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Teoria de Tannaka sobre Sup-Reticulados

El resultado principal de esta tesis es la construccidon de un contexto tannakiano
sobre la categoria s¢ de sup-reticulados, asociado a un topos de Grothendieck arbitrario,
y la obtencién de nuevos resultados en teoria de representacion tannakiana a partir de
él.

Si bien numerosos resultados fueron obtenidos y publicados histéricamente relacio-
nando teorfas de Galois y teorias de Tannaka (ver introduccidn), estos son diferentes y
de menor generalidad pues asumen la existencia de clausuras de Galois y trabajan sobre
topos de Galois en lugar de sobre topos arbitrarios. En cambio nosotros, al hablar sobre
Teoria de Galois, nos referimos a la extension de la misma a topos arbitrarios realizada
en el articulo [17], fundamental para obtener los resultados de esta tesis.

El contexto tannakiano asociado a un topos de Grothendieck se obtiene mediante
el proceso de tomar relaciones a su cubrimiento locélico. Luego, mediante una inves-
tigacion y comparacién exhaustiva de las construcciones de las teorias de Galois y de
Tannaka, se prueba la equivalencia entre sus teoremas fundamentales (ver seccion [g).

Como las (bi)categorias de relaciones de un topos de Grothendieck fueron caracte-
rizadas en [3]], se obtiene un nuevo teorema de tipo recognition (theorem [8.12) esencial-
mente diferente a los conocidos hasta el momento (ver introduccién) .



Tannaka Theory over Sup-Lattices

The main result of this thesis is the construction of a tannakian context over the
category s¢ of sup-lattices, associated with an arbitrary Grothendieck topos, and the
attainment of new results in tannakian representation theory from: it.

Although many results were obtained and published historically linking Galois and
Tannaka theory (see introduction), these are different and less general since they assume
the existence of Galois closures and work on Galois topos rather than on arbitrary topos.
Instead we, when talking about Galois theory, mean the extension to arbitrary topos of
the article [17]], critical to get the results of this thesis.

The tannakian context associated with a Grothendieck topos is obtained through the
process of taking relations of its localic cover. Then, through an investigation and ex-
haustive comparison of the constructions of the Galois and Tannaka theories, we prove
the equivalence of their fundamental recognition theorems (see section [§).

Since the (bi)categories of relations of a Grothendieck topos were characterized in
(3], a new recognition-type tannakian theorem (theorem [8.12)) is obtained, essentially
different from those known so far (see introduction).
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Introduction

On Galois Theories. In SGA 1, Exposé V section 4, “Conditions axiomatiques d’une
theorie de Galois”, ([4], see also [10]) Grothendieck reinterprets Galois Theory as a

theory for functors C R Ens.w, and by doing so he lays the foundation for many
generalizations of this theory. In SGA 4 [1], Grothendieck himself makes a first gener-

alization of [4]], by considering functors C LN &Ens such that the elements (x, X) of the
diagram of F' with X galoisian is cofinal. This axiom implies that the system consisting
of the groups Aut(X) is pro-discrete. As we will see in detail, to obtain representation
theorems for topoi as instances of Galois Theory, we must drop the pro-discreteness
completely. The article [9] contains an organized and detailed survey of these general-
izations of Galois Theory, including the representation theorems for topoi of [8], [17]]
and many others. We refer the interested reader to [9]], and focus now in the theories
we will work with, both of which are theories of representation of topoi: Localic Galois
Theory as in [8] and Joyal-Tierney’s extension of Galois Theory as in [17]].

*=F
Neutral case. In [8]], beginning with a topos & with a point Ens N & 8 g &ns;

a localic group G = CAut(F) and a lifting of F & iR Y into the classifying topos of G
are constructed, and the following is proved:

recognition theorem (theorem B in [8]): & is connected atomic if and only if the lifting
is an equivalence, i.e. & = ﬂG.

We call & R &Ens a (neutral) Galois context.

Non-neutral case. In [17], VIIIL.3, beginning with an abritrary Grothendieck topos

& (over a base topos S), its spatial cover shH — & (with inverse image & LN shH)
is constructed and considered (though not explicitly) as a Galois context: a localic

groupoid G is built, all the information required for a lifting & iR B¢ is present and the
following is proved:

recognition theorem (theorem VIII.3.2 in [|I7]): the lifting is an equivalence, i.e.
E=pC.

We call & SN shH a (non-neutral) Galois context.

On Tannaka Theories. The interpretation of the results of Tannaka [27] as a theory of
representations of (affine) K-schemas was developed by Saavedra Rivano [23]], Deligne
[6]] and Milne [7].



Neutral case. We begin by considering Joyal-Street’s description of (the neutral

case of) this theory in [15] as a theory for functors X N K-Vec. into the cate-
gory of finite dimensional K-vector spaces. A K-coalgebra L := End"(T) and a lifting

X R Cmd_.(L) into the category of finite dimensional L-comodules are constructed,
and the following is proved ([15], §7 Theorem 3):

recognition theorem: if X is abelian and F is faithful and exact, the lifting is an
equivalence.

T .
We call X — K-Vec.., a (neutral) tannakian context.

Non-neutral case. Part of the results of [6] (corresponding to the affine non-neutral
case, see [0] 6.1, 6.2, 6.8) can also be presented in the following way: given a K-algebra

B and a functor X R B-Mod,,s into the category of projective B-modules of finite

type, a cogebroide L := L(T) sur B and a lifting X R Cmd,,;s(L) into the category
of L-comodules (called representations of L in [6]) whose subjacent B-module is in
B-Mod,,s are constructed, and the following is proved:

recognition theorem: if X is tensorielle sur K ([6] 1.2, 2.1) and F is faithful and exact,
the lifting is an equivalence.

T :
We call X — B-Mod,,; a (non-neutral) tannakian context.

Since then many generalizations of this theory have been made, mainly in two differ-
ent directions: either relaxing some hyphotesis for K (instead of a field we can consider
rings [13], valuation rings [31]]), or considering an arbitrary base monoidal category V
instead of K-vector spaces ([25] [18]], [24]). Though the constructions of Tannaka the-
ory and some of its results regarding for example the reconstruction theorem (see [3],
[18]]) have been obtained, it should be noted that no proof has been made so far of a
satisfactory recognition theorem for an arbitrary base category.

There are also propositions that, under additional properties for the tannakian con-
text, give additional structure to L (see [15], §8 and §9, [6] 6.4 and 6.8). This results
are independent of the recognition theorem and can be generalized to an arbitrary base

category (see[A.4]and [A.3] [C.25]and [C.26).

On the relations between both theories. Strong similarities are evident to the
naked eye, and have been long observed, between different “versions” of Galois and
Tannaka representation theories. Various approaches to relate Tannaka and Galois The-
ory are developed for example in [22] and [14]], where the existence of Galois closures
(disguised in one form or another) is essential, and which cover Galois topoi but not the
Joyal-Tierney extension to atomic or arbitrary topoi.




In this thesis, to relate Tannaka and Galois Theory we proceed as follows: from a
Galois context as in [8]], [17]], we construct an associated Tannaka context over s€, and
by comparing the constructions of both theories in each context we obtain new Tannaka
recognition theorems from the Galois recognition theorems.

As a first, simpler example, consider the neutral version that we develop in section
Here by Galois theory we refer to Localic Galois Theory as developed by Dubuc in
[8]], and by Tannaka theory we refer to the generalization to an arbitrary base monoidal
category V of the definitions and constructions of [[15] that we do in appendix |Al These
are the “strong similarities”: both in Galois and Tannaka theories, from a context we
construct an object (G or L) and a lifting into a category of representations of the object.
The recognition theorems are as follows: the lifting is an equivalence of categories if and
only if some conditions on the context are satisfied (like “if X is abelian and F is faithful
and exact” for neutral Tannaka theory over vector spaces, or “€ is connected atomic”
for Localic Galois Theory). Note that G is a group object in a geometric category and
L a cogroup object in an algebraic category, the cogroup structure for L yields a group
structure for its formal dual L.

However, these similarities are just of the “form” of both theories, and don’t allow
us a priori to translate any result from one theory to another, in particular Localic Galois
Theory and neutral Tannaka theory over vector spaces remain independent. But what

we can do is find the tannakian context corresponding to a Galois context, and we do this
. ) F T Rel(F)
by taking relations: from & — Ens we construct X — V := Rel(E) =5 Rel — st

and we prove the following compatibilities.

1. The objects constructed from both contexts are isomorphic as localic groups
(G = L,i.e. O(G) = L where O(G) is the locale corresponding to the space G).

2. For any localic group G, the categories of representations Cmdy(O(G)) and Rel(5%)
are equivalent.

With these compatibilities, we can complete the following diagram that relates Ga-
lois theory to a neutral tannakian theory over the base category s¢ of sup-lattices:

BE —— Rel(°) — Cmdy(O(G)) — Cmdy(L)

& Rel(E)
| |
Ens Rel = sty C st.

We obtain immediately that the Tannaka lifting functor T is an equivalence if and
only F is so (Theorem[[.57). Then, from the fundamental theorem of localic Galois



theory (Theorem Theorem B of [8]), we obtain the following Tannaka recognition
theorem for the (neutral) Tannaka context X SN V = Rel(E) Rﬂ) Rel — s¢ associated

to a pointed topos: T is an equivalence if and only if the topos is connected atomic
(Theorem [[.60)). These topoi are then a new concrete example where the recognition
theorem holds which is completely different than the other cases in which the Tannaka
recognition theorem is known to hold, where the unit of the tensor product is an object
of finite presentation. Simultaneously, the non atomic pointed topoi furnish examples
where the lifting is not an equivalence, i.e. the categories of relations of non atomic
pointed topoi are not neutral tannakian categories (we will show later that they are non-
neutral tannakian categories).

It should be noted that the properties of the Tannaka context equivalent to the lifting
being an equivalence are expressed in terms of the topos, i.e. of the Galois context. This
is not exactly what one would expect from a Tannaka recognition theorem, but we were
able to solve this by developing the more general non-neutral case (see theorem [8.12).
The results described so far, and developed with detail in section E], were obtained in the
first years of our doctoral career and published as [11].

The non-neutral case and the new Tannaka recognition theorem for sf. As
we have mentioned before, both Localic Galois Theory and neutral Tannaka Theory
admit generalizations that we will refer to as Galois Theory (as developed by Joyal-
Tierney in [17]) and non-neutral Tannaka Theory (as developed by Deligne in [6]], whose
constructions we make in an arbitrary base monoidal category in appendix [C).

The jump in generality from pointed atomic to arbitrary topoi is the jump from
groups to (maybe pointless) groupoids, and corresponds exactly to the jump from neu-
tral to non-neutral Tannaka theory. Following the constructions of [6], from a monoid

) ) ) T o
B in a monoidal base category V and a monoidal functor X — B-Mod (satisfying
some duality conditions, see , we construct a cogebroide in V, L := End"(T), and

a lifting X SN Cmdy(L) into a full subcategory of the category of L-comodules. We

call X R V a (non-neutral) tannakian context. In [6] it is shown that in the case of
schemas, which is deduced from the affine case that corresponds to vector spaces, if
T is faithful and exact (i.e. a fiber functor, see [6], 1.9) the lifting is an equivalence
(recognition theorem, [6]], 1.12), but, as for the neutral case, no recognition theorem has
been proved so far for arbitrary base categories.

The same ‘“‘similarities” of the neutral case appear here, and we exploit them by
constructing the non-neutral tannakian context over s¢ associated to the Galois context
given by the spatial cover. This generalization, corresponding to the jump in generality
from the pointed over &ns case of [8] to the unpointed general case of [[17] is by no
means direct and conforms sections [2]to[§] Once again we do this by taking relations,
so in a way it is a similar process to the one of section[I] but it is instructive to examine
the differences between the neutral (from [8]) and non-neutral (from [17]]) cases, while



we describe the contents of these sections:

¢ Since Joyal-Tierney in [17] work over an arbitrary base topos, we have to consider
{-relations in an arbitrary topos. These are arrows X X ¥ — G, where G is a
sup-lattice. We do this in section[2] We begin by proving results for relations (i.e.
where G = Q), some of which are already known, but with different definitions
and proofs that are easier to extend to {-relations in section In particular
we consider the axioms that make a relation a function (univalued, everywhere
defined) and show that functions correspond to (the graphs of) arrows of the topos.
We will show the corresponding result for ¢-relations in section [5

e An analysis of I>- and ¢-diagrams and cones (see is needed to show the
equivalence between the universal properties defining G and L. In section [3] and
M we establish the results needed for this. The following phenomena is worth
mentioning: since the locales are commutative algebras, a Galois context yields a
non-neutral commutative tannakian context. But a non-neutral commutative tan-
nakian context is in a sense “neutralized” over the base category of B-bimodules.
Instead of a fiber functor, we now have two fiber functors corresponding to the
two inclusions B — B ® B (see[7.14). We develop in section 4] a theory of cones
for two different functors that we will use in section|/|to exploit this fact.

We show in section [] that >>-cones of functions correspond to natural transfor-
mations, and analyse their behavior through topoi morphisms. This will allow us
to express the property defining the localic groupoid considered in [[17], VIIL.3
Theorem 2 p.68 as a universal property of >-cones (theorem [/7.11)).

We show that cones defined over a site of a topos can be extended uniquely to the
topos (preserving its properties). Since we will consider a tannakian coend that
is a universal ¢-cone over Rel(E), this will allow us to solve size problems when
constructing the coend by considering a small site of the topos &.

e Section[5]is the most technical section of this thesis and it is devoted essentially to
giving external characterizations, for a locale P in a topos S, of the developments
of section 2 when considered internally in the topos shP.

Recall that Joyal and Tierney develop in [[1'/], VI a change of base for sup-lattices
and locales. In particular for a locale P in a topos S they characterize sup-lattices
and locales in the topos & = shP by showing that s{(shP) L5 P-Mod is an
equivalence that restricts as an equivalence Loc(shP) 2, P-Loc. (see . Also,
they characterize etale spaces as those spaces whose corresponding locale is of
the form y*(Qﬁ) = v,.(0(Xyis)), with X € shP, where Qp is the subobject classifier
of shP. We denote X, := y.(QF) = QX(1).



We develop in section[5|what may be called a change of base for relations, given a
locale P € S we examine the correspondence between relations y*XXy*Y — Qp
in the topos shP and arrows (that we call {-relations) XXY — P in the base topos.

. . | .
Then we consider ¢-relations X X ¥ — G in the topos shP, we show that they

correspond to P-module morphisms X; ®p Y, e G(1) and give external (i.e. in
terms of u, in the base topos S) formulae equivalent to the axioms of section
We also “externalize” the formulae of the duality of Q¥ in sé(shP). All this is
neccessary to treat the general unpointed case of Galois theory in the following
sections.

In section [6] we establish the equivalence between discrete actions of a localic
groupoid and discrete comodules of its subjacent cogebroide, and between co-
module morphisms and relations in the category of discrete actions, generalizing
the results from section [[.4] The definition of action of [[17] is a priori different to
the one of [8]], so we had to show that in the discrete case they coincide in order
to generalize our previous results (see remarks[6.13] [6.18).

In section [/| we show explicitly how the localic groupoid G constructed in [17],
VIIL.3 from the spatial cover shH — & is a universal >-cone of {-bijections in
the topos sh(H ® H) for two different functors, as mentioned before. This was
not neccessary when working with the neutral Galois context of [8], since G is
constructed there precisely as a universal >-cone of £-bijections, but Joyal and
Tierney deduce the existence of G with a different technique, so this result of
theorem [/.11] is crucial for us in order to prove G = L. This theorem is also
interesting by itself, since it shows a different way in which we can interpret
(and construct) the fundamental groupoid G. After showing this, the previous
properties of > and ¢ diagrams and cones let us show the isomorphism G = L.

Finally, in section (8] we combine all the previous results to obtain a new non-
neutral Tannaka recognition type theorem over for a type of s{-enriched categories
(over a base topos) that are called distributive categories of relations (DCRs), that
generalize the categories of relations Rel(E) of topoi. We begin by proving an
analogous extension property to the one of section [ for DCRs, that will allow us
to construct the tannaka coend L for bounded DCRs.

We use previous results from [21]], [3]] that relate DCRs with Grothendieck topoi
to construct a tannakian fiber functor A — B-Mod. In this way, we obtain
the following new Tannaka recognition theorem (for the base category s¢ of sup-
lattices),

recognition theorem, theorem[8.12} A bounded DCR A is complete if and only if
the lifting A — Cmd,(L) of its fiber functor is an equivalence.

10



Resumen en castellano de la introduccion

Sobre teorias de Galois. En el SGA 1, Exposé V section 4, “Conditions axioma-
tiques d’une theorie de Galois”, ([4)], ver también [10]) Grothendieck reinterpreta la

teoria de Galois como una teoria para funtores C i> Ens.., y al hacer esto da el
primer paso hacia multiples generalizaciones de esta teoria. Como veremos en detalle,
se pueden obtener teoremas de representacion de topos como instancias de la teoria de
Galois; el articulo [9] contiene una descripcion detallada y organizada de estas general-
izaciones. Referimos al lector interesado a [9], y describimos las teorias de Galois con
las que trabajaremos en esta tesis, ambas teorias de representacion de topos: la Teoria
Locadlica de Galois de [8] y la extension de Joyal-Tierney de la teoria de Galois en [[17]].

*=F
Caso Neutral. En [8], a partir de un topos & con un punto Ens N 58 A Ens; se

construyen un grupo locélico G = {Aut(F) y un levantamiento de F' & R B¢ al topos
clasificante de G y se prueba:

teorema recognition (teorema B en [\§]): & es conexo y atémico si y solo si el
levantamiento es una equivalencia, i.e. & = 5°.

F .
Llamamos a & — &Ens un contexto de Galois (neutral).

Caso no Neutral. En [17], VIIL.3, a partir de un topos de Grothendieck arbitrario
& (sobre un topos de base S), se construye su cubrimiento espacial shH — & (con

imagen inversa & — shH) y se lo considera (si bien no explicitamente) como un
contexto de Galois: se construye un grupoide locélico G, toda la informacion necesaria

. F .
para el levantamiento & — B¢ estd presente y se prueba:

teorema recognition (teorema VIII.3.2 en [17]): el levantamiento es una equivalencia,
ie. &=pC.

F
Llamamos a & — shH un contexto de Galois (no-neutral).

Sobre teorias de Tannaka. La interpretacion de los resultados de Tannaka [27]]
como una teoria de representaciones de K-esquemas afines fue desarrollada por Saave-
dra Rivano [23]], Deligne [6] y Milne [7]].

Caso Neutral. Consideramos la descripcion que hacen Joyal-Street del caso neutral

T
de esta teoria en [15] como una teoria para funtores X — K-Vec., a la categoria
de K-espacios vectoriales finitos. Se construyen una K-coalgebra L := End"(T) y un

levantamiento X R Cmd_.(L) a la categoria de L-comddulos de dimension finita, y
se prueba ([15)], §7 Theorem 3):

11



teorema recognition: si X es abeliana y F es exacto y fiel, entonces el levantamiento es
una equivalencia.

T
Llamamos a X — K-Vec.., un contexto de Tannaka (neutral).

Caso no Neutral. Parte de los resultados de [6] pueden ser presentados de la sigu-

iente forma: dados una K-dlgebra B y un funtor X R B-Mod,, a la categoria de
B-moédulos proyectivos de tipo finito, se construyen un cogebroide L := L(T) sur B

. T . £ ’
y un levantamiento X — Cmd,,;¢(L) a la categoria de L-comédulos cuyo B-mdédulo
subyacente estd en B-Mod,,s, y se prueba:

teorema recognition: si X es tensorielle sur K ([6] 1.2,2.1) y F es exacto y fiel,
entonces el levantamiento es una equivalencia.

T
Llamamos a X — B-Mod,,s un contexto de Tannaka (no-neutral).

Sobre la relacion entre ambas teorias. Fuertes similitudes son evidentes a simple
vista, y ya han sido observadas, entre estas diferentes “versiones” de las teorias de rep-
resentacion de Galois y de Tannaka. Existen varios desarrollos tendientes a relacionar
ambas teorias por ejemplo en [22] y en [14], donde la existencia de clausuras de Galois
es esencial, y que abarcan a los topos de Galois pero no la extension de Joyal-Tierney a
topos atémicos o arbitrarios.

En esta tesis, para relacionar las teorias de Galois y de Tannaka realizamos lo sigu-
iente: dado un contexto de Galois como en [8]], [[17]], construimos un contexto de Tan-
naka asociado sobre s¢, y al comparar las construcciones de ambas teorias en cada
contexto obtenemos nuevos teoremas recognition de tipo tannakiano a partir de los teo-
remas recognition de Galois.

12
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1 The neutral case over Ens

In this section we construct an explicit (neutral) Tannakian context for the Galois theory
of atomic topoi, and prove the equivalence between its fundamental theorems. Since the
theorem is known for the Galois context, this yields, in particular, a proof of the fun-
damental (recognition) theorem for a new Tannakian context. This example is different
from the additive cases [135], [13], [2], or their generalization [24], where the theorem
is known to hold, and where the unit of the tensor product is always an object of finite
presentation (that is, filtered colimits in the tensor category are constructed as in the
category of sets), which is not the case in our context.

In this section by Galois theory we mean Grothendieck’s Galois theory of progroups
(or prodiscrete localic groups) and Galois topoi [1]], [4], as extended by Joyal-Tierney in
[17]. More precisely, the particular case of arbitrary localic groups and pointed atomic
topoi.

For the Galois theory of atomic topoi we follow Dubuc [8], where he develops lo-
calic Galois theory and makes an explicit construction of the localic group of automor-

phisms Aut(F) of a set-valued functor & L, &ns, and of a lifting & iR BAE) into
the topos of sets furnished with an action of the localic group (see [I.46). He proves
in an elementary wayﬂ that when F is the inverse image of a point of an atomic topos,
this lifting is an equivalence [8, Theorem 8.3], which is Joyal-Tierney’s theorem [17,
Theorem 1].

For Tannaka theory we follow Joyal-Street [[15] (for the original sources see the
references therein). The construction of the Hopf algebra End"(T) of endomorphisms
of a finite dimensional vector space valued functor 7' can be developed for a V-valued

functor, X SN Vo c V, where V is any cocomplete monoidal closed category, and
“Vy a (small) full subcategory of objects with duals, see for example [20], [24], [25].

There is a lifting X N Cmdy(End”(T)) into the category of End"(T)-comodules with
underlying object in V. For a handy reference and terminology see section [Al In [15]],
[25]] it is shown that in the case of vector spaces, if X is abelian and F is faithful and
exact, the lifting is an equivalence (recognition theorem).

Recall that given a regular category C we can consider the category Rel(C) of re-
lations in C. There is a faithful functor (the identity on objects) C — Rel(C), and any

regular functor C iR D has an extension Rel(C) Rﬂ) Rel(D).

The category Rel = Rel(Ens) is a full subcategory of the category s¢ of sup-lattices,
set Rel = sfy. This determines the base V,V, of a Tannaka context. Furthermore, a
localic group is the same thing as an Hopf algebra in the category s¢ which is also a

"meaning, without recourse to change of base and other sophisticated tools of topos theory over an
arbitrary base topos.

14



locale (see section|1.1)).

. . oy . F .
Given any pointed topos with inverse image & — &ns of a Galois context, we
associate a (neutral) Tannakian context as follows:

F

Jig & Rel(€) — L~ Cmdy(H)

Nk T

Ens —— Rel = st,

where G = Aut(F), H = End"(T), and T = Rel(F).

