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IMPLICITIZATION OF RATIONAL MAPS.

Motivated by the interest in computing explicit formulas for resultants and
discriminants initiated by Bézout, Cayley and Sylvester in the eighteenth
and nineteenth centuries, and emphasized in the latest years due to the
increase of computing power, we focus on the implicitization of hypersurfaces
in several contexts. Implicitization means, given a rational map f : An−1 99K
An, to compute an implicit equation H of the closed image im(f). This is
a classical problem and there are numerous approaches to its solution (cf.
[SC95] and [Cox01]). However, it turns out that the implicitization problem
is computationally difficult.

Our approach is based on the use of linear syzygies by means of ap-
proximation complexes, following [BJ03], [BC05], and [Cha06], where they
develop the theory for a rational map f : Pn−1 99K Pn. Approximation com-
plexes were first introduced by Herzog, Simis and Vasconcelos in [HSV83a]
almost 30 years ago.

The main obstruction for this approximation complex-based method
comes from the bad behaviour of the based locus of f . Thus, it is natu-
ral to try different compatifications of An−1, that are better suited to the
map f , in order to avoid unwanted base points. With this purpose, in this
thesis we study toric compactifications T for An−1. First, we view T em-
bedded in a projective space. Furthermore, we compactify the codomain
inside (P1)n, to deal with the case of different denominators in the rational
functions defining f . We also approach the implicitization problem consid-
ering the toric variety T defined by its Cox ring, without any particular
projective embedding. In all this cases, we blow-up the base locus of the
map and we approximate the Rees algebra ReesA(I) of this blow-up by the
symmetric algebra SymA(I). We provide resolutions Z• for SymA(I), such
that det((Z•)ν) gives a multiple of the implicit equation, for a graded strand
ν � 0. Precisely, we give specific bounds ν on all these settings which de-
pend on the regularity of SymA(I). We also give a geometrical interpretation
of the possible other factors appearing on det((Z•)ν).

Starting from the homogeneous structure of the Cox ring of a toric va-
riety, graded by the divisor class group of T , we give a general definition
of Castelnuovo-Mumford regularity for a polynomial ring R over a commu-
tative ring k, graded by a finitely generated abelian group G, in terms of
the support of some local cohomology modules. As in the standard case, for
a G-graded R-module M and an homogeneous ideal B of R, we relate the
support of H i

B(M) with the support of TorRj (M,k).





IMPLICITIZATION D’APPLICATIONS RATIONNELLES.

Motivés par la recherche de formules explicites pour les résultants et les
discriminants, qui remonte au moins aux travaux de Bézout, Cayley et
Sylvester au XVIIIème et XIXème siècles et a donné lieu à de nouveaux
développements dans les dernières années en raison de l’augmentation de la
puissance de calcul, on se concentre sur l’implicitisation des hypersurfaces
dans plusieurs contextes. Implicitisation signifie calculer une équation im-
plicite H de l’image fermée im(f), étant donné une application rationnelle
f : A(n−1) 99K An. C’est un problème classique et il y a de nombreuses
approches (cf. [SC95] et [Cox01]). Toutefois, il s’avère que le problème
d’implicitisation est difficile du point de vue du calcul.

Notre approche est basée sur l’utilisation des syzygies linéaires au moyen
de complexes d’approximation, en suivant [BJ03], [BC05], et [Cha06], où ils
développent la théorie pour une application rationnelle f : P(n−1) 99K Pn.
Les complexes d’approximation ont d’abord été introduits par Herzog, Simis
et Vasconcelos dans [HSV83a] il y a presque 30 ans.

L’obstruction principale de la méthode des complexes d’approximation
vient du mauvais comportement du lieu base de f . Ainsi, il est naturel
d’essayer différentes compatifications de A(n−1), qui sont mieux adaptés à
f , afin d’éviter des points base non désirés. A cet effet, dans cette thèse
on étudie des compactifications toriques T de A(n−1). Tout d’abord, on
considère T plongée dans un espace projectif. En outre, on compactifie le
codomaine dans (P1)n, pour faire face aux cas des dénominateurs différents
dans les fonctions rationnelles qui définissent f . On a également abordé
le problème implicitisation lorsque la variété torique T est définie par son
anneau de Cox, sans un plongement projectif particulier. Dans tous ces cas,
on éclate le lieu base de f et on approche l’algèbre de Rees ReesA(I) par
l’algèbre symétrique SymA(I). On fournit des résolutions Z• de SymA(I),
telle que det((Z•)ν) donne un multiple de l’équation implicite, pour ν �
0. Précisément, on donne des bornes spécifiques ν dans tous ces cas qui
dépendent de la régularité de SymA(I). On donne aussi une interprétation
géométrique des autres facteurs possibles qui apparaissent dans det((Z•)ν).

Motivé par la structure homogène de l’anneau Cox d’une variété torique,
graduée par le groupe de classes de diviseurs de T , on donne une
définition générale de régularité de Castelnuovo-Mumford pour un anneau
de polynômes R sur un anneau commutatif k, gradué par un groupe abélien
de rang fini G, en termes du support de certains modules de cohomologie
locale. Comme dans le cas standard, pour un R-module M G-gradué et
un idéal homogène B de R, on lie le support de H i

B(M) avec le support de
TorRj (M,k).
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IMPLICITACIÓN DE APLICACIONES RACIONALES.

Motivados por el interés en el cálculo de fórmulas expĺıcitas para resul-
tantes y discriminantes que viene desde Bézout, Cayley y Sylvester en los
siglos XVIII y XIX, y enfatizado en los últimos años por el aumento del
poder de cómputo, nos concentramos en la implicitación de hipersuperficies
en diversos contextos. Por implicitación entendemos que, dada una apli-
cación racional f : An−1 99K An, calculamos una ecuación impĺıcita H de
la clausura de la imagen im(f). Éste es un problema clásico con numerosas
aproximaciones para su solución (cf. [SC95] y [Cox01]). A pesar de esto, el
problema de implicitación es computacionalmente dif́ıcil.

Nuestro enfoque se basa en el uso de sicigias lineales mediante complejos
de aproximación, siguiendo [BJ03], [BC05], y [Cha06], donde los autores
desarrollan la teoŕıa para una aplicación racional f : Pn−1 99K Pn. Los
complejos de aproximación fueron introducidos por primera vez por Herzog,
Simis y Vasconcelos en [HSV83a] hace casi 30 años.

La principal obstrucción para este método basado en complejos de aprox-
imación proviene del mal comportamiento del lugar base de f . Luego, es
natural buscar diferentes compactificaciones de An−1, que estén mejor adap-
tadas a la aplicación f , con el fin de evitar puntos base no deseados. Con
este objetivo, en esta tesis estudiamos compactificaciones tóricas T para
An−1. Primero, vemos a T sumergida en un espacio proyectivo. Más aún,
compactificamos el codominio en (P1)n, para tratar el caso en que las fun-
ciones racionales que definen a f tengan diferentes denominadores. También
abordamos el problema de implicitación considerando la variedad tórica T
definida por su anillo de Cox, sin una inmersión proyectiva particular. En
todos estos casos, explotamos el lugar base de f y aproximamos al álgebra
de Rees de este blow-up ReesA(I), mediante el álgebra simétrica SymA(I).
Proveemos resoluciones Z• de ReesA(I) tales que det((Z•)ν) da un múltiplo
de la ecuación impĺıcita, para una capa graduada ν � 0. Más precisamente,
en todos estos casos damos cotas para ν que dependen de la regularidad de
SymA(I). También damos una interpretación geométrica para los posibles
factores extras que aparecen en det((Z•)ν).

Comenzando desde la estructura homegénea del anillo de Cox de la var-
iedad tórica, graduado por el grupo de clases de divisores de T , damos una
definición general de la regularidad de Castelnuovo-Mumford para anillos de
polinomios R sobre un anillo conmutativo k, graduado por un grupo abeliano
G finitamente generado, en término de los soportes de algunos módulos de
cohomoloǵıa local. Tal como en el caso estándar, dado un R-módulo M G-
graduado y un ideal homogéneo B de R, relacionamos el soporte de H i

B(M)
con el soporte de TorRj (M,k).
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Introduction

The interest in computing explicit formulas for resultants and discriminants goes back to
Bézout, Cayley, Sylvester and many others in the eighteenth and nineteenth centuries. It
has been emphasized in the latest years due to the increase of computing power. Under
suitable hypotheses, resultants give the answer to many problems in elimination theory,
including the implicitization of rational maps. In turn, both resultants and discriminants
can be seen as the implicit equation of a suitable map (cf. [DFS07]). Lately, rational
maps appeared in computer-engineering contexts, mostly applied to shape modeling
using computer-aided design methods for curves and surfaces.

Rational algebraic curves and surfaces can be described in several different ways, the
most common being parametric and implicit representations. Parametric representa-
tions describe the geometric object as the image of a rational map, whereas implicit
representations describe it as the set of points verifying a certain algebraic condition,
e.g. as the zeros of a polynomial equation. Both representations have a wide range of
applications in Computer Aided Geometric Design (CAGD), and depending on the prob-
lem one needs to solve, one or the other might be better suited. It is thus interesting to
be able to pass from parametric representations to implicit equations. This is a classical
problem and there are numerous approaches to its solution (a good historical overview
on this subject can be seen in [SC95] and [Cox01]). However, it turns out that the
implicitization problem is computationally difficult.

A promising alternative suggested in [BD07] is to compute a so-called matrix represen-
tation instead, which is easier to compute but still shares some of the advantages of the
implicit equation. Let K be a field. For a given hypersurface H ⊂ Pn, a matrix M with
entries in the polynomial ring K[X0, . . . , Xn] is called a representation matrix of H if it
is generically of full rank and if the rank of M evaluated in a point of Pn drops if and
only if the point lies on H (see Chapter 3, also cf. [BDD09]). Equivalently, a matrix
M represents H if and only if the greatest common divisor of all its minors of maximal
size is a power of the homogeneous implicit equation F ∈ K[X0, . . . , Xn] of H .

In the case of a planar rational curve C given by a parametrization of the form A1
f
99K A2,

s 7→
(
f1(s)
f3(s)

, f2(s)
f3(s)

)
, where fi ∈ K[s] are coprime polynomials of degree d and K is a field,

a linear syzygy (or moving line) is a linear relation on the polynomials f1, f2, f3, i.e. a
linear form L = h1X1 + h2X2 + h3X3 in the variables X1, X2, X3 and with polynomial
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coefficients hi ∈ K[s] such that
∑

i=1,2,3 hifi = 0. We denote by Syz(f) the set of all
those linear syzygy forms and for any integer ν the graded part Syz(f)ν of syzygies of
degree at most ν. To be precise, one should homogenize the fi with respect to a new
variable and consider Syz(f) as a graded module here. It is obvious that Syz(f)ν is a
finite-dimensional K-vector space of dimension k = k(ν), obtained by solving a linear
system. Let L1, . . . , Lk be a basis of Syz(f)ν . If Li =

∑
|α|=ν s

αLi,α(X1, X2, X3), we

define the matrix Mν = (Li,α)1≤i≤k,|α|=ν , that is, the coefficients of the Li with respect
to a K-basis of K[s]ν form the columns of the matrix. Note that the entries of this
matrix are linear forms in the variables X1, X2, X3 with coefficients in the field K. Let
F denote the homogeneous implicit equation of the curve and deg(f) the degree of the
parametrization as a rational map. Intuitively, deg(f) measures how many times the
curve is traced. It is known that for ν ≥ d−1, the matrix Mν is a representation matrix;
more precisely: if ν = d − 1, then Mν is a square matrix, such that det(Mν) = F deg(f).
Also, if ν ≥ d, then Mν is a non-square matrix with more columns than rows, such that
the greatest common divisor of its minors of maximal size equals F deg(f). In other words,
one can always represent the curve as a square matrix of linear syzygies. One could now
actually calculate the implicit equation. We overview this subject more widely in Section
1.7.1.

For surfaces, matrix representations have been studied in [BDD09] for the case of 2-
dimensional projective toric varieties, and we will analyze it in detail in Chapter 3.
Previous work had been done in this direction, with two main approaches: One allows
the use of quadratic syzygies (or higher-order syzygies) in addition to the linear syzygies,
in order to be able to construct square matrices, the other one only uses linear syzygies
as in the curve case and obtains non-square representation matrices.

The first approach using linear and quadratic syzygies (or moving planes and quadrics)
has been treated in [Cox03a] for base-point-free homogeneous parametrizations and some
genericity assumptions, when T = P2. The authors of [BCD03] also treat the case of
toric surfaces in the presence of base points. In [AHW05], square matrix representations
of bihomogeneous parametrizations, i.e. T = P1 × P1, are constructed with linear and
quadratic syzygies, whereas [KD06] gives such a construction for parametrizations over
toric varieties of dimension 2. The methods using quadratic syzygies usually require
additional conditions on the parametrization and the choice of the quadratic syzygies is
often not canonical.

The second approach, developed in more detail in Section 1.7.2, even though it does not
produce square matrices, has certain advantages, in particular in the sparse setting that
we present. In previous publications, this approach with linear syzygies, which relies on
the use of the so-called approximation complexes has been developed in the case T = Pn,
see for example [BJ03], [BC05], and [Cha06], and T = P1 × P1 in [BD07] for bihomo-
geneous parametrizations of degree (d, d). However, for a given affine parametrization
f , these two varieties T are not necessarily the best choice of a compactification, since
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they do not always reflect well the combinatorial structure of the polynomials defining
the parametrization. We extend the method to a much larger class of varieties, namely
toric varieties of dimension 2 (cf. [BDD09], see also 3.4). We show that it is possible
to choose a “good” toric compactification of (A∗)2 depending on the input polynomials,
which makes the method applicable in cases where it failed over P2 or P1 × P1. Also, it
is significantly more efficient, leading to smaller representation matrices.

Later, in [Bot10], see Chapter 3, we gave different compactifications for the domain
and the codomain of an affine rational map f that parametrizes a hypersurface in any
dimension and we show that the closure of the image of this map (with possibly some
other extra hypersurfaces) can be represented by a matrix of linear syzygies, relaxing
the hypothesis on the base locus. More generally, we compactify An−1 into an (n −
1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some PN . We
studied one particular interesting compactification of An−1 which is the toric variety
associated to the Newton polytope of the polynomials defining f .

In [Bot09b] and [Bot10] we considered a different compactifications for the codomain
of f , (P1)n as is detailed in Chapter 4. We study the implicitization problem in this
setting. This new perspective allow to deal with parametric rational maps with different
denominators. Precisely, if are given f = (f1

g1
, . . . , fn

gn
) : An−1 99K An, we can naturally

consider a map φ = ((f1 : g1) × · · · (fn : gn)) : Pn−1 99K (P1)n (cf. [Bot09b]). As we
have remarked before, Pn−1 need not be the best compactification of the domain of f ,
thus, in [Bot10] we extended this method the setting φ : T 99K (P1)n where T is any
arithmetically Cohen-Macaulay closed subscheme of some PN . In this last context, we
gave sufficient conditions, in terms of the nature of the base locus of the map, for getting
a matrix representation of its closed image, without involving extra hypersurfaces (cf.
Chapter 4).

In order to avoid a particular embedding of T in PN , we focused on the study of implicit-
ization problem for toric varieties given by its Cox ring (see Section 2.4 or [Cox95]). This
leaded to adapting the technique based on approximation complexes for more general
graded rings and modules. In Chapter 6 we give a definition of Castelnuovo-Mumford
regularity for a commutative ring R graded by a finitely generated abelian group G, in
terms of the support of some local cohomology modules. A very interesting example is
that of Cox rings of toric varieties, where the grading is given by the Chow group of
the variety acting on a polynomial ring. Thus, this allows to study the implicitization
problem for general arithmetically Cohen Macaulay toric varieties without the need of
an embedding, as we do in Chapter 7.
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Organization

Ch. 1: Preliminaries on elimination theory and approximation complexes.

Ch. 2: Preliminaries on toric varieties.

Ch. 3: Implicitization for ϕ : T 99K Pn, by means of an embedding T ⊂ PN .

Ch. 4: Implicitization for φ : T 99K (P1)n, by means of an embedding T ⊂ PN .

Ch. 5: Algorithmic approach for Chapters 3 and 4, and examples

Ch. 6: Castelnuovo-Mumford regularity for G-graded rings, for G abelian group.

Ch. 7: Implicitization φ : T 99K Pn, where T is defined by the Cox ring.

Ch. 8: Algorithm for ϕ : T 99K P3 following 3.

Ch. 9: Algorithm for ϕ : T 99K P3 following 7.

Chapter 1 Chapter 2

Chapter 3

Chapter 5

Chapter 4 Chapter 6

Chapter 7

Chapter 8 Chapter 9

In Chapter 1 we give a fast overview of the original technique of computing implicit
equations for projective rational maps by means of approximation complexes. Indeed, we
introduce in Section 1.5 the notion of approximation complexes and of blow-up algebras
in Section 1.3, and we give basic results that we will use later in this thesis. As it was
mentioned, this approach with linear syzygies was first formulated for this purpose in
[BJ03] an later improved in [BC05], [Cha06] and [BCJ09]. We give a more detailed
outline of this method in Section 1.7.2.

Chapter 2 is mainly devoted to give an introduction to toric varieties. We recall some
results that we will need later, in order to generalize the implicitization methods for toric
compactifications. We develop this idea in Chapters 3, 4 and 7.
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In Chapters 3 and 4 we adapt the method of approximation complexes to computing an
implicit equation of a parametrized hypersurface, focusing on different compactifications
of the domain T and of the codomain (Pn and (P1)n). We will always assume that
T is a (n − 1)-dimensional closed subscheme of PN with graded and Cohen-Macaulay
n-dimensional coordinate ring A.

In Chapter 3, we focus on the implicitization problem for a rational map ϕ : T 99K Pn
defined by n+1 polynomials of degree d. We extend the method to maps defined over an
(n − 1)-dimensional Cohen-Macaulay closed scheme T , embedded in PN , emphasizing
the case where T is a toric variety. We show that we can relax the hypotheses on the
base locus by admitting it to be a zero-dimensional almost locally complete intersection
scheme. Implicitization in codimension one is well adapted in this case, as is shown in
Section 3.2 and 3.3, following the spirit of many papers in this subject: [BJ03], [BCJ09],
[BD07], [BDD09] and [Bot09b].

In order to consider more general parametrizations given by rational maps of the form
f = (f1

g1
, . . . , fn

gn
) with different denominators g1, . . . , gn, we develop in Chapter 4 the

study of the (P1)n compactification of the codomain. With this approach, we study
following [Bot09b] and [Bot10], the method of implicitization of projective hypersurfaces
embedded in (P1)n. As in Chapters 1 and 3, we compute the implicit equation as the
determinant of a complex which coincides with the gcd of the maximal minors of the last
matrix of the complex, and we make deep analysis of the geometry of the base locus.

In Chapter 5 we exemplify the results of Chapters 3 and 4, and we study in a more
combinatorial fashion the size of the matrices obtainned. We analyze, in both settings,
how taking an homothety of the Newton polytope N (f) can modify the size of the
matrices Mν . We present several examples comparing our results with the previous
ones. First, we show in a very sparse setting the advantage of not considering the
homogeneous compactification of the domain when denominators are very different. We
extend in the second example this idea to the case of a generic affine rational map in
dimension 2 with fixed Newton polytope. In the last example we give, for a parametrized
toric hypersurface of (P1)n, a detailed analysis of the relation between the nature of the
base locus of a map and the extra factors appearing in the computed equation. We finish
this section by giving an example of how the developed technique can be applied to the
computation of sparse discriminants.

In order to avoid a particular embedding of T in PN , we focus in Chapter 7 on the study
of the implicitization problem for toric varieties given by its Cox ring (see Section 2.4 or
the original source in [Cox95]). Motivated by this, in Chapter 6 we give a definition of
Castelnuovo-Mumford regularity for a commutative ring R graded by a finitely generated
abelian group G, in terms of the support of some local cohomology modules.
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In Chapter 6 we give a definition of Castelnuovo-Mumford regularity for a commutative
ring R graded by a finitely generated abelian group G, in terms of the support of some
local cohomology modules. This generalizes [HW04] and [MS04]. With this purpose, we
distinguish an ideal B of R, and we determine subsets of G where the G-graded modules
H i
B(R) are supported, this is, elements γ ∈ G where H i

B(R)γ 6= 0. Also, we study the
regularity of some particular rings, in particular, polynomial rings Zn-graded, and we
show that in these cases this notion of regularity coincides with the usual one. A very
interesting example is that of Cox rings of toric varieties, where the grading is given by
the Chow group of the variety acting on a polynomial ring (cf. [Cox95]).

Lately, we stablish, for a G-graded R-module M , a relation between the supports of the
modules H i

B(M) and the support of the Betti numbers of M , generalizing the well-known
duality for the Z-graded case.

In Chapter 7 we present a method for computing the implicit equation of a hypersurface
given as the image of a rational map φ : T 99K Pn, where T is an arithmetically
Cohen-Macaulay toric variety defined by its Cox ring (see Section 2.4). In Chapters 3
and 4, the approach consisted in embedding the space T in a projective space. The
need of this embedding comes from the necessity of a Z-grading in the coordinate ring
of T , in order to study its regularity. The aim of this chapter is to give an alternative
to this approach: we study the implicitization problem directly, without an embedding
in a projective space, by means of the results od Chapter 6. Indeed, we deal with the
multihomogeneous structure of the coordinate ring S of T , and we adapt the method
developed in Chapters 1, 3 and 4 to this setting. The main motivations for our change
of perspective are that it is more natural to deal with the original grading on T , and
that the embedding leads to an artificial homogenization process that makes the effective
computation slower, as the number of variables to eliminate increases.

Chapter 8 and Chapter 9 are devoted to the algorithmic approach of both cases studied
in Chapters 3 and 7. We show how to compute the sizes of the representation matrices
obtained in both cases by means of the Hilbert functions of the coordinate ring A and
of its Koszul cycles.
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1 Preliminaries on elimination theory

1.1 Introduction

In this chapter we give a short summary of the articles written by Laurent Busé, Marc
Chardin and Jean-Pierre Jouanolou on implicitization of projectives hypersurfaces by
means of approximation complexes [BJ03, BC05, Cha06, Bus01, BCJ09]. There are
many branches on mathematics and computer sciences where implicit equations of hy-
persurfaces are used and, hence, implicitization problems are involved. One of then is
the interest in computer aided design (cf. [Hof89, GK03]).

In the beginning of the 80’s, Hurgen Herzog, Aron Simis and Wolmer V. Vasconcelos
developed the so called Approximation Complexes (cf. [HSV82, HSV83b, Vas94a]) for
studying the syzygies of the conormal module (cf. [SV81]).

In elimination theory approximation complexes were used for the first time by Laurent
Busé y Jean-Pierre Jouanolou in 2003 in order to propose a new alternative to the
previous methods (see [BJ03]). This new tool generalized the work of Sederberg and
Cheng, on “moving lines” and “moving surfaces” introduced a few years before in [SC95,
CSC98, ZSCC03], giving also a theoretical framework.

The spirit behind the method based on approximation complexes consists in doing elimi-
nation theory by taking determinant of a graded strand of a complex. This idea is similar
to the one used for the computation of a Macaulay resultant of n homogeneous polyno-
mials F1, . . . , Fn in n variables, by means of taking determinant of a graded branch of a
Koszul complex.

This resultant spans the annihilator of the quotient ring of A[X1, . . . , Xn] by I =
(F1, . . . , Fn) in big enough degree (bigger than its regularity). This annihilator can
also be related to the MacRae invariant of the coordinate ring A[X1, . . . , Xn]/I in the
same degree ν. This theoretical method can become effective through the computation
of the determinant of the degree-ν-strand of the Koszul complex of {F1, . . . , Fn} (see
[Nor76, Mac65, GKZ94, KM76]).

In this case, we wish to give a closed formula for the implicit equation of the image of a
rational map φ : Pn−2 99K Pn−1, over a field K. We will assume at first that this image
defines a hypersurface in Pn−1, and hence, φ is generically finite.
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It is well known that a map between schemes gives rise to a map of rings that we will
denote by h : K[T1, . . . , Tn] → A := K[X1, . . . , Xn−1]. We will focus on computing the
kernel of this map h which is a principal prime ideal of the polynomial ring K[T1, . . . , Tn],
and hence it describes the closed image of φ.

1.2 The image of a rational map as a scheme

We will describe henceforward in this chapter how to compute the implicit equation of
the closed image of a rational map φ : Pn−2 99K Pn−1 following the ideas of L. Busé, M.
Chardin and J.-P. Jouanolou. Let K be a commutative ring and A a Z-graded K-algebra.
We will assume that φ = (f1, . . . , fn), where the polynomials fi ∈ A are homogeneous of
the same degree d for all i = 1, . . . n. Let h be a morphism of graded K-algebras defined
by

h : K[T1, . . . , Tn]→ A, Ti 7→ fi. (1.1)

The map h induces a morphism of K-affine schemes

µ :
⋃

D(fi)→
⋃

D(Ti) = An
K \ {0}, (1.2)

where D(fi) := {p ∈ Spec(A) : fi /∈ p} is an open set of Spec(A).

Also, given {fi}i=1,...n homogeneous of degree d, h is a graded morphism of graded
algebras (where the grading is given by deg(Ti) = 1 for all i = 1 . . . , n). Hence, h
induces a morphism of K-projective schemes

φ :
⋃

D+(fi)→
⋃

D+(Ti) = Pn−1
K , (1.3)

where D+(fi) := {p ∈ Proj(A) : fi /∈ p} is an open set of Proj(A).

Denote by D(f) :=
⋃
D(fi) and D+(f) :=

⋃
D+(fi), the sets of definition of µ and φ

respectively, also D(f) = Spec(A) \ V (f1, . . . , fn) and D+(f) = Proj(A) \ V (f1, . . . , fn).

Before getting into the results, we give some notations.

Definition 1.2.1. We will denote by R the polynomial ring K[T1, . . . , Tn], and let I and
J be ideals of R and M an R-module. Define

1. ann(J) = {f ∈ R : f · J = 0}, the annihilator of J ;

2. (I :R J) = {f ∈ R : f · J ⊂ I}, the colon ideal of I by J ;

3. (I :R J
∞) =

⋃
n∈N(I :R J

n), the saturation of I by J , also written TFJ(I);
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4. H0
J(M) = {m ∈ M : m · Jn = 0,∀n � 0}, the 0-th local cohomology group of M

with support on J .

Theorem 1.2.2 ([BJ03, Thm 2.1]). Let I and J be the affine and projective sheafifi-
cation of ker(h). We have that

V (I )|AnK\{0} = V (ker(h)∼)|AnK\{0} = V ((ker(h) : (T1, . . . , Tn)∞)∼)|AnK\{0}
and similarly with V (J ).

Lemma 1.2.3 ([BJ03, Rem 2.2]). We have

TF(T1,...,Tn)(ker(h)) = {p ∈ A[T1, . . . , Tn] : p(f1, . . . , fn) ∈ H0
(f1,...,fn)(A)}.

In particular, when H0
(f1,...,fn)(A) = 0, ker(h) = TF(T1,...,Tn)(ker(h)); this means that

ker(h) is saturated with respect to (T1, . . . , Tn) in K[T1, . . . , Tn].

Recall that if I and J = (g1, . . . , gs) are ideals of R, then (I :R J∞), is defined as⋃
m∈N(I :R J

m) = {f ∈ R : ∃m ∈ N, f.(g1, . . . , gs)
n ⊂ I}. We have that

Remark 1.2.4.

(I :R J
∞) = {f ∈ R : ∃m ∈ N, f.gmi ∈ I ∀i}.

This is due to the fact that (gm1 , . . . , g
m
s ) ⊂ Jm and if f ∈ J , f =

∑s
i=1 αjgj. Thus,

fm(s−1)+1 = (
∑s

i=1 αigi)
m(s−1)+1 =

∑P
ij=m(s−1)+1 α(i1,...,is)g

i1
1 · · · giss that clearly belongs

to (gm1 , . . . , g
m
s ). Hence, Jm(s−1)+1 ⊂ (gm1 , . . . , g

m
s ).

Recall that φ : Proj(A)→ Pn−1
K is the map induced by

h : K[T1, . . . , Tn]→ A.

Let U := D+(f) be the open subscheme of definition of φ, and Z := V (f1, . . . , fn) be
the closed subscheme of Proj(A) where the sections f1, . . . , fn vanish. We will blowup
Proj(A) along Z.

We will denote by π1 and π2 the two natural projections,

BlI (Proj(A)) � � //

π1

��

π2

''NNNNNNNNNNNN Proj(A)×K Pn−1
K = Pn−1

A

Proj(A)
φ //_____ Pn−1

K

The restriction of π2 to Ω := π−1
1 (U) coincides with φ ◦ π1.
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Definition 1.2.5. Let ReesA(I) :=
∑

i≥0 I
iti be the Rees algebra of I = (f1, . . . , fn).

Let A[T1, . . . , Tn] → A[t] be the map of A-algebras defined by Ti 7→ fit, in such a way
that deg(Ti) = (1, 0) and deg(fi) = (0, d), hence t is of total degree 1− d.

Thus, there is a short exact sequence 0 → J → A[T1, . . . , Tn] → ReesA(I) → 0, where

J = ker(A[T1, . . . , Tn]→ A[t]), namely, ReesA(I) ∼= A[T1,...,Tn]
J

.

Proposition 1.2.6. The following diagram is commutative

Ω

π1|Ω
��

π2

##HH
HH

HH
HH

HH

D+(f)
φ //Pn−1

K

where D+(f) ⊂ Proj(A), Ω := π−1(D+(f)) ⊂ BlI (Proj(A)) and π1|Ω corresponds to the
restriction of π : BlI (Proj(A))→ Proj(A) to the open set Ω.

One important difficulty is the deep understanding of the difference between I and J .
We will give a short example to illustrate this relation.

Example 1.2.7. Let A be a commutative noetherian ring, f, g ∈ A and ReesA(f, g) =
A[ft, gt] ⊂ A[t].

Invert f and define B = A[f−1][X, Y ]. Let X ′ = f−1X ∈ B and hence we get B =
A[f−1][X ′, Y ]. The element gX ′ − Y ∈ B spans ker(B = A[f−1][X ′, Y ] → A[f−1][t]),
defined as X ′ 7→ t and Y 7→ gt. Since B, gX − fY and gX ′−Y coincide, f is not a zero
divisor modulo gX − fY in A[X, Y ]. We see that (f, gX − fY ) is a regular sequence in
A[X, Y ]. Hence, the complex

K•(gX − fY, f) : 0 //A
(−f,gX−fY )//A2 (gX−fY,f)t //A //0

is acyclic. Thus the first homology group of K•(gX−fY, f), (f : gX−fY )/(f), vanishes.
Hence, if (f, g) is a regular sequence, then the kernel of the map A[X, Y ]→ ReesA(f, g)
defined by X 7→ ft and Y 7→ gt is spanned by gX − fY . That is ReesA(f, g) ∼=
A[X, Y ]/(gX − fY ).

We conclude that if I is spanned by a regular sequence (of length 2), then the Rees
algebra ReesA(I) is isomorphic to the symmetric algebra SymA(I), defined as

SymA(I) =
⊕
n≥0

I⊗n/(x⊗ y − y ⊗ x)x,y∈I .
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This can be generalized to a sequence (f1, . . . , fn) of length n. In the general case we
get that the ideal of relations J is spanned by the 2× 2-minors of(

f1 · · · fn
X1 · · · Xn

)
.

We will deepen our understanding of the relationship between the symmetric algebra and
the Rees algebra in the following section. We will also see that in the particular context
of implicitization theory applied to rational maps defined over a projective scheme, this
situation is never reached. Precisely, we cannot hope that the symmetric algebra and
the Rees algebra coincide, we can at most ask when they coincide modulo their torsion
at the maximal ideal m = (T1, . . . , Tn).

1.3 Blow-up algebras

Henceforward let K be an infinite integral domain with unity and let A be a commutative
N-graded K-algebra. Take I = (f1, . . . , fn) an homogeneous ideal of A, where fi is an
homogeneous element of degree d. We will write In for the usual multiplication of n
elements of I for n ≥ 0, and I0 := A. Denote I⊗n := I ⊗A · · · ⊗A I n times for n ≥ 0,
where I⊗0 := A. In this part we will study presentations for the algebras ReesA(I) and
gr, and the relation with the symmetric algebras SymA(I) and SymA/I(I/I

2). All these
algebras

1. ReesA(I) =
⊕

n≥0 I
n;

2. SymA(I) =
⊕

n≥0 I
⊗n/(x⊗ y − y ⊗ x)x,y∈I ;

3. grA(I) =
⊕

n≥0 I
n/In+1 ∼= A/I ⊗A ReesA(I);

4. SymA/I(I/I
2) =

⊕
n≥0(I/I2)⊗n/(x⊗ y − y ⊗ x)x,y∈I ∼= A/I ⊗A SymA(I).

are called blow-up algebras, because they are closely related to the blow-up of a ring
along an ideal.

1.3.1 Rees algebras and symmetric algebras of an ideal

The first idea for giving equations to describe the Rees algebra ReesA(I), is by means
of the linear syzygies of I = (f1, . . . , fn). Precisely, there is a presentation homogeneous
ideal J = J1 + J2 + · · · which represents the equations of ReesA(I), where Jr is the
module spanned by the syzygies of r-products of f1, . . . , fn.

Assume I is of finite presentation 0 → Z → An
ε→ I → 0, where Z = {(a1, . . . , an) :∑

aifi = 0} is the module of syzygies of I.
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The map ε, induces a surjective morphism α : A[T1, . . . , Tn]→ SymA(I), defined in degree
1 by α(Ti) = fi. Denote J ′ := ker(α). Then, there is a presentation for SymA(I):

0→ J ′ → A[T1, . . . , Tn]
α→ SymA(I)→ 0. (1.4)

It can be shown that the ideal J ′ is generated by the linear form
∑

i aiTi such that∑
i aifi = 0,

Consider now the following presentation of the Rees algebra:

0→ J → A[T1, . . . , Tn]
β→ ReesA(I)→ 0, (1.5)

where the map β : A[T1, . . . , Tn] → ReesA(I) is A-linear and defined by β(Ti) = fi.
Clearly the ideal J is an homogeneous ideal and its component of degree 1 is J1, which is
the A-module of linear forms

∑
aiTi such that

∑
aifi = 0. Thus J ′ is spanned by J1.

Closely related to this presentation of ReesA(I) there is one for the associated graded
ring of I, grA(I), comming from the I-adic filtration · · · ⊂ In+1 ⊂ In ⊂ · · · ⊂ I2 ⊂ I in
A. Namely, since ReesA(I) ∼= A[T1, . . . , Tn]/J , there is an exact sequence

0→ J + I → A[T1, . . . , Tn]→ grA(I)→ 0. (1.6)

We describe J in terms of a presentation of I.

When I is generated by a regular sequence {f1, . . . , fn}, the Rees algebra coincides with
the symmetric algebra, and the ideals J and J ′ are spanned by the 2× 2-minors of the

matrix M =

(
f1 · · · fn
X1 · · · Xn

)
.

Let S be a polynomial ring I ′ an ideal of S, and take A = S/I ′. Let I be an ideal of A.
It is shown in [Vas94a] that

Proposition 1.3.1. Let f1, . . . , fn ∈ S be n homogeneous polynomials of the same degree
that span I. Consider S[T1, . . . , Tn]. Then ReesA(I) ∼= S[T1, . . . , Tn]/J, where J =
(T1 − f1t, . . . , Tn − fnt, I ′) ∩ S[T1, . . . , Tn] and grA(I) ∼= S[T1, . . . , Tn]/(f1, . . . , fn, J).

It is a well known fact that J ′ = (
∑
aiTi : (a1, . . . , an) ∈ Z),. Explicitely, J ′ =

{∑ giTi, : gi = gi(T1, . . . , Tn) ∈ A[T1, . . . , Tn], and
∑
gi(T1, . . . , Tn)fi = 0}.

Definition 1.3.2. The relation type of I is the smallest integer s such that J =
(J1, . . . , Js). This number is independent of the generators chosen for I (cf. [Vas94a]).
When s = 1, we say that I is of linear type.
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Observe that since ReesA(I) is a commutative A-algebra, there exists a surjective map σ :
SymA(I) → ReesA(I), given by βm : I⊗m → Im defined as fi1 ⊗ · · · ⊗ fim 7→ fi1 · · · fim .
From the presentations of (1.4) and (1.5) for SymA(I) and ReesA(I) respectively we have
the following diagram:

0 //J ′ = (J1)� _

��

� � //A[T1, . . . , Tn] α //SymA(I)

σ
����

//0

0 //J � � //A[T1, . . . , Tn]
β //ReesA(I) //0

Denote by K := ker(σ), hence K = J/J ′, and K = 0 iff I is of linear type, equivalently,
σ is an isomorphism between ReesA(I) and SymA(I).

1.3.2 d-sequences

Definition 1.3.3. Let x = {x1, . . . , xn} be a sequence of elements of a ring A, let
I = (x1, . . . , xn) be an ideal of A. We say that x is a:

1. regular sequence in M , where M is an A-module, if:

a) (x1, . . . , xn)M 6= M ;

b) for all i = 1, . . . , n, xi is not a zero divisor in M/(x1, . . . , xn−1)M .

2. d-sequence if:

a) x is a minimal system of generators of I;

b) ((x1, . . . , xi) : xi+1xk) = ((x1, . . . , xi) : xk) for all i = 0, . . . , n−1 and k ≥ i+1.

3. relative regular sequence if ((x1, . . . , xi) : xi+1) ∩ I = (x1, . . . , xi) for all i =
0, . . . , n− 1.

4. proper sequence if xi+1Hj(x1, . . . , xi;A) = 0 for all i = 0, . . . , n− 1, j > 0, where
Hj(x1, . . . , xi;A) denote the j-th module of Koszul homology associated to the
sequence {x1, . . . , xi}.

These conditions are related in the following way:

regular sequence ⇒ d-sequenece ⇒ relative regular sequence ⇒ proper sequence.

Lemma 1.3.4. Every ideal generated by a d-sequence is of linear type.

Proof. See [Vas94a].
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1.4 Rees and Symmetric algebras of a rational map

Assume we have a rational map φ : Pn−2 99K Pn−1 defined by homogeneous polynomials
{fi}i=1,...n of degree d. Let K be a commutative ring and A a Z-graded K-algebra.
Denote by ι the map that sends K in A0. The map φ defines a morphism of K-algebras
h : K[T1, . . . , Tn] → A, that maps Ti 7→ fi. This map defines a morphism of affine
schemes µ :

⋃
D(fi) →

⋃
D(Ti) = An

K − {0} and a map of projective schemes φ :⋃
D+(fi)→

⋃
D+(Ti) = Pn−1

K .

We have mentioned that φ also defines a graded map of A-algebras defined by Ti 7→ fi · t,
defining the Rees algebra as a quotient of a polynomial ring: ReesA(I) ∼= A[T1,...,Tn]

J
.

The ideal J can be described as J = (T1 − f1 · t, . . . , Tn − fn · t) ∩ A[T1, . . . , Tn], using
Proposition 1.3.1.

Consider the extended Rees algebra ReesA[t−1](I) as a sub-A-algebra of A[t, t−1]. Denote
u := t−1, hence, η : A[T1, . . . , Tn, u]→ A[u, u−1] is defined Ti 7→ fi · u−1.

Lemma 1.4.1. If J = (T1 − f1 · t, . . . , Tn − fn · t) ∩ A[T1, . . . , Tn], then J = ((T1u −
f1, . . . , Tnu− fn) : u∞) ∩ A[T1, . . . , Tn].

It can be seen that the kernel of the map h : K[T1, . . . , Tn]→ A defined in (1.1) is given
by

ker(h) = ε−1((T1 − f1, . . . , Tn − fn)) = {g ∈ K[T1, . . . , Tn] : g(f1, . . . , fn) = 0}. (1.7)

Writing with i the inclusion map A[T1, . . . , Tn] ↪→ A[T1, . . . , Tn, u] and by θ = i ◦ ε the
composition, we have a description of ker(h)

Lemma 1.4.2. ker(h) = θ−1((T1u− f1, . . . , Tnu− fn) : u∞).

In [BJ03], the authors also proved that

Remark 1.4.3. If K ⊂ A0 then ker(h) = ((T1u−f1, . . . , Tnu−fn) : u∞)∩K[T1, . . . , Tn].
Moreover, if K = A0, deg(Ti) = 0 and deg(t) = d ≥ 1, then K[T1, . . . , Tn] = (A[T1, . . . , Tn, u])0

and hence, ker(h) = ((T1u− f1, . . . , Tnu− fn) : u∞)0.

