk

E′ and then

Ak(E)′ is isometrically isomorphic to Bk(E
′) = A∗

k(E
′) via the Borel transform Bk, see [Flo01,

Corollary 4.3].

On the other hand, if we start with a maximal ideal Bk, let Ak = (B∗
k)
min. Again, if E′ has

the bounded approximation property, the Borel transform Bk is an isometric isomorphism between

Ak(E)′ and Bk(E
′).

The following proposition states that if the duals of Ak(E) form a coherent sequence of spaces

of polynomials, then {Ak(E)}k inherits the coherence.
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Proposition 3.2.32. Let {Bk}k be a coherent sequence at E′ with constants C and D, and suppose

Ak(E)′ = Bk(E
′) for all k. Then, {Ak(E)}k is a coherent sequence with constants D and C.

Proof. First, observe that if ξ ∈ E′ and a ∈ E then (ξk+1)a = ξ(a)ξk. Thus, for every ψ ∈ Bk(E
′),

B−1
k (ψ)((ξk+1)a) = ξ(a)B−1

k (ψ)(ξk) = ξ(a)ψ(ξ) = (aψ)(ξ) = B−1
k+1(aψ)(ξk+1).

This implies that, for every P ∈ Pk+1
f (E), B−1

k (ψ)(Pa) = B−1
k+1(aψ)(P ) and

‖Pa‖Ak(E) = sup
‖ψ‖

Bk(E′)=1
|B−1

k+1(aψ)(P )| ≤ D‖a‖‖P‖Ak+1(E).

By the density result in Lemma 3.2.28, we obtain that for every P ∈ Ak+1(E) and every a ∈ E, Pa
belongs to Ak(E) and ‖Pa‖Ak(E) ≤ D‖a‖‖P‖Ak+1(E).

To prove the second condition of coherence, note that if γ and ξ are in E′ and ψ ∈ Bk+1(E
′)

we have, by the polarization formula,

B−1
k+1(ψ)(γξk) =

=
1

2k+1(k + 1)!

∑

ε1,...,εk+1=±1

ε1 · · · εk+1B
−1
k+1(ψ)

(
(ε1γ + (ε2 + · · · + εk+1)ξ)

k+1
)

=
1

2k+1(k + 1)!

∑

ε1,...,εk+1=±1

ε1 · · · εk+1ψ
(
ε1γ + (ε2 + · · · + εk+1)ξ

)

= ψγ(ξ) = B−1
k (ψγ)(ξ

k).

This implies that if P is a finite type k-homogeneous polynomial on E, then B−1
k+1(ψ)(γP ) =

B−1
k (ψγ)(P ). And thus, for every P ∈ Pk

f (E),

‖γP‖Ak+1(E) = sup
‖ψ‖

Bk(E′)=1
|B−1

k (ψγ)(P )| ≤ C‖γ‖‖P‖Ak(E).

Therefore, again by Lemma 3.2.28, for every P ∈ Ak(E) the polynomial γP belongs to Ak+1(E)

and ‖γP‖Ak+1(E) ≤ C‖γ‖‖P‖Ak(E).

In order to study the dual of HbA(E), we need the following

Definition 3.2.33. Let B = {Bk}k be a coherent sequence at E. We define the holomorphic

functions of B-exponential type on E,

ExpB(E) =
{
f ∈ H(E) : dkf(0) ∈ Bk(E) for all k and lim sup

k→∞

∥∥dkf(0)
∥∥ 1

k
Bk

<∞
}
.

A classical result of Gupta states that, for E′ with the approximation property, the Borel

transform defines a duality between the space of nuclearly entire functions of bounded type over

E, HNb(E), and the space of holomorphic mappings of exponential type on E′, Exp(E′) [Gup70,

Din99]. In an analogous way, we prove the following:

Proposition 3.2.34. Let {Bk(E
′)}k be a coherent sequence and let {Ak(E)}k be such that Ak(E)′ =

Bk(E
′) for all k. Then the Borel transform is a vector space isomorphism between HbA(E)′ and

ExpB(E′).

Proof. Let ϕ ∈ HbA(E)′. Since ϕ is continuous, there are constants c,R > 0 such that |ϕ(g)| ≤
cp

R
(g), for every g ∈ HbA(E). In particular, for each k, if g belongs to Ak(E), we get |ϕ(g)| ≤

cRk‖g‖Ak(E). Then ‖ϕ|Ak(E)
‖Ak(E)′ ≤ cRk, for every k ≥ 1. Moreover, since dkβ(ϕ)(0)

k! (γ) =
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ϕ|Ak(E)
(γ

k

k! ) we have that dkβ(ϕ)(0) = Bk
(
ϕ|Ak(E)

)
. Then ‖dkβ(ϕ)(0)‖

1
k

Bk(E′) = ‖ϕ|Ak(E)
‖

1
k

Ak(E)′ ≤
c

1
kR. Therefore, β(ϕ) ∈ ExpB(E′).

The Borel transform β is injective as a consequence of Corollary 3.2.29. To see that it is also

surjective, let ψ ∈ ExpB(E′) and A = supk ‖dkψ(0)‖
1
k

Bk(E′). For each g ∈ HbA(E), we define

ϕ(g) =

∞∑

k=0

B−1
k

(
dkψ(0)

)(dkg(0)
k!

)
.

Since

|ϕ(g)| ≤
∞∑

k=0

‖dkψ(0)‖Bk(E′)

∥∥∥d
kg(0)

k!

∥∥∥
Ak(E)

≤
∞∑

k=0

Ak
∥∥∥d

kg(0)

k!

∥∥∥
Ak(E)

= pA(g),

we have ϕ ∈ HbA(E)′. Finally, simple computations show that β(ϕ) = ψ.

3.2.4 Convolution operators and hypercyclicity

Let X be a Fréchet space. An operator T : X → X is hypercyclic if there exists x ∈ X such that

its orbit {T nx : n ≥ 1} is dense in X.

The first example of an hypercyclic operator was given in 1929 by Birkhoff, who proved that

translation operators in H(C) are hypercyclic:

Theorem 3.2.35 (Birkhoff, [Bir29]). Let 0 6= a ∈ C. Then there exists a function g ∈ H(C) such

that the set {g(na + ·) : n ∈ N} is dense in H(C) (with the topology of uniform convergence on

compact sets), that is, the operator τa : H(C) → H(C) defined by τa(f) = f(a+ ·) is hypercyclic.

A related result was shown by MacLane in 1952:

Theorem 3.2.36 (MacLane, [Mac52]). The differentiation operator on H(C) is hypercyclic.

In a seminal work, Godefroy and Shapiro [GS91] showed that every convolution operator in

H(Cn) which is not a scalar multiple of identity is hypercyclic. In this way, they generalized the

classical results of Birkhoff [Bir29] and MacLane [Mac52] mentioned above. Analogues of Godefroy

and Shapiro’s result for some particular spaces of holomorphic functions on Banach spaces are

proved in [AB99, Pet01, Pet06].

Given a coherent sequence A(E) = {Ak(E)}k of Banach spaces of k-homogeneous polynomials,

we defined a Fréchet space HbA(E) of holomorphic function of bounded type associated to A(E). In

this subsection, under the duality conditions for the Ak(E)’s studied in the previous subsection, we

prove a Godefroy-Sahpiro theorem for HbA(E). We obtain some results of [AB99, Pet01, Pet06] as

particular cases. We prove that spaces of holomorphic functions generated by polynomial minimal

ideals are covered by our settings, if the dual space E′ has the approximation property. We will

also consider polynomials of the Schatten-von Neumann class in the sense of [CKP92] and the

associated space of holomorphic functions in the next subsection. We will use the characterization

of convolution operators on the space of holomorphic functions HbA(E) obtained in subsection

3.2.2, the description of HbA(E)′ given in Proposition 3.2.34 and the hypercyclicity criterion. This

criterion is most commonly used tool to prove the hypercyclicity of linear operators. It was first

proved by Kitai in her unpublished thesis, and some years later rediscovered by Gethner and

Shapiro:
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Theorem 3.2.37 (Hypercyclicity Criterion, [GS87, Kit82]). Let X be a separable Fréchet space

and T a continuous linear operator on X. Suppose that there are dense subsets X0 and Y0 of X, an

increasing sequence (nk) of positive integers and (possibly non-linear and discontinuous) mappings

Snk
: Y0 → X such that

(i) for every x ∈ X0; T
nkx→ 0,

(ii) for every y ∈ Y0; Snk
y → 0,

(iii) for every y ∈ Y0; Tnk
◦ Snk

y → y.

Then the operator T is hypercyclic.

A longstanding open problem in the theory of the dynamics of linear operators was if ev-

ery hypercyclic operator satisfies the Hypercyclicity Criterion. Recently, De La Rosa and Read

[dlRR09], constructed a Banach space X and a hypercyclic operator T which does not satisfy the

Hypercyclicity Criterion.

We now prove the announced result about hypercyclicity of convolution operators. We follow

the steps of the proof of [Pet01, Theorem 3.1].

Theorem 3.2.38 (The Godefroy-Shapiro Theorem for HbA). Suppose that E′ is separable. Let

{Bk(E
′)}k be a coherent sequence and {Ak(E)}k be such that Ak(E)′ = Bk(E

′) for every k. Then,

every convolution operator T : HbA(E) → HbA(E) which is not a scalar multiple of the identity is

hypercyclic.

Proof. By Corollary 3.2.18, there is a linear functional ϕ ∈ HbA(E)′ which satisfies T (f) = ϕ ∗ f
for every f . Since T is not a scalar multiple of the identity, it follows that ϕ is not a scalar multiple

of δ0.

Since E′ is separable, by Corollary 3.2.29, HbA(E) is separable. Therefore, we can use the

Hypercyclicity Criterion 3.2.37.

First, note that span{eγ : γ ∈ U} is dense in HbA(E) for any nonempty open set U ⊂ E′.

Indeed, if ψ ∈ HbA(E)′ and ψ(eγ) = 0 for every γ ∈ U , then β(ψ) ≡ 0 in U and we have β(ψ) = 0.

This means that ψ is 0.

Also, the fact that ϕ is not a scalar multiple of δ0 implies that β(ϕ) is not a constant function.

Indeed, if β(ϕ) was constant then λ = ϕ(1) = β(ϕ)(0) = β(ϕ)(γ) = ϕ(eγ) for all γ ∈ E′. But, on

the other hand, λ = λδ0(e
γ) for all γ ∈ E′ and we would have that ϕ = λδ0.

We will now prove that T satisfies the Hypercyclicity Criterion. Let

V = {γ ∈ E′ : |β(ϕ)(γ)| < 1} and W = {γ ∈ E′ : |β(ϕ)(γ)| > 1}.

Then V,W ⊂ E′ are open sets, and they are nonempty. Indeed, if W = ∅ (V = ∅) then β(ϕ)

( 1
β(ϕ)) would be a nonconstant bounded entire function. Let

HV (E) = span{eγ , γ ∈ V } and HW (E) = span{eγ , γ ∈W}.

As we have observed, HV (E) and HW (E) are dense in HbA(E).

For γ ∈ V ,

T (eγ) = ϕ ∗ eγ =
[
x 7→ ϕ(τxe

γ)
]

= ϕ(eγ)eγ = β(ϕ)(γ)eγ .

Then T (HV (E)) ⊂ HV (E). Also, T n(eγ) = β(ϕ)(γ)neγ , and since |β(ϕ)(γ)| < 1 for γ ∈ V , we

obtain that T n(f) −→
n→∞

0, for every f ∈ HV (E).
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For γ ∈ W , let S(eγ) =
eγ

β(ϕ)(γ)
. Since {eγ , γ ∈ W} is linearly independent (see the proof

of [AB99, Lemma 2.3]), we can linearly extend S to HW (E). Then S(HW (E)) ⊂ HW (E) and

Sn(eγ) =
eγ

β(ϕ)(γ)n
. Thus Sn(f) −→

n→∞
0, for every f ∈ HW (E), since |β(ϕ)(γ)| > 1 for γ ∈W .

Finally, TS(eγ) = T
( eγ

β(ϕ)(γ)

)
= eγ and therefore TSf = f for all f ∈ HW (E).

By the Hypercyclicity Criterion, T is hypercyclic.

Now we apply the previous results to different spaces of holomorphic functions.

Example 3.2.39. In [AB99] the authors study differentiation operators in Hbc(E), the space of

holomorphic functions of compact bounded type on E (that is: f =
∑
Pn ∈ Hbc(E) whenever each

Pn is an approximable n-homogeneous polynomial and ‖Pn‖
1
n → 0, where ‖ · ‖ denotes the usual

norm). They show that if the differentiation operator is constructed from an entire function of

exponential type on C, then it is hypercyclic. This result is a particular case of Theorem 3.2.38

since, as we will show in the next chapter (Example 4.2.6), every such differentiation operator in

Hbc(E) is a convolution operator.

Example 3.2.40. If E′ is separable with the approximation property then we can apply the

previous theorem to the space HNb(E) of nuclearly entire functions of bounded type. This answers

a question of Aron and Markose in [AM04]. For E a dual Banach space and a slightly different

definition of nuclear polynomials, Petersson obtained a stronger version of this result [Pet06].

Example 3.2.41. Let {Ak}k be a sequence of minimal ideals. If E′ has the bounded approximation

property, Ak(E)′ can be identified with Bk(E
′) = A∗

k(E
′) (see Remark 3.2.31). Therefore, if E′ is

also separable and {Bk(E
′)}k is coherent, the convolution operators on HbA(E) are hypercyclic if

they are not scalar multiples of the identity.

For example, we can take Ak to be the minimal ideal associated to the tensor norm ηk [KR98,

Car99]. In this case, {Bk}k is the coherent sequence of extendible polynomials.

In the next subsection, we present other examples in which the hypotheses of Theorem 3.2.38

are fulfilled. Namely, we consider the holomorphic functions of bounded type associated to the

Schatten-von Neumann polynomials in the sense of Cobos, Kühn and Peetre [CKP92].

3.2.5 Schatten-von Neumann entire functions of bounded type

In this subsection we define of Schatten-von Neumann polynomials and holomorphic functions using

the complex method of interpolation [Cal64, BL76]. We study some of their properties and show

that the results from the previous subsection may be also applied in this case.

Suppose H is a separable Hilbert space. Let us first recall the definition of Hilbert-Schmidt

n-homogeneous polynomials on H, which will be denoted Sn2 (H). For finite type polynomials it is

possible to define an inner product in the following way: if y, z ∈ H, 〈 〈·, y〉n, 〈·, z〉n〉 = 〈z, y〉n. Then

Sn2 (H) is the completion of the space of finite type polynomials Pn
f (H) with this inner product.

Note that if {ei}i is an orthonormal basis of H and P,Q ∈ Sn2 (H), then

〈P,Q〉 =
∞∑

i1,...,in=1

P̌ (ei1 , . . . , ein)Q̌(ei1 , . . . , ein).

Also note that the Borel transform is an isometric isomorphism between (Sn2 (H))′ and Sn2 (H′).
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Cobos, Kühn and Peetre in [CKP92] defined the Schatten-von Neumann classes of multilinear

functionals on H. We adapt their definition to homogeneous polynomials on H. To this end,

throughout this section we will denote by Sn1 (H) and Sn∞(H) the spaces of n-homogeneous nuclear

and approximable polynomials on H, respectively. Since H′ has the approximation property and

the Radon-Nikodym property, the Borel transform is an isometric isomorphism between (Sn1 (H))′

and Pn(H′), and also between (Sn∞(H))′ and Sn1 (H′).

Following [CKP92], we define:

Definition 3.2.42. The Schatten-von Neumann p-class of n-homogeneous polynomials on H is

defined as

Snp (H) = [Sn1 (H),Sn∞(H)]θ,

with 1
p = 1 − θ and 0 < θ < 1. Here, [Sn1 (H),Sn∞(H)]θ denotes the space obtained by complex

interpolation from the pair (Sn1 (H),Sn∞(H)), with parameter θ.

The following result, which is the polynomial version of [CKP92, Theorem 3.1] and can be

proved analogously, shows that this definition is consistent with the definition of Sn2 (H).

Proposition 3.2.43. We have the following isometric isomorphisms

[Sn1 (H),Pn(H)]1/2
1
= [Sn1 (H),Sn∞(H)]1/2

1
= Sn2 (H).

The above proposition may be obtained using the real method of interpolation, but only equiv-

alent norms are achieved (see [CKP92]).

In the proof of [CKP92, Theorem 4.5], the reflexivity of Snp (H) is proven. In fact, this can be

seen as a consequence of the following result:

Proposition 3.2.44. If 1 < p, q < ∞ are such that 1
p + 1

q = 1, then the Borel transform is an

isometric isomorphism between (Snp (H))′ and Snq (H′).

Proof. We know that the statement holds when p = 2. Next, assume 1 < p < 2.

By the Reiteration Theorem [BL76, 4.6.1] for the complex method,

Snp (H) = [Sn1 (H),Sn∞(H)]θ = [Sn1 (H),Sn2 (H)]η ,

where θ = η
2 . Then Snp (H) = [Sn1 (H),Sn2 (H)]2θ.

In the following two cases, the Borel transform is an isomorphism

Bn : (Sn1 (H))′ → Pn(H′) and,

Bn : (Sn2 (H))′ → Sn2 (H′).

Then Bn : [(Sn1 (H))′, (Sn2 (H))′]2θ → [Pn(H′),Sn2 (H′)]2θ is an isomorphism.

Since Sn2 (H) is reflexive, and by a duality theorem [BL76, Corollary 4.5.2.], we have

[(Sn1 (H))′, (Sn2 (H))′]2θ = [Sn1 (H),Sn2 (H)]′2θ = (Snp (H))′.

On the other hand,

[Pn(H′),Sn2 (H′)]2θ = [Sn∞(H′),Sn2 (H′)]2θ = [Sn1 (H′),Sn∞(H′)]ν ,

with ν = 1
22θ + (1 − 2θ) = 1 − θ (the first equality follows from [BL76, Theorem 4.2.2.] and the

last one from the Reiteration Theorem). Therefore, Bn : (Snp (H))′ → [Sn1 (H′),Sn∞(H′)]ν = Snq (H′)

is an isomorphism, with 1
q = 1 − ν = θ, that is, 1

q = 1 − 1
p .



78 CHAPTER 3. COHERENT SEQUENCES AND HOLOMORPHIC MAPPINGS

For the case 2 < p <∞, we have

Snp (H) = [Sn1 (H),Sn∞(H)]θ = [Sn2 (H),Sn∞(H)]η ,

where η = 2θ − 1. We proceed analogously to obtain the desired result.

Corollary 3.2.45. For 1 < p <∞, the Schatten-von Neumann classes Snp (H) are reflexive.

Since complex interpolation method is an exact interpolation functor of exponent θ, we have

from Proposition 3.1.19:

Corollary 3.2.46. For every 1 ≤ p ≤ ∞, the sequence of Schatten-von Neumann p-classes of

homogeneous polynomials {Skp (H)}k is coherent.

We denote by HbSp(H) be the holomorphic functions of bounded type of the Schatten-von

Neumann p-class on H. From Propositions 3.2.44 and 3.2.34 we have:

Corollary 3.2.47. If 1 < p, q < ∞ are such that 1
p + 1

q = 1, then the Borel transform is a vector

space isomorphism between HbSp(H)′ and the q-Schatten functions of exponential type, ExpSq(H).

By Proposition 3.2.44 we may apply Theorem 3.2.38 to the Schatten-von Neumann functions

and thus we have:

Corollary 3.2.48. Let H be separable Hilbert space. For 1 ≤ p ≤ ∞, every convolution operator

on HbSp(H) which is not a scalar multiple of the identity is hypercyclic.

The case p = 2 of this result (Hilbert-Schmidt holomorphic functions of bounded type) was

proved by Petersson in [Pet01].

Remark 3.2.49. We can also use the real interpolation method ([BL76, Chapter 3]) to define

similar classes Sp. Indeed this was also done in [CKP92], where the authors proved that the

Hilbert-Schmidt trilinear forms are (S1,S∞)1/2,2 with equivalent norms.

Let E be any Banach space, we define S̃kp (E) := (Sk1 (E),Sk∞(E))θ,2, with θ = 1− 1
p (note that in

[CKP92, p.136], the class Sp on Hilbert spaces was defined using the real method by (S1,S∞)θ,p),

where Sk1 and Sk∞ denote the nuclear and approximable k-homogeneous polynomials respectively.

Proposition 3.2.50. Let E be a Banach space whose dual is an Asplund space with the approxi-

mation property, 1
p + 1

q = 1. Then S̃kp (E)′ = S̃kq (E′), with equivalent norms.

Proof.

S̃kp (E)′ = (Sk1 (E),Sk∞(E))′θ,2

=
(1)

(Sk1 (E)′,Sk∞(E)′)θ,2

= (Pk(E′),Pk
I (E′))θ,2

=
(2)

(Sk∞(E′),Pk
N (E′))θ,2

=
(3)

(Pk
N (E′),Sk∞(E′))1−θ,2 = S̃kq (E′),

where in (1) we used the duality theorem [BL76, Theorem 3.7.1], in (2) we used [BL76, Theorem

3.4.2 (d)] and the fact that for Asplund spaces nuclear and integral polynomials coincide [Ale85,

CD00], and in (3), [BL76, Theorem 3.4.1 (a)].
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By Proposition 3.1.19 the sequence {S̃kp }k is coherent, so we may define the S̃p-entire functions

of bounded type, HbS̃p
(E). Therefore we have that if E is a Banach space and E′ is Asplund,

separable and with the approximation property, every convolution operator not multiple of identity

on HbS̃p
(E) is hypercyclic.

3.2.6 Holomorphic mappings on open sets

In this subsection we define A-holomorphic functions on open subsets U ⊂ E and more general

on Riemann domains spread over E. The definition when U is a ball is almost immediate: we

defined entire mappings as functions f such that lim ‖dkf(0)
k! ‖

1
k
Ak

= 0; this may be interpreted as if

the “A-radius of convergence” of f is ∞. Analogously, the A-holomorphic mappings of bounded

type on a ball of radius r should have “A-radius of convergence” equal r.

Definition 3.2.51. Let A = {Ak}k be a coherent sequence of polynomial ideals; E,F Banach

spaces and x ∈ E. Let Br(x) = BE(x, r) be the open ball of radius r and center x in E. We define

the space of A-holomorphic functions of bounded type on Br(x) by

HbA(Br(x), F ) =

{
f ∈ H(Br(x), F ) :

dkf(x)

k!
∈ Ak(E,F ) and lim sup

k→∞

∥∥∥d
kf(x)

k!

∥∥∥
1/k

Ak

≤ 1

r

}
.

We consider in HbA(Br(x), F ) the seminorms ps, for 0 < s < r, given by

ps(f) =

∞∑

k=0

∥∥∥d
kf(0)

k!

∥∥∥
Ak

sk,

for all f ∈ HbA(Br(x), F ).

Proposition 3.2.52. Let A be a coherent sequence and r > 0. For every Banach spaces E and F

and x ∈ E,
(
HbA(Br(x), F ), {ps}0<s<r

)
is a Fréchet space.

Proof. Note that it suffices to consider the seminorms {pr(1− 1
n

)}n∈N, and therefore the space(
HbA(Br(x), F ), {ps}0<s<r

)
is metrizable. The completeness may proved as in Proposition 3.2.2.

We also have results similar to those about Schauder decompositions for spaces of entire map-

pings given in Subsection 3.2.1.

Proposition 3.2.53. Let A be a coherent sequence and r > 0. Then {Ak(E,F )}k is a r-Schauder

decomposition of HbA(Br(x), F ).