We prove that F is an equivalence if and only if T is so (Theorem[I.57). The re-
sult is based in two theorems. First, we prove that for any localic group G, there
is an isomorphism of categories Rel(8°) = Cmdy(G) (Theorem . Second, we
prove that the Hopf algebra End”(T) is a locale, and that there is an isomorphism
Aut(F) = End”(T) (Theorem [1.55)).

In particular, from Theorem [1.57| and the fundamental theorem of localic Galois
theory (Theorem|I.59)), we obtain that the following Tannaka recognition theorem holds
in the (neutral) Tannaka context associated to a pointed topos: T is an equivalence if
and only if the topos is connected atomic (Theorem|[1.60).
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1.1 Background, terminology and notation

We begin by recalling some facts on sup-lattices, locales and monoidal categories, and
by doing so we fix notation and terminology.

We will consider the monoidal category s¢ of sup-lattices, whose objects are posets
S with arbitrary suprema \/ (hence finite infima A, O and 1) and whose arrows are the
suprema-preserving-maps. We call these arrows linear maps. We will write S also for
the underlying set of the lattice. The fensor product of two sup-lattices S and T is the
codomain of the universal bilinear map § X7 — S ® T. Given (s, 1) € S X T, we
denote the corresponding element in § ® 7 by s ® . The unit for ® is the sup-lattice

2 ={0 < 1}. The linear map S ® T’ 4 T®S sending s®? — t® s is a symmetry. Recall
that, as in any monoidal category, a duality between two sup-lattices 7 and § is a pair
i

of arrows 2 > T ® S ,S®T 52 satisfying the usual triangular equations (see
We say that T is right dual to S and that S is left dualto T, and denote T = S*, S = T".
Note that since s/ is symmetric as a monoidal category, S has a right dual if and only if
it has a left dual, and S = SV.

There is a free sup-lattice functor Ens 4 st Given X € &ns, X is the power
set of X, and for X i) Y, {f = f is the direct image. This functor extends to a functor

Rel R s, defined on the category Rel of sets with relations as morphisms. A linear
map (X — (Y is the “same thing” as a relation R C X X Y. In this way Rel can be

identified with a full subcategory Rel < s€. We define s{, as the full subcategory of
st of objects of the form ¢X. Thus, abusing notation, Rel = s, C s¢ (“=" here is
actually an isomorphism of categories). Recall that Rel is a monoidal category with
tensor product given by the cartesian product of sets (which is not a cartesian product in

Rel). It is immediate to check that £X ® €Y = £(X X Y) in a natural way.

4 . . . . .
1.1. The functor Rel — st is a tensor functor, and the identification Rel = st, is an
isomorphism of monoidal categories.

The arrows 2 — EX®LX, X ® £X - 2, defined on the generators as (1) = \/, x®x
and &(x ® y) = 0,-, determine a duality, and in this way the objects of the form £X have
both duals and furthermore they are self-dual, (¢X)" = (£X)" = ¢X. Under the isomor-
phism Rel = s{,, € and n both correspond to the diagonal relation A ¢ X X X. Du-
als are contravariant functors, if R € X X Y is the relation corresponding to a linear
map ¢X — (Y, then the opposite relation R°” C Y X X corresponds to the dual map
)" - (LX),

1.2. We will abuse notation (see for example (1.6)) by omitting to write the functor
&ns R sty = Rel, i.e. by denoting by X N Y the direct image of f which is the
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relation given by its graph Ry C X X Y. R;p is the relation corresponding to the inverse

op
image of f, which we will denote by Y f—) X.

As in any monoidal category, an algebra (or monoid) in s is an object G with an

associative multiplication G @ G —> G which has a unit u € G. If * preserves the
symmetry i, the algebra is commutative. An algebra morphism is a linear map which
preserves * and u.

A locale is a sup-lattice G where finite infima A distributes over arbitrary suprema

\/, that s, it is bilinear, and so induces a multiplication G ® G AN G. A locale morphism
is a linear map which preserves A and 1. In this way locales are commutative algebras,
and there is a full inclusion of categories Loc C Alg,, into the category of commutative
algebras in s¢.

1.3. In [I7)], 1II.1, p.21, Proposition 1, locales are characterized as those commutative
algebras such that x « x = x and u = 1.

A (commutative) Hopf algebra in st is a group object in (Alg,)°?. A localic group
(resp. monoid) G is a group (resp. monoid) object in the category Sp of localic spaces,
which is defined to be the formal dual of the category of locales, Sp = Loc’?. There-
fore G can be also considered as a Hopf algebra in sf. The unit and the multiplication

of G in Sp are the counit G > 2 and comultiplication G 5 G®Gofa coalge-

bra structure for G in Alg,,. The inverse is an antipode G - G. Morphisms corre-
spond but change direction, and we actually have a contravariant equality of categories
(Hopfroc)°? = Loc-Group, where Hop fi,. consists of those Hopf algebras in s¢ which
happen to be a locale, i.e. which satisfy the conditions of[I.3]

Remark 1.4. Throughout this thesis, a number or symbol above an “<” or an “="" indi-

cates the previous result that justifies the assertion.
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1.2 Preliminaries on bijections with values in a locale

As usual we view a relation A between two sets X and Y as a map (i.e. function of sets)

X X Y -2 2. We consider maps X X Y R G with values in an arbitrary sup-lattice G,
that we will call ¢-relations. Since {(X X Y) = £X® €Y, it follows that {-relations are the

same thing that linear maps X ® (Y L, G. The results of this section are established
in order to be used in the next sections, and they are needed only in the case X =Y.

1.5. Consider two ¢{-relations X X Y i> G, X' xY i> G, and two maps X L) X,

8 . . .
Y — Y’, or, more generally, two spans (which induce relations that we also denote
with the same letters),

R_ S /
P P q 4q
S PN

X/ X, Y Y

7 R:p’opop’ S:q'oqop’

and a third (-relation R x S — G.
These data give rise to the following diagrams:

01 =01(f.8) 02 = 02(f, 8) 0 =0(R,S) (1.6)
Yo XXY . P XXY . sor XXY ,
XxY = G, X' XY = G, XxY = G,
f% /; x% /; R% /;
X' XY X' XY X' xY

expressing the equations:

0 A(f@,by = \/ May)y, 02: 1@, g = \/ Axb),
$0)=b f=a

and 0: \/ AMay) = \/ XX, D).

(y,b")eS (a, x')ER

Remark 1.7. It is clear that diagrams ¢; and ¢, are particular cases of diagram ¢. Take
R=f, § =g, then0:(f,8) = 0(f,8),and R = f7, § = g°, then 0,(f, g) = 0(f",8").

The general ¢ diagram follows from these two particular cases.

Proposition 1.8. Let R, S be any two spans connected by an {-relation 6 as above. If
01(p’,q") and O,(p, q) hold, then so does ¢(R, S).

18



Proof. We use the elevators calculus, see appendix (B (and recall our remark on
notation):

B T < < I
X\S:/ _ \;/ o \pR/S _ R\qs/ o \;/ . \;/ ’

1.9. Two maps X R X', Y =5 ¥ also give rise to the following diagram:

XxXY

/l\\
> =0>(f,8): fxgl = G.
_—
X' xy A

Proposition 1.10. [f either ¢1(f, g) or ¢2(f, g) holds, then so does >(f, g).

Proof. Aa,b) < \/ Aa,y) = A{f(a), g(b)) using ¢;. Clearly a symmetric arguing
8(n=g(b)

holds using ¢,. O
For the rest of this section G is assumed to be a locale.
Consider the following axioms:
1.11. Axioms on an {-relation
ed) \/yey Ma,y) =1, for each a (everywhere defined).
uv) A(x,by)y N Xx,by) =0,  foreach x,b, # b, (univalued).
su) \yex Ax,b) =1, for each b (surjective).
in) Kay,y) N Kay,y) =0, foreachy,a, # a, (injective).

Clearly any morphism of locales G — H preserves these four axioms.

An (-relation A is a {-function if and only if satisfies axioms ed) and uv). We say that
an {-relation is a £-opfunction when it satisfies axioms su) and in). Then an {-relation is
a {-bijection if and only if it is an ¢-function and an £-opfunction.
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1.12. Given two ¢-relations, X X Y l> G, X' xY i> G, the product {-relation A ® A’
is defined by the composition

XxyxY’ AXA A
XXX XYXY — XXYXX' XY —>GXG—G

AR A)X(a,a’),(b,b"))y = Aa,by NA'{a’,b").

The following is immediate and straightforward:

Proposition 1.13. Each axiom in for A and A’ implies the respective axiom for the
product AR A'. O

Proposition 1.14. We refer to[I.5] If equations ¢1(p, q) and ¢1(p’,q’) hold, and 6 sat-
isfies uv), then equation 1) below holds. Symmetrically, if ¢,(p,q) and 0,(p’,q") hold,
and 0 satisfies in), then equation 2) below holds.

D Ap),by AP b =\ 6.

qv)=b
q' (=b'

2) Na,q(s)) N X{d',q'(s)) = \/ &u, s).

pu)=a
p'w=a

Proof. We only prove the first statement, since the second one clearly has a symmetric
proof.

Apr), by A X' (0, b'y 2\ oy A\ o(rw) =

q(v)=b q (w)=b’
- \/ 0(r, vy A O(r, w) 2 \/ o(r, v). 0
q(v)=b q(v)=b
q' w)=b’ q' (v)=b'

We study now the validity of the reverse implication in proposition[I.10]

Proposition 1.15. We refer to[1.5)

1) If Ais ed) and A" is uv) (in particular, if they are {-functions), then >(f, g) implies
01(f, 8-

2) If A is su) and A’ is in) (in particular, if they are €-opfunctions), then >(f, g)
implies O,(f, g).

Proof. We prove 1), a symmetric proof yields 2).
862/[

X(F(@), b)) 2 X (fa), by AN, Naryy = VXV {f@), by A da,y) &
Ve L@, ) A K@,y 2V gymy Ha, )
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where for the equality marked with (x) we used that if g(y) # b’ then

V@), B) A Ma,y) < X{(f(@),b) A (f(@), g "2 0.
O

1.16. More generally, consider two spans as in[I.5] We have the following > diagrams:

RxS _ Rxsk (1.17)
qul 2\>G, p’Xq’J/ 2 G.

— —
XXY X' xY

Proposition 1.18. We refer to[I.5] Assume that A is in), A’ is uv), and that the >(p, q),
>(p’', q') diagrams hold. Then if 6 is ed) and su), diagram &(R, S) holds.

Proof. Use proposition [I.15] twice: First with f = p’, g = ¢/, 1 = 6, I’ = 2’ to have
o1(p’, ¢'). Second with f = p, g = g, 4 = 6, I’ = A to have 0,(p, g). Then use
proposition O

Remark 1.19. Note that the diagrams > in mean that 9 < AR A" o (p, p’) X (q,q")

(see[I.12)). In particular, when G is a locale, there is always an ¢-relation 6 in[1.5] which

... (PP )X(q:q") , , ARy
may be taken to be the composition R XS — XX X' XY XY — G. However,

it is important to consider an arbitrary {-relation 6 (see propositions [1.26] and [I.30).

Proposition 1.20. We refer to[I.5} Assume that R and S are relations, that A, X’ are (-
bijections, and that >(p, q), >(p’, ¢') in (1.17) hold. Take 6 = AR A" o (p, p’) X (q,9).
Then, if O(R, S) holds, 6 is an {-bijection.

Proof. We can safely assume RC X X X' and S Cc Y XY, and AR A" o (p,p’) X (q,9")
to be the restriction of A ® A" to R X §. From the > diagrams we easily see that
axioms uv) and in) for 6 follow from the corresponding axioms for A and A’. We prove
now axiom ed), axiom su) follows in a symmetrical way. Let (a,a’) € R, we compute:

\/ 8(a,a’), (y,y)) = \/ \/ Na,yy ANV{d,y) 2

(CAEN NANCAEN

2 A, yYNAd Y'Yy = \/ A, D |
\ vy ax@yy =\ .y
v

¥ (a,x’)ER

We found convenient to combine and into:

Prop0s1t10n 1.21. LetRCc X X X', S CY X Y’ be any two relations, and X X Y 4 G,

X'xY R G be (-bijections. Let R X S R G be the restriction of AR A" to R X S.
Then, &(R, S) holds if and only if 0 is an {-bijection. O
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1.3 On > and ¢ cones

. . f cp - .
We consider a pointed topos Ens — &, with inverse image f* = F.

1.22. Let Rel(E) be the category of relations in & Rel(E) is a symmetric monoidal
category with tensor product given by the cartesian product in & (which is not cartesian
in Rel(E)). Every object X has a dual, and it is self dual, the unit and the counit of the
duality are both given by the diagonal relation A C X X X (see [L.I)). There is a faithful
functor & — Rel(E), the identity on objects and the graph on arrows, we will often abuse

. . . ey F .
notation and identify an arrow with its graph. The functor & — &Ens has an extension

Rel(F
Rel(E) il Rel, if R C X X Y is a relation, then FR C FX X FY, and Rel(F) is in this
way a tensor functor. We have a commutative diagram:

E——Rel(E)
Fl ir
Ens Rel —— ¢ (where T = Rel(F))
1.23. It can be seen that F is an equivalence if and only if T is so. O

Note that on objects TX = FX and on arrows in &, T(f) = F(f). Since F is the
inverse image of a point, the diagram of F is a cofiltered category, T(XXY) = TXXTY,
if C; = X is an epimorphic family in &, then TC; — TX is a surjective family of sets.
If R is an arrow in Rel(E), T(R?) = (TR)°".

Definition 1.24. Let H be a sup-lattice furnished with an {-relation TX X TX BNy for
each X € &. Each arrow X L) Y in & and each arrow X & Y in Rel(E) (i.e relation

R — X X'Y), determine the following diagrams:

FXXFX TXXTX

Ax TXXTRP

\

Ay

\\\ii\\
FOOxF(H| = H, TXXTY = /H .
Y

TRXTY

J/

FYXFY YxTY

We say that TX x TX 2, H is a >-cone if the >(F(f), F(f)) diagrams hold, and
that it is a ¢-cone if the O(TR, TR) diagrams hold. Similarly we talk of ¢,-cones and
Op-cones if the O1(F(f), F(f)) and 0,(F(f), F(f)) diagrams hold. We will abbreviate
O(R) = (TR, TR), and similarly >(f), ¢1(f) and 0,(f). If H is a locale and the Ax are
{-bijections, we say that we have a ¢-cone or a I>-cone of {-bijections.

Proposition 1.25. A family TX X TX M H of {-relations is a ¢-cone if and only if it is
both a ¢ and a $,-cone.
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Proof. Use proposition [1.8withR =TR, S =TR,p=p ' =m,q=q =m, 1 = Ay,
A’ = Ay, and 6 = Ag. Then, ¢,(;) and ¢,(r;) imply O(R) O

Proposition 1.26. Any >-cone TX x TX S H of {-bijections with values in a locale
H is a ¢-cone (of (-bijections).

Proof. Given any relation R < X X Y, consider proposition with A = Ay, ' = Ay,
and 0 = Aj. O

Definition 1.27. Let TX X TX -5 H be a O-cone with values in a commutative algebra
H in s€, with multiplication * and unit u. We say that it is compatible if the following
equations hold:

Axla, ') * Ay(b, b') = Axxy((a, b), (d', b)), (%, %) = u.

Any compatible ¢-cone wich covers H forces H to be a locale, and such a cone is
necessarily a cone of £-bijections (and vice versa). We examine this now:

Given a compatible cone, consider the diagonal X i) X X X, the arrow X NN 1,
and the following ¢; diagrams:

TXXTX TXXTX

T XXAP K T Xx°P x
TXXTXXTX = H, TXxl1 = H.
A

MTXATX %f wd

TXXTXXTXXTX Ix

—_—

Let a, by, b, € TX, and let b stand for either b; or b,. Chasing (a, by, b,) in the first
diagram and (a, *) in the second it follows:

(1) Ax€a, by) * Ax(a, br) = Axxx{(a, @), (by, by)) = 0p,=p, Ax{a, b).
(2) Ax(a, b) < V, Ax(a, x) = i(x,%) = u.

1
Proposition 1.28. Let H be a commutative algebra, and TX x TX — H be a com-
patible O-cone such that the elements of the form Ax(a, a’), a, a’ € TX are sup-lattice
generators. Then H is a locale and * = A.

Proof. We have to prove that for all w € H, (L1) w *w = w and (L2) w < u (see[1.3).
It immediately follows from equations (1) and (2) above that (L.1) and (L2) hold for
w = Ac(a, b). Then clearly (L2) holds for any supremum of elements of this form. To
show (LL1) we do as follows:
wxw < wx* 1 =w always holds, and to show >, if w = v w; satisfying w; * w; = w;

iel
we compute:
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(L1)
Ve oz Ve @\ o

i€l i€l i€l i€l
O

Proposition 1.29. A ¢-cone TX X TX s H with values in a locale H is compatible if
and only if it is a O-cone of {-bijections.

Proof. (=): Clearly equations (1) and (2) above are the axioms uv) and ed) for Ay.
Axioms in) and su) follow by the symmetric argument using the corresponding ¢, dia-
grams.

(&) u = 11n H, so the second equation in definition |1.27|1s just axiom ed) (or su))
for 4;. To prove the first equation we do as follows:

Consider the projections X X ¥ —> X, XX Y =5 Y. The ¢,(7;) and ¢;(r») diagrams
express the equations:

/1X<a9 a,> = \/y /lXXY<(a’ b)’ (a,’ y)>’ /1Y<b’ bl) = \/x /lXXY<(as b)’ (.X, bl))

Taking the infimum of these two equations:
’ ’ ’ ’ ()
/1X<a’ a > A ﬂY<ba b > = \/x,y AXXY((CL b)a (a ay)> A /lXXY<(a9 b)a (xa b )> =

Y Aer((@, b), (@, b)), as desired (2 justified by uv) for Axxy). 0

Proposition 1.30. Let TXXTX LR H be a ¢-cone of C-bijections such that the elements
of the form Ax(a, a’), a, a’ € TX are locale generators. Then, any linear map H %G

1 .
into another ¢-cone of {-bijections, TX x TX =G, satisfying oly = Ay, preserves
infimum and 1, thus it is a locale morphism.

Proof. By axiom ed) for A;, in both locales A,(x, %) = 1. Since 01, = Ay, this shows
that o preserves 1.
To show that infima are preserved it is enough to prove that infima of the form
r_(X, a)
Axla,a’y N Ay¢b,b"), a,a’ € TX, b, b’ € TY are preserved. Take (Z, c)
(Y b)
in the diagram of F. Then, by proposition [I.14] with 2 = Ay, 2’ = Ay, and 6 = Az, it
follows that the equation Ax{(a,a’) A Ay{(b,b") = \/ Az{c, z) holds in both

. . T(H@=a  T(@E)=b
locales. The proof finishes using that o preserves suprema and oAz = Az. O

Consider now a (small) site of definition C C & of the topos &. Suitable cones
defined over C can be extended to &. More precisely:
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Proposition 1.31.

1) Let TC x TC e, H be a ¢,-cone (resp. a ¢,-cone) over C. Then, H can be
(uniquely) furnished with (-relations Ax for all objects X € & in such a way to determine
a ¢1-cone (resp. a ¢,-cone) over &E.

2) If H is a locale and all the A¢c are €-bijections, so are all the Ay.

Proof. 1) Let X € & and (a, b) € TX x TX. Take C N X and ¢ € TC such that
a = T(f)(c). If Ax were defined so that the ¢,(f) diagram commutes, the equation

) axla, b= \/ Aele, y)
T(NH»)=b
should hold (see[I.6). We define Ay by this equation. This definition is independent of
the choice of ¢, C, and f. In fact, let D — X and d € TD such that a = T(g)(d), and

take (e, E) in the diagram of F, E —= C, E — D such that T(h)(e) = ¢, T({)(e) = d
and T'(fh) = T(gf). Then we compute

O1(h)
\ e\ O\ atewy =\ Auew).
T(H(y)=b T(HM=b Tm)(w)=y T(fh)(w)=b
From this and the corresponding computation with d, D, and ¢ it follows:

\ e =\ antd .

T(f(y)=b T(e)y)=b

Given X — Yin &, we check that the ¢(g) diagram commutes: Let (a, b) e TX X TY,
take C —f> X such thata = T(f)(c), and letd = T(g)(a) = T(gf)(c). Then:
dby="\/ A=\ \/ ated=\/ ab).
T(gf)(2)=b T()(x)=b T(f)(2)=x T(g)(x)=b

Clearly a symmetric argument can be used if we assume at the start that the ¢, diagram
commutes. In this case, 1y would be defined by:

@ Axla, b= \/ A0, )
T(Hy)=a
with T(f)(c) = b.

Ifthe TCXTC L H form a ¢; and a ¢, cone, definitions (1) and (2) coincide. In
fact, since they are both independent of the chosen c, it follows they are equal to

Acle, y) = Vo Ao
T(H¥)=b, T(f)(c)=a T(H)=a, T(f)c)=b
2) It is straightforward and we leave it to the reader. O
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It is worthwhile to consider the case of a locally connected topos. In this case it
clearly follows from the above (abusing notation) that given a, b € TX, if a, b are in
the same connected component C C X, a, b € TC, then Ax(a, b) = Ac(a, b), and if they
are in different connected components, then Ax(a, b) = 0. When the topos is atomic and
H = Aut(F) (see @, the reverse implication holds, namely, if Ax(a, b) = 0, then a, b
must be in different connected components (Theorem 1)).
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1.4 The isomorphism Cmdy(G) = Rel(8°)

The purpose of this section is to establish an isomorphism of categories between
Cmdy(G) and Rel(8°), where G is a fixed localic group, or, what amounts to the same
thing, an idempotent Hopf algebra in the monoidal category s¢ of sup-lattices, as we
explained in section [I.1]

1.32. The category Cmdy(G).

As for any coalgebra, a comodule structure over G is a sup-lattice S € s¢ together
with a map S 5GeS satisfying the coaction axioms:

GRp)op=wWRS)op, and (e®S)op == . (1.33)

where w, e are the comultiplication and the counit of G, and =g is the isomorphism
2085 =S§.

A comodule morphism between two comodules is a map which makes the usual
diagrams commute (see [15]). We define the category Cmd,(G) as the full subcategory
with objects the comodules of the form § = £X, for any set X. If we forget the comodule
structure we have a faithful functor

Cmdo(G) — sty = Rel.
1.34. The category 5°.

The construction of the category 8¢ of sets furnished with an action of G (namely,
the classifying topos of G) requires some considerations (for details see [8]). Given a set
X, we define the locale Aut(X) to be the universal £-bijection in the category of locales,

XxX -5 Aut(X). It is constructed in two steps: first consider the free locale on X X X,

XxX -1 Rel(X). Clearly it is the universal {-relation in the category of locales. Second,
Rel(X) — Aut(X) is determined by the topology generated by the covers that force the
four axioms in (see [28]], [8]). Notice that it follows by definition that the points
of the locales Rel(X) and Aut(X) are the relations and the bijections of the set X. Given
(x, y) € X x X, we will denote (x|y) = j{x,y) = A(x,y) indistinctly in both cases. We
abuse notation and omit to indicate the associated sheaf morphism Rel(X) — Aut(X).
The elements of the form (x|y) generate both locales by taking arbitrary suprema of
finite infima.
It is straightforward to check that the following maps are £-bijections.

Wi X XX — Aut(X) ® Aut(X), wix|y) = vz (x]2)®(z]Y),

e: XXX —2, e(x|y) = 0.
t: XXX — Aut(X), «x|y) = (y|x).
(1.35)

27



It follows (from the universal property) that they determine locale morphisms with
domain Aut(X). They define a coalgebra structure on the locale Au#(X), which further-
more results a Hopf algebra (or localic group).