Now, we can compute ker(h) from ker(β), defined in (1.5).

Proposition 1.4.4. Assume ι : K → A is the inclusion, then ker(h) = ker(β) ∩
K[T1, . . . , Tn] = ((T1u − f1, . . . , Tnu − fn) : u∞) ∩ K[T1, . . . , Tn]. Moreover if I ′ is an
ideal of A such that H0

I′(A) = 0, then ker(β) = (ker(β) : (I ′)∞) and hence ker(h) =
(ker(β) : (I ′)∞) ∩K[T1, . . . , Tn].
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1.5 Approximation complexes

Approximation complexes were defined by Herzog, Simis and Vasconcelos in [HSV83a]
almost 30 years ago. We will give here a brief outline on these complexes and some of
their basic properties.

Consider the two Koszul complexes over the ring A = K[X1, . . . , Xn] associated to the
sequences f1, . . . , fn and T1, . . . , Tn respectively.

K•(f1, . . . , fn;A[T1, . . . , Tn]) : · · · →
1∧
A[T1, . . . , Tn]n

df→ A[T1, . . . , Tn]

that will be denoted by K•(f;A[T]), and

K•(T1, . . . , Tn;A[T1, . . . , Tn]) : · · · →
1∧
A[T1, . . . , Tn]n

dT→ A[T1, . . . , Tn]

that will be denoted by L• meaning K•(T;A[T]).

It is easy to verify that df◦dT−dT ◦df = 0 giving rise to a double complex K••(f,T;A[T]).
In particular, dT induces a morphism between the cycles Zi, boundaries Bi and ho-
mologies Hi of K•(f;A[T]). The complexes obtained having as objects, the cycles Zi,
boundaries Bi and homologies Hi of K•(f;A[T]) with the induced differentials dt are
called approximation complexes of cycles, boundaries and homologies respectively, and
denoted by Z•, B•, M• respectively.

It is easy to verify that H0(Z•) = A[T1, . . . , Tn]/dT (ker(df )) = SymA(I). Similarly,
H0(M•) = SymA/I(I/I

2). hence, it is important to give acyclicity conditions for the
complexes Z• andM•., in order to provide resolutions to SymA(I) and SymA/I(I/I

2).

One important property of the approximation complexes is the following

Proposition 1.5.1. The modules Hi(Z•), Hi(B•) and Hi(M•) are independent of the
generators chosen for I, for all i.

Proof. Proposition 3.2.6 and Corollary 3.2.7 of [Vas94a]

We will denote by (Z•)t, (B•)t and (M•)t the t-graded strand of the complexes, con-
sidering the degree on the variables T1, . . . , Tn. We will write Ss for the component of
degree s of Sym(An).

Since dT has degree 1 on the variables Ti, we get for each t a subcomplex of Z•
(Z•)t : 0→ (Zn)t

dT→ (Zn−1)t
dT→ · · · dT→ (Z1)t

dT→ (Z0)t → 0.
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By definition we can rewrite the module (Zi)t as Zi(K)⊗A St−i. Hence we get that

(Z•)t : 0→ Zn(K)⊗A St−n dT→ · · · dT→ Z1(K)⊗A St−1
dT→ Z0(K)⊗A St → 0.

Similarly, (M•)t : 0→ Hn(K)⊗A St−n dT→ · · · dT→ H1(K)⊗A St−1
dT→ H0(K)⊗A St → 0.

Finally, we propose a different notation fot the complex Z• that will be very conve-
nient. Observe that the module Zi is an ideal of the i-th module of the Koszul complex
K•(f;A[T]), where the maps have degree d on the grading of A. If we write the complex
with the adequate shift, we get

K•(f;A[T]) : 0→ Kn[−dn]
df→ Kn−1[−d(n− 1)]

df→ · · · df→ K1[−d]
df→ A[T1, . . . , Tn]→ 0,

Hence, with this notation we have that the complex Z• has as objects Zi = Zi(K)[di]⊗A
A[T1, . . . , Tn].

Lemma 1.5.2. Denote H ′i(Z•) for (H ′i(Z•))t = (Hi(Z•))t if i ≥ 0 and t > 0; and
(H ′0(Z•))0 = 0. For all i and all t, the conexion morphism δ : (Hi(B•))t → (Hi(Z•))t+1

induces an isomorphism δ′ : (Hi(B•))t ∼→ (H ′i(Z•))t+1.

Proof. The complex L• := K•(T;A[T]) with maps dT is exact since the sequence {T1, . . . , Tn}
is regular. In particular each homogeneous strand (L•)t is acyclic for all positive t.

Hence, for all i, t > 0, (Hi(B•))t δ→ (Hi(Z•))t+1 is an isomorphism. Denoting by π the
right-most (non-zero) map of the long exact sequence of homology we get a short ex-

act sequence 0 → H0(B•) δ→ H0(Z•) π→ H0(L•) → 0, that provides the isomorphism

H0(B•)
δ∼= ker(π). Moreover, (H0(L•))t = 0 iff t = 0 and (H0(L•))0 = A. Then,

we get the conexion morphism δ : (Hi(B•))t → (Hi(Z•))t+1 induces an isomorphism
δ′ : (Hi(B•))t ∼→ (H ′i(Z•))t+1.

By definition of Z•, B• y M•, for each t we have a graded short exact sequence of
complexes 0 → B• → Z• →M• → 0, giving rise to a long exact sequence in homology.
From Lemma 1.5.2, we get

· · · → Hi+1(M•)
∆→ H ′i(Z•)(1)→ Hi(Z•)→ Hi(M•)

∆→ H ′i−1(Z•)(1)→ · · ·
· · · → H1(M•)

∆→ H ′0(Z•)(1)→ H0(Z•)→ H0(M•)→ 0,
(1.8)

where Hi(M•)
∆→ H ′i−1(Z•) stands for the composition of the conection morphism in the

last exact sequence, with δ′ of Lemma 1.5.2. We get the following

Proposition 1.5.3. If Hi(M•) = 0 then Hi(Z•) = 0. In particular, if M• is acyclic,
then Z• is also acyclic.
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Proof. Using the long exact sequence we get that if Hi+1(M•) = Hi(M•) = 0, then
0 = Hi+1(M•)→ H ′i(Z•)(1)→ Hi(Z•)→ Hi(M•) = 0, hence Hi(Z•) = 0.

Again from the long exact sequence we get Hi(Z•)(1)→ Hi(Z•)→ Hi(M•) is exact for
all t and all i > 0. By hypothesis, Hi(M•) = 0, Since A is noetherian, Hi(Z•) is of finite
type. Since the map Hi(Z•)(1)→ Hi(Z•) is given by the composition of the isomorphism
δ′ with the inclusion (B•)t in (Z•)t, then, we get an isomorphism Hi(Z•)(1)

∼→ Hi(Z•).
Hence, for all t (H ′i(Z•))t+1

∼→ (Hi(Z•))t. Iteratively, from (Hi(Z•))−1 = 0 we get
(Hi(Z•))t = 0 for all t.

From the long exact sequence of homologies

· · · → H1((M•)t)
∆→ H ′0((Z•)t+1)

λ→ H0((Z•)t)→ H0((M•)t)→ 0,

we get

· · · → H1((M•)t)
∆→ (SymA(I))t+1

λ→ (SymA(I))t → (SymA/I(I/I
2))t → 0, (1.9)

where ∆ is the connecting mapping (composed by δ′) and λ is the downgrading mapping

λ : (SymA(I))t+1
∼= (H ′0(Z•))t+1

δ′−1→ (H0(B•))t ↪→ (H0(Z•))t ∼= (SymA(I))t,.

Let us go back to the relation between Rees algebras and Symmetric algebras. From
the long exact sequences arising from the short exact sequences of complexes 0→ B• →
Z• →M• → 0 (1.8), we get a condition on the map σ : SymA(I)→ ReesA(I) for being
an isomorphism, namely, for I to be of linear type.

From the long exact sequence (1.9) and the short exact sequence 0 → In+1 → In →
In/In+1 → 0 we obtain the following commutative diagrama

H1(M•) //SymA(I)

��

λ //SymA(I)

σ

��

π //SymA/I(I/I
2) //

γ

��

0

0 //ReesA(I)+
//ReesA(I) //gr //0.

where ReesA(I)+ consistes on the ideal of ReesA(I) with elements of possitive degree.

Proposition 1.5.4. If H1(M•) = 0 then σ : SymA(I)
∼→ ReesA(I) is an isomorphism,

namely, I is of linear type.

Proof. If H1(M•) = 0 for each degree i we get a commutative diagram

0 //(SymA(I))i+1

σi+1

��

λ //(SymA(I))i

σi
��

0 //(ReesA(I)+)i+1
//(ReesA(I))i
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where σ0 : A = (SymA(I))0 → (ReesA(I))0 = A is the identity. Since σ0 ◦ λ is injective,
then σ1 also is, hence, an isomorphism. Iteratively we get that σt is an isomorphism for
all t.

Theorem 1.5.5. If A is noetherian, and σ : SymA(I)→ ReesA(I) is the map above and
γ : SymA/I(I/I

2)→ grA(I its reduction modulo I, then σ is an isomorphism iff γ is an
isomorphism.

Proof. Clearly, if σ is an isomorphism, then also its reduction modulo I. Conversely,
from the Snake Lemma applied to the diagram

0 //Ki+1

��

//(SymA(I))i+1

λi+1

��

//I i+1 //

��

0

0 //Ki
//(SymA(I))i //I i // 0 ,

we get the short exact sequence 0 → Ki/λi+1(Ki+1) → SymA/I(I/I
2)i → grA(I)i → 0.

By hypotesis Ki = λi+1(Ki+1) for i > 1. Since K is a finitely generated ideal of SymA(I),
there exists n > 1 such that Ki+1 = SymA(I)1Ki, for i ≥ n. Applying λ we get
Ki = λ(Ki+1) = λ(SymA(I)1Ki) = IKi.

Localizing and using Nakayama lemma, we get that Ki = 0 for all i ≥ n. By descendent
induction we can annihilate the rest of the components.

1.6 Acyclicity of approximation complexes

Assume that A is an N-graded noetherian ring. Dente by m := A+ =
⊕

i>0Ai.

Remark 1.6.1. Write K• for the Koszul complex K•(x;A). If I and m have the same
radical then supp(Hi(K•)) ⊂ V (m), this is Hi(K•)p = 0 for p 6= m. Hence, we also have
supp(Hi(M•)) ⊂ V (m) and supp(Hi(Z•)) ⊂ V (m).

Laurent Busé and Jean-Pierre Jouanolou proved in [BJ03] that:

Proposition 1.6.2. Let I = (x1, . . . , xn) be an ideal of A such that rad(I) = rad(m)
and r = depth(m : A) ≥ 1. Then Hi(Z•) = 0 for all i ≥ max{1, n− r}. In particular if
n ≥ 2 and r ≥ n− 1, then Z• is acyclic.

This result states acyclicity when the ideals I and m have the same radical. Geomet-
rically, if I stands for the base locus ideal of a rational map, this means, that the map
is well-defined everywhere. Since the condition rad(I) = m is not ubiquitous, Busé and
Jouanolou gave a generalization of this result, in the same article [BJ03].

First, given an ideal J of a ring A denote by µ(J) the minimum number of generatos of
J .
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Definition 1.6.3. Let I be an ideal of a ring A. We say that I is a local complete
intersection (LCI) in Proj(A) iff for all p ∈ Spec(A) \ V (m) we have µ(Ip) = depth(Ip :
Ap). We say that I is an almost local complete intersection (ALCI) in Proj(A) iff for all
p ∈ Spec(A) \ V (m) we have µ(Ip) + 1 = depth(Ip : Ap).

Proposition 1.6.4. Let I = (f1, . . . , fn) be a LCI ideal of A. Take n ≥ 2, and assume
that depth(m : A) ≥ n − 1 and depth(I : A) = n − 2. Then, the complex Z• associated
to I is acyclic.

Lemma 1.6.5 ([BJ03, Lemma 4.10]). Let I = (f1, . . . , fn) be an ideal of A such that
depth(m : A) > depth(I : A) = r. Then H0

m(Hn−r(K•)) = 0.

Lemma 1.6.6 ([BJ03, Lemma 4.11]). Let I = (f1, . . . , fn) be an ideal of A. Write ζ :=
µ(I)−depth(I : A) and for all p ∈ Spec(A)\V (m) we have ζp := µ(Ip)−depth(Ip : Ap).
Then

1. for all i > ζ, Hi(M•) = 0;

2. for all p ∈ Spec(A) \ V (m) we have ζ > ζp, hence, Hζ(M•) = H0
m(Hζ(M•)).

In [HSV83a] it is proved that:

Theorem 1.6.7. Let A be a ring and I an ideal of A. Consider the following statements:

1. I is generated by a proper sequence;

2. the complex Z• associated to I is acyclic.

Then (a) implies (b). Moreover, if A is local, with maximal ideal m, with residue infinite
field K, or if A is graded such that A0 = K is an infinite field and m : A+ generated in
degree 1; then (a) and (b) are equivalent.

1.7 Implicitization

In this section we will overview the implicitization problem in two perspective, focusing
on the second one. First, we will breafly introduce the metho by Sederberg and Chen,
later devoloped in depth by Busé, Cox and D’Andrea. This method consists in the so
called theory of moving curves and moving surfaces. We will see that this is a “inno-
cent” way of abording a very deep subject that involves sofisticated homological and
commutative algebra and geometry.

Second, we will treat the implicitization problem by means of approximation complexes,
where we will use all the algebraic tool we exposed the sections before. This point of
view has been developed by Busé, Chardin and Jouanolou since the begining of this
century.

31



1.7.1 Moving curves and moving surfaces

In this part, we will scketch some results on moving curves and moving surfaces obteined
by Sederberg and Chen in [SC95], and later more sofistificated approaches by Busé, Cox
and D’Andrea in [Cox01, Cox03a, D’A01, BCD03].

We will follow the classical notation by D. Cox. For a better reading, we will give a
short dictionnary. Denote by s, t, u the variables X1, X2, X3, K = C and hence, the ring
A = k[X1, X2, X3] or A = k[X1, X2] will be R = C[s, t, u] or C[s, t] respectively. We will
write x, y, z, w for T1, T2, T3, T4 and a, b, c, d for the functions f1, f2, f3, f4. A,B,C,D will
denote the syzygies that we have written a, b, c, d, namely A · a+ ·Bb+C · c+D · d = 0
or A · a+B · b+C · c = 0, depending on the context. We will denote by k the degree of
A,B,C,D.

The question we want to reply is: How to get a implicit equation F which defines the
curve or the surface given the parametrically by a, b, c, d.

Moving curves

Assume that φ : P1
C → P2

C is a map which has as image a plane curve. We will compute
the implicit equation of the image of φ, given by φ(s, t) = (a(s, t), b(s, t), c(s, t)), where
a, b, c ∈ R = C[s, t] are homogeneous polynomials of degree k. First, assume that
gcd(a, b, c) = 1. Hence, φ has no base points. Sederberg et. al. have introduced in [SC95]
and [CSC98] the idea of moving lines in P1.

Let x, y, z be homogeneous coordinates in P2. A moving line consists in an equation

A(s, t)x+B(s, t)y + C(s, t)z = 0

where A,B,C ∈ R are homogeneous polynomials of the same degree. We can see the
formula obove as a family of lines parametrized by (s, t) ∈ P1.

Definition 1.7.1. We will say that the moving line A(s, t)x + B(s, t)y + C(s, t)z = 0
follows the parametrization φ(s, t) = (a(s, t), b(s, t), c(s, t)) if

A(s, t)a(s, t) +B(s, t)b(s, t) + C(s, t)c(s, t) = 0

for all (s, t) ∈ P1.

Geometrically, this means that the point (s, t) lies on a line. Algebraically, Definition
1.7.1 says that A,B,C is a syzygy in a, b, c, namely (A,B,C) ∈ Syz(a, b, c), where
Syz(a, b, c) ⊂ R3 is the module of syzygies of (a, b, c).

Since Syz(a, b, c) is a graded module, we write Syz(a, b, c)s for its s-strand. We will see
that Syz(a, b, c)k−1 determines the implicit equation of the image of φ.
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Indeed, consider the Koszul map given by (a, b, c), R3
k−1

(a,b,c)−→ R2k−1, which has degree k.
Its kernel is Syz(a, b, c)k−1. Observe that dimC(R3

k−1) = 3k, dimC(R2k−1) = 2k. Hence,
dimC(Syz(a, b, c)k−1) = k if and only if the map given by (a, b, c) has maximal rank.
Thus, we can get k generator (moving lines) linearly independent following φ. We will
denote them by:

Aix+Biy + Ciz =
k−1∑
j=0

Li,j(x, y, z)sjtk−1−j, i = 0, . . . , k − 1,

where the Li,j(x, y, z) are linear forms with coefficients in C.

One of the main results in this area is the following:

Theorem 1.7.2. Let C be the image of φ, and denote by e its degree. Then det(Li,j) =
λF e, where λ ∈ C− {0} and F = 0 is the implicit equation of the curve C ⊂ P2.

This can be seen for example in [Cox01, Cox03a].

Observe that a, b, c heve degree k, the curve C is defined by φ which has degree k/e,
where e = deg(φ). Hence, deg(F e) = k. On the other hand, the determinant of Theorem
1.7.2 has also degreek, since the forms (Li,j) are linear.

We will study this with some more algebra. Take I = (a, b, c) ⊂ R. There is an exact
sequence

0→ Syz(a, b, c)→ R(−k)3 (a,b,c)−→ I → 0.

In two variables, Hilbert syzygy theorem implies that Syz(a, b, c) is free. By the Hilbert
polynomial we get

Syz(a, b, c) ∼= R(−k − µ1)⊕R(−k − µ2), µ1 + µ2 = k.

Hence, if we write µ = µ1 ≤ µ2 = k−µ, then, there exist syzygies p, q ∈ Syz(a, b, c) such
that Syz(a, b, c) = R.p⊕R.q where the degree of p is µ and the degree of µ is k− µ. We
say that {p, q} is a µ-bases of the parametrization φ : P1 → P2.

Hence, we have the following free presentation of I

0→ R(−k − µ1)⊕R(−k − µ2)→ R(−k)3 (a,b,c)−→ I → 0. (1.10)

The existence of µ-basis has many important consecuences, namely,

Proposition 1.7.3. If C is the image of φ, e = deg(φ) and p, q form a µ-basis of φ.
Then, Res(p, q) = F e, where F = 0 is the implicit equation of C ⊂ P2.

From the existence of a µ-basis we can get important consecuences about the regularity
of the ideal I = (a, b, c). From the free presentation (1.10) of I, we can prove that
reg(I) = 2k − µ− 1. Hence, a µ-basis determines the regularidad of an ideal.
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Moving surfaces

In this part, we will focus on the implicitization problem of surfaces in P3. Take φ : P2 →
P3, given by homogeneous polynomials a, b, c, d ∈ R = C[s, t, u] of degree k. Assume, as
before, that a, b, c, d have no common zeroes, that is φ has no base points.

The analog of moving lines in P2 are moving planes in P3. A mooving plane is an
equation

A(s, t, u)x+B(s, t, u)y + C(s, t, u)z +D(s, t, u)w = 0,

where x, y, z, w are homogeneous coordinates in P3, and A,B,C,D are elements of R of
the samne degree.

Definition 1.7.4. We say that a moving plane follows the parametrization φ if

A(s, t, u)a(s, t, u) +B(s, t, u)b(s, t, u) + C(s, t, u)c(s, t, u) +D(s, t, u)d(s, t, u) = 0

for all (s, t, u) ∈ P2. That is, if and only if A,B,C,D ∈ Syz(a, b, c, d).

We will see that moving planes are not enough in order to get the implicit equation of
the image of φ, it will be necessary the use of moving surfaces of higher degree. In this
case, we will consider moving quadrics, which are equations:

(s, t, u)x2 +B(s, t, u)xy + · · ·+ I(s, t, u)zw + J(s, t, u)w2 = 0,

where A,B, . . . , I, J are homogeneous elements of R of the same degree. A mov-
ing quadric follows the parametrization when A,B, . . . , I, J ∈ Syz(a2, ab, . . . , cd, d2) ⊂
R10.

Moving planes and moving quadrics can be obtained as

MP : R4
k−1

(a,b,c,d)−→ R2k−1, and

MQ : R10
k−1

(a2,ab,...,cd,d2)−→ R3k−1

Observe that dimC(R2k−1) = k(2k + 1) and dimC(R4
k−1) = 2k(k + 1). Hence, the space

of moving planes has dimension 2k(k+ 1)− k(2k+ 1) = k iff the map MP has maximal
rank. Similarly, the space of moving quadrics has dimension (k2 + 7k)/2 iff MQ has
maximal rank.

Remark 1.7.5. Remark that each moving plane gives place to four moving quadrics,
obtained by multiplication by the four variables x, y, z, w. Hence, if MP and MQ have
maximal rank, then there are exactly (k2 + 7k)/2 − 4k = (k2 − k)/2 moving quadric
linearly independent not coming from moving planes. Taking these (k2 − k)/2 moving
quadrics and the k moving planes, we build a matrix M of size (k2 + k)/2× (k2 + k)/2,
where:
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1. k rows correspond to the k moving planes of degree k − 1;

2. (k2 − k)/2 rows come from the moving quadrics of degree k − 1.

We get a similar result to Theorem 1.7.2:

Theorem 1.7.6. Let φ : P2 → P3 be a rational map without base points, given by
φ(s, t, u) = (a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u)). Assume φ admits exactly k linearly
independientes moving planes of degree k − 1 following the parametrization. Then, the
image of φ is given by det(M) = 0, where M is the matrix in Remark 1.7.5.

We can rewrite this as follows. Let φ be a rational map given by homogeneous polyno-
mials f1, f2, f3, f4 of degree k. Write x1, x2, x3 for the variables s, t, u and by t1, t2, t3, t4
the variables x, y, z, w. Then, we write the moving planes as polynomials

a1(x1, x2, x3)t1 + a2(x1, x2, x3)t2 + a3(x1, x2, x3)t3 + a4(x1, x2, x3)t4

and the moving quadrics as

a1,1(x1, x2, x3)t21 + a1,2(x1, x2, x3)t1t2 + · · ·+ a3,4(x1, x2, x3)t3t4 + a4,4(x1, x2, x3)t24,

where the ai and the ai,j are homogeneous polynomials. If we take k moving planes
L1, . . . , Lk and l = (k2 − k)/2 moving quadrics Q1, . . . , Ql of degree k − 1 following the
parametrization, we obtain a square matrix M corresponding to the map of C[x, y, z, w]-
modules⊕k

i=1 C[x, y, z, w]⊕⊕l
j=1 C[x, y, z, w] → C[s, t, u]k−1 ⊗C C[x, y, z, w]

(p1, . . . , pk, q1, . . . , ql) 7→ ∑k
i=1 piLi +

∑l
j=1 qjQj

It can be shown that is always posible to chose L1, . . . , Ld and Q1, . . . , Ql such that
det(M) 6= 0 everywhere, and whose zeroes give the implicit equation of the image of φ
raised to its degree. Again, we identify C[s, t, u]k−1 with Cl, which permits “hiding” the
variables s, t, u in order to get expresions that only depend on x, y, z, w.

1.7.2 Implicitization by means of approximation complexes

Recall from our first sections, let K be a commutative ring, h a graded ring of K-graded
algebras, defined as:

h : K[T1, . . . , Tn]→ A, Ti 7→ fi,

that induces a map of K-projective schemes

φ : Proj(A) \ V (f1, . . . , fn) =
⋃

D+(fi)→
⋃

D+(Ti) = Pn−1
K .
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We want to compute the closed image of φ, called, “scheme-theoretic image” of φ.

From Lemma 1.2.2, the ker(h) defines the closure of the image of φ. If J stands for
ker(h)∼, then V (J ) = V ((ker(h) : (T1, . . . , Tn)∞)∼).

In this subsection we compute the implicit equation of V (J ) with a different point of
view respecto to the subsection above. Hence, assume K is a field, A is a polynomial
ring in the variables X1, . . . , Xn−1. Thus, the maps h and φ are rewritten:

h : K[T1, . . . , Tn]→ K[X1, . . . , Xn−1], Ti 7→ fi, and

φ : Pn−2
K \ V (f1, . . . , fn) =

⋃
D+(fi)→

⋃
D+(Ti) = Pn−1

K .

We have a rational map

φ : Pn−2
K 99K Pn−1

K : (x1 : . . . : xn−1) 7→ (f1 : . . . : fs)(x1, . . . , xn−1). (1.11)

If φ is generically finite, then im(φ) is a hypersurface in Pn−1
K , and the implicitization

problem consists in computing the equation that spans the principal ideal ker(h).

Denote by I = (f1, . . . , fn), with fi of degree d. The grading on A is the standar grading
where deg(Xi) = 1. Finally, we write Z•, B• and M• for the approximation complexes
associated to I, defined in 1.5.

Note: The aim of this section is to show that in the implicitization context we consider,
the complex Z• is acyclic and gives a resolution for SymA(I). We will see that
splitting this complex in its homogeneous parts we can get the implicit equation
by taking determinant of an appropriate strand [GKZ94, Appendix A].

The relation between this section and the sections above is given by the following result:

Theorem 1.7.7 ([Bus06, Prop. 4.2]). If H0
m(A) = 0, then,

annK[T1,...,Tn](ReesA(I)ν) = ker(h), for all ν ∈ N.

Remark that this always happens when A = K[X1, . . . , Xn−1]. We get the following
result that relates annA(ReesA(I)η) with the local cohomology module H0

m(ReesA(I)).

Lemma 1.7.8 ([Bus01, Prop. 1.2]). For a ring R and B = R[X1, . . . , Xn−1]/I ′, such
that R ∩ I ′ = 0, and let η ∈ N be such that H0

m(B)η = 0. Then

annR(Bη) = annR(Bη+ν) = H0
m(B)0, for all ν ∈ N.
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In order to get a generator for ker(h), is necessary to compute a resolution. In spite of
this good property of ReesA(I), there are no universal resolutions for ReesA(I). This is
one of the key points in our approach. Hence, we will approximate ReesA(I) by SymA(I),
which, as we have seen, in several cases it is a good approximation. Henceforward, we
will give conditions in order to compute ker(h) from SymA(I).

Recall we have a Z2-grading on A[T1, . . . , Tn], which transfers to a Z2-grading in SymA(I)
via the presentation:

0→ J ′ → A[T1, . . . , Tn]
α→ SymA(I)→ 0,

where J ′ = {∑ giTi :
∑
gifi = 0, gi ∈ A[T1, . . . , Tn]}, as has been proven in Section

1.3.1.

Denote by SymA(I)ν the ν-graded strand of SymA(I), corresponding to the grading on A.
Precisely, SymA(I)ν =

⊕
t≥0AνSym t

A(I), where Sym t
A(I) denotes the t-graded strand

with respect to the grading on the Ti’s.

Proposition 1.7.9 ([BJ03, Prop. 5.1]). Assume I is of linear type off V (m), and set
η ∈ Z such that H0

m(SymA(I))ν = 0 for all ν ≥ η. Then

annK[T1,...,Tn](SymA(I)ν) = ker(h), for all ν ≥ η.

we conclude the following result:

Corollary 1.7.10. If H0
m(SymA(I)ν) = 0 then,

annK[T1,...,Tn](SymA(I)ν) ⊂ ker(h), for all ν ≥ η.

We will assume that the map φ : Proj(A) 99K PnK is generically finete, hence, φ defines
a hypersurface in PnK and thus, ker(h) is principal. Denote by H the irreducible implicit
equation which defines the closure of im(φ).

First, we will assume that V (I) = V (m) in Spec(A), namely φ will have empty base
locus. If V (I) = ∅ in Proj(A), from Proposition 1.6.2 we have that the complex Z• is
acyclic since depth(m : A) = n− 1. Hence, it provides a resolution for SymA(I). Thus,
we can compute ker(h) as the MacRae invariant S(SymA(I)ν) which coincides with the
determinant of (Z•)ν , for ν ≥ η.

Theorem 1.7.11 ([BJ03, Thm. 5.2]). Assume that rad(I) = rad(m). Let η ∈ Z is such
that H0

m(SymA(I))ν = 0 for all ν ≥ η. Then, the homogeneous strand of degree ν of the
complex

0→ (Zn−1)ν → (Zn−2)ν → . . .→ (Z1)ν → Aν [T1, . . . , Tn]

is Hdeg(φ), of degree dn−2.
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We deduce from Theorem 1.7.11 that:

Proposition 1.7.12. Under the hypothesis of Theorem 1.7.11, Hdeg(φ) can be computed
as the gcd of the maximal minors of the map of K[T1, . . . , Tn]-modules

(Z1)ν
dT→ Aν [T1, . . . , Tn], for all ν ≥ η.

We can give an specific bound for η. Recall that in the case of “moving curves” and
“mooving surfaces” the sizes of matrices could be computed a priori and were related
to the the regularity of the ring. In the same way, η depends on intrinsec characteristic
I.

Proposition 1.7.13 ([BJ03, Prop. 5.5]). Let n ≥ 3 and assume that rad(I) = m. Then,
H0

m(SymA(I))ν = 0 for all ν ≥ (n− 2)(d− 1).

We will now overview the case where φ admits “good” base points. It is no know
how to trear this case in great generality, hence, we will assume that the base locus
V (I) = V (f1, . . . , fn), is a locally complete intersection (LCI) in Proj(A) of codimension
n − 2. Thus, we have that V (I) ⊂ Pn−2

K is locally given by a regular sequence and
depth(I : A) = n − 2 < depth(m : A) = n − 1. From Proposition 1.6.4 we get that the
complex Z• is acyclic. We conclude that Z• is a resolution of SymA(I). We have the
following result on implicitization:

Theorem 1.7.14 ([BJ03, Thm. 5.7]). Let I = (f1, . . . , fn) be a LCI in Proj(A) of
codimension n−2, and φ is generically finite. Let η ∈ Z be such that H0

m(SymA(I))ν = 0
for all ν ≥ η. Then, the detereminant of the strand of degree ν of the complex

0→ (Zn−1)ν → (Zn−2)ν → . . .→ (Z1)ν → Aν [T1, . . . , Tn]

is Hdeg(φ), of degree dn−2 − dimKΓ(Proj(A)/I,OProj(A)/I).

We obtain that:

Proposition 1.7.15. Under the hypothesis of Theorem 1.7.14, Hdeg(φ) can be computed
as the gcd of the maximal minors of the map of K[T1, . . . , Tn]-modules

(Z1)ν
dT→ Aν [T1, . . . , Tn], for all ν ≥ η.

Similar to Proposition 1.7.13, it is possible to give a bound for η as is shown in the next
result:

Proposition 1.7.16 ([BJ03, Prop. 5.10]). Let n ≥ 3 and assume I = (f1, . . . , fn) is a
LCI in Proj(A) of codimension n−2. Then, H0

m(SymA(I))ν = 0 for all ν ≥ (n−2)(d−1).
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Next, we present several results that extent the previous work, and that precede the
work in this thesis. For an ideal I of a Z-graded K-algebra A, we donote

εI := indeg(I) = inf{ν ∈ Z : Iν 6= 0}.

Theorem 1.7.17. Let I = (f1, . . . , fn) be an ideal of A of codimension n−2 in Proj(A).
Let η := (n− 1)(d− 1)− εI .

1. The following statements are equivalent:

a) V (I) is locally defined by at most n− 1 equations;

b) Z• is acyclic;

c) (Z•)ν is acyclic for ν � 0.

2. If Z• is acyclic, then:

det((Z•)ν) = S(SymA(I)ν) = H(deg(φ))G, for all ν ≥ η.

where G 6= 0 is a constant polynomial iff V (I) is LCI in Proj(A).

3. Moreover, following statements are equivalent:

a) V (I) is locally of linear type;

b) V (I) is locally a complete intersection;

c) Proj(SymA(I)) = Proj(ReesA(I));

d) G = 1, that is, det((Z•)ν) = S(SymA(I)ν) = H(deg(φ)) for all ν ≥ η.

Note: Recall that we have that α : A[T1, . . . , Tn] → SymA(I) is surjective, as A =
K[X1, . . . , Xn−1], we have that there exists an injective map Proj(SymA(I)) ↪→
Pn−1

K × PnK. With the notation of Theorem 1.7.17 we have that

S(SymA(I)ν) = (π2)∗(Proj(SymA(I))) ∼= K[T1, . . . , Tn](−dn−2 +
∑
x∈V (I)

dx),

for all ν ≥ (n − 1)(d − 1) − εI . This says that deg(G) is a sum of number that
mesure how far is V (I) from being LCI. Precisely,

deg(G) =
∑
x∈V (I)

(ex − dx),

where ex := e(Jx, Rx) is the multiplicity in x and dx := dimAx/x·Ax(Ax/Ix).
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2 Preliminaries on toric varieties

All along this chapter we will follow [Ful93] and [CLS]. We assume that the reader is
familiar with the definition of (normal) toric varieties in terms of a rational polyhedral
fan.

As usual, N and M denote dual lattices of rank n − 1, which correspond respectively
to the one parameter subgroups and characters of the associated torus T = TN =
Spec(K[M ]). Here K denotes a fixed field. We denote by 〈−,−〉 : M ×N → Z the
natural pairing.

2.1 Divisors on toric varieties

A divisor on a toric variety which is invariant under the action of the torus admits an
explicit characterization in terms of lattice objects. The aim of the present section is to
summarize such powerful description.

Let ∆ be a rational polyhedral fan in the lattice N ∼= Zn−1 and let T∆ be the corre-
sponding toric variety with torus T = Spec(K[M ]).

If we denote by ∆(1) the set of rays of the fan, then each orbit Oρ (of the action of T on
T∆) corresponding to a ray ρ in ∆(1) is a torus of dimension n − 2. The orbit closure
Dρ = Oρ has then the same dimension n− 2. It follows that to each ray ρ corresponds
an irreducible subvariety of T∆ of codimension 1, i.e. a prime divisor on T∆.

Definition 2.1.1. A Weil divisor D =
∑
aiDi on the toric variety T∆ is said to be

T -invariant if every prime divisor Di is invariant under the action of the torus T on T∆.

Proposition 2.1.2. The T -invariant Weil divisors are exactly the divisors of the form∑
ρ∈∆(1) aρDρ, ai ∈ K.

We turn now our attention to T -invariant Cartier divisors.

Definition 2.1.3. A Cartier divisor D on a toric variety T∆ is said to be T -invariant if
it corresponds to a T -invariant Weil divisor.
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We start by giving a description of the Cartier divisor corresponding to a character of the
torus T . Since a character χu defines a non-zero rational function on the toric variety
T∆, then {(T∆, χ

u)} is a Cartier divisor which we denote by div(χu). For each ray
ρ ∈ ∆(1), denote by nρ the corresponding minimal generator (i.e. the first lattice point
along the ray, starting from the vertex). The proof of the next three statements can be
found in [Ful93, page 61].

Lemma 2.1.4. Let T∆ be a toric variety. Let u be an element of M and χu its corre-
sponding character, then ordDρ(χ

u) = 〈u, nρ〉 for every ρ ∈ ∆(1).

We deduce that the Weil divisor associated to the principal Cartier divisor {(T∆, χ
u)}

is
∑

ρ∈∆(1) 〈u, nρ〉Dρ.

For affine toric varieties, a very strong result holds.

Theorem 2.1.5. Let Uσ be the affine toric variety of a cone σ in Zn−1, then every
T -invariant Cartier divisor on Uσ is of the form (Uσ, χ

u) for some character χu of the
torus T . In particular, every T -invariant Cartier divisor on Uσ is principal.

Theorem 2.1.5 can be used to describe a T -invariant Cartier divisor D on a general toric
variety T∆. Indeed, consider the open cover of T∆ given by the affine toric varieties
Uσ, as σ varies in ∆. By the above theorem, for each σ we can find an element u(σ)
such that the local equation of D on Uσ is χ−u(σ), so that D =

{
(Uσ, χ

−u(σ))
}
σ∈∆

is the
description of the T -invariant Cartier divisor D.

We can make use of Theorem 2.1.5 to determine when two T -invariant Cartier divisors
are the same. Since the group of Cartier divisors is embedded in the group of Weil
divisors, two Cartier divisors are identical if and only if their associated Weil divisors are
so. In particular two T -invariant Cartier divisors D = {(Uσ, χu)} and D′ =

{
(Uσ, χ

u′)
}

(for u and u′ in M) on an affine toric variety Uσ are identical if and only if [D] =∑
ρ∈∆(1) 〈u, nρ〉Dρ and [D′] =

∑
ρ∈∆(1) 〈u′, nρ〉Dρ are identical. This happens if and only

if
∑

ρ∈∆(1) 〈u− u′, nρ〉Dρ = 0. This last statement is equivalent to saying that u−u′ lies

in σ⊥ ∩M , which is a sublattice of M . Therefore we have the following:

Proposition 2.1.6. There is a bijection between the set of T -invariant Cartier divisors
on an affine toric variety Uσ and the quotient lattice M/σ⊥ ∩M .

2.2 Ample sheaves and support functions

In this section we give a characterization of the sheaf associated to a T - invariant divisor.
This allows us to state two criteria for such a sheaf to be ample or very ample.

Recall that the support supp(∆) of a fan ∆ is defined to be the union of all its cones.

42



Definition 2.2.1. A function ψ : supp(∆)→ R is said to be a ∆-linear support function
if it is linear on each cone σ of ∆, that is, on each cone it is determined by a linear
function, and assumes integer values at lattice vectors, i.e. ψ(supp(∆) ∩ N ) ⊂ Z. If
there is no possibility of confusion, we call ψ just a support function. A ∆-linear support
function ψ is said to be strictly convex if it is convex and the linear functions determined
by different cones are different.

Let now ∆ be a rational polyhedral fan and T∆ the associated toric variety. Combin-
ing Theorem 2.1.5 and Proposition 2.1.6, we see that a Cartier divisor is specified by{
u(σ) ∈M/σ⊥ ∩M}

σ∈∆
.

Proposition 2.2.2. There is a bijective correspondence between T -invariant Cartier
divisors on a toric variety T∆ and ∆-linear support functions.

We also have the following general result that will be used.

Lemma 2.2.3. Let T∆ be a toric variety and T = Spec(K[M ]) its torus. Let D be a T -
invariant Cartier divisor and O(D) its associated sheaf. If we denote by O the structure
sheaf of T∆, then we have Γ(T,O(D)) = Γ(T,O).

Note that K[M ] can be expressed as a direct sum K[M ] =
⊕

u∈M Kχu, so the previous
lemma says that Γ(T,O(D)) =

⊕
u∈M Kχu.

Assume the fan is complete, that is supp(∆) = NR. Using the description in Proposi-
tion 2.2.2, we can see that any T -invariant Cartier divisor D defines a polytope ND. Let
ψD be the support function defined by D, then, identifying vectors u of MR with linear
functions from NR to R, we define ND to be

ND = {u ∈MR : u ≥ ψD on supp(∆)} . (2.1)

Now, identifying D with its corresponding Weil divisor [D] =
∑
aρDρ, we can rewrite

(2.1) as
ND = {u ∈MR : 〈u, nρ〉 ≥ −aρ ∀ρ ∈ ∆(1)} (2.2)

A priori, (2.2) only says that ND is a polyhedron (an intersection of closed half spaces),
but it is shown in [Ful93, pp. 67], that ND is in fact bounded and therefore a polytope
under our assumtion that supp(∆) = NR.

Reciprocally, let N be a full dimensional lattice polytope in MR, and let ∆(N ) be its
normal fan. Two vectors v and v′ belong to the interior of the same cone ∆(N ) if and
only if the linear fuctions 〈v,−〉 and 〈v′,−〉 attain their minimum over N at the same
face of N . The cones in this fan are in bijection with the domains of linearity of the
associated support function (see 2.4), which is strictly convex. Let D = Dψ be the T -
invariant Cartier divisor corresponding to a support function ψ on the associated toric
variety T∆(N ), and let O(D) be its associated sheaf.
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Theorem 2.2.4. With notation as above we have

Γ(T∆,O(D)) =
⊕

u∈ND∩M

Kχu

where ND is the polytope of (2.2).

Let ψ be a ∆-linear support function, with ∆(N ) the fan of a polytope N in MR, and let
u(σ) ∈MR such that ψ(v) = 〈u(σ), v〉 for any v in σ. In this case it is straightforward
to check that ψ is convex if and only if for every maximal cone σ of ∆(N ) and v in
supp(∆(N )) we have 〈u(σ), v〉 ≥ ψ(v). Theorems 2.2.6 and 2.2.5 give a very explicit
criterion in terms of the support function ψD to determine when O(D) is ample or very
ample.