Remark 3.2.54. By [GMR00, Remark 5], it is not possible to have a topological isomorphism

between a Fréchet space with an R-Schauder decomposition (0 < R <∞) and a Fréchet space with

an ∞-Schauder decomposition. So, for every coherent sequence A and every Banach spaces E and

F , the spaces HbA(E,F ) and HbA(Br(x), F ) are not isomorphic.

Also, analogously to Proposition 3.2.13, we have:

Proposition 3.2.55. Let A be a coherent sequence of polynomial ideals and let E and F be Banach

spaces and r > 0. Then:

(a) HbA(Br(x), F ) is reflexive if and only if Ak(E,F ) is reflexive, for all k.
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(b) If E is Asplund, HNb(Br(x), F ) is topologically isomorphic to HbI(Br(x), F ).

(c) HbA(Br(x), F ) contains copy of c0 if and only if there exists k ∈ N such that Ak(E,F ) contains

copy of c0.

Observe that, even though HbA(E,F ) and HbA(Br(x), F ) are never isomorphic, it follows from

the previous proposition and Proposition 3.2.13 that they are both reflexive or none of them are.

Also, both contain c0 or no one does.

To finish this chapter we define A-holomorphic mappings of bounded type on general open

subsets and on Riemann domains. This will be done in two steps. First we will define a space

of holomorphic mappings on a Riemann domain X which resembles much the definition given in

[DV04, Section 3] of the space Hd(X) of holomorphic functions on X that are bounded on every ball

which is X-bounded, but associated to a coherent sequence. Then the A-holomorphic mappings of

bounded type on X will be asked to have some kind of “uniform boundedness” on X-bounded sets.

Let (X, p) be a Riemann domain over E and x ∈ X. A ball Br(x) is a subset of X such that

p|Br(x) : Br(x) → Br(p(x)) is an homeomorphism, and dX : X → R>0 is the function defined by:

dX(x) = sup{r > 0 : Br(x) exists}.

Definition 3.2.56. Let F be a Banach space. We will say that a mapping is in HdA(X,F ) if it is

A-holomorphic of bounded type on each ball in X, that is,

HdA(X,F ) :=
{
f ∈ H(X,F ) : for every x ∈ X, f ◦ (p|Bs(x))

−1 ∈ HbA(p(Bs(x)), F ), ∀s < dX(x)
}
.

(3.4)

We define the seminorms pxs(f) by

pxs (f) =
∞∑

k=0

sk
∥∥∥d

kf(x)

k!

∥∥∥
Ak(E,F )

,

for 0 < s < dX(x), x ∈ X and where dkf(x)
k! :=

dk[f◦(p|Bs(x))
−1]

k!

(
p(x)

)
. These seminorms define a

topology on HdA(X) which is always complete (see Remark 3.2.60) but not necessarily a Fréchet

topology unless E is separable. In that case we may copy the proof of [DV04, Proposition 3.2] to

obtain:

Proposition 3.2.57. Let A be a coherent sequence and (X, p) be a connected Riemann domain

over a separable Banach space E, then HdA(X,F ) is a Fréchet space.

The definition of HdA was inspired in [DV04], indeed, if A is the sequence of all homogeneous

polynomials and F = C then HdA(X) = Hd(X) defined in [DV04, Section 3]. It was shown there

that Hd = Hb for balls but they have shown an example of a bounded open subset U of ℓ2 such

that Hb(U) ( Hd(U).

Definition 3.2.58. We define the A-holomorphic mappings of bounded type on X as the mappings

in HdA(X,F ) such that, on each X-bounded open set A, the seminorms pxs (with x ∈ A and

Bs(x) ⊂ A) are uniformly bounded. That is, if we define pA(f) := sup{pxs (f) : Bs(x) ⊂ A}, then

HbA(X,F ) = {f ∈ HdA(X,F ) : for every x ∈ A ⊂⊂ X, A open, pA(f) <∞} . (3.5)
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For A the sequence of all homogeneous polynomials, HbA(X,F ) = Hb(X,F ).

Proposition 3.2.59. The seminorms {pA : A ⊂⊂ X, A open} define a Fréchet space topology on

HbA(X,F ).

Proof. It is clear that the topology may be described with the countable set of seminorms {pXn}n∈N,

where Xn = {x ∈ X : ‖p(x)‖ ≤ n and dX(x) ≥ 1
n}, so we only need to prove completeness. Let

(fk) be a Cauchy sequence in HbA(X,F ), then it is a Cauchy sequence in Hb(X,F ), so there exists

a function f ∈ Hb(X,F ) which is limit (uniformly in X-bounded sets) of the fk’s. Let A ⊂⊂ X,

x ∈ A and r < dX(x). Then (fk ◦ (p|Br(x))
−1) is a Cauchy sequence in HbA(Br(p(x)), F ) which

converge to f ◦(p|Br(x))
−1). Since HbA(Br(p(x)), F ) is complete we have that f ◦(p|Br(x))

−1) belongs

to HbA(Br(p(x)), F ). Moreover, pxs (f) ≤ supk p
x
s (fk) for every s < r. Note also that pA is bounded

in the Cauchy sequence (fk), therefore

pA(f) = sup{pxs (f) : Bs(x) ⊂ A} ≤ sup
k
pA(fk) <∞.

Remark 3.2.60. Note that we have also proved that HdA(X,F ) is complete.





Chapter 4

Multiplicative sequences and algebras

of entire functions of bounded type

We define the concept of multiplicative sequence A of scalar polynomial ideals. This allows us to

associate an algebra of entire functions of bounded type HbA(E) to a coherent and multiplicative

sequence of polynomial ideals. We study convolution operators on HbA(E). We prove that, under

very natural conditions verified by many examples of sequences, the spectrum of the associated

algebra “behaves” like the classical case of Mb(E) (the spectrum of the algebra of all entire functions

of bounded type, Hb(E)). More precisely, we prove that MbA(E) can be endowed with a structure

of Riemann domain over E′′ and that the extension of each f ∈ HbA(E) to the spectrum is an A-

holomorphic function of bounded type in each connected component. We also prove a Banach-Stone

type theorem for these algebras of holomorphic functions.

We also investigate how to define algebras of holomorphic functions associated to sequences of

polynomial ideals on more general open sets. In [CDM07, CDM], we can find most of the material

appearing in this chapter.

4.1 Multiplicative sequences

In this chapter we will study algebras of holomorphic functions of bounded type associated to

sequences of polynomial ideals. Let A = {Ak} be a coherent sequence at E. We will write A(E) to

denote the sequence {Ak(E)}. Condition (ii) in the definition of coherence states that the product

of a polynomial in A(E) by a linear functional remains in A(E). But if we take two polynomials in

A(E), is their product in A(E)? As the following example shows, this is not necessarily the case.

Example 4.1.1. Consider A1 = L, A2 = P2 and, for all n ≥ 3, An = Pn
wsc0 (the n-homogeneous

polynomials that are weakly sequentially continuous at 0). It is clear that the sequence is coherent

(because for every polynomial P , if γ is a functional then γP is weakly sequentially continuous at

0).

But consider, for example, P ∈ P2(ℓ2) given by P (x) =
∑

n x
2
n. Then P ∈ A2(ℓ2) but P 2 6∈

A4(ℓ2).

Thus, in order to obtain that HbA(E) is an algebra we introduce the following:

Definition 4.1.2. A coherent sequence at E, A(E) = {Ak(E)}k is multiplicative (at E) if there

exists M ≥ 1 such that for each P ∈ Ak(E) and Q ∈ Al(E), we have PQ ∈ Ak+l(E) and

‖PQ‖Ak+l(E) ≤Mk+l‖P‖Ak(E)‖Q‖Al(E).

83
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Remark 4.1.3. Example 4.1.1 shows that not every coherent sequence is multiplicative.

We will show now that {Ak(E)}k is multiplicative, then HbA(E) is a B0-algebra, that is a

complete metrizable topological algebra such that the topology is given by means of an increasing

sequence ‖ · ‖1 ≤ ‖ · ‖2 ≤ . . . of seminorms satisfying that ‖xy‖j ≤ Ci‖x‖j+1‖y‖j+1 for every x, y

in the algebra and every j ≥ 1, where Ci are positive constants.1 In Section 4.4 we will prove that

in many cases (like the nuclear or integral) HbA(E) is a locally m-convex algebra.

Lemma 4.1.4. Let A(E) = {Ak(E)}k be a multiplicative sequence of normed ideals. If f, g ∈
HbA(E) then fg ∈ HbA(E). Moreover, HbA(E) is a B0-algebra.

Proof. We already know that HbA(E) is a Fréchet space. Moreover, the topology may be given by

the sequence of seminorms {pMn}n∈N (see Section 3.2). Take f, g ∈ HbA(E) with Taylor expansions

f =

∞∑

k=0

Pk and g =

∞∑

k=0

Qk, where Pk, Qk ∈ Ak(E). Then
dk(fg)(0)

k!
=

k∑

j=0

PjQk−j belongs to

Ak(E), since A(E) is multiplicative. Take r = Mn, with n ∈ N then

∑

k

rk
∥∥∥d

k(fg)(0)

k!

∥∥∥
Ak(E)

=
∑

k

rk
∥∥∥

k∑

j=0

PjQk−j

∥∥∥
Ak(E)

≤
∑

k

rkMk
k∑

j=0

‖Pj‖Aj(E)‖Qk−j‖Ak−j(E)

=
∞∑

j=0

(rM)j‖Pj‖Aj(E)

∞∑

k=j

(rM)k−j‖Qk−j‖Ak−j(E) = prM(f)prM (g) <∞.

Therefore fg ∈ HbA(E) and pr(fg) ≤ prM (f)prM(g). Therefore HbA(E) is a B0-algebra.

Below we give some examples of sequences of polynomial ideals which are multiplicative at any

Banach space. The coherence was already shown in the previous chapter.

Example 4.1.5. (a) If Ak is the ideal of all k-homogeneous (or of compact, weakly compact,

approximable, extendible) polynomials then it easy to see that {Ak(E)}k is a multiplicative

sequence with constant M = 1.

(b) If Ak = Pk
N is the ideal of all k-homogeneous nuclear polynomials then {Ak(E)}k is a mul-

tiplicative sequence. This was proved by Dineen [Din71, Lemma 15] for separable Hilbert

spaces. The general case may be deduced as a consequence of the following example and

Corollary 4.1.14 (see Example 4.4.8).

(c) If Ak is the ideal of all k-homogeneous integral polynomials then {Ak(E)}k is a multiplicative

sequence. Indeed, for P ∈ PI(kE), Q ∈ PI(lE), let us prove that PQ is a continuous linear

functional on the k-fold symmetric tensor product of E with the injective symmetric norm

(εsk). Take ψ =
∑

i x
k+l
i ∈⊗k+l,s

εs
k+l

E′, then

∣∣〈PQ,ψ〉
∣∣ =

∣∣∑

i

P (xi)Q(xi)
∣∣ =

∣∣P
(∑

i

xkiQ(xi)
)∣∣ ≤ ‖P‖I sup

γ∈BE′

∣∣∑

i

γ(xi)
kQ(xi)

∣∣

= ‖P‖I sup
γ∈BE′

∣∣∣Q
(∑

i

γ(xi)
kxli

)∣∣∣ ≤ ‖P‖I‖Q‖I sup
γ∈BE′

sup
ϕ∈BE′

∣∣∑

i

γ(xi)
kϕ(xi)

l
∣∣.

1It is possible to make Ci = 1 for all i.
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Let R ∈ P(k+lE′), R(γ) :=
∑

i γ(xi)
k+l for γ ∈ E′. Then by [Har97, Corollary 4], if we take

γ, ϕ ∈ SE′ , we obtain

|
∨
R(γ, . . . , γ︸ ︷︷ ︸

k

, ϕ, . . . , ϕ︸ ︷︷ ︸
l

)| =
∣∣∑

i

γ(xi)
kϕ(xi)

l
∣∣ ≤ (k + l)k+l

(k + l)!

k!

kk
l!

ll
‖R‖

=
(k + l)k+l

(k + l)!

k!

kk
l!

ll
εsk+l

(∑

i

xk+li

)
.

Therefore,
∣∣〈PQ,ψ〉

∣∣ ≤ (k + l)k+l

(k + l)!

k!

kk
l!

ll
‖P‖I‖Q‖Iεsk+l(ψ),

and so PQ is integral with ‖PQ‖I ≤ (k+l)k+l

(k+l)!
k!
kk

l!
ll
‖P‖I‖Q‖I ≤ ek+l‖P‖I‖Q‖I .

(d) If Ak is the ideal of all k-homogeneous multiple r-summing polynomials then {Ak(E)}k is a

multiplicative sequence with constant M = 1. The proof is similar Example 3.1.9, but the

notation is more messy.

Let P ∈ Mk
r (E), Q ∈ Ml

r(E), then

(PQ)∨(x1, . . . , xk+l) =
k!

(k + l)!

k+l∑

s1,...,sl=1
s1 6=···6=sl

∨
P (x1,

s1...sl. . . , xk+l)
∨
Q(xs1 , . . . , xsl

)

where
∨
P (x1,

s1...sl. . . , xk+l) means that coordinates xs1, . . . , xsl
are omitted.

Take (x
ij
j )

mj

j=1 ⊂ E, for j = 1, . . . , k + l, such that wr((x
ij
j )) = 1. Then, using the triangle

inequality for the ℓr-norm,



m1,...,mk+l∑

i1,...,ik+l=1

‖(PQ)∨(xi11 , . . . , x
ik+l

k+l )‖r



1
r

≤

≤ k!

(k + l)!

k+l∑

s1,...,sl=1
s1 6=···6=sl



m1,...,mk+l∑

i1,...,ik+l=1

∣∣∣∣
∨
P (x1,

s1...sl. . . , xk+l)

∣∣∣∣
r ∣∣∣∣

∨
Q(xs1, . . . , xsl

)

∣∣∣∣
r



1/r

≤ k!

(k + l)!

k+l∑

s1,...,sl=1
s1 6=···6=sl



ms1 ,...,msl∑

is1 ,...,isl
=1

∣∣∣∣
∨
Q(xs1, . . . , xsl

)

∣∣∣∣
r

‖P‖rMk
r




1/r

≤ k!

(k + l)!

k+l∑

s1,...,sl=1
s1 6=···6=sl

‖P‖Mk
r
‖Q‖Ml

r
.

Hence, PQ is multiple r-summing with ‖PQ‖Mk+l
r

≤ ‖P‖Mk
r
‖Q‖Ml

r
.

Also, given sequences which are multiplicative we can obtain new multiplicative sequences from

them. For example, interpolation of multiplicative sequences is multiplicative. In this way we can

obtain many other examples of multiplicative sequences. Here we will use the complex interpolation

method, but any other method with a nice bilinear interpolation theorem would work.
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Proposition 4.1.6. Let E be Banach space and let {A0
k(E)}k , {A1

k(E)}k be coherent multiplicative

sequences (with constants M0 and M1, respectively). Then, the sequence {Aθk(E)}k is multiplicative,

where Aθk(E) = [A0
k(E),A1

k(E)]θ, for every 0 < θ < 1 (with constant M1−θ
0 Mθ

1 ).

Proof. We already know that interpolation of coherent sequences is coherent (Proposition 3.1.19).

Since {Ajk(E)}k is multiplicative, for j = 0, 1, we can define a continuous bilinear mapping

Φj
k,l : A

j
k(E) × A

j
l (E) → A

j
k+l(E)

(P,Q) 7→ PQ.

It follows that ‖Φj
k,l‖ ≤ Mk+l

j . Then, by the Multilinear Interpolation Theorem [BL76, Theorem

4.4.1.], (P,Q) 7→ PQ defines a mapping

Φθ
k,l : Aθk(E) × Aθl (E) → Aθk+l(E),

which is continuous and has norm less than or equal to
(
M1−θ

0 Mθ
1

)k+l
. That is, if P ∈ Aθk(E),

Q ∈ Aθl (E), then PQ ∈ Aθk+l(E) and

‖PQ‖
Aθ

k+l(E) ≤
(
M1−θ

0 Mθ
1

)k+l‖P‖
Aθ

k(E)‖Q‖
Aθ

l (E).

Example 4.1.7. The sequence {S̃kp }k of Schatten-von Neumann polynomials on a Hilbert space H
(defined in Subsection 3.2.5) is multiplicative. For example, for the Hilbert-Schmidt polynomials

(p = 2) we have that if P ∈ Sk2 (H) and Q ∈ S l2(H) then PQ ∈ Sk+l2 (H) and ‖PQ‖Sk+l
2

≤
√
e
k+l‖P‖Sk

2
‖Q‖Sl

2
. In [Pet01, Lemma 2.1] it had been proved that ‖PQ‖Sk+l

2
≤ 2k+l‖P‖Sk

2
‖Q‖Sl

2
.

We can also obtain multiplicative sequences using the composition of ideals, as the next two

propositions show.

Proposition 4.1.8. Let {Ak}k be a sequence of polynomial ideals and C a closed ideal of operators.

Suppose that for each Banach space E, each time that P ∈ Ak(E) and Q ∈ Al(E) then PQ ∈
Ak+l(E) and

‖PQ‖Ak+l(E) ≤ c‖P‖Ak(E)‖Q‖Al(E).

Then, the sequence {Ak ◦ C}k has the same property.

Proof. Take P ∈ Ak ◦ C(E) and Q ∈ Al ◦ C(E) and write them as P = P̃ ◦ S and Q = Q̃ ◦ T ,

with S ∈ C(E,E1), T ∈ C(E,E2), ‖S‖C(E,E1) = ‖T‖C(E,E2) = 1, P̃ ∈ Ak(E1) and Q̃ ∈ Al(E2).

We consider the product space E1 × E2 with the supremum norm and define S̃ : E → E1 × E2

and T̃ : E → E1 × E2 by S̃(x) = (S(x), 0) and T̃ (x) = (0, T (x)). Clearly, S̃ and T̃ belong to

C(E,E1 × E2) and so does S̃ + T̃ . Moreover, the norm of S̃ + T̃ in C is the maximum of those of

S and T , thus ‖S̃ + T̃‖C(E,E1×E2) = 1.

On the other hand, in a similar way we can see that R : E1 × E2 → K given by R(y1, y2) =

P̃ (y1)Q̃(y2) belongs to Ak+l(E1 × E2), and ‖R‖Ak+l(E1×E2) ≤ c‖P̃‖Ak(E1)‖Q̃‖Al(E2). Since PQ =

R ◦ (S̃ + T̃ ), we have that PQ belongs to Ak+l ◦ C. Moreover,

‖PQ‖Ak+l◦C(E) ≤ ‖R‖Ak+l(E1×E2)‖S̃ + T̃‖k+l
C(E,E1×E2) ≤ c‖P̃‖Ak(E1)‖Q̃‖Al(E2).

Considering all the possible factorizations of P and Q (with operators of norm 1) we obtain the

desired norm estimate.
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Corollary 4.1.9. Let A = {Ak}k be a multiplicative sequence and C a closed ideal of operators.

Then {Ak ◦ C}k is a multiplicative sequence.

Proof. Just combine Propositions 4.1.8 and 3.1.2.

Proposition 4.1.10. Let {Ak}k be a sequence of closed polynomial ideals and C a normed ideal of

operators. Suppose that for each Banach space E, each time that P ∈ Ak(E) and Q ∈ Al(E) then

PQ ∈ Ak+l(E). Then, the sequence {Ak ◦ C}k is multiplicative with constant M = 1.

Proof. Take P ∈ Ak ◦ C(E) and Q ∈ Al ◦ C(E) and write them as P = P̃ ◦ S and Q = Q̃ ◦ T , with

S ∈ C(E,E1), T ∈ C(E,E2), ‖S‖C(E,E1) = ‖T‖C(E,E2) = 1, P̃ ∈ Ak(E1) and Q̃ ∈ Al(E2). As in

the previous proposition, we consider the product space E1 ×E2, but with the ℓ1 norm and define

S̃ : E → E1 × E2 and T̃ : E → E1 × E2 by S̃(x) = (S(x), 0) and T̃ (x) = (0, T (x)). Clearly, S̃ and

T̃ belong to C(E,E1 × E2) and so does S̃ + T̃ . Moreover, ‖S̃ + T̃‖C(E,E1×E2) = 2.

If R : E1 × E2 → K is given by R(y1, y2) = P̃ (y1)Q̃(y2), then it belongs to Ak+l(E1 × E2), and

‖R‖Ak+l(E1×E2) = sup
(x1,x2)∈E1×E2

|P̃ (x1)Q̃(x2)|
‖(x1, x2)‖k+lE1×E2

≤ sup
‖x1‖E1

=‖x2‖E2
=1

|P̃ (x1)Q̃(x2)|
(‖x1‖E1 + ‖x2‖E2)

k+l
=

‖P̃‖Ak(E1)‖Q̃‖Al(E2)

2k+l
.

Since PQ = R ◦ (S̃ + T̃ ), we have that PQ belongs to Ak+l ◦ C. Moreover,

‖PQ‖Ak+l◦C(E) ≤ ‖R‖Ak+l(E1×E2)‖S̃ + T̃‖k+l
C(E,E1×E2)

≤ ‖P̃‖Ak(E1)‖Q̃‖Al(E2).

Considering all the possible factorizations of P and Q (with operators of norm 1) we obtain the

desired norm estimate.

Example 4.1.11. The sequence {Pk
∞}k of ∞-factorable polynomials (also of strongly ∞-factorable

or ∞-compact polynomials) is multiplicative with constant M = 1.

Suppose we have a sequence of ideals which is related to tensor norms. The multiplicativity

of the sequence then translates in properties of the tensor norms, depending on how the ideals

relate to them. To illustrate this we state the following proposition, which is a generalization of

Lemma 3.1.28:

Proposition 4.1.12. For each k, let αk be a finitely generated k-fold symmetric tensor norm αk.

Consider Amaxk and Amink maximal and minimal ideals associated to αk. Then the following are

equivalent.

(i) For every Banach space E, if P ∈ Amaxk (E) and Q ∈ Amaxl (E) then PQ ∈ Amaxk+l (E) and

‖PQ‖Amax
k+l (E) ≤ ck,l‖P‖Amax

k (E)‖Q‖Amax
l (E).

(ii) For every Banach space E, if P ∈ Amink (E) and Q ∈ Aminl (E) then PQ ∈ Amink+l (E) and

‖PQ‖
Amin

k+l (E) ≤ ck,l‖P‖Amin
k (E)‖Q‖

Amin
l (E).

(iii) For every Banach space E, if s ∈⊗k,s
αk
E′ and t ∈⊗l,s

αl
E′, then

αk+l(σ(s⊗ t)) ≤ ck,lαk(s)αl(t).
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Proof. The three statements are clearly equivalent if E is a finite dimensional Banach space. Since

αk is finitely generated, (i) is implied by (ii) or by (iii) for all Banach spaces.

We now prove that (i) implies (iii). Note that (iii) is equivalent to prove that the bilinear

map φE :
(⊗k,s

αk
E′ ×⊗l,s

αl
E′, ‖ · ‖∞

)
→ ⊗k+l,s

αk+l
E′, φE(s, t) = σ(s ⊗ t) is continuous of norm

≤ ck,l for every Banach space E. If (i) is true then φS is continuous (with norm ≤ ck,l) for every

finite dimensional Banach space S. Let M,N be two finite dimensional subspaces of E′ such that

s ∈⊗k,sM and t ∈⊗l,sN . Then

αk+l
(
σ(s⊗ t),

⊗k+l,s
M +N

)
≤ ck,lmax{αk

(
s,
⊗k,s

M +N
)
, αl
(
t,
⊗l,s

M +N
)
}

≤ ck,lmax{αk
(
s,
⊗k,s

M
)
, αl
(
t,
⊗l,s

N
)
},

where the second inequality is true by the metric mapping property. Taking the infimum over M

and N we obtain that ‖φE‖ ≤ ck,l and thus we have (iii).