An action of a localic group G in a set X is defined as a localic group morphism

G -5 Aut(X). This corresponds to a Hopf algebra morphism Aut(X) N G, which is

completely determined by its value on the generators, that is, an £-bijection X XX aN G,
that in addition satisfies

wie = (U uw, eu = e, pL = L. (1.36)

(the structures in both Hopf algebras are indicated with the same letters).
As we shall see in Proposition the equation yu = u follows from the other
two. That is, any action of G viewed as a monoid is automatically a group action.
Given two objects X, X’ € 8%, a morphism between them is a function between the

sets X L X’ satisfying u(alb) < y'{f(a)|f(b)). Notice that this is a > diagram as in
section [L.2

If we forget the action we have a faithful functor 8¢ L, &ns (which is the inverse
image of a point of the topos, see [8] Proposition 8.2). Thus, we have a commutative

square (see [[.22):
BE —— Rel(°)

F\L lReI(F)

Ens — Rel.

We have the following theorem, that we will prove in the rest of this section.

Theorem 1.37. There is an isomorphism of categories making the triangle commuta-
tive:

Cmdy(G) ~ Rel(B°)
X ﬁz(m
sty = Rel.
The identification between relations R C X X X’ and linear maps X — €X' lifts to the
upper part of the triangle. O

Recall that since the functor F is the inverse image of a point, it follows that mono-
morphisms of G-sets are injective maps.

Proposition 1.38. Let f : X — X’ a morphism of G-sets. Then for each a,b € X,

w(@Ifey = \/ malv).
F)=£)

In particular, if f is a monomorphism, we have u'{f(a)|f(b)) = ualb).
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Proof. Since the actions are {-bijections, in particular {-functions, by proposition |1.1
the > diagram implies the ¢; diagram. The statement follows by taking (a, f(b)) €
XxX. m|

Proposition says that the subobjects Z < X of an object X in 8¢ are the subsets

Z C X such that the restriction of the action Z X Z Cc X X X N G is an action on Z. We
have:

Proposition 1.39. Let X be a G-set and Z C X any subset. If the restriction of the action
to Z is an {-bijection, then it is already an action.

Proof. We have to check the equations in The only one that requires some care
is the first. Here it is convenient to distinguish notationally as wz, wy and w the
comultiplications of Aut(Z), Aut(X) and G respectively. By hypothesis we have (1)
wlalb) = (u ® pwwxlalb)y = \/ﬂ(alx) ® u(x|b). We claim that when a, b € Z, this

xeX
equation still holds by restricting the supremum to the x € Z, which is the equation

wulalb) = (u ® wwyz. In fact, from axioms ed) and su) for u on Z it follows (2)
1= v plaly) ® pu{z|b). Then, the claim follows by taking the infimum in both sides of

y,2€Z
equations (1) and (2), and then using the axioms uv) and in) for u on X. O

Proposition 1.40. Given a localic group G and a localic monoid morphism G 4
Rel(X), there exists a unique action of G in X such that

Rel(X) a G, ie. Rel(X) . G.

- 7

\ % \ -
s ~
PR e

Aut(X Aut(X

Proof. u is determined by an {-relation X X X Ny preserving w and e (see equations
[[.36). It factorizes through Autr(X) provided it is an {-bijection, and the factorization
defines an action if it also preserves t.

Consider the following commutative diagram

X x X —= Rel(X) ® Rel(X)
/ i# l/@#
2<——G ~—~GeG
N | Joa
G ~—G®G.
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Chasing an element (b, b) € X x X all the way down to G using the arrow G ® it follows
\/u(bly) A wylby = 1. Thus, in particular, we have (1) \/,u(bly) = 1. Chasing in the

y y
same way an element (a, b) with a # b, but this time using the arrow ¢ ® G, it follows
\/ walx)y A uix|by = 0. Thus (2) walx) A u{x|b) = 0 for all x.

X

We will see now that (u < e (since ¢ = id, it follows that also ut < ).
wiialby € yialby A \//J(bly> = v wilalb) A p(bly) 2 tidalb) A piblay, since all the

other terms in the supremum are 0. Then walby < u(bla) = wlalb).

Thus we have walb) = wi{alb) (= u(bla)). With this, it is clear from the equations
(1) and (2) above that the four axioms[I.TT]of an £-bijection hold. m|

Proposition 1.41. There is a bijection between the objects of the categories Cmdy(G)
and Rel(°).

Proof. Since (¢X)" = X, we have a bijection of linear maps

X

GelX

X ® X G.

As with every duality (&g, n7), u is defined as the composition

L. &
pi XX 2L 6o ex o tx £ .
And conversely, we construct p as the composition

0 XX ix o ex e ex XX e ex.

It is easy to check (for example, using the elevators calculus) that that p satisfies equa-
tions if and only if u satisfies the first two equations (by proposition|1.40}, such
a u satisfies also the third equation). O

The product of two G-sets X and X’ is equipped with the action given by the product
¢-relation u ® u’ (1.12)), which is an action by proposition|1.13

An arrow of the category Rel(8°) is a monomorphism R < X X X', in particular, a
relation of sets R € X x X’. It follows from propositions [1.38| and [I.39] that a relation
R — X x X’ in the category 3¢ is the same thing that a relation of sets R C X x X’ such
that the restriction of the product action to R is still an £-bijection (on R). The following
proposition finishes the proof of theorem|1.37
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Proposition 1.42. Let X, X' be any two G-sets, and R C X X X' a relation on the
underlying sets. Then, R underlines a monomorphism of G-sets R — X X X" if and only

if the corresponding linear map R : €X — €X' is a comodule morphism.

Proof. Let 6 be the restriction of the product action u X u’ to R. We claim that the
diagram expressing that R : {X — €X' is a comodule morphism is equivalent to the

diagram ¢(R, R) in The proof follows then by proposition (1.21

proof of the claim: It can be done by chasing elements in the diagrams, or more

generally by using the elevators calculus explained in appendix
The comodule morphism diagram is the equality

X

Mo el
(X (X X = X X X
v/ e Yo/ |
9.4 G X',

while the diagram ¢ is

9.4 X X
LA T
€X (X X (XX = X X
| ] | N4

X X X' X G.

Y
G
Recall that the triangular equations of a duality pairing are:

AL x A

H ; I and Y\/XY:

Y
Proof of (1.43) = (1.44):

X’ (XR

ATT AT T A

X X (XR (X' (X (X (XR (X (X' (X (X (X

T A e v A

tX (X X' X G X' X’ X' X’

o \
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tXR tX’ (XR (X' (XR (X

Y

XXX EX LX X - X X
o T A T T
XX XX G.

N‘é’/ \"é’/

Proof of (1.44) = (1.43):

tXR X X
J /\ [ /N /\
X’ X X’ tXR X €X' X X X’
N/ = = AN
G X’ X’ tX €X' €X X €XR €X' X
N/
G X X €X €X' X X
\py/ e/
G \/ 9.4
X X X
AN AN AN
tX X ¢XR tX X ¢XR ¢X X ¢XR
- o | 1 ) = e/
tX X X’ tX X X’ G X' .
e/ /N e/
G X €X' X’ G 9.4

N/

9.4
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1.5 The Galois and the Tannakian contexts
The Galois context.

1.46. The localic group of automorphisms of a functor.

Let &ns N & be any pointed topos, with inverse image f* = F, & L, &ns. The
localic group of automorphisms of F is defined to be the universal I>-cone of £-bijections
in the category of locales, as described in the following diagram (see [8]]):

FXXFX ox (1.47)
X
F(fXF(f) 8 Aut(F) - - S > H.
Ay
/ a4
FYXFY (¢ a locale morphism)

From propositions and it immediately follows

Proposition 1.48. The localic group Aut(F) exists and it is isomorphic to the localic
group of automorphisms of the restriction of F to any small site of definition for &. O

A point Aut(F) R 2 corresponds exactly to the data defining a natural isomor-
phism of F. Given (a, b) € FX X FX, we will denote (X, alb) = Ax(a, b). This element
of Aut(F) corresponds to the open set {¢|px(a) = b} of the subbase for the product
topology in the set of natural isomorphisms of F. For details of the construction of this
locale see [8]].

The ¢{-bijections Ay determine morphisms of locales Aut(FX) BN Aut(F),
ux{alby = (X, alb). It is straightforward to check that the following three families of
arrows are >-cones of {-bijections:

FX x FX 25 Aut(F) ® Aut(F), wy(a, b) = v (X, alx) ® (X, x|b),

xeFX
FX X FX =5 Aut(F), wx(a, b) = (X, bla),
FXXFX =52, ex(a, b) = 64

(1.49)
By the universal property they determine localic morphisms with domain Au#(F) which
define a localic group structure on Aut(F’), such that ux becomes an action of Aut(F) on
FX, and such that for any X N Y € &, F(f) is a morphism of actions. In this way
there is a lifting F of the functor F into 8¢, & N BC, for G = Aut(F).
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1.50. The (Neutral) Tannakian context associated to pointed topos.
For generalities, notation and terminology concerning Tannaka theory see appendix

) . . oy ) F
We consider a topos with a point Ens N &, with inverse image f* = F, & — &ns.
We have a diagram (see [[.22)):

E——Rel(E)

Fl l‘Rel(F)

Ens — Rel = sty

This determines a Tannakian context as in appendix |Al with X = Rel(E), V = s,
Vo = Rel = sty and T = Rel(F). Furthermore, in this case X, V are symmetric, T is
monoidal (I.T] [T.22), and every object of X has a right dual. Thus, the (large) coend
End"(T) (which exists, as we shall see) is a (commutative) Hopf algebra (proposition

ALS)).

The universal property which defines the coend End" (T) is that of a universal ¢-cone
in the category of sup-lattices, as described in the following diagram:

TXxTX oy
m/r X
TXXTY = End'(T) -~~~ H.
Ay
TRXTY Py
TYXTY (¢ a linear map)

Given (a, b) € TXx TX, we will denote [X, a, b] = Ax{(a, b).
From proposition [I.3T]and [I.25]it immediately follows:

Proposition 1.51. The large coend defining End"(T) exists and can be computed by
the coend corresponding to the restriction of T to the full subcategory of Rel(E) whose
objects are in any small site C of definition of &. O

By the general Tannaka theory we know that the sup-lattice End"(T') is a Hopf alge-
bra in s¢. The description of the multiplication m and a unit # given below proposition
[A.4]yields in this case, for X, ¥ € X (here, F(1¢) = lg,s = {*}):

m([X, a,d’], [Y, b,b']) = [X XY, (a, b),(@, b)], u(l) = [lg, *,*]. (1.52)

This shows that TX x TX —5 End’(T) is a compatible ¢-cone, thus by proposi-
tion it follows that End"(T) is a locale, with top element [1¢, *, *] and infimum
[X, a,d]A[Y, b,b'] = [X XY, (a, b),(d, D)].

We let the reader check the following:
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1.53. The descriptions in the general Tannaka theory of the comultiplication w, the
counit & and the antipode 1 (see appendix[A)) yield in this case the formulae

wx(a, b) = \/ [X, a,x]® X, x,b], x(a, b) =[X, b,a] and ex(a, b) = 6,-p.

xeFX

1.54. The isomorphism End"(T) = Aut(F).

From propositions[I.26]and [I.29]it immediately follows (recall that T = F on &) that
TXxTX 2, Aut(F)and TX x TX LR End"(T) are both >-cones and ¢-cones of ¢-
bijections. From proposition[I.30]and the respective universal properties it follows that
they are isomorphic locales respecting the cone maps Ay. Furthermore, by the formulae
in [I.49] and [I.53] we see that under this isomorphism the comultiplication, counit and
antipode correspond. Thus, we have:

Theorem 1.55. Given any pointed topos, there is a unique isomorphism of localic
groups End"(T) = Aut(F) commuting with the Ay. O
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1.6 The main Theorems

. f s e . F .
A pointed topos Ens — &, with inverse image f* = F, & — &ns, determines a
situation described in the following diagram:

BE —— Rel(%) —— Cmdy(G) — Cmdy(H) (1.56)

N

S} Rel(E)

o

&ns Rel = sty C st.

where G = Aut(F), T = Rel(F), H = End"(T) and the two isomorphisms in the first
row of the diagram are given by Theorems and[1.53]

Theorem 1.57. The (Galois) lifting functor F isan equivalence if and only if the (Tan-
naka) lifting functor T is such. O

Assume now that & is a connected atomic topos. The full subcategory of connected
objects C C & furnished with the canonical topology is a small site for &. In [8] it is

proved that the diagram of the functor F restricted to this site C L, &nsis a poset
(This fact distinguishes atomic topoi from general locally connected topoi), an explicit
construction of Aut(F) is given, and the following key result of localic Galois Theory is
proved:

Theorem 1.58 ([8] 6.9, 6.11).

1) For any C € C and (a, b) € FC X FC, (C, alb) # 0.

2) Given any other (a’, b") € FC' X FC’, if (C, alb) < (C’, d’'|b"), then there exists
C R C’ in C such that a’ = F(f)(a), b’ = F(f)(b).

The following theorem follows from[I.58]by a formal topos theoretic reasoning.

Theorem 1.59 ([8]] 8.3). The (Galois) lifting functor F isan equivalence if and only if
the topos & is connected atomic. O

From and we have:

Theorem 1.60. The (Tannaka) lifting functor T isan equivalence if and only if the topos
& is connected atomic. O
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Resumen en castellano de la seccion 1

En esta seccion, con “teoria de Galois” nos referimos a la Teoria Locéalica de Galois
desarrollada por Dubuc en [8], y por “teoria de Tannaka” nos referimos a la general-
izacion a una categoria monoidal arbitraria de base V de las definiciones y construc-
ciones de [15] que hacemos en el apéndice.

Como hemos mencionado en la introduccion, se tienen las siguientes fuertes simil-
itudes entre ambas teorias: tanto en la teoria de Galois como en la teoria de Tannaka, a
partir de un contexto se construye un objeto (G o L) y un levantamiento a la categoria
de representaciones del objeto. Los feoremas recognition son: el levantamiento es una
equivalencia de categorias si y solo si el contexto satisface ciertas condiciones (“si X es
abeliana y F' es exacto y fiel para la teoria neutral de Tannaka sobre espacios vectoriales,
0”& es conexo y atomico* para la Teoria Localica de Galois).

Sin embargo, estas similitudes son solo entre la "forma“ de ambas teorias, y no
nos dejan a priori traducir ningun resultado de una teoria a la otra, en particular la
Teoria Locélica de Galois y la teoria neutral de Tannaka sobre espacios vectoriales son
independientes. Pero lo que si podemos hacer es encontrar el contexto de Tannaka

correspondiente al contexto de Galois, y lo hacemos tomando relaciones: a partir de
F . T Rel(F) —
& — &Ens construimos X — V := Rel(E) =5 Rel — st y probamos las siguientes

compatibilidades:

1. Los objetos construidos en ambos contextos son isomorfos como grupos localicos
(G = L,i.e. O(G) = L donde O(G) es el local correspondiente al espacio G)

2. Para cualquier grupo locélico G, las categorias de representaciones Cmdy(O(G))
y Rel(8%) son equivalentes.

Con estas compatibilidades, podemos completar el siguiente diagrama que relaciona
la teoria de Galois con una teoria de Tannaka sobre la categoria s¢ de sup-reticulados:

BE —— Rel(%) — Cmdy(O(G)) — Cmdy(L)

&E Rel(E)
| |
&ns Rel = sty C st.

Obtenemos inmediatamente que el levantamiento de Tannaka T es una equivalen-
cia si y solo si F lo es (Theorem[I.57). Entonces, a partir del teorema fundamental de
la Teorfa Locélica de Galois (teorema[I1.59] teorema B en [8]), obtenemos el siguiente

o T
teorema recognition de Tannaka para el contexto (neutral) de Tannaka X — V =
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Rel(E) el Rel — st asociado a un topos punteado: T es una equivalencia si y solo si
el topos es conexo y atémico (teorema[I.60). Estos topos son entonces un nuevo ejem-
plo concreto donde el teorema recognition vale, completamente diferente a los otros
casos en los que se sabe que el teorema recognition de Tannaka vale, en los cuales la
unidad del producto tensorial es un objeto de presentacion finita. Simultineamente, los
topos punteados no atoémicos dan ejemplos donde el levantamiento no es una equiva-
lencia, es decir que las categorias de relaciones de estos topos no son categorias tan-
nakianas neutrales (veremos en las siguientes secciones que con categorias tannakianas
no-neutrales).
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2 Relations, functions and bijections in a topos

We begin this section with the first previous steps necessary to develop the results of
section |l| over an arbitrary elementary topos.

Following Joyal and Tierney in [17/]], Introduction p.vii, we fix an elementary topos
S (with subobject classifier €2), and work in this universe in the internal language of
this topos, as we would in naive set theory (but without axiom of choice or law of the
excluded middle). This means for us that:

e We are able to consider elements x of objects X of S, a situation which we denote

by x € X, and to apply arrows X L> Y to obtain f(x) € Y.

e We may consider equality of such elements, given by the characteristic function

XXX i Q of the diagonal X 2 X xX. We will denote [x=x"]] = d(x,x") € Q,
for x, x' € X.

e A internal structure for an object X in § becomes in this way a structure as in set
theory, for example we think in this way of the Heyting algebra structure of €
(see [29], 5.13)

e Also following the work of [17]], we won’t make the distinction between elements
of XY and arrows Y — X in S, though of course there is. More precisely, to
prove a statement about the elements of X, we will consider arrows ¥ — X.

We don’t claim originality of the main results of this section up to (that QX is
the free sup-lattice on X, that functional relations correspond to arrows of §), as most
of these can be found in the references or are folkloric, but we make nevertheless a
complete development including full (sketches of the) proofs since we do these in a way
that can be generalized to any sup-lattice (or locale) G in place of Q in section|2.1

Remark 2.1. Given x,y € X, f € Y%, we have [x = y] < [f(x) = f()]. fisa
monomorphism if and only if the equality holds (for every x,y € X).

XxXyxy ¥ sg
Proof. Consider the commutative diagram 1 : T A2 A pb. Tl Ityields ain-
x— vy 1

clusion of subobjects of X X X that is carried via the isomorphism
Sub(X x X) = [X X X, Q] to the desired inequality oy < dy o (f, f).

Also, f is a monomorphism if and only if 2 is a pull-back, if and only if 1 is so, if
and only if 6x = dy o (f, f). O

Proposition 2.2. For each a,b € Q, a A [a=b] < b.
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Proof. Consider, as in [29] p.137, Q; — Q X Q the equalizer of A and 7, with
classifying map =, and denote [[a < b] = = (a,b). Then it is enough to show that
(x) : [a=b] < [[a<b] since by the adjunction A 4 = we have a A [a<b] < b.

In fact (*) holds because Q %5 Q x Qs contained in Q; — Q x Q as subobjects
of QO X Q, since A equalizes A and ;. This yields the inequality of the characteristic

functions [(=)=()] < [(-)<(H]. O
2.3. Relations in a topos.

A relation between X and Y is a subobject R < X X Y or, equivalently, an ar-
row X X ¥ =5 Q. Relations are composed using pullbacks and image factorizations

in S, or equivalently if they are given as X X Y R 0,YxZ-50 by the formula
c(x,z2) = V,Axy) A u(y,z), i.e. matrix multiplication. This yields a category
Rel = Rel(S) of relations in S. We have the following correspondence:

(in particular for the diagonal A)
R — X X Y arelation X < X x X the identity relation

X X Y -5 Q arelation X x X -5 Qthe identity relation

Y 25 OX its inverse image x s ox (2.4)

/1* . . .
X — QY its direct image

A ((x) = Ax,y) = 4(0)() i) = [x=y] = {x}(»)
Lemma 2.5. For each x, x;, x, € X, we have
i) \/Ix=yl =1, iDlx=x1 A [x=x] < [x;=2,].
yeX
Proof. Only ii) requires a proof. The pull-back of monomorphisms

A

X XXX

b

XXX —>XXXXX,

where f(x,x;) = (x,x,x) and g(x,x;) = (x,x,x), computes the intersection
{(x, x1, Xx2)lx = X1} N{(x, xp, )lx = Xt = AX) S X XX X X.

T3 Ox
XXXXX——XXX—=Q
Now the commutative square T A Tl shows the inclusion

X 1
of subobjects {(x, xi, x2)lx = x1} N {(x, X1, X2)|x = x2} C {(x, x1, X2)|x; = x,} which, when
translated to the characteristic functions, yields the desired inequality. O
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Remark 2.6. Lemma says that X X X 2 Qisa function in the sense of definition
below.

2.7. On the structure of Q*.

The power set PX = QX has the sup-lattice (and locale) structure given pointwise by
the structure of Q ([[17], I.1 p.1). Via the isomorphism s¢ = Q-Mod ([17]], 1I.1 Propo-
sition 1 p.8), we obtain a Q-module structure for Q¥ which is given by the canonical
isomorphism Q ® Q¥ — QX (a- 0)(x) = a A 6(x).

Lemma 2.8. For each 6 € QX, x,y € X, we have 8(x) A [x=y] < 6(y)

I z2
Proof. Recall remark 0(x) A [x=y] < 8(x) A[O(x)=60(y)] < 6(y). O
Proposition 2.9. For each § € Q, § = \/ 0(x) - {x}. This shows how any arrow

X L) M into a Q-module can be extended uniquely to QX as f(0) = \/ 0(x) - f(x),
xeX

so the singleton X R QX is a free Q-module structure on X (i.e. a free sup-lattice
structure, cf. [17], 1.1 p.8).

Proof. We can show the equality pointwise, we have to show that for each y € X,
0(y) = V,ex(0(x) - {x)() = Vyex 0(x) A [x =y]. The inequality > is given by lemma
[2.8] and the inequality < is obtained by taking x = y. O

Lemma 2.10. For each, x,y € X, we have [x=y] - {x} < {y} in QX.

Proof. We can show the inequality pointwise, for each z € X,

([x=y1-{xh) = [x=yl A llx=z] < [y=2z] = {y}(2).

The following lemma will be the key for many following computations.

Lemma 2.11. If L is a Q-module (i.e. a sup-lattice), then any arrow f € L satisfies

[x=y1-f(x) = [x=y]- f(.

Proof. By symmetry it is enough to show that [x = y] - f(x) < [[x = y] - f(y), i.e.

[x=y] - f(x) < f(y). Consider the extension Q¥ N L as a Q-module morphism given
by proposition [2.9] Then

ZI0
[x=y1-f(x) = flx=y]-{x) < fyh) = fO).
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Remark 2.12. If L is a locale, we have a unique locale morphism Q — L ([17]], II.1
p-8), then we can think that the elements of Q are in L, in a way that is compatible with
the structure of L (like we think of Z in any ring R).

Corollary 2.13. Given any arrow Y N L into a locale L, we have:

JOAfO) <lx=yl = [fOASO)=[x=y]-fx)=Lx=y]-f.
O

Lemma 2.14. The singleton arrow Y R QY determines a presentation of the locale
QY in the following sense:

1=\/t, ii) {x} A ) < [x=yl.

yeyY

. f .
Given any other arrow Y — L into a locale L such that:

i1=\/fo, ii) f(X) A ) < [x=y]
v

there exists a unique locale morphism QY =R L such that f({y}) = f(y).

Proof. Equations i) and ii) for {}, when considered pointwise, are the equations in
lemma 2.3

Now, given Y i> L by proposition there is a unique Q2-module morphism

QY L> L such that f({y}) = f(y). Since equation i) holds in both locales, f preserves 1.
Since equation i) holds in both locales and is equivalent to f(x) A f(y) = [x=y] - f(x)
by corollary 2.13] f preserves A. O

Remark 2.15. By looking at the proof, we see that we have proved that given any arrow

Y R L into a locale, its extension as a Q-module morphism to QY preserves 1 if and
only if equation i) holds in L, and preserves A if and only if equation ii) holds in L.