Theorem 2.2.5. Let T∆(N ) be the toric variety of a polytope N . Let D be the divisor
associated to a support function ψ, then O(D) is generated by its sections if and only if
ψ is convex.

Denote by PN the N -dimensional projective space over K. Let D be a T -invariant Cartier
divisor on a toric variety T∆ such that O(D) is generated by its sections. Choosing and
ordering a basis {χui : ui ∈ ND ∩M} gives a morphism

fD : T∆ → PN : x→ (χu0(x), . . . , χuN (x)) (2.3)

where N + 1 = #(ND ∩M ). Such a mapping is a closed embedding if and only if the
sheaf O(D) is very ample. As in the previous theorem, we can give a characterization of
this condition in terms of the support function ψ of D.

Theorem 2.2.6. . Let D be a T -invariant Cartier divisor on a toric variety T∆, then
O(D) is ample if and only if ψD is strictly convex. Moreover, O(D) is very ample if and
only if ψD is strictly convex and for every maximal cone σ of ∆, the lattice points of the
dual cone σ∨ ∩M are generated by {u− u(σ) : u ∈ ND ∩M}.

We show now that every toric variety arising from a polytope is projective. This fact
makes it possible to compare the two different constructions of a toric variety we have
studied, and show that they are indeed equivalent.

Let N be a full dimensional lattice polytope in MR and ∆(N ) its normal fan in NR.
Recall that, the support of ∆(N ) is such that supp(∆(N )) = NR. We define a function
ψN : supp(∆(N ))→ R as

ψN (v) = inf {〈u, v〉 : u ∈ N} . (2.4)

We call this function the support function ofN . This name makes sense since the support
function ψN of a lattice polytope N is a ∆(N )-linear support function. Moreover, the
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support function ψN of a lattice polytope N is strictly convex. Indeed, convexity follows
from the definition, since inf {a+ b : a ∈ A, b ∈ B} = inf {a : a ∈ A}+inf {b : b ∈ B} for
arbitrary sets A and B of real numbers.

Proposition 2.2.7. The toric variety of a polytope is projective.

Proof. Let N be a polytope in MR and T = TN the associated toric variety. The
previous remark shows that the support function ψN is strictly convex. Then, by The-
orem 2.2.6, ψN determines a divisor D on T whose associated sheaf O(D) is ample.
By [Har77, Sec. II], there exists an integer such that the sheaf O(D)⊗m on T is very
ample. Since T is complete, in particular it is proper, so T is a proper algebraic variety
admitting a very ample sheaf. This shows that T is projective.

2.3 Projective toric varieties from a polytope

In this section we review the construction of a projective toric variety associated to a
lattice polytope N ⊂MR ∼= Rn−1 (see also [GKZ94]).

Let A = N ∩M be the set of lattice points of N . Let K be a field and PN the projective
N -space over K, where N + 1 is the cardinality of A. Write A = {α0, . . . , αN}, where
αi = (αi,1, . . . , αi,n−1) for i = 0, . . . , N . We have a map

ρA : (K∗)n−1 ↪→ PN , (2.5)

defined by ρA(t1, . . . , tn−1) = (t
α0,1

1 · · · tα0,n−1

n−1 : . . . : t
αN,1
1 · · · tαN,n−1

n−1 ).

For simplicity, we set t = (t1, . . . , tn−1) and tαi = t
αi,1
1 · · · tαi,n−1

n−1 , hence

ρA : (K∗)n−1 ↪→ PN : t 7→ (tα0 : . . . : tαN ).

The Zariski closure of the image of ρA in PN is called the projective toric variety TN
associated to N , and we will write T instead of TN when N is understood:

TN := im(ρA). (2.6)

A general affine variety V = Spec(R) is said to be normal if it is irreducible and its
local rings OV,p at each p of V are integrally closed (cf. [CLS, Prop. 3.0.11]). This last
condition is equivalent to the K-algebra R being integrally closed. In particular, the
affine toric variety Uσ = Spec(K[σ∨ ∩M ]) associated to a rational polyhedral cone σ
in NR is always irreducible. Moreover, Uσ is normal because the corresponding monoid
algebra K[σ∨ ∩M ] is an integrally closed ring.

We will give some important results about the normality.
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Definition 2.3.1. A full dimensional lattice polytope N ⊂MR is very ample if for every
vertexm ∈ N , the semigroup generated by the setN∩M−m = {m′ −m : m′ ∈ N ∩M}
is saturated in M .

Theorem 2.3.2 ([CLS, Thm. 2.2.11, Prop. 2.2.17 and Cor. 2.2.18]). Let N ⊆ MR be
a full dimensional lattice polytope of dimension n ≥ 3, then k · N is normal for all
k ≥ n− 2. Moreover, a normal lattice polytope N is very ample. Hence, if dim(N ) ≥ 2,
then k · N is very ample for all k ≥ n− 2. And if dim(N ) = 2, then N is very ample.

Thus, we have that every full dimensional lattice polygon N ⊆ R2 is normal.

Having established more than one definition of toric varieties, it makes sense to compare
both of them.

Theorem 2.3.3 ([CLS, Prop. 3.1.6]). Let N ⊆MR be a full dimensional lattice polytope.
Let k ∈ Z be such that k · N is very ample. Then Tk·N ∼= T∆(N ), where ∆(N ) is the
normal fan of N .

We will give yet another approach to toric varieties in the following section.

2.4 The Cox ring of a toric variety

Our main motivation in Chapter 6 for considering regularity in general G-gradings comes
from toric geometry. Among G-graded rings, homogeneous coordinate rings of a toric
varieties are of particular interest in geometry. When T is a toric variety, G := Cl(T )
is the (torus-invariant) divisor class group of T , also called the Chow group of T . In
this case, the grading can be related geometrically with the action of this group on the
toric variety, and hence, the graded structure on the ring can be interpreted in terms of
global sections of the structural sheaf of T and in terms of character and valuations.

Henceforward, let ∆ be a non-degenerate fan in the lattice N ∼= Zn−1, and let T be
a toric variety associated to ∆. Write ∆(i) for the set of i-dimensional cones in ∆.
As we recalled, there is a bijection between the set ∆(i) and the set of closed torus-
invariant i-dimensional subvarieties of T . In particular, each ρ ∈ ∆(1) corresponds to
the torus-invariant Weil divisor Dρ ∈ Z∆(1) ∼= Zn−1.

Suppose that ρ1, . . . , ρs ∈ ∆(1) are one-dimensional cones of ∆ and assume ∆(1) spans

Rn−1. As before, nρi denotes the primitive generator of ρi. There is a map M
ρ→ Z∆(1) :

m 7→∑s
i=1 〈m,nρi〉Dρi . We will identify [Dρi ] with a variable xi.

The torus-invariant divisor classes correspond to the elements of the cokernel Cl(T ) of
this map ρ, getting an exact sequence

0→ Zn−1 ∼= M
ρ−→ Zs π−→ Cl(T )→ 0.
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Set S := k[x1 . . . , xs]. From the sequence above we introduce in S a Cl(T )-grading,
which is coarser than the standard Zn−1-grading.

To any non-degenerate toric variety T , we associate an homogeneous coordinate ring,
called the Cox ring of T (cf. [Cox95]). D. A. Cox defines (loc. cit.) the homogeneous
coordinate ring of T to be the polynomial ring S together with the given Cl(T )-grading.
We next discuss briefly this grading. A monomial

∏
xaii determines a divisor D =∑

i aiDρi which will be denoted by xD. For a monomial xD ∈ S we define its degree as
deg(xD) = [D] ∈ Cl(T ).

Cox remarks loc. cit. that the set ∆(1) is enough for defining the graded structure of S,
but the ring S and its graded structure does not suffice for reconstructing the fan. In
order to not to lose the fan information, we consider the irrelevant ideal

B :=

 ∏
nρi /∈σ

xi : σ ∈ ∆

 ,

where the product is taken over all the nρi such that the ray R≥0nρi is not contained
as an edge in any cone σ ∈ ∆. Finally, the Cox ring of T will be the Cl(T )-graded
polynomial ring S, with the irrelevant ideal B.

Given a Cl(T )-graded S-module P , Cox constructs a quasi-coherent sheaf P∼ on T by
localizing just as in the case of projective space, and he shows that finitely generated
modules give rise to coherent sheaves. It was shown by Cox (cf. [Cox95]) for simplicial
toric varieties, and by Mustata in general (cf. [Mus02]), that every coherent OT -module
may be written as P∼, for a finitely generated Cl(T )-graded S-module P .

For any Cl(T )-graded S-module P and any δ ∈ Cl(T ) we may define P (δ) to be the
graded module with components P (δ)ε = Pδ+ε and we set

H i
∗(T , P∼) :=

⊕
δ∈Cl(T )

H i(T , P (δ)∼).

We have H0(T ,OT (δ)) = Sδ, the homogeneous piece of S of degree δ, for each δ ∈
Cl(T ). In fact each H i

∗(T ,OT ) is a Zn−1-graded S-module. We can compute (cf.
[Mus02, Prop. 1.3]), for i > 0,

H i
∗(T , P∼) ∼= H i+1

B (P ) := lim
−→
j

ExtiS(S/Bj, S). (2.7)

and an exact sequence 0 −→ H0
B(P ) −→ P −→ H0

∗ (T , P∼) −→ H1
B(P ) −→ 0.

We will use these results in Chapter 7, applied to the computation of implicit equations
of images of rational maps of toric hypersurfaces.
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3 Implicit equations of Toric
hypersurfaces in projective space by
means of an embedding

3.1 Introduction.

In this chapter we extend the method of computing an implicit equation of a parametrized
hypersurface in Pn focusing on different compactifications of the domain T , following
the ideas of [Bot10]. Hereafter in this chapter we will always assume that T is embedded
in PN , and its coordinate ring A is n-dimensional, graded and Cohen-Macaulay.

In Section 3.2 we give a fast overview on the general implicitization setting in codimension
one, following the spirit of many papers in this subject revised in Chapter 1 /cf. also
[BJ03], [BCJ09], [BD07]), as well as in [BDD09] and [Bot10]. We begin by considering
the affine setting and we continue by considering the mentioned compactifications. We
show in Section 3.2 one important application which motivated our study: T is the
toric compactification defined from the Newton polytope of the polynomials defining the
rational map.

In Section 3.3 we focus on the implicitization problem for a rational map ϕ : T 99K Pn
defined by n + 1 polynomials of degree d. We extend the method for projective 2-
dimensional toric varieties developed in [BDD09] to a map defined over an (n − 1)-
dimensional Cohen-Macaulay closed scheme T embedded in PN . We show that we
can relax the hypotheses of [BDD09] on the base locus by admitting it to be a zero-
dimensional almost locally complete intersection scheme.

Precisely, as we have seen in Chapter 1, we associate a complex (Z•)• to the map ϕ.
Recall from Chapter 1, that the determinant D of Z• in degree ν can be computed either
as an alternating sum of subdeterminants of the differentials in Zν or as the greatest
common divisor of the maximal-size minors of the matrix Mν : (Z1)ν → (Z0)ν associated
to the right-most map of (Z•)ν . Theorem 3.3.10, which can be considered the main result
of this chapter, states that this gcd computes a power of the implicit equation (with some
extraneous factor), in a good degree ν.
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3.2 General setting

Throughout this section we will give a general setting for the implicitization problem
of hypersurfaces. Our aim is to analyze how far these techniques from homological
commutative algebra (syzygies and graded resolutions) can be applied.

Write Ak := Spec(K[T1, . . . , Tk]) for the k-dimensional affine space over K. Assume we
are given a rational map

f : An−1 99K An : s := (s1, . . . , sn−1) 7→
(
f1

g1

, . . . ,
fn
gn

)
(s) (3.1)

where deg(fi) = di and deg(gi) = ei, and fi, gi without common factors for all i =
1, . . . n. Observe that this setting is general enough to include all classical implicitization
problems. Typically all gi are assumed to be equal and a few conditions on the degrees
are needed, depending on the context.

We consider a rational map ϕ : T 99K Pn, where T is a suitable compactification of a
suitable dense open subset of An−1, in such a way that the map f extends from T to
Pn via ϕ and that the closed image of f can be recovered from the closed image of ϕ.

Assume T can be embedded into some PN , and set A for the homogeneous coordinate
ring of T . Since An−1 is irreducible, so is T , hence A is a domain. Assume also that
the closure of the image of ϕ is a hypersurface in Pn, hence, ker(ϕ∗) is a principal ideal,
generated by the implicit equation.

Most of our results are stated for a general arithmetically Cohen-Macaulay scheme as
domain. Nevertheless, the map (3.1) gives rise, naturally, to a toric variety T on the do-
main (cf. [KD06, Sect. 2], [Cox03b], and [GKZ94, Ch. 5 & 6]) associated to the following
polytope N (f).

Definition 3.2.1. Given a polynomial h =
∑

α∈Zn−1 aαt
α we define its Newton polytope,

N (h), as the convex hull of the finite set {α : aα 6= 0} ⊂ Zn−1. Now, let f denote a map
as in equation (3.1). We will write

N (f) := conv

(
n⋃
i=1

(N (fi) ∪N (gi))

)

the convex hull of the union of the Newton polytopes of all the polynomials defining the
map f .

There is a standard way of associating a semigroup SN to a polytope N ⊂ Rn−1. Indeed,
take ι : Rn−1 ↪→ Rn : x 7→ (x, 1), and define SN as the semigroup generated by the lattice
points in ι(N ). Due to a theorem of Hochster, if SN is normal then the semigroup
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algebra K[SN ] is Cohen-Macaulay. Unluckily, it turns out that SN is in general not
always normal. A geometric or combinatorial characterization of the normality of K[SN ]
is one of the most important open problem in combinatorial algebra (cf [BGT97]).

Note that mN × {m} = {(p1 + · · · + pm,m) : pi ∈ N} ⊂ SN ∩ (Zn−1 × {m}) for any
m ∈ N, but in general these two sets are not equal. When this happens for all m ∈ N,
we say that the polytope N is normal, equivalently (m · N )∩Zn−1 = m · (N ∩Zn−1) for
all m ∈ N, and in this case it follows that K[SN ] is Cohen-Macaulay.

Theorem 3.2.2. Let N ⊆MR be a full dimensional lattice polytope of dimension n−1 ≥
2. Then m · N is normal for all m ≥ n− 2.

We refer the reader to [CLS, Thm. 2.2.11.] for a proof. We deduce that every full
dimensional lattice polygon N ⊆ R2 is normal.

In this chapter we focus on the study of toric varieties by fixing an embedding. Changing
N by a multiple l · N changes the embedding, hence, we will fix the polytope. Since we
also need Cohen-Macaulayness of the quotient ring by the corresponding toric ideal in
several results, we will assume throughout that N is normal.

Remark 3.2.3. Given a map f as in Equation (3.1), we will always assume that
N := N (f) is normal. Therefore, the coordinate ring A of T = T (N ) will be al-
ways Cohen-Macaulay, hence T ⊂ PN will be arithmetically Cohen-Macaulay (aCM).
This is automatic when n− 1 = 2.

As we recalled in Chapter 2, the polytope N (f) defines an (n−1)-dimensional projective
toric variety T provided with an ample line bundle which defines an embedding: if
N = #(N (f) ∩ Zn−1)− 1 we have T ⊆ PN . Write ρ for the embedding determined by
this ample line bundle. We get that the map

(A∗)n−1 ρ
↪→ PN : (s) 7→ (. . . : sα : . . .), (3.2)

where α ∈ N (f) ∩ Zn−1, factorizes f through a rational map ϕ with domain T , that is
f = ϕ◦ρ. We will show later in this chapter that by taking N ′(f) as the smallest lattice
contraction of N (f) (that is N ′(f) is a lattice polytope such that N (f) = dN ′(f) and
d ∈ Z is as big as possible) the computation becomes essentially better.

The main reason for considering projective toric varieties associated to the Newton poly-
tope N (f) of f , is based on the following fact.

Remark 3.2.4. Assume f is as in Equation (3.1), with g1 = · · · = gn. Write f0 := gi
for all i. Assume also that all fi are generic with Newton polytope N , and hence write
N := N (fi) for all i. Set N := #(N ∩ Zn−1) − 1 and let T ⊂ PN be the toric variety
associated to N . Write ϕ : T 99K Pn : T 7→ (h0 : · · · : hn) the map induced by
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f . Since the coefficients are generic, the vector of coefficients of h0, . . . , hn is not in
V (ResN (h0, . . . , hn)); where V (ResN (h0, . . . , hn)) stands for the zero locus of the sparse
resultant ResN (h0, . . . , hn) associated to h0, . . . , hn and N . Hence, they have no common
root in T . Thus, ϕ has empty base locus in T .

If we take instead another lattice polytope Ñ strictly containing N , the fi will not be
generic relative to Ñ , and typically the associated map ϕ̃ will have a non-empty base
locus in the toric variety T̃ associated to Ñ .

3.3 The implicitization problem

In this section we focus on the computation of the implicit equation of a hypersurface
in Pn, parametrized by an (n − 1)-dimensional arithmetically Cohen Macaulay (aCM)
subscheme of some projective space PN . We generalize what we have seen in Chapter 1
following the ideas of [BDD09] and [Bot10], etc., and we give a more general result on
the acyclicity of the approximation complex of cycles, by relaxing conditions on the base
ring and on the base locus.

Henceforward in this section, let T be a (n − 1)-dimensional projective aCM closed
scheme over a field K, embedded in PNK , for some N ∈ N. Write J the homogeneous
defining ideal of T and A = K[T0, . . . , TN ]/J for its CM coordinate ring. Set T :=
T0, . . . , TN the variables in PN , and X the sequence T0, . . . , Tn of variables in Pn.

We denote m := A+ = (T) ⊂ A, the maximal homogeneous irrelevant ideal of A.

Let ϕ be a finite map defined over a relative open set U in T defining a hypersurface in
Pn, e.g. U = Ω:

PN ⊃ T
ϕ
99K Pn : T 7→ (h0 : · · · : hn)(T), (3.3)

where h0, . . . , hn are homogeneous elements of A of degree d. Set h := h0, . . . , hn. The
map ϕ gives rise to a morphism of graded K-algebras in the opposite sense

K[T0, . . . , Tn]
ϕ∗−→ A : Ti 7→ hi(T). (3.4)

Since ker(ϕ∗) is a principal ideal in K[X], write H for a generator. We proceed as in
Chapter 1, [BJ03] or in [BDD09] to get a matrix (representation matrix) such that the
gcd of its maximal minors gives Hdeg(ϕ), or possibly, a multiple of it.

Definition 3.3.1. Let S ⊂ Pn be a hypersurface. A matrix M with entries in the
polynomial ring K[X0, . . . , Xn] is called a representation matrix of S if it is generically
of full rank and if the rank of M evaluated in a point p of Pn drops if and only if the
point p lies on S .
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Remark 3.3.2. Observe that if we start with an affine setting as in (3.1), T ⊂ PN can be
taken as the embedded toric variety associated to N ′(f). In the classical implicitization
problem it is common to suppose that gi = gj for all i and j, and deg(fi) = deg(gi) = d for
all i. Hence, write f0 for any of the gi. This setting gives naturally rise to a homogeneous
compactification of the codomain, defined by the embedding

An j
↪→ Pn : x 7→ (1 : x). (3.5)

It is clear that for f0, . . . , fn taken as above, the map f : An−1 99K An of equation (3.1)
compactifies via ρ and j to ϕ : T 99K Pn. It is important to note that im(f) can be
obtained from im(ϕ) and vice-versa, via the classical (first variable) dehomogenization
and homogenization respectively. Finally, we want to give a matrix representation for
a toric hypersurface of Pn given as the image of the toric rational map ϕ : T 99K Pn :
T 7→ (h0 : · · · : hn)(T).

Since ϕ : T 99K Pn is not, in principle, defined everywhere in T , we set Ω for the open
set of definition of ϕ. Precisely, we define

Definition 3.3.3. Let ϕ : T 99K Pn given by s 7→ (h0 : · · · : hn)(s) The base locus of ϕ
is the closed subscheme of T

X := Proj (A/(h0, . . . , hn)) .

We call Ω the complement of the base locus, namely Ω := T \X. Let ΓΩ be the graph
of ϕ inside Ω× Pn.

Clearly ΓΩ
π1−→ Ω is birational, which is in general not the case over X. As was shown

in [Bot09b], the scheme structure of the base locus when we take (P1)n as the codomain,
can be fairly complicated and extraneous factors may occur when projecting on (P1)n

via π2 (cf. 4). This motivates the need for a splitting of the base locus, giving rise to
families of multiprojective bundles over T .

Due to this important difference between the projective and multiprojective case, we need
to separate the study of the two settings. In the next section, we treat the case of Pn,
and in Chapter 4 the case of (P1)n. In both situations, we find a matrix representation
of the closed image of the rational map ϕ, and we compute the implicit equation and
extraneous factors that occur.

Next, we introduce the homological machinery needed to deal with the computations of
the implicit equations and the representation matrix of the hypersurface.
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3.3.1 Homological algebra tools

In this section we will study some properties of approximation complexes, introduced
in Chapter 1. Our aim is to get similar results in a new context: the ring A is the
coordinate ring of a toric variety, which is CM, but in general not Gorenstein. The non-
Gorensteinness makes things more complicated since, for example, we cannot identify
H

dim(A)
m (A) with ω∨A. We will first brefly recall the definition of these complexes, just in

order to fix a notation, and later prove that if the ideal I is LACI then the associated
Z-complex is acyclic. Finally we give a bound for the regularity of the symmetric algebra
of I over A.

For simplicity, we denote by Ti the classes of each variable in the quotient ring A =
K[T]/J . Recall that A is canonically graded, each variable having weight 1. Let I =
(h0, . . . , hn) ⊂ A be the ideal generated by the hi’s.

More precisely, we will see that the implicit equation of S can be recovered as the
determinant of certain graded parts of the Z-complex we define below. We denote
by Z• the approximation complex of cycles associated to the sequence h0, . . . , hn of
homogeneous elements of degree d over A (cf. [Vas94b]), as in the Definition 3.3.4.

Consider the Koszul complex (K•(h, A), δ•) associated to h0, . . . , hn over A and denote
Zi = ker(δi), Bi = im(δi+1). It is of the form

K•(h, A) : A[−(n+ 1)d]
δn+1−→ A[−nd]n+1 δn−→ · · · δ2−→ A[−d]n+1 δ1−→ A

where the differentials are matrices such that every non-zero entry is ±hi for some i.

Write Ki :=
∧iAn+1[−i · d]. Since Zi ⊂ Ki, it keeps the shift in the degree. Note that

with this notation the sequence

0→ Zi → Ki → Bi−1 → 0 (3.6)

is exact graded, and no degree shift is needed.

We introduce new variables T0, . . . , Tn with deg(Ti) = 1. Since A is N-graded, A[X]
inherits a bigrading.

Definition 3.3.4. Denote by Zi = Zi[i ·d]⊗AA[X] the ideal of cycles in A[X], and write
[−] for the degree shift in the variables Ti and (−) the one in the Ti. The approximation
complex of cycles (Z•(h, A), ε•), or simply Z•, is the complex

Z•(h, A) : 0 −→ Zn(−n)
εn−→ Zn−1(−(n− 1))

εn−1−→ · · · ε2−→ Z1(−1)
ε1−→ Z0 (3.7)

where the differentials ε• are obtained by replacing hi by Ti for all i in the matrices of
δ•.
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Recall that H0(Z•) = A[X]/im(ε1) ∼= SymA(I). Note that the degree shifts are with
respect to the grading (−) given by the Ti’s, while the degree shifts with respect to the
grading of A are already contained in our definition of the Zi’s. From now on, when we
take the degree ν part of the approximation complex, denoted (Z•)ν , it should always
be understood to be taken with respect to the grading [−] induced by A.

Under certain conditions on the base locus of the map, this complex is acyclic and
provides a free K[X]-resolutions of (SymA(I))ν for all ν. Hence, we focus on finding
acyclicity conditions for the complex Z•. In this direction we have

Lemma 3.3.5. Let m ≥ n be non-negative integers, A an m-dimensional graded Cohen-
Macaulay ring and I = (h0, . . . , hn) ⊂ A is of codimension (hence depth) at least n − 1
with deg(hi) = d for all i. Assume that X := Proj(A/I) ⊂ S is locally defined by n
equations (i.e. locally an almost complete intersection). Then Z• is acyclic.

Proof. The proof follows ideas of [BC05, Lemma 2] and [BD07, Lemma 1]. Observe that
the lemma is unaffected by an extension of the base field, so one may assume that K is
infinite.

By [HSV83a, Theorem 12.9], we know that Z• is acyclic (resp. acyclic outside V (m))
if and only if I is generated by a proper sequence (resp. X is locally defined by a
proper sequence), see Theorem 1.6.7. Recall that a sequence a1, . . . , an of elements in a
commutative ring B is a proper sequence if ai+1Hj(a1, . . . , ai;B) = 0 for i = 0, . . . , n− 1
and j > 0, where the Hj’s denote the homology groups of the corresponding Koszul
complex (cf. Definition 1.3.3).

By following the same argument of [BC05, Lemma 2] and since X is locally defined by
n equations, one can choose h̃0, . . . , h̃n to be sufficiently generic linear combinations of
the hi’s such that

1. (h̃0, . . . , h̃n) = (h0, . . . , hn) ⊂ A,

2. h̃0, . . . , h̃n−2 is an A-regular sequence, hence h̃0 . . . , h̃n−1 is a proper sequence in A,

3. h̃0, . . . , h̃n−1 define X in codimension n− 1.

Note that this last condition is slightly more general (and coincides when m = n) than
the one in [BC05, Lemma 2]. Set J := (h̃0, . . . , h̃n−1) and write Jum for the unmixed
part of J of codimension n− 1. Hence, observe that we obtain h̃n ∈ Jum.

Since h̃n ∈ Jum, we show that h̃nH1(h̃0, . . . , h̃n−1;A) = 0. Applying [BH93, Thm. 1.6.16]
to the sequence h̃0, . . . , h̃n−1, we obtain that H1(h̃0, . . . , h̃n−1;A) ∼= Extn−1

A (A/J,A).
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Taking the long exact sequence of Ext•A(−, A) coming from the short exact sequence
0→ Jum/J → A/J → A/Jum → 0, we get that

· · · // Extn−2
A (Jum/J,A) // Extn−1

A (A/J,A) EDBC
GF@A

// Extn−1
A (A/Jum, A) // Extn−1

A (Jum/J,A) // · · ·

is exact. Since A is a Cohen-Macaulay noetherian graded ring, and Jum/J is a m− (n−
1)-dimensional A-module, Extn−1

A (Jum/J,A) and Extn−2
A (Jum/J,A) vanish (cf. [Mat89,

Thm. 17.1]). Hence
Extn−1

A (A/J,A) ∼= Extn−1
A (A/Jum, A),

thus, since h̃n ∈ Jum, h̃n annihilates Extn−1
A (A/Jum, A), hence also h̃n annihilates

H1(h̃0, . . . , h̃n−1;A) which finishes the proof.

We stress in the following remark one useful application of the previous Lemma 3.3.5.

Remark 3.3.6. Let m ≥ n be non-negative integers. Set T an arithmetically Cohen-
Macaulay scheme over K embedded in some PN with coordinate ringA of affine dimension
m. Assume we are given a rational map ϕ : T 99K Pn given by n + 1 homogeneous
polynomials h0, . . . , hn ∈ A := K[T0, . . . , TN ]/I(T ). Write Z• for the approximation
complex of cycles associated to the sequence h0, . . . , hn. If the base locus of ϕ, X ⊂ T ,
is locally defined by n equations, then Z• is acyclic, independent of m and N .

We translate Lemma 3.3.5 geometrically.

Corollary 3.3.7. Assume m = n is a non-negative integer. Let T be an (n − 1)-
dimensional arithmetically CM closed subscheme of PN defined by a homogeneous ideal
J , and coordinate ring A = K[T]/J . Assume we are given a rational map ϕ : T 99K Pn
given by n + 1 homogeneous polynomials h0, . . . , hn ∈ A of degree d. Write Z• for the
approximation complex of cycles associated to the sequence h0, . . . , hn. If the base locus of
ϕ, X ⊂ T , is finite, and locally an almost complete intersection (defined by n equations),
then Z• is acyclic.

The following result establishes a vanishing criterion on the graded strands of the local
cohomology of SymA(I), which ensures that the implicit equation can be obtained as a
generator of the annihilator of the symmetric algebra in that degree.

SinceA is a finitely generated graded Cohen MacaulayA-module of dimension n, H i
m(A) =

0 for all i 6= n and Hn
m(A) = ω∨A, where (−)∨ := ∗ homA(−,K) stands for the Matlis

dualizing functor (cf. [BH93]). Write

ai(M) := inf{µ : (H i
m(M))>µ = 0}. (3.8)
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Hence, we set
γ := an(A) = inf{µ : (ω∨A)µ = 0}, (3.9)

and we conclude the following result.

Theorem 3.3.8. Let A = K[T]/J be a CM graded ring of dimension n. Let I =
(h0, . . . , hn) be a homogeneous ideal of A, with deg(hi) = d for all i. Let X := Proj(A/I) ⊂
T be finite and locally an almost complete intersection. Set

ν0 := max{(n− 2)d, (n− 1)d− γ}, (3.10)

then H0
m(SymA(I))ν = 0 for all ν ≥ ν0.

Proof. For the bound on ν, consider the two spectral sequences associated to the double
complex C•m(Z•), both converging to the hypercohomology of Z•. The first spectral
sequence stabilizes at step two with

′
∞E

p
q = ′

2E
p
q = Hp

m(Hq(Z•)) =

{
Hp

m(SymA(I)) for q = 0,
0 otherwise.

The second has first terms ′′1E
p
q = Hp

m(Zq)[qd]⊗AA[X](−q). The comparison of the two
spectral sequences shows that H0

m(SymA(I))ν vanishes as soon as (1
′′Ep

p)ν vanishes for
all p, in fact we have that

end(H0
m(SymA(I))) ≤ max

p≥0
{end(1

′′Ep
p)} = max

p≥0
{end(Hp

m(Zp))− pd},

where we denote, for an A-module M , end(M) = max{ν | Mν 6= 0}. Since Z0
∼= A

we get H0
m(Z0) = 0. The sequence 0 → Zi+1 → Ki+1 → Bi → 0 is graded exact (cf.

Equation (3.6)), hence, from the long exact sequence of local cohomology for i = 0
(writing B0 = I) we obtain

· · · → H0
m(I)→ H1

m(Z1)→ H1
m(K1)→ · · · .

As I is an ideal of an integral domain, H0
m(I) = 0, it follows from the local cohomology

of A that H1
m(K1) = 0, hence H1

m(Z1) vanishes. By construction, Zn+1 = 0 and Bn =
im(dn) ' A[−d]. Using the fact that Hn

m(A)ν = 0 for ν ≥ −1 (resp. ν ≥ 0), we can
deduce that Hn

m(Zn)ν = Hn
m(Bn)ν = (ω∨A)[d] = 0 if ν ≥ d− γ. Write

εp := end(1
′′Ep

p) = end(Hp
m(Zp))− pd

By [Cha04, Cor. 6.2.v] end(Hp
m(Zp)) ≤ max0≤i≤n−p{ap+i(A)+(p+i+1)d} = max{nd, (n+

1)d−γ}, where γ := −an(A) as above. Hence, εp := max{(n−p)d, (n+ 1−p)d−γ}. As
εp decreases when p increases, εp ≤ ε2 = max{(n − 2)d, (n − 1)d − γ} which completes
the proof.
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This generalizes what we sketched in Chapter 1 according to [BJ03] and [BCJ09] and also,
we generalize [BDD09] to general (n − 1)-dimensional arithmetically Cohen-Macaulay
schemes with almost locally complete intersection base locus. Next, we recall how the
homological tools developed in this part are applied for computing the implicit equation
of the closed image of a rational map.

3.3.2 The representation matrix, the implicit equation, and the
extraneous factor

It is well known that the annihilator above can be computed as the determinant (or
MacRae invariant) of the complex (Z•)ν0 (cf. Chapter 1 and for example, [BJ03], [BCJ09],
[Bot09b], [BDD09]). Hence, the determinant of the complex (Z•)ν0 is a multiple of a
power of the implicit equation of S . Indeed, we conclude the following result.

Lemma 3.3.9. Let T be an (n − 1)-dimensional arithmetically CM closed subscheme
of PN defined by a homogeneous ideal J , and coordinate ring A = K[T]/J . Let I =
(h0, . . . , hn) be a homogeneous ideal of A, with deg(hi) = d for all i. Take ϕ as in
(3.3), and let X := Proj(A/I) ⊂ T , the base locus of ϕ, be finite and locally an almost
complete intersection. Set ν0 := max{(n − 2)d, (n − 1)d − γ}, then H0

m(SymA(I))ν = 0
and annK[X](SymA(I)ν) ⊂ ker(ϕ∗), for all ν ≥ ν0.

Proof. The first part follows from 3.3.8. The proof of the second part can be taken
verbatim from [BD07, Lemma 2].

Corollary 3.3.10. Let T be an (n − 1)-dimensional arithmetically CM closed sub-
scheme of PN defined by a homogeneous ideal J , and coordinate ring A = K[T]/J .
Let I = (h0, . . . , hn) be an homogeneous ideal of A, with deg(hi) = d for all i. Let
X := Proj(A/I) ⊂ T be finite and locally almost a complete intersection. Let ν0 be
as in eqrefeqnu0. For any integer ν ≥ ν0 the determinant D of the complex (Z•)ν of
K[X]-modules defines (up to multiplication with a constant) the same non-zero element
in K[X]. Moreover, D = F deg(ϕ)G, where F is the implicit equation of S .

Proof. It follows from Lemma 3.3.5, Lemma 3.3.9, and Theorem 4.3.5, by following the
same lines of the proof of [BJ03, Thm. 5.2].

By [GKZ94, Appendix A], the determinant D can be computed either as an alternating
product of subdeterminants of the differentials in (Z•)ν or as the greatest common divisor
of the maximal-size minors of the matrix M associated to the right-most map (Z1)ν →
(Z0)ν of the Z-complex (cf. Definition 3.3.4). Note that this matrix is nothing else than
the matrix Mν of linear syzygies as described in the introduction; it can be computed

with the same algorithm as in [BD07] or [BDD09]. Hence, if T
ϕ
99K Pn is as in Corollary
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3.3.10, the matrix Mν of linear syzygies of h0, . . . , hn in degree ν ≥ ν0 is a representation
matrix for the closed image of ϕ.

As was done by Busé et al. in [BCJ09, Sec. 2], we conclude that the the extraneous factor
G can be described in terms of linear forms.

Proposition 3.3.11. If the field K is algebraically closed and X is locally generated by
at most n elements then, there exist linear forms Lx ∈ K[X], and integers ex and dx such
that

G =
∏
x∈X

Lex−dxx ∈ K[X].

Moreover, if we identify x with the prime ideal in Spec(A) defining the point x, ex is the
Hilbert-Samuel multiplicity e(Ix, Ax), and dx := dimAx/xAx(Ax/Ix).

Proof. The proof goes along the same lines of [BCJ09, Prop. 5], just observe that [BCJ09,
Lemma 6] is stated for a Cohen-Macaulay ring as is A in our case.

3.4 The representation matrix for toric surfaces

We applied here in down to earth terms, the results above for the case of toric surfaces
following [BDD09]. It is a natural question how this kind of matrix representation can
be used concretely to rational surfaces defined as the image of a map

A2 f
99K A3

(s, t) 7→
(
f1(s, t)

f0(s, t)
,
f2(s, t)

f0(s, t)
,
f3(s, t)

f0(s, t)

)
where fi ∈ K[s, t] are coprime polynomials of degree d. In order to put the problem in
the context of graded modules, one first has to consider an associated projective map

T
ϕ
99K P3

P 7→ (h0(P ) : h1(P ) : h2(P ) : h3(P ))

where T is a 2-dimensional projective toric variety (for example P2 or P1 × P1) with
coordinate ring A and the hi ∈ A are homogenized versions of their affine counterparts fi.
In other words, as in Section 3.2, T is a suitable compactification of the affine space (A∗)2

[Cox03a, Ful93]. In this case, a linear syzygy (or moving plane) of the parametrization
g is a linear relation on the h0, . . . , h3, i.e. a linear form L = a0X0 +a1X1 +a2X2 +a3X3

in the variables X0, . . . , X3 with ai ∈ K[s, t] such that∑
i=0,...,3

aihi = 0 (3.11)
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Recall that in the same way as for curves, one can set up the matrix Mν of coefficients
of the syzygies in a certain degree ν, but unlike the case of curves, it is in general not
possible to choose a degree ν such that Mν is a square matrix representation of the
surface (cf. Chapters 1.7 and 3.1).

Since we are looking for a matrix representation, we will assume that the base locus
X := Proj(A/I) is locally a complete intersection. Thus, we will get a symbolic matrix
mν , whose rank drops at p if and only if p lies on the surface.

Theorem 3.4.1 (Thm. 3.3.10). Suppose that X := Proj(A/I) ⊂ T has at most dimen-
sion 0 and is locally a complete intersection. Let γ = inf{µ : (ω∨A)µ = 0}, be as in (3.9)
and ν0 = 2d − γ. For any integer ν ≥ ν0 the determinant D of the complex (Z•)ν of
K[T ]-modules defines (up to multiplication with a constant) the same non-zero element
in K[X] and

D = F deg(ϕ)

where F is the implicit equation of S .

By Theorem 3.3.8, one can replace the bound in this result by the more precise bound
ν0 = max{d− γ, 2d+ 1− indeg(H0

m(ωA/I.ωA))} if there is at least one base point.

By [GKZ94, Appendix A], as mentioned in Chapter 1, the determinant D can be com-
puted either as an alternating sum of subdeterminants of the differentials in Zν or as
the greatest common divisor of the maximal-size minors of the matrix M associated to
the first map (Z1)ν → (Z0)ν . Note that this matrix is nothing else than the matrix Mν

of linear syzygies as described in the introduction; it can be computed with the same
algorithm as in [BD07] by solving the linear system given by the degree ν0 part of (3.11),
cf. Chapter 8. As an immediate corollary we deduce the following very simple translation
of Theorem 3.3.10, which can be considered the main result of this section.

Corollary 3.4.2. Let ϕ : T 99K P3 be a rational parametrization of the surface S ⊂ P3

given by ϕ = (h0 : h1 : h2 : h3) with hi ∈ A. Let Mν be the matrix of linear syzygies of
h0, . . . , h3 in degree ν ≥ 2d − γ, i.e. the matrix of coefficients of a K-basis of Syz(ϕ)ν
with respect to a K-basis of Aν. If ϕ has only finitely many base points, which are local
complete intersections, then Mν is a representation matrix for the surface S .

We should also remark that by [KD06, Prop. 1] (or [Cox01, Appendix]) the degree of
the surface S can be expressed in terms of the area of the Newton polytope and the
Hilbert-Samuel multiplicities of the base points:

deg(ϕ)deg(S ) = Area(N (f))−
∑

p∈V (h0,...,h3)⊂T

ep (3.12)

where Area(N (f)) is twice the Euclidean area of N (f), i.e. the normalized area of the
polygon. For locally complete intersections, the multiplicity ep of the base point p is just
the vector space dimension of the local quotient ring at p.
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3.5 The special case of biprojective surfaces

Bihomogeneous parametrizations, i.e. the case T = P1 × P1, are particularly important
in practical applications, so we will now make explicit the most important constructions
in that case and make some refinements.

In this section, we consider a rational parametrization of a surface S

P1 × P1 f
99K P3

(s : u)× (t : v) 7→ (f0 : f1 : f2 : f3)(s, u, t, v)

where the polynomials f0, . . . , f3 are bihomogeneous of bidegree (e1, e2) with respect to
the homogeneous variable pairs (s : u) and (t : v), and e1, e2 are positive integers. We
make the same assumptions as in the general toric case. Let d = gcd(e1, e2), e′1 = e1

d
,

and e′2 = e2
d

. So we assume that the Newton polytope N (f) is a rectangle of length e1

and width e2 and N ′(f) is a rectangle of length e′1 and width e′2.

So P1×P1 can be embedded in Pm, m = (e′1 + 1)(e′2 + 1)− 1 through the Segre-Veronese
embedding ρ = ρe1,e2

P1 × P1 ρ
↪→ Pm

(s : u)× (t : v) 7→ (. . . : siue
′
1−itjve

′
2−j : . . .)