To see that (i) implies (ii), just note that Amink = Amaxk ◦ F and use Proposition 4.1.8.

Remark 4.1.13. (a) Note that in the proof of the previous proposition, we have shown that if

{Ak(E)}k or {αk}k verify any of the three conditions on spaces of finite dimension, then {Amaxk }
and {Amink } verify them for every Banach space.

(b) Condition (iii) is one of the inequalities verified by a “family of complemented symmetric

seminorms”, defined by C. Boyd and S. Lassalle in [BL08].

Corollary 4.1.14. Let A = {Ak}k be a multiplicative sequence. Then {Amink }k and {Amaxk }k are

multiplicative sequences.

To finish this section we present another family of examples of multiplicative sequences: the

natural sequences of polynomial ideals as defined in [CG] are multiplicative (see Subsection 3.1.5,

where we have recalled their definition).

For the multiplicativity of the polynomial ideals associated to the natural symmetric tensor

norms we need the following:

Lemma 4.1.15. For each k, let αk be a finitely generated k-fold symmetric tensor and suppose

αk+l(σ(s ⊗ t)) ≤ ck,lαk(s)αl(t) for every s ∈ ⊗k,s
αk
E′ and t ∈ ⊗l,s

αl
E′. Then the same inequality

holds for the sequences {/αk\}k and {\αk/}k.
Proof. For all k, we denote

ik = ⊗ki :
(
⊗k,s E′, /αk\

) 1→֒
(
⊗k,s ℓ∞(BE′′), αk

)
,

then

/αk+l\(σ(s ⊗ t)) = αk+l

(
ik+l

(
σ(s ⊗ t)

))
= αk+l

(
σ
(
ik(s) ⊗ il(t)

))

≤ ck,lαk(ik(s))αl(il(s)) = ck,l/αk\(s)/αl\(t).

On the other hand, if Amaxk is the maximal ideal associated to αk, and Bk is the maximal

polynomial ideal to \αk/ then (see the proof of Lemma 3.1.34)

Bk(E) = {P ∈ Pk(E) : P extends to a polynomial P̃ ∈ A
max
k (ℓ∞(BE′))},

and the norm of P in Bk is given by the infimum of the Amaxk -norms of these extensions. Since Amaxk

satisfies condition (i) of Proposition 4.1.12, it is easy to see that the product of two polynomials in

B belongs to B with the same inequality. Using Proposition 4.1.12 again, we obtain the desired

result for {\αk/}k.
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In Theorem 3.1.36 we proved that the sequences of maximal and minimal polynomial ideals

associated to natural sequences of symmetric tensor norms are coherent. Since moreover πk and εk
are multiplicative, we can use the previous lemma and Proposition 4.1.12 to show that:

Theorem 4.1.16. Let {αk}k be any of the natural sequences of symmetric tensor norms. Then

the sequences {Amaxk }k and {Amink }k of maximal and minimal ideals associated to {αk}k are mul-

tiplicative.

To end this section we now show that there is some kind of duality between the properties of

multiplicativity and weakly differentiability of a sequence defined in Section 3.2.2.

Proposition 4.1.17. Let A = {Ak}k be a weakly differentiable sequence. Then the sequence of

adjoint ideals {A∗
k}k is multiplicative.

Proof. From Proposition 3.1.30 we know that {A∗
k}k is coherent. By Remark 4.1.13 it suffices to

check that ‖PQ‖A∗
k+l(E) ≤ Mk+l‖P‖A∗

k(E)‖Q‖A∗
l (E) for E finite dimensional. So suppose M is a

finite dimensional Banach space, in this case A∗
k(M) is just Ak(M

′)′. Take ϕ ∈ A∗
k(M

′) = Ak(M)′

and ψ ∈ A∗
l (M

′) = Al(M)′. Let P =
∑
γk+lj ∈ Ak+l(M), then 〈ϕψ,P 〉 =

∑
ϕ(γj)ψ(γj) =

〈ψ,∑〈ϕ, γkj 〉γlj〉 = 〈ψ, x 7→ ∑〈ϕ, γkj 〉γj(x)l〉 = 〈ψ, x 7→ ϕ(Pxl)〉. Thus, since {Ak}k is weakly dif-

ferentiable, |〈ϕψ,P 〉| = ‖ψ‖A∗
l (M ′)‖x 7→ ϕ(Pxl)‖Al(M ′) ≤ ‖ψ‖A∗

l (M ′)K
l‖ϕ‖A∗

k(M ′)‖P‖Ak+l(M) which

implies that ‖ϕψ‖A∗
k+l(M

′) ≤ K l‖ϕ‖A∗
k(M ′)‖ψ‖A∗

l (M ′).

A partial converse is true when finite type polynomials are dense in Ak(E), see Lemma 4.2.1.

4.2 The convolution product for sequences of minimal ideals. Hy-

percyclicity

In section 3.2.2 we defined weakly differentiable sequences of polynomial ideals and we showed that

if A is a weakly differentiable sequence then there is a well defined convolution product on HbA(E)′.

In this section will show that if Ak(E)′ = Bk(E
′) (via the Borel transform as in section 3.2.3, see

Remark 3.2.27) and the sequence {Bk}k is multiplicative at E′ then A(E) = {Ak(E)}k is weakly

differentiable. Recall that, if Ak(E)′ = Bk(E
′), there is a vector isomorphism between HbA(E)′

and ExpB(E′) (Proposition 3.2.34). We will prove that the convolution product on HbA(E)′ may

be characterized as pointwise multiplication on ExpB(E′), so that the isomorphism becomes an

algebra isomorphism. This will allow us to obtain another characterization of convolution operators

on HbA(E) and a slightly different statement of the Godefroy-Shapiro Theorem.

Lemma 4.2.1. Let {Bk(E
′)}k be a multiplicative sequence and suppose Ak(E)′ = Bk(E

′) for every

k. Then A is weakly differentiable at E, that is, if P ∈ Ak(E) and ϕ ∈ Ak−l(E)′, k ≥ l. Then the

l-homogeneous polynomial x 7→ ϕ(Pxl) belongs to Al(E) and

‖x 7→ ϕ(Pxl)‖Al(E) ≤Mk‖ϕ‖Ak−l(E)′‖P‖Ak(E).

Proof. If P is a finite type polynomial then x 7→ ϕ(Pxl) is also a finite type polynomial and thus

belongs to Al(E). We can therefore define a linear operator

T :
(
Pk
f (E), ‖ · ‖Ak(E)

)
→ Al(E)

P =
∑N

j=1 γ
k
j 7→

[
x 7→ ϕ(Pxl)

]
.
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If P =
∑N

j=1 γ
k
j and ψ ∈ Al(E)′ then

ψ(T (P )) =
N∑

j=1

(Bk−l(ϕ)Bl(ψ))(γj) = B−1
k (Bk−l(ϕ)Bl(ψ))(P ).

Then, for every ψ ∈ Al(E)′,

|ψ(T (P ))| ≤Mk‖ϕ‖Ak−l(E)′‖ψ‖Al(E)′‖P‖Ak(E).

Therefore, T is continuous and, by Lemma 3.2.28, can be extended to Ak(E). By density, it easily

follows that T (P )(x) = ϕ(Pxl) for every x ∈ E and every P ∈ Ak(E).

Therefore, the above lemma together with Corollary 3.2.20, show that we can define a con-

volution product on HbA(E)′. By Proposition 3.2.34 this space is (vector space) isomorphic

to ExpB(E′). On the other hand, if B(E′) = {Bk(E
′)}k is a multiplicative sequence then

ExpB(E′) is an algebra with pointwise multiplication. Indeed, if f, g ∈ ExpB(E′), with A1 =

supk ‖dkf(0)‖
1
k

Bk(E′) and A2 = supk ‖dkg(0)‖
1
k

Bk(E′), we have dk(fg)(0) ∈ Bk(E
′) and

‖dk(fg)(0)‖
1
k

Bk(E′) ≤M(A1 +A2),

where M is the multiplicative constant of the sequence B(E′), that is fg is of B-exponential type.

This fact allows us to introduce another product on HbA(E)′, just copying the pointwise mul-

tiplication in ExpB(E′) via the Borel transform:

If {Bk(E
′)}k be a coherent multiplicative sequence and let {Ak(E)}k be such that Ak(E)′ =

Bk(E
′) for all k. For ϕ,ψ ∈ HbA(E)′ we define the product ⊙ in HbA(E)′, by

ϕ⊙ ψ = β−1
(
β(ϕ)β(ψ)

)
.

Next we show that the two products defined on HbA(E)′ are actually the same.

Proposition 4.2.2. Let {Bk(E
′)}k be a multiplicative sequence and let {Ak(E)}k be such that

Ak(E)′ = Bk(E
′) for every k. Let ϕ,ψ ∈ HbA(E)′. Then ϕ ⊙ ψ = ϕ ∗ ψ. As a consequence, there

is an algebra isomorphism between HbA(E)′ and ExpB(E′).

Proof. Since finite type polynomials are dense in HbA(E), it is sufficient to verify that, for each

γ ∈ E′ and k ≥ 0, ϕ⊙ ψ(γk) = ϕ ∗ ψ(γk).

For g ∈ ExpB(E′), β−1(g)(γk) = B−1
k

(
dkg(0)

)
(γk) = dkg(0)(γ). Then,

ϕ⊙ ψ(γk) = β−1(β(ϕ)β(ψ))(γk) = dk
(
β(ϕ)β(ψ)

)
(0)(γ)

=

k∑

j=0

(
k

j

)
dj
(
β(ϕ)

)
(0)(γ)dk−j

(
β(ψ)

)
(0)(γ)

=

k∑

j=0

(
k

j

)
ϕ(γj)ψ(γk−j).

On the other hand, since (ϕ ∗ γk)(x) = ϕ(τxγ
k) =

∑k
j=0

(
k
j

)
ϕ(γj)γ(x)k−j , we obtain

ϕ ∗ ψ(γk) = ψ
(
ϕ ∗ γk

)
=

k∑

j=0

(
k

j

)
ϕ(γj)ψ(γk−j) = ϕ⊙ ψ(γk).
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As an immediate consequence, we have:

Corollary 4.2.3. If {Bk(E
′)}k is a multiplicative sequence and {Ak(E)}k is such that Ak(E)′ =

Bk(E
′) for every k then the convolution product in HbA(E)′ is commutative.

Using Proposition 4.2.2 it is easy to show the following variation of Corollary 3.2.19 which

characterizes convolution operators on HbA(E):

Corollary 4.2.4. Let {Bk(E
′)}k be a multiplicative sequence and let {Ak(E′)}k be such that

Ak(E)′ = Bk(E
′) for every k. Then ψ 7→ Tβ−1(ψ) is an algebra isomorphism from ExpB(E′)

onto the algebra of convolution operators on HbA(E).

If B(E′) is a multiplicative sequence, then the convolution operators on HbA(E) are exactly

the operators of the form f 7→ ϕ ∗ f with ϕ ∈ HbA(E)′ (Corollary 3.2.19). Therefore, we have the

following version of the Godefroy-Shapiro Theorem for HbA (Theorem 3.2.38):

Corollary 4.2.5. Suppose that E′ is separable. Let {Bk(E
′)}k be a multiplicative sequence and let

{Ak(E)}k be a sequence such that Ak(E)′ = Bk(E
′) for every k. For every ϕ ∈ HbA(E)′ which is

not a scalar multiple of δ0, the operator

Tϕ : HbA(E) → HbA(E)

f 7→ Tϕ(f) = ϕ ∗ f

is hypercyclic.

Proof. Just note that Tϕ is a scalar multiple of the identity if and only if ϕ is a scalar multiple of

δ0, and use Theorem 3.2.38.

Example 4.2.6. We may apply the last result to the spaces in Examples 3.2.39 and 3.2.40 of

holomorphic functions of compact and nuclear bounded type, since in both cases the sequences

{Bk(E
′)}k are multiplicative. The same is true for the sequence of minimal ideals associated to

the tensor norm ηk.

By Proposition 4.1.6, the sequence of Schatten-von Neumann polynomials, defined in Subsection

3.2.5, is multiplicative so we can also apply the previous corollary in this case.

Moreover, let us see that the differentiation operators used in [AB99] are convolution operators,

and so the result proved there is included in Corollary 4.2.5. Indeed, if Φ(z) =
∑
cnz

n is an

exponential type function and a ∈ E, we define h(γ) =
∑
cnγ(a)

n. Then, h ∈ ExpB(E′) and

β−1(h)(f) =
∑
cnd

nf(0)(a) for all f ∈ HbA(E). Therefore,

β−1(h) ∗ f(x) = h(τxf) =
∑

cn(d
nτxf)(0)(a) =

∑
cnd

nf(x)(a).

That is, the differentiation operator constructed with Φ is Tβ−1(h) and it is thus a convolution

operator.

4.3 The spectrum of algebras of entire functions of bounded type

We proved in Lemma 4.1.4 that if A is a multiplicative sequence then HbA(E) is an algebra. In this

section we study the spectrum of this algebra.

In [AGGM96] an analytic structure in the spectrum ofHb(U) (U an open subset of symmetrically

regular Banach space) was given and it was shown that the functions in Hb(U) have analytic



92 CHAPTER 4. MULTIPLICATIVE SEQUENCES, ALGEBRAS OF ENTIRE FUNCTIONS

extension to the spectrum. For the case of entire functions Dineen proved in [Din99, Section 6.3]

that the extensions to the spectrum are actually of bounded type in each connected component2

of the spectrum.

We will show that it is possible to attach an analogous analytic structure to the spectrum

MbA(E) of HbA(E) for a wide class of Banach spaces E and most of the examples of multiplicative

sequences A considered so far. For this we study the Aron-Berner extension of functions in HbA(E)

and also translation and convolution operators on these algebras. In this case the spectrum turns

out to be a Riemann domain spread over E′′ and, as in [AGGM96] or [Din99], each connected

component of MbA(E) is an analytic copy of E′′. One may thus wonder if the Gelfand extension of

a function f to MbA(E) is analytic and, also, if the restriction of this extension to each connected

component can be thought as a function in HbA(E′′). Under the additional condition of weakly

differentiability of the sequence (which was already defined in Subsection 3.2.2) we will give a

positive answer to both questions.

In the next subsection we will apply some of these concepts to derive a Banach-Stone type

theorem for the algebras HbA.

For A a multiplicative sequence, let us consider the spectrumMbA(E) of the algebra HbA(E) (i.e.

the set of continuous nonzero multiplicative functionals on HbA). Since the inclusion HbA(E) →֒
Hb(E) is continuous, evaluations at points of E′′ belong to MbA(E). Therefore, δz is a continuous

homomorphism for each z ∈ E′′ and we can see E′′ as a subset of MbA(E).

Also, given ϕ ∈ MbA(E) we can define an element π(ϕ) ∈ E′′ by π(ϕ)(γ) = ϕ(γ) for every

γ ∈ E′. Then the linear mapping

π : MbA(E) → E′′

ϕ 7→ ϕ|E′

is a projection from MbA(E) onto E′′ ⊂ MbA(E). From the definition of π, for ϕ ∈ MbA(E) and

γ ∈ E′ we have

ϕ(γN ) = ϕ(γ)N =
(
π(ϕ)(γ)

)N
=
(
AB(γ)(π(ϕ))

)N
= AB(γN )(π(ϕ)).

Thus, for every finite type polynomial P ,

ϕ(P ) = AB(P )(π(ϕ)) = δπ(ϕ)(P ).

As a consequence, we have the following:

Lemma 4.3.1. Let A be a multiplicative sequence and E a Banach space such that, for every k,

the finite type k-homogeneous polynomials are dense in Ak(E). Then MbA(E) = E′′.

Example 4.3.2. Since the finite type polynomials are dense in any minimal ideal, if A is a multi-

plicative sequence of minimal ideals, then MbA(E) = E′′ for any Banach space E. In particular, this

happens for the nuclear and the approximable polynomials, so MbN (E) = E′′ and MbA(E) = E′′.

The Aron-Berner extension plays a crucial role in the analytic structure of Mb(E) given in

[AGGM96]. In order to obtain a similar structure for our algebras, we need the polynomial ideals

to have a good behavior with these extensions. So let us introduce the following:

2We will prove in Proposition 5.5.2 that this does not imply that the extension is of bounded type on the whole

spectrum.
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Definition 4.3.3. A sequence {Ak(E)}k of scalar valued ideals of polynomials is said to be AB-

closed if there exist a constant α > 0 such that for each Banach space E, k ∈ N and P ∈ Ak(E)

we have that AB(P ) belongs to Ak(E
′′) and ‖AB(P )‖Ak(E′′) ≤ αk‖P‖Ak(E), where AB denotes the

Aron-Berner extension.

We enumerate some particular examples of sequences that are known to be AB-closed with

constant α = 1:

Example 4.3.4. The sequence A is AB-closed with constant α = 1 in the following cases: continu-

ous polynomials A = {Pk}k (see [DG89]), integral polynomials A = {Pk
I }k (see [CZ99]), extendible

polynomials A = {Pk
e }k (see [Car99]), weakly continuous on bounded sets polynomials A = {Pk

w}k
(see [Mor84]), nuclear polynomials A = {Pk

N}k, approximable polynomials A = {Pk
A}k.

In [CG] it is shown that if Ak is a maximal or a minimal ideal, then the Aron-Berner extension

is an isometry from Ak(E) into Ak(E
′′) (see also [CG]), extending a well known result of Davie

and Gamelin [DG89] and analogous results for some particular polynomial ideals. Therefore, any

sequence {Ak(E)}k of scalar valued ideals of maximal (or minimal) polynomials is AB-closed with

constant α = 1. Note that all the above examples but A = {Pk
w}k are maximal or minimal, so they

are covered by the mentioned result in [CG].

Example 4.3.5. It is easy to prove that if the sequences {A0
k}k and {A1

k}k are AB-closed with

constants α0 and α1 respectively, then the interpolated sequence {Aθk}k is AB-closed with constant

α1−θ
0 αθ1.

Example 4.3.6. If A = {Ak} is AB-closed, and C is a maximal operator ideal then {Ak ◦ C} is a

AB-closed.

Indeed, if P ∈ Ak ◦ C factorizes as P = QT , then AB(P ) = AB(Q) ◦ T ′′ by w∗-continuity.

Since C is maximal, T ′′ belongs to C and ‖T‖C = ‖T ′′‖C. Therefore AB(P ) belongs to Ak ◦ C and

‖AB(P )‖Ak◦C ≤ ‖AB(Q)‖Ak
‖T‖C.

Remark 4.3.7. Note that as a consequence of the above definition, if P ∈ Ak(E), j < k and

z ∈ E′′, then AB(P )zk−j ∈ Aj(E
′′) and ‖AB(P )zk−j‖Aj(E′′) ≤ (C‖z‖)k−jαk‖P‖Ak(E).

Moreover, since the Ak’s are ideals, if Q ∈ Aj(E
′′) then Q ◦ JE ∈ Aj(E) and ‖Q ◦ JE‖Aj(E) ≤

‖Q‖Aj(E′′). Therefore for each P ∈ Ak(E), AB(P )zk−j ◦ JE ∈ Aj(E) and ‖AB(P )zk−j ◦ JE‖Aj (E) ≤
(C‖z‖)k−jαk‖P‖Ak(E).

Also note that if f ∈ HbA(E) then AB(f) ∈ HbA(E′′) and pR(AB(f)) ≤ pαR(f).

We want now to define a topology onMbA(E) which makes (MbA(E), π) into a Riemann domain.

First recall from Lemma 3.2.3 that if A is a coherent sequence then

τx : HbA(E) → HbA(E)

f 7→ f(x+ ·)
is a continuous operator. Therefore we have,

Lemma 4.3.8. If A is a multiplicative sequence and ϕ ∈MbA(E) then ϕ ◦ τx ∈MbA(E).

If A is AB-closed and coherent and z ∈ E′′ we can define

τ̃z : HbA(E) → HbA(E)

f 7→ τz(AB(f)) ◦ JE .

Remark 4.3.7 ensures that τ̃z is a (well-defined) continuous operator and pR(τ̃zf) ≤ pα(R+C‖z‖)(f).
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Corollary 4.3.9. Let A be an AB-closed and multiplicative sequence and let z ∈ E′′. Then τ̃z is a

continuous operator. Consequently, if ϕ ∈ HbA(E)′ then ϕ ◦ τ̃z ∈ HbA(E)′ and if ϕ ∈MbA(E) then

ϕ ◦ τ̃z ∈MbA(E).

Note that π(ϕ ◦ τ̃z)(γ) = ϕ ◦ τ̃z(γ) = ϕ(AB(γ)(z+ JE(·)) = ϕ(1)z(γ)+ϕ(γ) = z(γ)+ϕ(γ), and

thus π(ϕ ◦ τ̃z) = z + π(ϕ).

In [AGGM96, Proposition 2.3], a necessary condition to obtain the analytic structure of the

spectrum of Hb(E) is that the space E be symmetrically regular (i.e. the Aron-Berner extension

of every symmetric multilinear form is symmetric). In our case, to study the spectrum of HbA(E),

we need that AB(
∨
P ) is symmetric, for every P in Ak(E) and for all k. This happens, of course, if

E is symmetrically regular, but also for arbitrary E if Ak is good enough. So we define:

Definition 4.3.10. A sequence A is regular at E if, for every k and every P in Ak(E), we have

that AB(
∨
P ) is symmetric. We say that the sequence A is regular if it is regular at E for every

Banach space E.

Example 4.3.11. (a) Any sequence of ideals contained in the ideals of approximable polynomials

is regular. In particular, any sequence of minimal ideals is regular.

(b) The sequences of integral [CL04, Proposition 2.14], extendible [CL04, Proposition 2.15] and

weakly continuous [AHV83] multilinear forms are regular.

(c) If {αk}k is a sequence of projective symmetric tensor norms and A is a sequence of ideals

associated to {αk}k, then A is regular. Indeed, if we denote βk = α′
k, since βk ≤ ηk, every

P ∈
(⊗k,s

βk
E
)′

is extendible and so it verifies that AB(
∨
P ) is symmetric. This says that the

sequence of maximal ideals associated to {αk}k is regular and so is A.

(d) Let {αk}k be a sequence of symmetric tensor norms and let A be the sequence of maximal

polynomial ideals associated to {αk}k. If A is regular then is regular also any sequence

of polynomial ideals associated to {/αk\}k. Indeed, if we denote βk = α′
k, for any P ∈(

⊗k,s
\βk/

E
)′

we have that P̃ = P ◦ qk ∈
(
⊗k,s
βk
ℓ1(BE)

)′
= Ak(ℓ1(BE)), where qk is the metric

projection ⊗k,s
βk
ℓ1(BE)։ ⊗k,s

\βk/
E. Because of the w∗ −w∗ continuity of q′′k , the k-linear form

AB(
∨
P ) ◦ (q′′k , . . . , q

′′
k) (which is an extension to the bidual of P̃ ) should be the Aron Berner

extension of P̃ . Since AB(
∨
P ) ◦ (q′′k , . . . , q

′′
k) is symmetric and q′′k is surjective, then AB(

∨
P ) is

symmetric. Thus, the sequence of maximal polynomial ideals associated to {/αk\}k (and so

any sequence of polynomial ideals with the same associated norms) is regular.

(e) As a consequence of (c) and (d) we obtain that if A is a sequence of polynomial ideals

associated with any of the natural sequences (except for the case αk = εk) then A is regular.

(f) If the sequences {A0
k}k and {A1

k}k are regular then the interpolated sequence {Aθk}k is also

regular (because each Aθk is contained in A0
k + A1

k).