2.16. The four axioms for relations.

The following axioms for relations are considered in [28]], see also [11] and compare
with [12] and [19], 16.3.

Definition 2.17. A relation X X Y —— Q is:
ed) Everywhere defined, if for each x € X, \/ Alx,y) = 1.

yeY
uv) Univalued, if for each x € X, y1,y, € Y, A(x,y1) A A(x,¥2) < [y1 =y21.
su) Surjective, if for each 'y € Y, \/ Alx,y) = 1.

xeX

in) Injective, if for eachy € Y, x1,x;, € X, A(x1,y) A A(x2,y) < [x1 =x2].
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Remark 2.18. Notice the symmetry between ed) and su), and between uv) and in).
Many times in this thesis we will work with axioms ed) and uv), but symmetric state-
ments always hold with symmetric proofs.

Remark 2.19. By corollary axiom uv) is equivalent to:
uv) for each x € X, y1,y> € Y, A(x, y1) A Ax,¥2) = [y1 =y21 - Ax, y1).

By remark [2.15| we obtain:
Proposition 2.20. Consider a relation A and its inverse image QY or respects

1 if and only if A satisfies axiom ed), and 1" respects A if and only if A satisfies axiom
uv).

Proof. Consider Y /l—> QX. 1is ed) if and only if for each x € X, Vy A" (y)(x) = 1. Since
the structure of Q¥ is given pointwise, this happens if and only if Vy A*(y) = 1, which

by remark [2.15| happens if and only if the extension QY R QX respects 1. We have a
similar situation for axiom uv) that we leave for the reader to check. O

2.21. The inverse and the direct image of a relation.
Using proposition [2.9] we can continue the correspondences of (2.4) as

XXY L> Q a relation

0¥ 55 0X a O-module morphism (2.22)

Q5 QY a Q-module morphism

(D) = Ax,y) = L3xDG)
rh =\ 1y ) Al =\ Axy) - )

xeX yey

2.23. Given X x ¥ Q, YXxZ -5 Q by (2.22)) the composition p, A, of their
direct images maps {x} to v v A(x,y) A u(y, x) - {z}, which is the direct image of their

z€Z yeY
composition as relations defined in[2.3] This yields a full-and-faithful inclusion functor

Rel —o

XxY-5a = or i of

Remark 2.24. Note that the product of S is not a product in Rel, it is instead a tensor
product that is mapped via this inclusion to the tensor product ® of sf, since
QXXY — QX ® QY
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2.25. Arrows versus functions.
Consider an arrow X i> Y in the topos S. We define its graph

A .
Ry ={(x,y) € XX Y| f(x) = y}, and denote its characteristic function by X X Y BN Q,
Ar(x,y) = [f(x)=yl.

Remark 2.26. Using the previous constructions, we can form commutative diagrams

A Y A y
S Rel s o S Rel T gpor
\w/ \_,/
P Q)

Given X N Y, P(f)is the extension of X N Yy -5 areo Q¥ and Q/ : QY — QX
is given by precomposition with f. Then we have the commutativities because for each
xeX,yey,

Ap)xhH() = As(x,y) = [f (D) =y] = {f()}) = P(HExD(), and

(A (D) = Ap(x,y) = L) =y] = PI() = @ ({yH().
In other words, P(f) is the direct image of (the graph of) f, and Q/ is its inverse
image. We will use the notations f, := P(f) = (dy), f* := Qf = (Ap)".
The relations which are the graphs of arrows of the topos are characterized as fol-

lows, for example in [19], theorem 16.5.

Proposition 2.27. Consider a relation X X Y 4, Q, the corresponding subobject

R < X X Y and the arrows R — X, R — Y obtained by composing with the projec-

tions from the product. There is an arrow X R Y of the topos such that A = Ay if and

only if p is an isomorphism, and in this case f = qo p~'. O

Remark 2.28. Consider a subobject A — X with characteristic function @, and let

Y N X. Then, by pasting the pull-backs, it follows that the characteristic function of
Sub(X) =— QX

f'Ais @ o f. This means that the square Ime4l s 3_,/H/ f* 1s commutative when
Sub(Y) — QY

considering the arrows going downwards, then also when considering the left adjoints

going upwards.

In particular for a relation XXY 2, Qwith corresponding subobject R — XXY, and
Sub(X) — QX
the projection X X Y 2 X, the commutativity of the square Im,,lT B,TIT

Sub(X X Y) =— QXxv¥
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identifies Im,, (R) with 3, (1), in particular R L5 Xis an epimorphism if and only if
d:, (D) (x) = 1 for each x € X.

Proposition 2.29. Consider a relation X X Y 4 Q, the corresponding subobject
R — X x Y and the arrow R > X. A is (ed) if and only if p is epi, and A is (uv)
if and only if p is mono.

Proof. The quantifier 4, of remark is given by the suprema \/y as follows: for
each 1 € QXY o e QX

\/er A(=, y) Sa
for each x € X, \/,ey A(x,y) < a(x)
foreachx e X,y e Y, A(x,y) < a(x)

A< m*(a)

By unicity of the adjoint, we obtain for each 1 € Q¥ x € X,

3,4 = \/ Ax.y) (2.30)

yeY

By remark 2.28] we conclude that A is (ed) if and only if p is epi.

Now, by remark [2.28] the characteristic functions of (X x m)*R, (X X m,)*R are

/ll(-xayl’yZ) = /l(x,)’l), /12(36,)71,)’2) = A(%)’z)
Then axiom uv) is equivalent to stating that for each x € X, y;,y, € Y,

(X, y1,32) A (X, y1,y2) < [y =y21,

i.e. that we have an inclusion of subobjects of X X ¥ X Y

(XXﬂl)*Rm (XXﬂ'z)*R C X X Ay.

But this inclusion is equivalent to stating that for each x € X, y;,y, € ¥, (x,y1) € R
and (x,y,) € R imply that y; = y,, i.e. that p is mono.
|

Definition 2.31. We say that a relation X X Y 4, Qs a function if it is uv) univalued
and ed) everywhere defined.

Combining proposition [2.29| with we obtain

Proposition 2.32. A relation A is a function if and only if there is an arrow f of the
topos such that A = Ay. O
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Remark 2.33. A symmetric work shows that if we define op-functions as those relations
which are in) injective and su) surjective, then a relation A is an op-function if and only
if AP corresponds to an actual arrow in the topos.

If we now define bijections as those relations that are simultaneusly functions and
op-functions, that is, if they satisfy the four axioms then a relation A is a bijection
if and only if there are two arrows in the topos such that 4 = Ay, A°? = A,. Then we
have that foreachx e X,y €Y,

Lf) =yl = Ap(x,y) = Ax, y) = A7 (y, %) = A,(y, %) = [g()=x],

i.e. f(x) = yif and only if g(y) = x, in particular fg(y) = y and gf(x) = x, i.e. f and
g are mutually inverse. In other words, bijections correspond to isomorphisms in the
topos in the usual sense.

2.34. The autoduality of Q*. We show now that Q¥ is autodual as a sup-lattice (i.e. as
a Q-module). We then use this autoduality to construct the inverse (and direct) image of
a relation in a different way.

Proposition 2.35. QX is autodual in s¢.

Proof. Recall remark [2.24]
We define the s¢-morphism Q — QX ® QX using the diagonal X — X x X, i.e. by
the formula (1) = \ /{x} ® {x).
xeX
We define the s¢-morphism QX ® QX SNy using X X X LN Q, i.e. by the formula

e({x} @ {yh) = [x=yl.
We need to prove two triangular equations, we will show that the composition
id® id ) ) o . . .
X 24 0¥ @ 0¥ @ QX Z5 X is the identity since the other one is symmetric. Chasing

a generator {x}, we have to show the equation {x} = \/ ,[x=y] - {y}, which is immediate
from O

Proposition 2.36. Consider the extension of a relation A as a st-morphism

e’ L0 (recall remark 2.24), and the corresponding sC-morphism QY —— QX
given by the autoduality of QX. Then u = A*.

Proof. u is constructed as the composite QY P e 0¥ @0 1 ox. Following a
generator {y} we obtain that ({y}) = \/,ex A(x,¥) - {(x} &2 2:((y) 0

Corollary 2.37. Taking dual interchanges direct and inverse image, i.e.

o T qr o T gx

b
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2.38. An application to the inverse image.

As an application of our previous results, we will give an elementary proof of [17],
IV.2 Proposition 1. This is a different characterization of arrows of S: they are the
relations whose inverse image is not only a sup-lattice morphism, but a locale one.

The “geometric aspect of the concept of Locale” is studied by considering the cat-
egory of spaces Sp = Loc?? ([1'7]], 1V, p.27). If H € Loc, we denote its corresponding
space by H, and if X € Sp we denote its corresponding locale (of open parts) by O(X).

— J— —1
If H J, L, then we denote L —f> H,and if X —f> Y then we denote O(Y) f—> O(X).

(=)dis

Proposition 2.39. We have a full and faithful functor & — Sp that maps
X = Xgis = QX f > f~.

Proof. By propositions and [2.32] the functor Q) from remark co-restricts to
. (=)dis
Sp as a full and faithful functor S — Sp. |

2.1 {-relations and /-functions in a topos

We consider now a generalization of the concept of relation, that we will call {-relation,
by letting €2 be any sup-lattice:

Definition 2.40. Let G € st. An {-relation (in G) is an arrow X X Y 2 G.

Definition 2.41. The four axioms of definition exactly as they are written, make
sense for any {-relation with values in a locale G. As for relations, an (-function is a
¢-relation satisfying uv) and ed). Remark[2.33]also applies here to define €-op-functions
and {-bijections.

Assumption 2.42. In the sequel, whenever we consider the A or the 1 of G, we assume
implicitly that G is a locale (for example, when considering any of the four axioms of
(in particular {-functions or {-bijections), or when considering G-modules).

2.43. On the structure of G*.

We generalize the results of the previous section to G¥ instead of QX*. When the
proof of these results is the same as for QX we omit it.

G* has the sup-lattice (or locale) structure given pointwise by the structure of G.
The arrow G ® G¥ — GX given by (a - )(x) = a A 6(x) is a G-module structure for G*.

We have a G-singleton X e, GX defined by {x}g(y) = [x=y] (recall remark [2.12]).

Lemma 2.44 (cf. lemma . For each 6 € G¥, x,y € X, we have 6(x) A [x=Y] < 6(y)

Proof. This was shown in the proof of lemma|2.11 O
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Proposition 2.45 (cf. proposition . For each 0 € G, 0 = VQ(X) Ax}g. This

xeX
shows how any arrow X 7, M into a G-module can be extended uniquely to G* as
[ = \/ 0(x) - f(x), so the G-singleton X LA G¥ is a free-G-module structure. O

xeX

Lemma 2.46 (cf. lemma2.14). The G-singleton arrow Y LA G determines a presen-
tation of the G-locale GY in the following sense:

i 1=\/e, ii) {x}o A Vo < [x=yl.

yey

Given any other arrow Y i) L into a G-locale L such that:

D1=\/ro, ii) f(0) A fO) < lx=Y]
y

there exists a unique G-locale morphism G N L such that f({y}c) = f(y). O

Remark 2.47 (cf. remark 2.15). We have proved that given any arrow Y i> L into a
G-locale, its extension as a G-module morphism to G¥ preserves 1 if and only if equation
i) holds in L, and preserves A if and only if equation ii) holds in L.

2.48 (cf. [2.21). The inverse and the direct image of an {-relation. We have the
correspondence between an {-relation, its direct image and its inverse image given by

proposition [2.45}

XXY i> G an (-relation

6" L GX a G-Mod morphism

. (2.49)
GX 5 G¥ a G-Mod morphism

A ()e)x) = Ax,y) = L(x¥)6))
o) = \/ Ay - e, Allxde = \/ 263 - Ble

xeX yeyY

Proposition 2.50 (cf. proposition 2.20). In the correspondence (2.49), A* respects 1
(resp A) if and only if A satisfies axiom ed) ( resp uv)). In particular an €-relation A is a

C-function if and only if its inverse image G R G* is a G-locale morphism. O
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Remark 2.51. We can also replace in (2.4) only one appearance of Q by G to obtain
the equivalences

X x Y -5 G an {-relation

Q" 5 G¥ a s¢ morphism (2.52)

O X5 G ast morphism

A proof symmetric to the one of proposition [2.20]shows that A is an £-op-function if
and only if A, is a locale morphism.

2.53 (cf. [2.34). The autoduality of GX. We show now that G¥ is autodual as a
G-module. We then use this autoduality to construct the inverse (and direct) image
of an ¢-relation in a different way.

Remark 2.54 (cf. remark [2.24). Given X,Y € S, G¥ Qé) GY is the free G-module on

<{le-{}e>

X x Y, with the singleton given by the composition of X x ¥ -~ G* x G¥ with the
univeral bi-morphism G¥ x GY — GX ® GY (see [17]], I1.2 p.8). We will denote this

composition by {}s QCZ;) {}s.

Proposition 2.55 (cf. proposition ). GX is autodual in G-Mod (in the sense of
definition |C.12)), with G-module morphisms G —s GX ® GX, G¥ ® GX -5 G given by

the formulae

n() = \/(e@{xe,  &lixle ® ylo) = [x=Y].

xeX
O

Proposition 2.56 (cf. proposition 2.36). Consider the extension of an {-relation A as

a G-module morphism G* QCZ;) GY 4 G, and the corresponding G-module morphism
GY 55 GX given by the autoduality of GX. Then u = A" m
Corollary 2.57 (cf. corollary [2.37)). Taking dual interchanges direct and inverse image,

ie.
A=)V *=(1,)Y
G5 G, ¢TS5 GX
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Resumen en castellano de la seccion 2

Como Joyal-Tierney en [17] trabajan sobre un topos de base arbitrario, tenemos que
considerar ¢-relaciones en un topos arbitrario. Estas son flechas X X ¥ — G, donde G
es un sup-reticulado.

Comenzamos probando resultados para relaciones (i.e. cuando G = Q), algunos de
los cuales son conocidos, pero con definiciones y pruebas diferentes a las usuales y que
se extienden mds sencillamente a las £-relaciones en la subseccion

En particular consideramos los axiomas que hacen de una relacién una funcién (uni-
valuada, definida sobre todo su dominio) y mostramos que las funciones corresponden
a (los gréficos de) las flechas del topos. Mostraremos el resultado corespondiente para
{-relaciones en la seccion [5] (proposicién utilizando los siguientes desarrollos:

Enla proposicién@ (cf. proposici(’)n mostramos que G¥ es el G-médulo libre
en X. A partir de aqui se tiene la correspondencia

XXY i> G una ¢-relacion

G¥ -5 GX un morfirmo de G-Mod

v Ay (2.58)
G* — G* un morfirmo de G-Mod

A ((yle)(x) = Ax,y) = L.({xle) ()

entre una {-relacion, su imagen directa y su imagen inversa. En la proposicion
(cf. proposicién [2.35) mostramos que ademds GX es autodual como G-médulo.

A continuacién, en la proposicién (cf. proposicién mostramos que A es
una {-funcion si y solo si A* es un morfismo de locales.

Finalmente, en la proposicion (cf. proposicion [2.36) mostramos que A* se
obtiene de A usando la autodualidad de GX.
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3 > and ¢ diagrams

We now want to generalize to {-relations in an arbitrary topos S the work done in section
since this will let us generalize the equivalence between the Tannaka and the Galois
contexts in the next sections. We include the reference to each corresponding result in
section [[.2] and we omit the proof when it is the same as the one there. Consider the
following situation (cf. [L.5)).

2 X . f
31. Let X XY — G, X' XY — G, be two {-relations and X — X', Y =, ¥ be
two maps, or, more generally, consider two spans (which induce relations that we also
denote with the same letters),

R ’ S ’
p 4 q q
X Cx vy y R

=p'0p0p, S:q/oqop

and a third £-relation R x § — G.
These data give rise to the following diagrams in Rel(S):

01 =01/, 8) 02 = 0a2(f, 8) 0 =0(R,S) (3.2)
X XXY . vy X XY i sor X><Y
XxY = G, X' xY = ,  XxXY =
f% /; %4 / R% /
X' xY X' xY X' xY

with corresponding diagrammatic versions (see appendix

I

We want to write the equations expressed by the diagrams. We will do this in the

case where R, S are relations, therefore the monomorphisms R — X X X', § — Y x Y’

correspond to morphisms into the subobject classifier X x X’ g QYXY g Q.

If we define st := s€o(S) as the full subcategory of s¢ := s£(S) with objects of the

form QX, X € S, then the functor Rel o sty that maps X to the power set PX = QX
(see[2.7), R — R, is an isomorphism of categories (see [2.23). Corollary implies
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that the opposite relation R°? corresponds in s¢ to R" defined by the autoduality of QX.
By looking at the definitions of 7 and ¢ in the proof of proposition and chasing
elements, we obtain that the previous diagrams express the equations:

o01: foreachae X,b' €Y', X(f(a),b') = \/[[g(y)zb’]] - Aa, y),

yeyY
0, : foreacha € X',beY, A(d,g(b)) = \/[[f(x):a’]] - A(x, b), (3.4)
xeX
o: foreachae X,b' €Y, \/[[ySb']] - Aa,y) = \/ [aRx'] - X (X', b).
yey Yex

Remark 3.5 (cf. remark[1.7). It is clear that diagrams ¢; and ¢, are particular cases of
diagram ¢. Take R = f, § = g, then ¢;(f,g) = 0(f,g), and R = f°P, S = g°7, then
02(f, 8) = 0(f7, 8").

The general ¢ diagram follows from these two particular cases:

Proposition 3.6 (cf. proposition [1.8). Let R, S be any two spans connected by an ¢-
relation 0 as above. If ¢(p’, q") and $->(p, q) hold, then so does O(R, S). |

3.7 (cf. . Two maps X N XY 5 ¥ also give rise to the following diagram:

XxXY_
> =1>(f,8): fxgl z G,
xxy *

expressing the equation > : foreacha € X,b € Y, A(a,b) < A'(f(a), g(b)).

Proposition 3.8 (cf. proposition[I.10). If either ¢,(f, g) or 02(f, g) holds, then so does

>(f, &

Proof. For eacha € X,b € Y, A(a,b) < \/[[g(y) =g(D)] - Aa,y) = V' (f(a), g(b)) using
yey

¢1. Clearly a symmetric arguing holds using ¢,. m|

The reverse implication holds under some extra hypotheses.
Proposition 3.9 (cf. proposition |1.15).

1. If lis ed) and A" is uv) (in particular, if they are {-functions), then >>(f, g) implies
01 (fa g)

52



2. If Ais su) and A’ is in) (in particular, if they are (-opfunctions), then >(f,g)
implies O»(f, g).

Proof. We prove 1., a symmetric proof yields 2. Foreacha € X, b’ € Y’,
ed),

X(fla),b) ‘2 X (f@,b) A\ Aay) = \/ V(f@,b) A da,y) =

yeyY yeY

\/ A(f(@).b) A X(f(@), g0 A a2\ [80)=bT - X (F(@). 80)) A Aa,y)

yeyY yey

=\/I20)=b'1- Aa,y).
yeyY
O

3.10 (cf. [1.16). More generally, consider two spans as in We have the following
> diagrams:

RxS _ , RxS _ , (3.11)
— —
XXY X' xY

Proposition 3.12 (cf. proposition [I.18). We refer to[3.1} Assume that A is in), X' is uv),
and that the >(p, q), >(p’, q') diagrams hold. Then if 6 is ed) and su), diagram ¢(R, S)
holds. O

3.13 (cf. [1.12). Given two {-relations, X XY L) G, X'xY L G, the product {-relation
AR A" is defined by the composition

XxyxY’ AXA A
XXX XYXY — XXYXX' XY —>GXG—G

AR A)((a,a’),(b,b")) = Aa,b) N AV(a’,b").
The following is immediate and straightforward:

Proposition 3.14 (cf. proposition [I.13). Each axiom in definition 2.17) for A and A
implies the respective axiom for the product AR A'. O

Remark 3.15 (cf. remark [1.19). The diagrams > in[3.11| mean that

6<Ar A o(p,p')X(q.q).

In particular, there is always an ¢-relation € in[3.1]such that (3.11)) holds, which may be

.o (p.p")x(q.q") , , A o
taken as the composition RXS = —  XXX'XY XY’ — G. However, it is important

to consider an arbitrary ¢{-relation 6 (see propositions 4.1T|and @.12).
For 0 = AR A" o (p, p’') X (q,q’), the converse of proposition [3.12 holds:
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Proposition 3.16 (cf. proposition[I.20). We refer to[3.1 Assume that R and S are rela-
tions, that A, I are {-bijections, and take 0 = AR A" o (p, p’) X (q,q"). Then, if O(R, S)
holds, 0 is an {-bijection.

Proof. First we prove axiom uv). From the > diagrams (3.11) we get the following
equations: for eachr € R, 51,5, € S,

0(r, s1) A O(r,s2) < A(p(r), q(s1)) A Ap(r), q(s2)) < [q(s1)=q(s2)],

uv)
0(r, s1) A 0(r, 52) < X (p'(r), q'(s1)) AN (P'(r), q'(52)) < g’ (s1)=¢"(s2)].

Taking infima we have: 6(r, s;) A 0(r, 52) < [[(g,q")(s1) =(q,q")(s2)] = [s1 = 521, since
(¢, q’) is a monomorphism (see remark [2.1)).

We prove now axiom ed). We can safely assume R C X X X" and S C Y X Y’, and
AR A o(p,p’)®(q,q) to be the restriction of AR A" to R X S. For each (a,a’) € R, we
compute:

\/ 0@a),0.yn =\ \/IySyl-Aay) A 2@,y 2

y)es ey’ yeY
=\/ IRyl X(.y) A X (@, y)>\//l(a Ly
yey’ vex

The inequality is justified by taking x" = a’ in the supremum and using that since
(a,a’) € R, [aRa’]] = 1. Axioms in) and su) follow in a symmetrical way. O

We found convenient to combine [3.12] and 3.16]into:

Pr0p0s1t10n 3.17 (cf. proposmon- LetRCc XxX',S cY >< Y’ be any two relations,

and X X Y N G X' xY L G be C-bijections. Let R X S R G be the restriction of
AR A to R X S. Then, &(R,S) holds if and only if 0 is an {-bijection. O
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Resumen en castellano de la seccion 3

En esta seccion generalizamos a {-relaciones en un topos arbitrario S el trabajo
hecho en la seccién Cons1deramos la siguiente 51tuac10n (cf. [I.5] -

Sean XxY -5 G, X' XY R G, dos {-relaciones y X N X', Y -5 Y’ dos flechas,
0, mds en general, dos spans (que inducen relaciones que también denotamos con las
mismas letras),

R_, S _ ¢

P P q 9q
\ \—\ ’ 0 ’ 0

X/ X, Y/ Y, R:popp’S:qoqp

y una tercer {-relacion R X § 6.
Estos datos dan lugar a los siguientes diagramas en Rel(S):

01 =011, 8) 02 = 0a(f, 8) 0 =0(R,S)
X X X Y P X X Y sor X x Y
XxY = ) X' XY = , XxY =
f% /; X% /; R% /
X' xY X' xY X' xY

con versiones diagraméticas correspondientes (ver apéndice

e VI A T T )

expresando las ecuaciones (para el caso de relaciones)

¢1: paracadaa € X,b' €Y', ' (f(a),b’) = \/[[g(y):b’]] - Aa,y),

yey

0o : paracadaad € X',beY, A'(d’,g(b)) = \/[[f(x)za’]] - A(x, b),

xeX

o: paracadaa e X,b €Y', \/[[ySb']] Aa,y) = \/ [aRx'] - X (X', b).

yey xex’
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Los diagramas ¢; y ¢, son casos particulares de diagramas ¢ (ver observacion
y se tiene una reciproca (ver proposicién [3.6)).
Se tiene también un diagrama

XxXY \
> =D>(f,8): fXgl 2 G,
X' xY A

expresando la ecuacion > : paracadaa € X,b € Y, A(a,b) < A'(f(a), g(b)).