We denote by T its image, which is an irreducible surface in Pm, whose ideal J is
generated by quadratic binomials. We have the following commutative diagram.

P1 × P1
f //___

ρ

��

P3

T

ϕ

::v
v

v
v

v

(3.13)

with ϕ = (h0 : . . . : h3), the hi being polynomials in the variables T0, . . . , Tm of degree
d. We denote by A = K[T0, . . . , Tm]/J the homogeneous coordinate ring of T . We can
give an alternative construction of the coordinate ring (cf. Section 2.4). Consider the
N-graded K-algebra

S :=
⊕
n∈N

(
K[s, u]ne′1 ⊗K K[t, v]ne′2

) ⊂ K[s, u, t, v]

which is finitely generated by S1 as an S0-algebra. Then P1 × P1 is the bihomogene-
ous spectrum Biproj(S) of S, since Proj(

⊕
n∈N K[s, u]ne′1) = Proj(

⊕
n∈N K[t, v]ne′2) = P1.

Write T i,j := T(e′2+1)i+j for i = 0, . . . , e′1 and j = 0, . . . , e′2. The Segre-Veronese embed-
ding ρ induces an isomorphism of N-graded K-algebras

A
θ−→ S

T i,j 7→ siue
′
1−itjve

′
2−j.
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The implicit equation of S can be obtained by the method of approximation complexes
by computing the kernel of the map

K[X0, . . . , X3] → A

Xi 7→ hi

The ring A is an affine normal semigroup ring and it is Cohen-Macaulay. It is Gorenstein
if and only if e′1 = e′2 = 1 (or equivalently e1 = e2), which is the case treated in [BD07].
The ideal J is easier to describe than in the general toric case (compare [Sul08, 6.2] for
the case e′2 = 2). The generators of J can be described explicitly. Denote

Ai :=

(
T i,0 . . . T i,e

′
2−1

T i,1 . . . T i,e
′
2

)
,

then the ideal J is generated by the 2-minors of the 4× e′1e′2-matrix below built from the
matrices Ai: (

A0 . . . Ae′1−1

A1 . . . Ae′1

)
. (3.14)

The degree formula for this setting, which is a direct corollary of (3.12):

deg(ϕ)deg(S ) = 2e1e2 −
∑

p∈V (h0,...,h3)⊂T

ep

where as before ep is the multiplicity of the base point p.

We claim that it is better to choose the toric variety defined by N ′(f) instead of N (f).
Let us now give some explanations why this is the case. As we have seen, a bihomo-
geneous parametrization of bidegree (e1, e2) gives rise to the toric variety T = P1 × P1

determined by a rectangle of length e′1 and width e′2, where e′i = ei
d

, d = gcd(e1, e2), and
whose coordinate ring can be described as

S :=
⊕
n∈N

(
K[s, u]ne′1 ⊗K K[t, v]ne′2

) ⊂ K[s, u, t, v]

Instead of this embedding of P1 × P1 we could equally choose the embedding defined by
N (f), i.e. a rectangle of length e1 and width e2, in which case we obtain the following
coordinate ring

Ŝ :=
⊕
n∈N

(K[s, u]ne1 ⊗K K[t, v]ne2) ⊂ K[s, u, t, v]

It is clear that this ring also defines P1 × P1 and we obviously have an isomorphism

Ŝn ' Sd·n
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between the graded parts of the two rings, which means that the grading of Ŝ is coarser
and contains less information. It is easy to check that the above isomorphism induces an
isomorphism between the corresponding graded parts of the approximation complexes
Z• corresponding to S and Ẑ• corresponding to Ŝ, namely

Ẑν ' Zd·ν
If the optimal bound in Theorem 3.3.10 for the complex Z is a multiple of d, i.e. ν0 = d·η,
then the optimal bound for Ẑ is ν̂0 = η and we obtain isomorphic complexes in these
degrees and the matrix sizes will be equal in both cases. If not, the optimal bound ν̂0

is the smallest integer bigger than ν0

d
and in this case, the vector spaces in Ẑν̂0 will be

of higher dimension than their counterparts in Zν0 and the matrices of the maps will be
bigger. An example of this is given in the next section.

3.6 Examples

Example 3.6.1. We first treat some examples from [KD06]. Example 10 in the cited
paper, which could not be solved in a satisfactory manner in [BD07], is a surface para-
metrized by

f0 = (t+ t2)(s− 1)2 + (−1− st− s2t)(t− 1)2

f1 = (t+ t2)(s− 1)2 + (1 + st− s2t)(t− 1)2

f2 = (−t− t2)(s− 1)2 + (−1 + st+ s2t)(t− 1)2

f3 = (t− t2)(s− 1)2 + (−1− st+ s2t)(t− 1)2

The Newton polytope N ′(f) of this parametrization is

b

bb

b

b
0 1 2

0

1

2

3

We can compute the new parametrization over the associated variety, which is given by
linear forms h0, . . . , h3, i.e. d = 1 (since there is no smaller homothety N ′(f) of N (f))
and the coordinate ring is A = K[T0, . . . , T8]/J where J is generated by 21 binomials
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of degrees 2 and 3. Recall that the 9 variables correspond to the 9 integer points in
the Newton polytope. In the optimal degree ν0 = 1 as in Theorem 3.3.8, the implicit
equation of degree 5 of the surface S is represented by a 9× 14-matrix, compared to a
15 × 15-matrix with the toric resultant method (from which a 11 × 11-minor has to be
computed) and a 5 × 5-matrix with the method of moving planes and quadrics. Note
also that this is a major improvement of the method in [BD07], where a 36× 42-matrix
representation was computed for the same example.

Example 3.6.2. Example 11 of [KD06] is similar to Example 10 but an additional term is
added, which transforms the point (1, 1) into a non-LCI base point. The parametrization
is

f0 = (t+ t2)(s− 1)2 + (−1− st− s2t)(t− 1)2 + (t+ st+ st2)(s− 1)(t− 1)
f1 = (t+ t2)(s− 1)2 + (1 + st− s2t)(t− 1)2 + (t+ st+ st2)(s− 1)(t− 1)
f2 = (−t− t2)(s− 1)2 + (−1 + st+ s2t)(t− 1)2 + (t+ st+ st2)(s− 1)(t− 1)
f3 = (t− t2)(s− 1)2 + (−1− st+ s2t)(t− 1)2 + (t+ st+ st2)(s− 1)(t− 1)

The Newton polytope has not changed, so the embedding as a toric variety and the
coordinate ring A are the same as in the previous example. Again the new map is given
by h0, . . . , h3 of degree 1.

As in [KD06], the method represents (with ν0 = 1) the implicit equation of degree 5
times a linear extraneous factor caused by the non-LCI base point. While the Chow
form method represents this polynomial as a 12 × 12-minor of a 15 × 15-matrix, our
representation matrix is 9× 13. Note that in this case, the method of moving lines and
quadrics fails.

Example 3.6.3. In this example, we will see that if the ring A is not Gorenstein, the
correction term for ν0 is different from indeg(Isat), unlike in the homogeneous and the
unmixed bihomogeneous cases. Consider the parametrization

f0 = (s2 + t2)t6s4 + (−1− s3t4 − s4t4)(t− 1)5(s2 − 1)

f1 = (s2 + t2)t6s4 + (1 + s3t4 − s4t4)(t− 1)5(s2 − 1)

f2 = (−s2 − t2)t6s4 + (−1 + s3t4 + s4t4)(t− 1)5(s2 − 1)

f3 = (s2 − t2)t6s4 + (−1− s3t4 + s4t4)(t− 1)5(s2 − 1)

We will consider this as a bihomogeneous parametrization of bidegree (6, 9), that is
we will choose the embedding ρ corresponding to a rectangle of length 2 and width 3.
The actual Newton polytope N (f) is smaller than the (6, 9)-rectangle, but does not
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allow a smaller homothety. One obtains A = K[T0, . . . , T11]/J , where J is generated
by 43 quadratic binomials and the associated hi are of degree d = 3. It turns out that
ν0 = 4 is the lowest degree such that the implicit equation of degree 46 is represented
as determinant of Zν0 , the matrix of the first map being of size 117 × 200. So we
cannot compute ν0 as 2d− indeg(Isat) = 6− 3 = 3, as one might have been tempted to
conjecture based on the results of the homogeneous case. This is of course due to A not
being Gorenstein, since the rectangle contains two interior points.

Let us make a remark on the computation of the representation matrix. It turns out
that this is highly efficient. Even if we choose the non-optimal bound ν = 6 as given
in Theorem 3.3.10, the computation of the 247× 518 representation matrix is computed
instantaneously in Macaulay2. Just to give an idea of what happens if we take higher
degrees: For ν = 30 a 5551 × 15566-matrix is computed in about 30 seconds, and for
ν = 50 we need slightly less than 5 minutes to compute a 15251× 43946 matrix.

In any case, the computation of the matrix is relatively cheap and the main interest in
lowering the bound ν0 as much as possible is the reduction of the size of the matrix,
not the time of its computation. This reduction improves the performance of algorith-
mic applications of our approach, notably to decide whether a given point lies in the
parametrized surface.

Example 3.6.4. In the previous example, we did not fully exploit the structure of N (f)
and chose a bigger polygon for the embedding. Here is an example where this is necessary
to represent the implicit equation without extraneous factors. Take (f0, f1, f2, f3) =
(st6 + 2, st5 − 3st3, st4 + 5s2t6, 2 + s2t6). This is a very sparse parametrization and we
have N (f) = N ′(f). The coordinate ring is A = K[T0, . . . , T5]/J , where J = (T 2

3 −
T2T4, T2T3 − T1T4, T

2
2 − T1T3, T

2
1 − T0T5) and the new base-point-free parametrization

ϕ is given by (h0, h1, h2, h3) = (2T0 + T4,−3T1 + T3, T2 + 5T5, 2T0 + T5). The Newton
polytope N (f) looks as follows.
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For ν0 = 2d = 2 we can compute the matrix of the first map of (Z•)ν0 , which is a 17×34-
matrix. The greatest common divisor of the 17-minors of this matrix is the homogeneous
implicit equation of the surface; it is of degree 6 in the variables X0, . . . , X3:

2809X2
0X

4
1 + 124002X6

1 − 5618X3
0X

2
1X2 + 66816X0X

4
1X2 + 2809X4

0X
2
2

−50580X2
0X

2
1X

2
2 + 86976X4

1X
2
2 + 212X3

0X
3
2 − 14210X0X

2
1X

3
2 + 3078X2

0X
4
2

+13632X2
1X

4
2 + 116X0X

5
2 + 841X6

2 + 14045X3
0X

2
1X3 − 169849X0X

4
1X3

−14045X4
0X2X3 + 261327X2

0X
2
1X2X3 − 468288X4

1X2X3 − 7208X3
0X

2
2X3

+157155X0X
2
1X

3
2X3 − 31098X2

0X
3
2X3 − 129215X2

1X
3
2X3 − 4528X0X

4
2X3

−12673X5
2X3 − 16695X2

0X
2
1X

2
3 + 169600X4

1X
2
3 + 30740X3

0X2X
2
3

−433384X0X
2
1X2X

2
3 + 82434X2

0X
2
2X

2
3 + 269745X2

1X
2
2X

2
3 + 36696X0X

3
2X

2
3

+63946X4
2X

2
3 + 2775X0X

2
1X

3
3 − 19470X2

0X2X
4
3 + 177675X2

1X2X
3
3

−85360X0X
2
2X

3
3 − 109490X3

2X
3
3 − 125X2

1X
4
3 + 2900X0X2X

4
3

+7325X2
2X

4
3 − 125X2X

5
3

As in Example 3.6.3 we could have considered the parametrization as a bihomogeneous
map either of bidegree (2, 6) or of bidegree (1, 3), i.e. we could have chosen the corre-
sponding rectangles instead of N (f). This leads to more complicated coordinate rings
(20 resp. 7 variables and 160 resp. 15 generators of J) and to bigger matrices (of size
21×34 in both cases). Even more importantly, the parametrizations will have a non-LCI
base point and the matrices do not represent the implicit equation but a multiple of it
(of degree 9). Instead, if we consider the map as a homogeneous map of degree 8, the
results are even worse: For ν0 = 6, the 28× 35-matrix Mν0 represents a multiple of the
implicit equation of degree 21.

To sum up, in this example the toric version of the method of approximation complexes
works well, whereas it fails over P1 × P1 and P2. This shows that the extension of the
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method to toric varieties really is a generalization and makes the method applicable to
a larger class of parametrizations.

Interestingly, we can even do better than with N (f) by choosing a smaller polytope.
The philosophy is that the choice of the optimal polytope is a compromise between two
criteria:

• The polytope should be as simple as possible in order to avoid that the ring A
becomes too complicated.

• The polytope should respect the sparseness of the parametrization (i.e. be close to
the Newton polytope) so that no base points appear which are not local complete
intersections.

So let us repeat the same example with another polytope Q, which is small enough to
reduce the size of the matrix but which only adds well-behaved (i.e. local complete
intersection) base points:

b

bb

0 1
0

1

2

3

The Newton polytope N (f) is contained in 2 · Q, so the parametrization will factor
through the toric variety associated to Q, more precisely we obtain a new parametrization
defined by

(h0, h1, h2, h3) = (2T 2
0 + T3T4,−3T0T4 + T2T4, T1T4 + 5T 2

4 , 2T
2
0 + T 2

4 )

over the coordinate ring A = K[T0, . . . , T4]/J with J = (T 2
2−T1T3, T1T2−T0T3, T

2
1−T0T2).

The optimal bound is ν0 = 2 and in this degree the implicit equation is represented
directly without extraneous factors by a 12×19-matrix, which is smaller than the 17×34
we had before.

Example 3.6.5. As we have seen, the size of the matrix representation depends on the
given parametrization and as a preconditioning step it is often advantageous to choose a
simpler parametrization of the same surface, if that is possible. For example, approaches
such as [Sch03] can be used to find a simpler reparametrization of the given surface and
optimize the presented methods.
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Another important factor to consider is that all the methods we have seen represent
the implicit equation to the power of the degree of the parametrization. On one hand,
it can be seen as an advantage that this piece of geometric information is encoded in
the matrix representation, but on the other hand, for certain applications one might be
willing to sacrifice the information about the parametric degree in order to obtain smaller
matrices. If this is the case, there exist (for certain surface parametrizations) algorithms
to compute a proper reparametrization of the surface, e.g. [PD06], and in these cases
it is highly advisable to do so before computing the matrix representation, because this
will allow us to represent the implicit equation directly instead of one of its powers, and
the matrices will be significantly smaller. Let us illustrate this with Example 2 from
[PD06], which treats a parametrization f defined by

f0 = (t4 + 2t2 + 5)(s4 + 1)

f1 = (s4t4 + 2s4t2 + 5s4 + 2t4 + 4t2 + 11)(s4 + 1)

f2 = (s4t4 + 2s4t2 + 5s4 + t4 + 2t2 + 6)

f3 = −(s4t4 + 2s4t2 + 5s4 + t4 + 2t2 + 3)(s4 + 1)

This is a parametrization of bidegree (8, 4) and its Newton polytope is the whole rectangle
of length 8 and width 4, so we can apply the method of approximation complexes for
P1 × P1. We obtain a matrix of size 45× 59 representing F 16

S , where

FS = 2X0X1 −X1X2 − 3X0X3 − 2X1X3 + 3X2
3

is the implicit equation and deg(f) = 16. Using the algorithm presented in [PD06] one
can compute the following proper reparametrization of the surface S :

f0 = (t− 5)(s− 1)

f1 = −(11 + st− 5s− 2t)(s− 1)

f2 = 6− t− 5s+ st

f3 = (−t+ st− 5s+ 3)(s− 1)

This parametrization of bidegree (2, 1) represents FS directly by a 6× 11-matrix.

3.7 Final remarks

Representation matrices can be efficiently constructed by solving a linear system of rela-
tively small size (in our case dimK(Aν+d) equations in 4dimK(Aν) variables). This means
that their computation is much faster than the computation of the implicit equation and
they are thus an interesting alternative as an implicit representation of the surface.

68



In this paper, we have extended the method of matrix representations by linear syzygies
to the case of rational surfaces parametrized over toric varieties (and in particular to
bihomogeneous parametrizations). This generalization provides a better understanding
of the method through the use of combinatorial commutative algebra. From a practi-
cal point of view, it is also a major improvement, as it makes the method applicable
for a much wider range of parametrizations (for example, by avoiding unnecessary base
points with bad properties) and leads to significantly smaller representation matrices.
Let us sum up the advantages and disadvantages compared to other techniques to com-
pute matrix representations (e.g. the ones introduced in [KD06]). The most important
advantages are:

• The method works in a very general setting and makes only minimal assumptions
on the parametrization. In particular, it works well in the presence of base points.

• Unlike the method of toric resultants, we do not have to extract a maximal minor
of unknown size, since the matrices are generically of full rank.

• The structure of the Newton polytope of the parametrization is exploited, so one
obtains much better results for sparse parametrizations, both in terms of com-
putation time and in terms of the size of the representation matrix. Moreover,
it subsumes the known method of approximation complexes in the case of dense
homogeneous parametrizations, in which case the methods coincide.

Disadvantages of the method are the following.

• Unlike with the toric resultant or the method of moving planes and surfaces, the
matrix representations are not square.

• The matrices involved are generally bigger than with the method of moving planes
and surfaces.

It is important to remark that those disadvantages are inherent to the choice of the
method: A square matrix built from linear syzygies does not exist in general and it is
an automatic consequence that if one only uses linear syzygies to construct the matrix,
it has to be bigger than a matrix which also uses entries of higher degree. The choice
of the method to use depends very much on the given parametrization and on what one
needs to do with the matrix representation.
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4 Implicit equations of toric
hypersurfaces in multiprojective
space by means of an embeddings

4.1 Introduction

The aim of this chapter is to compute the implicit equation of a hypersurface in (P1)n,
para metrized by a toric variety. Assume we are given by a map

f : An−1 99K An : s := (s1, . . . , sn−1) 7→
(
f1

g1

, . . . ,
fn
gn

)
(s), (4.1)

where deg(fi) = di and deg(gi) = ei, and fi, gi without common factors for all i =
1, . . . n. In Chapter 3 we studied the case where g1 = · · · = gn. In all cases, we can
reduce in theory all problems to this setting, by taking common denominator. However,
there is also a big spectrum of problems that are not well adapted to taking a common
denominator. Typically this process enlarges the base locus of f . This also increases
the number of monomials and increasing the degree of the polynomials which could
imply having a “worse” compactification of the domain, forcing an embedding into a
bigger projective space. For these many reasons, taking common denominator could be
considerably harmful for the algorithmic approach.

In order to consider more general parametrizations given by rational maps of the form

f =
f1

g1
, . . . , fn

gn

 with different denominators g1, . . . , gn, we develop in this chapter the

study of the (P1)n compactification of the codomain. With this approach, we general-
ize, in the spirit of [Bot09b], the method of implicitization of projective hypersurfaces
embedded in (P1)n to general hypersurfaces parametrized by any (n − 1)-dimensional
arithmetically Cohen-Macaulay closed subscheme of PN . As in the mentioned articless,
we compute the implicit equation as the determinant of a complex, which coincides with
the gcd of the maximal minors of the last matrix of the complex, and we give a deep
study of the geometry of the base locus.

Section 5.1 is devoted to the algorithmic approach of both cases studied in Chapter 3
and 4. We show how to compute the dimension of the representation matrices obtained
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in both cases by means of the Hilbert functions of the ring A and its Koszul cycles. In
the last part of this chapter, we show, for the case of toric parametrizations given from
a polytope N (f) (cf. 3.2.1), how the interplay between homotheties of N (f) and degree
of the maps may lead to have smaller matrices.

We conclude by giving in section 5.2 several examples. First, we show in a very sparse
setting the advantage of not considering the homogeneous compactification of the domain
when denominators are very different. We extend in the second example this idea to the
case of a generic affine rational map in dimension 2 with fixed Newton polytope. In the
last example we give, for a parametrized toric hypersurface of (P1)n, a detailed analysis
of the relation between the nature of the base locus of a map and the extra factors
appearing in the computed equation.

4.2 General setting

Throughout this section, as in the previous chapter, we will write Ak := Spec(K[T1, . . . , Tk])
for the k-dimensional affine space over K. Assume we are given a rational map

f : An−1 99K An : s := (s1, . . . , sn−1) 7→
(
f1

g1

, . . . ,
fn
gn

)
(s) (4.2)

where deg(fi) = di and deg(gi) = ei without common factors. Observe that this setting
is general enough to include all classical implicitization problems. We consider in this
chpater the same toric compactification T of Chapter 3, but a different one for An:
(P1)n.

As in Chapter 3, we assume T can be embedded into some PN , and set A for the
homogeneous coordinate ring of T . Since An−1 is irreducible, so is T , hence A is a
domain. The map (4.2) gives rise to a toric variety T on the domain (cf. Charpter 2
and 3) associated to the following polytope N (f). Recall from Definition 3.2.1 that we
will write

N (f) := conv

(
n⋃
i=1

(N (fi) ∪N (gi))

)
the convex hull of the union of the Newton polytopes of all the polynomials defining the
map f .

Recall that the polytope N (f) defines a (n− 1)-dimensional projective toric variety T
provided with an ample line bundle which defines an embedding: for N = #(N (f) ∩
Zn−1)−1 we can write T ⊆ PN (cf. Chapter 2 and Chapter 3). Write ρ for the embedding
determined by this ample line bundle. We get that the map

(A∗)n−1 ρ
↪→ PN : (s) 7→ (. . . : sα : . . .), (4.3)
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where α ∈ N (f) ∩ Zn−1, factorizes f through a rational map with domain T . Hence,
take T ⊂ PN the toric embedding obtained from N (f) (according to Definition 3.2.1).
The multi-projective compactification of An is given by

An ι
↪→ (P1)n : (x1, . . . , xn) 7→ (x1 : 1)× · · · × (xn : 1). (4.4)

Thus, f compactifies via ρ and ι through T to φ : T 99K (P1)n making the following
diagram commute:

(A∗)n−1
� _

ρ

��

f // An
� _

ι

��
T

φ //____ (P1)n

(4.5)

That is, ι ◦ f = φ ◦ ρ. We will consider henceforward in this chapter rational maps
φ : T 99K (P1)n, as defined in (4.5).

4.3 Tools from homological algebra

We present here some basic tools of commutative algebra we will need for our purpose.
Recall that in this chapter A = K[T0, . . . , TN ]/J is the CM graded coordinate ring
of an (n − 1)-dimensional projective arithmetically Cohen Macaulay closed scheme T
defined by J in PN . Set T := T0, . . . , TN the variables in PN , and X the sequence
X1, Y1, . . . , Xn, Yn, of variables in (P1)n. Write m := A+ = (T) ⊂ A for the maximal
irrelevant homogeneous ideal of A. Denote R = A ⊗K K[X1, Y1, . . . , Xn, Yn]. Assume
we are given fi, gi, for i = 1, . . . , n, n pairs of homogeneous polynomials in A without
common factors, satisfying deg(fi) = deg(gi) = di for all i.

We associate to each pair of homogeneous polynomials fi, gi a linear form Li := Yifi −
Xigi in the ring R := A[X] of bidegree (di, 1). Write K• for the Koszul complex
K•(L1, . . . , Ln;R), associated to the sequence L1, . . . , Ln and coefficients in R. The
Nn-graded K-algebra B := coker(

⊕
iR(−di,−1) → R) is the multihomogeneous co-

ordinate ring of the incidence scheme Γ = ΓΩ. It can be easily observed that B ∼=⊗
A SymA(I(i)) ∼= R/(L1, . . . , Ln).

We defined in Section 1.5 aproximation complexes. We will remark here the relation
between approximation complexes and Koszul complex. Precisely, take f and g two
homogeneous elements in A of degree d, and take A[X, Y ] the polynomial rings in two
variables and coefficients in A. According to the notation above, define L := Y ·f−X ·g ∈
Ad[X, Y ]1.

Proposition 4.3.1. If the sequence {f, g} is regular in A, then there exists a bigraded
isomorphism of complexes Z•(f, g) ∼= K•(L;A[X, Y ]).
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Proof. Given the sequence {f, g} the approximation complex is:

Z•(f, g) : 0→ Z1[d]⊗A A[X, Y ](−1)
(x,y)−→ Z0 ⊗A A[X, Y ]→ 0.

As the sequence {f, g} is regular, H1(KA• (f, g)) = 0. Hence Z1 = (−g, f)A ∼= A by
the isomorphism a ∈ A 7→ (−g · a, f · a) ∈ Z1, given by the left-most map of KA• (f, g).
Tensoring with A[X, Y ] we get an isomorphism of A-modules, Z1

∼= A[X, Y ]. Write K•
for K•(L;A[X, Y ]), [−] for the degree shift on the grading on A and (−) the shift on
X, Y . The commutativity of the diagram

Z• : 0 //Z1[d]⊗A A[X, Y ](−1)
(x,y) //Z0[d]⊗A A[X, Y ] //0

K• : 0 //A[X, Y ][−d](−1) L //

ψ⊗A1A[X,Y ]

OO

A[X, Y ] //

=

OO

0,

shows that Z•(f, g) ∼= K•(L;A[X, Y ])

Keeping the same notation, we conclude the following result:

Corollary 4.3.2. If the sequence {fi, gi} is regular for all i = 1, . . . , n. Then, there is
an isomorphism of A-complexes

n⊗
i=1

Z•(fi, gi) ∼= K•(L1, . . . , Ln;A[X]).

This fact corresponds to the idea that a map φ : T 99K (P1)n is like having n maps
φi : T 99K P1 given by each pair φi = (fi : gi) whose product gives φ. Each φi gives a
map of rings φ∗i : K[Xi, Yi]→ A whose tensor product gives φ∗.

Remark 4.3.3. Observe also that if the sequence L1, . . . , Ln is regular in A[X], then
K•(L1, . . . , Ln;A[X]) provides a resolution of B, that is H0(K•) = B.

As a consequence of Remark 4.3.3 and of Corollary 4.3.2, we can forget about approxi-
mation complexes all along this chapter, and focus on Koszul complexes.

In order to compute the representation matrix Mν and the implicit equation of φ, we need
to be able to get acyclicity conditions for K•. Indeed, consider the following matrix

Ξ =


−g1 0 · · · 0
f1 0 · · · 0
...

...
. . .

...
0 0 · · · −gn
0 0 · · · fn

 ∈Mat2n,n(A). (4.6)
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Henceforward, we will write Ir := Ir(Ξ) for the ideal of A generated by the r× r minors
of Ξ, for 0 ≤ r ≤ r0 := min{n+ 1,m}, and define I0 := A and Ir := 0 for r > r0.

A theorem due to L. Avramov gives necessary and sufficient conditions for (L1, . . . , Ln)
to be a regular sequence in R in terms of the depth the ideals of minors Ir. Precisely:

Theorem 4.3.4 ([Avr81, Prop. 1]). The ideal (L1, . . . , Ln) is a complete intersection in
R if and only if for all r = 1, . . . , n, codimA(Ir) ≥ n− r + 1.

The matrix (4.6) defines a map of A-modules ψ : An → A2n ∼= ⊕n
i=1A[xi, yi]1, we verify

that the symmetric algebra SymA(coker(ψ)) ∼= A[X]/(L1, . . . , Ln). Since SymA(coker(ψ)) =
B is naturally multigraded, it can be seen as a subscheme of T × (P1)n. This embedding
is determined by the natural projection A[X]→ A[X]/(L1, . . . , Ln). In fact, the graph of
φ is an (n−1)-dimensional irreducible component of Proj(SymA(coker(ψ))) ⊂ T ×(P1)n

which is a projective fiber bundle outside the base locus of φ in T .

Our aim is to show that under certain conditions on the Li and on the ideals Ii, there
exist an element in K[X] that vanishes whenever L1, . . . , Ln have a common root in T
(cf. Theorems 4.4.2 and 4.4.11). This polynomial coincides with the sparse resultant
ResT (L1, . . . , Ln). We will see that it is not irreducible in general, in fact, it is not
only a power of the implicit equation, it can also have some extraneous factors, while the
generic sparse resultant is always irreducible. Those factors come from some components
of the base locus of φ which are not necessarily a common root of all Li: it is enough
that one of them vanishes at some point p of T to obtain a base point of φ. We will
give sufficient conditions for avoiding extraneous factors.

We compute the implicit equation of the closed image of φ as a factor of the determinant
of (K•)(ν,∗), for certain degree ν in the grading of A. As in [BDD09] the last map of this
complex of vector spaces is a matrix Mν that represents the closed image of φ. Thus,
we focus on the computation of the regularity of B in order to bound ν. Recall from
Equation (3.9) that γ := inf{µ : (ω∨A)µ = 0}.

Theorem 4.3.5. Suppose that A is Cohen-Macaulay and K• is acyclic. Then

H0
m(B)ν = 0 for all ν ≥ ν0 =

(∑
i

di

)
− γ.

Proof. Write Kq for the q-th object in K•. Consider the two spectral sequences associated
to the double complex C•m(K•), both converging to the hypercohomology of K•. As K•
is acyclic the first spectral sequence stabilizes at the E2-term. The second one has as
E1-term ′′

1E
p
q = Hp

m(Kq).
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Since H0(K•) = B (cf. Remark 4.3.3), the comparison of the two spectral sequences
shows that H0

m(B)ν vanishes as soon as (1
′′Ep

p)ν vanishes for all p. In fact we have

end(H0
m(B)) ≤ max

p≥0
{end(1

′′Ep
p)} = max

p≥0
{end(Hp

m(Kp))}.

It remains to observe that, since Kp =
⊕

i1,...,ip
A(−∑p

j=1 dij)⊗K K[X](−p) and K[X] is
flat over K,

max
p≥0
{end(Hp

m(Kp))} = max
p≥0
{max
i1,...,ip

{end(Hp
m(A(−

p∑
j=1

dij)))}}.

Hence, as A is CM, we have

end(Hp
m(Kp)) =

{
end(Hn

m(ω∨A(−∑i di))) for p = n,
0 otherwise.

Finally, since (Hn
m(ω∨A))ν = 0 for all ν ≥ −γ, we get

end(Hn
m(ω∨A(−

∑
i

di))) = end(Hn
m(ω∨A))) +

∑
i

di <
∑
i

di − γ.

In order to compute the representation matrix Ξν and the implicit equation of φ, we
will get acyclicity conditions for K• from L. Avramov’s Theorem (cf. 4.3.4). As we
mentioned above, this theorem gives necessary and sufficient conditions for (L1, . . . , Ln)
to be a regular sequence in R in terms of the depth of certain ideals of minors of the
matrix Ξ := (mij)i,j ∈ Mat2n,n(A) defined in (4.6).

Recall that Ir := Ir(Ξ) for the ideal of A generated by the r × r minors of Ξ, for
0 ≤ r ≤ r0 := min{n + 1,m}, and that I0 := A and Ir := 0 for r > r0. The following
result relates both algebraic and geometric aspects. It gives conditions in terms of the
ideals of minors Ir, for the complex to being acyclic, and on the equation given by the
determinant of a graded branch for describing the closed image of φ.

4.4 The implicitization problem

Here we generalize the work in [Bot09b]. Hereafter in this chapter, let T be a (n− 1)-
dimensional projective arithmetically Cohen Macaulay closed scheme over a field K,
embedded in PNK , for some N ∈ N. Write A = K[T0, . . . , TN ]/J for its CM graded
coordinate ring, and let J denote the homogeneous defining ideal of T . Set T :=
T0, . . . , TN the variables in PN , and X the sequence X1, Y1, . . . , Xn, Yn, of variables in
(P1)n. Write m := A+ = (T) ⊂ A for the maximal irrelevant homogeneous ideal of A.
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Let φ be a finite map over a relative open set U of T defining a hypersurface in Pn:

PN ⊃ T
φ
99K (P1)n : T 7→ (f1 : g1)× · · · × (fn : gn)(T), (4.7)

where fi and gi are homogeneous elements of A of degree di, for i = 1, . . . , n. As in the
section before, this map φ gives rise to a morphism of graded K-algebras in the opposite
sense

K[X]
φ∗−→ A : Xi 7→ fi(T), Yi 7→ gi(T). (4.8)

Since ker(φ∗) is a principal ideal in K[X], write H for a generator. We proceed as in
[Bot09b] to get a matrix such that the gcd of its maximal minors equals Hdeg(φ), or a
multiple of it.

Assume that we are given a rational map like the one in (4.2) with deg(fi) = deg(gi) = di,
i = 1, . . . , n. Take T ⊂ PN the toric embedding obtained from N (f) cf. Definition 3.2.1.
Recall from 4.4 that the multi-projective compactification is given by

An ι
↪→ (P1)n : (x1, . . . , xn) 7→ (x1 : 1)× · · · × (xn : 1). (4.9)

As before, f compactifies via ρ and ι through T to φ : T 99K (P1)n as defined in (4.7),
that is ι ◦ f = φ ◦ ρ.

4.4.1 The implicit equation

In this part we gather together the facts about acyclicity of the complex K•, and the geo-
metric interpretation of the zeroes of the ideals of minors Ir. We show that under suitable
hypotheses no extraneous factor occurs. One very important difference from Chapter 3,
is that the base locus of φ has always codimension 2, instead of being zero-dimensional.
This makes slightly more complicated the well understanding of the geometry of the base
locus, and hence, the nature of the extraneous factor. In order to do this, we introduce
some previous notation, following that of [Bot09b].

Denote by W the closed subscheme of T ⊂ PN given by the common zeroes of all 2n
polynomials fi, gi, write I(i) for the ideal (fi, gi) of A, and X the base locus of φ defined
in 4.10, namely

W := Proj

(
A/
∑
i

I(i)

)
, and X := Proj

(
A/
∏
i

I(i)

)
. (4.10)

Definition 4.4.1. We call Ω the complement of the base locus, namely Ω := T \ X.
Let ΓΩ be the graph of φ or φ inside Ω× (P1)n.
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Set α ⊂ [1, n], write I(α) :=
∑

j∈α I
(j), and set Xα := Proj(A/I(α)) and Uα := Xα \⋃

j /∈αX{j}. If Uα is non-empty, consider p ∈ Uα, then dim(π−1
1 (p)) = |α|. As the fiber

over Uα is equidimensional by construction, write

Eα := π−1
1 (Uα) ⊂ T × (P1)n (4.11)

for the fiber over Uα, which defines a multiprojective bundle of rank |α|. Consequently,

codim(Eα) = n− |α|+ (codimT (Uα)).

Recall from Definition 4.4.1 that ΓΩ is the graph of φ, and set Γ := Biproj(B), the
incidence scheme of the linear forms Li. We show in the following theorem that under
suitable hypothesis Γ = ΓΩ, and that π2(Γ) = H the implicit equation of the closed
image of φ.

Theorem 4.4.2. Let φ : T 99K (P1)n be defined by the pairs (fi : gi), not both being
zero, as in (4.7). Write for i = 1, . . . , n, Li := fi ·Yi−gi ·Xi and B := A[X]/(L1, . . . , Ln).
Take ν0 = (

∑
i di)− γ as in Theorem 4.3.5.

1. The following statements are equivalent:

a) K• is a free resolution of B;

b) codimA(Ir) ≥ n− r + 1 for all r = 1, . . . , n;

c) dim

( ⋂
α⊂[1,n],|α|=r

V
(∏

j∈α I
(j)
))
≤ r − 2 for all r = 1, . . . , n.

2. If any (all) of the items above are satisfied, then Mν has generically maximal rank,
namely

(
n−1+ν

ν

)
. Moreover, if for all α ⊂ [1, n], codimA(I(α)) > |α|, then,

det((K•)ν) = det(Mν) = Hdeg(φ), for ν ≥ ν0,

where det(Mν) and H is the irreducible implicit equation of the closed image of φ.

Proof. (1a) ⇔ (1b) follows from Avramov’s Theorem 4.3.4.

(1b) ⇔ (1c) Note that each r × r-minor of M can be expressed as a product of r
polynomials, where for each column we choose either f or g. Then, the ideal of minors
involving the columns i1, . . . , ir coincides with the ideal I(i1) · · · I(ir). Since we have
assumed that for any i fi 6= 0 or gi 6= 0, the condition dim(V (I(1) · · · I(n))) ≤ n − 2 is
automatically satisfied.

(1a)⇒ (2) is a classical result, first studied by J.-P. Jouanolou in [Jou95, §3.5], reviewed
in [GKZ94], and also used by L. Busé, M. Chardin and J-P. Jouanolou, in their previous
articles in the area.
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For proving the second part of point 2, the hypotheses have been taken in such a way
that codimA(

∑
j∈α I

(j)) > |α|, for all α ⊂ [1, n], which implies that codimT (Uα) > |α|,
thus

codim(Eα) > n = codim(ΓΩ).

Set ΓU :=
∐

α Eα, and observe that Γ\ΓU = ΓΩ. Clearly, codim(ΓU) > n = codim(ΓΩ) =
codim(ΓΩ).

Since Spec(B) is a complete intersection in A2n, it is unmixed and purely of codimension
n. As a consequence, Γ 6= ∅ is also purely of codimension n. This and the fact that
codim(ΓU) > n implies that Γ = ΓΩ. The graph ΓΩ is irreducible hence Γ as well, and
its projection (the closure of the image of φ) is of codimension-one.

It remains to observe that K• is acyclic, and H0(K•) ∼= B (cf. Remark 4.3.3). Considering
the homogeneous strand of degree ν > η we get the following chain of identities (cf.
[KM76]):

[det((K•)ν)] = divK[X](H0(K•)ν)
= divK[X](Bν)
=
∑

p prime, codimK[X](p)=1 lengthK[X]p((Bν)p)[p].

Our hypothesis were taken in such a way that only one prime occurs. Also since

[det((K•)ν)] = divK[X](Res) = e · [q],

for some integer e and q := (H) ⊂ K[X], we have that∑
p prime, codim(p)=1

lengthK[X]p((Bν)p)[p] = e · [q],

and so [det((K•)ν)] = lengthK[X]q((Bν)q)[q]. Denote κ(q) := K[X]q/q ·K[X]q. Since Γ is
irreduciblem, we have

lengthK[X]q((Bν)q) = dimκ(q)(Bν ⊗K[X]q κ(q)) = deg(φ),

which completes the proof.

Remark 4.4.3. We showed that the scheme π2(Γ) is defined by the polynomial det(Mν),
while the closed image of φ coincides with π2(ΓΩ), hence the polynomial H divides
det(Mν). Moreover, from the proof above we conclude that Hdeg(φ) also divides det(Mν).
And if [Eα] is an algebraic cycle of T × (P1)n+1 of codimension n + 1, then [π2(Eα)] is
not a divisor in (P1)n+1, and consequently det(Mν) has no other factor than Hdeg(φ).

Remark 4.4.4. With the hypotheses of Theorem 4.4.2 part 2, assuming T = Pn−1,
denoting by degi the degree on the variables xi, yi and by degtot the total one, we have:

1. degi(H)deg(φ) =
∏

j 6=i dj;

2. degtot(H)deg(φ) =
∑

i

∏
j 6=i dj.
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4.4.2 Analysis of the extraneous factors

Theorem 4.4.2 can be generalized (in the sense of [Bot09b, Sec. 4.2]) taking into account
the fibers in T × (P1)n that give rise to extraneous factors, by relaxing the conditions
on the ideals Ir stated in Theorem 4.4.2. Recall from (4.10) that W := Proj(A/

∑
i I

(i))
and X := Proj(A/

∏
i I

(i)), and that for each α ⊂ [1, n], I(α) :=
∑

j∈α I
(j), Xα :=

Proj(A/I(α)) and Uα := Xα \
⋃
j /∈αX{j}. As was defined in (4.11), Eα := π−1

1 (Uα) ⊂
T × (P1)n is a multiprojective bundle of rank |α| over Uα, such that codim(Eα) =
n− |α|+ (codimT (Uα)).

In order to understand this, we will first analyse some simple cases, namely, where this
phenomenon occurs over a finite set of points of the base locus; and later, we will deduce
the general implicitization result.

Example 4.4.5. Assume we are given a rational map φ : P2 99K P1×P1×P1, where φ(u :
v : w) = (f1(u, v, w) : g1(u, v, w)) × (f2(u, v, w) : g2(u, v, w)) × (f3(u, v, w) : g3(u, v, w)),
of degrees d, d′ and d′′ respectively.

We may suppose that each of the pairs of polynomials {f1, g1}, {f2, g2} and {f3, g3} have
no common factors. Then, the condition codimA(I(i)) ≥ 2 is automatically satisfied.
Assume also that W = ∅, this is, there are no common roots to all 6 polynomials.