(g) If the sequence {Ak}k is regular and C is an operator ideal, then {Ak ◦C}k is regular because,

if a polynomial factorizes, P = QT , with Q ∈ Ak and T ∈ C then AB(
∨
P ) = AB(

∨
Q) ◦ T ′′

which is symmetric.
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As in [AGGM96] it can be proved that, if A is regular at E then every evaluation at a point of

Eiv is in fact an evaluation at a point of E′′.

The next two lemmas can be obtained just as in [Din99, Pages 428-430].

Lemma 4.3.12. Let A = {Ak(E)}k be an AB-closed coherent sequence which is regular at a

Banach space E. Then τ̃z ◦ τ̃w = τ̃z+w for every z,w ∈ E′′.

Lemma 4.3.13. Let A = {Ak(E)}k be an AB-closed multiplicative sequence which is regular at a

Banach space E. For each ϕ ∈ MbA(E) and ε > 0 define Vϕ,ε = {ϕ ◦ τ̃z : z ∈ E′′, ‖z‖ < ε}. Then{
Vϕ,ε : ϕ ∈MbA(E), ε > 0

}
is the basis of a Hausdorff topology in MbA(E).

Proposition 4.3.14. Let A be an AB-closed multiplicative sequence which is regular at a Banach

space E. Then (MbA(E), π) is a Riemann domain over E′′ and each connected component of

(MbA(E), π) is homeomorphic to E′′.

Proof. With the topology defined in the above lemma, it is clear that for each ϕ ∈ MbA(E) and

ε > 0, π|Vϕ,ε is an homeomorphism onto BE′′(π(ϕ), ε). Thus π : MbA(E) → E′′ is a local home-

omorphism. Note that given ϕ ∈ MbA(E), by Corollary 4.3.9, ϕ ◦ τ̃z is an homomorphism for

each z ∈ E′′. Moreover, since π(ϕ ◦ τ̃z) = π(ϕ) + z it follows that π is an homeomorphism from

S(ϕ) := {ϕ ◦ τ̃z : z ∈ E′′} to E′′ and thus S(ϕ) is the connected component of ϕ in MbA(E).

Example 4.3.15. (MbA(E), π) is a Riemann domain over E′′ (and each connected component is

homeomorphic to E′′) in the following cases:

(a) A = {Pk
I }k or A = {Pk

e }k or, more generally, A the sequence of maximal polynomial ideals

associated to any of the natural sequences {αk}k (except for αk = ǫk) and E any Banach

space.

(b) A = {Pk
w}k and E any Banach space.

(c) A any multiplicative sequence of maximal polynomial ideals and E symmetrically regular.

(d) A = {Aθk}k, with {A0
k}k and {A1

k}k any of the sequences of the examples (a) or (b) (or (c)

and E symmetrically regular).

(e) A = {Ak ◦ C}k, where {Ak}k an AB-closed multiplicative sequence which is regular at a

Banach space E and C a maximal operator ideal.

Each function f ∈ HbA(E) can be extended via its Gelfand transform f̃ to the spectrumMbA(E),

that is f̃(ϕ) = ϕ(f). Now that we have proved that MbA(E) is a Riemann domain, it is natural to

ask if f̃ is analytic in MbA(E). Moreover, one can wonder if f̃ preserve some of the properties of f

in terms of the ideals A.

Given ϕ ∈ HbA(E)′ and f ∈ HbA(E), Corollary 4.3.9 allows us to define a function on E′′,

defined by z 7→ ϕ ◦ τ̃z(f). We will show in Theorem 4.3.17 that this function belongs to HbA(E′′).

This will allow us to conclude that the restriction of f̃ to each connected component of MbA(E) is

A-holomorphic (Theorem 4.3.19 below). To achieve this we will need an additional condition on

the sequence A: weakly differentiability. This condition was already used in the previous chapter

(see Defintion 3.2.15) in order to deal with the convolution product on HbA(E). We saw there that

there are a lot of weakly differentiable sequences of polynomial ideals.
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Remark 4.3.16. If E is a Banach space and A is a weakly differentiable coherent sequence which

is AB-closed (with constant α), it easily follows that the mapping E′′ ∋ z 7→ ϕ(AB(P )zl ◦ JE)

belongs to Al(E
′′) and
∥∥∥z 7→ ϕ(AB(P )zl ◦ JE)

∥∥∥
Al(E′′)

≤ αkK l‖ϕ‖Ak−l(E)′‖P‖Ak(E).

The proof of the following theorem is similar to Theorem 3.2.17.

Theorem 4.3.17. Let A = {Ak(E)}k be an AB-closed weakly differentiable coherent sequence. For

each ϕ ∈ (HbA(E))′, the following operator is well defined and continuous:

T̃ϕ : HbA(E) → HbA(E′′)

f 7→ (z 7→ ϕ ◦ τ̃z(f))

Proof. Take f =
∑∞

k=0 Pk ∈ HbA(E) and z ∈ E′′. T hen ϕ ◦ τ̃z(f) =
∑∞

k=0

∑k
j=0

(k
j

)
ϕ
(
AB(Pk)zj ◦

JE
)

=
∑∞

j=0

∑∞
k=j

(k
j

)
ϕ
(
AB(Pk)zj ◦ JE

)
since using Remark 4.3.7 and Remark 3.2.16 it is easy to

see that this series is absolutely convergent.

Let Ql(z) =
∑∞

k=l

(
k
l

)
ϕ
(
AB(Pk)zl ◦ JE

)
. Then ϕ ◦ τ̃z(f) =

∑∞
l=0Ql(z). We will show that

Ql belongs to Al(E
′′) and that

∑∞
l=0Ql is in HbA(E′′). To prove this it suffices to show that

the series
∑∞

k=l

(k
l

)∥∥∥z 7→ ϕ
(
AB(Pk)zl ◦ JE

)∥∥∥
Al(E′′)

converges and that for every R > 0, the series

∑∞
l=0R

l
∥∥∥
∑∞

k=l

(k
l

)
z 7→ ϕ

(
AB(Pk)zl ◦ JE

)∥∥∥
Al(E′′)

also converges. By Remark 4.3.16 we have

∞∑

l=0

Rl
∥∥∥

∞∑

k=l

(
k

l

)
z 7→ ϕ

(
AB(Pk)zl ◦ JE

)∥∥∥
Al(E′′)

≤
∞∑

l=0

Rl
∞∑

k=l

(
k

l

)∥∥∥z 7→ ϕ
(
AB(Pk)zl ◦ JE

)∥∥∥
Al(E′′)

≤
∞∑

l=0

Rl
∞∑

k=l

(
k

l

)
αkK l‖ϕ|Ak−l(E)

‖Ak−l(E)′‖Pk‖Ak(E)

≤ c

∞∑

k=0

αk‖Pk‖Ak(E)

k∑

l=0

(
k

l

)
(KR)lrk−l

= cp
α(KR+r)

(f),

where in the last inequality we used Remark 3.2.16 and reversed the order of summation. Therefore

T̃ϕ(f) belongs to HbA(E′′) and p
R
(T̃ϕ(f)) ≤ cp

αM(R+r)
(f), that is, T̃ϕ ∈ L(HbA(E),HbA(E′′)).

In Corollary 3.2.20 we defined the convolution product in HbA(E)′ when A is a weakly differen-

tiable coherent sequence. If A is also multiplicative, the convolution is a product on the spectrum:

Corollary 4.3.18. Let A be a weakly differentiable multiplicative sequence. For ϕ,ψ ∈MbA(E) we

can define ϕ ∗ ψ ∈MbA(E) by ϕ ∗ ψ(f) = ψ (ϕ ∗ f), and the application

Mϕ : MbA(E) → MbA(E)

ψ 7→ ψ ∗ ϕ
is continuous.

Now we are ready to prove that the extensions to the spectrum are analytic.

Theorem 4.3.19. Let E be a Banach space and A = {Ak}k an AB-closed multiplicative sequence,

weakly differentiable and regular at E. Then, for every function f ∈ HbA(E), the extension f̃

to MbA(E) results an A-holomorphic function of bounded type when restricted to each connected

component of MbA(E).
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Proof. We have to show that for every ϕ ∈ MbA(E), f̃ ◦
(
π|S(ϕ))

−1 ∈ HbA(E′′). But note that

S(ϕ) = {ϕ◦ τ̃z : z ∈ E′′} and that
(
π|S(ϕ))

−1(z) = ϕ◦ τ̃z−π(ϕ) so f̃ ◦
(
π|S(ϕ))

−1(z) = ϕ◦ τ̃z−π(ϕ)(f).

That is, f̃ ◦
(
π|S(ϕ))

−1 = T̃ϕ◦τ̃−π(ϕ)
(f) which is in HbA(E′′) by Theorem 4.3.17.

We can apply the last result in the following cases:

Example 4.3.20. (MbA(E), π) is a Riemann domain over E′′ and every function inHbA(E) extends

to an A-holomorphic function of bounded type on each connected component of MbA(E) in the

following cases:

(a) A = {Pk}k, and E is symmetrically regular (this is [Din99, Proposition 6.30]).

(b) A = {Pk
I }k, for every Banach space E.

(c) A = {Pk
e }k, for every Banach space E.

(d) A = {Pk
w}k, for every Banach space E.

(e) If A is a sequence of maximal polynomial ideals associated to any of the natural sequences

(except the case {εk}k), for every Banach space E.

(f) A = {Ak ◦ C}k, where {Ak}k an AB-closed, weakly differentiable, multiplicative sequence

which is regular at a Banach space E and C a maximal operator ideal.

Recall that in Subsection 3.2.6 we defined for any coherent sequence A the spaces HdA and HbA

of holomorphic functions on Riemann domains.

Corollary 4.3.21. Let E be a Banach space and A = {Ak}k an AB-closed multiplicative sequence,

weakly differentiable and regular at E. Then, for every function f ∈ HbA(E), the extension f̃ to

MbA(E) is in HdA(MbA(E)).

Proof. By the above theorem, f̃ is in HbA of each connected component of MbA(E). Since any ball

is contained in one of these connected components, we conclude that f̃ is of the class HbA on every

ball in MbA(E). This means that f̃ belongs to HdA(MbA(E)).

On the other hand, for the case of Hb, we will prove in Proposition 5.5.2 that if there exists a

homogeneous polynomial which is not weakly continuous on bounded sets, then its extension to the

spectrum Mb(E) is not of bounded type. More specifically, if P is an n-homogeneous polynomial

whose restriction to a ball is not weakly continuous at 0, we will show that there exist, for each

k ∈ N, ϕk ∈Mb(E) such that ϕk(x
′) = 0 for every x′ ∈ E′. Thus, π(ϕk) = 0 for every k and the set

C = {ϕk : k ∈ N} is Mb(E)-bounded. But, |P̃ (ϕk)| = |ϕk(P )| ≥ knε and, therefore, ‖P̃‖C = ∞,

which implies that P̃ is not of bounded type on Mb(E). Suppose now that P ∈ An(E) is not weakly

continuous on bounded sets. Then the ϕk’s defined in the proof of Proposition 5.5.2 are in MbA(E).

Indeed, denote by pA
r the seminorms which define the topology of HbA(E), and pr the seminorms

for Hb(E). Then since the ϕk’s are Hb-continuous there exists r > 0 such that ϕk(f) ≤ pr(f) for

every f ∈ Hb(E). Now if f ∈ HbA(E), then

ϕk(f) ≤ pr(f) ≤ pA
r (f).

So P̃ is not of bounded type on MbA(E). In particular we have:

Proposition 4.3.22. Let E be a Banach space and A = {Ak}k an AB-closed multiplicative se-

quence regular at E. Suppose that there exists a continuous polynomial on A(E) which is not weakly

continuous on bounded sets. Then there exists a homogeneous polynomial whose extension to the

spectrum MbA(E) is not in HbA(MbA(E)).
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4.3.1 A Banach-Stone type result

Now we apply some of our results to obtain a Banach-Stone type theorem for algebras associated

to multiplicative sequences of polynomial ideals. We follow a procedure as in similar results in

[CGM05]. First, we have:

Lemma 4.3.23. Let A and B be multiplicative sequences. Suppose that φ : HbA(E) → HbB(F )

is a continuous multiplicative operator and define g : F ′′ → E′′ by g(z) = π(δ̃z ◦ φ). Then, g is

holomorphic and for every γ ∈ E′, AB(γ) ◦ g = AB(φγ). In particular, if finite type polynomials

are dense on Ak(E) (for every k), then AB(φf) = AB(f) ◦ g for every f ∈ HbA(E).

Proof. Denote by θφ : MbB(F ) → MbA(E) the restriction of the transpose of φ. Then g is just

the composition F ′′
eδ−→ MbB(F )

θφ−→ MbA(E)
π−→ E′′. If we take z ∈ F ′′ and γ ∈ E′, then

g(z)(γ) = δ̃z(φγ) = AB(φγ)(z). Thus g is weak*-holomorphic on F ′′ and therefore holomorphic

(see for example [Muj86, Example 8D]).

If γ ∈ E′ then AB(γ)(g(z)) = g(z)(γ) = AB(φγ)(z). Since φ multiplicative and continuous,

the last assertion follows.

Although it is hard for a Banach space E to verify that finite type polynomials are dense

in Hb(E) (c0 and Tsirelson like spaces do, but no other classical Banach spaces), it is not so

uncommon that finite type polynomials be dense in HbA(E) for certain sequences A and Banach

spaces E. Besides those sequences where finite type polynomials are automatically dense (such

as approximable or nuclear polynomials), there are combination of ideals and Banach spaces that

make finite type polynomials dense (see Example 4.3.25 below).

Theorem 4.3.24. (a) Let A and B be multiplicative sequences, B also AB-closed. Suppose that

finite type polynomials are dense in Ak(E) and on Bk(E
′′) for some Banach space E, for all k. If

HbA(E) and HbB(F ) are topologically isomorphic algebras, then E′ is isomorphic to F ′.

(b) Let A be an AB-closed multiplicative sequence such that finite type polynomials are dense

in Ak(E
′′). Then HbA(E) and HbA(F ) are topologically isomorphic algebras if and only if E′ and

F ′ are isomorphic.

Proof. a) Suppose that φ : HbA(E) → HbB(F ) is an isomorphism. Let g : F ′′ → E′′ and h :

E′′ → F ′′ be the applications given by Lemma 4.3.23 for φ and φ−1 respectively. Then h ◦ g is the

composition

F ′′ eδ→MbB(F )
θφ→MbA(E)

π→ E′′ eδ→MbA(E)
θφ−1→ MbB(F )

π→ F ′′.

Since MbA(E) = δ̃(E′′), it follows that h◦g = idF ′′ . Thus dh(g(0))◦dg(0) = idF ′′ and therefore F ′′

is isomorphic to a complemented subspace of E′′ which implies that every polynomial in Bk(F
′′)

is approximable. Since B is AB-closed we can conclude that every polynomial in Bk(F ) is ap-

proximable (if P ∈ Bk(F ) then AB(P ) ∈ Bk(F
′′), thus AB(P ) is approximable and therefore P

is approximable). Now, since MbB(F ) = δ̃(F ′′), we can prove similarly that g ◦ h = idE′′ , that is,

h = g−1, and differentiating at g(0) we obtain that E′′ is isomorphic to F ′′.

Since every polynomial on Bk(F ) is approximable we have that φγ is approximable for every

γ ∈ E′ and then AB(φγ) is w∗-continuous on bounded sets. The identity g(z)(γ) = AB(φγ)(z)

shown in Lemma 4.3.23 assures then that g is w∗-w∗-continuous on bounded sets. Similarly, g−1

is w∗-w∗-continuous on bounded sets. Moreover, applying [ACG95, Lemma 2.1] to z 7→ g(z)(γ),

we obtain that de differential of g at any point is w∗-w∗-continuous (and analogously for g−1).
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Therefore, the isomorphism between E′′ and F ′′ is the transpose of an isomorphism between F ′

and E′.

b) One implication follows from (a). For the converse, we can follow the reasoning in [LZ00] to

obtain the isomorphism between Ak(E) and Ak(F ), for all k. From that it is derived that HbA(E)

and HbA(F ) are topologically isomorphic.

Example 4.3.25. Finite type polynomials are dense in the space of integral polynomial on any As-

plund Banach space, since in this case, integral and nuclear polynomials coincide (see [Ale85, BR01,

CD00]). Moreover, finite type polynomials are also dense in the space of extendible polynomials

on an Asplund space ([CG]). Then, as a consequence of Theorem 4.3.24 we have: suppose that E

and F are Banach spaces, one of them reflexive, and that HbA(E) is isomorphic to HbB(F ), where

A and B can be any of the sequence of nuclear, integral, approximable or extendible polynomials.

Then F is isomorphic to E.

4.4 Hypermultiplicative sequences and algebras of holomorphic

functions on open sets

In the previous sections we introduced multiplicative sequences and used this concept to study

algebras of entire function of bounded type. In this section we are interested in algebras of holo-

morphic functions on balls and more general open subsets. We will need to introduce the following

more restrictive version of multiplicative sequences.

Definition 4.4.1. Let {Ak(E)}k be a sequence of scalar valued polynomial ideals. We will say that

{Ak(E)}k is hypermultiplicative if it is coherent and for each P ∈ Ak(E) and Q ∈ Al(E), we

have that PQ ∈ Ak+l(E) and

‖PQ‖Ak+l(E) ≤
(k + l)k+l

(k + l)!

k!

kk
l!

ll
‖P‖Ak(E)‖Q‖Al(E).

Remark 4.4.2. Stirling’s Formula states that nn+1/2

en ≤ n! ≤ nn+1/2

en−1 for every n ≥ 1, so we have

that
(k + l)k+l

(k + l)!

k!

kk
l!

ll
≤ e2

( kl

k + l

)1/2
.

Thus if A is hypermultiplicative, for each ε > 0 there exists a constant cε > 0 such that for every

P ∈ Ak(E) and Q ∈ Al(E), ‖PQ‖Ak+l(E) ≤ cε(1 + ε)k+l‖P‖Ak(E)‖Q‖Al(E). That is, we could say

that A hypermultiplicative if it is “almost” multiplicative with constant M for every M > 1.

We will show below that most commonly used examples of polynomial ideals form hypermulti-

plicative sequences. Let us see before that if A is hypermultiplicative, then HbA(BE) is an algebra.

In Lemma 4.1.4 we proved that if A is a multiplicative sequence, then HbA(E) is a B0-algebra.

We will prove that if A is hypermultiplicative then HbA(E) and HbA(BE) are locally m-convex

Fréchet algebras, that is, the topology may be given by submultiplicative seminorms.

Proposition 4.4.3. Suppose that A is hypermultiplicative and E a Banach space. Then,

• for each x ∈ E and r > 0, HbA(Br(x)) is a locally m-convex Fréchet algebra.

• HbA(E) is a locally m-convex Fréchet algebra.
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Proof. (i) We will show this for r = 1 and x = 0, that is Br(x) = BE. The general case follows by

translation and dilation. We already know that HbA(BE) is a Fréchet space. Let us first show that

it is a B0-algebra.

Let f =
∑

k Pk and g =
∑

kQk be functions in HbA(BE). We must show that dnfg(0)
n! belongs

to An(E) and that ps(fg) =
∑∞

n=0 s
n
∥∥dnfg(0)

n!

∥∥
An(E)

< ∞ for every s < 1. Since dnfg(0)
n! =

∑n
k=0 PkQn−k and A is hypermultiplicative, dnfg(0)

n! belongs to An(E). On the other hand, using

Stirling’s Formula,

∞∑

k=0

sn
∥∥d

nfg(0)

n!

∥∥
An(E)

≤ e2
∞∑

n=0

sn
n∑

k=0

(k(n− k)

n

)1/2
‖Pk‖Ak(E)‖Qn−k‖An−k(E)

= e2
∞∑

k=0

√
ksk‖Pk‖Ak(E)

∞∑

n=k

sn−k
(n− k

n

)1/2
‖Qn−k‖An−k(E)

≤ e2ps(g)
∞∑

k=0

√
ksk‖Pk‖Ak(E).

Therefore, for each ε > 0 there exists a constant c = c(ε, s) > 1 such that

ps(fg) =
∑

sn
∥∥d

nfg(0)

n!

∥∥
An(E)

≤ cps(g)ps+ε(f).

Therefore, if f, g ∈ HbA(BE), sn = 1 − 1
2n , for some n > 1, and ε = 1

2n+1 then if we denote

cn = c( 1
2n+1 , 1 − 1

2n ),

psn(fg) ≤ cnps(g)psn+1(f) ≤ cnpsn+1(f)psn+1(g). (4.1)

This shows that HbA(BE) is a B0-algebra. Note also that using (4.1) it follows that

psn(fk) ≤ ck−1
n psn+1(f)k−1psn(f) ≤ cknpsn+1(f)k.

Take now an entire function h ∈ H(C), h(z) =
∑
anz

n. Then for f ∈ HbA(BE),

psn

( M∑

k=N

akf
k
)
≤

M∑

k=N

akpsn(fk) ≤
M∑

k=N

ak
(
cnpsn+1(f)

)k
,

which goes to 0 as N,M increase because h is an entire function. This means that entire functions

operate in HbA(BE). Therefore [MRZ62, Theorem 1] implies that HbA(BE) is locally m-convex.

(ii) follows similarly.

Let U ⊂ E be any open subset and A coherent sequence. In Section 3.2.6 we defined the spaces

HdA(U) and HbA(U) of A-holomorphic functions on U . Since HdA(U) is the space of holomorphic

functions which are of the class HbA on each ball contained in U , it is immediate from the previous

proposition the following:

Corollary 4.4.4. Suppose that A is hypermultiplicative and let U ⊂ E be any open subset. Then

HdA(U) is a locally m-convex algebra.

The same is true for HbA(U):

Corollary 4.4.5. Suppose that A is hypermultiplicative and let U ⊂ E be an open subset. Then

HbA(U) is a locally m-convex Fréchet algebra.



4.4. Algebras of holomorphic functions on open sets 101

Proof. We know from Proposition 3.2.59 that HbA(U) is a Fréchet space. Let us see that it is

an algebra. Let A ⊂⊂ U , A open and let ε > 0 such that A + Bε(0) ⊂⊂ U . By (the proof of)

Proposition 4.4.3, if Bs(x) ⊂ U ,

pxs(fg) ≤ cεp
x
s (g)p

x
s+ε(f).

Note also that Bs(x) ⊂ A if and only if Bs+ε(x) ⊂ A+Bε(0), therefore

pA(fg) = sup
Bs(x)⊂A

pxs (gf) ≤ cε

(
sup

Bs(x)⊂A
pxs (g)

)
·
(

sup
Bs+ε(x)⊂A+Bε(0)

pxs+ε(f)
)

= pA(g)pA+Bε(0)(f) <∞

This shows that HbA(U) is a B0-algebra. We may prove as in Proposition 4.4.3 that entire functions

operate in HbA(U) and thus by [MRZ62, Theorem 1], HbA(U) is locally m-convex.

We will finish this chapter with examples of hypermultiplicative sequences.

Example 4.4.6. It is immediate to verify that the following sequences are all hypermultiplicative,

since they are multiplicative with constant M = 1:

i) {Pk}, of all homogeneous polynomials,

ii) {Pk
w}, of weakly continuous on bounded sets polynomials,

iii) {Pk
A}, of approximable polynomials,

iv) {Pk
e }, of extendible polynomials,

v) {Mk
r}, of multiple r-summing polynomials.

Example 4.4.7. The sequence {Pk
I } of integral polynomials is hypermultiplicative.

This was already proved in Example 4.1.5 (c).

Example 4.4.8. The sequence {Pk
N} of nuclear polynomials is hypermultiplicative.

Indeed, it is clear that the product of nuclear polynomials is nuclear. Moreover, since nu-

clear polynomials are the minimal ideal associated to integral polynomials (see for example [Flo01,

3.4]), the previous example implies, by Proposition 4.1.12 that if P ∈ PN (kE), Q ∈ PN (lE) then

‖PQ‖N ≤ (k+l)k+l

(k+l)!
k!
kk

l!
ll
‖P‖N‖Q‖N . As a consequence of Proposition 4.4.3, the space of nuclearly

entire functions of bounded type is a locally m-convex Fréchet algebra.