Los diagramas ¢, o ¢, implican independientemente > (ver proposicion [3.8), y se
tiene la reciproca bajo ciertas hipotesis (ver proposicién [3.9).

Combinando convenientemente estos resultados se obtiene que los siguientes dia-
gramas > (si R, S son relaciones, y 4, A’ son £-biyecciones)

RxS§ RxS _
l >\ ’ /\L >\
PXq 2 G, P'%q 2 G.
/ //

XxY X xy 4

implican el diagrama diamante ¢(R, S) (proposicién [3.12)) bajo la hipétesis adicional
de que 6, la restriccion de A ® A" a R X S, es una {-biyeccion. La reciproca de esta
propiedad también vale (proposicién y fue conveniente unirlas en la siguiente
proposicién para su referencia posterior (proposicion [3.17): en las hipétesis anteriores
O(R, S) se satisface si y solo si 8 es una ¢-biyeccion.
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4 > and ¢ cones

In this section we generalize the results of section[I.3]in two ways, both needed for our
purpose. We work over any arbitrary topos S instead of over Set, and we develop a
theory of > and ¢ cones for two different functors F, F’ instead of just one. As in the
previous section, we include the reference to each corresponding result in section [I.3]
and omit the proof when it is the same as the one there.

4.1 (cf. [1.22). Consider a geometric morphism S—— &, with inverse image

&—L+ S . Consider the extension T of F to Rel(&) as in the following commutative
diagram (recall remark [2.26):

& —2 Rel(E)

(A

S o Rel € st
\/

P

On objects TX = FX, and the value of T in a relation R < X X Y in & is the relation
FR — FXxFYin S. In particular, for arrows f in &, T(Ry) = Rpy) (see , or, if we
abuse the notation by identifying f with the relation given by its graph, T'(f) = F(f).

Since F preserves products, 7 is a tensor functor (recall [2.23). From that fact (since
tensor functors preserve dualities, see , or immediately from the definition, we
obtain that for every relation R in & we have T(R°?) = (TR)°?.

4.2 (cf. [I.23)). It can be seen that F is an equivalence if and only if T is so. O
Consider now two geometric morphisms with inverse images & S, and their
F/

respective extensions to the Rel categories T, T'.

Definition 4.3 (cf. definition[1.24). Let H be a sup-lattice in S. A cone A (with vertex

bl
H) is a family of €-relations FX X F'X —> H, one for each X € &. Note that, a
priori, a cone is just a family of arrows without any particular property. This isn’t
standard terminology, but we do this in order to use a different prefix depending on

which diagrams commute. Each arrow X i> Y in & and each arrow X 2, Y in Rel(E)
(i.e relation R — X X Y in &), determine the following diagrams:
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>(f) = >(F ), F'(f) O(R) = O(TR,T'R)
FXXF'X TXXT'X

Ax TXXT'RP
F(XF'(f) Z\* H TX T’ Y/7 \
/

% TRm

FYXF'Y TYXT'Y
01(f) = 01 (F(f), F'(f)) 02(f) = 02(F(f), F'(f))
FXxF’(J‘)"’/Ff X F{ F(f)”f’&x X F{
FXXF'Y FYXF'X
F(f)xk / FYxF(f)\ %:
YXF'Y FYXF'Y

We say that A is a >-cone if the >(f) diagrams hold, and that it is a ¢-cone if the
O(R) diagrams hold. Similarly we talk of ¢,-cones and ¢,-cones if the ¢1(f) and ¢,(f)
diagrams hold. If H is a locale and the Ax are {-functions, {-bijections, we say that we
have a cone of {-functions, £-bijections.

The following proposition shows that ¢;-cones correspond to natural transforma-
tions.

Proposition 4.4. Consider a family of arrows FX > F 'X, one for each X € &.
Each 0y corresponds by the autoduality of F'X (see proposition to a function

FXXF'X50 vielding in this way a cone . 0 is a natural transformation if and only
if ¢ is a ¢1-cone.

Proof. As with every duality (see (C.7))), the correspondence between 6y and ¢y is given

by the diagrams:
FX  FX FX
N /™

©x : F'X F'X 9}(: FX F'X F'X
N/ \/
F'X

Also, the naturality N of theta and the ¢, diagrams (see (3.3) and recall from corol-
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lary [2.37|that f°? = f") can be expressed as: for each X R Y,

FX F'Y
FX FX H /n\ | FX FY
FOf -\ ox FX FXFX FY \fo/ |
N(f)y: FY = F'X >0 I\ I T FY FY
\er [ \Fwf FX FXFY FY \er/
FY FY \er/ e/

N(f) = ¢1(f) : replace 6 as in the correspondence above in N(f) to obtain

FX FX
| / n\ \F(h/ / n\
FX FXFX") FY FYFY
ex \F (f)/ ev |
N e T N/ L
Compose with & and use a triangular identity to obtain ¢;(f).
01(f) = N(f) : replace ¢ as in the correspondence above in ¢(f) to obtain

FX F'Y FX F'Y FX F'Y

\Fo/ | o/ /N \ex/ |

FY F'Y FXFXFXF’Y F'XFY

\ovf | Y \e/ )| =\F/ |

F'Y F'Y F'Y F’ F'Y F'Y
\/ \/ \/
Compose with 77 and use a triangular identity to obtain N(f). O

4.5. Consider now the previous situation together with a topos over S,

. 0 .
A natural transformation y*FX - v*F’X corresponds to a ¢;-cone of functions

vV FX Xy F'X SAN Qg in G. As established in v* can be extended to Rel = s
as a tensor functor (therefore preserving duals), then using the naturality of the ad-

junction y* 4 v, it follows that y*FX X y*F'X BaR Qg 1s a ¢;-cone if and only if
FXXF'X ﬂ v:Qg is a ¢;-cone (in S). We have proved:
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Proposition 4.6. A family of arrows y*FX LR v*F’'X (one for each X € &) is a nat-

bl
ural transformation if and only if the corresponding cone FX X F'X = v:Lg is a
¢1-cone. O

4.7. Consider finally the previous situation together with a morphism ¥ — G of topoi
over S, as in the following diagram:

Consider the locales in S of subobjects of 1 in G, resp. F, G := v.Qg, L := f.Qf.
Since A" is an inverse image, it maps subobjects of 1 to subobjects of 1 and thus induces

a locale morphism that we will denote G Ny

Remark 4.8. Consider the comparison morphism A*Qg iR Qs, induced by the sub-
object | LAY h*Qg - (see for example [29], A.2.1 p.69). Then, for any subobject

h'M h'X
M——X l lh*(dw)
J/ iqﬁM by composing the pull-backs 1 Q) h*Qg it follows that the
1 —— Qg l lrm
1 ! Qg

characteristic function of the subobject "M is ¢; o h*(¢dy).

Proposition 4.9. In the hypothesis of 4.7, for X € &, if FX X F'X 46 corresponds

to y'FX Xy F'X 4N Qg via the adjunction y* 4 vy,, then FX X F'X R G R L

h* (o)
corresponds to f*FX X f*F'X -4 h* Qg R Qs via the adjunction [~ 4 f..

Proof. The adjunction f* 4 f, consists of composing the adjunctions y* 4y, and h* 4 h,,
then we obtain:

h*(p) é1
hy' FX x 'y F'X =5 h*Qg —> QF

YFX Xy F'X -5 Q5 2 h.Qy

FXxFX 56",
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where Y, corresponds to ¢; in the adjunction A* 4 h.. So we have to check that
v.(1) = h. his h* applied to a subobject U < 1. This subobject can be consid-
ered in G = v, Qg = [1,Qg] via its characteristic function ¢y. Now, y.(¥1)(¢y) is the

.. ¢ ¥ . .
composition 1 BAN Qg = h.Qs in y,.h,Qg, and the corresponding arrow 1 — Qg

h* 1 .
is given by the adjunction A* 4 h.. But this arrow is 1 Yo h*Qg iR Qs, which by

remark [4.8]is ¢y, and we are done.
O

Corollary 4.10. In the hypothesis of consider a natural transformation

0 1
v*FX —> v*F'X and the corresponding ¢,-cone FX x F'X — G obtained by proposi-
tiond.6] Then the ¢,-cone with vertex L corresponding by proposition{.6|to the horizon-

tal composition idy, o 6 of natural transformations, whose components are

"
XS prEX is FXxFX 256 25 L

Proof. Each y*FX R v*F’X corresponds to a relation y*FX X y*F'X SaR Qg, which

bl . . .
corresponds to FX x F’X — G via the adjunction y* 4 .. Denote by

Ry — y*FX X y*F’X the subobject corresponding to ¢x.
K@
The subobject corresponding to f*FX Y [*F'X,is "Ry — f'FX X f*F'X,
whose characteristic function (applying remark [4.8)) is the relation

h*
FEXx PFX "™ g 25 o

Proposition .9 finishes the proof. O

The results of section |3|yield the following corresponding results for cones.

Proposition 4.11 (cf. proposition |1.25). A cone FX x F'X — H is a ¢-cone if and
only if it is both a ¢ and a ¢,-cone.

Proof. The implication = is given by remark [3.5] and to prove < given any relation
R — XXxY use propositionwithR =FR,S =F'R,A1=1Ax, A’ =Ay,and 0 = 1. O

Proposition 4.12 (cf. proposition |1.26)). Let H € Loc. A >-cone FX X F'X L H of
{-bijections is a ¢-cone (of {-bijections). O

Consider a topos & over S, and a small site of definition C for &. Let C i> S be (the

inverse image of) a point of the site, and C°” i) S be asheaf, X € & LetI'r — C be
the (small) diagram (discrete fibration) of F, recall that it is a cofiltered category whose

objects are pairs (c,C) with ¢ € FC, and whose arrows (c, C) i) (d, D) are arrows
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C i) D that satisfy F(f)(c) = d. Abuse notation and denote also by F, & iR S, the
inverse image of the corresponding morphism of topoi. Recall the formulae:

C
FX:X®CF:f XCx FC = lim XC < ]_[XCch (4.13)
(c,C)el'r ceC

By Yoneda we have &(C, X) X C, and under this identification we have,

for C -5 X and c € FC, F(f)c) = p(f,c) € FX,

n (4.14)
for E— CinC, X(h)(f) = fh.

Remark 4.15. Let a € FX. Since p is an epimorphism, there exist C, f € XC and
¢ € FC such that F(f)(c) = a.

Remark 4.16. Let C, D € C, f € XC, c € FC, and g € XD, d € FD, be such
that F(f)(c) = F(g)(d), i.e. p(f,c) = p(g,d). Since the category I'r is cofiltered, by

construction of filtered colimits there exist E, ¢ € FE and E L C,.E —£> D such that
F(h)(e) =c, F(€)(e) = d and X(h)(f) = X(£)(g),1.e. fh = gC. O

Proposition 4.17 (cf. proposition [1.31). Consider a small site of definition C of the
topos E. Then suitable cones defined over C can be extended to & more precisely:

1)LetTC xXT'C R H be a ¢-cone (resp. &,-cone, resp. ¢-cone) defined over C.
Then, H can be uniquely furnished with {-relations Ax for all objects X € & in such a
way to determine a ¢,-cone (resp. O,-cone, resp. ¢-cone) over & extending A.

2) If H is a locale and A¢ (one for each C € C) is a ¢,-cone of {-functions (resp.
Op-cone of C-opfunctions, resp. ¢-cone of £-bijections), so is Ax (one for each X € E).

Proof. 1) Recall that T = FonC. Let X € & then TX = FX, T’X = F’X and let

(a, b) e TX x T'X. By (@.13)), (4.14) and remark 4.15|we can take C L XandeeTC
such that a = T(f)(c) = F(f)(c) (see 1)) If Ax were defined so that the ¢,(f) diagram
commutes, the equation

(1) Ax(a, b) = v [T () =1 - Ac(c, y)
yeT’'C
should hold (see (3.4)). We define Ay by this equation. This definition is independent of
the choice of ¢, C, and f. In fact, let D %, X and d € TD be such that a = T(g)(d). By

remark 4.16|we can take (e, E) in the diagram of T (or F), E LN C,E SN D such that
T(h)(e) =c, T(€)(e) =dand fh = gf. Then we compute
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o1(h)

\/ IT(HG)=b1 - Acte, y) °=
eT’'C
- =\ VIO =b1- [T 000 =)1 - Axle. w) =

yeT'C wel’E

= \/ [T’ (fh)Y(w)=b] - Ax(e, w).

weT’E
From this and the corresponding computation with d, D, and ¢ it follows:

\/ I7(H6)=b1 - Acle, y) = \/ [T (@) =1 - Ap(d, ).

yeT’'C yeT’D

Given X — Y in &, we check that the ¢(g) diagram commutes: Let (a, b)) e TXXT'Y,
take C R X,ceTC suchthata = T(f)(c), and letd = T(g)(a) = T(gf)(c). Then

A(d,b) = \/ [T'fHD=b] - de(c,2) =
zeT’C
- \/ VI (H@=x1- [T @0 =b1 - Ac(c.) =

zeT’C xeX

= \/ [T @=b1- \/ IT(H@=x1-c(e;2) = \/ [T"()(x)=b] - Ax(a, »).

xeT’X zeT’'Z xeT’X
Clearly a symmetric argument can be used if we assume at the start that the ¢,

diagram commutes. In this case, 1x would be defined by taking C N XandceT'C
such that b = T'(f)(c) and computing:

@ (@ b) = \/IT(HG)=al - Ac(, o).

yeTcC

Ifthe TCxT'C 2, H form a ¢-cone (i.e. a ¢;-cone and a ¢,-cone), definitions (1)
and (2) coincide. In fact, since they are independent of the chosen c, it follows they are
both equal to:

\V V V Iroh©@=al- IT(H0)=b1 - de(e, y) - =
C;f)X¢»eTCyeT’C
\V V VIT(h©o=b1- IT(H) =all - Ac, o).

CLX ceT’C yeTC
2) It suffices to prove that if A¢ (one for each C € C) is a ¢-cone of ¢-functions, so
is Ay (one foreachX € X). Let X € E,a € TX, by,b, € T'X. Take asinitem 1. C i) X

and c € TC such that a = T(f)(c).

ed) \/ ax(@, by =\/ \/ IT'(HG»)=b1-Ac(e, y) = \/ Acle, ») €1

beT’X beT’XyeT’'C yeT’'C
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uv) Ax(a,by) A Ax(a, by) =
\/ [T'(HOD)=b11 - [T (f)(y2) =b21l - Ac(c,y1) A Ac(e, y2) Mé)

yl,yzeT/C

21
\/ (T'(HOD)=b:11- [T (H2)=b21 - [y1=y21 <

yi.02€T’C

v (T'(HOD)=b:11-1T' () =b1- [T (Hy)=T" (f)()’2)]] [[bl b, ].

yi.02€T'C
O

Assumption 4.18. For the rest of this section we consider a small site C (with binary
products and 1) of the topos &, and cones defined over C.

We now introduce the notion of compatible cone. It is a very useful notion to obtain
results for locales from results for sup-lattices, as the following propositions show. Any
compatible ¢-cone which covers a commutative algebra H forces H to be a locale, and
such a cone is necessarily a cone of ¢-bijections (and vice versa):

Definition 4.19 (cf. definition [I.27). Let H be a commutative algebra in s, with
multiplication * and unit u (We consider H x H > H bilinear and thus inducing
H® H -5 H, and u given by u € H, ie. 1 -5 H inducing a linear morphism
Q-5 H).

LetTCXT'C N H be a cone. We say that A is compatible if the following equations
hold:

[C1)Foreacha € TC,a’ e T'"C,b e TD,b" € T'D,
Ac(a, a') = Ap(b, b") = Acxp((a, b), (a’, b)) ;

[C2] A =u.

Given a compatible cone, consider the diagonal C i> C x C, the arrow C NN 1,
and the following ¢, diagrams (see [3.1):

TCXT'C TCXT'C
y \ TWP \
TCX(T'CXT'C) TC><1 H
(TCXTC)X(T'CXT'C) 1><1

expressing the equations: for eacha € TC, by, b, € T'C,

64



01(8):  Aexc((@,@), (b1, b)) = \/ [(x, x)=(b1,b)] - Ac(a, %),

xeT’C
O(m): A= \/ Ac(a, x).

x€T’C

Lemma 4.20. Let TC x T'C N H be a compatible ¢,-cone (or ¢,-cone, or $-cone)
with vertex a commutative algebra H. Then, for eacha € TC,b,,b, € T'C,

1. Ac(a,by) * Ac(a, by) = [b1=b] - Ac(a, by).
2. u= \/ Ac(a, x).

xeT’'C

Proof. 2. is immediate from [C2] and ¢; () above. To prove 1. we compute

(@, b) * Acta,by) 'S Aese((@,a), (b1, 02) “E \/ Lx=b11 - [x=b2] - Ac(a, x) 2
xeT’C
= \/ Ix=b11- b1 =ba] - Ac(a, by) = [b1=bo] - Ac(a, by).

xeT’C
O

Proposition 4.21 (cf. proposition [1.28). Let A be a compatible ¢-cone with vertex a
commutative algebra (H, *) such that the elements of the form Ac(a, b),a € TC,b € T'C
are sup-lattice generators of H. Then H is a locale and * = A.

Proof. The same proof of proposition|1.28|can be used, replacing equations (1) and (2)
by lemma [{.20] |

Proposition 4.22 (cf. proposition [I.29). Conider a cone A with vertex a locale H.
1. If 1is a ¢1-cone, then A is compatible if and only if it is a ¢,-cone of {-functions.

2. If A is a 0-cone, then A is compatible if and only if it is a ¢,-cone of
{-op-functions.

3. If Ais a O-cone, then A is compatible if and only if it is a O-cone of £-bijections.

Proof. We prove 1, 2 follows by symmetry and combining 1 and 2 we obtain 3.

(=): Since A = * and 1 = u in H, equations 1. and 2. in lemma [4.20| become the
axioms ed) and uv) for Ay.

(<) u = 11in H, so equation [C2] in definition is axiom ed) for A;. To prove
equation [C1] we consider the projections C X D NNy ,CxD 5 D. The ¢1(my) and
¢1(m,) diagrams express the equations:

Foreacha e TC,be TD,a’ € T'C, Ac(a,a’) = \/ Aexp((a, b), (d',y)),
yeT’D
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Foreacha e TC,b e TD,b’ € T'D, Ap(b,b’) = v Aexp((a, b), (x,b)).
xeT’C
Taking the infimum of these two equations we obtain for each a € TC,b € TD,
aeTl'C,h eT'D:

Aca,a) A dpb,b) = \/ \/ dexn((@,b), (@) A dexp((a, b, (x, ) =

xeT’'C yeT’'D

UV) 1o , , , ZII o
:C ’ \/ \/ [[(a ’y):('x’ b )]] ' /?’CXD((a’ b)’ (a ’Y)) = ACXD((a’ b), (a H b ))
x€T’C yeT’'D
O
Also, sup-lattice morphisms of cones with compatible domain are automatically
locale morphisms:

Proposition 4.23. Let A be a compatible cone with vertex a locale H such that the
elements of the form Ac(a,a’), a € TC,a’ € T'C are sup-lattice generators of H. Let
A be another compatible cone with vertex a locale H'. Then, any sup-lattice morphism
H-S H satisfying oAc = Ac¢ is a locale morphism.

Proof. Equation [C2] in defintion 4.19] implies immediately that ocu = u’ (i.e. o pre-
serves 1).

Equation [C1] implies immediately that the infima A between two sup-lattice gener-
ators Ac(a,a’) and Ap(b, b’) is preserved by o, which suffices to show that o preserves
A between two arbitrary elements since o is a sup-lattice morphism. O

Combining the previous proposition with proposition 4.22| we obtain

Corollary 4.24 (cf. proposition [1.30). Let A be a ¢-cone of {-bijections with vertex a
locale H such that the elements of the form Ac(a, b), a € TC,b € T'C are sup-lattice
generators of H. Let A be another $-cone of -bijections with vertex a locale H'. Then,

any sup-lattice morphism H L H satisfying odc = Ac is a locale morphism. O
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Resumen en castellano de la seccion 4

En esta seccion realizamos un andlisis de [>- y ¢-conos que es necesario para mostrar
la equivalencia entre las propiedades universales que definen a G y a L, los objetos
construidos en la teoria de Galois y de Tannaka respectivamente.

El siguiente hecho merece ser mencionado: como los locales son dlgebras conmuta-
tivas, un contexto de Galois da lugar a un contexto no-neutral de Tannaka conmutativo.
Pero un contexto no-neutral de Tannaka conmutativo es en cierto sentido “neutralizado”
sobre la categoria de base de los B-bimddulos. En lugar de un solo funtor fibra como
en la subseccion tenemos ahora dos funtores fibras correspondientes a las dos in-
clusiones B — B ® B (ver[7.14). Desarrollamos entonces en esta seccién una teorfa de

conos para dos funtores diferentes que usaremos luego en la seccion
F

Consideramos entonces dos morfismos geométricos con imagenes inversas & S,

—_—
F/

y sus respectivas extensiones a las categorias de relaciones 7', T’ como indica el sigu-
iente diagrama

&—2 Rel(E)

F lT
A O,
S—- Rel(()* st

\/

P

Realizamos la siguiente definciéon de >-, ¢;-, ¢,- y ¢-conos (definicion cf.

definicién[1.24)

Sea H un sup-reticulado en S. Un cono A (con vértice H) es una familia de ¢-
. A . . . .
relaciones FX x F’X — H, una por cada X € & (sin ninguna propiedad en particular).

Cada flecha X R Y en &y cada flecha X Ay en Rel(E) (i.e relacion R — X X Y in
&) determinan los siguientes diagramas
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>(f) = ), F'(f) O(R) = O(TR,T'R)
FXXF'X TXXT'X

Ax TXXT’RP Ax
F(f)XF'(f) 2\*H TX)(T’Y/7 = \H
A

% TRm

FYXF'Y TYXT'Y
O1(f) = 01 (F(f), F'(f)) O2(f) = G2(F(f), F'(f))
FXXF’([”)"I’/F/X X F{ F(f)?PXF'X FXx F,XA
y X y X
FXXF'Y = H FYXF'X = H
F(OXF'Y Ay FYXF’(]‘)\ /;Y
FYXF'Y FYXF'Y

A es un >-cono si los diagramas >(f) se cumplen, y es un ¢-cono si los diagramas
O(R) se cumplen. Similarmente hablamos de ¢-conos y ¢,-conos. Si H es un local
y los Ax son ¢-funciones, £-biyecciones, decimos que se tiene un cono de {-funciones,
{-biyecciones.

Mostramos en la proposicién 4.4 que los >>-conos de funciones corresponden a las
transformaciones naturales, y analizamos su comportamiento a través de morfismos de
topos (corolario 4.10). Esto nos permitird luego expresar la propiedad que define al
grupoide locdlico considerado en [17], VIII.3 Theorem 2 p.68 como una propiedad uni-
versal de >-conos (teorema [7.1T]).