We will show here that, if we don’t ask for the “correct” codimension conditions, we could
be implicitizing some extraneous geometric objects. For instance, suppose that we take a
simple point p ∈ V (I(1) + I(2)) 6= ∅. Consequently L1(u, v, w,X) = L2(u, v, w,X) = 0 for
all choices of X. Nevertheless, L3(u, v, w,X) = g3(u, v, w)x3 − f3(u, v, w)y3 = 0 imposes
the nontrivial condition g3(p)x3−f3(p)y3 = 0 on (Z), hence there is one point q = (f3(p) :
g3(p)) ∈ P1 which is the solution of this equation. We get π−1

1 (p) = {p}×P1×P1×{q}.
As we do not want the reader to focus on the precise computation of this point q, we
will usually write {∗} for the point {q} obtained as the solution of the only nontrivial
equation.

Suppose also that, for simplicity, V (I(1) + I(2)) = {p}, V (I(1) + I(3)) = ∅, and V (I(2) +
I(3)) = ∅. This says that if we compute π2(Γ), then we get

π2(Γ) = π2(π−1
1 (Ω ∪X)) = π2(π−1

1 (Ω)) ∪ π2(π−1
1 (X)) =

= π2(ΓΩ) ∪ (π2({p} × P1 × P1 × {∗}) =

= im(φ) ∪ (P1 × P1 × {∗}),

where X = Proj(A/
∏

i I
(i)) is the base locus of φ as in (4.10), and Ω = Pn \ X its

domain.

Hence, det(K•(L1, L2, L3)ν) = Hdeg(φ) · G, where G = L3(p). Indeed, observe that each
time there is only one extraneous hyperplane appearing (over a point p with multiplicity
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one), which corresponds to π2(π−1
1 (p)), then π−1

1 (p) is a closed subscheme of Γ, defined
by the equation L3(p) = 0. Hence, we get that

det(K•(L1, L2, L3)ν) = Hdeg(φ) · L3(p).

We will now generalize Theorem 4.4.2 in the spirit of the example above. For each
i ∈ {0, . . . , n} take Xî := Proj(A/

∑
j 6=i I

(j)).

Proposition 4.4.6. Let φ : T 99K (P1)n be a rational map that satisfies conditions
(1a)-(1c) of Theorem 4.4.2. Assume further that for all α := {i0, . . . , ik} ⊂ [1, n], with
k < n− 1, codimA(I(α)) > |α|. Then, there exist non-negative integers µp such that:

ResT (L1, . . . , Ln) = Hdeg(φ) ·
n∏
i=1

∏
p∈Xî

Li(p)
µp .

Proof. Denote by Γ0 := ΓΩ the closure of the graph of φ, Γ as before. From Remark
4.4.3, we can write

G :=
ResA(L1, . . . , Ln)

Hdeg(φ)
,

the extra factor. It is clear that G defines a divisor in (P1)n with support on π2(Γ \ Γ0).
From the proof of Theorem 4.4.2, we have that Γ and Γ0 coincide outside X×(P1)n. As Γ
is defined by linear equations in the second group of variables, then Γ\Γ0 is supported on
a union of linear spaces over the points of X, and so, its closure is supported on the union
of the linear spaces (π1)−1(p) ∼= {p}×((P1)n−1×{∗}), where {∗} is the point (x : y) ∈ P1

such that Li(p, x, y) = 0 for suitable i. It follows that π2((π1)−1(p)) ⊂ V (Li) ⊂ (P1)n,
and consequently

G =
∏
p∈X

Li(p)
µp ,

for some non-negative integers µp.

Lemma 4.4.7. Let φ : T 99K (P1)n, be a rational map satisfying condition 1 in Theorem
4.4.2. Then, for all α ⊂ [1, n], codimA(I(α)) ≥ |α|.

Proof. To show this we will use Avramov’s Theorem 4.3.4. Take α := {i1, . . . , ik} ⊂
[1, n] for 1 ≤ k ≤ n. Denote by I the ideal I(i1) + · · · + I(in), I(α) =

∑k
j=1 I

(ij) and

I({α) =
∑n

l=k+1 I
(il), hence I = I(α) + I({α). As (L1, . . . , Ln) is a complete intersection in

R, also is (Li1 , . . . , Lik) in A[xi1 , yi1 , . . . , xik , yik ]. Applying Avramov’s Theorem 4.3.4 to
the ideal (LI1 , . . . , Lik), for r = 1 we have that codimA(I(α)) ≥ k = |α|.
Observe that as I(α) is generated by a subset of the set of generators of I then I(α) is
also a complete intersection in R. Now, as it is generated by elements only depending
on the variables xij , yij for j = 1, . . . , k, we have that it is also a complete intersection
in A[xi1 , yi1 , . . . , xik , yik ].
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We define the basic language needed to describe the geometry of the base locus of φ.

Definition 4.4.8. For each α ⊂ [1, n], denote by Θ := {α ⊂ [1, n] : codim(I(α)) = |α|}.
Hence, let I(α) = (∩qi∈Λαqi) ∩ q′ be a primary decomposition, where Λα is the set of
primary ideals of codimension |α|, and codimA(q′) > |α|. Write Xα,i := Proj(A/qi) with
qi ∈ Λα, and let Xred

α,i be the associated reduced variety.

Write α := {i1, . . . , ik} ⊂ [1, n], and denote by πα : (P1)n → (P1)n−|α| the projection
given by

πα : (x1 : y1)× · · · × (xn : yn) 7→ (xik+1
: yik+1

)× · · · × (xin : yin).

Set Pα := πα((P1)n), and define φα := πα ◦ φ : T 99K Pα.

Denote by Wα the base locus of φα. Clearly W ⊂ Wα ⊂ X (cf. equation (4.10)).
Denote Uα := T \Wα, the open set where φα is well defined. Write Ωα := Xα ∩ Uα and
Ωα,i := Xα,i∩Uα. If α is empty, we set πα = Id(P1)n , φα = φ, Wα = W and Uα = Ωα = Ω.

We get a commutative diagram as follows

Ωα
� � //

φα|Ωα
++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX Xα

� � // T
φ //______

φα

''OOOOOOO (P1)n

πα
����
Pα := πα((P1)n) ∼= (P1)n−|α|.

Remark 4.4.9. Let p ∈ T be a point, then there exist a unique pair (α, i) such that
p ∈ Ωα,i. If p ∈ W , then α = ∅ and no i is considered.

Proof. It is clear by definition of Ωα that if p ∈ W , then α = ∅ and no i needs to be
considered. Hence, assume that p ∈ T \W . Thus, we define α := {i ∈ [1, n] : fi(p) =
gi(p) = 0} which is a non-empty subset of [1, n]. For this set α, define φα according to
Definition 4.4.8, set Wα the base locus of φα and Xα := Proj(A/I(α)). By definition,
p ∈ Ωα := Xα \Wα. Since, in particular, p ∈ Xα, it is one of its irreducible components
that we denote by Xα,i following the notation of Definition 4.4.8. We conclude that
p ∈ Ωα,i := Xα,i \Wα, from which we obtain the (α, i) of the statement.

In the following lemma we define a multiprojective bundle of rank |α| over Ωα,i.

Lemma 4.4.10. For φ as in Theorem 4.4.2, and for each α ∈ Θ and each qi ∈ Λα, the
following statements are satisfied:

1. Ωα,i is non-empty

2. for all p ∈ Ωα,i, dim(π−1
1 (p)) = |α|
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3. the restriction φα,i of φ to Ωα,i, defines a rational map

φα,i : Xα,i 99K Pα ∼= (P1)n−|α|. (4.12)

4. Zα,i := π−1
1 (Ωα,i)

π1−→ Ωα,i defines a multiprojective bundle Eα,i of rank |α| over
Ωα,i.

Proof. Fix Xα,i ⊂ Xα and write α := i1, . . . , ik. As Ωα,i = Xα,i \
⋃
j /∈αX{j} it is an open

subset of Xα,i. If Ωα,i = ∅ then Xα,i ⊂
⋃
j /∈αX{j}, and as it is irreducible, there exists j

such that Xα,i ⊂ X{j}, hence Xα,i ⊂ X{j} ∩ Xα = Xα∪{j}. Denote by α′ := α ∪ {j}, it
follows that dim(Xα′) ≥ dim(Xα,i) = n−|α| > n−|α′|, which contradicts the hypothesis.

Let p ∈ Ωα,i, π
−1
1 (p) = {p}×{qik+1

}×· · ·×{qin}× (P1)|α|, where the point qij ∈ P1 is the
only solution to the nontrivial equation Lij(p, xij , yij) = yijfij(p) − xijgij(p) = 0. Then

we deduce that dim(π−1
1 (p)) = |α|, and that φα,i : Ωα,i → Pα := πα((P1)n) ∼= (P1)n−|α|

given by p ∈ Ωα,i 7→ {qik+1
} × · · · × {qin} ∈ Pα, is well defined.

The last statement follows immediately from the previous ones.

We get the following result which generalizes Proposition 4.4.6.

Theorem 4.4.11. Let φ : T 99K (P1)n be defined by the pairs (fi : gi), not both being
zero, as in equation (4.7). Assume that codimA(Ir) ≥ n − r + 1 for all r = 1, . . . , n.
Denote by H the irreducible implicit equation of the closure of its image. Then, there
exist relative open subsets, Ωα,i, of T such that the restriction φα,i of φ to Ωα,i defines
a rational map φα,i : Ωα,i → Pα ∼= (P1)n−|α| and positive integers µα,i such that:

ResT (L0, . . . , Ln) = Hdeg(φ) ·
∏
α,i

(Hα,i)
µα,i·deg(φα,i).

Proof. The proof of this result follows similar lines of that of [Bot09b, Thm. 22]. Recall
Γ := Biproj(B), and set Γ0 := ΓΩ, the closure of the graph of φ. Applying π2 to the
decomposition Γ \ ΓU = Γ0 we see that [π2(ΓU)] = [ResT (L0, . . . , Ln)] − [π2(Γ0)] is the
divisor associated to the extraneous factors. It is clear that [π2(ΓU)] defines a principal

divisor in (P1)n denote by G = ResT (L0,...,Ln)

Hdeg(φ) , with support on π2(Γ \Γ0), and that Γ and
Γ0 coincide outside X × (P1)n.

By Lemma 4.4.10, for each α and each qi ∈ ∆α ⊂ Λα, φα,i defines a multiprojective
bundle Eα,i of rank |α| over Ωα,i.

By definition of ∆α, π2(Eα,i) is a closed subscheme of (P1)n of codimension-one. Denoting

by [Eα,i] = µα,i · [E red
α,i ] the class of Eα,i as an algebraic cycle of codimension n in Pn−1 ×

(P1)n, we have (π2)∗[Eα,i] = µα,i · (π2)∗[E red
α,i ] = µα,i ·deg(φα,i) · [pα,i], where pα,i := (Hα,i).
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As in Theorem 4.4.2, one has for ν > η:

[det((K•)ν)] = divk[X](H0(K•)ν)
= divk[X](Bν)
=
∑

p prime, codimk[X](p)=1 lengthk[X]p((Bν)p)[p].

We obtain that

[det((K•)ν)] =
∑
α∈Θ

∑
pα,i

lengthk[X]pα,i
((Bν)pα,i)[pα,i] + lengthk[X](H)

((Bν)(H))[(H)].

In the formula above, for each pα,i we have

lengthk[X]pα,i
((Bν)pα,i) = dimK(pα,i)(Bν ⊗k[X]pα,i

K(pα,i)) = µα,i · deg(φα,i),

where K(pα,i) := k[X]pα,i/pα,i · k[X]pα,i .

Consequently we get that for each α ∈ Θ, there is a factor of G, denoted by Hα,i, that
corresponds to the irreducible implicit equation of the scheme theoretic image of φα,i,
raised to a certain power µα,i · deg(φα,i).

Remark 4.4.12. Observe that if im(φα,i) is not a hypersurface in Pα then deg(φα,i) is
0, hence (Hα,i)

µα,i·deg(φα,i) = 1. Thus φα,i does not give an extraneous factor.
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5 The algorithmic approach

5.1 Hilbert and Ehrhart functions

In this section we focus on the study of the size of the matrices Mν obtained in the two
cases: Pn and (P1)n developped in Chapters 3 and 4 respectively. Let us analyze first
the case of Pn, thus, where we get a map ϕ : T 99K Pn as defined in (3.3). Assume
also that the base locus of ϕ is a zero-dimensional almost locally complete intersection
scheme. Hence, the associated Z-complex is acyclic. We have shown in Section 3.3
that the matrix Mν is obtained as the right-most map of the (ν, ∗)-graded strand of the
approximation complex of cycles Z•(h, A)(ν,∗):

0→ (Zn)(ν,∗)(−n)→ (Zn−1)(ν,∗)(−(n− 1))→ · · · → (Z1)(ν,∗)(−1)
Mν→ (Z0)(ν,∗).

Given a graded A-module B, write hB(µ) := dimK(Bµ) for the Hilbert function of B at
µ. Since Zi = Zi[i · d] ⊗A A[X] = Zi[i · d] ⊗K K[X], (Zi)(ν,∗) = (Zi[i · d])ν ⊗K K[X], we
have Mν ∈ MathA(ν),hZ1

(ν+d)(K[X]).

Consider the (P1)n compactification of the codomain, and assume we are given a map
φ : T 99K (P1)n as the one considered in (4.7), satisfying the conditions of Theorem
4.4.11. We obtain the matrix Mη computed from the Koszul complex (K•)(η,∗). Hence,
the matrix Mη belongs to MathA(η),nhA(η−d)(K[X]).

Both numbers hA(ν) and hZ1(ν+d), in the projective and multiprojective setting, can be
computed easily in Macaulay2. The cost of computation depends on the ring structure of
A. When A is just any finitely generated N-graded Cohen-Macaulay K-algebra, finding
a precise theoretical estimate of these numbers would be very difficult. Also, the module
structure of Z1 can also be very intricate. Since it is a N-graded sub-A-module of An+1,
we have hZ1(ν + d) ≤ (n+ 1)hA(ν + d).

Assume now that the ring A is the coordinate ring of a normal toric variety T defined
from a polytope N , as mentioned in Section 3.2, and later in Remarks 3.3.2 and (4.4). In
this setting, the situation above can be rephrased in a more combinatorial fashion. Let
N be a (n − 1)-dimensional normal lattice polytope, that is a full-dimensional normal
convex polytope in Rn−1 with vertices lying in Zn−1 . For any integer k ≥ 0, the multiple
kN = {p1 + · · · + pk : pi ∈ N} is also a lattice polytope, and we can count its lattice
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points. The function taking each integer k ∈ N to the number EN (k) = #((kN )∩Zn−1)
of lattice points in the polytope kN is the Ehrhart function of N (cf. [MS05]). Write
E+
N (k) = #relint((kN ) ∩ Zn−1), the number of integer points in the interior of kN

(cf. [Lat] for a software for computing those numbers). It is known that there is an
identification between K[relint(C)] and ωA, hence, this can be understood as E+

N (k) =
hωA(k).

Let C be the cone in Rn−1×R spanned in degree 1 by the lattice points in the polytope
N , which is normal by assumption, hence A is Cohen-Macaulay (cf. 3.2.3). Assume N ′
stands for some integer contraction of N which is also normal and take d ∈ N such
that dN ′ = N . Then A′ = K[N ′] its Cohen-Macaulay semigroup ring. As dN ′ = N ,
we have that EN ′(dµ) = EN (µ) for all µ. Set γ := an(A) = inf{µ : (ω∨A)µ = 0}
and γ′ := an(A′) = inf{µ : (ω∨A′)µ = 0}. As (ω∨A)µ = HomK(M−µ,K), we have that
γ = max{i : Ci contains no interior points}, where Ci := C ∩Zn−1×{i}, and similarly
for γ′. For a deeper understanding we refer the reader to [BH93, Sec. 5].

Both A and A′ give rise to two different -but related- implicitization problems, the
following result gives a condition on the ringsA andA′ to decide when it is algorithmically
better to choose one situation or the other.

Lemma 5.1.1. Take N , N ′, d, γ and γ′ as above. Then

1. γ ≥ γ′;

2. d(γ′ + 1) ≥ γ + 1;

Proof. As d ≥ 1, we can assume N ′ ⊂ N , hence, the first item follows. For the second
item, we just need to observe that if µN ∩ Zn is nonempty, then µdN ′ ∩ Zn neither it
is. Taking µ the smallest positive integer with this property, and writing γ = µ+ 1, the
second item follows.

Remark 5.1.2. Is not true in general that d(γ + 1) > γ′ + 1: take N as the triangle
with vertices (3, 0), (0, 3), (0, 0) and N ′ the triangle with vertices (1, 0), (0, 1), (0, 0);
hence d = 3, γ = 0, γ′ = 2. We obtain d(γ + 1) = 3 = γ′ + 1, which shows also that
dγ need not be bigger than γ′. It is neither true that d(γ + 1) = γ′ + 1, for instance,
take N as the triangle with vertices (4, 0), (0, 4), (0, 0) and N ′ as before. Observe that
d(γ + 1) = 4(0 + 1) = 4 > γ′ + 1 = 2 + 1 = 3.

Lemma 5.1.3. Take N be a normal polytope, let N ′ and d be such that dN ′ = N .
Set ν0 := (n − 1) − γ (the bound established in 3.3.8), and ν ′0 = d(n − 1) − γ′. Write
δ := d(γ + 1)− (γ′ + 1). Then EN (ν0) > EN ′(ν

′
0) if and only if δ > d− 1.
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Proof. We have seen that EN ′(dν0) = EN (ν0), hence, it is enough to compare EN ′(dν0)
and EN ′(ν

′
0). Writing dγ = γ′ + δ − (d− 1), we have

EN ′(dν0) = EN ′(d(n− 1)− dγ) = EN ′(d(n− 1)− γ′ + δ − (d− 1)),

from where we deduce that EN (ν0) > EN ′(ν
′
0) if and only if δ > d− 1.

Corollary 5.1.4. Let f : An−1 99K An be a rational map as in (3.3) with normal polytope
N := N (f). Let N ′ be a normal polytope and d such that dN ′ = N . Let T and T ′ be
the arithmetically Cohen-Macaulay toric varieties defined from N and N ′ respectively,
and ϕ : T ⊂ PEN (1) 99K Pn and ϕ′ : T ′ ⊂ PEN′ (1) 99K Pn. Take ν0, ν ′0 and δ as above.
And write Mν0 and M ′

ν′0
the representation matrices of im(ϕ) and im(ϕ′) respectively.

Then #rows(Mν0) > #rows(M ′
ν′0

) if and only if δ > d− 1.

In the second case, given a map φ : T 99K (P1)n as in Theorem 4.4.11, we obtain the
matrix Mν as the right-most matrix from the Koszul complex (K•)(ν,∗) :

0→ Aν−nd ⊗K K[X](−n)→ · · · → (Aν−d)
n ⊗K K[X](−1)

Mν−→ Aν ⊗K K[X]→ 0,

It is clear that Mν is a dimK(Aν) by dimK((Aν−d)
n) matrix. As

⊕
k≥0 〈Ck〉K = K[C]

which is canonically isomorphic to A, and also dimK(Aν) = EN (ν) and dimK((Aν−d)
n) =

nEN (ν − d), hence
Mν ∈ MatEN (ν),nEN (ν−d)(K[X]). (5.1)

5.2 Examples

In this section we show, in a few examples, how the theory developed in earlier sections
works. We first analyze two concrete examples of parametrized surfaces, given as the
image of a rational map defined by rational functions with different denominators. There
we show how better is not to take common denominator, and regard their images in
(P1)3 and (P1)4. Later we show how the method is well adapted for generic rational
affine maps.

In the later part of this section we invoke a few examples treated by Busé and Chardin in
[BC05]. The main idea of this part is showing that the method generalizes the techniques
developed loc. cit. and that in this more general setting we find no better contexts. This
complements the argumentation of the authors that no better degrees can be found in
these cases, by saying that no better domain or codomain compactifications can be found
in general in these particular cases.
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5.2.1 Implicit equations of dimension 2 and 3

Example 5.2.1. We consider here an example of a very sparse parametrization where
the multihomogeneous compactification of the codomain is fairly better than the homo-
geneous compactification. We have seen this sme example as Example 3.6.4 focusing on
the projective compactification of A3. Take n = 3, and consider the affine map

f : A2 99K A3 : (s, t) 7→
(

st6 + 2

st5 − 3st3
,

st6 + 3

st4 + 5s2t6
,
st6 + 4

2 + s2t6

)
.

Observe that in this case there is no smallest multiple of the Newton polytope N (f)
with integer vertices, hence, N (f) = N ′(f) as can be seen in the picture below.

b

b b

0 1 2
0

1

2

3

4

5

6

Computing in Macaulay2 we get that the homogeneous coordinate ring is

A =
k[T0, . . . , T5]

(T 2
3 − T2T4, T2T3 − T1T4, T 2

2 − T1T3, T 2
1 − T0T5)

.

When A3 is compactified into P3 we obtain from f a new map ϕ : T 99K P3 by replacing
(s, t) by T0, . . . , T5, and taking a common denominator. We can easily see that taking
common denominator leads to polynomials of degree up to 23 and the Newton polytope
of the four new polynomials contains 26 integer points instead of 6. Again computing
in Macaulay2, for ν0 = 2, the matrix Mν has 351 rows and about 500 columns. It can
be verified that this compactification gives a base point which is not locally a complete
intersection, but locally an almost complete intersection, giving rise to extraneous factors.
For more details, see Example 3.6.4.

On the other hand, compactifying A3 into (P1)3 we get the map

φ : T 99K P1 × P1 × P1

(T0, . . . , T5) 7→ (2T0 + T4 : −3T1 + T3)(3T0 + T4 : T2 + 5T5)(4T0 + T4 : 2T0 + T5)
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Computations in Macaulay2 give that for ν0 = 3 the matrix Mν0 is of size 34× 51. Since
there are no base points with two-dimensional fibers, we get no extraneous factors and
hence, Hdeg(φ) can be computed as det((34×34)-matrix)·det((1×1)-matrix)

det((17×17)-matrix)
, getting an equation of

degree (6, 6, 6). For computing the multidegree of the equation, it sufficies to observe
that the total degree is 34 + 1 − 17 = 18, since the coefficients on the matrices are all
linear. Moreover, just by looking at φ we see that the degree on each pair of variables
must coincide, hence, it has to be (6, 6, 6).

Example 5.2.2. Assume we are given four tuples of polynomials fi, gi, for i ∈ [1, 4], in
three variables s, t, u. Let them be f1 = s + tu2, g1 = u2, f2 = st, g2 = u2, f3 = su2,
g3 = t, f4 = stu2, g4 = 1. They define a rational map f : A3 99K A4 given by
(s, t, u) 7→ (f1/g1, f2/g2, f3/g3, f4/g4).

We compactify A3 into the toric variety associated to the smallest multiple of the Newton
polytope the input polynomials define. It is easy to see that this polytope N is a
(1× 1× 2)-parallelepiped, and T ∼= (P1)3 ⊂ P11.

In order to detect the extraneous factor that occurs, consider the rational map

φ̃ : (P1)3 99K (P1)4

(s : s′)× (t : t′)× (u : u′) 7→ (f̃1 : g̃1)× (f̃2 : g̃2)× (f̃3 : g̃3)× (f̃4 : g̃4),

where (−̃) means homogenizing with respect to the degree (1, 1, 2) with new variables
s′, t′ and u′.

We easily observe that the base locus has codimension 2, in fact many lines occur in the
base locus: There are

1. four lines L1 = (1 : 0) × (t : t′) × (1 : 0), L2 = (1 : 0) × (t : t′) × (0 : 1),
L3 = (0 : 1)× (t : t′)× (1 : 0), L4 = (0 : 1)× (t : t′)× (0 : 1);

2. three lines L5 = (1 : 0) × (1 : 0) × (u : u′), L6 = (1 : 0) × (0 : 1) × (u : u′),
L7 = (0 : 1)× (1 : 0)× (u : u′); and

3. three lines L8 = (s : s′) × (1 : 0) × (1 : 0), L9 = (s : s′) × (1 : 0) × (0 : 1),
L10 = (s : s′)× (0 : 1)× (0 : 1);

4. 7 points of intersection of the previous lines: L1 ∩L5 ∩L8 = {(1 : 0)× (1 : 0)× (1 :
0)}, L1∩L6 = {(1 : 0)× (0 : 1)× (1 : 0)}, L2∩L5∩L9 = {(1 : 0)× (1 : 0)× (0 : 1)},
L2∩L6∩L10 = {(1 : 0)×(0 : 1)×(0 : 1)}, L3∩L7∩L8 = {(0 : 1)×(1 : 0)×(1 : 0)},
L4∩L7∩L9 = {(0 : 1)× (1 : 0)× (0 : 1)} and L4∩L10 = {(0 : 1)× (0 : 1)× (0 : 1)}.
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Over those lines the fiber is of dimension 2, except over the points of intersection of
them.

In the language of Section 4.2, we have that W = ∅. The set Θ formed by the sets
α ⊂ [1, 4] giving fibers of dimension |α|, is

Θ = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {2, 3, 4}}.
Recall that this does not imply that every α ∈ Θ will give an extraneous factor (cf.
Remark 4.4.12). We calrify this:

As we have mentioned, the base locus is a union of lines with non-trivial intersection.
Take α = {1, 2}. Set-theoretically Xα = L1 t L4, and hence there are two irreducible
components of Xα, namely Xα,1 = L1 and Xα,2 = L4. The line Xα,1 = L1 only intersects
L5, L6 and L8, hence

Ωα,1 = L1 \ (L5 ∩ L6 ∩ L8) = {(1 : 0)× (t : t′)× (1 : 0) : t 6= 0 and t′ 6= 0}.
Ωα,2 = L4 \ (L7 ∩ L9 ∩ L10) = {(0 : 1)× (t : t′)× (0 : 1) : t 6= 0 and t′ 6= 0}.

Since α = {1, 2}, the linear forms L1(p,X) and L2(p,X) vanish identically for all p ∈ Xα,
while L3(p,X) = f3(p)Y3 − g3(p)X3 = t′Y3 and L4(p,X) = tY4 for p ∈ Xα,1. It is easy to
note that none of them vanish if and only if p ∈ Ωα,1. We get that L3(p,X) = tX3 and
L4(p,X) = t′X4 for p ∈ Xα,2.

Finally, for α = {1, 2}, we obtain two multiprojective bundles Eα,i over Ωα,i, for i = 1, 2,

Eα,1 : {(1 : 0)× (t : t′)× (1 : 0)× (P1)2 × (t′ : 0)× (t : 0) : t 6= 0, t′ 6= 0} π1−→ Ωα,1,

Eα,2 : {(0 : 1)× (t : t′)× (0 : 1)× (P1)2 × (0 : t)× (0 : t′) : t 6= 0, t′ 6= 0} π1−→ Ωα,2.

Observe that im(φα,1) = P1×P1×(1 : 0)×(1 : 0), hence it does not define a hypersurface.
Thus, φα,1 does not contribute with an extraneous factor. The same for φα,2.

The situation is similar when α ∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, but quite different for
α = {3, 4}. Take α = {3, 4}, the linear forms L3(p,X) and L4(p,X) vanish identically
for all p ∈ Xα. Take Xα,1 = L2 and Xα,2 = L3. Define Ωα,1 := L3 \{(0 : 1)× (0 : 1)× (1 :
0), (0 : 1)× (1 : 0)× (1 : 0)}, and observe that φα,1 : Ωα,1 99K Pα defines a hypersurface
given by the equation (X2 = 0). Hence, when α = {3, 4}, φα,1 does give an extraneous
factor.

Now, let us take α = {1, 2, 3} in order to illustrate a different situation. Verifying with the
7 points listed above, we see that Xα = {(1 : 0)×(0 : 1)×(1 : 0)}∪{(0 : 1)×(0 : 1)×(0 :
1)}. Hence, there are two irreducible components Xα,1 = {(1 : 0)× (0 : 1)× (1 : 0)} and
Xα,2 = {(0 : 1)× (0 : 1)× (0 : 1)}, and clearly Ωα,i = Xα,i for i = 1, 2. Thus, we get the
trivial bundles

Eα,1 : {(1 : 0)× (1 : 0)× (1 : 0)× (P1)3 × (1 : 0) : t 6= 0 and t′ 6= 0} π1−→ Ωα,1,
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Eα,2 : {(0 : 1)× (0 : 1)× (0 : 1)× (P1)3 × (0 : 1) : t 6= 0 and t′ 6= 0} π1−→ Ωα,2.

These two bundles give rise to the factors Y4 and X4. We conclude with similar argu-
mentation that the extraneous factor is

G = Y 2
1 X2Y2Y

2
3 X4Y4.

The degree of the multihomogeneous resultant ResN (L1, L2, L3, L4) in the coefficients of
each Li, as polynomials in s, s′, t, t′, u and u′, is equal to 3 · 1 · 1 · 2 = 6 for all i = 1, . . . , 4
by [GKZ94, Prop. 2.1, Ch. 13]. So, the total degree of det((K•)ν) is 24 = 4 · 6. Indeed,
t he irreducible implicit equation is

H = X2
4Y

2
1 Y

2
2 Y

2
3 + 2X4X2X3Y

2
1 Y2Y3Y4 −X4X

2
1X3Y

2
2 Y3Y4 +X2

2X
2
3Y

2
1 Y

2
4 ,

and deg(φ) = 2. Thus, det((K•)ν) = H2 ·G for ν � 0.

Let us change now our analysis, and consider the (smallest multiple of) the Newton
polytope N of fi and gi for i = 1, 2, 3, 4. We easily see that N is a parallelepiped with
opposite extremes in the points (0, 0, 0) and (1, 1, 2). For a suitable labeling of the points
in N ∩ Z3 by {Ti}i=0,...,11, we have that the toric ideal that defines the toric embedding

of (A∗)3 ι
↪→ P11 is

J := I(T ) = (T9T10−T8T11, T7T10−T6T11, T5T10−T4T11, T3T10−T2T11, T1T10−T0T11, T
2
9−

T7T11, T8T9−T6T11, T5T9−T3T11, T4T9−T2T11, T3T9−T1T11, T2T9−T0T11, T
2
8−T6T10, T7T8−

T6T9, T5T8−T2T11, T4T8−T2T10, T3T8−T0T11, T2T8−T0T10, T1T8−T0T9, T5T7−T1T11, T4T7−
T0T11, T3T7−T1T9, T2T7−T0T9, T5T6−T0T11, T4T6−T0T10, T3T6−T0T9, T2T6−T0T8, T1T6−
T0T7, T3T4 − T2T5, T1T4 − T0T5, T

2
3 − T1T5, T2T3 − T0T5, T

2
2 − T0T4, T1T2 − T0T3).

This computation has been done in Macaulay2 using the code in Section [Bot09a].

The inclusion ι : (A∗)3 ↪→ P11 defines a graded morphism of graded rings ι∗ : K[T0, . . . , T11]/J →
K[s, t, u]. This morphism maps T1 + T10 7→ f1, T7 7→ g1, T4 7→ f2, T7 7→ g2, T6 7→ f3,
T5 7→ g3, T0 7→ f4, and T11 7→ g4.

Hence, for α = {1, 2}, we have that

Xα = Proj(K[T0, . . . , T11]/(J + (T1 + T10, T4, T7))).

Using Macaulay2, we can compute the primary decomposition of the radical ideal of
(T1 + T10, T4, T7) in A := K[T0, . . . , T11]/J , obtaining the two irreducible components
Xα,1 and Xα,2. Precisely,

Xα,1 = Proj(K[T0, . . . , T11]/(J + (T10, T8, T7, T6, T4, T2, T1, T0))), and

Xα,2 = Proj(K[T0, . . . , T11]/(J + (T11, T7, T6, T5, T4, T1 + T10, T0))).

After embedding (P1)3 in P11 via ι, we get that Xα,1 = ι∗(L1) and Xα,2 = ι∗(L2) which
coincides with the situation described above for T = P1 × P1 × P1.

91



5.2.2 The generic case

It was shown in [Bot09b] and [BDD09], that suitable compactifications of the source and
target of f can really improve the computation time.

We give here a few examples of affine maps given by rational fractions with very different
denominators and as quotients of polynomials of different degree. In this case we see how
the different compactifications of the target can vary drastically the size of the matrices
we obtain. This example is, in some sense nearer the generic case, where different
denominators occur and the polynomials are not of the same degree. Hence, it is easy
to construct a big family of examples just by modifying the one below.

Example 5.2.3. Take f : A2 99K A3 given by (s, t) 7→ ( s
2+t2

st2
, s2t2

s2+t2
, s

2+t2

s2
). In order

to be able to compactify the target in P3, we take common denominator. This process
increases the degrees of the maps by 3 and 4. This shows how ”fictitious” can be in
some cases to take common denominator. The consequences of this phenomena is that
the Newton polytope N one obtains from the new 4 polynomials is really big, in fact, it
has 14 integer points. Hence T embeds in P13.

It is easy to see that N has no smaller contraction with integer vertices, hence the map
ϕ one gets factorizing through T , is given by polynomials of degree 1 in 14 variables.

ϕ : T 99K P3 : (T0, . . . , T13) 7→ (T1 + 2T6 + T13 : T12 : T0 + 2T4 + T10 : T4 + T10).

After some computations one obtains that for ν0 = 2, the matrix Mν0 ∈ Mat45,90(K[X])
is a matrix representation for the closed image of ϕ. Hence, the gcd of the maximal
minors gives the irreducible implicit equation of degree 7 up to a power of 2. Using the
complex, this polynomial can be computed as det(45×45−matrix). det(14×14−matrix)

det(45×45−matrix)
.

As we mentioned above, it is more natural in this case not to take common denomina-
tor. Thus, consider the map φ that one obtains by factorizing f through T and then
embedding A3 in (P1)3. It can be easily seen that the Newton polytope one gets has 6
integer points, hence, T embeds in P5. Finally, one sees that the rational map φ is given
by

φ : P5 ⊃ T 99K P1×P1×P1 : (T0, . . . , T5) 7→ (T0 +T3 : T2)×(T5 : T0 +T3)×(T0 +T3 : T3).

It can be seen that in degree η0 := 2 the complex (K•(L1, L2, L3; K[s, t, u][X]))(2,∗) permits
to compute Mη0 ∈ Mat15,18(K[X]), the matrix representation. Then, in this case, the
square of the implicit equation can be computed as the gcd of its maximal minors or as
det(15×15−matrix)
det(3×3−matrix)

.

We conclude that in a case where denominators are fairly different, it is notably better
to compactify the codomain of f into (P1)3.
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Example 5.2.4. This example shows how the methods work in the generic case with a
fixed polytope. We begin by taking N a normal lattice polytope in Rn−1. For the sake of
clarity we will treat a particular case in small dimension. Hence, set n = 3, and consider
N as in the drawing below. It will remain clear that this example can be generalized to
any dimension and any normal polytope with integer vertices.

b b

b

b

0 1 2 3
0

1

2

3

Assume we are given six generic polynomials f1, f2, f3, g1, g2, g3 with support in N , hence
we get an affine rational map f : A2 99K A3 given by (s, t) 7→ (f1

g1
, f2

g2
, f3

g3
). We write

fi =
∑

(a,b)∈N U(a,b),i · satb, and gi =
∑

(a,b)∈N V(a,b),i · satb. Set U := {U(a,b),i, V(a,b),i :

for all (a, b) ∈ N , and i = 1, 2, 3}, the set of coefficients, and define K := Z[U ].

Now we focus on computing the implicit equation of a convenient compactification for
the map. Let T be the toric variety associated to the Newton polytope N , embedded in
P4. We will compare how the method works in the P3 and (P1)3 compactifications of A3

with domain T . One key point to remark is that these two maps have no base points,
since we are taking the toric compactification associated to N and generic coefficients,
hence, we will not have any extraneous factors.

In the first case, we take common denominator obtaining four polynomials with generic
coefficients in the polytope 3N . If we consider the smallest multiple, we recover the
polytope N , and maps of degree 3. We obtain in this case that f factorizes through
T ⊂ P4 via ϕ : T 99K P3, given by 4 polynomials of degree 3 in the variables T0, . . . , T4.
From Lemma 3.3.9, we take ν0 := max{3, 6 − γ}. Since 2N has integer interior points
but N does not, γ = 1, thus ν0 = 5. Now, since X is empty in T , from Lemma 3.3.5,
the complex Z• is acyclic.

From Theorem 3.3.10 we see that the implicit equation can be computed as the deter-
minant of the complex (Z•)ν for ν ≥ ν0, or as the gcd of the maximal minors of the

right-most map (Z1)5(−1)
Mν−→ (Z0)5. We can easily compute the dimension of A5, by

the formula #(k · N ) = (k + 1)(k + 1 + k/2). When k = 5, we get #(5 · N ) = 51, hence
(Z0)5 = K51[X]. Since Mν gives a surjective map, (Z1)5(−1) has dimension bigger than
or equal to 51.
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Instead of taking common denominator, we can proceed by compactifying A3 into (P1)3.
In this case we get a map φ : T 99K (P1)3 is given by 3 pairs of linear functions on the
variables T0, . . . , T4.

From Theorem 4.3.5, we take ν ≥ ν0 = 1 + 1 + 1 − 1 = 2. Now, since the polyno-
mials fi and gi have generic coefficients, hence Li := Yifi − Xigi does as well, thus
K• := K•(L1, L2, L3;A[X]) is acyclic. From Lemma 4.4.2, the implicit equation can be
computed as the determinant of the complex (K•)ν for ν ≥ 2, or as the gcd of the maximal

minors of the right-most map A3
1[X](−1)

M2−→ A2[X]. Since dim(A0) = 1, dim(A1) = 5

and dim(A2) = 12 we get the complex K3[X](−2)→ K15[X](−1)
M2−→ K12[X]. Thus, the

implicit equation can be computed as the gcd of the maximal minors of a (12×14)-matrix,

or as det(12×12-matrix)
det(3×3-matrix)

.

5.2.3 A few example with artificial compactifications

We analyze here some small-dimensional examples that have been considered before by
other authors, where the method works fairly better with a homogeneous compactifica-
tion of the codomain. Finally, we illustrate that is much better not to take common
denominator in the generic case, by means of an example where denominators are dif-
ferent.

Example 5.2.5. The first one is taken from [BC05, Ex. 3.3.1] as a base-point-free
example. Assume we are given ϕ : P2 99K P3 : (s : t : u) 7→ (g0 : g1 : g2 : g3),
where g0 = s2t, g1 = t2u, g2 = su2, g3 = s3 + t3 + u3. In [BC05, Ex. 3.3.1] it is
shown that ν0 = 4 and no better bound can be considered. They deduce that Mν0 ∈
Mat24,15(K[X0, X1, X2, X3]), hence the implicit equation can be computed as the gcd of

its maximal minors or as det(15×15−matrix).det(3×3−matrix)
det(9×9−matrix)

.

Naturally, this problem can arise from many different affine settings. First, assume that
u is the homogenizing variable, and hence, the toric embedding would be A2 = {(s : t :
1)} ⊂ P2. In any of these cases, the Newton polytope is a triangle with vertices (0, 0),
(3, 0) and (0, 3), hence every domain compactification will be a projective space. If we
proceed by taking the embedding corresponding to the smallest homothety, this compact-
ification is P2. There are many affine setting for which the projective compactification
of the domain gives place to the map we were given.

As a first approach, assume we consider fI : A2 99K A3 : (s, t) 7→ (f0

f3
, f1

f3
, f2

f3
). The

projective codomain compactification is the one studied in [BC05, Ex. 3.3.1], hence we
focus on the rational map

φI : P2 99K P1 × P1 × P1 : (s : t : u) 7→ (f0 : f3)× (f1 : f3)× (f2 : f3).
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It is easy to verify that Avramov’s conditions are satisfied, then the implicitization
method developed in [Bot09b] can be applied. As all fi are of degree 3 (nothing gets sim-
plified), η0 :=

∑3
i=1(di−1)+1 = 7. Introduce the variables X := {X1, X2, X3, Y1, Y2, Y3},

and the linear forms L1 = f0.Y1 − f3.X1, L2 = f1.Y2 − f3.X2, L3 = f2.Y3 − f3.X3. We
have the complex (K•(L1, L2, L3; K[s, t, u][X]))(7,∗)

(K•)(7,∗) : 0→ 0→ (A1)3 ⊗K K[X](−2)→ (A4)3 ⊗K K[X](−1)
Mν−→ A7 ⊗K K[X]→ 0,

Since dim((A1)3) = 3.dim(A1) = 3.3 = 9, dim((A4)3) = 3.dim(A4) = 3.15 = 45 and
dim(A7) = 36, we get

(K•)(7,∗) : 0→ 0→ K9[X](−2)→ K45[X](−1)
Mν−→ K36[X]→ 0,

hence, Mη0 ∈ Mat36,45(K[X]). Computing the gcd of its maximal minors or even as
det(36×36−matrix)
det(9×9−matrix)

, we get a multihomogeneous non-irreducible equation of multidegree

(9, 9, 9) that gives the irreducible implicit equation of multidegree (6, 6, 6), and an extra
factor G = Y 3

1 Y
3

2 Y
3

3 (cf. Theorem 4.4.11).