This can be deduced also from the following set of examples. Recall from Subsection 3.1.5 the

sequences of polynomial ideals associated to the natural tensor norms defined in [CG].

Proposition 4.4.9. Let {αk}k be any of the sequences of natural symmetric tensor norms. Then

the sequences {Amaxk }k and {Amink }k of maximal and minimal associated ideals are hypermultiplica-

tive.

Proof. This follows form the inequalities

πsk+l(σ(s ⊗ t)) ≤ (k + l)k+l

(k + l)!

k!

kk
l!

ll
πsk(s)π

s
l (t) and εsk+l(σ(s ⊗ t)) ≤ εsk(s)ε

s
l (t)

for every s ∈⊗k,sE′, t ∈⊗l,sE′ and Lemma 4.1.15 together with Proposition 4.1.12.

With the same proof as Proposition 4.1.6 we have that interpolation of hypermultiplicative

sequences is again hypermultiplicative.





Chapter 5

Envelopes of holomorphy and

extension of functions of bounded

type

In this chapter we characterize the envelope of holomorphy for the algebra of bounded type holo-

morphic functions on Riemann domains over a Banach space in terms of the spectrum of the

algebra. We prove that evaluations at points of the envelope are always continuous but we show an

example of a balanced open subset of c0 where the extensions to the envelope are not necessarily

of bounded type, answering a question posed by Hirschowitz in 1972. We show that for bounded

balanced sets the extensions are of bounded type. We also consider extensions to the bidual, and

show some properties of the spectrum in the case of the unit ball of ℓp.

The contents of this chapter belong mostly to [CM].

5.1 Envelopes of holomorphy

In this section we obtain a characterization of the envelope of holomorphy for the functions of

bounded type on a Riemann domain.

Let us recall the definition of extension morphism and envelope of holomorphy for a family of

holomorphic functions (see, for example, [Muj86, Chapter XIII]). Let (X, p) and (Y, q) be Riemann

domains spread over a Banach space E. A morphism is a continuous mapping τ : X → Y such

that q ◦ τ = p.
X Y

E

τ

p q

Let F be a subset of H(X), then a morphism τ : X → Y is said to be an F − extension of X if

for each f ∈ F there is a unique f̃ ∈ H(Y ) such that f̃ ◦ τ = f .

A morphism τ : X → Y is said to be an F−envelope of holomorphy of X if τ is an F-extension

of X and if for each F-extension of X, ν : X → Z, there is a morphism µ : Z → Y such that

µ ◦ ν = τ . The F-envelope of holomorphy of X can be thought as the largest Riemann domain Y

to which every f ∈ F has a unique holomorphic extension.
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Y

X Z

E

τ

µ

q
ν

p

Regarding holomorphic functions of bounded type, the Hb-envelope of holomorphy was con-

structed, for example, by Hirschowitz in [Hir72]. For general families of functions F , the existence

of the F-envelope of holomorphy can be seen in [Muj86, Chapter XIII]. For related characterizations

of the envelope of holomorphy in terms of the spectrum for wide classes of holomorphic functions

see [Sch72] and [Coe74, Chapter VI].

The functions of bounded type form a class of functions that can be defined on any Riemann

domain, and that has a topology different from the space of all holomorphic functions. These two

facts may arise some concerns about the proper definition of envelope of holomorphy. For example,

it may be more natural to consider the largest Riemann domain to which every f ∈ Hb(X) has

a unique holomorphic extension which is of bounded type. Or the largest Riemann domain Y to

which every f ∈ Hb(X) has a unique holomorphic extension, so that evaluating the extensions on

elements of Y are continuous homomorphisms on Hb(X). Note that in several complex variables,

the envelope of holomorphy may be identified with the spectrum. If we expect to obtain something

similar, evaluations in elements of the envelope must be continuous. This motivates the following

definition:

Definition 5.1.1. Let (X, p), (Y, q) be Riemann domains spread over a Banach space E and let

F ⊂ H(X) be a topological algebra. A morphism τ : X → Y is said to be a strong F-extension

of X if for each f ∈ F there is a unique f̃ ∈ H(Y ) such that f̃ ◦ τ = f and for each y ∈ Y , the

mapping f ∈ F  f̃(y) belongs to the spectrum of F .

The morphism τ : X → Y is said to be a strong F-envelope of holomorphy of X if τ is a

strong F-extension of X and if for each strong F-extension of X, ν : X → Z, there is a morphism

µ : Z → Y such that ν ◦ µ = τ .

When there is no confusion, we will say that the (strong) F-envelope of X is the Riemann

domain (Y, q).

Now, for the first concern on the extensions being of bounded type (which is probably more

natural), we set:

Definition 5.1.2. Let (X, p), (Y, q) be Riemann domains spread over a Banach space E and let

F ⊂ H(X), G ⊂ H(Y ). A morphism τ : X → Y is said to be an F-G-extension of X if for each

f ∈ F there is a unique f̃ ∈ G such that f̃ ◦ τ = f .

For the particular case of F and G being the spaces of holomorphic functions of bounded type

on X and Y , we define:

Definition 5.1.3. Let (X, p) be a Riemann domain spread over a Banach space E. A morphism

τ : X → Y is said to be an Hb-Hb-envelope of holomorphy of X if τ is an Hb-Hb−extension of

X and if for each Hb-Hb-extension of X, ν : X → Z, there is a morphism µ : Z → Y such that

ν ◦ µ = τ .
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Finally, we say that a Riemann domain (X, p) is a Hb-domain of holomorphy if it coincides with

its Hb-envelope of holomorphy.

It is easy to see that the envelope of holomorphy is, whenever it exists, unique up to an

isomorphism. Also, the last definition can be generalized to pairs of classes of functions that

are defined in any Riemann domain. It is not clear that any of these variants of the Hb-envelope

of holomorphy should necessarily exist. Note that the classical Hb-envelope is known to exist just

because it can be constructed [Hir72].

The concept of Hb-extension morphism introduced by Dineen and Venkova in [DV04] is different

from ours. The main difference is that in our case, the envelope of a Riemann domain over E is

also modeled on E, while theirs is modeled on E′′ (just as the spectrum [AGGM96]). The reasons

of our choice is that we want to preserve the uniqueness of extensions, as in the finite dimensional

setting, and this cannot be achieved if we allow domains on E′′. Also, if we want to define domains

of holomorphy as those domains that coincide with their envelopes, we need both of them to be

modeled over the same space. However, since extensions to the bidual are crucial in the theory of

analytic functions of bounded type, we will devote a section to this kind of extensions.

Now we characterize the strong Hb-envelope for a Banach space E, and show that in this case

the strong Hb-envelope and the Hb-envelope of X are actually the same. In the next section, we

will show that even for balanced open subsets of E, the Hb-Hb-envelope of holomorphy may fail to

exist. It does exists if the balanced open subset is also bounded.

As usual, the spectrum of the algebra under consideration plays a crucial role in the study of

the envelope of holomorphy. A complex Banach space E is said to be (symmetrically) regular if

every continuous (symmetric) linear mapping T : E → E′ is weakly compact. Recall that T is

symmetric if Tx1(x2) = Tx2(x1) for all x1, x2 ∈ E. The first steps towards the description of

the spectrum Mb(E) of Hb(E) for a symmetrically regular Banach space E were taken by Aron,

Cole and Gamelin in their influential article [ACG91]. In [AGGM96, Corollary 2.2] Aron, Galindo,

Garćıa and Maestre gave Mb(U) a structure of Riemann analytic manifold modeled on E′′, for U

an open subset of E. For the case U = E, Mb(E) can be viewed as the disjoint union of analytic

copies of E′′, these copies being the connected components of Mb(E). In [Din99, Section 6.3], there

is an elegant exposition of all these results. The study of the spectrum of the algebra of the space

of holomorphic functions of bounded type was continued in [CGM05]. The analytic structure of

Mb(X) for X a Riemann domain over a symmetrically regular Banach space E was presented in

[DV04]. The resulting structure for Riemann domains is rather analogous to that of open subsets

of E. See Preliminaries 1.3.1 for a short account of the analytic structure of Mb(X).

Note that if E is symmetrically regular, the spectrum Mb(X) is modeled on E′′ and for the

envelope we require a Riemann domain over E. Next lemma shows that this issue can be fixed for

an arbitrary Banach space.

Lemma 5.1.4. Let (X, p) be a Riemann domain spread over a Banach space E. Then (π−1(E), π) ⊂
(Mb(X), π) is a Riemann domain spread over E.

Proof. Let ϕ ∈ π−1(E). If E is symmetrically regular, then by the analytic structure of the

spectrum ([AGGM96] or [DV04]), there exist δ > 0 such that if z ∈ E′′ and ‖z‖ < δ, then

ϕz ∈ Mb(X) and π is an homeomorphism from {ϕz : ‖z‖E′′ < δ} ⊂ Mb(X) to BE′′(π(ϕ), δ).

Moreover, π(ϕz) = π(ϕ) + z. Thus if x ∈ E then ϕx ∈ π−1(E) and π is a local homeomorphism

between π−1(E) and E.
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In [AGGM96], [DV04] symmetric regularity is used to ensure that the Aron-Berner extension

of every symmetric multilinear form is symmetric. But since we restrict to (π−1(E), π), we can

define ϕx as

ϕx(f) =
∞∑

n=0

ϕ
(dnf(·)

n!
(x)
)
,

and thus we will not make use of the Aron-Berner extension at any moment. Therefore repeating

the proofs of [AGGM96] or [DV04] we obtain our result for an arbitrary Banach space E.

Now we are ready to give the characterization of the strong Hb-envelope of holomorphy, which

is very similar to that of several complex variables, especially if E is reflexive:

Theorem 5.1.5. Let (X, p) be a connected Riemann domain spread over a Banach space E and let

Y be the connected component of π−1(E) ⊂Mb(X) which intersects δ(X). Then δ : (X, p) → (Y, π),

δ(x) = δx is the strong Hb-envelope of X.

Proof. The fact that δ : (X, p) → (Y, π) is an Hb-extension can be proved as in [DV04, Proposition

2.3].

Let τ : (X, p) → (Z, q) be a strong Hb-extension morphism. We must show that there is a

morphism ν : Z → Y such that ν ◦ τ = δ.

For f ∈ HbA(X), we denote f̃ its extension to Z. Since for every z ∈ Z, the application

f ∈ f̃(z) is in Mb(X), there is a well defined mapping

ν : Z →Mb(X)

ν(z)(f) = f̃(z),

for f ∈ Hb(X), z ∈ Z.

Moreover, ν(Z) ⊂ π−1(E). Indeed, if z ∈ Z and γ ∈ E′ then

π(ν(z))(γ) = ν(z)(γ ◦ p) = (γ ◦ p)∼(z) = γ(q(z)). (5.1)

Thus π(ν(z)) = q(z) which belongs to E.

Note that (5.1) also proves that π ◦ ν = q. Therefore, in order to prove that ν : Z → π−1(E) is

a morphism it remains to show that ν is continuous.

For each z0 ∈ Z let Vz0 be an open neighborhood such that q|Vz0
: Vz0 → q(Vz0) is an homeo-

morphism. If we prove that

ν
(
(q|Vz0

)−1(q(z0) + x)
)

= ν(z0)
x, (5.2)

for every x ∈ E with sufficiently small norm, we will have showed that ν is continuous. In fact,

(5.2) implies that ν is a local homeomorphism.

Let f ∈ Hb(X) then

ν
(
(q|Vz0

)−1(q(z0) + x)
)
(f) = f̃

(
(q|Vz0

)−1(q(z0) + x)
)

=
∑

n≥0

dn[f̃ ◦ (q|Vz0
)−1]

n!

(
q(z0)

)
(x)

=
∑

n≥0

dnf̃

n!
(z0)(x),

and

ν(z0)
x(f) =

∑

n≥0

ν(z0)
(dnf
n!

(·)(x)
)

=
∑

n≥0

(dnf
n!

(·)(x)
)∼

(z0).
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Therefore it suffices to prove that

(dnf
n!

(·)(x)
)∼

(z0) =
dnf̃

n!
(z0)(x), (5.3)

for every n ≥ 0 and every f ∈ Hb(X).

Let x ∈ E. By [AGGM96, p.550] and [Muj86, Corollary 7.18]

g(·) =
dnf

n!
(·)(x) ∈ Hb(X),

and

h(·) =
dnf̃

n!
(·)(x) ∈ H(Z).

Moreover, h is an extension of g to Z. Indeed if y ∈ X and (Vy, p) is a chart of y such that

(Vτ(y), q) = (τ(Vy), q) is a chart of τ(y), then

h(τ(y)) =
dn[f̃ ◦ (q|Vτ(y)

)−1]

n!

(
q(τ(y))

)
(x)

(∗)
=
dn[f ◦ (p|Vy )−1]

n!

(
p(y)

)
(x)

=
dnf

n!

(
y
)
(x) = g(y),

where (∗) is true because f̃ ◦ (q|Vτ(y)
)−1 = f ◦ (p|Vy)−1 since τ is an Hb-extension.

Since
(
dnf
n! (·)(x)

)∼
is also an extension of g to Z, we must have that h =

(
dnf
n! (·)(x)

)∼
.

Therefore we have established (5.3) for every n ≥ 0.

To conclude the proof just note that Z is connected since X is, and thus ν : Z → Y is a

morphism.

We will denote by (Eb(X), π) the strong Hb-envelope of holomorphy of X.

When E is reflexive, the envelope of Hb-envelope resembles the envelope of holomorphy for

Riemann domains in several complex variables:

Corollary 5.1.6. Let (X, p) be a connected Riemann domain spread over a reflexive Banach space

E. Then the strong Hb-envelope of X is the morphism δ : X → Y , δ(x) = δx, where Y is the

connected component of Mb(X) which contains δ(X).

Now we show that our definition of strong Hb-envelope, coincides with the classical definition

of Hb-envelope:

Theorem 5.1.7. Let (X, p) be a connected Riemann domain spread over a Banach space E. Then

the Hb-envelope and the strong Hb-envelope of X coincide.

Proof. Denote by (E(X), q) the Hb-envelope of X. Then there are a strong Hb-extension τ : X →
Eb(X), an Hb-extension σ : X → E(X) and a morphism ν : Eb(X) → E(X) such that σ = ν ◦ τ .

Let us see that ν(Eb(X)) is closed in E(X). Suppose that y ∈ ν(Eb(X)) \ ν(Eb(X)). Let

Wn = {ϕ ∈ Eb(X) : ϕ ≺ Xn}, where ϕ ≺ Xn means that |ϕ(f)| ≤ ‖f‖Xn for every f ∈ HbA(X).

Then by [AGGM96] (see also [DV04, Proposition 1.5]), dX(Wn) ≥ 1
n . Therefore we can get a

subsequence of integers (nk)k and a sequence (yk)k ⊂ Eb(X) such that yk ∈Wnk+1
\Wnk

and yk → y.

Thus there are functions fk ∈ Hb(X) such that ‖fk‖Xnk
< 1

2k and |f̃k(yk)| > k +
∑k−1

j=1 |f̃j(yk)|.
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Then the series
∑∞

j=1 fj converges to f ∈ Hb(X) and moreover
∣∣∣
(∑∞

j=1 fj

)∼
(yk)

∣∣∣ =
∣∣∣
∑∞

j=1 f̃j(yk)
∣∣∣

because yk belongs to Eb(X) and thus δyk
is a continuous homomorphism. Therefore

|f̃(yk)| =
∣∣∣
( ∞∑

j=1

fj

)∼
(yk)

∣∣∣ =
∣∣∣

∞∑

j=1

f̃j(yk)
∣∣∣ ≥ |f̃k(yk)| −

∣∣∣
k−1∑

j=1

f̃j(yk)
∣∣∣−
∣∣∣

∞∑

j=k+1

f̃j(yk)
∣∣∣ > k − 1,

so we have that |f̃(yk)| → ∞ and then f cannot be extended to y. This is a contradiction since y

belongs to the Hb-envelope of X, E(X). Thus ν(Eb(X)) is closed in E(X).

On the other hand ν(Eb(X)) is open in E(X) because ν is a morphism. Therefore ν(Eb(X)) =

E(X).

Corollary 5.1.8. Let (X, p), (Y, q) be connected Riemann domains spread over a Banach space E

and suppose that the morphism ν : X → Y is an Hb-extension. Then τ is an strong Hb-extension.

Proof. Let τ : X → E(X) be the morphism into the envelope of X. By Theorem 5.1.7, E(X) =

Eb(X), and thus the evaluation at each point of E(X) is an Hb(X)-continuous homomorphism.

On the other hand, there exist a morphism µ : Y → E(X) such that µ ◦ ν = τ . Thus the

evaluation at a point y ∈ Y coincides with the evaluation at µ(y) and therefore it is Hb(X)-

continuous.

Theorem 5.1.7 says that the envelope is contained in the spectrum. In other words, evaluations

on elements of the envelope are always continuous. Of course, the coincidence of the strong and

the classical Hb-envelopes also allows us to give a characterization of the latter:

Corollary 5.1.9. Let (X, p) be a connected Riemann domain spread over a Banach space E and

let Y be the connected component of π−1(E) which intersects δ(X). Then δ : (X, p) → (Y, π),

δ(x) = δx is the Hb-envelope of X.

The following result is widely known and follows from a straightforward connectedness argu-

ment.

Lemma 5.1.10. Let (X, p), (Y, q) be connected Riemann domains spread over a Banach space E

and let u, v : X → Y be morphisms. Suppose that X is connected, then either u(x) = v(x) for every

x ∈ X or u(x) 6= v(x) for every x ∈ X.

Proof. Let x ∈ X, then for ε > 0 small, there exist a neighborhood U of x such that p|U : U →
B(p(x), ε) is an homeomorphism and a neighborhood Ũ of u(x) such that q|Ũ : Ũ → B(q(u(x)), ε) =

B(p(x), ε) is an homeomorphism. Then, since u|U =
(
q|Ũ
)−1

◦ p|U , it follows that u (and in the

same way any morphism of Riemann domains) is a local homeomorphism.

Let A = {x ∈ X : u(x) = v(x)}. Take x ∈ A, and let V be a small enough neighborhood

of x such that u : V → u(V ), q : u(V ) → q(u(V )), v : V → v(V ) and q : v(V ) → q(v(V )) are

homeomorphisms.

Let x′ ∈ V . Since u, v are morphisms, we have that q(v(x′)) = p(x′) = q(u(x′)) and therefore

u(x′) = v(x′) and thus A is open.

Since A is also closed by continuity of u and v we conclude that A = X.

Theorem 5.1.11. Let (X, p) be a connected Riemann domain spread over a Banach space E. If

the Hb-Hb-envelope of X exists, then it coincides with the Hb-envelope Eb(X) of X.
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Proof. Let (Y, τ) be the Hb-Hb-envelope of X. We put Vn = δ(X) ∪W ◦
n , where Wn was defined in

the proof of Theorem 5.1.7. Then the extension of every function in Hb(X) to Vn is of bounded

type. Thus the inclusion in : X →֒ Vn is an Hb-Hb-extension and thus there exist morphisms

νn : Vn → Y such that τ = νn ◦ in. If m > n then νm|Vn : Vn → Y is a morphism and since

νn|δ(X) = νm|δ(X) = τ we have by Lemma 5.1.10 that νm|Vn = νn.

Therefore the application ν : Eb(X) → Y , ν(x) = νn(x) if x ∈ Vn, is well defined and is a

morphism since ν|Vn is a morphism for every n ∈ N.

X Eb(X) Y

τ

δ ν

On the other hand, it is clear that we have an Hb-extension morphism from X to Y and this

gives a morphism ρ from Y to Eb(X). Thus we have

X Y Eb(X) Y

δ

τ ρ ν

ν ◦ δ = τ

Therefore, ν ◦ρ(τ(x)) = τ(x) for every x ∈ X, which, by Lemma 5.1.10 implies that ν ◦ρ = idY .

Similarly we can show that ρ ◦ ν = idEb(X).

A consequence of the previous theorem is the following: in order that the Hb-Hb-envelope of X

exist, it is necessary and sufficient that every function on Hb(X) extends to a holomorphic function

of bounded type on Eb(X). In the next section we will show that this is not always the case, so the

Hb-Hb-envelope does not always exist.

5.2 Envelopes of open subsets of a Banach space

In this section we restrict ourselves to open subsets of a Banach space E. In order to give a more

precise and concrete description of theHb-envelope, we first study when every function inHb(U) can

be extended to some larger open subset of E. We are particularly interested in establishing if the

extensions are also of bounded type. As a consequence of the results in this section, we characterize

the Hb-envelope of an open balanced set U in terms of the polynomially convex hulls of the U -

bounded sets. We show that in general the extensions to the Hb-envelope are not of bounded type,

answering a question of Hirschowitz [Hir72]. Since we have seen that the Hb-envelope is contained

in the spectrum, extensions to the spectrum may also fail to be of bounded type. Also, the same

example shows that the Hb-Hb-envelope of a balanced set does not always exist. However, we

will see that if U is bounded and balanced then the extension is of bounded type and thus the

Hb-envelope is also its Hb-Hb-envelope.

First we give some definitions: Let U ⊂ E be an open set. Let F be a set of functions defined

on U (e.g. Hb(U), Hb(E), or P(E)), and A be a U -bounded set. We denote by ÂF its F-hull, that

is

ÂF = {x ∈ E : |f(x)| ≤ ‖f‖A for every f ∈ F}.
If Un = {x ∈ U : ‖x‖ ≤ n, and dist(x,E \ U) ≥ 1

n}, then {Un}n is a fundamental sequence of

U -bounded sets, and we define the set

ÛF :=
⋃

n∈N

(
Ûn

)
F
.
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Definition 5.2.1. U is F-convex if ÂF is U -bounded for every U -bounded set A ⊂ U .

Our definition of F-convex set coincides with the notion of strongly F-convex set investigated

by Vieira in [Vie07]. She proved that U is P(E)-convex if and only if U is Hb(E)-convex (moreover,

she proved that ÂP(E) = ÂHb(E) for each bounded set A). If U is balanced then it is also equivalent

for U to be Hb(U)-convex ([Vie07, Proposition 1.5]).

Inspired by [CGM05], we say that a point x ∈ E is an evaluation for Hb(U) if there is some

ϕ ∈ Mb(U) such that f(x) = ϕ(f) for every f ∈ Hb(E). If Hb(E) is dense in Hb(U) then ϕ is

uniquely determined. In this case it will be denoted by δx. The set of all evaluation points for

Hb(U) will be denoted by
∨
U . So we have the following:

Proposition 5.2.2. Let F = P(E) or Hb(E), then

(1) U ⊂
∨
U ⊂ ÛF .

(2) If P(E) is dense in Hb(U) (for example, if U is balanced), then
∨
U = ÛF .

(3) U is F-convex if and only if U =
∨
U = ÛF .

(4)
∨
U is an open subset of π(π−1(E)).

Proof. (1) If z /∈ ÛF then there exist fn ∈ F such that fn(z) = 1 and ‖fn‖Un ≤ 1
n .

In particular, fn → 0 in Hb(U), and then ψ(fn) → 0 for every ψ ∈Mb(U). But if ϕ ∈Mb(U)

is such that ϕ(f) = f(z) for every f ∈ Hb(E) then ϕ(fn) = fn(z) = 1 for every n ∈ N, which

is a contradiction. Therefore, z /∈
∨
U .