También mostramos en la proposicién.17|que los conos definidos sobre un sitio del
topos pueden ser extendidos de una tnica forma al topos (preservando sus propiedades).
Como consideraremos el coend tannakiano, que es un ¢-cono universal sobre Rel(E),
esto nos permitird solucionar los problemas de tamafio que aparecen en la construccion
del coend considerando un sitio pequefio del topos &.
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5 The case & = shP

5.1. Assume now we have a base topos S, a locale P € Loc := Loc(S) and we consider
& = shP. We recall from [17], VI.2 and VI.3, p.46-51, the different ways in which we
can consider objects, sup-lattices and locales in &.

1. We consider the inclusion of topoi shP — S given by the adjunction # 4 i. A
sup-lattice M € s€(shP) yields a sup-lattice iM € SP”, in which the supremum
of a sub-presheaf § — iM is computed as the supremum of the corresponding
sub-sheaf #S — M (see [17/]], VI.1 Proposition 1 p.43). The converse actually
holds, i.e. if iM € s€(S””") then M € st(shP), see [17], V1.3 Lemma 1 p.49.

. o . M .
2. We omit to write i and consider a sheaf M € shP as a presheaf P’ — S that is a
sheaf, i.e. that believes covers are epimorphic families. A sup-lattice structure for

M € shP corresponds in this way to a sheaf P°? st satisfying the following
two conditions (these are the conditions 1) and 2) in [[17]], VI.2 Proposition 1 p.46
for the particular case of a locale):

a) For each p’ < p in P, the s¢-morphism MZ, : M(p) — M(p’), that we will
denote by p?,, has a left adjoint X7,

b) Foreachqg e P, p <q, p’ < g, we have P?ZZ = Zﬁ/\p’pﬁ/\p"

Sup-lattice morphisms correspond to natural transformations that commute with
the X’s.
When interpreted as a presheaf, Qp(p) = P, := {g € Plg < p}, with pf; =(-)Agq

and X} the inclusion. The unit 1 R Qpis givenby 1, = p.

3. If M € st(S”") (in particular if M € s{(shP)), the supremum of a sub-presheaf
S —> M can be computed in S”” as the global section 1 —s M, s, = \/ 20 x

P<q
x€S (p)

(see [17], V1.2 proof of proposition 1, p.47).

4. Locales L in shP correspond to sheaves PP i> Loc such that, in addition to the
st condition, satisfy Frobenius reciprocity: if ¢ < p, x € L(p), y € L(g), then
ZU(Ph(x) Ay) = x AZy.

Note that since pX = id, Frobenius implies that if ¢ < p, x,y € L(g) then

TI(x Ay) = Zh(pnZh(x) Ay) = Zhx AZly, in other words that ¥ commutes with A.

5. The direct image functor establishes an equivalence of tensor categories
(sC(shP),®) —> (P-Mod, ®p) ([I7), V1.3 Proposition 1 p.49), given G € sf(shP)
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and p € P multiplication by p in y.G = G(1) is given by Z})p}, ([177], VI.2 Propo-
sition 3 p.47).

The pseudoinverse of this equivalence is P-Mod 9, st(shP), N — N defined by
N(p)={xeN|p-x=x}forpeP.

6. The equivalence of item 5 restricts to an equivalence Loc(shP) AN P-Loc, where
the last category is the category of locale extensions P — L ([17], V1.3 Proposi-
tion 2 p.51).

5.2. We will now consider relations in the topos shP and prove that {-functions in P
correspond to functions in shP, and therefore to arrows of the topos shP.

*

Y
P

The unique locale morphism €2 2, P induces a topoi morphism S = shQ L+ shP.

Ve
Let’s denote by €, the subobject classifier of shP. Since y.Qp = P, we have the
correspondence

XxY i> P an ¢-relation

VY Xy X N Qp arelation in shP

Proposition 5.3. In this correspondence, A is an {-function if and only if ¢ is a function.

Then, by proposition {-functions correspond to arrows y*X AN v*Y in the topos
shP, and by remark[2.33] {-bijections correspond to isomorphisms.

Proof. Consider the extension A of A as a P-module, and ¢ of ¢ as a Qp-module, i.e.
in s€(shP) (we add the (-) to avoid confusion). We have the binatural correspondence
between A and ¢:

XxY {}P‘%{}P P 1 P
y'X xyy Qeql” Qp
7

given by the adjunction y* 4 v,. But y*(QgX) = (y.Qp)X = PX and y, is a tensor
functor, then y*(QfX ® ny )= PX ® PY and y,(¢) = A.

Now, the inverse images A%, ¢* are constructed from Z:o“ using the autoduality of
Q;*X, PX (see proposition [2.36)), and since y* is a tensor functor that maps Q%"X — PX
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we can take 7, & of the autoduality of PX as y*(7"), y*(¢’) if i/, & are the autoduality
structure of Q;*X. It follows that y.(¢*) = A%, then by (item 6) we obtain that ¢* is a
locale morphism if and only if A* is so. Proposition [2.50| finishes the proof. O

Consider now the situation of 4.5|for the case G = shP, i.e. assume we have

shP
*[-«‘:)/*
A
ET—=S.
F/

Combining proposition [5.3| with [4.6| we obtain:

Corollary 5.4. There is a bijective correspondence given by the adjunction y* 4 v,
between &-cones of {-functions (resp {-bijections) FX X F'X LR P and natural trans-
formations (resp. isomorphisms) y*F = v'F'. O
Remark 5.5. Though we will not use the result with this generality, we note that propo-
sition [5.3] (and therefore corollary [5.4) also holds for an arbitrary topos G. Consider
shP

P = y.Qg, the hyperconnected factorization x / (see [17], VL. 5 p.54)

and recall that ¢.Qg = Qp and that the counit map ¢*q.23 — g is, up to isomor-
phism, the comparison morphism g*Qp — Qg of remark (see [30], 1.5, 1.6). The
previous results imply that the correspondence between relations X X ¥ — Qp and re-
lations g*X X ¢°Y — Qg given by the adjunction g* 4 g. is simply the correspondence
between a relation R < X XY in shP and its image by the full and faithful morphism ¢*,
therefore functions correspond to functions. Since by proposition we know that the

same happens for shP AN S, by composing the adjunctions we obtain it for G A

Definition 5.6. Let p € P, we identify by Yoneda p with the representable presheaf
p=1I[-.pl Ifqge P, then|q,p]l =lg<pl € Q Inpartzcularlfa < pthen|a,p] = 1.

Fora < p € P, x € X(p), consider X(p) —> X(a) in S. We will denote x|, := X! (x).

We describe now the sup-lattice structure of the exponential GX. Recall that as a
presheaf, GX(p) = [p x X, G], and note that if § € G¥(p), and a < p, by definition [5.6]

we have X(a) —5 G(a).

6 corresponds via the exponential law to X — G?,

X(@) — G™(g) = [q A p.G] = G(q A p)
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by Yoneda lemma. Following 6 through this correspondences, it follows that

, ) A
X(q) — G(q A p) is defined by 8,(x) = Gynp(xlg,)-
This implies that # € G*(p) is completely characterized by its components 6, for
a < p. From now on we make this identification, i.e. we consider § € GX(p) as a family

{X(a) LR G(a)}.<p natural in a. Via this identification, if g < p, it can be checked that
the morphism G¥(p) > G¥(q) is given by {X(@) — G(@)lazy = (X(a) > G(@)luz,.

Lemma 5.7. Let X € shP, G € st(shP). Then the sup-lattice structure of GX is given as
follows:

1. For each p € P, GX(p) = {{X(a) i) G(a)}.<p natural in a} is a sup-lattice point-
wise.
Zf’
2. If ¢ < p the morphisms GX(q) GX(p) are defined by the formulae

Py

(for 6 € GX(p), £ € G¥X(q)):
Fp) (plq)g)a(-x) =6, (X)fOl"X € X(a), a < q.
FZ) (Zgé‘:)a(-x) = a/\qé‘:a/\q(-xla/\q)for-x € X(Cl) axsp.

Proof. We have already showed above that p satisfies Fp).

We have to prove that if X} is defined by FX) then the adjunction holds, i.e. that

A:Xl¢é<@ifandonlyif B: & < pl6.

By FX), A means that for each a < p, for each x € X(a) we have X4 AqfaAq(xlaAq) < 0,(x)
in G(a).
By Fp), B means that for each a < g, for each x € X(a) we have &,(x) < 6,(x).

Then A implies B since if a < g then a A g = a, and B implies A since for each a < p,
for each x € X(a), by the adjunction £ 4 p for G, Zf, Eing(xlang) < 04(x) holds in G(a)
if and only if &,y (Xlang) < P44 40a() holds in G(a A g), but this inequality is implied by
B since by naturality of 6 we have pf qea(x) = Oung(Xlang)- O

Proposition 5.8. If X € shP, G € Loc(shP), then the sup-lattice structure of GX defined
above satisfies Frobenius reciprocity as in item 4, yielding in this way a locale
structure for G*.

Proof. For q < p, 0 € GX(p), £ € G*(g), we have to check =/ (p!(9) A &) = 0 A ZLE. By
Fp) and FX) above, it suffices to check that for each a < p, x € X(a),

a/\q(ga/\q(x|a/\q) A ‘fa/\q(xla/\q)) 9 ()C) A Z:a/\qé:a/\q(-xla/\q)’

which follows from Frobenius reciprocity (for G) with x = 6,(x), y = {ung(Xlang). O
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Remark 5.9. If X € shP, G € Loc(shP), the unit 1 € G¥ is a global section that

corresponds to the arrow X — 1 -4 Qp — G, which byitem 2 maps 1,(x) = p
for each p € P, x € X(p).

5.10. For the remainder of this section, the main idea (that shouldn’t be lost in the
computations) is to consider some of the situations defined in section for the topos
shP, and to “translate” them to the base topos S. In particular we will translate the four
axioms for an ¢-relation in shP (which are expressed in the internal language of the topos
shP) to equivalent formulae in the language of S (proposition [5.24)), and also translate
the autoduality of G¥, if G € sf(shP), to an autoduality of P-modules (proposition.
All this will be needed later in section

Consider X € shP, G € sl(shP) and an arrow X 5 G. We want to compute the

internal supremum \/ a(x) € G. This supremum is the supremum of the subsheaf of G

xeX
given by the image of @ in shP, which is computed as #S — G, where S is the sub-

presheaf of G given by S (p) = {a,(x) | x € X(p)}. Now, by[5.T]item 1 (or, it can be easily
verified), this supremum coincides with the supremum of the sub-presheaf S — G,
which by [5.1|item 3 is computed as the global section 1 - G, Sq = \/ Zla,(x).

P<q
xeX(p)

Applying the equivalence . of [5.1] item 5 we obtain:

Proposition 5.11. Let X € shP, G € st(shP) and an arrow X 5 G. Then at the level

of P-modules, the element s € G(1) corresponding to the internal supremum \/ a(x) is
xeX

\/ Zpa,(. o

peP
xeX(p)

Definition 5.12. Given X € shP, recall that we denote by Qp the object classifier of
shP and consider the sup-lattice in shP, Q} (that is also a locale). We will denote by X,
the P-module (that is also a locale extension P — X,;) corresponding to QX, in other
words X, = y*(Qf.f) = Q’Iﬁ(l).

Given p € P, x € X(p) we define the element 6, := lej{x}p € X,.

Consider now 6 € X,, that is 6 € QX(1), i.e. X — Qp in shP. Let @ be X —b QX,
a(x) = 6(x) - {x}. Then proposition [2.9|states that 6 = \/ a(x) (this is internally in shP).

xeX

Appyling proposition [5.1T|we compute in X,

0="\/ T, x) = \/ 6,0 i, = \/ 6, 0.
xé;l()p) xep;)(pp) xep;ﬁp)

We have proved the following:
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Proposition 5.13. The family {0,}yeprex(p) generates X, as a P-module, and further-
more, for each 6 € X;, we have 6 = \/ 0p(x) - 0. O

peP
xeX(p)

Remark 5.14. Given ¢ < p € P, x € X(p), by naturality of X R QF we have
{xly}y = pgixtp.
Lemma 5.15. For p,q € P, x € X(p), we have q - 6, = 6y,,,- In particular p - 6, = 6..

Proof. Recall that multiplication by a € P is given by Zlp! and that p!¥! = id. Then

p-6. =202 {x}, =X {x}, = 6,, and

q- 6x =q-p- 6x = (P A CI) : 6x = Z};/\qp[l;/\qz};{x}p =

E14
= 20 PpraPpEp Xy = ZppgPpngd Xy = 2 Xlpnghong = Gy -
Corollary 5.16. For X,Y € shP, p,g € P, x € X(p), y € Y(q), we have
5x ® 6y = 5x|,,/\q ® 6)’|,mq in Xd ®p Yd.
Proof. 6,®6,=p-6:®q-6,=q-6,®p-6,=0y,, ®dy,,,- O

Definition 5.17. Consider now X X X i Qp in shP, for each a € P we have

item 2.

X(a) x X(@) 2% Qp(a) =2 e p_
If x € X(p), y € X(q) with p,q € P, we denote
[x=ylp := 2,5, 0% png(Xlpags Ylpng) € P.

This shouldn’t be confused with the internal (in shP) notation [x = y] introduced
in section [2.3] though it is similar to how one would compute it using sheaf semantics;
here all these computations are “external”, i.e. in S.

Corollary 5.18. For p,q € P, x € X(p), y € X(q), we have [x=Yy]p - 0, = [x=ylp - 6.

Proof. Applying lemma|2.11{to X LR QF it follows that for each p,q € P, x € X(p),
y € X(q),

6Xp/\q(x|p/\q» y|p/\q) : {xlp/\q}p/\q = 6Xp/\q(-x|p/\q9 ylp/\q) ' {ylp/\q}p/\q

in Q% (pAg), where - is the p Ag-component of the natural isomorphism QpQQ% —> QF.
Apply now 2}, ng and use that - is a s¢-morphism (therefore it commutes with X) to obtain
[x=y1p - 64,,, = [x=Y1p - Oy,,,-
Then, by lemma
[x=ylp-q-6x=1x=ylp-p-o,

which since [x=y]lp < p A g is the desired equation. m|
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Let X,Y € shP, G € Loc(shP), then we have the correspondence

XxY L> G an {-relation

QF e Qf 2 Ga sC-morphism (5.19)
X, ®p Yy N G(1) a morphism of P-Mod

The following propositions show how p is computed from A and vice versa.

Proposition 5.20. In the correspondence (5.19)), for each p,q € P, x € X(p), y € Y(q),
(S ® 8y) = Ty Apng(Klpngs Vlpng)-

PrOOf: ﬂ((sx ® 5y) = /11(5x|p/\q ® 6y|pNI) = AIZ;Aq({xlp/\q}p/\q ® {ylp/\q}p/\q) =
= Z};/\q/lp/\q({xlp/\q}p/\q ® {ylp/\q}p/\q) = Z:;;/\q/lp/\q(-xlp/\qa y|p/\q)- a

Corollary 5.21. Applying p,,,, and using that p,, %, ., = id, we obtain the reciprocal
computation

/lp/\q(-xlp/\qa y|p/\q) = p;)/\q/l(éx ® 6y) a
Remark 5.22. In the correspondence (5.19) above, if 1 = dy : X X X — Q, then
10y, ® Oy,) = [x; =x,]p (recall definition [5.17).

Lemma 5.23. In the correspondence (5.19), for each p,q,r € P, x € X(p), y € Y(q),

1 A 1
r- :u(dx ® 6y) = z:p/\q/\rpZ/\Z/\r/lp/\q(xlpl\q’ ylp/\q) = z:p/\q/\r/lp/\qAr(-x|p/\q/\r, ylp/\qAr)-

Proof. The second equality is just the naturality of A. To prove the first one, we com-
pute:

item 2.b)
repd,® 5y) = Z}p}z:};/\q/lp/\q(ﬂp/\q’ y|pAq) 2 =

—_ vyl PG — vyl PAqG
- EVZ;’/VI/\V Ppagnar /lPAq(xlp/\Q’ y|17/\q) - z:p/\q/\r Pprgar /lpAq(xlp/\q’ y|p/\q)- a

The following proposition expresses the corresponding formulae for the four axioms
of an ¢-relation XxXY i> G in shP (see definitions|2.17,[2.41)), at the level of P-modules.

Proposition 5.24. Let X,Y € shP,G € Loc(shP), and an {-relation X X Y i> G.

Consider the corresponding P-module morphism X; ®p Y, N G(1) as in (5.19). Then
Ais ed,uv, su, in resp. if and only if:

e ed) for each p € P, x € X(p), \/ 1o, ®0y) = p.
yg)e’}()q)

75



e uv) foreach p,q,q, € P, x € X(p), y1 € Y(q1), y2 € Y(q2),
,u((ix ® 6y1) A /1(6;( ® 6}72) < [yr=y21p.

e su)foreachq e P,y € Y(q), \/ M, ®06,) =q

peP
xeX(p)

e in) for each pi, p2,q € P, x; € X(p1), x2 € X(p2), y € Y(q),
/1(6)” ® 6}?) A M(éxz ® 6y) < [xi=x21p.

Proof. By proposition [2.50| and remark 2.47, A is ed) if and only if \//l*(y) =
yey

in GX. By proposition [5.11| and remark [5.9} this is an equality of global sections
\/ Z}]/l:‘](y) = 1in GX(1) = [X, G]. Then Ais ed) if and only if for each p € P, x € X(p),

qeP
ye¥(q)

\/(E;/l;(y))p(x) = p in G(p). But by FZX) in lemma [5.7] we have

qeP
yeY¥(q)

(Z}]/l;(y))p(x) » Aq(/l”‘(y))j,,,\q(xl Ag) = » Aqxlp,\q(xl »ag» Ylpag)s Where last equality holds

since by definition of A* we have (/lji(y))p,\q(xlp,\q) = Aprg(Xlpags Ylpag)-

We conclude that A is ed) if and only if for each p € P, x € X(p),
\/ EpAq/lpAq(xlp,\q,ylpAq) = p in G(p). Since ple = id, this holds if and only if it

qeP
ye¥(q)

holds after we apply 211,. Then, proposition yields the desired equivalence.

We now consider axiom uv):
Ais uv) if and only if for each p,qi,q, € P, x € X(p), y1 € Y(q1), y2 € Y(q2),
P%Zim paat Xpagrs Yilpag) A PZ/QZTAq/lpqu (Xl pagas Y2lpag,) <

q11\q2
ppl/\ql/\qzé)’m/\qz 01 |4| Aq2> y2|LI1 /\qz)'

We apply X!
only if

paging, and use that it commutes with A to obtain that this happens if and

1 PAq1 DPAG2
)y /\qll\qup/\ql/\qz PAq1 (x|17/\11| » Y1 |17/\111) A Zp/\ql/\qup/\ql/\qz PAQ2 (-xlp/\qpy2|p/\q2)
1 qINqg2
< X g ngPpraing: O aing V1lgiagas Y2lging:)s

which by lemma (see remark [5.22)) is equation

G2 - u(0 ®0y,) A qi - (0, ®9y,) < p-llyi=y2lp,

but since g; - 6,, = J,, (i = 1,2), by corollary [5.16] this is equivalent to the equation
:u(éx ® 5}71) A ﬂ(éx ® 6y2) < p- [[)’1 :)’2]]10-
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This equation is equivalent to the one in the proposition since the right term is lower
or equal than [y, =y;]lp, and multiplying by p the left term doesn’t affect it.
O

Definition 5.25. Let X, Y € shP,G € Loc(shP), and an {-relation XXY 2 G. Consider
the corresponding P-module morphism X, ®p Yy e G(1). We say that u is ed, uv, su, in
resp. if it satisfies the conditions of proposition above. We say that u is an
{-function, resp. (-op-function, resp. C(-bijection if it is ed and uv, resp. su and in
resp. the four conditions.

Note that u has each of the properties defined above if and only if A does.

Consider now the autoduality of Q% in s{(shP) given by proposition Applying

the tensor equivalence s€(shP) 2, P-Mod it follows that X, is autodual in P-Mod, in
the sense of definition [C.12] We will now give the formulae for the 7, & of this duality.

Proposition 5.26. The P-module morphisms P BN X, % X4 Xy % X, 5 Pare given
by the formulae n(1) = \/ Oy ® 0y, €(0, ®0y) = [x=yllp for each p,q € P, x € X(p),

peP
xeX(p)

y € X(g).

Proof. The internal formula for 7 given in the proof of proposition [2.35] together with
remark [5.11] yield the formula for ;7. The internal formula for &, together with our def-
inition of the notation [[x = y]p yield that for each p,qg € P, x € X(p), y € X(q),
we have g,,,({xl)rg}prg @ Vlpaglpng) = [x=ylp in Qp(p A q). Apply Z},Aq, use that it
commutes with the sf-morphism & and recall remark to obtain

£1(0x,,, ® dy,,,) = [x=ylp in P, which by corollary @ is the desired equation. O

Hpng

5.1 A particular type of {-relation

Assume P is the coproduct of two locales, P = H ® L. Then the inclusions into the

coproduct yield projections from the product of topoi shH Pl sh(H® L) Z, ShL.
Consider now X € shH,Y € shL, G € Loc(sh(H ® L)). We can consider an

t-relation mjX X m3Y R G, and the corresponding (H ® L)-module morphism
>k >k H
(M1 X)a H® (m3Y)qe — G(1).

®L
To compute (77X),, note that X, is the H-module corresponding to the locale of

open parts of the discrete space Xy, (recall corollary 2.39). By [17], V1.3 Proposition
3,p.51, H — X, is the morphism of locales corresponding to the etale (over H) space
Xais = QF. Then we have the following pull-back of spaces (push-out of locales)
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(1 X)dis — Xauis (T X)ag <— Xy

L ]

HL— H HL<~—H
which shows that (77X); = X; ® L, and similarly (73Y), = H ® Y;. Then we have
(1 X)a H®L (m3Y)g = (Xg® L) H®L (H®Y,;) = X; ®Y,, where the last tensor product
®. ®.

is the tensor product of sup-lattices in S, i.e. as Q2-modules. The isomorphism maps
5,®0, = (6,®1)® (1 ®4,), then we have the following instance of proposition

Proposition 5.27. Let X € shH, Y € shlL,G € Loc(sh(H ® L)), and an {-relation
mX X mY R G. Consider the corresponding (H ® L)-module morphism
Xi®Yy N G(1). Then Ais ed,uv, su, in resp. if and only if:
e ed) foreach h € H, x € X(h), \/ 10, ®0,) = h.
leL
yeY(
e uv)foreachh e H, I, € L, x € X(h), yy € Y(ly), y2 € Y(b),
H(0x ® Oy,) A p(6, ® by,) < [[y1=y21p.
o su)foreachle L yeY(l), \/ u@,®6,)=1
<X (h)
e in)foreach hy,h, € H,l € L, x; € X(hy), x, € X(hy), y € Y(I),
(0, ®0y) A u(6yx, ® 6y) < [[x1=x2]p.
O

5.28. Consider the situation of [3.1]in the topos shP, with P = H ® L. Since the ¢»(f, g)
diagram is a diagram in Rel(shP) C s€(shP) = P-Mod, it is equivalent to a correspond-
ing diagram in P-Mod that we will also denote ¢, (recall that g°” corresponds to g”, see

2.37),
X,®Yy

02(f,8) : Xg®Ya = G(1),

expressing the equation: foreachh e H,l € L, X' € X'(h),y € Y(I)
02(f:8) : e ®0) = \/ [f(X)=xTn - (6, ® 5)) (5.29)

beH
xeX(b)
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Resumen en castellano de la seccion 5

La seccién [5] es la seccion mds técnica de la tesis y su objetivo principal es dar
caracterizaciones externas, para un local P en un topos S, de los desarrollos de la seccién
[2 cuando se los considera internamente en el topos shP.