For better understanding the nature of this extra factor, let us analyze the base locus
of φI , X. Observe that W = ∅ and X = {q1, q2, q3}, precisely, q1 = (1 : −1 : 0),
q2 = (0 : 1 : −1) and q3 = (1 : 0 : −1). In the language of Section 4.4.2, Θ := {α1, α2, α3},
where α1 = {1} ⊂ {1, 2, 3}, α2 = {2}, and α3 = {3}, hence Xαi := {qi}. Being this
three sets irreducible and disjoints, Ωαi = Xαi . We have over each point qi a trivial
multiprojective bundle Eαi of rank 2 isomorphic to P1 × P1. Clearly Yi is the irreducible
implicit equation of π2(Eαi) ⊂ (P1)3, and 3 the coefficient of the cycle (π2)∗(Eαi).

A different approach consists in considering the following affine map fII : A2 99K A3 :
(s, t) 7→ (f1

f0
, f2

f0
, f3

f0
). Simplifying, we get the following multiprojective setting

φII : P2 99K P1 × P1 × P1 : (s : t : u) 7→ (tu : s2)× (u2 : st)× (s3 + t3 + u3 : s2t).

Also here, it is easy to verify that Avramov’s hypotheses are verified, hence the im-
plicitization method of [Bot09b] can be applied. We introduce the variables X :=
{X1, X2, X3, Y1, Y2, Y3}, and the linear forms L1 = tu.Y1−s2.X1, L2 = u2.Y2−st.X2, L3 =
(s3 + t3 + u3).Y3 − s2t.X3. We get that deg(L1) = deg(L2) = 2 and deg(L3) = 3, hence
η0 :=

∑3
i=1(di − 1) + 1 = 5. The complex (K•(L1, L2, L3; K[s, t, u][X]))(5,∗) is

(K•)(5,∗) : 0→ 0→ (A2
0⊕A1)⊗KK[X](−2)→ (A2

3⊕A2)⊗KK[X](−1)
Mν−→ A5⊗KK[X]→ 0,

and, since dim(A2
0 ⊕A1) = 2 + 3 = 5, dim(A2

3 ⊕A2) = 2.10 + 6 = 26 and dim(A5) = 21,
it is isomorphic to

(K•)(5,∗) : 0→ 0→ K5[X](−2)→ K26[X](−1)
Mν−→ K21[X]→ 0.
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Thus, we get Mη0 ∈ Mat21,26(K[X]), and a multiple of the implicit equation can be

computed as the gcd of its maximal minors or as det(21×21−matrix)
det(5×5−matrix)

. In this case, we get the

irreducible implicit equation of multidegree (6, 6, 3) and a factor G = Y3. Here, the extra
factor occurs due to the presence of a base point q = (0 : 1 : 0) that vanishes equations
L1 and L2, and giving L3(q,X) = t3Y3.

We can see that the method proposed in [BC05] seems to give smaller matrices, as was
predicted for a problem coming from rational maps with the same denominator. In this
case, the value ν0 = 4 is the best bound for a problem like this, without base points; the
advantage it gives is that hence, no extra factors appear.

On the other hand, the method proposed in Chapter4 gives only two matrices, and it does
not involve the computation of the first, second and third syzygies needed for building-up
the approximation complex. With this setting we are also computing one extra factor
that appears due to the existence of base points with 2-dimensional fiber. Observe that
in this last case, p = (0 : t : 0) forces L1 and L2 to vanish identically over p, and that
L3(p,X) = t3.Y3. From Theorem 4.4.11 we have that det((K•)(5,∗)) = Hdeg(φII).Y µ

3 , and
µ = 1.

Example 5.2.6. This second example was taken from [BC05, Ex. 3.3.3] as a non-base-
point-free example. In the chapter the authors analyze the improvement of the bound,
and how, as they show in [BC05, Thm. 4.2], it decreases in presence of base points.
Hence, assume we are given ϕ : P2 99K P3, (s : t : u) 7→ (g0 : g1 : g2 : g3), where
g0 = su2, g1 = t2(s+ u), g2 = st(s+ u), g3 = tu(s+ u). In [BC05, Ex. 3.3.3] they show
that ν0 = 4 can now be lowered, taking as the best bound ν0 = 2. They conclude that
the implicit equation can be computed as det(6×6−matrix)

det(3×3−matrix)
.

Also in this example this problem can arrive from many different affine settings, so at
first, let us consider a multiprojective setting φI : P2 99K (P1)3. The idea is showing that
even if P2 is not necessarily the “best” toric compactification of A2, we can apply it in
order to be in the setting of Chapter 4. Hence, consider φI defined as

φI : P2 99K P1 × P1 × P1 : (s : t : u) 7→ (su : t(s+ u))× (t : u)× (s : u).

We have in degree η0 :=
∑

i(di−1)+1 = 2 the complex (K•(L1, L2, L3; K[s, t, u][X]))(2,∗)
and hence, Mη0 ∈ Mat6,7(K[X]), giving a multiple of the implicit equation as the gcd of

its maximal minors or as det(6×6−matrix)
det(1×1−matrix)

.

With this setting we compute two extra factors that appear because of the presence
of two base points, p = (0 : t : 0) and q = (s : 0 : 0) having 2-dimensional fibers.
Observe that L1(p) = L3(p) = 0, and that L2(p,X) = t.Y2; and L1(q) = L2(q) =
0, and L3(q,X) = s.Y3. Hence, from Theorem 4.4.11 we have that det((K•)(2,∗)) =
Hdeg(φII).Y µ1

2 .Y µ2

3 , precisely deg(φII) = 1µ1 = µ2 = 1, and H has multidegree (1, 1, 1).
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We will now choose a better compactification for A2. Hence, define f : A2 99K A3, as
f(s, t) = fI(s : t : 1), the affine map of fI defined above. Considering both codomain
compactifications we obtain: First, the projective case, given by ϕII : P5 ⊃ T 99K P3,
given by (T0 : T1 : T2 : T3 : T4 : T5) 7→ (T0 : T4 + T5 : T2 + T3 : T1 + T2), where
T is the toric variety associated to the Newton polytope of g, N (g). And second, the
multiprojective setting φII : P3 ⊃ T 99K P1×P1×P1, given by (T0 : T1 : T2 : T3) 7→ (T1 :
T2 + T3) × (T2 : T0) × (T1 : T0), where T is the toric variety associated to the Newton
polytope of f , N (f). Hence T ∼= P1 × P1, with it Segre embedding in P3.

From the map ϕII we obtain the matrix Mν from the right-most map of the ν graded
strand of the approximation complex of cycles, for ν0 = 1 (cf. Theorem 3.3.10). Com-
puting the dimension of each module of cycle Zi[i · d] in Macaulay2 we get Mη0 ∈
Mat6,10(K[X]), hence the implicit equation, of degree 3, can be computed as the gcd of

its maximal minors or as det(6×6−matrix). det(1×1−matrix)
det(4×4−matrix)

.

Finally let us look at the case φII : T 99K P1 × P1 × P1. We verify that in degree η0 :=∑
i di−γ+1 = 3−2+1 = 2 (cf. Theorem 4.3.5), the complex (K•(L1, L2, L3; K[s, t, u][X]))(2,∗)

gives Mη0 ∈ Mat9,12(K[X]), and thus a power of the implicit equation can be computed

as the gcd of its maximal minors or even as det(9×9−matrix)
det(3×3−matrix)

.

Remark 5.2.7. In the previous example we can appreciate that from the algorithmic
point of view, considering the toric variety associated the Newton polytope of the defining
polynomials, is not necessarily the most efficient choice in terms of the size of the matri-
ces. In both cases, it seems to be a better option considering, as a polytope, the smallest
contraction of the triangle (3, 0), (0, 3), (0, 0), namely the triangle (1, 0), (0, 1), (0, 0).

Newton polytope of g, N (g). Fig. (5.2.7)
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Newton polytope of f , N (f). Fig. (5.2.7)

It is clear that the toric variety it defines is T = P2; hence, the setting we consider is
the map ϕ : P2 99K P3 in the projective case, and φI : P2 99K (P1)3 in the multiprojective
one.

5.3 Applications to the computation of sparse
discriminants

The computation of sparse discriminants is equivalent to the implicitization problem for
a parametric variety, to which we can apply the techniques developed in the previous
sections. In the situation described in [CD07], a rational map f : Cn 99K Cn given by
homogeneous rational functions of total degree zero is associated to an integer matrix
B of full rank. This is done in such a way that the corresponding implicit equation is
a dehomogenization of a sparse discriminant of generic polynomials with exponents in a
Gale dual of B.

Suppose for instance that we take the matrix B below:

B =


1 0 0
−2 1 0

1 −2 1
0 1 −2
0 0 1

 .

In this case, as the colums of B generate the affine relations of the lattice points
{0, 1, 2, 3, 4}. The closed image of the parametrization f is a dehomogenization of the
classical discriminant of a generic univariate polynomial of degree 4. Explicitly, from
the matrix we get the linear forms l1(u, v, w) = u, l2(u, v, w) = −2u + v, l3(u, v, w) =
u− 2v+w, l4(u, v, w) = v− 2w, l5(u, v, w) = w (whose coefficients are read in the rows
of B), and the polynomials f0 = l1 · l3, g0 = l22, f1 = l2 · l4, g1 = l23, f2 = l3 · l5, g2 = l24
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(the exponents of the linear forms are read from the columns of B) . This construction
gives rise to the following rational map:

f : C3 99K C3

(u, v, w) 7→ (u(u−2v+w)
(−2u+v)2 ,

(−2u+v)(v−2w)
(u−2v+w)2 , (u−2v+w)w

(v−2w)2 ).

First, we see that we can get a map from P2
C because of the homogeneity of the polyno-

mials. Also, taking common denominator, we can have a map to P3
C, this is:

f : P2
C 99K P3

C
(u : v : w) 7→ (f0 : f1 : f2 : f3).

where f0 = (−2u+v)2(u−2v+w)2(v−2w)2 is the common denominator, f1 = u(u−2v+
w)3(v−2w)2, f2 = (−2u+v)3(v−2w)3 and f3 = (u−2v+w)w(−2u+v)2(u−2v+w)2.

The problem with this way of projectivizing is that, in general, we cannot implement
the theory developed by L. Busé, M. Chardin, and J-P. Jouanolou, because typically the
base locus has unwanted properties, as a consequence of taking common denominator
and because of combinatorial reasons.

As a possible way out, we propose in this work to consider the morphism of projective
schemes given by:

φ : P2 99K P1 × P1 × P1

(u : v : w) 7→ (f0 : g0)× (f1 : g1)× (f2 : g2).

where f0 = u(u− 2v+w), g0 = (−2u+ v)2, f1 = (−2u+ v)(v− 2w), g1 = (u− 2v+w)2,
f2 = (u−2v+w)w g2 = (v−2w)2. For this particular example, we get that there are only
two base points giving rise to an extra factor, namely p = (1 : 2 : 3) and q = (3 : 2 : 1).
Is easy to see that those points give rise to two linear factors in the equation of the
MacRae invariant.

First, we observe that this situation is better, because we are not adding common zeroes.
Moreover, if a point (u : v : w) is a base point here, it also is in the two settings above:
the affine and the projective case f .

Remember also that in the n = 2 case, the condition required on the Koszul complex
associated to this map for being acyclic is that the variety X, defined as the common
zeroes of all the 6 polynomials, be empty. In general, the conditions we should check are
the ones imposed by the Avramov’s theorem 4.3.4, as was shown in Theorem 4.4.2.

Note also that if we want to state this situation in the language of approximation com-
plexes, we need only to replace K• by Z•, because we can assume that {fi, gi} are regular
sequences, due to the fact that gcd(fi, gi) = 1.
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Remark 5.3.1. For a matrix like the B above, it is clear that the closed subvariety X
is always empty, due to the fact that all maximal minors of B are not zero, and the
polynomials gi’s involve independent conditions. Then, the only common solution to
l22 = l23 = l24 = 0 is (u, v, w) = (0, 0, 0), and so X = ∅ in P2. In this case, it is still better
(from an algorithmic approach) to compute the discriminant of a generic polynomial of
degree 4 in a single variable and then dehomogenize, because, in our setting, the number
of variables is bigger than 1. But when the number of monomials of a sparse polynomial
in many variables is not big, this Gale dual approach for the computation of sparse
discriminants provides a good alternative.

We will give next an example where we show a more complicated case.

Example 5.3.2. Let C be the matrix given by

C =


1 −7 −6
−1 4 3

1 0 4
0 1 −1
−1 2 0

 .

As before, denoting by bi the i-th row of C, we get the linear forms li(u, v, w) =
〈bi, (u, v, w)〉 , associated to the row vectors bi of B, where 〈, 〉 stands for the inner prod-
uct in C3. Then we define the homogeneous polynomials f0 = l1 · l3, g0 = l2 · l5, f1 =
l42 · l4 · l25, g1 = l71, f2 = l32 · l43, f2 = l61 · l4. And we obtain the following rational map:

φ : P2 99K P1 × P1 × P1

(u : v : w) 7→ (f0 : g0)× (f1 : g1)× (f2 : g2).

It is easy to see that in this case the variety X is not empty, for instance the point
p = (1 : 1 : −1), defined by l1 = l2 = 0 belongs to X.

As was shown by M. A. Cueto and A. Dickenstein in [CD07, Lemma 3.1 and Thm.
3.4], we can interpret the discriminant computed from the matrix C in terms of the
dehomogenized discriminant associated to any matrix of the form C ·M , where M is a
square invertible matrix with integer coefficients. That is, we are allowed to do operations
on the columns of the matrix C, and still be able to compute the desired discriminant
in terms of the matrix obtained from C. In [CD07] they give an explicit formula for this
passage.

In this particular case, we can multiply C from the right by a determinant 1 matrix M ,
obtaining

C ·M =


1 −7 −6
−1 4 3

1 0 4
0 1 −1
−1 2 0

 ·
 1 12 −1

0 6 −1
0 5 1

 =


1 0 0
−1 −3 0

1 −8 3
0 11 −2
−1 0 −1

 .
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Similar to what we have done before, we can see that the closed subvariety X associated
to the rational map that we obtain from the matrix C · M is empty. Observe that
#V (I2) is finite due to the fact that l2 = l4 = 0 or l3 = l4 = 0 or l3 = l5 = 0 should hold.
Moreover it is easy to verify that all maximal minors are nonzero, and this condition
implies that any of the previous conditions define a codimension 2 variety, this is, a
finite one. With the notation of Chapter 4, a similar procedure works for seeing see that
codimA(I3) ≥ 2. Finally the first part of Theorem 4.4.2 implies that the Koszul complex
K• is acyclic and so we can compute the Macaulay resultant as its determinant.

Moreover, this property over the minors implies that codimA(I(i0)) = 2 > k + 1 = 1 and
that codimA(I(i0) + I(i1)) = 3 > k + 1 = 2. So, the second part of Theorem 4.4.2 tells us
that the determinant of the Koszul complex K• in degree greater than (2+8+3)−3 = 10
determines exactly the implicit equation of the scheme theoretic image of φ. Observe
that, as was shown in [CD07, Thm. 2.5], for this map, we have that deg(φ) = 1.

We remark that the process implemented for triangulating the matrix C via M is not
algorithmic for the moment.
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6 G-graded Castelnuovo Mumford
Regularity

6.1 Introduction.

Castelnuovo-Mumford regularity is a fundamental invariant in commutative algebra and
algebraic geometry. It is a kind of universal bound for important invariants of graded
algebras such as the maximum degree of the syzygies and the maximum non-vanishing
degree of the local cohomology modules.

Intuitively, it measures the complexity of a module or sheaf. The regularity of a module
approximates the largest degree of the minimal generators and the regularity of a sheaf
estimates the smallest twist for which the sheaf is generated by its global sections. It
has been used as a measure for the complexity of computational problems in algebraic
geometry and commutative algebra (see for example [EG84] or [BM93]).

One has often tried to find upper bounds for the Castelnuovo-Mumford regularity in
terms of simpler invariants. The simplest invariants which reflect the complexity of
a graded algebra are the dimension and the multiplicity. However, the Castelnuovo-
Mumford regularity can not be bounded in terms of the multiplicity and the dimension.

Although the precise definition may seem rather technical. Indeed, the two most popu-
lar definitions of Castelnuovo-Mumford regularity are the one in terms of graded Betti
numbers and the one using local cohomology.

For the first one, let k be a field, and let I be an homogeneous ideal in a polynomial
ring R = k[x0, ..., xn] over a field k with characteristic zero. Consider the minimal free
resolution of R/I as a graded R-module,

· · · →
⊕
j

R(−di,j)→ · · · →
⊕
j

R(−d1,j)→ R→ R/I → 0.

Then, the Castelnuovo-Mumford regularity of R/I is defined as

reg(R/I) = max
i,j
{di,j − i}.
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In general, for a finitely generated graded R-module M , write Fi =
⊕

j R(−di,j) =⊕
j R[−j]βij , for a minimal free R-resolution of M and set p := pd(M) = n−depth(M).

Observe that the maps of F• ⊗R k are zero, thus, TorRi (M,k) = Hi(F• ⊗R k) = Fi ⊗R k
and therefore βij = dimk(TorRi (M,k)j). If TorRi (M,k) 6= 0, set

bi(M) := max{µ : TorRi (M,k)µ 6= 0},
else, bi(M) := −∞. Hence bi(M) is the maximal degree of a minimal generator of Fi,
and therefore of the module of i-th syzygies of M . The Castelnuovo-Mumford regularity
is also a measure of the maximal degrees of generators of the modules Fi:

reg(M) := max
i
{bi(M)− i}.

Second, we can give two fundamental results that motivated defining Castelnuovo-
Mumford regularity in terms of local cohomology: Grothendieck’s theorem that asserts
that H i

m(M) = 0 for i > dim(M) and i < depth(M), as well as the non vanishing of these
modules for i = dim(M) and i = depth(M); and Serre’s vanishing theorem that implies
the vanishing of graded pieces H i

m(M)µ for any i, and µ� 0. The Castelnuovo-Mumford
regularity is a measure of this vanishing degree.

If H i
m(M) 6= 0, set

ai(M) := max{µ|H i
m(M)µ 6= 0},

else, set ai(M) := −∞. Then,

reg(M) := max
i
{ai(M) + i}.

The maximum over the positive i’s is also an interesting invariant:

greg(M) := max
i>0
{ai(M) + i} = reg(M/H0

m(M)).

Thus, Castelnuovo-Mumford regularity measures more than the complexity of the ideal
I and its syzygies. For more discussion on the regularity, refer to the survey of Bayer
and Mumford [BM93] or [Mum66].

An interesting question is if one can give bounds for the regularity in terms of the degrees
of generators of I. It turns out that such bounds are very sensitive to the singularities of
the projective scheme defined by I, and in general, are very hard to compute. Its value
in bounding the degree of syzygies and constructing Hilbert schemes has established that
regularity is an indispensable tool in both fields.

The aim of this paper is to develop a multigraded variant of Castelnuovo-Mumford
regularity in the spirit of [MS04] and [HW04]. We work with modules over a commutative
ring R graded by a finitely generated abelian group G.
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One motivation for studying regularity over multigraded polynomial rings comes from
toric geometry. For a simplicial toric variety X, the homogeneous coordinate ring, in-
troduced in [Cox95], is a polynomial ring S graded by the divisor class group G of X.
The dictionary linking the geometry of X with the theory of G-graded S-modules leads
to geometric interpretations and applications for multigraded regularity.

In [HW04] Hoffman and Wang define the concept of regularity for bigraded modules over
a bigraded polynomial ring motivated by the geometry of P1 × P1. They prove analogs
of some of the classical results on m-regularity for graded modules over polynomial
algebras.

In [MS04] Maclagan and Smith develop a multigraded variant of Castelnuovo-Mumford
regularity also motivated by toric geometry. They work with modules over a polynomial
ring graded by a finitely generated abelian group, in order to establish the connection
with the minimal generators of a module and its behavior in exact sequences. In this
chapter, we extend this work restatings some of the results in [MS04].

As in the standard graded case, our definition of multigraded regularity involves the
vanishing of graded components of local cohomology, following [HW04].

Our notion of Multigraded Castelnuovo-Mumford regularity follows of existing ideas of
[HW04] and [MS04]. In the standard graded case, it reduces to Castelnuovo-Mumford
regularity (cf. [BM93]). When S is the homogeneous coordinate ring of a product of
projective spaces, multigraded regularity is the weak form of bigraded regularity defined
in [HW04].

One point we are interestied in remark is that Castelnuovo-Mumford regularity establish
a relation between the degrees of vanishing of local cohomology modules and the degrees
where Tor modules vanish. This provides a powerfull tool for computing one region of
Z in terms of the other.

In this chapter, we deal with G-graded polynomial rings, where G is a finitely generated
abelian group. We exploit some of the simililaties we get in multigraded regularity with
standard regularity, being able to compute the regions of G where local cohomology
modules vanish in terms of the supports of Tor modules, and viceversa.

Let S be a commutative ring, G an abelian group and R := S[X1, . . . , Xn], with
deg(Xi) = γi and deg(s) = 0 for s ∈ S. Consider B ⊆ (X1, . . . , Xn) a finitely generated
graded R-ideal and C the monoid generated by {γ1, . . . , γn}, we propose in Definition
6.3.1 that:

For γ ∈ G, and for a graded R-module M is weakly γ-regular if

γ 6∈
⋃
i

SuppG(H i
B(M)) + Ei.
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We also set that if further, M is weakly γ′-regular for any γ′ ∈ γ+C, then M is γ-regular
and

reg(M) := {γ ∈ G | M is γ−regular}.

We deduce from the definition that reg(M) is the maximal set S of elements in G such
that S + C = S and M is γ-regular for any γ ∈ S.

6.2 Local Cohomology and graded Betti numbers

In this chapter we develop a regularity theory for graded rings. Our aim is to give a more
general setting to that in [MS04] and [HW04], and to establish a clear relation between
supports of local cohomology modules with Tor modules and Betti numbers.

Throughout this chapter let G be a finitely generated abelian group, and let R be a
commutative G-graded ring with unit. Let B be a homogeneous ideal of R.

Remark 6.2.1. Is of particular interest the case where R is a polynomial ring in n
variables and G = Zn/K, is a quotient of Zn by some subgroup K. Note that, if M is a
Zn-graded module over a Zn-graded ring, and G = Zn/K, we can give to M a G-grading
coarser than its Zn-grading. For this, define the G-grading on M by setting, for each
γ ∈ G, Mγ :=

⊕
d∈π−1(γ) Md.

In order to fix the notation, we state the following definitions concerning local coho-
mology of graded modules, and support of a graded modules M on G. Recall that the
cohomological dimension cdB(M) of a module M is −∞ if M = 0 and max{i ∈ Z :
H i
B(M) = 0} otherwise.

Definition 6.2.2. Let M be a graded R-module, the support of the module M is
SuppG(M) := {γ ∈ G : Mγ 6= 0}.

Observe that if F• is a free resolution of a graded module M , much information on the
module can be read from the one of the resolution. Next we present a result that permits
describing the support of a graded module M in terms of some homological information
of a complex which need not be a resolution of M , but M is its first non-vanishing
homology.

Definition 6.2.3. Let C• be a complex of graded R-modules. For all i, j ∈ Z we define
a condition (Dij) as above

H i
B(Hj(C•)) 6= 0 implies H i+`+1

B (Hj+`(C•)) = H i−`−1
B (Hj−`(C•)) = 0 for all ` ≥ 1.

(Dij)
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We have the following result on the support of the local cohomology modules of the
homologies of C•.

Theorem 6.2.4. Let C• be a complex of graded R-modules and i ∈ Z. If (Dij) holds,
then

SuppG(H i
B(Hj(C•))) ⊂

⋃
k∈Z

SuppG(H i+k
B (Cj+k)).

Proof. Consider the two spectral sequences that arise from the double complex Č•BC• of
graded R-modules.

The first spectral sequence has as second screen ′2E
i
j = H i

B(Hj(C•)). Condition (Dij)
implies that ′∞E

i
j = ′

2E
i
j = H i

B(Hj(C•)). The second spectral sequence has as first screen
′′
1E

i
j = H i

B(Cj).

By comparing both spectral sequences, we deduce that, for γ ∈ G, the vanishing of
(H i+k

B (Cj+k))γ for all k implies the vanishing of (′∞E
i+`
j+`)γ for all `, hence the one of

(H i
B(Hj(C•)))γ.

We next give some cohomological conditions on the complex C• to imply (Dij) of Defi-
nition 6.2.3. Recall that for an R-module M we can compute

cdB(M) := min
{
i : H`

B(M) = 0 for all i > `
}
,

which is called the cohomological dimension of M .

Remark 6.2.5. Let C• be a complex of graded R-modules. Consider the following
conditions

1. C• is a right-bounded complex, say Cj = 0 for j < 0 and, cdB(Hj(C•)) ≤ 1 for all
j 6= 0.

2. For some q ∈ Z ∪ {−∞}, Hj(C•) = 0 for all j < q and, cdB(Hj(C•)) ≤ 1 for all
j > q.

3. Hj(C•) = 0 for j < 0 and cdB(Hk(C•)) ≤ k + i for all k ≥ 1.

Then,

(i) (1)⇒ (2)⇒ (Dij) for all i, j ∈ Z, and

(ii) (3)⇒(Dij) for j = 0.

Proof. For proving item (i), it suffices to show that (2) ⇒ (Dij) for all i, j ∈ Z since
(1)⇒ (2) is clear.

Let ` ≥ 1.
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Condition (2) implies that H i
B(Hj(C•)) = 0 for j > q and i 6= 0, 1 and for j < q. If

H i
B(Hj(C•)) 6= 0, either j > q and i ∈ {0, 1} in which case j + ` > q and i + ` + 1 ≥ 2

and i− `− 1 < 0, or j = q in which case j + ` > q and i + ` + 1 ≥ 2 and j − ` < 0. In
both cases the asserted vanishing holds.

Condition (3) implies that H i+`+1
B (H`(C•)) = 0 and Hj−`(C•) = 0.

6.2.1 From Local Cohomology to Betti numbers

Assume R := S[X1, . . . , Xn] is a polynomial ring over a commutative ring S, deg(Xi) =
γi ∈ G for 1 ≤ i ≤ n and deg(s) = 0 for s ∈ S. Set γ := (γ1, . . . , γn) ∈ Gn.

Let B ⊆ (X1, . . . , Xn) be a finitely generated graded R-ideal.

Definition 6.2.6. Set E0 := {0} and El := {γi1 + · · ·+ γil : i1 < · · · < il} for l 6= 0.

Observe that if l < 0 or l > n, then El = ∅. If γi = γ for all i, El = {l · γ} when El 6= ∅.
Notation 6.2.7. For an R-module M , we denote by M [γ′] the shifted module by γ′ ∈ G,
with M [γ′]γ := Mγ′+γ for all γ ∈ G.

Let M be a graded R-module. Write KM• := K•(X1, . . . , Xn;M) for the Koszul complex
of the sequence (X1, . . . , Xn) with coefficients in M . We next establish a relationship
between the support of the local cohomologies of its homologies and graded Betti numbers
of M .

The Koszul complex KM• is graded with KM
l :=

⊕
i1<···<ilM [−γi1 − · · · − γil ]. Let ZM

i

and BM
i be the Koszul i-th cycles and boundaries modules, with the grading that makes

the inclusions ZM
i , B

M
i ⊂ KM

i a map of degree 0 ∈ G, and set HM
i = ZM

i /B
M
i .

Theorem 6.2.8. Let M be a G-graded R-module. Then

SuppG(TorRj (M,S)) ⊂
⋃
k≥0

(SuppG(Hk
B(M)) + Ej+k),

for all j ≥ 0.

Proof. Notice that HM
j ' TorRj (M,S) is annihilated by B, hence has cohomological

dimension 0 relatively to B. According to Remark 6.2.5 (case (1)), Theorem 6.2.4 applies
and shows that

SuppG(TorRj (M,S)) ⊂
⋃
`≥0

SuppG(H`
B(Kj+`)) =

⋃
k≥0

(SuppG(Hk
B(M)) + Ej+k).
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6.2.2 From Betti numbers to Local Cohomology

We keep hypotheses as in section 6.2.1

Theorem 6.2.9. Let M be a graded R-module and F• be a graded complex of free R-
modules, with H0(F•) = M . Write Fi =

⊕
j∈Ei R[−γij] and Ti := {γij | j ∈ Ei}. Let

` ≥ 0 and assume cdB(Hj(F•)) ≤ `+ j for all j ≥ 1. Then,

SuppG(H`
B(M)) ⊂

⋃
i≥0

(SuppG(H`+i
B (R)) + Ti).

Proof. Remark 6.2.5 (case (3)) shows that Theorem 6.2.4 applies for estimating the
support of local cohomologies of H0(F•), and provides the quoted result as

SuppG(Hp
B(R[−γ])) = SuppG(Hp

B(R)) + γ, and SuppG(⊕i∈ENi) = ∪i∈ESuppG(Ni)

for any set of graded modules Ni, i ∈ E.

Corollary 6.2.10. Assume that S is a field and let M be a finitely generated graded
R-module. Then, for any `,

SuppG(H`
B(M)) ⊂

⋃
i≥0

(SuppG(H`+i
B (R)) + SuppG(TorRi (M,S))).

If (S,m, k) is local, the spectral sequence TorSp (TorRq (M,S), k) ⇒ TorRp+q(M,k) shows
that

SuppG(TorRi (M,k)) ⊆
⋃
j≤i

SuppG(TorRj (M,S))

as S ⊂ R0. It implies the following:

Corollary 6.2.11. Assume that (S,m, k) is local Noetherian and let M be a finitely
generated graded R-module. Then, for any `,

SuppG(H`
B(M)) ⊂ ⋃i≥0(SuppG(H`+i

B (R)) + SuppG(TorRi (M,k)))

⊂ ⋃i≥j≥0(SuppG(H`+i
B (R)) + SuppG(TorRj (M,S))).

Which in turn shows that :

Corollary 6.2.12. Let M be a finitely generated graded R-module, with S Noetherian.
Then, for any `,

SuppG(H`
B(M)) ⊂

⋃
i≥j≥0

(SuppG(H`+i
B (R)) + SuppG(TorRj (M,S))).

Proof. Let γ ∈ SuppG(H`
B(M)). Then H`

B(M)γ 6= 0, hence there exists p ∈ Spec(S)
such that (H`

B(M)γ) ⊗S Sp = H`
B⊗SSp

(M ⊗S Sp) 6= 0. Applying Corollary 6.2.11 the
result follows since both the local cohomology functor and the Tor functor commute
with localization in S, and preserves grading as S ⊂ R0.
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6.3 Castelnuovo-Mumford regularity

We have mentionned in the beginning of this chapter that one point we are interestied
in remark is that Castelnuovo-Mumford regularity establishes a relation between the
degrees of vanishing of local cohomology modules and the degrees where Tor modules
vanish. It is clear that this provides a powerfull tool for computing one region of Z in
terms of the other.

As we have promissed, in this section we give a definiton for a G-graded R-module M
and γ ∈ G to be weakly γ-regular or just γ-regular, depending if γ is or is not on the
shifted suport of some local cohomology modules of M (cf. 6.3.1). This definition allows
us to generalize the classical fact that weak regularity implies regularity.

In the later part of this section, in Theorem 6.3.3, we prove that for j ≥ 0, the supports
of TorRj (M,S) does not meet the support of any shifted regularity region reg(M) + γ
for γ moving on Ej. As we have mentioned in the introduction of this chapter, this
result generalizes the fact that when G = Z and the grading is standard, reg(M) + j ≥
end(TorRj (M,S)).

6.3.1 Regularity for Local Cohomology modules

Let S be a commutative ring, G an abelian group and R := S[X1, . . . , Xn], with
deg(Xi) = γi and deg(s) = 0 for s ∈ S. Let B ⊆ (X1, . . . , Xn) be a graded R-ideal
and C be the monoid generated by {γ1, . . . , γn}.
Definition 6.3.1. For γ ∈ G, a graded R-module M is weakly γ-regular if

γ 6∈
⋃
i

SuppG(H i
B(M)) + Ei.

If further M is weakly γ′-regular for any γ′ ∈ γ + C, then M is γ-regular and

reg(M) := {γ ∈ G | M is γ−regular}.

It immediately follows from the definition that reg(M) is the maximal set S of elements
in G such that S + C = S and M is weakly γ-regular for any γ ∈ S.

Let {γ1, . . . , γn} = {µ1, . . . , µp}, with µi 6= µj for i 6= j. Denote by pi the ideal generated
by the variables of degree µi.

The following lemma generalizes the classical fact that weak regularity implies regularity
under some extra requirement.
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Lemma 6.3.2. Assume that B ⊂ pi for every i. Let M be a graded R-module. If M is
weakly γ-regular and either H0

B(M)γ+C = 0 or M is generated by elements whose degrees
do not belong to γ + C, then M is γ-regular.

Proof. We induct on w(M) := n−m, where m is the number of variables acting as 0 on
M .

Let i ∈ {1, . . . , p}. We have to show that M is weakly (γ + µi)-regular if one of the two
conditions of the Lemma is satisfied. Assume that the variables Xj for j = j0i, . . . , jti
are the ones of degree µi.

If w(M) = 0, then M = 0 :M B = H0
B(M). Further if M = H0

B(M), both requirements
are equivalent and the result follows as H i

B(M) = 0 for i > 0.

Our statement is unchanged by faithfully flat extension and the Dedekind-Mertens
Lemma shows that after making a polynomial extension S ′ := S[U1, . . . Ut] of S, the
element fi := Xj0i + U1Xj1i + · · ·+ UtXjti is a non-zero divisor on M/H0

pi
(M), hence on

M ′ := M/H0
B(M), as B ⊂ pi by hypothesis.

Notice that w(M/fiM) < w(M) after identifyingR/(fi) withR′ := S ′[X1, . . . , X̂j0i , . . . , Xn].
For any `, the exact sequence 0 → (0 :M (fi)) → M → M(µi) → (M/fiM)(µi) → 0
gives rise to an exact sequence

H`
B(M)→ H`

B(M)(µi)→ H`
B(M/fiM)(µi)→ H`+1

B (M).

The right part of the sequence shows that M/fiM is weakly γ-regular, hence, by in-
duction hypothesis, γ-regular if M/fiM is generated by elements whose degrees do not
belong to γ + C (for instance if M is so) and (M/fiM)/H0

B(M/fiM) is γ-regular in any
case.

From the left part of the sequence, we deduce that M is (γ+µi)-regular if M is generated
by elements whose degrees do not belong to γ + C and M/H0

B(M) is (γ + µi)-regular in
any case, which proves our claim.

Theorem 6.3.3. Let M be a G-graded R-module. Then⋂
γ∈Ej

(reg(M) + γ)
⋂

SuppG(TorRj (M,S)) = ∅

for all j ≥ 0.

When G = Z and the grading is standard, this reads with the usual definition of
reg(M) ∈ Z:

reg(M) + j ≥ end(TorRj (M,S)).
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Proof. If γ ∈ SuppG(TorRj (M,S)), then it follows from Theorem 6.2.8 that γ ∈ SuppG(H`
B(M))+

Ej+` for some `. Hence

γ − γi1 − · · · − γij+` ∈ SuppG(H`
B(M))

for some i1 < · · · < ij+`. By definition it follows that if µ ∈ reg(M) and t1 < · · · < t`,
then

γ − γi1 − · · · − γij+` 6= µ− γt1 − · · · − γt`
in particular choosing tk := ij+k one has

γ − γi1 − · · · − γij 6∈ reg(M).

On the other hand, Corollary 6.2.12 shows that :

Proposition 6.3.4. Assume S is Noetherian, let M be a finitely generated G-graded
R-module and set Ti := SuppG(TorRi (M,S)). Then, for any `,

SuppG(H`
B(M) + E`) ⊂

⋃
i≥j

(SuppG(H`+i
B (R)) + E` + Tj).

If further S is a field,

SuppG(H`
B(M) + E`) ⊂

⋃
i

(SuppG(H`+i
B (R)) + E` + Ti).

In some applications it is useful to consider local cohomologies of indices at least equal
to some number, for instance positive values or values at least two. In view of Lemma
6.3.2, most of the time weak regularity and regularity agrees in this case. We set :

reg`(M) := {γ | ∀γ′ ∈ C, γ + γ′ 6∈
⋃
i≥`

SuppG(H i
B(M)) + Ei}.

With this notation, Proposition 6.3.4 implies the following

Theorem 6.3.5. Assume S is Noetherian, let M be a finitely generated G-graded R-
module and set Ti := SuppG(TorRi (M,S)). Then, for any `,

reg`(M) ⊇
⋂

j≤i,γ∈Tj ,γ′∈Ei

reg`+i(R) + γ − γ′ ⊇ reg`(R) +
⋂

j≤i,γ∈Tj ,γ′∈Ei

γ − γ′ + C.

The above intersection can be restricted to i ≤ cdB(R)− `. If further S is a field,

reg`(M) ⊇
⋂

i,γ∈Ti,γ′∈Ei

reg`+i(R) + γ − γ′ ⊇ reg`(R) +
⋂

i,γ∈Ti,γ′∈Ei

γ − γ′ + C.
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When G = Z and the grading is standard, this reads with the usual definition of
reg`(M) ∈ Z:

reg`(M) ≤ reg`(R) + max
i
{end(TorRi (M,S))− i}.

Proof. If µ 6∈ reg`(M), by Proposition 6.3.4, there exists i ≥ j such that

µ ∈ SuppG(H`+i
B (R)) + E` + Tj

hence there exists γ′ ∈ Ei and γ ∈ Tj such that

µ+ γ′ − γ ∈ SuppG(H`+i
B (R)) + Ei+`.

Therefore µ 6∈ reg`+i(R) + γ − γ′.

6.4 Local cohomology of multigraded polynomial rings

Let k be a commutative ring, s and m be fixed positive integers, r1 ≤ · · · ≤ rs non-
negative integers, and write xi = (xi,1, . . . , xi,ri) for 1 ≤ i ≤ s.

Define Ri := k[xi], the standard Z-graded polynomial ring in the variables xi for 1 ≤ i ≤
s, R =

⊗
k Ri, and R(a1,...,as) :=

⊗
k(Ri)ai stands for its multigraded part of multidegree

(a1, . . . , as).

Definition 6.4.1. We define Ři := 1
xi,1···xi,ri

k[x−1
i,1 , . . . , x

−1
i,ri

]. Given integers 1 ≤ i1 <

· · · < it ≤ s, take α = {i1, . . . , it}, and set Řα :=
(⊗

j∈α Řj

)
⊗k
(⊗

j /∈αRj

)
.

Remark 6.4.2. Observe that Ř{i} ∼= Ři ⊗k
⊗

j 6=iRj.

Definition 6.4.3. Given integers 1 ≤ i1 < · · · < it ≤ s, take α = {i1, . . . , it}. For any
integer j write sg(j) := 1 if j ∈ α and sg(j) := 0 if j /∈ α. We define

Qα :=
∏

1≤j≤s

(−1)sg(j)N− sg(j)rjej ⊂ Zs,

the shift of the orthant whose coordinates {i1, . . . , it} are negative and the rest are all
positive. We set ai for the R-ideal generated by the elements in xi, B := a1 · · · as,
aα := ai1 + · · ·+ ait and |α| = ri1 + · · ·+ rit .

Lemma 6.4.4. For every α ⊂ {1, . . . , s}, we have SuppZs(Řα) = Qα.

Remark 6.4.5. For α, β ⊂ {1, . . . , s}, if α 6= β, then Qα ∩Qβ = ∅.
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Lemma 6.4.6. Given integers 1 ≤ i1 < · · · < it ≤ s, let α = {i1, . . . , it}. There are
graded isomorphisms of R-modules

H |α|aα (R) ∼= Řα. (6.1)

Proof. Recall that for any ring S and any S-module M , if x1, . . . , xn are variables, then

H i
(x1,...,xn)(M [x1, . . . , xn]) =

{
0 if i 6= n

1
x1···xnM [x−1

1 , . . . , x−1
n ] for i = n.