(2) If P(E) is dense in Hb(U) and z ∈ ÛF , then there exists n ∈ N such that |f(z)| ≤ ‖f‖Un for

every f ∈ Hb(E) and therefore δz is a bounded homomorphism defined on a dense subset of

Hb(U). Hence we can extend δz to an element of Mb(U), and then z ∈
∨
U .

(3) The “only if” part is a consequence of the definitions and from the first assertion. The “if”

part follows from [Vie07, Lemma 1.3].

(4) Let x ∈
∨
U , then there exist ϕ ∈ Mb(U) such that ϕ(f) = f(x) for every entire function of

bounded type. Since
∨
U ⊂ E, ϕ actually belong to π−1(E).

Thus there exists δ > 0 such that ϕy ∈ π−1(E) for every y ∈ BE(0, δ) (see Lemma 5.1.4).

Moreover for every f ∈ Hb(E), ϕy(f) = f(x+ y). Therefore, x+ y is in
∨
U .

Corollary 5.2.3. Let U be an open balanced subset of a Banach space E. Then ÛP is the Hb-

envelope of U .

Proof. By Corollary 5.1.9 we have to show that δ(ÛP ) is the connected component of π−1(E) ⊂
Mb(U) which contains δ(U). The proof of Proposition 5.2.2 (2) actually shows that δ

(
ÛP

)
⊂Mb(U).

Thus it is contained in π−1(E). Moreover, by [Vie07, Lemma 1.4], ÛP is balanced and hence

connected.

On the other hand, if z ∈ E \ ÛP , then for every n ∈ N, there exist functions fn ∈ Hb(E) such

that ‖fn‖Un ≤ 1
2n and |fn(z)| > 1. Thus fn → 0 in Hb(U) and therefore δz cannot be a continuous

homomorphism.
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Thus, if U is balanced we can extend holomorphic functions of bounded type on U to ÛP . By

Corollary 5.1.8 the inclusion U →֒ ÛP is a strong Hb-extension. Moreover, it is possible to obtain

extensions which are of bounded type “on every point” of ÛP in the following sense.

Proposition 5.2.4. Let U be a balanced open set. Then every holomorphic function of bounded

type on U extend to ÛP . Moreover for each y ∈ ÛP , there exist a connected open set Uy, such that

{y} ∪ U ⊂ Uy ⊂ ÛP and such that every holomorphic function of bounded type on U extend to a

bounded type function on Uy.

For the proof we will use the following two Lemma’s which are similar to results in [Din71].

Whenever polynomials are dense in Hb(U), we can extend holomorphic functions of bounded

type on U to ÛP since by Proposition 5.2.2 (2), ÛP may be embedded in Mb(U). Let f ∈ Hb(U)

and (Pn)n a sequence of polynomials which converges to f , if we denote by f̃ its extension to ÛP ,

then it satisfies that f̃(y) = limn Pn(y) for every y ∈ ÛP .

Lemma 5.2.5. Suppose that P(E) is dense in Hb(U). Let B be a U -bounded set, y ∈ B̂P and

f ∈ Hb(U).

Then
∥∥∥d

kf̃(y)

k!

∥∥∥ ≤ sup
x∈B

∥∥∥d
kf(x)

k!

∥∥∥.

Proof. Let φ ∈ Pk(E)′ such that ‖φ‖ ≤ 1. Then g = φ ◦ dkf
k! belongs to Hb(U). Let (Pn)n ⊂ P(E)

such that Pn → g in Hb(U). Then g̃(y) = limPn(y) and since y ∈ B̂P , we have that |Pn(y)| ≤
‖Pn‖B . Note also that g̃ and φ ◦ dk f̃

k! are holomorphic functions in ÛP which coincide in U so they

are the same function.

Therefore
∣∣φ
(dkf̃
k! (y)

)∣∣ = |g̃(y)| ≤ ‖g‖B = supx∈B

∣∣∣φ
(
dkf(x)
k!

)∣∣∣ ≤ supx∈B

∥∥∥d
kf(x)
k!

∥∥∥. Since this is

true for every φ ∈ Pk(E)′ such that ‖φ‖ ≤ 1, we conclude that
∥∥∥d

kf̃(y)
k!

∥∥∥ ≤ supx∈B

∥∥∥d
kf(x)
k!

∥∥.

Lemma 5.2.6. Suppose that P(E) is dense in Hb(U). Let y ∈
(
Ûn
)
P
. Then for every function

f ∈ Hb(U) the Taylor series of f̃ at y converges on the ball BE(y, 3
4n). Moreover, BE(y, 2

3n) ⊂ ÛP

and for every ‖x‖ < 2
3n , it holds that |f̃(x+ y)| ≤ ‖f‖U4n .

Proof. For every x ∈ Un, we have that BE(x, 3
4n) ⊂ U4n. By the previous lemma and Cauchy

inequalities, ∥∥∥d
kf̃(y)

k!

∥∥∥ ≤ sup
x∈Un

∥∥∥d
kf(x)

k!

∥∥∥ ≤ ‖f‖U4n

(4

3
n
)k
.

By the Cauchy-Hadamard formula, the Taylor series of f̃ at y converge in BE(y, 3
4n ). If ‖x‖ < 2

3n

then ∣∣∣
∞∑

k=0

dkf̃(y)

k!
(x)
∣∣∣ ≤

∞∑

k=0

∥∥∥d
kf̃(y)

k!

∥∥∥‖x‖k ≤ ‖f‖U4n

∞∑

k=0

(4

3
n
)k( 2

3n

)k
= 9‖f‖U4n .

Since this is true for every function in Hb(U). In particular, for each k ∈ N and each polynomial P ,

we have that ‖P‖k
BE(y, 2

3n
)
= ‖P k‖BE(y, 2

3n
) ≤ 9‖P k‖U4n = 9‖P‖kU4n

and thus ‖P‖BE(y, 2
3n

) ≤ ‖P‖U4n .

This implies that BE(y, 2
3n ) ⊂

(
Û4n

)
P
⊂ ÛP . Therefore

∑∞
k=0

dkf̃(y)
k! (x) = f̃(y + x) and a similar

reasoning allows us conclude that ‖f̃‖BE(y, 2
3n

) ≤ ‖f‖U4n .

Proof. (of Proposition 5.2.4) The point y belongs to
(
Ûn
)
P

for n ∈ N sufficiently large, which is

balanced by [Vie07, Lemma 1.4], and hence the segment [0, y] is contained in
(
Ûn
)
P
. Let Uy :=
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(⋃
z∈[0,y]BE(z, 2

3n)
)
∪U . By the last Lemma Uy ⊂ ÛP and for each f ∈ Hb(U), ‖f̃‖

S

z∈[0,y] BE(z, 2
3n )

≤
‖f‖U4n <∞. Therefore f̃ is of bounded type on Uy.

Remark 5.2.7. Note that if f ∈ Hb(U), then the extension f̃ to ÛP belongs to the set {g ∈
H(ÛP) : g is bounded in (Ûn)P for every n ∈ N}.

On the other hand, we cannot expect to extend the functions of Hb(U) to connected subsets of

E larger than ÛP (or to points outside ÛP). Indeed suppose V ⊃ U is another connected open set

such that the inclusion U →֒ V is an Hb-extension. If z ∈ V then δz belongs to Mb(U) by Corollary

5.1.8. Since for every entire function f , δz(f) = f(z), we conclude that z belongs to
∨
U . Therefore

functions of bounded type cannot be extended outside
∨
U , and neither outside ÛP by Proposition

5.2.2(1).

At this point, it is natural to ask if the extension to ÛP must be of bounded type. By

Corollary 5.2.3, for balanced subsets, this question coincides with the following question made

by Hirschowitz in [Hir72, Remarque 1.8]: is the extension of every function of bounded type to the

Hb-envelope of holomorphy of bounded type? The next example shows that in general the exten-

sions to ÛP are not necessarily in Hb(ÛP ), answering both questions by the negative. Moreover,

since by Theorem 5.1.9 the Hb-envelope is contained in the spectrum, this also shows that canoni-

cal extensions to the spectrum are not always of bounded type. We present, inspired in [CGM05,

Example 7], an open balanced set U ⊂ c0 and a function in Hb(U) which cannot be extended to a

holomorphic function of bounded type on Hb(ÛP ).

Example 5.2.8. There is an open balanced set U ⊂ c0 and a function g ∈ Hb(U) whose extension

to ÛP(c0) is not of bounded type.

Proof. Set E = c0, and for x ∈ c0, let

j(x) = min{j : |x2j | = max
i∈N

|x2i|}.

Note that j(λx) = j(x) if λ ∈ C \ {0}. We define for k > 4

pk(x) =
∣∣kx2k+1 + x2j(x)

∣∣+ k sup
i6=k

|x2i+1|,

and the sets Vk = {x ∈ c0 : pk(x) < 2}.
Let U be the following balanced set

U =
⋃

k>4

Vk +
1

4
Bc0,

where Bc0 denotes the open unit ball of c0.

We first show that
{(
Ûn
)
P(c0)

}
n

is not a fundamental sequence of ÛP(c0)-bounded sets.

Fix k > 0. Since pk(e2k+1 − ke2m) = 0 then e2k+1 − ke2m ∈ Vk for every m ∈ N. Thus if

‖x‖ < 1
8 , dist(e2k+1 − ke2m + x, c0 \U) > 1

8 and therefore Ck := {e2k+1 − ke2m + 1
8Bc0 : m ∈ N} is

U -bounded.

We now prove that e2k+1 + x ∈ ÛP(c0) if ‖x‖ < 1
8 . Let P ∈ P(c0) and ε > 0. Since finite

type polynomials are dense in P(c0), we can take Q ∈ Pf (c0) such that ‖P − Q‖(k+2)Bc0
< ε/3.
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Moreover, since Q is of finite type and {e2m}m is weakly null, there is m0 such that if m ≥ m0 then

|Q(e2k+1 − ke2m + x) −Q(e2k+1 + x)| < ε/3. Thus

|P (e2k+1 − ke2m + x) − P (e2k+1 + x)| ≤ |P (e2k+1 − ke2m + x) −Q(e2k+1 − ke2m + x)|
+|Q(e2k+1 − ke2m + x) −Q(e2k+1 + x)|
+|Q(e2k+1 + x) − P (e2k+1 + x)| < ε.

Therefore

|P (e2k+1 + x)| ≤ sup
m∈N

|P (e2k+1 − ke2m + x)| ≤ sup
y∈Ck

|P (y)|,

and so e2k+1 + x ∈ ÛP(c0) if ‖x‖ < 1
8 and k > 4. This means that the set D := {e2n+1 : n > 4} is

ÛP(c0)-bounded.

Suppose that C ⊂ U is such that D ⊂ ĈP(c0). Now we show that C cannot be U -bounded.

Since e2n+1 ∈ ĈP(c0), we have that |P (e2n+1)| ≤ supy∈C |P (y)| for every P ∈ P(c0). In particular,

if P = e′2n+1, this says that 1 ≤ supy∈C |y2n+1|. Thus there is a sequence {yn} ⊂ C such that

|yn2n+1| > 3
4 .

For each yn there exists k > 4 such that yn ∈ Vk + 1
4Bc0 and thus there is some xn ∈ Vk such

that ‖xn − yn‖ < 1
4 . Note that |xn2n+1| > 1

2 . Actually we have that xn ∈ Vn, indeed, if j 6= n,

pj(x
n) =

∣∣jxn2j+1 + xn2j(xn)

∣∣+ j sup
i6=j

|xn2i+1| ≥ j|xn2n+1| >
j

2
> 2.

This implies that xn /∈ Vj. Then

2 > pn(x
n) ≥

∣∣nxn2n+1 + xn2j(xn)

∣∣ ≥
∣∣n|xn2n+1| − |xn2j(xn)|

∣∣,

so we have that

‖xn‖ ≥ |xn2j(xn)| > n|xn2n+1| − 2 >
n

2
− 2. (5.4)

Therefore ‖yn‖ > ‖xn‖ − 1
4 >

n
2 − 2 − 1

4 . Since {yn}n ⊂ C, this tell us that C is not bounded. We

have proved that
{(
Ûn
)
P(c0)

}
n

is not a fundamental sequence of ÛP(c0)-bounded sets.

We now define the function g whose extension to ÛP(c0) is not of bounded type.

Let gn(x) :=
(

5
4x2n+1

)n
, for x ∈ c0. We will prove that {gn}n is a bounded sequence in Hb(U)

but not in Hb(ÛP(c0)).

Since gn(e2n+1) =
(

5
4

)n
, {gn}n is not bounded in the ÛP(c0)-bounded set D, and thus {gn}n is

not bounded in Hb(ÛP(c0)).

Let A be U -bounded and take M > 0 such that ‖x‖ < M − 1
4 for all x ∈ A. Let x0 ∈ A,

then x0 = y + z with y ∈ Vk for some k ≥ 5 and ‖z‖ < 1
4 . We claim that if n > 2(M + 2) then

|y2n+1| ≤ 1
2 . Indeed, if n 6= k, then k|y2n+1| < 2 and thus |y2n+1| < 2

5 . On the other hand, if

n = k and |y2n+1| > 1
2 , we can apply equation (5.4) to y, which implies that ‖y‖ > n

2 − 2. But this

contradicts the fact that ‖y‖ < M and n > 2(M + 2). Therefore

|gn(x)| =
∣∣∣5
4

(
y2n+1 + z2n+1

)∣∣∣
n
≤
(5

4

(1

2
+

1

4

))n
< 1,

for every x ∈ A and every n > 2(M + 2). Since sup{|gn(x)| : x ∈ A, 1 ≤ n ≤ 2(M + 2)} < ∞, we

conclude that {gn}n is a bounded sequence in Hb(U).

If we take g the function

g(x) =
∑

n∈N

(8

9

)n(5

4
x2n+1

)n
,

then g belongs to Hb(U) but (its extension) does not belong to Hb(ÛP(c0)).
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The previous example also shows that the Hb-Hb-envelope of holomorphy does not exist in

general:

Corollary 5.2.9. The Hb-Hb-envelope of holomorphy does not always exist.

Proof. Let U a balanced open set such that there exist f ∈ Hb(U) whose extension to ÛP , f̃ , is

not of bounded type (take, for instance, the open subset of c0 given in the previous example). If

the Hb-Hb-envelope of U existed, by Theorem 5.1.11 it should coincide with Eb(U) = ÛP . But this

is impossible since the extension of f to ÛP is not of bounded type.

Note that the set considered in Example 5.2.8 is unbounded. For bounded balanced domains,

we see that everything works fine. To prove this we will use the following Lemma which states that

the polynomial hull of a balanced set coincides with the intersection of its homogeneous polynomial

hulls. This was noticed, for example, in [Sic85] for balanced sets in Cn.

Lemma 5.2.10. Let V ⊂ E be a balanced set. Then V̂P = ∩n∈NV̂Pn , where V̂Pn = {x ∈ E :

|P (x)| ≤ ‖P‖V for every P ∈ Pn(E)}.

Proof. We only need to prove that ∩n∈NV̂Pn ⊂ V̂P since the other inclusion is clearly true for every

set.

Let z ∈ ∩n∈NV̂Pn and let P ∈ P(E) with deg P = k. For n ∈ N we have that Pn = Q0+· · ·+Qnk,
with Qj ∈ Pj(E). By the Cauchy inequalities, ‖Qj‖V ≤ ‖Pn‖V , thus |Pn(z)| = |∑nk

j=0Qj(z)| ≤∑nk
j=0 ‖Qj‖V ≤∑nk

j=0 ‖Pn‖V = (nk+ 1)‖P‖nV . Therefore |P (z)| ≤ (nk+ 1)
1
n ‖P‖V for every n ∈ N,

which implies that |P (z)| ≤ ‖P‖V .

Theorem 5.2.11. Let U ⊂ E be a bounded open balanced set, then every function in Hb(U) can

be extended to a holomorphic function of bounded type in ÛP .

Proof. Let f ∈ Hb(U). By Corollary 5.2.3, f can be extended to a holomorphic function f̃ on ÛP .

We must show that f̃ ∈ Hb(ÛP ).

Since U is a bounded balanced set, ( n
n+1U)n∈N is a fundamental system of U -bounded sets.

We will prove that
(
( n
n+1U)

∧

P

)
n∈N

is a fundamental system of ÛP -bounded sets. Let A ⊂ ÛP be a

ÛP -bounded set. Then A ⊂ n
n+1 ÛP for some n ∈ N, so it suffices to prove that n

n+1 ÛP ⊂ ( n
n+1U)

∧

P

for each n ∈ N. Let x ∈ n
n+1 ÛP , then n+1

n x ∈ ÛP . If j ∈ N and Qj ∈ Pj(E) then |Qj(n+1
n x)| ≤

‖Qj‖U . Therefore |Qj(x)| ≤
(

n
n+1

)j‖Qj‖U = supy∈U |Qj( n
n+1y)| = ‖Qj‖ n

n+1
U , which means that

x ∈ ( n
n+1U)

∧

Pj
for every j. By Lemma 5.2.10, x ∈ ( n

n+1U)
∧

P .

We have shown that, for each ÛP -bounded set A, it holds that A ⊂ ( n
n+1U)

∧

P for some n ∈ N.

Thus, by Remark 5.2.7, f̃ ∈ Hb(ÛP ).

We already that ÛP is the Hb-envelope of U in case U is a balanced open set. By the above

theorem we have the following.

Corollary 5.2.12. Let U be a bounded open balanced set of Banach space E. Then ÛP is the

Hb-Hb-envelope of U .

We end this section by applying previous results to study Hb-domains of holomorphy:

Corollary 5.2.13. Let U ⊂ E be a bounded open balanced set, then ÛP is an Hb-domain of

holomorphy.
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Proof. Let z ∈ ÛP and A be a U -bounded set such that |δz(f)| ≤ ‖f‖A for every f in Hb(U). Let

r < dist(A,U c), then it can be shown as in [AGGM96] that {(δz)a : a ∈ E, ‖a‖ < r} ⊂ Mb(U)

(note that since we only consider a ∈ E the symmetric regularity of E is not needed). But this

means that BE(z, r) ⊂ ÛP . Therefore dist(z, (ÛP )c) ≥ dist(A,U c).

Now we can adapt the proof of [DV04, Proposition 2.4] (together with Theorem 5.2.11).

Next corollary is now an immediate consequence of the previous results.

Corollary 5.2.14. Let U ⊂ E be a bounded open balanced set. Then U is an Hb-domain of

holomorphy if and only if U = ÛP .

5.3 Extending functions of bounded type to open subsets of E
′′

In this section we try to extend functions of Hb(U) to open sets in E′′ containing U . First of all

note that the argument given after Remark 5.2.7 is no longer true, since the restriction map fails

to be injective. Therefore it is not clear which is (if there exists) the largest set on E′′ to which we

can obtain extensions of bounded type in the sense of Proposition 5.2.4.

Let us start by defining the following variation of the set
∨
U :

∨

U ′′ := {z ∈ E′′ : there is some ϕ ∈Mb(U) such that ϕ(f) = f̃(z) for every f ∈ Hb(E)}.

Note that
∨
U =

∨

U ′′ ∩ E and
∨

U ′′ ⊂ π(Mb(U)) for every open set U . Analogously, we define for a

U -bounded set A,

Â′′
P = {x′′ ∈ E′′ : |AB(f)(x′′)| ≤ ‖f‖A for every f ∈ P(E)},

where AB(f) denotes the Aron-Berner extension of f and let

Û ′′
P :=

⋃

n∈N

(
Ûn

)′′
P
.

We can prove as in Proposition 5.2.2 that if U is balanced then Û ′′
P =

∨

U ′′.

Before we go on, let us make clear that we cannot expect Û ′′
P to be the largest open subset of

E′′ to which functions on Hb(U) extend. For example, take a nonreflexive Banach space E that

is complemented in its bidual E′′, say E′′ = E ⊕M . Denote by πE the projection to E. Then

every function f ∈ Hb(U) can be extended to f̃ ∈ Hb(U ×M) by f̃ = f ◦ πE. On the other hand,

the Hahn-Banach theorem shows that Û ′′
P ⊂ jE(coe(U))

w∗

. Thus, in general we can extend to sets

which are larger than Û ′′
P . But we can see that if jE(U) ⊂ W ⊂ E′′ and we consider a continuous

homomorphism e : Hb(U) → H(W ) such that e(f)(JE(x)) = f(x) for every x ∈ U , f ∈ Hb(U)

and which coincides with the Aron-Berner extension on polynomials, then W must be a subset of

Û ′′
P . Indeed, if z ∈ W \ Û ′′

P , then there exist functions fn ∈ Hb(E) such that |AB(fn)(z)| > 1 and

‖fn‖Un <
1
n . Then fn → 0 in Hb(U) and thus AB(fn) = e(fn) → 0 in H(W ), which contradicts

the fact that |AB(fn)(z)| > 1. This shows in particular that the Aron-Berner extension does not

coincide with the composition with a projection πE , at least for bounded sets. And this allows us

to think of Û ′′
P as a candidate to be the largest set in which the Aron-Berner extension is defined.

A continuous homomorphism e : Hb(U) → H(W ) (W ⊂ E′′) which is an extension (i.e.

e(f)(JE(x)) = f(x) for every f ∈ Hb(U) and every x ∈ U) and which coincides with the Aron
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- Berner extension for polynomials will be called an AB-extension homomorphism. Note that for

us, an AB-extension is a homomorphism between spaces of holomorphic functions, but in the frame-

work of Riemann domains the extensions are morphisms with special properties. This motivates

the following definitions:

Definition 5.3.1. Let (X, p) be a connected Riemann domain over E and (Y, q) a connected

Riemann domain over the bidual E′′. A continuous application τ : X → Y is said to be an

AB-morphism if JE(p(x)) = q(τ(x)) for every x ∈ X.

X Y

E E′′

τ

p q

JE

Definition 5.3.2. Let F ⊂ H(X) and G ⊂ H(Y ). An AB-morphism τ is an F-G-AB-extension

(F-AB-extension if G = H(Y )) if for each f ∈ F there exist a unique f̃ ∈ G such that

i) f̃ ◦ τ = f

ii) f̃ is locally the Aron-Berner extension of f ; that is for each x ∈ X, AB
(
f ◦ (p|B(x,r)

)−1
)

=

f̃ ◦ (q|B(τ(x),r)
)−1, for some r > 0.

Definition 5.3.3. Let F ⊂ H(X) be a topological algebra. An AB-morphism τ : X → Y is a

strong F-AB-extension if it is an F-AB-extension and the application F ∋ f 7→ f̃(y) is in the

spectrum of F .

Note that any Hb-Hb-AB-extension τ : X → Y must be a strong Hb-AB-extension. Indeed if we

let F be the set {f̃ : f ∈ Hb(X)}, then it is a Fréchet space when considered with the topology of

uniform convergence on Y -bounded sets. Thus the homomorphism e : Hb(X) → Hb(Y ) determined

by τ is a bijection from Hb(X) to F . Moreover, it is clear that e−1 is continuous. Therefore e must

be continuous.

Remark 5.3.4. If U is an open set of E such that P(E) is dense in Hb(U) and W is an open set

of E′′ such that JE(U) ⊂W , then (JE)|U is a strong Hb-AB-extension if and only if there exists a

homomorphism e : Hb(U) → H(W ) such that

i) e(f)(JE(x)) = f(x) for every x ∈ U , f ∈ Hb(U),

ii) Hb(U) ∋ f 7→ e(f)(z) belongs to Mb(U) for every z ∈W and,

iii) e coincides with the Aron-Berner extension on polynomials, that is AB(P ) = e(P ) for every

polynomial P ∈ P(E).

Indeed, if (JE)|U is a strong Hb-AB-extension it is clear that AB(P ) = e(P ) for every P ∈ P(E).

Conversely, let (Pn)n ⊂ Hb(U) such that Pn → f in Hb(U) and r > 0 such that BE(x, r) ⊂ U .