Recordemos que Joyal-Tierney desarrollan en [[17], VI un cambio de base para sup-
reticulados y locales. En particular para un local P en un topos S caracterizan a los
sup-reticulados y locales en el topos & = shP al mostrar que sf(shP) 2 P-Mod
es una equivalencia que se restringe a una equivalencia Loc(shP) 25 P-Loc. (ver .
Ademas, caracterizan a los espacios etales como aquellos espacios cuyo correspondiente
local es de la forma 7*(9’}5) = v.(0O(Xy4is)), con X € shP, donde Qp es el clasificador de
subobjetos de shP. Denotamos X, := y.(Q%) = Qx(1).

Desarrollamos en esta seccidn lo que se podria llamar un cambio de base para rela-
ciones, dado un local P € S examinamos la correspondencia entre relaciones y*X X
v'Y — Qp en el topos shP y {-relaciones X X Y — P en el topos de base.

. . bl
Luego consideramos ¢-relaciones X X ¥ — G en el topos shP, mostramos que

corresponden a morfismos de P-modulos X, ®p Y, N G(1) y damos férmulas externas
(i.e. en términos de u, en el topos de base S) equivalentes a los axiomas de la seccién
(proposicion . También “externalizamos” las férmulas de la dualidad de Q2
en s{(shP) (proposicion [5.26). Todo esto es necesario para tratar el caso general no
punteado en la seccién[6.2]
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6 The equivalence Cmdy(O(G)) = Rel(5°)

6.1. We fix throughout this section a localic groupoid G (i.e. groupoid object in
Sp = LocP), with subjacent structure of localic category (i.e. category object in Sp)
given by (see [17], VIIL.3 p.68)

do
o —_—
GXG——=G=<i—Gy
Go o
1

(we abuse notation by using the same letter G for the object of arrows of G).

We denote by L = O(G), B = O(G) their corresponding locales of open parts,
and think of them as (commutative) algebras in the monoidal category s¢. The locale
s=661
morphisms B L give L a structure of B-bimodule. We establish, following [6],
=07
that B acts on the left via # and on the right via s. This is consistent with the pull-
back G X, G above which is thought of as the pairs {(f, g) € G X G|dy(f) = 0:(g)} of
composable arrows, in the sense that O(G X, G) = L ®p L (the push-out corresponding
to the pull-back above is the tensor product of B-bimodules).

In this way, the unit G, G corresponds to a counit L —% B, and the multipli-

cation (composition) G Xg, G =G corresponds to a comultiplication L - L®gL.
Therefore L is a coalgebra in the category B-bimod, i.e. a cogébroide agissant sur B. In
other words, a localic category structure for G is the same as a cogebroide structure for
L.

We define a localic Hopf algebroid as the exact formal dual structure of a localic

~1
groupoid. The inverse G iR G of a localic groupoid corresponds to an antipode
L -5 L. As was observed by Deligne in [6], p.117, the structure of cogebroide is the
subjacent structure of a Hopf algebroid which is used to define its representations (see
definition [C.21)), exactly like the subjacent localic category structure of the groupoid
is the subjacent structure required to define G-spaces as Sp-valued functors, namely,
actions of the category object on a family (internal) X — G (see definition .

6.1 The category S°

Groupoid objects G in Sp act on spaces over Gy, X — Gy, as groupoids (or categories
with object of objects G) act on families over Gy in Sets, defining an internal functor.
We consider G X¢, X, the pull-back of spaces over G constructed using d,, as a space
over G using 0;:
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Definition 6.2. An action of a localic groupoid G in a space over Gy, X — G, is a

0
morphism G X¢, X — X of spaces over G such that the following diagrams commute.

GXxGxX2GxX GxX? -x
Gy Go Go Go
Al : Gx@l o A2: ixXT g
GxXx—1* X Go X X
Go Go

Given two actions that we will denote by G ~ X, G ~ X', an action morphism
(which corresponds to a natural transformation between the functors) is a morphism f
of spaces over G such that the following diagram commute.

G X XQ—>X

Gy
AM : GXfl f
G X X'L>X’

Go

Remark 6.3. The reader can easily check that these definitions are equivalent to the
ones of [17], VIIL3, p.68.

Remark 6.4. Recall from [17], VI.3 p.51, Proposition 3 (see also proposition 2.39]and
5.1} item 5), that the functor

shB' 25 § p(shB) 25 B-Loc®”

Y o (Y, — B),
where Yy = v.(Q") = y.0(Y,) (recall definition and proposition [2.39)), yields an
equivalence of categories shB — Etp, where Etp is the category of etale spaces over
B ie. X 5B satisfying that p and the diagonal X X x5 X are open (see [17], V.5
p.41).

Definition 6.5. An action G ~ X is discrete if X — G is etale, i.e. in view of last
remark if X = Y, (or equivalently O(X) = Y;) with Y € shB. We denote by 5° the
category of discrete actions of G.

6.6. Consider s¢y(shB) the full subcategory of sf(shB) with objects of the form Q.

Then we have the equivalence : Rel(shB) i sty(shB). consider also the restriction of
the equivalence s¢(shB) = B-Mod to s{y(shB) = (B-Mod),. Combining both we obtain
Rel(shB) = (B-Mod),, mapping Y < Y.
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The objective of this section is to prove the following theorem:

Theorem 6.7. For any localic groupoid G, there is an equivalence of categories making
the triangle commutative (T, F are forgetful functors):

Cmdy(L) = Rel(°)

\ M)

(B-Mod)y = Rel(shB).

6.2 The equivalence at the level of objects

Consider an etale space X — G, and assume O(X) = Y,, with Y € shB. A (discrete)

action G ~ X (G Xg, X 7, X satisfying A1, A2) corresponds exactly to a B-locale
morphism Y, N L®p Y, satisfying C1, C2 (in definition |C.21)). Therefore, to establish

. . . p
an equivalence between discrete actions G ~ X and comodules Y, — L®p Y, we need
to prove

Proposition 6.8. Every comodule structure Y, RANYS ®p Y, is automatically a locale
morphism (when L is the cogebroide subjacent to a localic groupoid).

Next we prove this proposition (see [6.9|below for a clarifying diagram). In order to
do this, we will work in the category of B ® B-modules. Since B is commutative, we
have an isomorphism of categories B-bimod = B ® B-mod, but we consider the tensor
product BgB of B® B-modules as in|C.11] not to be confused with the tensor product ®g

as B-bimodules. Via this isomorphism, L is a B® B-module whose structure is given by

(,5)
B®B — L.

We first notice that L % Y, =L BgB (B®Y,), and via extension of scalars (using the
inclusion B — B ® B in the first copy), p corresponds to a B ® B-module morphism
Y,®B RNyS B(§>B (B®Y,). From the equivalence of tensor categories recalled in section
[5.TJitems 5,6, with P = B®B, p corresponds to a morphism ¢ in s¢(sh(B®B)), p = y.(¢),
and p is a locale morphism if and only if ¢ is so.

From the results of section Y, B = (m}Y), = )/*(QZLZ), and similarly
BeY, = y*(QZEB), where Qpgp is the subobject classifier of sh(B ® B). Then

@ _ g
Lo BeY)Ty.@ a2y,

where L is as in item 5, y*L L, the tensor product marked w1th (1) is as sup-
lattices in sh(B® B) and the equality marked with (2) holds since L® Q o8 " and 7" are
the free L-module in m5Y (see proposition .
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Then ¢ is Qggg N L™Y, therefore by remark [2.51| there is an ¢-relation

mY x Y R L in the topos sh(B ® B) such that ¢ = A, and, to see that p is a lo-
cale morphism, we can prove that A is an {-op-function.

6.9. We schematize the previous arguing in the following correspondence

Y, 2L % Y, B-module morphism B-locale morphism

Y, ®B RNyS B®B (B®Y,;) (B® B)-module morphism (B ® B)-locale morphism
Q.

ng; = Imy s¢ morphism in sh(B ® B) locale morphism
mY xmY i) L {-relation in sh(B ® B) {-op-function

A —_—
Proposition 6.10. The {-relation 1Y X n5Y — L corresponding to a comodule struc-

ture Yy Ny ®p Y4, where L is the cogebroide subjacent to a localic groupoid, is an
{-bijection.

Proof. We will use the analysis of this particular kind of {-relations that we did in

section We have seen that A corresponds to a B-bimodule morphism Y, ® ¥, RNy
We have also seen, in proposition [5.27, which conditions in u are equivalent to the
axioms for A.

Since any duality induces an internal-hom adjunction and Q" is autodual, u cor-
responds to p via the duality of modules described in Then by lemma [C.23] the
B1 and B2 subdiagrams in the following diagram are commutative. Also, the pentagon
subdiagram O is commutative by definition of the localic groupoid G, where a is the
antipode corresponding to the inverse of G (cf. proof of proposition |1.40).

Yd®YdM>Yd®Yd%Yd®Yd 6.11)
/ n BI ll@B#
B2
B~——1L ‘ Lol
\\ O a®Li J{L@a
L A L ® L.

B®B

To prove axiom ed), let by € B, x € Y(by). Chasing J, ® ¢, in diagram (6.11)
all the way down to L using the arrow L ® a we obtain (recall our formulae for 7, &
in proposition |5.26 \/ 10, ® 6y) A au(dy ® 6,) = by, which implies the inequality

beB
yeY(d)
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\/ 10, ®0,) > by, i.e. > in ed) in proposition|5.27, but the inequality < always holds.

beB
yeY(b)

To prove axiom uv), let by, by, b, € B, x € Y(by), y1 € Y(b1), y» € Y(b,). Chasing
0y, ® 6y,, but this time using the arrow a ® L, we obtain

\/ au(y, ®6,) A (6, ®6y,) = [y =ya1ls,
WS’B(C)

then in particular (1) au(dy, ® 6,) A u(6, ® 6,,) < l[y1=y21s.

To deduce uv) from (1) we need to see that au(d,, ® 6,) = u(d, ® dy,). Since a’ = id,
it is enough to prove <:

ed)
ap((syl ®0,) = a,u(éy1 ®by-6,) = ay(éyl ®0,) Aby = ay((syl ®0,) A \/ U, ® 5y)

beB
YeY(b)

1) EI8l
= \/ aﬂ(éyl ® 5x) A :u(dx ® 5y) = \/ a/l((syl ® 5x) A /J(dx ® 5y) A [[yl :y]]B =

beB beB
yeY(d) yeY(d)

= au(dy, ® 6,) A (o, ® dy,).
Axioms su) and in) follow symetrically. m|

We have finished the proof of proposition [6.8] For future reference, we record the
results of this section:

Proposition 6.12. Given a localic groupoid G over Gy, with subjacent cogébroide L sur
B, and Y € shB, the following structures are in a bijective correspondence:

. . =5 0 =
e Discrete actions G c>;< Y, — Y,
0

o (-relations mY X miY I with a corresponding B-bimodule morphism

Y, ®Y, 25 L such that the Jfollowing diagrams commute:

Yd®Yd#—>L Yd®Yd'u >,
Bl : Yd®’7®Ydl ic B2: \ le
Y, Y, Y, @Y, " [ QL B
B B
e Comodule structures Yy Ny ®p Y, O

Remark 6.13. By proposition [I.40] in the case where G is a localic group, actions
Aut(X) — G defined as in [8] (see[1.34) also correspond to the previous structures.
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Notation 6.14. We fix until the end of this thesis the following notation: we use the
symbols 6, p, A, u only for the arrows in the correspondence above, adding a (-)" if
neccessary.

Remark 6.15. In [6], the comodule structure considered is the opposite of [C.21] i.e.

right L-comodules Y, AN Y, ®p L. By considering the inverse image A* we obtain that
this structure is also equivalent to the other three.

6.3 The equivalence at the level of arrows

We start this section with some results that allow us to better understand the category
Rel(3%). We begin with a proposition that relates action morphisms with ¢,-cones as in
section 4]

7

.o . . . — 6 — o
Proposition 6.16. Given two discrete actions GXg, Yy — Y4, GXg, Y, — Y/, a space

morphism Y, — Y is an action morphism if and only if the corresponding arrow
Y -5 ¥ in shB satisfies

Y Y Y’ Y, Y, Y, Yy

el ) W [

0200: Y Y =Y YV Lebyp28: y, v, =YY,

[ vy

G

Proof. f~' (the formal dual of f) is the B-locale morphism Y, SN Y,, which is com-
puted with the autoduality of Y, (see and [2.35)), and the correspondence between 6
and u in proposition is also given by this duality, i.e.

Y,
I Y
Y, Y,0Y, | /’7\
=gt \ef | 0 '=p: Y; Y0V,
Y, Y0¥, \#/ I
\e/ | L oY,
B @Yd

Then the commutativity of the diagram AM in definition[6.2] expressing that f is an
action morphism, is equivalent when passing to the formal dual to the equality of the
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left and right terms of the equation (and therefore to the equality marked with an (*))

YI

d
I/ v, v,
Y, YoY, H /,7\ i /,7\
v/ Y vev. ¥ vy,
L e Yo, & | \ef |2 \ef | /N
|1\ | Y vy, Y, Yev, vev,
L oY, YeY, v/ \e/ o
H \e/ [ L @Y, B ® L oY,

L ® B oY
But the equality (*) is ¢»(g) composed with 7, to recover ¢,(g) compose with &. O
Corollary 6.17. Using last proposition and proposition [6.12] we can think of the cate-
gory BC of discrete actions of G in a purely algebraic way (without considering spaces
over Gy) as follows: an action is a B-bimodule morphism Y; ® Y, NNy satisfying Bl,
B2, and an action morphism is an arrow Y %5 Y’ in shB such that 02(g) holds.

Remark 6.18. Since p is an £-bijection, ¢,(g) holds if and only if >(g) does, so the
definitions of action morphism of [17] (see and [8] (see|l.34) coincide.

Remark 6.19. Since the forgetful functor BC L shB, G ~ Yd — Y, is left exact, a
monomorphism of discrete G-actions Z 2, Yisalsoa monomorphism in shB.

Lemma 6.20. Given two actions Y;Y, s Land Z,®7Zy 2 Landa monomorphism

z-5y of actions, for each ¢, 6,, generators of Zy, ' (6, ® 6,,) = p(Og(z) ® Og(w))-
6.16}(5.29) ’ [6.1912.1]

Proof. 1Sy ®340) 0 \/ [g(0)=g@1s - (6, ® 6,) 2

beB
xeY(b)

= \/ [[-x:Z]]B : ,Ll,((SX ® 6w) :u,(éz ® 6w) a

beB
xeY(b)

. . . f .
Lemma 6.21. Given an action Y; ® Y, S Land a monomorphism Z — Y, if the
restriction of the action to Z is an {-bijection, then it is an action. This is the only
possible action on Z that makes f a morphism of G-actions.
Proof. Unicity is clear from the previous lemma. We have to check B1 and B2 in

proposition m for Z, ® Z, £, L. The only one that requires some care is B1. By
hypothesis we have for by, b, € B, x € Y(by), w € Y(by),

u(6,©5,) = \/ .6, ®u,©5,)

beB
YeY(b)
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(we specify in the notation if the tensor product is over B).

We have to see that when x € Z(by),w € Z(by), this equation still holds when
restricting the supremum to Z. In fact, in this case we have

’ ed), su)
\ 16:©6) @ u6,®6,)°=" \/ by (6, ®06,) @ u(s, ®3,) - by “=

beB beB
yeY(b) yeY(b)

uv), in),
=\ V686 MG ®6) ® 4G, ®6,) A, @5,) " L

beB hl eB 172 eB
YEY(D) z1€Z(b1) 22€Z(b2)

= \/ 16.©5) @ u(s.®5,). 0
beB B
Z€Z(b)
We are ready to prove theorem [6.7]
Theorem 6.22. For any localic groupoid G as in there is an equivalence of cate-
gories making the triangle commutative (T, F are forgetful functors):

Cmdy(L) Rel(5°)

X\ M’)

(B-Mod)q = Rel(shB).

The identification between relations R C Y X Y’ in shB and B-module morphisms

Y, LR Y, lifts to the upper part of the triangle.

Proof. Since the equivalence (B-Mod), = Rel(shB) maps Y, < Y, proposition [6.12]
yields a bijection between the objects of Cmdy(L) and Rel(5).

We have to show that this bijection respects the arrows of the categories. Using the
lemma [6.21], it is enough to see that for Y, Y’ any two objects of 8%, and R C Y X Y’
a relation in shB, the restriction 8 of the product action A ® A’ to R is a bijection if and
only if the corresponding B-module map R : ¥; — Y/, is a comodule morphism.

We claim that the diagram expressing that R : Y; — Y}, is a comodule morphism is
equivalent to the diagram ¢(R,R) in (cf. proof of proposition [1.42). The proof
follows then by proposition We prove the claim using the elevators calculus

described in appendix
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The comodule morphism diagram is the equality

AT A

= Yd Y,0Y,

\/ I

®Y;
while the diagram ¢ is

Y,
/\ Iy

Y, Y,06Y, Y \R/ H

B

Y, Y,eY, Y, \u/

LAV

Proof of (6.23) = (6.29):

Y, Y,
H /n\ H Y Y, v, Y,
wover ¥ s IR
| [ = Y YooY, Y,Q¥ ¥,

(s \G/ Wy

Proof of (6.24) = (6.23):

Yd
Mo /
/\ Yd Y,0Y, Y,aY), /\
;, Y oY, 628 H H \R/ H @ Yd Y,®Y,
Y, Y, oY, Y oY
\G/ o, d\*‘/d® d\g/d® d \g/ oY,
G

® H oY,
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Resumen en castellano de la seccion 6

En esta seccion establecemos la equivalencia entre las acciones discretas de un
grupoide locdlico y los comédulos discretos de su cogebroide subyacente, y la equiv-
alencia entre los morfismos de comddulos y las relaciones en la categoria de acciones
discretas, generalizando asi los resultados de la seccion @

Notemos que la definicion de accion de [17] es a priori diferente a la de [8], por
lo que tuvimos que mostrar que en el caso discreto estas coinciden (ver observaciones
[6.13}[6.18).

Fijemos un grupoide locdlico G (i.e. objeto grupoide en Sp = Loc°?), con estructura
subyacente de categoria locélica (i.e. objeto categoria en Sp) dada por (ver [17]], VIIIL.3
p.68)

do
GxG-2>G=i— G
Go o
Denotamos por L = O(G), B = O(Gy) a sus correspondientes locales de abiertos, y
los pensamos como dlgebras (conmutativas) en la categoria monoidal s¢. Los morfismos
s=561
de local B :: L le dan a L una estructura de B-bimddulo.
1=07!
De esta forma, la unidad Gy —— G corresponde a una counidad L -~ B, y

. . ., . ., ° . . .,
la multiplicacion (composicion) G Xg, G — G corresponde a una comultiplicacion

L -5 L®gL. Porlo tanto L es una codlgebra en la categoria B-bimod, i.e. un cogébroide
agissant sur B. En otras palabras, una estructura de categoria locdlica para G es equiva-
lente a una estructura de cogebroide para L.

Definimos un algebroide de Hopf locdlico como el dual formal de la estructura de
groupoide locédlico. Como fue observado por Deligne en [6], p.117, la estructura de
cogebroide es la estructura subyacente a un algebroide de Hopf que se usa para definir
sus representaciones (ver definicion , exactamente como la estructura de categoria
locdlica subyacente a un grupoide locdlico es la que se usa para definir los G-espacios
como funtores Sp-valuados, es decir, acciones del objeto categoria en una familia (in-
terna) X — Gy (ver definicion .

El objetivo de la seccidén 6 es probar el siguiente teorema:

Para cualquier grupoide locélico G, hay una equivalencia de categorias que hace el
siguiente tridngulo conmutativo (7', F son funtores de olvido):

Cmdy(L) = Rel(8°)

\ M)

(B-Mod)y = Rel(shB).

&9



Para ello, en la subseccion probamos la equivalencia a nivel objetos, que es la
siguiente proposicién (6.12))

Dado un grupoide locdlico G sobre Gy, con cogebroide L sur B subyacente, y dado
Y € shB, las siguientes estructuras estan en correspondencia biyectiva:

. . = 0 =
e Acciones discretas G é( Y, — Y,
0

: 1= o .
e (-relaciones mjY X 13Y — L con un morfismo de B-bimédulos correspondiente

u .. .
Y, ® Y, — L tal que los siguientes diagramas conmutan:

Yy ®Yy——L Y @Y, L
B1: Yd®’7®Ydl ic B2 : \ le
Y, Y, Y, ®Y; " [ QL B

B B

e Estructuras de comoédulo Y, L ®g Y.

Luego, en la subseccion [6.3] probamos la equivalencia a nivel flechas, que nos per-
mite finalizar la prueba del mencionado teorema.
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7 The Galois and the Tannaka contexts

The Galois context associated to a topos. Consider an arbitrary topos over S,
& — S In [17], VIL.3 p.59-61, VIIL.3 p.68-69 the following is proved. There is a

spatial cover of &, this is an open surjection of topos X 25 & with X = shG, for a

P1
Gy € sp. The 2-kernel pair of g, X >§ X X satisfies that there is a localic groupoid
p2

9o
G= G X G-—>+>G=i—Gy such that
Gy 4>(,)1

pi 9
XxX X = shG Sl’lGo (71)
& P2 o*

1

(we use in this section the notation of [[17] for sheaves on a space, shG = sh(O(G)),
shGo = sh(O(Gy)) ).

Joyal and Tierney use this to prove the equivalence & = B (Galois recognition
theorem, see theorem via descent techniques. They don’t construct G (they don’t
need to), though they make the remark (in p.70 of op. cit.) that (inthecase X = S — &,
with & an atomic topos, corresponding to the neutral case of Tannaka, see [11]) G is the
spatial group of automorphisms of (a model of the structure classified by the codomain
of) the point. This idea was developed by Dubuc in [8], who constructed G. Our work in
this section can be considered as a generalization of those results of [[11]], [8], and of the
remark of [17]], since we construct G in the general case and describe it as a universal
>>-cone of £-bijections (which is a generalization of the description of the localic group
of automorphisms of a point made in [8]], 4, p.152-155).

Equation ((7.T) means that the 2-kernel pair of ¢ can be computed as the following
2-push out in the 2-category of topoi with inverse images.

&— -~ shG, (7.2)

(foreach 7, 15, fi'. fod" = fiq",
there exists a unique £* such that

€9 = 7 and idy 0 ¢ = )
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7.3. Take, as in section@ B = O(Gy). By items 5,6, (B® B)-locales B® B s=og))

correspond to locales A € Loc(sh(B ® B)), y.A = A and the following diagram com-
mutes.

shB shA shB (7.4)
1 2
sh(B ® B)

Consider also the following commutative diagram

shA

Since the composition of spatial morphisms is spatial (see for example [30], 1.1),
then shA is spatial (over S), i.e. shA = sh(y,.Q7). But y,.Q7 = v.8.Q7 = v, A = A.

In the sequel, we make no distinction between shA and shA. (7.5)

7.6. Recall from [17], V1.5 p.53-54 the fact that there is a left adjoint F to the full and
faithful functor Loc??(S) i) Top/S, that maps & L, StoF (&) = p.(Qg).