(6.2)

We induct on |α|. The result is obvious for |α| = 1. Assume that |α| ≥ 2 and (6.1)
holds for |α| − 1. Take I = ai1 · · · ait−1 and J = ait . There is a spectral sequence
Hp
J(Hq

I (R))⇒ Hp+q
I+J(R). By (6.2), Hp

J(R) = 0 for p 6= rit . Hence, the spectral sequence

stabilizes in degree 2, and gives H
rit
J (H

|α|−rit
I (R)) ∼= H

|α|
I+J(R). The result follows by

applying (6.2) with M = H
|α|−rit
I (R), and inductive hypothesis.

Lemma 6.4.7. With the above notations,

H`
B(R) ∼=

⊕
1 ≤ i1 < · · · < it ≤ s

ri1 + · · ·+ rit − (t− 1) = `

H
ri1+···+rit
ai1+···+ait

(R) ∼=
⊕

α ⊂ {1, . . . , s}
|α| − (#α− 1) = `

Řα. (6.3)

Proof. The second isomorphism follows from 6.4.6. For proving the first isomorphism,
we induct on s. The result is obvious for s = 1. Assume that s ≥ 2 and (6.3) holds for
s− 1. Take I = a1 · · · as−1 and J = as. The Mayer-Vietoris long exact sequence of local
cohomology for I and J is

· · · → H`
I+J(R)

ψ`→ H`
I(R)⊕H`

J(R)→ H`
IJ(R)→ H`+1

I+J(R)
ψ`+1→ H`+1

I (R)⊕H`+1
J (R)→ · · · .

(6.4)
Remark that if ` < rs, then H`

J(R) = H`
I+J(R) = H`+1

I+J(R) = 0. Hence, H`
B(R) ∼= H`

I(R).

Write R̃ := R1 ⊗k · · · ⊗k Rs−1. Since the variables xs does not appear on I, by flatness
of Rs and the last isomorphism, we have that H`

B(R) ∼= H`
B(R̃)⊗k Rs. In this case, the

result follows by induction.

Thus, assume ` ≥ rs. We next show that the map ψ` in the sequence (6.4) is the zero
map for all `. Indeed, there is an spectral sequence Hp

J(Hq
I (R)) ⇒ Hp+q

I+J(R). Since

Hp
J(R) = 0 for p 6= rs, it stabilizes in degree 2, and gives Hrs

J (H`−rs
I (R)) ∼= H`

I+J(R). We
have graded isomorphisms

Hrs
J (H`−rs

I (R)) ∼= Hrs
J (H`−rs

I (R̃)⊗k Rs) ∼= (H`−rs
I (R̃))[x−1

s ] ∼= H`−rs
I (R̃)⊗k Řs, (6.5)
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where the first isomorphism comes from flatness of Rs over k, the second isomorphism
follows from equation (6.2) taking M = H`−rs

I (R̃). By (6.5) and the inductive hypothesis
we have that.

Hrs
J (H`−rs

I (R)) ∼=
⊕

1 ≤ i1 < · · · < it−1 ≤ s− 1
ri1 + · · ·+ rit−1 − (t− 2) = `− rs

H
ri1+···+rit−1

ai1+···+ait−1
(R̃)⊗k Řs. (6.6)

Now, observe that the map (H`−rs
I (R̃))[x−1

s ]→ H`
I(R)⊕H`

J(R) is graded of degree 0. Re-
call from Lemma 6.4.4 and 6.4.6, and Remark 6.4.5 we deduce SuppZs((H

`−rs
I (R̃))[x−1

s ])∩
SuppZs(H

`
I(R) ⊕H`

J(R)) = ∅. Thus, every homogeneous element on (H`−rs
I (R̃))[x−1

s ] is
necessary mapped to 0.

Hence, for each `, we have a short exact sequence

0→ H`
I(R)⊕H`

J(R)→ H`
IJ(R)→ Hrs

J (H`+1−rs
I (R))→ 0. (6.7)

Observe that this sequence has maps of degree 0, and for each degree a ∈ Zs the homo-
geneous strand of degree a splits. Moreover,

SuppZs((H
`+1−rs
I (R̃))[x−1

s ]) t SuppZs(H
`
I(R)⊕H`

J(R)) = SuppZs(H
`
IJ(R)).

Namely, every monomial in H`
IJ(R) eather comes from the module (H`+1−rs

I (R̃))[x−1
s ] or

it is mapped to H`
I(R) ⊕ H`

J(R) injectively, splitting the sequence (6.7) of R-modules.
Hence,

H`
B(R) ∼= H`

I(R)⊕H`
J(R)⊕Hrs

J (H`+1−rs
I (R)).

Now, H`
I(R) ∼= H`

B(R̃)⊗k Rs, H
`
J(R) = 0 if ` 6= rs and Hrs

J (R) = Řs. The result follows
by induction and equation (6.6).

Corollary 6.4.8. Assume that (S,m, k) is local Noetherian and let M be a finitely gen-
erated G-graded R-module. Then, for any `,

SuppG(H`
B(M)) ⊂ ⋃

i≥0

(SuppG(H`+i
B (R)) + SuppG(TorRi (M,k)))

=
⋃
i≥0

 ⋃
1 ≤ i1 < · · · < it ≤ s

ri1 + · · · + rit
− (t− 1) = ` + i

Q{i1,...,it} + SuppG(TorRi (M,k))

 .

Proof. Follows from Corollary 6.2.11 and Lemma 6.4.7.

Whenever S is Noetherian, Corollary 6.2.12 provides an estimate of SuppG(H`
B(M)) in

terms of the sets SuppG(TorRi (M,S)).
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Recall that we have seen in Theorem 6.2.4 that if C• is a complex of graded R-modules,
assuming (Dij) we have that for all i ∈ Z

SuppG(H i
B(Hj(C•))) ⊂

⋃
k∈Z

SuppG(H i+k
B (Cj+k)).

For i = 1, . . . ,m, take fi ∈ R homogeneous of the same degree γ for all i. Let M be
a graded R-module. Denote by KM• the Koszul complex K•(f1, . . . , fm;R) ⊗R M . The
Koszul complex KM• is graded with Ki :=

⊕
l0<···<li R(−i · γ). Set HM

i := Hi(KM• ) the

i-th homology module of KM• .

Corollary 6.4.9. If cdB(HM
i ) ≤ 1 for all i > 0. Then, for all j ≥ 0

SuppG(H i
B(HM

j )) ⊂
⋃
k∈Z

(SuppG(Hk
B(M)) + k · γ) + (j − i) · γ.

Proof. This follows by a change of variables in the index k in Lemma 6.2.4. Since C• is
KM• and KM

i :=
⊕

l0<···<liM(−i · γ), we get that

SuppG(H i
B(HM

j )) ⊂
⋃
k∈Z

SuppG(Hk
B(KM

k+j−i)) =
⋃
k∈Z

(SuppG(Hk
B(M)[−(k + j − i) · γ]).

The conclusion follows from 6.2.7.

Remark 6.4.10. In the special case where M = R, we deduce that if cdB(Hi) ≤ 1 for
all i > 0,

SuppG(H i
B(Hj)) ⊂

⋃
k∈Z

(SuppG(Hk
B(R)) + k · γ) + (j − i) · γ, for all i, j.

Take j = 0 and write I := (f1, . . . , fm), we get

SuppG(H i
B(R/I)) ⊂

⋃
k∈Z

(SuppG(Hk
B(R)) + (k − i) · γ), for all i.

Example 6.4.11. Let k be a field. Take R1 := k[x1, x2], R2 := k[y1, y2, y3, y4], and
G := Z2. Write R := R1⊗kR2 and set deg(xi) = (1, 0) and deg(yi) = (0, 1) for all i. Set
a1 := (x1, x2), a2 := (y1, y2, y3, y4) and define B := a1 · a2 ⊂ R the irrelevant ideal of R,
and m := a1 + a2 ⊂ R, the ideal corresponding to the origin in Spec(R).

From Lemma 6.4.7, it follows that

1. H2
B(R) ∼= Ř{1} ∼= H2

a1
(R) = ω∨R1

⊗k R2,

2. H4
B(R) ∼= Ř{2} ∼= H4

a2
(R) = R1 ⊗k ω∨R2

,

3. H5
B(R) ∼= Ř{1,2} ∼= H6

m(R) = ω∨R,
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4. H`
B(R) = 0 for all ` 6= 2, 4 and 5.

Hence, we see that

1. SuppG(H2
B(R)) = SuppG(Ř1) = Q{1} = −N× N + (−2, 0), .

2. SuppG(H4
B(R)) = SuppG(Ř2) = Q{2} = N×−N + (0,−4), .

3. SuppG(H5
B(R)) = SuppG(Ř1,2) = Q{1,2} = −N×−N + (−2,−4), .

b

b

b

bbb

(0,0)

(-1,-3)

(-2,0)

(-2,-4) (0,-4)

SuppZ2(H2
B(R))

SuppZ2(H5
B(R)) SuppZ2(H4

B(R))

Take f1, . . . , fm homogeneous elements of bidegree γ, and write I := (f1, . . . , fm). As-
sume cdB(R/I) ≤ 1, hence cdB(Hi) ≤ 1 for all i. We will compute reg(R/I).

Define for every γ ∈ G,

SB(γ) :=
⋃
k≥0

(SuppG(Hk
B(R)) + k · γ). (6.8)

Thus, in this case, we have

SB(γ) := (SuppG(H2
B(R)) + 2 · γ) ∪ (SuppG(H4

B(R)) + 4 · γ) ∪ (SuppG(H5
B(R)) + 5 · γ)

SinceH`
B(R) = 0 for all ` 6= 2, 4 and 5, from 6.4.10 we get that for all i, SuppG(H i

B(R/I)) ⊂
SB(γ)− i · γ. By definition, reg(R/I) ⊃ {SB(γ). Take γ := (2, 5) just to draw it.
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bb

bb

bb

(2,10)

(8,16)

(8,21)
(2,21)

SB(γ)

(3,22)
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7 Implicit equation of multigraded
hypersurfaces

7.1 Introduction

In this chapter we present a method for computing the implicit equation of a hypersurface
given as the image of a rational map φ : X 99K Pn, where X is a normal toric variety.
In Chapters 3 and 4, the approach consisted in embedding the space X in a projective
space, via a toric embedding. The need of the embedding comes from the necessity of a
Z-grading in the coordinate ring of X , in order to study its regularity.

The aim of this chapter is to give an alternative to this approach: we study the implici-
tization problem directly, without an embedding in a projective space, by means of the
results od Chapter 6. Indeed, we deal with the multihomogeneous structure of the coor-
dinate ring S of X , and we adapt the method developed in Chapters 1, 3 and 4 to this
setting. The main motivations for our change of perspective are that it is more natural
to deal with the original grading on X , and that the embedding leads to an artificial
homogenization process that makes the effective computation slower, as the number of
variables to eliminate increases.

In Definition 7.2.11 we introduce the “good” region in G where the approximation com-
plex Z• and the symmetric algebra SymR(I) has no B-torsion. Indeed, we define for
γ ∈ G, RB(γ) :=

⋃
0<k<min{m,cdB(R)}(SB(γ) − k · γ) ⊂ G. This goes in the direction

of proving the main theorem of this chapter, Theorem 7.3.4. Precisely, when X is a
(d − 1)-dimensional non-degenerate toric variety over a field K, and S its Cox ring (cf.
2.4). For a rational map φ : X 99K Pd defined by d+ 1 homogeneous elements of degree
ρ ∈ Cl(X ). If dim(V (I)) ≤ 0 in X and V (I) is almost a local complete intersection off
V (B), we prove in Therem 7.3.4 that,

det((Z•)γ) = Hdeg(φ) ·G ∈ K[T],

for all γ /∈ RB(ρ), where H stands for the irreducible implicit equation of the image of
φ, and G is relatively prime polynomial in K[T].

This result is a restatement of that in Theorem 4.4.11 and Corollary 3.3.10.
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7.2 Commutative algebra tools

7.2.1 Regularity for commutative G-graded rings

Throughout this chapter let G be a finitely generated abelian group, and let R be a
commutative G-graded ring with unity. Let B be an homogeneous ideal of R. Take m a
positive integer and let f := (f0, . . . , fm) be a tuple of homogeneous elements of R, with
deg(fi) = γi, and set γ := (γ0, . . . , γm). Write I = (f0, . . . , fm) for the homogeneous
R-ideal generated by the fi.

Our main motivation in Chapter 6 for considering regularity in general G-gradings comes
from toric geometry. Among G-graded rings, homogeneous coordinate rings of a toric
varieties are of particular interest in geometry. When X is a toric variety, G := Cl(T )
is the (torus-invariant) divisor class group of X . In this case, the grading can be related
geometrically with the action of this group on the toric variety. Thus, as we mentionned
in Remark 6.2.1 is of particular interest the case where R is a polynomial ring in n
variables and G = Zn/K, is a quotient of Zn by some subgroup K. Note that, if M is a
Zn-graded module over a Zn-graded ring, and G = Zn/K, we can give to M a G-grading
coarser than its Zn-grading. For this, define the G-grading on M by setting, for each
γ ∈ G, Mγ :=

⊕
d∈π−1(γ) Md.

In this section we will present several results concerning vanishing of graded parts of
certain modules. In our applications we will mainly focus on vanishing of Koszul cycles
and homologies. We recall here what the support of a graded modules M is. Recall from
Definition 6.2.2 that for graded R-module M , we define the support of the module M
on G as SuppG(M) := {γ ∈ G : Mγ 6= 0}.
Recall that from Theorem 6.2.4 that for a complex C• of graded R-modules, for which
one of the following holds

1. For some q ∈ Z, Hj(C•) = 0 for all j < q and, cdB(Hj(C•)) ≤ 1 for all j > q.

2. cdB(Hj(C•)) ≤ 1 for all j ∈ Z.

we get that, for i = 0, 1,

SuppG(H i
B(Hj(C•))) ⊂

⋃
k∈Z

SuppG(H i+k
B (Cj+k)).

We have seen in the Lemma above that much of the information of the supports of the
local cohomologies of the homologies of a complex C• is obtained from the supports of
the local cohomologies of the complex. For instance, if C• is a free resolution of a graded
R-module Q, the supports of the local cohomologies of Q can be controlled in terms of
the supports of the local cohomologies of the base ring R, and the shifts appearing in
the Ci’s.
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In order to lighten the lecture of this chapter, following equation (6.8), we extend the
definition as follows

Let P be a graded R-module. For every γ ∈ G, we define

SB(γ;P ) :=
⋃
k≥0

(SuppG(Hk
B(P )) + k · γ). (7.1)

We will write SB(γ) := SB(γ;R) as in equation (6.8).

Remark 7.2.1. Recall from Remark 6.2.7 that for an R-module P , we denote by P [γ′]
the shifted module by γ′ ∈ G, with P [γ′]γ := Pγ′+γ. Hence, SB(γ;P [γ′]) = SB(γ;P )−γ′.

We apply Theorem 6.2.4 and Remark 6.2.5 in the particular case where C• is the Koszul
complex of a tuple f with coefficients in P , and we bound the support of the local
cohomologies of its homologies in terms of the sets SB(γ;P ).

Let P be a G-graded R-module. Denote by KP• the Koszul complex K•(f;R) ⊗R P . If
the fi are G-homogeneous of the same degree γ for all i, the Koszul complex KP• is
G-graded with Ki :=

⊕
l0<···<li R(−i · γ). Let ZP

i and BP
i be the Koszul i-th cycles and

boundaries modules, with the grading that makes the inclusions ZP
i , B

P
i ⊂ KP

i a map of
degree 0 ∈ G, and set HP

i = ZP
i /B

P
i .

Recall that we have seen in Corollary 6.4.9 that if cdB(HP
i ) ≤ 1 for all i > 0, then, for

all j ≥ 0
SuppG(H i

B(HP
j )) ⊂ SB(γ;P ) + (j − i) · γ.

Recall from Remark 6.4.10 that

Remark 7.2.2. If cdB(Hi) ≤ 1 for all i > 0,

SuppG(H i
B(Hj)) ⊂

⋃
k∈Z

(SuppG(Hk
B(R)) + k · γ) + (j − i) · γ, for all i, j.

Take j = 0 and write I := (f1, . . . , fm), we get

SuppG(H i
B(R/I)) ⊂

⋃
k∈Z

(SuppG(Hk
B(R)) + (k − i) · γ), for all i.

The next result determines the supports of Koszul cycles in terms of the sets SB(γ).

Lemma 7.2.3. Assume f0, . . . , fm ∈ R are homogeneous elements of same degree γ.
Write I = (f0, . . . , fm). Fix a positive integer c. If cdB(R/I) ≤ c, then the following
hold

121



1. SuppG(H i(Zq)) ⊂ (SB(γ) + (q + 1 − i) · γ) ∪ (
⋃
k≥0 SuppG(H i+k

B (Hk+q)) · γ), for
i ≤ c and all q ≥ 0.

2. SuppG(H i(Zq)) ⊂ SB(γ) + (q + 1− i) · γ, for i > c and all q ≥ 0.

Proof. Consider K≥q• : 0→ Km+1 → Km → · · · → Kq+1 → Zq → 0 the truncated Koszul
complex. The double complex Č•B(K≥q• ) gives rise to two spectral sequences. The first
one has second screen ′2E

i
j = H i

B(Hj). This module is 0 if i > c or if j > m+1−grade(I).
The other one has as first screen

′′
1E

i
j =


H i
B(Kj) for all i > r, and j < q

H i
B(Zq) for q = j

0 for all i ≤ r, and j < q.

From the second spectral sequence we deduce that if γ′ ∈ G is such that H i+k
B (Kq+k+1)γ′

vanishes for all k ≥ 0, then (′′∞E
i
q)γ′ = H i

B(Zq)γ′ . Hence, if

γ′ /∈
⋃
k≥0

SuppG(H i+k
B (Kk+q+1)) =

⋃
k≥0

(SuppG(Hk+i
B (R)[−(k + q + 1) · γ]), (7.2)

then (′′∞E
i
q)γ′ = H i

B(Zq)γ′

Comparing both spectral sequences, we have that for γ′ /∈ ⋃k≥0 SuppG(H i+k
B (Hk+q)), we

get (′′∞E
i
q)γ′ = 0. This last condition is automatic for i > c, because H i+k

B (Hk+q) = 0 for
all k ≥ 0.

Corollary 7.2.4. Assume f0, . . . , fm ∈ R are homogeneous elements of degree γ. Write
I = (f0, . . . , fm). Fix an integer q. If cdB(R/I) ≤ 1, then the following hold

1. for i = 0, 1, SuppG(H i(Zq)) ⊂ (SB(γ) + (q − i) · γ) ∪ (SB(γ) + (q + 1− i) · γ).

2. for i > 1, SuppG(H i(Zq)) ⊂ SB(γ) + (q + 1− i) · γ.

Proof. Since SuppG(H i+k
B (Hk+q)) ⊂ SB(γ) + (q− i) · γ, for all k ≥ 0, gathering together

this with equation (7.2) and Lemma 7.2.3, the result follows.

Remark 7.2.5. We also have empty support for Koszul cycles in the following cases.

1. H0
B(Zp) = 0 for all p if grade(B) 6= 0 and

2. H1
B(Zp) = 0 for all p if grade(B) ≥ 2.

Proof. The first claim follows from the inclusion Zp ⊂ Kp and the second from the exact
sequence 0 → Zp → Kp → Bp−1 → 0 that gives 0 → H0

B(Bp−1) → H1
B(Zp) → H1

B(Kp),
with H0

B(Bp−1) as Bp−1 ⊂ Kp−1.
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7.2.2 G-graded polynomial rings and approximation complexes

We treat in this part the case of a finitely generated abelian group G acting on a
polynomial ring R. Write R := K[X1, . . . , Xn]. Take H C Zn a normal subgroup of
Zn and assume G = Zn/H. The group G defines a grading on R as was mentioned in
6.2.1.

Take m + 1 homogeneous elements f := f0, . . . , fm ∈ R of fixed degree γ ∈ G. Set
I = (f0, . . . , fm) the homogeneous ideal of R defined by f. Recall that ReesR(I) :=⊕

l≥0(It)l ⊂ R[t]. It is however important to observe that the grading in ReesR(I) is
taken in such a way that the natural map α : R[T0, . . . , Tm]→ ReesR(I) ⊂ R[t] : Ti 7→ fit
is of degree zero, and hence (It)l ⊂ Rlγ ⊗K K[t]l.

Let T := T0, . . . , Tm be m + 1 indeterminates. There is a surjective map of rings α :
R[T]� ReesR(I) with kernel p := ker(α).

Remark 7.2.6. Observe that p ⊂ R[T] is (G × Z≥0)-graded, hence set p(µ;b) ⊂ Rµ ⊗K
K[T]b, and p(∗,0) = 0. Denote b := (p(∗,1)) = ({∑ giTi : gi ∈ R,

∑
gifi = 0}). Usually b

is called the R[T]-ideal of syzygies and is written Syz(f).

The natural inclusion b ⊂ p gives a surjection β : SymR(I) ∼= R[T]/b�R[T]/p ∼=
ReesR(I) that makes the following diagram commute

0 //b //
� _

��

R[T] //SymR(I) //

β
����

0

0 //p //R[T] α //ReesR(I) //0

(7.3)

Set K• = KR• (f) for the Koszul complex of f over the ring R. Write Ki :=
∧iR[−iγ]m+1,

and Zi and Bi for the i-th module of cycles and boundaries respectively. We write
Hi = Hi(f;R) for the i-th Koszul homology module.

We write Z•, B• and M• for the approximation complexes of cycles, boundaries and
homologies (cf. [HSV82], [HSV83b] and [Vas94b]). Define Zl = Zl[lγ] ⊗R R[T], where
(Zl[lγ])µ = (Zl)lγ+µ. Similarly we define Bl = Bl[lγ]⊗RR[T] andMl = Hl[lγ]⊗RR[T],

Let us recall some basic facts about approximation complexes that will be useful in the
sequel. In particular, remind from Definition 1.3.2 that the ideal J ⊂ R is said to be of
linear type if SymR(I) ∼= ReesR(I).

Definition 7.2.7. The sequence a1, . . . , al in R is said to be a proper sequence if
ai+1Hj(a1, . . . , ai;R) = 0, for all 0 ≤ i ≤ l, 0 < j ≤ i.
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Notice that an almost complete intersection ideal is generated by a proper sequence.

Henceforward, we will denote Hi := Hi(Z•) for all i.

Lemma 7.2.8. With the notation above, the following statements hold:

1. H0 = SymR(I).

2. Hi is a SymR(I)-module for all i.

3. If the ideal I can be generated by a proper sequence then Hi = 0 for i > 0.

4. If I is generated by a d-sequence, then it can be generated by a proper sequence,
and moreover, I is of linear type.

Proof. For a proof of these facts we refer the reader to [Vas94b] or [HSV83b].

Assume the ideal I = (f) is of linear type out of V (B), that is, for every prime q 6⊃ B,
(SymR(I))q = (ReesR(I))q. The key point of study is the torsion of both algebras as
K[T]-modules. Precisely we have the following result.

Lemma 7.2.9. With the notation above, we have

1. annK[T]((ReesR(I))(ν,∗)) = p ∩K[T] = ker(φ∗), if Rν 6= 0;

2. if I is of linear type out of V (B) in Spec(R), then SymR(I)/H0
B(SymR(I)) =

ReesR(I);

Proof. The first part follows from the fact that p is G×Z-homogeneous and as ReesR(I)
is a domain, there are no zero-divisors in R. By localizing at each point of Spec(R)\V (B)
we have the equality of the second item.

This result suggest that we can approximate one algebra by the other, when they coincide
outside V (B).

Lemma 7.2.10. Assume B ⊂ rad(I), then Hi is B-torsion for all i > 0.

Proof. Let p ∈ Spec(R) \ V (B). In particular p ∈ Spec(R) \ V (I), hence, (Hi)p = 0.
This implies that the complex M• (cf. [HSV83b]) is zero, hence acyclic, at localization
at p. It follows that (Z•)p is also acyclic [BJ03, Prop. 4.3].
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We now generalize Lemma 7.2.10 for the case when V (I) * V (B). This condition can
be carried to a cohomological one, by saying cdB(R/I) = 0. Note that since V (I) is
empty in X , then V (I) ⊂ V (B) in Spec(R), then H i

B(R/I) = 0 for i > 0. Thus, this
conditions can be relaxed by bounding cdB(R/I).

We will consider cdB(R/I) ≤ 1 for the sequel in order to have convergence of the hori-
zontal spectral sequence at step 2.

Before getting into the next result, recall that Zq := Zq[q · γ]⊗K K[T]. It follows that

SuppG(Hk
B(Zq+k)) = SuppG(Hk

B(Zq+k))− q · γ ⊂


SB(γ) + (1− k) · γ for k > 1,
SB(γ) ∪ (SB(γ)− γ) for k = 1,
(SB(γ) + γ) ∪SB(γ) for k = 0

(7.4)

Observe, that any of this sets on the right do not depend on q. Furthermore, if
grade(B) ≥ 2, we have seen in Remark 7.2.5 H0

B(Zp) = H1
B(Zp) = 0 for all p. hence, we

define:

Definition 7.2.11. For γ ∈ G, set

RB(γ) :=
⋃

0<k<min{m,cdB(R)}

(SB(γ)− k · γ) ⊂ G.

Theorem 7.2.12. Assume that grade(B) ≥ 2 and cdB(R/I) ≤ 1. Then, if µ /∈ RB(γ),

H i
B(Hj)µ = 0, for all i, j.

Proof. Consider the two spectral sequences that arise from the double complex Č•BZ•.
Since supp(Hp) ⊂ I, the first spectral sequence has at second screen ′2E

i
j = H i

BHj. The
condition cdB(R/I) ≤ 1 gives that this spectral sequences stabilizes at the second step
with

′
∞E

i
j = ′

2E
i
j = H i

BHj =


Hj for i = 0 and j > 0,
H1
B(Hj) for i = 1 and j > 0,

H i
B(SymR(I)) for j = 0, and all i

0 otherwise.

The second spectral sequence has at first screen ′′1E
i
j = H i

B(Zj). Since R[T] is R-flat,
H i
B(Zj) = H i

B(Zj[jγ])⊗K K[T]. From and Remark 7.2.5 the top line vanishes for j > 0,
as well as the upper-left part.

Comparing both spectral sequences, we deduce that the vanishing of Hk
B(Zp+k)µ for all

k, implies the vanishing of Hk
B(Hp+k)µ for all k.

Finally, from equation (7.4) we have that if µ /∈ RB(γ) (which do not deppend on p),
then we obtain H i

B(Hj)µ = 0.
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Lemma 7.2.13. Assume grade(B) ≥ 2, cdB(R/I) ≤ 1 and Ip is almost a local complete
intersection for every p /∈ V (B). Then, for all µ /∈ RB(γ), the complex (Z•)µ is acyclic
and H0

B(SymR(I))µ = 0.

Proof. Since Ip is almost a local complete intersection for every p /∈ V (B), Z• is acyclic
off V (B). Hence, Hq is B-torsion for all positive q. Since Hq is B-torsion, Hk

B(Hq) = 0
for k > 0 and H0

B(Hq) = Hq. From Theorem 7.2.12 we have that (Hq)µ = 0, and
H0
B(H0)µ = 0.

7.3 The implicitization of toric hypersurfaces

In this part we focus on the study of the closed image of rational maps defined over
a toric variety. This subject has been attacked in several articles with many different
approaches. The problem of computing the equations defining the closed image of a
rational map is an open research area with several applications.

Let X be a non-degenerate toric variety over a field K, ∆ be its fan in the lattice N ∼= Zd

corresponding to X , and write ∆(i) for the set of i-dimensional cones in ∆ as before.
Denote by S the Cox ring of X .

Henceforward we will focus on the study of the elimination theory as we have done in
Chapters 1 3 and 4 in a different context. This aim brings us to review some basic
definitions and properties.

Assume we have a rational map φ : X 99K Pm, defined by m+ 1 homogeneous elements
f := f0, . . . , fm ∈ S of fixed degree ρ ∈ Cl(X ). Precisely, any cone σ ∈ ∆ defines an
open affine set Uσ (cf. [Cox95]), and two elements fi, fj define a rational function fi/fj
on some affine open set Uσ, and this σ can be determine from the monomials appearing in
fj. In particular, if X is a multiprojective space, then fi stands for a multihomogeneous
polynomial of multidegree ρ ∈ Z≥0 × · · · × Z≥0.

We recall that for any Cl(X )-homogeneous ideal J , ProjX (S/J) simply stands for the
gluing of the affine scheme Spec((S/J)σ) on every affine chart Spec(Sσ), to X . It
can be similarly done to define from Cl(X ) × Z-homogeneous ideals of S ⊗K K[T],
subschemes of X ×K Pd, and this projectivization functor will be denoted ProjX ×Pm(−).
The graded-ungraded scheme construction will be denoted by ProjX ×Am+1(−). For a
deep examination on this subject, we refer the reader to [Ful93], and [Cox95].
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Definition 7.3.1. Set I := (f0, . . . , fn) ideal of S. Define S := ProjX (S/I) and
S red := ProjX (S/rad(I)), the base locus of φ. denote by Ω := X \S , the domain of
definition of φ.

Let Γ0 denote the graph of φ over Ω, and Γ := Γ0 its closure in X × Pm. Scheme-
theoretically we have Γ = ProjX ×Pm(ReesR(I)), where ReesR(I) :=

⊕
l≥0(It)l ⊂ S[t].

Recall that the two surjections, S[T] → SymR(I) and β : SymR(I) → ReesR(I), estab-
lished on Diagram 7.3, correspond to a chain of embedding Γ ⊂ Υ ⊂ X × Pm, where
Υ = ProjX ×Pm(SymR(I)).

Assume the ideal I is of linear type off V (B), that is, for every prime q 6⊃ B, (SymR(I))q =
(ReesR(I))q. Since Sym and Rees commute with localization, ProjX ×Pm(SymR(I)) =
ProjX ×Pm(ReesR(I)), that is Υ = Γ in X × Pm. Moreover, ProjX ×Am+1(SymR(I)) and
ProjX ×Am+1(ReesR(I)) coincide in X ×Am+1. Recall that this in general does not imply
that SymR(I) and ReesR(I) coincide, in fact this is almost never true: as ReesR(I) is
the closure of the graph of φ which is irreducible, it is an integral domain, hence, torsion
free; on the other hand, SymR(I) is almost never torsion free.

Remark 7.3.2. Observe that it can be assumed without loss of generality that grade(B) ≥
2.

Lemma 7.3.3. If dim(V (I)) ≤ 0 in X , then cdB(S/I) ≤ 1.

Proof. For any finitely generated S-module P and all i > 0, from Equation (2.7)
H i
∗(X , P∼) ∼= H i+1

B (P ). Applying this to P = S/I, for all ρ ∈ Cl(X ) we get that

H i(X , (S/I)∼(ρ)) = H i(V (I),OV (I)(ρ)),

that vanishes for i > 0, since dimV (I) ≤ 0.

Theorem 7.3.4. Let X be a (d − 1)-dimensional non-degenerate toric variety over
a field K, and S its Cox ring. Let φ : X 99K Pd be a rational map, defined by d + 1
homogeneous elements f0, . . . , fd ∈ S of fixed degree ρ ∈ Cl(X ). Denote I = (f0, . . . , fd).
If dim(V (I)) ≤ 0 in X and V (I) is almost a local complete intersection off V (B), then

det((Z•)γ) = Hdeg(φ) ·G ∈ K[T],

for all γ /∈ RB(ρ), where H stands for the irreducible implicit equation of the image of
φ, and G is relatively prime polynomial in K[T].

Proof. This result follows in the standard way, similar to the cases of implicitization
problems in other contexts.
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Recall that Γ is the closure of the graph of φ, hence, defined over Ω. The bihomogeneous
structure in S⊗KK[T] gives rise to two natural scheme morphisms X

π1←X ×KPd π2→ Pd.
It follows directly that π2 = π1 ◦ φ over the graph of φ, π−1

1 (Ω).

From Corollary 7.3.4, the complex of OPd-modules (Z•)∼ is acyclic over X ×K Pd. We
verify by localization that this complex has support in Υ, hence, H0(X ×K Pd, (Z•)∼) =
H0(Υ, (Z•)∼) = SymR(I). Naturally, G defines a divisor in Pd with support on π2(Υ\Γ),
and Υ and Γ coincide outside S × Pd.

Following [KM76], due to the choice of γ /∈ RB(ρ), one has:

[det((Z•)ν)] = divK[X](H0(Z•)γ) = divK[X](SymR(I)γ)
=
∑

q prime,
codimK[X](q) = 1

lengthK[X]q((SymR(I)γ)q)[q].

Thus, for all γ /∈ RB(ρ), we obtain

[det((Z•)γ)] = lengthK[X](H)
((SymR(I)γ)(H))[(H)]+

∑
q prime,

V (q) 6⊂ V (H)
codimK[X](q) = 1

lengthK[X]q((SymR(I)γ)q)[q].

It follows that the first summand is the divisor associated to G, and the second one, the
divisor associated to Hdeg(φ).

We next give a detailed description of the extra factor G, as given in [BCJ09, Prop. 5].

Remark 7.3.5. Let X , S, φ : X 99K Pd, H and G be as in Theorem 7.3.4. If K is
algebraically closed, then G can be written as

G =
∏

q prime, V (q) 6⊂ V (H)
codimK[X](q) = 1

Leq−lq
q .

in K[T], where eq stands for the Hilbert-Samuel multiplicity of SymR(I) at q, and lq
denotes lengthK[X]q .

Proof. The proof follows the same lines of that of [BCJ09, Prop. 5]. It is just important
to observe that [BCJ09, Lemma 6] is stated for a Cohen-Macaulay ring as is S for us.

The main idea behind this remark is that only non-complete intersections points in S
yield the existence of extra factors as in Chapters 1 and 3. If I is locally a complete
intersection at q ∈ S , then Iq is of linear type, hence, (SymR(I))q and (ReesR(I))q

coincide. Thus, ProjX ×Pm(SymR(I)) and ProjX ×Pm(ReesR(I)) coincide over q.
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7.4 Multiprojective spaces and multigraded polynomial
rings

In this section we focus on the better understanding of the multiprojective case. Here we
take advantage of the particular structure of the ring. This will permit, as in Chapter
6, to precise results to determine the regions of the vanishing of the local cohomology
modules.

The problem of computing the implicit equation of a rational multiprojective hyper-
surface is surely the most important among toric cases of implicitizations. The theory
follows as a particular case of the one developed in the section before, but many re-
sults can be better precised, and better understood. In this case, the grading group
is Zs, which permits a deeper insight in the search for a “good zone” for γ. The aim
of this paragraph is to show that in this region, approximation complexes behave well
enough, allowing the computation of the implicit equation (perhaps with extra factors)
as a determinant of a graded branch of a Z-complex, as we have done in Chapters 1 and
3.

In what follows for the rest of this section, we will follow the following convention.
Let s and m be fixed positive integers, r1 ≤ · · · ≤ rs non-negative integers, and write
xi = (xi0, . . . , x

i
ri

) for 1 ≤ i ≤ s. Let f0, . . . , fm ∈
⊗

K K[xi] be multihomogeneous
polynomials of multidegree di on xi. Assume we are given a rational map

φ :
∏

1≤i≤s

Pri 99K Pm : x := (x1)× · · · × (xs) 7→ (f0 : · · · : fm)(x). (7.5)

Take m and ri such that m = 1 +
∑

1≤i≤s ri. Write Ri := K[xi] for 1 ≤ i ≤ s,
R =

⊗
KRi, and R(a1,...,as) :=

⊗
K(Ri)ai stands for its bigraded part of multidegree

(a1, . . . , as). Hence, dimRi = ri + 1, and dimR = r + s, and
∏

1≤i≤s Pri = Multiproj(R).
Set ai := (xi), ideal of Ri, and take m :=

∑
1≤i≤s ai the irrelevant ideal of R, and

B :=
⋂

1≤i≤s ai the empty locus of Multiproj(R). Set also I := (f0, . . . , fm) for the
multihomogeneous ideal of R, and X = Multiproj(R/I) the base locus of φ.

Set-theoretically, write V (I) for the base locus of φ, and Ω :=
∏

1≤i≤s Pri \ V (I) the

domain of definition of φ. Let Γ0 denote the graph of φ over Ω, and Γ := Γ0 its closure
in (

∏
1≤i≤s Pri) × Pm. Scheme-theoretically we have Γ = Multiproj(ReesR(I)), where

ReesR(I) :=
⊕

l≥0(It)l ⊂ R[t]. The grading in ReesR(I) is taken in such a way that the
natural map α : R[T0, . . . , Tm]→ ReesR(I) ⊂ R[t] : Ti 7→ fit is of degree zero, and hence
(It)l ⊂ R(ld1,...,lds) ⊗K K[t]l.

Remark 7.4.1. From Lemma 7.3.3 we have that if dim(V (I)) ≤ 0 in Pr1 × · · · × Prs ,
then cdB(R/I) ≤ 1.
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Remark 7.4.2. It is clear that if γ ∈ Ns, then, (SB(γ)− k · γ) ⊃ (SB(γ)− (k + 1) · γ)
for all k ≥ 0. Thus, from Definition 7.2.11, we see that for all γ ∈ Ns,

RB(γ) = SB(γ)− γ.

Theorem 7.3.4 and Remark 7.3.5 can be applied verbatim since
∏

1≤i≤s Pri is a toric
variety. We have that

Theorem 7.4.3. Let φ :
∏

1≤i≤s Pri 99K Pm be a rational map, as in (7.5), defined by
m+1 homogeneous elements f0, . . . , fm ∈ S of the same degree ρ = (d0, . . . , dm). Denote
I = (f0, . . . , fm). Assume dimV (I) ≤ 0 in

∏
1≤i≤s Pri and V (I) is almost a local complete

intersection off V (B). Then,

det((Z•)γ) = Hdeg(φ) ·G ∈ K[T],

for all γ /∈ RB(ρ), where H stands for the irreducible implicit equation of the image of
φ, and G is relatively prime polynomial in K[T].

Moreover, if K is algebraically closed, then G can be written as

G =
∏

q prime, V (q) 6⊂ V (H)
codimK[X](q) = 1

Leq−lq
q .

in K[T], where eq stands for the Hilbert-Samuel multiplicity of SymR(I) at q, and lq
denotes lengthK[X]q.

Proof. Take RB(ρ) as in Definition 7.2.11. From Lemma 7.4.1 we have that cd(R/I) ≤ 1.
Thus, the result follows by taking γ /∈ RB(ρ) and using Theorem 7.3.4 and Remark
7.3.5.

7.5 Examples

Example 7.5.1. We will follow Example 6.4.11. Thus, let k be a field. Assume X
is the biprojective space P1

K × P3
K. Take R1 := k[x1, x2], R2 := k[y1, y2, y3, y4], and

G := Z2. Write R := R1⊗kR2 and set deg(xi) = (1, 0) and deg(yi) = (0, 1) for all i. Set
a1 := (x1, x2), a2 := (y1, y2, y3, y4) and define B := a1 · a2 ⊂ R the irrelevant ideal of R,
and m := a1 + a2 ⊂ R, the ideal corresponding to the origin in Spec(R).

Recall that

1. H2
B(R) ∼= Ř{1} ∼= H2

a1
(R) = ω∨R1

⊗k R2,

2. H4
B(R) ∼= Ř{2} ∼= H4

a2
(R) = R1 ⊗k ω∨R2

,
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3. H5
B(R) ∼= Ř{1,2} ∼= H6

m(R) = ω∨R,

4. H`
B(R) = 0 for all ` 6= 2, 4 and 5.

Thus,

1. SuppG(H2
B(R)) = SuppG(Ř1) = Q{1} = −N× N + (−2, 0), .

2. SuppG(H4
B(R)) = SuppG(Ř2) = Q{2} = N×−N + (0,−4), .

3. SuppG(H5
B(R)) = SuppG(Ř1,2) = Q{1,2} = −N×−N + (−2,−4), .

We have seen that

b

b

b

bbb

(0,0)

(-1,-3)

(-2,0)

(-2,-4) (0,-4)

SuppZ2(H2
B(R))

SuppZ2(H5
B(R)) SuppZ2(H4

B(R))

Recall that f1, . . . , fm are homogeneous elements of bidegree γ, and I := (f1, . . . , fm).
Assume cdB(R/I) ≤ 1, hence cdB(Hi) ≤ 1 for all i. We have reg(R/I), and

SB(γ) = (SuppG(H2
B(R)) + 2 · γ) ∪ (SuppG(H4

B(R)) + 4 · γ) ∪ (SuppG(H5
B(R)) + 5 · γ),

as in the picture
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bb

bb

bb

(2,10)

(8,16)

(8,21)
(2,21)

SB(γ)

(3,22)

RB(γ) = SB(γ)− γ
Thus, we have that

{RB(2, 5) = (N2 + (1, 17)) ∪ (N2 + (7, 12)).

bb

bb

bb(1,17)

(7,12)

RB(2, 5)

(N2 + (1, 17)) ∪ (N2 + (7, 12))

Consider φ : P1×P3 99K P5 given by f0, . . . , f5 ∈ R homogeneous polynomials of bidegree
(2, 5) ∈ Z2.