Then for every z ∈ BE′′(JEx, r), AB(Pn)(z) = P̃n(z) → f̃(z) and thus AB(f|BE(x,r)
) = f̃|B

E′′ (JEx,r)

for every x ∈ U , f ∈ Hb(U).

Remark 5.3.5. In [DV04], AB-morphisms are called morphisms, and the authors also consider

Hb-extensions, but their definition differ from ours. Indeed, they only ask for condition i) in the

definition of AB-extension 5.3.2. Thus, for example, if πE : E′′ → E is a projection, then πE is

an Hb-extension in the context of [DV04], but it is not an AB-Hb-extension (see comments before

Definition 5.3.1).
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Recall [GGM93, Theorem 1.3] that if U is an absolutely convex open subset of then the Aron-

Berner extension is an isometric isomorphism AB : H∞(U) → H∞(int(U
w∗

)).

Corollary 5.3.6. Let U ⊂ E be an open absolutely convex bounded set. Then Û ′′
P = int(U

w∗

).

Proof. Û ′′
P ⊂ int(U

w∗

) by the Hahn - Banach theorem. int(U
w∗

) ⊂ Û ′′
P since by [GGM93, Theorem

1.5] there is an AB- extension morphism from U to int(U
w∗

).

By the comments before Definition 5.3.1, if W is an open set of E′′ such that JE(U) ⊂W , then

(JE)|U is a strong Hb-AB-extension then W must be contained in Û ′′
P . We will prove bellow that

it is the “AB-envelope”:

Definition 5.3.7. The AB-morphism τ : X → Y is said to be a F-AB-envelope of holomorphy

of X if τ is a F-AB-extension of X and if for each F-AB-extension of X, ν : X → Z, there is a

morphism µ : Z → Y such that µ ◦ ν = τ .

The AB-morphism τ : X → Y is said to be a strong F-AB-envelope of holomorphy of X if τ is

a strong F-AB-extension of X and if for each strong F-AB-extension of X, ν : X → Z, there is a

morphism µ : Z → Y such that µ ◦ ν = τ .

The AB-morphism τ : X → Y is said to be a Hb-Hb-AB-envelope of holomorphy of X if τ is a

strong Hb-Hb-AB-extension of X and if for each Hb-Hb-AB-extension of X, ν : X → Z, there is a

morphism µ : Z → Y such that µ ◦ ν = τ .

X Z Y

E E′′

τ

ν µ

p q

JE

Let U ⊂ E be an open subset. We want to fix an open subset of E′′ to which there is an

Aron-Berner extension. Although the following results should be known, we prefer to include them

for self-containment, to fix notation and because we will use this construction in the next section.

For x ∈ U we denote rx = dist(x,U c). Let W ⊂ E′′ be the following open set

W =
⋃

x∈U

BE′′(x,min{rx
2
, 1}).

Note that W is balanced if U is balanced and that W ∩E = JE(U).

Proposition 5.3.8. Let U ⊂ E be an open set such that P(E) is dense in Hb(U). Then there

is an AB- extension homomorphism from Hb(U) to Hb(W ), that is JE |U : U → W is an Hb-Hb

AB-extension.

Note that by the comments above, W ⊂ Û ′′
P . Before we prove the proposition we need the

following

Lemma 5.3.9. Let C be a W -bounded set. Then there exists D, U -bounded, such that

C ⊂
⋃

x∈D

BE′′(x,min{rx
2
, 1}).
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Proof. Let ε = dist(C,W c) and R = sup{‖z‖ : z ∈ C}. Define D := {x ∈ U : ‖x‖ ≤ R+1, rx ≥ 2
3ε}

then D is U -bounded. We must show that C ⊂ ⋃x∈D BE′′(x,min{ rx2 , 1}).
Let z ∈ C, and x ∈ U such that z ∈ BE′′(x,min{ rx2 , 1}), it suffices to prove that x ∈ D.

If rx <
2
3ε then

dist(z,W c) ≤ dist(z,W c ∩ E) ≤ ‖z − x‖ + rx <
rx
2

+ rx < ε,

which is a contradiction. Thus rx ≥ 2
3ε.

Moreover, since z ∈ BE′′(x, 1) and ‖z‖ ≤ R, we have that ‖x‖ ≤ R+ 1. Therefore x ∈ D.

Proof. (of Proposition 5.3.8) Define Φ̃ : P(E) → Hb(W ) by Φ̃(P ) = AB(P )|W . Let us show

that it is continuous when we consider on P(E) the topology induced by Hb(U). Take C a W -

bounded set and P ∈ P(E). By the previous Lemma there is a U -bounded set D such that

C ⊂ ⋃
x∈D BE′′(x,min{ rx2 , 1}). Clearly, the set A =

⋃
x∈D BE(x,min{ rx2 , 1}) is U -bounded and

since the Aron - Berner extension is isometric in BE(x,min{ rx2 , 1}) for every x, we have that

‖Φ̃(P )‖C ≤ ‖Φ̃(P )‖S

x∈D B
E′′ (x,min{ rx

2 ,1})
= ‖P‖A <∞.

Thus Φ̃ extends to a continuous homomorphism Φ : Hb(U) → Hb(W ) which is clearly an AB-

extension.

Proposition 5.3.10. Let U be an open balanced set of a symmetrically regular Banach space E.

Then

(a) JE |U : U → Û ′′
P is a strong Hb-AB-extension. Every function in Hb(U) can be extended to a

holomorphic function in Û ′′
P and the extensions are bounded on the sets

(
Ûn
)′′
P
, for every n ∈ N,

(b) if U is also bounded, there is an AB-extension homomorphism from Hb(U) to Hb(Û
′′
P ), that is

JE |U : U → Û ′′
P is an Hb-Hb-AB-extension.

Proof. (a) We prove that Û ′′
P is the connected component of Mb(U) which contains U . Indeed, if

z ∈ Û ′′
P then δz is a bounded homomorphism when restricted to polynomials. Since polynomials are

dense in Hb(U) it follows that δz is in Mb(U). Moreover we can easily modify the proof of [Vie07,

Lemma 1.4] to show that Û ′′
P is balanced. On the other hand if z ∈ E′′ \ Û ′′

P then for each n ∈ N,

there is a function fn ∈ Hb(U) such that |AB(fn)(z)| > ‖fn‖Un and thus δz /∈Mb(U).

It was proved in [DV04, Proposition 2.3] that bounded type functions extend to holomorphic

functions on the spectrum Mb(U) via the Gelfand transform, and this extension clearly coincides

with the Aron-Berner extension for polynomials. Therefore the inclusion JE |U is a strong Hb-

AB-extension. The second assertion follows by the definition of the sets
(
Ûn
)′′
P

together with the

density of polynomials on Hb(U).

(b) Just adapt the proofs of Lemma 5.2.10 and Theorem 5.2.11.

Proposition 5.3.11. Let U be an open (bounded) balanced set of a symmetrically regular Banach

space E. Then JE |U : U → Û ′′
P is the strong Hb-AB-envelope (Hb-Hb-AB-envelope) of U .

Proof. Let (Z, q) be a connected Riemann domain over E′′ and τ : U → Z a strong Hb-AB-

extension. We have proved in the above proposition that JE |U : U → Û ′′
P is a strong Hb-AB-

extension. Suppose that q(Z) ⊂ Û ′′
P , then clearly q : Z → Û ′′

P is a morphism and JE |U = q ◦ τ .
Thus it suffices to prove that q(Z) ⊂ Û ′′

P .

Take P ∈ P(E) and let P̃ its AB-extension to Z. Then, for each z ∈ Z, P̃ (z) = AB(P )(q(z)).

Indeed if we define Q(z) = AB(P )(q(z)) then Q is holomorphic in Z. Moreover, for x ∈ U and for
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sufficiently small r > 0, Q ◦ (qB(τ(x),r))
−1 is the Aron-Berner extension of P |B(x,r), thus Q must be

the AB-extension of P to Z.

Suppose now that q(z) /∈ Û ′′
P for some z ∈ Z. Then there exist (Pn) ⊂ P(E) such that

‖Pn‖Un ≤ 1
n and |AB(Pn)(q(z))| > 1. Thus Pn → 0 in Hb(U) but |P̃n(z)| = |AB(Pn)(q(z))| > 1,

so the evaluation at z cannot be a continuous homomorphism, which contradicts the fact that

τ : U → Z is a strong Hb-AB-extension.

If U is also bounded then by the previous proposition JE |U : U → Û ′′
P is an Hb-Hb-AB-extension

and thus the Hb-Hb-AB-envelope of U .

Similarly to Corollary 5.2.13 we can prove the following.

Corollary 5.3.12. Let E be a symmetrically regular Banach space. Let U ⊂ E be a bounded open

balanced set, then Û ′′
P is an Hb-domain of holomorphy.

5.4 Density of finite type polynomials

In several complex variables, the holomorphic convexity of U , or U being a domain of holomorphy,

is equivalent to Mb(U) = δ(U). In our infinite dimensional setting this is not the case unless E

has very particular properties. We can imprecisely explain this in the following way: if E is not

reflexive, there are always elements of the bidual in the spectrum, so the equality Mb(U) = δ(U)

cannot hold. On the other hand, if there are polynomials on E that are not weakly continuous

on bounded sets, there is much more than evaluations in the spectrum [ACG91, AGGM96], and

so Mb(U) = δ(U) is impossible even if E is reflexive. We will formalize this below, refining some

results of [Vie07, Muj01].

In [Vie07], Vieira proved that for reflexive spaces such that every polynomial is approximable

(i.e., for Tsirelson-like spaces), if U is a balanced Hb(U)-convex subset, then Mb(U) = δ(U). We

now show that a converse of this theorem is an easy consequence of previous results.

Proposition 5.4.1. Let E be a Tsirelson-like space and U a balanced open subset of E. Then U

is Hb(U)-convex if and only if Mb(U) = δ(U).

Proof. The “only if” part is Theorem 2.1 in [Vie07]. If Mb(U) = δ(U), then

δ(U) ⊂ δ(
∨
U ) ⊂ δ(ÛP(E)) ⊂Mb(U) = δ(U).

Therefore ÛP(E) = U and thus U is Hb(U)-convex.

As many of our results, Proposition 5.4.1 holds for any U such that polynomials are dense in

Hb(U).

The following result was given in [Muj01, Theorems 1.1 and 1.2] for convex sets, but actually

their proof works for balanced Hb(U)-convex sets:

Proposition 5.4.2. Let U be any balanced Hb(U)-convex open subset of a Banach space E such that

E′ has the approximation property. Then E is a Tsirelson-like space if and only if Mb(U) = δ(U).

Let us see that, in fact, the statement Mb(U) = δ(U) is equivalent to U being Hb(U)-convex

subset of a Tsirelson-like space, thus obtaining an improvement of the previous result:
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Theorem 5.4.3. Let U be a balanced open subset of a Banach space E whose dual has the ap-

proximation property. Then Mb(U) = δ(U) if and only if E is a Tsirelson-like space and U is

Hb(U)-convex.

Proof. One implication follows from Proposition 5.4.1. For the converse, by the previous theorem,

it suffices to prove that U is Hb(U)-convex. Since U is balanced this is equivalent to prove that

U is P-convex ([Vie07, Proposition 1.5]). By Proposition 5.2.2 (3) we must show that U = ÛP .

Suppose that w ∈ ÛP \U . Since by Corollary 5.1.8 the morphism U →֒ ÛP is a strong Hb-extension

it follows that δw belongs to Mb(U). Therefore we cannot have the equality Mb(U) = δ(U).

As the previous theorem states, the equality Mb(U) = δ(U) is hard to achieve for domains in a

Banach space E. This is because in general Mb(U) cannot be identified with a subset of E. But

we know that Mb(U) can be projected on E′′ via π, so a natural question is the following: suppose

that U is Hb(U)-convex and E reflexive. Is it true that π(Mb(U)) = U? And if we drop off the

reflexivity assumption, can we obtain something like π(Mb(U)) =
∨

U ′′ instead?

Let us see that, if finite polynomials are not dense, there are P-convex subsets U for which

π(Mb(U)) is larger than
∨

U ′′. In particular, if E is reflexive with the approximation property but

not Tsirelson-like, there are subsets U ( E that are P-convex but π(Mb(U)) = E.

Proposition 5.4.4. Let E be such that E′ has the approximation property. The following condi-

tions are equivalent:

(i) finite type polynomials are dense in Hb(E),

(ii)
∨

U ′′ = π(Mb(U)) for every open subset U of E,

(iii)
∨

U ′′ = π(Mb(U)) for every open P-convex subset U of E.

If the conditions do not hold, there exists a proper subset U of E which is Hb(U)-convex but

E ⊂ π(Mb(U)).

Proof. Suppose first that finite type polynomials are dense in Hb(E). If z ∈ π(Mb(U)) then there is

some ϕ ∈Mb(U) such that ϕ(γ) = γ(z) for every γ ∈ E′. Since finite type polynomials are dense in

Hb(E) and ϕ is multiplicative, we have that ϕ(f) = AB(f)(z) for every f ∈ Hb(E), where AB(f)

denotes the Aron-Berner extension of f . Thus z ∈
∨

U ′′. We have proved that (i) implies (ii).

Clearly, (ii) implies (iii).

(iii) ⇒ (i): we will prove that if there is a n-homogeneous polynomial P which is not weakly

continuous on bounded sets then we can find an open P-convex set U ⊂ E\{0} such that
∨

U ′′∩E = U

but E ⊂ π(Mb(U)).

Take a weakly null bounded net {xi}i∈I ⊂ SE such that P (xi) > 1 for every i ∈ I. Define the

set

U =
{
x ∈ E : Re(P (x)) >

1

2

}
.

For y ∈ E \ U , let fy(x) = 1
1−eP (y)−P (x) . Then fy is holomorphic in U . Moreover, let A be a

U -bounded set and R > 0 such that A ⊂ UR. Fix x ∈ A ⊂ UR ⊂ U , let t = Re(P (x)) and take

α > 0 such that Re(P (αx)) = αnRe(P (x)) = 1
2 (which simply means that α =

(
1
2t

) 1
n < 1). Since

αx does not belong to U , we have ‖x− αx‖ ≥ 1
R and substituting, we get 1 −

(
1
2t

) 1
n ≥ 1

R‖x‖ ≥ 1
R2 .

Therefore, Re(P (x)) = t ≥ 1
2

(
R2

R2−1

)n
. Since

(
R2

R2−1

)n
> 1, this implies that fy is bounded on A,

that is, fy ∈ Hb(U).
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Thus, if we define for k ∈ N, fk(x) =
∑k

m=0 e
m(P (y)−P (x)), then {fk} is a bounded sequence in

Hb(U) since it converges to f . Moreover, fk ∈ Hb(E) for every k ∈ N and fk(y) = k + 1, which

means that y /∈
∨
U . Therefore

∨

U ′′ ∩ E = U .

Let x ∈ E, then we can find λ > 0 such that the set {x + λxi} is U -bounded. Indeed, since

P (x+λxi) =
∑n

k=0

(n
k

)
λk

∨
P (xn−k, xki ), for λ > 0 big enough we have that Re(λnP (xi)) = λnP (xi) ≥

1 +
∣∣∑n−1

k=0

(n
k

)
λk

∨
P (xn−k, xki )

∣∣ for every i ∈ I. Then Re(P (x+ λxi)) ≥ 1 for every i ∈ I. Take now

M > 0 such that ‖x+ λxi‖ ≤ M for every i. Take y ∈ E \ U . Then, if ‖y‖ > M + 1, it holds that

‖x+ λxi − y‖ ≥ 1. On the other hand, if ‖y‖ ≤M + 1, we have that

1

2
≤ |Re(P (x+ λxi)) −Re(P (y))| ≤ |P (x+ λxi) − P (y)|

≤
n−1∑

k=0

|
∨
P
(
(x+ λxi)

n−k, yk
)
−

∨
P
(
(x+ λxi)

n−k−1, yk+1
)
|

≤ ‖x+ λxi − y‖‖P‖
n−1∑

k=0

‖x+ λxi‖n−k−1‖y‖k

≤ ‖x+ λxi − y‖‖P‖n(M + 1)n−1.

Therefore, ‖x+ λxi − y‖ ≥ min{1,
(
2‖P‖n(M + 1)n−1

)−1} for every y ∈ E \U , which implies that

{x+ λxi} is U -bounded.

Then {x+ λxi} ⊂ UR for some R > 0 and since {xi} is weakly null, this means that x ∈ UR
w∗

and, by [CGM05, Proposition 18], x ∈ π(Mb(U)). Therefore E ⊂ π(Mb(U)).

It remains to prove that U is P-convex. For this, if A is U -bounded, we can find as before ε > 0

such that A ⊂ {x ∈ E : Re(P (x)) > 1
2 + ε}, and if y /∈ U , then Re(P (y)) ≤ 1

2 . Therefore if we set

f(x) = e−P (x), f ∈ Hb(E) and |f(y)| ≥ e−
1
2 > e−

1
2
−ε ≥ ‖f‖A, which means that y /∈ ÂHb(E) = ÂP .

Thus ÂP ⊂ U and U is P-convex.

Corollary 5.4.5. Let E be a reflexive space with the approximation property. The following con-

ditions are equivalent:

(i) E is a Tsirelson-like space,

(ii) Û = π(Mb(U)) for every open subset U of E,

(iii) U = π(Mb(U)) for every open P-convex subset U of E.

If the conditions do not hold, there exists a proper subset U of E which is P-convex but

π(Mb(U)) = E.

If finite type polynomials are dense in Hb(U), then π is clearly injective. Therefore, we have

the following description of the spectrum of Hb(U):

Corollary 5.4.6. a) If finite type polynomials are dense in Hb(E) and U is balanced, then Mb(U) =

δ(
∨

U ′′).

b) If U is a balanced open subset of a Tsirelson-like space, then Mb(U) = δ(
∨
U ).

Again, reciprocal statements in the spirit of Theorem 5.4.3 are also valid.

We end this section with a Banach-Stone type result. In [Vie07, Theorem 3.1] the following was

proved: if E and F are reflexive Banach spaces, one of them Tsirelson-like, and U ⊂ E, V ⊂ F are

open balanced and P-convex, then the following conditions are equivalent:
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(1) There exists a bijective mapping g : V → U such that g ∈ Hb(V,U) (g is holomorphic and the

image under g of V -bounded sets is U -bounded) and g−1 ∈ Hb(U, V ).

(2) The algebras Hb(U) and Hb(V ) are topologically isomorphic.

In that case it follows that E and F are isomorphic Banach spaces.

In [CGM05, Corollary 22] a similar result was proved for convex balanced open sets when every

polynomial on E′′ (or F ′′) is approximable. In that case it follows that E′ and F ′ are isomorphic.

We will slightly improve those results with the following (see below for precise definitions):

Theorem 5.4.7. Let E,F be Banach spaces, V ⊂ F , U ⊂ E open balanced subsets and suppose that

every polynomial on E′′ is approximable. If φ : Hb(U) → Hb(V ) is a Fréchet algebra isomorphism

then there exists a biholomorphic function g : V̂ ′′
P → Û ′′

P , with g ∈ H∞
(
(V̂n)

′′
P , (Ûn)

′′
P

)
and g−1 ∈

H∞
(
(Ûn)

′′
P , (V̂n)

′′
P

)
, both locally w∗-w∗ continuous such that φ̃f = f̃ ◦ g for every f ∈ Hb(U).

Conversely, if g is such a function then the operator φ : Hb(U) → Hb(V ) given by φf = f̃ ◦ g|V
is a Fréchet algebra isomorphism.

In that case E′ is isomorphic to F ′.

To prove this Theorem we will need some preliminary results.

Let V ⊂ F be a balanced open subset. Then by Proposition 5.3.8, there exists an open set

W ⊂ F ′′ such that every function in f ∈ Hb(V ) extend to a function f̃ ∈ Hb(W ). Throughout the

rest of this section W will denote this subset.

Lemma 5.4.8. Let E,F be Banach spaces, V ⊂ F an open balanced subset and U ⊂ E open.

Suppose that φ : Hb(U) → Hb(V ) is a continuous and multiplicative operator. Then

a) the mapping g : W → E′′, defined by g(y′′) = π(δy′′ ◦ φ) is holomorphic.

b) if F is symmetrically regular then the mapping g : V̂ ′′
P → E′′, defined by g(y′′) = π(δy′′ ◦φ) is

holomorphic.

Proof. a) Denote by θφ : Mb(V ) →Mb(U) the restriction of the transpose of φ. Then g is just the

composition W
δ−→ Mb(V )

θφ−→ Mb(U)
π−→ E′′ which is well defined by Proposition 5.3.8. If we

take y′′ ∈ W and x′ ∈ E′, then g(y′′)(x′) = δy′′(φx
′) = φ̃x′(y′′). Thus g is weak*-holomorphic on

W and therefore holomorphic (see for example [Muj86, Exercise 8D]).

b) By Proposition 5.3.10 we can define g on V̂ ′′
P . The proof of a) works fine.

For an open set U ⊂ E, consider a family of subsets Ak ⊂ U , k ∈ N, such that
⋃
k Ak = U . We

define:

H∞
(
(Ak)k

)
= {f ∈ H(U) : ‖f‖Ak

<∞ for every k},
which is a Fréchet algebra with the topology of uniform convergence on the Ak’s. If (Ak)k form

a fundamental system of U -bounded sets, then we have H∞
(
(Ak)k

)
= Hb(U). Note that, if U is

balanced, by Propositions 5.3.8 and 5.3.10 every function f ∈ Hb(U) can be extended to a function

f̃ ∈ H∞
(
(Ak)k

)
, where Ak = (Ûk)

′′
P ∩W or Ak = (Ûk)

′′
P in case E is symmetrically regular.

Also, if V ⊂ F and we have a family of subsets Bj ⊂ V such that
⋃
j Bj = V , we define the

Fréchet algebra

H∞
(
(Ak)k, (Bj)j

)
= {f ∈ H(U, V ) : there exists a subsequence (nk)k such

that f(Ak) ⊂ Bnk
for every k}.

If (Ak)k and (Bj)j form a fundamental system of U -bounded sets and V -bounded sets respectively,

then H∞
(
(Ak)k, (Bj)j

)
is simply Hb(U, V ).
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Proposition 5.4.9. Let E,F be Banach spaces, V ⊂ F , U ⊂ E open balanced subsets and suppose

that every polynomial on E is approximable. Let φ : Hb(U) → Hb(V ) is a continuous operator.

Then

a) φ is multiplicative if and only if there exists a holomorphic function g : W → Û ′′
P , with

g ∈ H∞
(
(Bj)j, (Ak)k

)
, where Ak = (Ûk)

′′
P and Bk = (V̂k)

′′
P ∩W , such that φ̃f = f̃ ◦ g for every

f ∈ Hb(U).

b) if F is symmetrically regular, φ is multiplicative if and only if there exists a holomorphic

function g : V̂ ′′
P → Û ′′

P , g ∈ H∞
(
(Bj)j , (Ak)k

)
, where Ak = (Ûk)

′′
P and Bk = (V̂k)

′′
P such that

φ̃f = f̃ ◦ g for every f ∈ Hb(U).

Proof. a) Suppose that φ is multiplicative. Let g be the mapping defined by Lemma 5.4.8 a). By

Corollary 5.4.6, the spectrum Mb(U) can be identified with Û ′′
P , thus g maps W inside Û ′′

P and, for

f ∈ Hb(U) and y′′ ∈W , we have f̃(g(y′′)) = φ̃f(y′′) by the definition of g.