Taking µ /∈ RB(2, 5), the approximation complex of cycles associated to f0, . . . , f5 in
degree ν is acyclic and Sym(f0, . . . , f5) has no B-torsion. We conclude that we can
compute the implicit equation of φ as a factor of det((Z•)(µ,∗)) for µ /∈ RB(2, 5).

Example 7.5.2. Consider the rational map

P1 × P1
f
99K P3

(s : u)× (t : v) 7→ (f1 : f2 : f3 : f4)
(7.6)

where the polynomials fi = fi(s, u, t, v) are bihomogeneous of bidegree (2, 3) ∈ Z2 given
by
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• f1 = s2t3 + 2sut3 + 3u2t3 + 4s2t2v + 5sut2v + 6u2t2v + 7s2tv2 + 8sutv2 + 9u2tv2 +
10s2v3 + suv3 + 2u2v3,

• f2 = 2s2t3 − 3s2t2v − s2tv2 + sut2v + 3sutv2 − 3u2t2v + 2u2tv2 − u2v3,

• f3 = 2s2t3 − 3s2t2v − 2sut3 + s2tv2 + 5sut2v − 3sutv2 − 3u2t2v + 4u2tv2 − u2v3,

• f4 = 3s2t2v − 2sut3 − s2tv2 + sut2v − 3sutv2 − u2t2v + 4u2tv2 − u2v3.

Our aim is to get the implicit equation of the hypersurface im(f) of P3. Let us start by
defining the parametrization f given by (f1, f2, f3, f4).

We will follow Example 6.4.11. Thus, let k be a field. Assume X is the biprojective
space P1

K × P3
K. Take R1 := k[x1, x2], R2 := k[y1, y2, y3, y4], and G := Z2. Write

R := R1 ⊗k R2 and set deg(xi) = (1, 0) and deg(yi) = (0, 1) for all i. Set a1 := (x1, x2),
a2 := (y1, y2, y3, y4) and define B := a1 · a2 ⊂ R the irrelevant ideal of R, and m :=
a1 + a2 ⊂ R, the ideal corresponding to the origin in Spec(R).

Recall that

1. H2
B(R) ∼= ω∨R1

⊗k ω∨R2
,

2. H3
B(R) ∼= Ř{1,2} ∼= H4

m(R) = ω∨R,

3. H`
B(R) = 0 for all ` 6= 2 and 3.

Thus,

1. SuppG(H2
B(R)) = SuppG(Ř1)∪SuppG(Ř2) = Q{1} = −N×N+(−2, 0)∪N×−N+

(0,−2).

2. SuppG(H3
B(R)) = SuppG(Ř1,2) = Q{1,2} = −N×−N + (−2,−2), .

We have seen that
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b

b

b

bbb

(0,0)

(-1,-1)

(-2,0)

(-2,-2) (0,-2)

SB(2, 3) = RB(2, 3) = (SuppG(H2
B(R)) + 2 · (2, 3)) ∪ (SuppG(H3

B(R)) + 3 · (2, 3)).

Hence,

RB(2, 3) = (SuppG(H2
B(R)) + (2, 3)) ∪ (SuppG(H3

B(R)) + 2 · (2, 3)).

Thus,
{RB(2, 3) = (N2 + (1, 5)) ∪ (N2 + (3, 2)).

As we can see in Example 9.1.1, a Macaulay2 computation gives exactly this region
(illustrated below) as the acyclicity region for Z•.

.5

-1

0

1

2

3

4

5

bb b b

bb

(2,4)(0,4)

(2,1)

(3,2)

(1,5)

Non-vanishing of
local cohomology

Vanishing of
local cohomology
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When ν0 = (3, 2) or ν0 = (1, 5), we get a complex

(Z•)ν0 : 0→ 0→ 0→ K[X]12 Mν0−→ K[X]12 → 0.

and, thus, det((Z•)ν0) = det(Mν0) ∈ K[X]12 is an homogeneous polynomial of degree 12
that vanishes on the closed image of φ.
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8 A package for computing implicit
equations from toric surfaces

8.1 Introduction

Let T be a two-dimensional projective toric variety, and let f : T 99K P3 be a generically
finite rational map. Hence, S := im(f) ⊂ P3 is a hypersurface. In Chapter 3, following
[BDD09] and [Bot10], we showed how to compute an implicit equation for S , assuming
that the base locus X of f is finite and locally an almost complete intersection. As
we mentioned in Chapter 3, this is a further generalization of the results in Chapter
1, which follows [BJ03, BC05, Cha06], on implicitization of rational hypersurfaces via
approximation complexes; we also generalize [BD07].

This chapter corresponds to a recent sent article in collabotation with Marc Dohm, en-
tiled A package for computing implicit equations of parametrizations from toric surfaces
(cf. [BD10])

We showed in Section 3.3 and Section 3.4 how to compute a symbolic matrix of linear
syzygies M , called representation matrix of S , with the property that, given a point
p ∈ P3, the rank of M(p) drops if p lies in the surface S . When the base locus X is
locally a complete intersection, we get that the rank of M(p) drops if and only if p lies
in the surface S.

We begin by recalling the notion of a representation matrix (see Definition 3.3.1).

Definition 8.1.1. Let S ⊂ Pn be a hypersurface. A matrix M with entries in the
polynomial ring K[T0, . . . , Tn] is called a representation matrix of S if it is generically
of full rank and if the rank of M evaluated in a point p of Pn drops if and only if the
point p lies on S .

It follows immediately that a matrix M represents S if and only if the greatest common
divisor D of all its minors of maximal size is a power of a homogeneous implicit equation
F ∈ K[T0, . . . , Tn] of S . When the base locus is locally an almost complete intersection,
we can construct a matrix M such that D factors as D = F δG where δ ∈ N and
G ∈ K[T0, . . . , Tn]. In Section 3.4, we gave a description of the surface (D = 0) In
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this chapter we present an implementation of our results in the computer aided software
Macaulay2 [GS]. From a practical point of view our results are a major improvement, as
it makes the method applicable for a wider range of parametrizations (for example, by
avoiding unnecessary base points with bad properties) and leads to significantly smaller
representation matrices.

There are several advantages of this perspective. The method works in a very general
setting and makes only minimal assumptions on the parametrization. In particular, as we
have mentioned, it works well in the presence of “nice” base points. Unlike the method
of toric resultants (cf. for example [KD06]), we do not have to extract a maximal minor
of unknown size, since the matrices are generically of full rank. The monomial structure
of the parametrization is exploited, in Section 3.2.1, following [Bot10], we defined

Definition 8.1.2. Given a list of polynomials f0, . . . , fr, we define

N (f0, . . . , fr) := conv(
r⋃
i=0

N (fi)),

the convex hull of the union of the Newton polytopes of fi, and we will refer to this
polytope as the Newton polytope of the list f0, . . . , fr. When f denotes the rational map
defining S , we will write N (f) := N (f1, f2, f3, f4), and we will refer to it as the Newton
polytope of f .

In these terms, in our algorithm we fully exploit the structure of N (f), so one obtains
much better results for sparse parametrizations, both in terms of computation time and
in terms of the size of the representation matrix. Moreover, it subsumes the known
method of approximation complexes in the case of dense homogeneous parametriza-
tions. One important point is that representation matrices can be efficiently constructed
by solving a linear system of relatively small size (in our case dimK(Aν+d) equations
in 4dimK(Aν) variables). This means that their computation is much faster than the
computation of the implicit equation and they are thus an interesting alternative as an
implicit representation of the surface.

On the other hand, there are a few disadvantages. Unlike with the toric resultant or
the method of moving surfaces (moving plane and quadrics), the matrix representations
are not square and the matrices involved are generally bigger than with the method
of moving planes and surfaces. It is important to remark that those disadvantages are
inherent to the choice of the method: A square matrix built from linear syzygies does
not exist in general. It is an automatic consequence of this fact, that if one only uses
linear syzygies to construct the matrix, it has to be a bigger matrix which has entries of
higher degree (see [BCS09]). The choice of the method to use depends very much on the
given parametrization and on what one needs to do with the matrix representation.
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8.2 Example

Example 8.2.1. Here we give an example, where we fully exploit the structure of N (f)
that we have aready seen in 3.6.4. Take (f1, f2, f3, f4) = (st6 +2, st5−3st3, st4 +5s2t6, 2+
s2t6). This is a very sparse parametrization, and we have in this case, there is no
smaller lattice homothety of N (f). The coordinate ring is A = K[X0, . . . , X5]/J , where
J = (X2

3 −X2X4, X2X3 −X1X4, X
2
2 −X1X3, X

2
1 −X0X5) and the new base-point-free

parametrization g is given by (g1, g2, g3, g4) = (2X0+X4,−3X1+X3, X2+5X5, 2X0+X5).
The Newton polytope looks as follows.

b

b b

0 1 2
0

1

2

3

4

5

6

For ν0 = 2d = 2 we can compute the matrix of the first map of the graded piece of
degree ν0 of the approximation complex of cycles (Z•)ν0 , see for Example 3.6.4 (following
[BDD09, Sec 3.1]), which is a 17 × 34-matrix. The greatest common divisor of the 17-
minors of this matrix is the homogeneous implicit equation of the surface; it is of degree
6 in the variables

T1, . . . , T4 : 2809T 2
1 T

4
2 + 124002T 6

2 − 5618T 3
1 T

2
2 T3 + 66816T1T

4
2 T3 + 2809T 4

1 T
2
3

−50580T 2
1 T

2
2 T

2
3 + 86976T 4

2 T
2
3 + 212T 3

1 T
3
3 − 14210T1T

2
2 T

3
3 + 3078T 2

1 T
4
3

+13632T 2
2 T

4
3 + 116T1T

5
3 + 841T 6

3 + 14045T 3
1 T

2
2 T4 − 169849T1T

4
2 T4

−14045T 4
1 T3T4 + 261327T 2

1 T
2
2 T3T4 − 468288T 4

2 T3T4 − 7208T 3
1 T

2
3 T4

+157155T1T
2
2 T

3
3 T4 − 31098T 2

1 T
3
3 T4 − 129215T 2

2 T
3
3 T4 − 4528T1T

4
3 T4

−12673T 5
3 T4 − 16695T 2

1 T
2
2 T

2
4 + 169600T 4

2 T
2
4 + 30740T 3

1 T3T
2
4

−433384T1T
2
2 T3T

2
4 + 82434T 2

1 T
2
3 T

2
4 + 269745T 2

2 T
2
3 T

2
4 + 36696T1T

3
3 T

2
4

+63946T 4
3 T

2
4 + 2775T1T

2
2 T

3
4 − 19470T 2

1 T3T
4
4 + 177675T 2

2 T3T
3
4

−85360T1T
2
3 T

3
4 − 109490T 3

3 T
3
4 − 125T 2

2 T
4
4 + 2900T1T3T

4
4 + 7325T 2

3 T
4
4

−125T3T
5
4

In this example we could have considered the parametrization as a bihomogeneous map
either of bidegree (2, 6) or of bidegree (1, 3), i.e. we could have chosen the corresponding
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rectangles instead of N (f). This leads to a more complicated coordinate ring in 20
(resp. 7) variables and 160 (resp. 15) generators of J and to bigger matrices (of size
21 × 34 in both cases). Even more importantly, the parametrizations will have a non-
LCI base point and the matrices do not represent the implicit equation but a multiple
of it (of degree 9). Instead, if we consider the map as a homogeneous map of degree 8,
the results are even worse: For ν0 = 6, the 28× 35-matrix Mν0 represents a multiple of
the implicit equation of degree 21.

To sum up, in this example the method of approximation complexes works well for
suitable toric varieties, whereas it fails over P1×P1 and P2. This shows that the extension
of the method to toric varieties really is a generalization and makes the method applicable
to a larger class of parametrizations.

Interestingly, we can even do better than with N (f) by choosing a smaller polytope.
The philosophy is that the choice of the optimal polytope is a compromise between two
criteria: keep the simplicity of the polytope in order not to make the the ring A too
complicated, and respect the sparseness of the parametrization (i.e. keep the polytope
close to the Newton polytope) so that no base points appear which are not local complete
intersections.

So let us repeat the same example with another polytope Q, which is small enough to
reduce the size of the matrix but which only adds well-behaved (i.e. local complete
intersection) base points:

b

bb

0 1
0

1

2

3

The Newton polytope N (f) is contained in 2 · Q, so the parametrization will factor
through the toric variety associated to Q, more precisely we obtain a new parametrization
defined by

h = (h1, h2, h3, h4) = (2X2
0 +X3X4,−3X0X4 +X2X4, X1X4 + 5X2

4 , 2X
2
0 +X2

4 )

over the coordinate ring A = K[X0, . . . , X4]/J with J = (X2
2−X1X3, X1X2−X0X3, X

2
1−

X0X2) making the following diagram commute:

(A∗)2 f //___
� _

��

P3

TQ

h

<<z
z

z
z
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The optimal bound is ν0 = 2 and in this degree the implicit equation is represented
directly without extraneous factors by a 12×19-matrix, which is smaller than the 17×34
we had before.

8.3 Implementation in Macaulay2

In this section we show how to compute a matrix representation and the implicit equation
with the method developed in Chapter 3, using the computer algebra system Macaulay2
[GS]. We will explain the code along Example 8.2.1. As it is probably the most interesting
case from a practical point of view, we restrict our computations to parametrizations
of a toric surface. However, the method can be adapted to the n-dimensional toric
case. Moreover, we are not claiming that our implementation is optimized for efficiency;
anyone trying to implement the method to solve computationally involved examples is
well-advised to give more ample consideration to this issue. For example, in the toric
case there are better suited software systems to compute the generators of the toric ideal
J , see [4ti].

First we load the package “Maximal minors1”

i1 : load "maxminor.m2"

Let us start by defining the parametrization f given by (f1, . . . , f4).

i2 : S=QQ[s,u,t,v];
i3 : e1=2;
i4 : e2=6;
i5 : f1=s*u*t^6+2*u^2*v^6

6 2 6
o5 = s*u*t + 2u v
i6 : f2=s*u*t^5*v-3*s*u*t^3*v^3

5 3 3
o6 = s*u*t v - 3s*u*t v
i7 : f3=s*u*t^4*v^2+5*s^2*t^6

2 6 4 2
o7 = 5s t + s*u*t v
i8 : f4=2*u^2*v^6+s^2*t^6

2 6 2 6
o8 = s t + 2u v

1The package “maxminor.m2” for Macaulay2 can be downloaded from the webpage
http://mate.dm.uba.ar/~nbotbol/maxminor.m2.
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We construct the matrix associated to the polynomials and we relabel them in order to
be able to automatize some procedures.

i9 : F=matrix{{f1,f2,f3,f4}}
o9 = | sut6+2u2v6 sut5v-3sut3v3 5s2t6+sut4v2 s2t6+2u2v6 |

1 4
o9 : Matrix S <--- S
i10 : f_1=f1;
i11 : f_2=f2;
i12 : f_3=f3;
i13 : f_4=f4;

We define the associated affine polynomials FF i by specializing the variables u and v to
1.

i14 : for i from 1 to 4 do (
FF_i=substitute(f_i,{u=>1,v=>1});

)

We just change the polynomials FF i to the new ring S2.

i15 : S2=QQ[s,t]
o15 = S2
o15 : PolynomialRing
i16 : for i from 1 to 4 do (

FF_i=sub(FF_i,S2);
)

The reader can experiment with the implementation simply by changing the definition
of the polynomials and their degrees, the rest of the code being identical. We first set up
the list st of monomials sitj of bidegree (e′1, e

′
2). In the toric case, this list should only

contain the monomials corresponding to points in the Newton polytope N ′(f).

i17 : use S;
i18 : st={};
i19 : for i from 1 to 4 do (

st=join(st,flatten entries monomials f_i);
)

i20 : l=length(st)-1;
i21 : k=gcd(e1,e2)
o21 = 2

We compute the ideal J and the quotient ring A. This is done by a Gröbner basis com-
putation which works well for examples of small degree, but which should be replaced by
a matrix formula in more complicated examples. In the toric case, there exist specialized
software systems such as [4ti] to compute the ideal J .

142



i24 : SX=QQ[s,u,t,v,w,x_0..x_l,MonomialOrder=>Eliminate 5]
o24 = SX
o24 : PolynomialRing
i25 : X={};
i26 : st=matrix {st};

1 8
o26 : Matrix S <--- S
i27 : F=sub(F,SX)
o27 = | sut6+2u2v6 sut5v-3sut3v3 5s2t6+sut4v2 s2t6+2u2v6 |

1 4
o27 : Matrix SX <--- SX
i28 : st=sub(st,SX)
o28 = | sut6 u2v6 sut5v sut3v3 s2t6 sut4v2 s2t6 u2v6 |

1 8
o28 : Matrix SX <--- SX
i29 : te=1;
i30 : for i from 0 to l do ( te=te*x_i )
i31 : J=ideal(1-w*te)
o31 = ideal(- w*x x x x x x x x + 1)

0 1 2 3 4 5 6 7
o31 : Ideal of SX
i32 : for i from 0 to l do (

J=J+ideal (x_i - st_(0,i))
)

i33 : J= selectInSubring(1,gens gb J)
o33 = | x_4-x_6 x_1-x_7 x_3^2-x_6x_7 x_2x_3-x_5^2 x_0x_3-x_2x_5

---------------------------------------------------------
x_2^2-x_0x_5 x_5^3-x_0x_6x_7 x_3x_5^2-x_2x_6x_7 |

1 8
o33 : Matrix SX <--- SX
i34 : R=QQ[x_0..x_l]
o34 = R
o34 : PolynomialRing
i35 : J=sub(J,R)
o35 = | x_4-x_6 x_1-x_7 x_3^2-x_6x_7 x_2x_3-x_5^2 x_0x_3-x_2x_5

---------------------------------------------------------
x_2^2-x_0x_5 x_5^3-x_0x_6x_7 x_3x_5^2-x_2x_6x_7 |

1 8
o35 : Matrix R <--- R
i36 : A=R/ideal(J)
o36 = A
o36 : QuotientRing

Next, we set up the list ST of monomials sitj of bidegree (e1, e2) and the list X of the
corresponding elements of the quotient ring A. In the toric case, this list should only
contain the monomials corresponding to points in the Newton polytope N (f).

i37 : use SX
o37 = SX
o37 : PolynomialRing
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i38 : ST={};
i39 : X={};
i40 : for i from 0 to l do (

ST=append(ST,st_(0,i));
X=append(X,x_i);

)

We can now define the new parametrization g by the polynomials g1, . . . , g4.

i41 : X=matrix {X};
1 8

o41 : Matrix SX <--- SX
i42 : X=sub(X,SX)
o42 = | x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 |

1 8
o42 : Matrix SX <--- SXX=matrix {X};
i43 : (M,C)=coefficients(F,Variables=>{s_SX,u_SX,t_SX,v_SX},Monomials=>ST)
o43 = (| sut6 u2v6 sut5v sut3v3 s2t6 sut4v2 s2t6 u2v6 |, {8} | 1 0 0 0 |)

{8} | 0 0 0 0 |
{8} | 0 1 0 0 |
{8} | 0 -3 0 0 |
{8} | 0 0 0 0 |
{8} | 0 0 1 0 |
{8} | 0 0 5 1 |
{8} | 2 0 0 2 |

o43 : Sequence
i44 : G=X*C
o44 = | x_0+2x_7 x_2-3x_3 x_5+5x_6 x_6+2x_7 |

1 4
o44 : Matrix SX <--- SX
i45 : G=matrix{{G_(0,0),G_(0,1),G_(0,2),G_(0,3)}}
o45 = | x_0+2x_7 x_2-3x_3 x_5+5x_6 x_6+2x_7 |

1 4
o45 : Matrix SX <--- SX
i46 : G=sub(G,A)
o46 = | x_0+2x_7 x_2-3x_3 x_5+5x_6 x_6+2x_7 |

1 4
o46 : Matrix A <--- A

In the following, we construct the matrix representation M . For simplicity, we compute
the whole module Z1, which is not necessary as we only need the graded part (Z1)ν0 .
In complicated examples, one should compute only this graded part by directly solving
a linear system in degree ν0. Remark that the best bound nu = ν0 depends on the
parametrization.

i47 : use A
o47 = A
o47 : QuotientRing
i48 : Z0=A^1;
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i49 : Z1=kernel koszul(1,G);
i50 : Z2=kernel koszul(2,G);
i51 : Z3=kernel koszul(3,G);
i52 : nu=-1
o52 = -1
i53 : d=1
o53 = 1
i54 : hfnu = 1
o54 = 1
i55 : while hfnu != 0 do (

nu=nu+1;
hfZ0nu = hilbertFunction(nu,Z0);
hfZ1nu = hilbertFunction(nu+d,Z1);
hfZ2nu = hilbertFunction(nu+2*d,Z2);
hfZ3nu = hilbertFunction(nu+3*d,Z3);
hfnu = hfZ0nu-hfZ1nu+hfZ2nu-hfZ3nu;
);

i56 : nu
o56 = 2
i57 : hfZ0nu
o57 = 17
i58 : hfZ1nu
o58 = 34
i59 : hfZ2nu
o59 = 23
i60 : hfZ3nu
o60 = 6
i61 : hfnu
o61 = 0

i62 : hilbertFunction(nu+d,Z1)-2*hilbertFunction(nu+2*d,Z2)+
3*hilbertFunction(nu+3*d,Z3)

o62 = 6
i63 : GG=ideal G
o63 = ideal (x + 2x , x - 3x , x + 5x , x + 2x )

0 7 2 3 5 6 6 7
o63 : Ideal of A
i64 : GGsat=saturate(GG, ideal (x_0..x_l))
o64 = ideal 1
o64 : Ideal of A
i65 : degrees gens GGsat
o65 = {{{0}}, {{0}}}
o65 : List
i66 : H=GGsat/GG
o66 = subquotient (| 1 |, | x_0+2x_7 x_2-3x_3 x_5+5x_6 x_6+2x_7 |)

1
o66 : A-module, subquotient of A
i67 : degrees gens H
o67 = {{{0}}, {{0}}}
o67 : List
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i68 : S=A[T1,T2,T3,T4]
o68 = S
o68 : PolynomialRing
i69 : G=sub(G,S);

1 4
o69 : Matrix S <--- S
i70 : Z1nu=super basis(nu+d,Z1);

4 34
o70 : Matrix A <--- A
i71 : Tnu=matrix{{T1,T2,T3,T4}}*substitute(Z1nu,S);

1 34
o71 : Matrix S <--- S
i72 :

lll=matrix {{x_0..x_l}}
o72 = | x_0 x_7 x_2 x_3 x_6 x_5 x_6 x_7 |

1 8
o72 : Matrix A <--- A
i73 : lll=sub(lll,S)
o73 = | x_0 x_7 x_2 x_3 x_6 x_5 x_6 x_7 |

1 8
o73 : Matrix S <--- S
i74 : ll={}
o74 = {}
o74 : List
i75 : for i from 0 to l do { ll=append(ll,lll_(0,i)) }
i76 : (m,M)=coefficients(Tnu,Variables=>ll,Monomials=>substitute(basis(nu,A),S));
i77 : M;

17 34
o77 : Matrix S <--- S

The matrix M is the desired matrix representation of the surface S .

We can continue by computing the implicit equation and verifying the result by substi-
tuting

i78 : T=QQ[T1,T2,T3,T4]
o78 = T
o78 : PolynomialRing
i79 : ListofTand0 ={T1,T2,T3,T4}
o79 = {T1, T2, T3, T4}
o79 : List
i80 : for i from 0 to l do { ListofTand0=append(ListofTand0,0) };
i81 : p=map(T,S,ListofTand0)
o81 = map(T,S,{T1, T2, T3, T4, 0, 0, 0, 0, 0, 0, 0, 0})
o81 : RingMap T <--- S
i82 : N=MaxCol(p(M));

17 17
o82 : Matrix T <--- T
i83 : Eq=det(N); factor Eq
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We verify the result by substituting on the computed equation, the polynomials f1 to
f4.

i85 :use S; Eq=sub(Eq,S)
o86 : S
i87 : sub(Eq,{T1=>G_(0,0),T2=>G_(0,1),T3=>G_(0,2),T4=>G_(0,3)})
o87 = 0
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9 A package for computing implicit
equations from toric surfaces
without an embedding

9.1 Implementation in Macaulay2

In this section we show how to compute a matrix representation and the implicit equa-
tion with the method developed in Chapter 7, following [Bot10], using the computer
algebra system Macaulay2 [GS]. As it is probably the most interesting case from a prac-
tical point of view, we restrict our computations to parametrizations of a multigraded
hypersurface.

This implementation allows to compute small examples for the better understanding of
the theory, but we are not claiming that this implementation is optimized for efficiency;
anyone trying to implement the method to solve computationally involved examples is
well-advised to give more ample consideration to this issue.

9.1.1 Example 1

Consider the rational map

P1 × P1
f
99K P3

(s : u)× (t : v) 7→ (f1 : f2 : f3 : f4)
(9.1)

where the polynomials fi = fi(s, u, t, v) are bihomogeneous of bidegree (2, 3) ∈ Z2 given
by

• f1 = s2t3 + 2sut3 + 3u2t3 + 4s2t2v + 5sut2v + 6u2t2v + 7s2tv2 + 8sutv2 + 9u2tv2 +
10s2v3 + suv3 + 2u2v3,

• f2 = 2s2t3 − 3s2t2v − s2tv2 + sut2v + 3sutv2 − 3u2t2v + 2u2tv2 − u2v3,

• f3 = 2s2t3 − 3s2t2v − 2sut3 + s2tv2 + 5sut2v − 3sutv2 − 3u2t2v + 4u2tv2 − u2v3,

• f4 = 3s2t2v − 2sut3 − s2tv2 + sut2v − 3sutv2 − u2t2v + 4u2tv2 − u2v3.
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Our aim is to get the implicit equation of the hypersurface im(f) of P3.

First we load the package “Maximal minors”

i1 : load "maxminor.m2"

Let us start by defining the parametrization f given by (f1, f2, f3, f4).

i2 : S=QQ[s,u,t,v,Degrees=>{{1,1,0},{1,1,0},{1,0,1},{1,0,1}}];
i3 : e1=2;
i4 : e2=3;

i5 : f1=1*s^2*t^3+2*s*u*t^3+3*u^2*t^3+4*s^2*t^2*v+5*s*u*t^2*v+6*u^2*t^2*v+
7*s^2*t*v^2+8*s*u*t*v^2+9*u^2*t*v^2+10*s^2*v^3+1*s*u*v^3+2*u^2*v^3;

i6 : f2=2*s^2*t^3-3*s^2*t^2*v-s^2*t*v^2+s*u*t^2*v+3*s*u*t*v^2-3*u^2*t^2*v+
2*u^2*t*v^2-u^2*v^3;

i7 : f3=2*s^2*t^3-3*s^2*t^2*v-2*s*u*t^3+s^2*t*v^2+5*s*u*t^2*v-3*s*u*t*v^2-
3*u^2*t^2*v+4*u^2*t*v^2-u^2*v^3;

i8 : f4=3*s^2*t^2*v-2*s*u*t^3-s^2*t*v^2+s*u*t^2*v-3*s*u*t*v^2-u^2*t^2*v+
4*u^2*t*v^2-u^2*v^3;

We construct the matrix asasociated to the polynomials and we relabel them in order to
be able to automatize some procedures.

i9 : F=matrix{{f1,f2,f3,f4}}

o9 = | s2t3+2sut3+3u2t3+4s2t2v+5sut2v+6u2t2v+7s2tv2+8sutv2+9u2tv2+10s2v3+
--------------------------------------------------------------------
suv3+2u2v3 2s2t3-3s2t2v+sut2v-3u2t2v-s2tv2+3sutv2+2u2tv2-u2v3
--------------------------------------------------------------------
2s2t3-2sut3-3s2t2v+5sut2v-3u2t2v+s2tv2-3sutv2+4u2tv2-u2v3
--------------------------------------------------------------------
-2sut3+3s2t2v+sut2v-u2t2v-s2tv2-3sutv2+4u2tv2-u2v3|

1 4
o9 : Matrix S <--- S

The reader can experiment with the implementation simply by changing the definition
of the polynomials and their degrees, the rest of the code being identical.

As we mentionned in Example 7.5.2, if R1 := k[x1, x2], R2 := k[y1, y2, y3, y4], and G :=
Z2, writing R := R1⊗kR2 and setting deg(xi) = (1, 0) and deg(yi) = (0, 1) for all i, with
a1 := (x1, x2), a2 := (y1, y2, y3, y4) and B := a1 · a2 ⊂ R we have that:

1. SuppG(H2
B(R)) = SuppG(Ř1)∪SuppG(Ř2) = Q{1} = −N×N+(−2, 0)∪N×−N+

(0,−2).
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2. SuppG(H3
B(R)) = SuppG(Ř1,2) = Q{1,2} = −N×−N + (−2,−2), .

b

b

b

bbb

(0,0)

(-1,-1)

(-2,0)

(-2,-2) (0,-2)

And thus,

RB(2, 3) = (SuppG(H2
B(R)) + (2, 3)) ∪ (SuppG(H3

B(R)) + 2 · (2, 3)).

Obtainting

{RB(2, 3) = (N2 + (1, 5)) ∪ (N2 + (3, 2)).

As we can see in Example 9.1.1, a Macaulay2 computation gives exactly this region
(illustrated below) as the acyclicity region for Z•.

i10 : nu={5,3,2};

An alternative consiste in taking

i10 : nu={6,1,5};
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Anyhow, it is interesting to test what hapends in different bidegrees ν ∈ Z2 by just
replacing the desired degree in the code.

In the following, we construct the matrix representation M . For simplicity, we compute
the whole module Z1, which is not necessary as we only need the graded part (Z1)ν0 . In
complicated examples, one should compute only this graded part by directly solving a
linear system in degree ν0.

i11 : Z0=S^1;
i12 : Z1=kernel koszul(1,F);
i13 : Z2=kernel koszul(2,F);
i14 : Z3=kernel koszul(3,F);

i15 : d={e1+e2,e1,e2}

i16 : hfZ0nu = hilbertFunction(nu,Z0)
o16 = 12

i17 : hfZ1nu = hilbertFunction(nu+d,Z1)
o17 = 12

i18 : hfZ2nu = hilbertFunction(nu+2*d,Z2)
o18 = 0

i19 : hfZ3nu = hilbertFunction(nu+3*d,Z3)
o19 = 0

i20 : hfnu = hfZ0nu-hfZ1nu+hfZ2nu-hfZ3nu
o20 = 0
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Thus, when ν0 = (3, 2) or ν0 = (1, 5), we get a complex

(Z•)ν0 : 0→ 0→ 0→ K[X]12 Mν0−→ K[X]12 → 0.

and, hence, det((Z•)ν0) = det(Mν0) ∈ K[X]12 is an homogeneous polynomial of degree
12 that vanishes on the closed image of φ. We compute here the degree of the MacRae’s
invariant which gives the degree of det((Z•)ν0).

i21 :hilbertFunction(nu+d,Z1)-2*hilbertFunction(nu+2*d,Z2)+
3*hilbertFunction(nu+3*d,Z3)

o21 = 12

i22 : GG=ideal F

2 3 3 2 3 2 2 2 2 2 2 2
o22 = ideal (s t +2s*u*t +3u t +4s t v+5s*u*t v+6u t v+7s t*v +

------------------------------------------------------------
2 2 2 2 3 3 2 3 2 3 2 2 2

8s*u*t*v +9u t*v +10s v +s*u*v *2u v , 2s t -3s t v+s*u*t v-
------------------------------------------------------------
2 2 2 2 2 2 2 2 3 2 3 3 2 2

3u t v-s t*v +3s*u*t*v +2u t*v -u v , 2s t -2s*u*t -3s t v+
------------------------------------------------------------

2 2 2 2 2 2 2 2 2 3 3
5s*u*t v-3u t v+s t*v -3s*u*t*v +4u t*v -u v , -2s*u*t +
------------------------------------------------------------
2 2 2 2 2 2 2 2 2 2 2 3

3s t v+s*u*t v-u t v-s t*v -3s*u*t*v +4u t*v -u v )

o22 : Ideal of S

i23 : GGsat=saturate(GG, ideal(s,t)*ideal(u,v))

2 2 2 2 2 2 2 2 2 2 2 3
o23 = ideal (3s t v-3s*u*t v-u t v-3s t*v +3s*u*t*v +2u t*v -u v ,

--------------------------------------------------------------
2 3 2 2 2 2 2 2 2 2 2 3

9u t +42s*u*t v+28u t v+45s t*v -15s*u*t*v +19u t*v +30s v +
--------------------------------------------------------------

3 2 3 3 2 2 2 2 2 2 2 3
3s*u*v +13u v , s*u*t -2s*u*t v-s t*v +3s*u*t*v -u t*v , s t -
--------------------------------------------------------------

2 2 2 2 2 2 2 2 2 3 4 2 4
s*u*t v-2u t v-2s t*v +3s*u*t*v +2u t*v -u v , 30s*u*v -u v ,
--------------------------------------------------------------

2 4 2 4 2 3 2 4 3 2 4 2 3 2 4
15s v +14u v , u t*v -u v , 30s*u*t*v -u v , 15s t*v +14u v ,

153



--------------------------------------------------------------
2 2 2 2 4
u t v -u v )

o23 : Ideal of S

i24 : degrees gens GGsat

o24 = {{{0, 0, 0}}, {{5, 2, 3}, {5, 2, 3}, {5, 2, 3}, {5, 2, 3}, {6,
--------------------------------------------------------------
2, 4}, {6,2, 4}, {6, 2, 4}, {6, 2, 4}, {6, 2, 4}, {6, 2, 4}}}

o24 : List

i25 : H=GGsat/GG

o25 = subquotient (| 3s2t2v-3sut2v-u2t2v-3s2tv2+3sutv2+2u2tv2-u2v3
9u2t3+42sut2v+28u2t2v+45s2tv2-15sutv2+19u2tv2+30s2v3+3suv3+
13u2v3 sut3-2sut2v-s2tv2+3sutv2-u2tv2 s2t3-sut2v-2u2t2v-2s2tv2+
3sutv2+2u2tv2-u2v3 30suv4-u2v4 15s2v4+14u2v4 u2tv3-u2v4
30sutv3-u2v4 15s2tv3+14u2v4 u2t2v2-u2v4 |, | s2t3+2sut3+3u2t3+
4s2t2v+5sut2v+6u2t2v+7s2tv2+8sutv2+9u2tv2+10s2v3+suv3+2u2v3
2s2t3-3s2t2v+sut2v-3u2t2v-s2tv2+3sutv2+2u2tv2-u2v3 2s2t3-2sut3-
3s2t2v+5sut2v-3u2t2v+s2tv2-3sutv2+4u2tv2-u2v3 -2sut3+3s2t2v+
sut2v-u2t2v-s2tv2-3sutv2+4u2tv2-u2v3 |)

1
o25 : S-module, subquotient of S

i26 : degrees gens H

o26 = {{{0, 0, 0}}, {{5, 2, 3}, {5, 2, 3}, {5, 2, 3}, {5, 2, 3}, {6,
--------------------------------------------------------------
2, 4}, {6,2, 4}, {6, 2, 4}, {6, 2, 4}, {6, 2, 4}, {6, 2, 4}}}

o26 : List

Now, we focus on the computation of the implicit equation as the determinant of the
right-most map. Precisely, we will buid-up this map, and later extract a maximal minor
for taking its determinant. It is clear that is in general not the determinant of the
approximation complex in degree ν, but a multiple of it. We could get the correct
equation by taking several maximal minors and considering the gcd of its determinant.
This procedure is much more expensive, hence, we avoid it.

Thus, first, we compute the right-most map of the approximation complex in degree ν

i27 : R=S[T1,T2,T3,T4];

154



i28 : G=sub(F,R);

1 4
o28 : Matrix R <--- R

We compute a matrix presentation for (Z1)ν in K1:

i29 :Z1nu=super basis(nu+d,Z1);

4 12
o29 : Matrix S <--- S

i30 : Tnu=matrix{{T1,T2,T3,T4}}*substitute(Z1nu,R);

1 12
o30 : Matrix R <--- R

i31 : lll=matrix {{s,t,u,v}}

o31 = | s t u v |

1 4
o31 : Matrix S <--- S

i32 : lll=sub(lll,R)

o32 = | s t u v |

1 4
o32 : Matrix R <--- R

i33 : ll={};

i34 : for i from 0 to 3 do { ll=append(ll,lll_(0,i)) }

Now, we compute the matrix of the map (Z1)ν → Aν [T1, T2, T3, T4]

i35 : (m,M)=coefficients(Tnu,Variables=>ll,Monomials=>substitute(
basis(nu,S),R));

i36 : M;

12 12
o36 : Matrix R <--- R

i37 : T=QQ[T1,T2,T3,T4];
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i38 : ListofTand0 ={T1,T2,T3,T4};

i39 : for i from 0 to 3 do { ListofTand0=append(ListofTand0,0) };

i40 : p=map(T,R,ListofTand0)

o40 = map(T,R,{T1, T2, T3, T4, 0, 0, 0, 0})

o40 : RingMap T <--- R

i41 :N=MaxCol(p(M));

12 12
o41 : Matrix T <--- T

The matrix M is the desired matrix representation of the surface S . We can continue by
computing the implicit equation by taking determinant. As we mentioned, this is fairly
more costly. If we take determinant what we get is a multiple of the implicit equation.
One wise way for recognizing which of them is the implicit equation is substituying a
few points of the surface, and verifying which vanishes.

Precisely, here there is a multiple of the implicit equation (by taking several minors we
erase extra factors):

i42 :Eq=det(N); factor Eq;

We verify the result by sustituying on the computed equation, the polynomials f1 to f4.
We verify that in this case, this is the implicit equation:

i44 : use R; Eq=sub(Eq,R);
i46 : sub(Eq,{T1=>G_(0,0),T2=>G_(0,1),T3=>G_(0,2),T4=>G_(0,3)})

o46 = 0

o46 : R
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versité de Nice Sophia-Antipolis (2001).

[Bus06] , Elimination theory in codimension one and applications, INRIA re-
search report 5918. Notes of lectures given at the CIMPA-UNESCO-IRAN
school in Zanjan, Iran, July 9-22 2005 (2006), 47.
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& Applications, Birkhäuser Boston Inc, Boston, MA, 1994. MR MR1264417
(95e:14045)

[GS] Daniel R Grayson and Michael E Stillman, Macaulay 2, a software system for
research in algebraic geometry., http://www.math.uiuc.edu/Macaulay2/.

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977,
Graduate Texts in Mathematics, No. 52. MR MR0463157 (57 #3116)

[Hof89] Christoph Hoffmann, Geometric solid modeling: an introduction, Morgan
Kaufmann publishers (1989).

[HSV82] Jürgen Herzog, Aron Simis, and Wolmer V Vasconcelos, Approximation
complexes of blowing-up rings, J. Algebra 74 (1982), no. 2, 466–493. MR
MR647249 (83h:13023)

159



[HSV83a] Jürgen Herzog, Aaron Simis, and Wolmer V Vasconcelos, Koszul homology
and blowing-up rings, Commutative algebra (Trento, 1981), Lecture Notes
in Pure and Appl. Math, vol. 84, Dekker, New York, 1983, pp. 79–169. MR
MR686942 (84k:13015)

[HSV83b] Jürgen Herzog, Aron Simis, and Wolmer V Vasconcelos, Approximation com-
plexes of blowing-up rings. II, J. Algebra 82 (1983), no. 1, 53–83. MR
MR701036 (85b:13015)

[HW04] Jerome W. Hoffman and Hao Hao Wang, Castelnuovo-Mumford regularity in
biprojective spaces, Adv. Geom. 4 (2004), no. 4, 513–536. MR MR2096526
(2006b:13032)

[Jou95] Jean-Pierre Jouanolou, Aspects invariants de l’élimination, Adv. Math 114
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