It remains to prove that g ∈ H∞
(
(Bj)j , (Ak)k

)
. Suppose that for some n0 ∈ N, g(Bn0) is not

contained in any of the Ak’s. Thus there exist a sequence (x′′k)k = (g(y′′k))k ⊂ g((V̂n0)
′′
P ∩W ) such

that x′′k /∈ (Ûk)
′′
P . This means there exist polynomials Pk ∈ P(E) such that ‖Pk‖Uk

< 1
2k and

P̃k(x
′′
k) > k +

k−1∑

j=1

|P̃j(x′′k)|. Then
∑
Pk converges in Hb(U) to a function f . Thus φf ∈ Hb(V ), so

φ̃f belongs to H∞
(
(Bk)k

)
and ‖φ̃f‖(bVn0 )′′P∩W < ∞. This is a contradiction since ‖φ̃f‖(bVn0 )′′P∩W ≥

|φ̃f(y′′k)| = |f̃(g(y′′k))| = |f̃(x′′k)| > k − 1 for every k.

The converse is immediate.

b) The same proof as in a) but using Lemma 5.4.8 b) works.

We will say that a function is locally w∗-continuous at a point x′ of a dual Banach space if

there exists a (norm) neighborhood such that the function restricted to this neighborhood is w∗-

continuous. A function is locally w∗-continuous on an open set if it is locally w∗-continuous at each

point of the set.

Proof. (of Theorem 5.4.7) Suppose that φ is an isomorphism. Let g ∈ H∞
(
(Bj)j , (Ak)k

)
be the

application given by Proposition 5.4.9 a), and let h : Û ′′
P → F ′′ be the holomorphic map ob-

tained in Lemma 5.4.8 b) using the homomorphism φ−1 (note that our hypothesis imply that E is

symmetrically regular). Then h ◦ g is the composition

W
δ→Mb(V )

θφ→Mb(U)
π→ Û ′′

P
δ→Mb(U)

θφ−1→ Mb(V )
π→ F ′′.

Since, by Corollary 5.4.6, Mb(U) = δ(Û ′′
P ), it follows that h ◦ g = idW . Thus dh(g(0)) ◦ dg(0) =

idF ′′ and therefore F ′′ is isomorphic to a complemented subspace of E′′ which implies that every

polynomial on F ′′ is approximable and, in particular, that F is symmetrically regular. Thus we

can use Proposition 5.4.9 b) and define g in V̂ ′′
P and we have h ◦ g = id

bV ′′
P

. By Corollary 5.4.6 we

have Mb(V ) = δ(V̂ ′′
P ), thus g ◦ h = id

bU ′′
P

which means that h = g−1. By Proposition 5.4.9 b), g−1

belongs to H∞
(
(Ûn)

′′
P , (V̂n)

′′
P

)
.

Moreover, for every x ∈ E, x ◦ g = φ̃x is locally w∗-continuous since it is locally an Aron-

Berner extension. Therefore g is locally w∗-w∗ continuous on V . Similarly g−1 is locally w∗ − w∗

continuous.
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Conversely, suppose that g is as above. Define φf = f̃ ◦ g|V for f ∈ Hb(U) and ψh = h̃ ◦ g−1|U
for h ∈ Hb(V ). Then clearly φ : Hb(U) → Hb(V ) and ψ : Hb(V ) → Hb(U) are continuous and

multiplicative. We want to prove that ψ = φ−1. Let f ∈ Hb(U), then

ψ ◦ φf = ψ(f̃ ◦ g|V ) = ˜̃f ◦ g|V ◦ g−1|U . (5.5)

Note that f̃ ◦ g belongs to H∞
(
(Bj)j

)
and is locally w∗-continuous (since every polynomial on E is

approximable, the Aron-Berner extension of f is w∗-continuous). Thus for each z ∈ V̂ ′′
P , applying

[ACG95, Lemma 2.1] to f̃ ◦ g restricted to a suitable ball implies that dk(f̃◦g)(z)
k! is w∗-continuous,

and therefore by [Zal90, Theorem 2] we can conclude that dk(f̃◦g)(z)
k! is in the image of the Aron-

Berner extension and thus ˜̃f ◦ g|V = f̃ ◦ g. Then we obtain from (5.5) that ψ ◦ φf = f . Similarly,

φ ◦ ψh = h for h ∈ Hb(V ).

It remains to prove that E′ and F ′ are isomorphic.

Differentiating g◦g−1 at 0 we obtain that E′′ and F ′′ are isomorphic. Applying [ACG95, Lemma

2.1] to y′′ 7→ g(y′′)(x′) restricted to a suitable ball, we obtain that the differential of g at any point

is w∗-w∗-continuous (and analogously for g−1). Therefore, the isomorphism between E′′ and F ′′ is

the transpose of an isomorphism between F ′ and E′.

If F is complemented in its bidual (for example, if F is a dual space) the previous theorem

holds if every polynomial on E (and not necessarily on E′′) is approximable. Indeed we obtain as

in the proof of the theorem that F ′′ is isomorphic to a complemented subspace of E′′, and there

we can easily prove that F is isomorphic to a complemented subspace of E. We can then conclude

the theorem with the same proof.

We also have:

Corollary 5.4.10. Let E,F be Banach spaces, one of them Tsirelson-like; V ⊂ F , U ⊂ E open

balanced and bounded subsets. Then φ : Hb(U) → Hb(V ) is a Fréchet algebra isomorphism if and

only if there exists a biholomorphic function g ∈ Hb(V̂P , ÛP ) such that g−1 ∈ Hb(ÛP , V̂P) and the

operator φ̃f = f̃ ◦ g for every f ∈ Hb(U).

In that case E and F are isomorphic Banach spaces.

The Tsirelson-James space T ∗
J is not reflexive (it is not a Tsirelson-like space) but satisfies the

conditions of Theorem 5.4.7 by [DGMZ04, Lemma 19].

5.5 On the Spectrum of Hb(U)

A consequence of Example 5.2.8 is that the canonical extension of a function in Hb(U) is not nec-

essarily of bounded type on the spectrum. The following proposition gives an equivalent condition

for these extensions to be of bounded type (this should be compared to [DV04, Proposition 2.5]):

Proposition 5.5.1. Let U be an open set of a simmetrically regular Banach space E. Then every

function f ∈ Hb(U) extends to a function f̃ of bounded type on Mb(U) if and only if given any

Mb(U)-bounded set B there exists a U -bounded set D such that ϕ ≺ D for all ϕ ∈ B.

Proof. We have a well defined extension morphism

e : Hb(U) → Hb(Mb(U))

f 7→ f̃ .
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Suppose that fn → 0 in Hb(U) and that f̃n → g in Hb(Mb(U)). Let ϕ ∈Mb(U), then we have that

g(ϕ) = lim f̃n(ϕ) = limϕ(fn) = 0. By the Closed Graph Theorem, the map e is continuous. This

means that given a Mb(U)-bounded set B there exists a U -bounded set D and a constant c > 0

such that ‖f̃‖B ≤ c‖f‖D for every function f ∈ Hb(U). In particular, if ϕ ∈ B then |ϕ(f)| ≤ c‖f‖D
for every f ∈ Hb(U). Since ϕ is multiplicative, we conclude that ϕ ≺ D.

For the converse, let B be a Mb(U)-bounded set and D such that if ϕ ∈ B then ϕ ≺ D. Then

|f̃(ϕ)| = |ϕ(f)| ≤ ‖f‖D and therefore ‖f̃‖B ≤ ‖f‖D <∞.

In [AGGM96] the following inequality was implicitly shown:

sup
{
dist(A,U c) : ϕ ≺ A

}
≤ distMb(U)(ϕ). (5.6)

If for some U we have equality or at least a reverse inequality with some constant, then extensions

to Mb(U) would be of bounded type, as a consequence of the previous proposition. We do not

know of many examples in which extensions to Mb(U) are of bounded type. One such example

is a balanced and bounded open subset U of a Tsirelson-like space. In this case, by Corollary

5.2.12, the extensions to Mb(U) are of bounded type. When U = E and finite type polynomials are

dense in P(E), we have that Mb(E) = E′′. Thus the extension to the spectrum is the Aron-Berner

extension, which is of bounded type. Moreover, if E is any symmetrically regular Banach spaces,

it was shown in [Din99, Proposition 6.30] that the extension to the spectrum is of bounded type

on each sheet of the spectrum. We now show that this does not imply that the extension to the

spectrum is of bounded type on the whole Riemann domain.

Proposition 5.5.2. Let E be a symmetrically regular Banach space such that there exists a con-

tinuous polynomial on E which is not weakly continuous on bounded sets. Then there exists a

homogeneous polynomial whose extension to the spectrum Mb(E) is not of bounded type.

Proof. We may suppose that P is n-homogeneous whose restriction to a ball is not weakly con-

tinuous at 0. Let (xα)α∈∆ be a weakly null bounded net and ε > 0 such that |P (xα)| > ε for

every α ∈ ∆. Take a filter base on ∆, B = {α ∈ Γ : α ≥ α0}α0∈∆ and let Γ be an ultrafilter such

that B ⊂ Γ. For each k ∈ N, define ϕk(f) = limΓ f(kxα), for f ∈ Hb(E). Then ϕk is in Mb(E).

Moreover ϕk(x
′) = 0 for every x′ ∈ E′ and thus π(ϕk) = 0 for every k. This implies that the

set C = {ϕk : k ∈ N} is Mb(E)-bounded. But, |P̃ (ϕk)| = |ϕk(P )| = | limΓ P (kxα)| ≥ knε and

therefore ‖P̃‖C = ∞, that is, P̃ is not of bounded type on Mb(E).

For the general case, recall that the open set in Example 5.2.8 was neither bounded nor convex,

so one might ask if for the unit ball of a symmetrically regular Banach space things are easier. We

do not know if in this case extensions to the spectrum are of bounded type, but we can answer for

the negative the question on the reverse inequality in (5.6): fixed 1 < p < ∞, there cannot be a

constant c > 0 such that sup
{
dist(A,Bc

ℓp
) : ϕ ≺ A

}
≥ c distMb(Bℓp )(ϕ) for every ϕ ∈Mb(Bℓp).

For the following proposition, recall [AGGM96] that, for ϕ ∈ Mb(Bℓp), with 1 < p ≤ ∞ (for

p = 1 we lose the symmetric regularity) and if 0 < r < 1 is such that ϕ ≺ rBℓp then for each z ∈ ℓp
with ‖z‖ < 1

1−r , we can define

ϕz(f) =
∞∑

n=0

ϕ

(
y 7→ dnf(y)

n!
(z)

)
.

It is shown in [AGGM96, Section 2] that ϕz(f) belongs to Mb(Bℓp). Moreover, the different

mappings of the form z 7→ ϕz give the local section of π that defines the analytic structure of
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Mb(Bℓp). In fact, inequality (5.6) is a consequence of this: since ϕz(f) is defined whenever ‖z‖ <
1

1−r , we have distMb(Bℓp )(ϕ) ≥ 1
1−r , which is precisely the distance from rBℓp to ℓp \Bℓp .

In the sequel, for ϕ ∈ Mb(U) we define S(ϕ), the sheet of ϕ, as the connected component of

Mb(U) that contains ϕ.

Proposition 5.5.3. If 1 < p <∞, then

inf
ϕ∈Mb(Bℓp )

sup
{
dist(A,Bc

ℓp
) : ϕ ≺ A

}

distMb(Bℓp )(ϕ)
= 0.

In other words, there is no reverse inequality in (5.6).

Proof. Set U = Bℓp . Let Γ be an ultrafilter on N containing all the sets of the form {n, n + 1, n +

2, . . . } and define ϕt ∈Mb(U) by ϕt(f) = limΓ f(en
t ), with t > 1.

Take z ∈ ℓp with ‖z‖ <
(
1 − (1

t )
p
) 1

p . Then there is some r > 1 and n0 ∈ N such that the set

A = {sz + en
t : n ∈ N, n ≥ n0, |s| = r} is U -bounded. By the Cauchy inequality,

∣∣∣∣
dkf

k!
(
en
t

)(z)

∣∣∣∣ ≤
1

rk
sup
|s|=r

|f(
en
t

+ sz)| ≤ 1

rk
‖f‖A.

Therefore,

|ϕzt (f)| =

∣∣∣∣∣
∞∑

k=0

ϕ(
dkf(·)
k!

(z))

∣∣∣∣∣ ≤
1

1 − r
‖f‖A

We have shown that ϕzt ∈ Mb(U). Hence π(S(ϕt)) ⊃
(
1 − (1

t )
p
) 1

pBℓp and distMb(U)(ϕt) ≥
(
1 − (1

t )
p
) 1

p .

If r < 1
t and A ⊂ rBℓp , take a natural number m > p and define gN (x) =

(
tm
∑

k x
m
k

)N
. Then

ϕt(gN ) = 1 for every N ∈ N, but ‖gN‖A ≤ ‖gN‖rBℓp
≤ (tr)N → 0 as N → ∞. Thus ϕt ⊀ A.

Finally, since clearly ϕt ≺ 1
tBℓp we have that sup {dist(A,U c) : ϕt ≺ A} = 1 − 1

t .

Therefore lim
t→1+

sup
{
dist(A,Bc

ℓp
) : ϕt ≺ A

}

distMb(Bℓp )(ϕt)
= 0 and the result follows.

In the proof of the previous proposition we have shown that π(S(ϕt)) ⊃
(
1 − (1

t )
p
) 1

pBℓp . If

p ∈ N, Proposition 5.5.4 below show that we have moreover an equality: π(S(ϕt)) =
(
1−(1

t )
p
) 1

pBℓp .

This means that for any ϕ ∈Mb(Bℓp) defined as in the Proposition, the sheet of ϕ is an analytic

copy (via π) of a ball centered at 0. It can be seen that for a convex and balanced open subset U

of a symmetrically regular Banach space E, π(Mb(U)) coincides with int(U
w∗

) (see, for example,

[CGM05, Lemma 20]). The previous example shows that for U the unit ball of ℓp, some sheets are

projected into proper subsets of int(U
w∗

) = U . Therefore, Mb(Bℓp) cannot be seen as a union of

disjoint copies of Bℓp , as one might have thought from the case U = E, where Mb(E) is a disjoint

union of analytic copies of E′′.

We now show that if we restrict ourselves to a distinguished part of the spectrum of Bℓp , with

p a natural number greater than 1, then the extension of the functions in Hb(Bℓp) is of bounded

type.
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Take any block basis (xn)n∈N in the unit ball of ℓp with ‖xn‖ → r ∈ (0, 1) and consider, as

usual, an ultrafilter Γ on N containing all the sets of the form {n, n+1, n+2, . . . }. Let ϕ ∈Mb(Bℓp)

given by,

ϕ(f) = lim
Γ
f(xn), (5.7)

for f ∈ Hb(Bℓp). Note that, since block bases are weakly null, we have ϕ ∈ π−1(0).

Let us define the following subdomain of Mb(Bℓp):

M0
b (Bℓp) =

⋃

ϕ given by (5.7)

S(ϕ).

Note that all adherent points of the sequence (δten)n (0 < t < 1) belong to M0
b (Bℓp), so the number

of connected components of M0
b (Bℓp) has at least the cardinality of βN. Moreover, it is not clear

that there are morphisms in Mb(Bℓp) that are not in M0
b (Bℓp) (though to assert such a thing one

should be able to prove of a really strong Corona theorem for Hb(Bℓp)). One might argue that

morphisms in Mb(Bℓp) can be built with sequences that are not blocks or with nets, but it is

not clear that those cannot have an alternative representation as in (5.7). Anyway, M0
b (Bℓp) is a

relatively large part of Mb(Bℓp), where “relatively” should be understood as “up to our knowledge”.

Note also that if we consider bounded type entire functions on ℓp, then a slight modification of

Proposition 5.5.2 may be used to prove that there exists a homogeneous polynomial whose extension

to the distinguished spectrum of Hb(ℓp) is not of bounded type.

Let us first describe the sheet of a homomorphism in M0
b (Bℓp).

Proposition 5.5.4. Let p be a natural number greater than 1 and let ϕ ∈ Mb(Bℓp)be given as in

(5.7). Then π(S(ϕ)) = (1 − rp)
1
pBℓp.

Proof. Take z ∈ ℓp with ‖z‖ <
(
1 − rp

) 1
p . Since (xn)n is a block sequence with respect to (ek)k,

then, for some n0, A = {z + xn : n ∈ N, n ≥ n0} is U -bounded. Since ϕz(f) = limΓ f(xn + z), we

have ϕz ≺ A and thus ϕz ∈Mb(Bℓp). Hence π(S(ϕ)) ⊃
(
1 − (r)p

) 1
pBℓp .

For the reverse inclusion let ‖z‖ >
(
1−rp

) 1
p . Let (αk) ⊂ C and (jn) ⊂ N an increasing sequence

such that xn =
∑jn+1

k=jn+1 αkek.

Then for some δ > 0, ‖z‖p + rp > 1 + δ and since ‖xn‖ → r, there exists M ∈ N such that for

every n > M , ‖z‖ + ‖xn‖ > 1 + δ and such that

∣∣∣
M∑

k=1

|zk|p +

jn+1∑

k=jn+1

∣∣αk + zk
∣∣p +

∑

k>M
k/∈{jn+1,...,jn+1}

zpk

∣∣∣ > 1 + δ.

Let us define fN(x) =
(∑∞

k=1 θkx
p
k

)N
, where |θk| = 1 and θkz

p
k = |zk|p if 1 ≤ k ≤M , θk(zk+αk)

p =

|zk + αk|p for every jn + 1 ≤ k ≤ jn+1 and n > M , and θk = 1 otherwise. Then since ‖fN‖U ≤ 1

for every N , {fN : N ∈ N} is a bounded sequence in Hb(Bℓp) and for every n > M ,

|fN (z + xn)| =
∣∣∣
M∑

k=1

|zk|p +

jn+1∑

k=jn+1

∣∣αk + zk
∣∣p +

∑

k>M
k/∈{jn+1,...,jn+1}

zpk

∣∣∣
N
> (1 + δ)N .

Since fN is a polynomial, ϕz(fN ) = limΓ fN (z + xn). Therefore |ϕz(fN )| = limΓ |fN (z + xn)| ≥
(1 + δ)N , which implies that ϕz /∈ Mb(Bℓp). Thus (1 − rp)

1
pBℓp ⊂ π(S(ϕ)) ⊂ (1 − rp)

1
pBℓp , but

since it must be open, we conclude that π(S(ϕ)) = (1 − rp)
1
pBℓp .
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Our distinguished spectrum M0
b (Bℓp) is an open subset of Mb(Bℓp), since it is the union of some

connected components of Mb(Bℓp). Thus M0
b (Bℓp) is a Riemann domain over ℓp and every function

f ∈ Hb(Bℓp) extends to a holomorphic function f̃ on M0
b (Bℓp). We now show that this extension

is of bounded type.

Proposition 5.5.5. If p be a natural number greater than 1, for any f ∈ Hb(Bℓp), its extension f̃

to M0
b (Bℓp) is of bounded type.

Proof. Let ε > 0 and take the M0
b (Bℓp)-bounded set A = {φ ∈ M0

b (Bℓp) : distM0
b (Bℓp ) ≥ ε}. By

Proposition 5.5.4, A only intersects the sheets such that π(S(ϕ)) = (1−rp)
1
pBℓp with (1−rp)

1
p ≥ ε.

Let ϕ ∈ A such that π(ϕ) = 0, then A ∩ S(ϕ) = {ϕz : ‖z‖ ≤ (1 − rp)
1
p − ε}. Thus there exists

δ > 0 such that ‖z‖p + rp < 1 − δ for every ϕz ∈ A.

Let ϕ ∈ A, π(ϕ) = 0, and let (xn)n and Γ be a block sequence and an ultrafilter defining ϕ

(that is, ϕ(f) = limΓ f(xn)). Since ‖xn‖ → r, ‖z‖p + ‖xn‖p < 1 − δ if n is big enough. Moreover,

there is n0 ∈ N such that ‖z+ xn‖p < 1− δ for every n ≥ n0 since (xn)n is a block sequence. Then

{xn + z : n ≥ n0} is contained in the U -bounded set (1 − δ)
1
pBℓp and ϕz ≺ (1 − δ)

1
pBℓp .

Therefore ‖f̃‖A = supφ∈A |φ(f)| ≤ ‖f‖
(1−δ)

1
pBℓp

<∞.

Note that Proposition 5.5.3 can be restated with the infimum taken for ϕ ∈M0
b (Bℓp), since the

homomorphisms that were used in the proof were defined by constant multiples of the canonical

basis. As a consequence, there is no reverse inequality in (5.6) even if we restrict ourselves to

M0
b (Bℓp). Therefore, the absence of such a reverse inequality should not be thought as an imped-

iment for the extensions to the whole spectrum to be of bounded type. This means that, if there

are extensions to Mb(Bℓp) that fail to be of bounded type, the proof of this fact will probably not

be based on the absence of this reverse inequality.

Since by Proposition 5.5.4 the connected components ofM0
b (Bℓp) are balls, we have the following

corollary (which could also be deduced from the previous proposition):

Corollary 5.5.6. If p be a natural number greater than 1, then M0
b (Bℓp) is an Hb-domain of

holomorphy.

We would like to finish with the following questions and comments:

• Are the extension of bounded type functions on Bℓ2 to the spectrum Mb(Bℓ2) of bounded

type?

• Even more, we don’t know any example of an open set of a Banach space which satisfy that

the extension of bounded type functions to the spectrum is of bounded type, unless finite

type polynomials are dense in all the polynomials.

• We also cannot answer the following question: given a bounded open set U (non-balanced)

are the extensions to the Hb-envelope of bounded type?
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[Gup70] Gupta, C.P. On the Malgrange theorem for nuclearly entire functions of bounded type

on a Banach space. Nederl. Akad. Wetensch. Proc. Ser. A73 = Indag. Math., 1970.

32:356–358. 2, 65, 72, 73

[Har97] Harris, L.A. A Bernstein-Markov theorem for normed spaces. J. Math. Anal. Appl.,

1997. 208(2):476–486. 25, 48, 85

[Hir72] Hirschowitz, A. Prolongement analytique en dimension infinie. (Analytic extension

in infinite dimension). Ann. Inst. Fourier, 1972. 22(2):255–292. 3, 7, 104, 105, 109,

112

[Hol86] Hollstein, R. Infinite-factorable holomorphic mappings on locally convex spaces.

Collect. Math., 1986. 37(3):261–276. 1, 10, 58, 66, 71

[KR98] Kirwan, P. and Ryan, R.A. Extendibility of homogeneous polynomials on Banach

spaces. Proc. Amer. Math. Soc., 1998. 126(4):1023–1029. 71, 76

[Kit82] Kitai, C. Invariant Closed Sets for Linear Operators. Ph.D. thesis, Univ. of Toronto,

1982. 75

[LZ00] Lassalle, S. and Zalduendo, I. To what extent does the dual Banach space E′

determine the polynomials over E? Ark. Mat., 2000. 38(2):343–354. 99

[LS73] Lewis, D.R. and Stegall, C. Banach spaces whose duals are isomorphic to l1(Γ). J.

Functional Analysis, 1973. 12:177–187. 43

[Mac52] MacLane, G.R. Sequences of derivatives and normal families. J. Analyse Math., 1952.

2:72–87. 74

[MRZ62] Mitiagin, B.; Rolewicz, S. and Zelazko, W. Entire functions in B0-algebras. Stud.

Math., 1962. 21:291–306. 100, 101



134 BIBLIOGRAPHY

[Mor84] Moraes, L.A. The Hahn-Banach extension theorem for some spaces of n-homogeneous

polynomials. In Functional analysis: surveys and recent results, III (Paderborn, 1983),

volume 90 of North-Holland Math. Stud., pp. 265–274. North-Holland, Amsterdam,

1984. 93

[Muj86] Mujica, J. Complex analysis in Banach spaces. Holomorphic functions and domains

of holomorphy in finite and infinite dimensions. North-Holland Mathematics Studies,
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