Lemma 7.7. The universal property defining the 2-push out (/.2) is equivalent to the
following universal property for localic topoi:

q*

&E

shG (7.8)

* * * % ¢ * %
(for each A, g3, 81, 804" = 819"
there exists a unique h* such that

h*d; = g: and idy- o ¢ = §)

Proof. Of course (7.2) implies (7.8). To show the other implication, given ¥, f;, f;', ¥

as in (7.2), consider ¥ as a topos over sh(Gy X Gy) via F =g sh(Gy X Gy) and apply
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F as in Then O(F(F)) = f.Qf is a locale in sh(Gy X Gy). Take A = v, f.Qs the

. =(80-81) . —~
corresponding locale over B® B, BQ B 80 A, ie. A = f.Qf, then we have the

commutative diagram (7.4).

7 L shA
The hyperconnected factorization of f is x / , where n

Sh(G() X Gyp)
is the unit of the adjunction described in[7.6] 7 is hyperconnected (see [17], VL5 p.54),

*

. . . . v .

in particular 77* is full and faithful (see [30], 1.5). Then n°g;q* = n"g|q" determines
. 4 . . .

uniquely g;g* = gjq" such that id,. o ¢ = ¢ and applying we obtain

8 1 SI’ZG()
q i - lag g

= ¢ \\
shGo ——> shG 4 \
g9 e

Now, by the adjunction described in[7.6] since taking sheaves is full and faithful, we
have a bijective correspondence between morphisms /~* and £* in the following commu-
tative diagram:

(7.9

sh(Go X Gy)

To end the proof, we have to show that under this correspondence the conditions
of (7.2) and (7.8) are equivalent. The equivalence between [*9* = f* and h*0* = g* is
immediate considering (7.9), and the equivalence between id;- o ¢ =  and idy- o ¢ = ¢
follows from id,- o ¢ = y using that 17" is full and faithful.

O

7.10. Consider a B ® B-locale A as in We have the correspondence
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¢ . .
g,q" = g\q" a natural isomorphism

by (7.4)

by[5.4]
by B1T, E-12]

K kK

¢ . .
g'm\q" = g'm,q" anatural isomorphism

A ¢j-cone mjq" X X 5" X 5 A of {-bijections (in sh(B ® B))

A > -cone 7tq*X X m3q°X —> A of -bijections (in sh(B ® B))
s=z9(')'
In particular for L = O(G), the locale morphisms B L induce a locale mor-

—9-!
=0,

=(b,s Axy —
phism B® B =02 L, and dyq" = 07q" correspond to a I>-cone 71q" X X 15" X 5L

of {-bijections.

Theorem 7.11. Given the previous data, (/.2)) is a 2-push out if and only if A is universal
as a >-cone of {-bijections (in the topos sh(B ® B)) in the following sense:

mq' X X g X o (7.12)
e T
m g (Hxmq*(f) = Z R AN
Ay
@y
mq'Y XmqY (h a locale morphism)
Proof. By lemma [7.7] it suffices to show that (7.8) is equivalent to (7.12). We have
shown in that ¢, ¢ in correspond to A, « in (7.12).

Since taking sheaves is full and faithful, a morphism L - A of locales in sh(B® B)
corresponds to the inverse image shL LR shA (recall ((7.5])) of a topoi morphism over
sh(B ® B), i.e. h* as in (7.8) satisfying h*0; = f*, i = 0,1. It remains to show that
hdx = ax for each X in (7.12)) if and only if id)- o ¢ = ¢ in (7.§).

In the correspondence between / and h* above, L5 Ais given by the value of A*

in the subobjects of 1 (L = y.Qyu, A = f.Q4), then we are in the hypothesis of |4.7| as
the following diagram shows

4"

and the proof finishes by corollary {.10 O
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Remark 7.13. From proposition|6.12} we have that for each X € &, njq" Xxn5q" X T

) ) . ) 6 )
is equivalent to a discrete action G Xg, X4is — Xuis. In this way we can construct a

lifting & - BC. This is the lifting & — Des(q) of [T7], VIIL1 p.64, composed with

the equivalence Des(q) = B¢ given by the correspondence in m for each X (see
[177], VIIIL.3 proof of theorem 2, p.69).

7.14. The Tannakian context associated to a topos.
For generalities, notation and terminology concerning Tannaka theory see appendix
Consider the fiber functor associated to the topos & (see [6.6)):

F=Rel(q")
Rel(S) —> (B—MOd)O, FX = (q*X)d

This determines a Tannakian context as in appendix [C, with X = Rel(E), V = s¢.

The universal property which defines the coend End” (F) is that of a universal ¢-cone
in the category of (B ® B)-modules, as described in the following diagram:

FX®FX o
FW X
FX®FY = End'(F) -~ -~ 7
108
F(R®FY oy
FY®FY (¢ a linear map)

Via the equivalence B ® B-Mod = s{(sh(B ® B)), we can also think of this coend
internally in the topos sh(B ® B) as

T FX X w5 FX
('
7'1'1< FW X‘\
7 FX X T,FY = End"(F) -—'---> 2
Ay
mF(R)xm3FY Py
mFY XS FY (¢ a linear map)

Depending on the context, it can be convenient to think of End"(F) as a
(B®B)-module or in s€(sh(B®B)): to use general Tannaka theory, we consider modules,
but to use the theory of ¢-cones developed in section ] we work internally in the topos
sh(B ® B). We apply proposition to obtain:
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Proposition 7.15. The large coend defining End"(F) exists and can be computed by
the coend corresponding to the restriction of F to the full subcategory of Rel(E) whose
objects are in any small site C of definition of &. O

We fix a small site C (with binary products and 1) of the topos & Then End"(F)
can be constructed as a (B® B)-module with generators pc(5, ® d,), where d,, d;, are the
generators of FC = (¢*C), (see proposition [5.13)), subject to the relations that make the
¢-diagrams commute. We will denote [C, d,, 05] = pc(d, @ 9p).

By the general Tannaka theory we know that End”(F) is a cogebroide agissant sur
B and a (B ® B)-algebra. The description of the multiplication m and the unit u given
below proposition [C.25] yields in this case, for C, D € C (here, F(I) = F(l¢) = B):

m([C, 64,641, [D, 6p,01]) = [C XD, (6, 6p), (60 @ p)], u=4a. (7.16)

When interpreted internally in sh(B ® B), this shows that 77¢"C X n3q"C e, End"(F)
is a compatible ¢-cone, with End"(F) generated as a sup-lattice in shZ(B ® B) by the
elements A¢(a, b), thus by proposition it follows that End" (F) is a locale.

By proposition we obtain that End"(F) is also a (localic) Hopf cogebroide,
i.e. the dual structure in Alg,, of a localic groupoid.

7.17. The construction of G.

Proposition 7.18. Tuke L = End"(F). Then G = L satisfies (1.12), i.e. (by theorem
satisfies (7.2)).

Proof. Given a >-cone of {-bijections over a locale A, by proposition 4.12] it factors
uniquely through a sf-morphism which by proposition is a locale morphism. O

We show now that G is the localic groupoid considered by Joyal and Tierney. By
theorem the dual L of a groupoid G satisfying is unique as a locale in
sh(B ® B), and so are the Ay corresponding to the ¢ in (7.2).

Now, remark , interpreted for G = L using proposition states that i = e,
o = ¢ are the only possible localic groupoid structure (with inverse given as (=)' = @,
see proposition such that the lifting ¢* lands in 8¢ (see remark . We have

proved:

Theorem 7.19. Given any topos & over a base topos S, and a spatial cover shGy N &,

do
the localic groupoid G = G (>;< G —>—~ G <-i— Gy considered in [17] is unique and can
0 —_—
0
be constructed as G = End"(Rel(q*)), withi = e, o = ¢ and inverse (=)™ = a. The
lifting & N B¢ is also unique and defined as in remark|7.13 O
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Resumen en castellano de la seccion 7

En esta seccion mostramos explicitamente como el grupoide locélico G construido
en [17], VIIL.3 a partir del cubrimiento espacial shH — & es un >-cono universal de ¢-
biyecciones en el topos sh(H®H) para dos funtores diferentes, como hemos mencionado
anteriormente.

Este trabajo no era necesario en la seccion 1, es decir cuando trabajdbamos con el
contexto neutral de Galois de [8]], ya que alli G es construido precisamente como un
>>-cono universal de ¢-biyecciones, pero Joyal-Tierney deducen la existencia de G con
una técnica diferente, por lo tanto este resultado (teorema [7.11)) es crucial para nosotros
para poder probar el isomorfismo G = L. Este teorema también es interesante por si
mismo, ya que muestra una forma diferente en la que podemos interpretar (y construir)
al grupoide fundamental G.

Mas precisamente, la propiedad universal que define a G estd dada por el siguiente
2-push out de topos con imdgenes inversas:

5

8 1 SI’ZG()

(paracada 7, f;, f1. foa" = f1q",
hay un unico ¢* tal que

0o = f; yide o9 =)

ShG() T> ShG
1

Usando la factorizacion hiperconexa de un morfismo de topos, probamos que la
propiedad anterior es equivalente a

*

8 1 ShGo

(para cada A, g, 81, 804" = 819>
hay un tnico A" tal que

S]’lG() T> shG h*a;k = g;k y ldh* cCY= ¢)

;
An* \
\;\ y
g shA

que luego, utilizando multiples propiedades probadas a lo largo de la tesis, mostramos
que a su vez es equivalente a
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mg X Xmq' X

ax
ST
na (xma(H| F 7o o7
Ay
ay
Mg Y Xmq'Y (h morfismo de locales)

Luego, en|/.14] aplicamos las construcciones del apéndice C para construir L, el co-
end de Tannaka que es un ¢-cono universal. Aplicamos cuidadosamente la proposicion
considerando un sitio pequefio del topos, para evitar problemas de tamafio.

Una vez hecho este trabajo, las propiedades previas de I>- y ¢-conos (y diagramas)
nos permiten probar el isomorfismo G = L.
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8 s{¢-Tannakian Categories

A spatial cover of a topos shB =N &, with inverse image & N shB, determines by
theorem [7.19]a situation described in the following diagram (cf. (I.56))

BE — Rel(B°) Cmdy(L) 8.1

‘X*ﬂ Rel(q") /
& \ Rel(E)
N

shB Rel(shB) = (B-Mod).

where F = Rel(q*), L = End"(F), G = L and the isomorphism in the first row of the
diagram is given by Theorem[6.22]

Theorem 8.2 (cf. theorem|1.57). The (Galois) lifting functor g* is an equivalence if and
only if the (Tannaka) lifting functor F is such. O

From [17], VIIL.3, theorem 2, p.68 (see also remark [7.13)), we have

Theorem 8.3. The (Galois) lifting functor q* is an equivalence. O
We obtain
Theorem 8.4. The (Tannaka) lifting functor Fis an equivalence. O

We make now the first developments of a theory that we call sf-tannakian theory.
Theorem yields the first examples of non-neutral s{-tannakian categories, the cate-
gories of relations of Grothendieck topoi.

We begin with some considerations regarding size, that will let us construct under
some hypothesis the coend End” of a s¢-enriched functor.

We work as before over a base topos S, and denote s¢ = s€(S), Rel = sty = s{o(S).
Let A be a sf-enriched category. Let 7,7’ : A — sty be two sf-functors, L € s¢.

Then we define a ¢-cone over L as a family TX ® T'X ﬁ> L, for X € A such that for
each X i> Y in A, the ¢(f) diagram

TXXT'X

TXXT'Y =

Tfm /

TYXT'Y

commutes. This generalizes definitiond.3] if A = Rel(E) they coincide.
We consider now the following concepts from [21]], 1.7. p.442
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Definition 8.5. A collection B of objects of a st-category A is st-generating if, for each
XeHA
Iy = \/ f or, where (8.6)
(fineFx
Fx = {(f,r) arrows of A s.t. cod(r) = dom(f) € Band for < lx}.

A is bounded if it possesses a small collection of st-generators.
The motivating example is given by sites of topos, see[8.10|below or [21], 1.8. p.443.

Proposition 8.7. [cf proposition For a st-generating collection B of objects of a
st-category A, suitable cones defined in B (considered as a full subcategory of ‘A) can
be extended to A, more precisely:

LetTCXT'C R L be a O-cone defined in B. Then, there are unique TXXT'X LR L
for all objects X € A in such a way to determine a ¢-cone extending A.

Proof. Let X € A, then by we have 1y = v f o r, therefore
(f.:r)efx
lrx = \/ T(f) o T(r), i.e. for each x € FX, (1) x = \/ T(F)T(r)x.
(f.eFx (freFx

ETX X T'X -5 Lis a ¢-cone extending A, in particular ¢(f) should hold: if
dom(f) = C thenforeachc e TC, x' € T'X,

o(f) s (T (f)cex) = \/ [7°(f)c’=x"T- Ac(c ® ).

c’el’C

@

Then Ax(x ® x') 2 0

\/ A(TOTr)xex) 2

(fineFx

\/ \/ [T'()c’=x"] Ac(T(r)x® ).
(f,r)eFx c’eT’'C
That is the only possible definition of Ax. Let’s check that it is in fact a ¢-cone, if

X %5 ¥is an arrow in A we must show that ¢(¢) holds: foreach x e TX,y € T'Y,

op): WT@xey)=\/ [T @x=)] x(xex).

XeT’X

We make the following previous computations:

() Since Iy = \/ fortheng= \/ gofor.

(fineFx (fiNeFx
(@) Since Iy = \/ gog.theng= \/ gogog.
(8.9)Fy (8.9)Fy
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(3) For each (f,r) € Fx, (g,9) € Fy we consider y = g o ¢ o f, then
dom(y) = dom(f) = C € B, cod(¥) = cod(q) = D € B and therefore ¢(¢) holds
by hypothesis, i.e. foreachc € TC,d" € T'D

oW) : AT @T@T(NHeed) = \/ [T (DT (T (f)c"=d'] - Ac(c ® ).

ceT’'c

We now compute

WT@xey)d \/ \/IT@d=yT 1cT@T@xed)=

(g,.9)€Fy d'€T'D

VoV IT@d =1 T @T@T(HTr)xed)
(8.9)€Fy (f.r)eFx d'€T’D
VoV VI@d=y1-IT@T @7 () =dT- AeT(Hx e ) =
(g,.9)Fy (f,r)eFx d’eT’D c’€T’C
=\ V VIT@reoreryd=yl-Texecd) 2
(&:)eFy (fineFx ¢'eT'C
\/ \ IT@T(He =y1- AcT(r)xec) =

(f.r)eFx c'€T'C

VoV V@ =y1-IT(He =xT - acTrxe ) <

(f,n)eFx c’eT'C X' €T’X

o) in (3)

\/ [T'@x =yT- Ax(x @ x).
x'elT’X
O
8.8. Tannaka theory for DCRs We will now express theorem as a tannakian
recognition-type theorem for some special type s¢-enriched categories, distributive cat-
egories of relations (DCR), that generalize the categories of relations Rel(&E) of topoi.
We recall from [21], chapter 2 p.443-451 the following definitions and constructions:

Definition 8.9. A distributive category of relations (DCR) A is a cartesian st-category
in which every object is discrete (see [21l], 2.1 p.444 for details). A morphism of DCRs
is a sC-functor which preserves this structure (see [21)], 2.4 p.447 for details). A DCR A
is complete if it has small coproducts (as a category) and if all symmetric idempotents
in A split (see [21], p.448 for details).

8.10. The motivating example is: if & is a (Grothendieck) topos, then any full subcat-
egory of Rel(E) whose objects are closed under finite products in & is a DCR. In [3]],
p-31, Theorem 6.3 (see also [21], 2.5 p.448), Carboni and Walters prove that a DCR
A 1s isomorphic to Rel(E) for a Grothendieck topos & if and only if A is bounded and
complete. Furthermore, Rel yields an equivalence of 2-categories between the dual of
the category of Grothendieck topoi and the category of bounded, complete DCRs ([21],
2.5).
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8.11. For any DCR A there exists its completion A (see [21], 2.6 p.448). This is a

complete DCR together with a full and faithful morphism of DCRs A LA (the
counit of the inclusion of the category of complete DCRs into the category of DCRs)
such that the objects in the image of 1 are s{-generating in A. 7 is an equivalence of
categories if and only if A 1s already complete.

Let now A be a bounded DCR. Since its completion A is a bounded and complete
DCR, there exists a topos & such that A = Rel(E). We consider the situation of diagram

(8.1) for this & We think of the sf-functor A A N (B-Mod), as a tannakian
fiber functor and obtain the following tannakian recognition-type theorem for bounded
DCRs:

Theorem 8.12. Let A be a bounded DCR. Then the coend L = End" (F o n) exists, and

Fo
the lifting A A mdy(L) is an equivalence of categories if and only if A is complete.

Proof. Since the objects in the image of 1 are s¢-generating in A, by proposition|8.7|we
obtain L = End'(F). Then the lifing A —b Cmdy(L) is equal to

A SN A i) Cmdy(L), and by theorem we obtain that F/o\n is an equivalence
of categories if and only if 7 is, which by happens if and only if A is complete. O

8.13. A general recognition theorem for s{-tannakian categories (future work).

We end this thesis by briefly describing the contents of a theory that arises naturally
as a result of our work relating Galois and Tannaka theories. This is future work, we
pose conjectures which we plan to investigate.

We have shown that theorem [8.4] (and therefore theorem [8.3] i.e. Theorem 2 of
[17], VIIL.3) corresponds to a tannakian recognition theorem for a particular case of
st-enriched categories. In a sense, this theorem combines a recognition (the lifting is an
equivalence) theorem and an “additional structure” (G is a localic groupoid instead of
just a localic category) theorem (see our introduction, On Tannaka Theories). But we
can also consider a tannakian context for a general s¢-enriched category, not neccesarily
the category of relations of a topos:

8.14. Let B € Algy, A a st-enriched bounded category, A N (B-Mod)y a functor.
Define L as in definition [C.19] then it exists by proposition [8.7]and we have the lifting
F as in proposition m

The fundamental property of the open spatial cover X %5 & that is used in (171,

VIIL.3 to prove Theorem 2 is that ¢ is an open surjection. In [21], lemma 4.3, it is

shown that under the equivalence Top°? ™, pcr (the inverse image of) an open sur-
jection corresponds to an open morphism of DCRs (see [21]] 2.4 (ii)) that is faithful as a
functor. The definition of an open morphism between DCRs ([21]], 4.1) uses only their
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underlying structure of s€-enriched categories, therefore we may consider open faithful
s¢-functors between s{-categories.

Based on our previous developments, we make the conjecture that the following
more general recognition theorem should hold (or that at least it is worth research-
ing), of which theorem @ (and therefore theorem @ would be a particular case, for
st-enriched categories and comodules of a (not neccesarily Hopf) cogébroide.

Conjecture 8.15. Under the hypothesis of if F is a st-enriched open and faithful
functor, then F is an equivalence.

Theorems on the existence of fiber functors (i.e. functors for which the lifting is an
equivalence) are also common to both Galois and Tannaka theories. In [6], 7, an internal
characterization of tannakian categories is given, constructing under some hypotheses
(see [6]], 7.1) a fiber functor (see [6], 7.18). In [[17] VII. 3, for any Grothendieck topos
& its spatial cover is constructed, which we have showed that can be considered as a
fiber functor. Since the Diaconescu cover of & is also an open surjection, it can also be
considered as a fiber functor.

We think it would also be worth researching which conditions should be satisfied
by a sl-enriched category (A so that there is an algebra B and a fiber functor (i.e. a s{-
enriched open and faithful functor if conjecture holds) A — (B-Mod),. Such a
result would be analogous to the one of [6] for the case of sup-lattices, and (if the con-
ditions are weaker than those that make (A the category of relations of a Grothendieck
topos) would generalize the construction of the Diaconescu cover mentioned above.
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Resumen en castellano de la seccion 8

En esta dltima seccion de la tesis, combinamos todos los resultados anteriores para

. o . q o o
obtener, a partir del cubrimiento espacial shB — & de un topos arbitrario, la situacion
descripta en el siguiente diagrama:

R

BE —=Rel(B%)

T Rel(g*)
\ & \ Rel(E)
N

shB Rel(shB) = (B-Mod),.

Cme(L)

ot

donde F = Rel(q*), L = End(F),G = L y el isomorfismo de la primer fila del diagrama
estd dado por el teorema De ahi se obtiene el teorema (8.2

El levantamiento (de Galois) % es una equivalencia si t solo si el levantamiento (de
Tannaka) F lo es.

Como a partir de [17], VIIL.3, theorem 2, p.68 (ver también observacion se
tiene que g* es una equivalencia, obtenemos el teorema

El levantamiento (de Tannaka) F es una equivalencia.

Luego, hacemos los primeros desarrollos de una teoria que llamamos teoria s¢-
tannakiana. (El teorema anterior da los primeros ejemplos de categorias s¢-tannakianas
no neutrales, las categorias de relaciones de los topos de Grothendieck). Nuestro re-
sultado principal es la obtencidn de un nuevo teorema de tipo recognition no-neutral de
Tannaka para cierto tipo de categorias enriquecidas sobre s¢ (sobre un topos de base)
que son llamadas categorias distributivas de relaciones (DCRs por sus siglas en inglés).
Estas categorias generalizan las categorias de relaciones Rel(&E) de los topos.

Comenzamos por probar una propiedad de extension andloga a la proposicién
pero para DCRs, que nos permitird construir el coend L de Tannaka para las DCRs
acotadas.

Luego usamos resultados previos de [21], [3] que relacionan a las DCRs con los
topos de Grothendieck para construir un funtor fibra tannakiano A — B-Mod. De esta
forma, obtenemos el siguiente teorema de tipo recognition Tannakiano (para la categoria
de base s¢ de los sup-reticulados):

teorema recognition, teorema Una DCR acotada A es completa si y solo si el
levantamiento A — Cmd,(L) de su funtor fibra es una equivalencia.
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Appendix A Neutral Tannaka theory

The Hopf algebra of automorphisms of a V-functor.

(For details see for example [25]], [26]). Let °V be a cocomplete monoidal closed
category with tensor product ®, unit object / and internal hom-functor hom. By defini-
tion for every object V € V, hom(V, —) is right adjoint to (—) ® V. That is, for every
X, Y, hom(X®YV,Y)=hom(X, hom(V, Y)).

A pairing between two objects V, W is a pair of arrows W@V 5 Tand1 -5 Vew
satisfying the usual triangular equations. We say that W is the left dual of V, and denote
W = VY, and that V is right dual of W and denote V = W”. When X has a left dual,
then XV = hom(X, I).

The following are basic equations:

If X has a right dual: Y has a left dual < hom(Y, X)" = Y ® X",
X = X", hom(X", Y) =Y ®X.
If X has a left dual: X=X"", homX,Y)=Y®X".

Recall that the object of natural transformations between “V-valued functors L, T :
X — YV, is given, if it exists, by the following end

Nat(L, T) = fhom(LX, TX). (A.1)
X

We consider a pair (Vy, V), where V, C V is a full subcategory such that all its
objects have a right dual.

Let X be a “V-category such that for any two functors X L Vadx L YV, the
coend in the following definition exists in V' (for example, if X is small). Then, we
define (in Joyal’s terminology) the Nat predual as follows:

X X
Nat"(L,T) = f LX ® (TX)" = f hom(LX, TX)" . (A.2)

However, the last expression is valid only if LX has a left dual for every X (for
example, if X 4 V) and every object in V) also has a left dual).
Given V € V, recall that there is a functor X Ay V definedby (VR T)(X)=VeTX.
Proposition A.3. Given T € V", we have a ‘V-adjunction
Nat"(~,T)

Y LV
(-)®T
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Proof.

5%
hom(Nat'(L, T),V) = hom(f LX®TX", V)= fhom(LX@ TX", V)
X

= fhom(LX, hom(TX", V) = fhom(LX, V®TX)=Nat(L, VT). m|

X X

In particular we have that the end Nat(L, T) exists and Nat(L, T) = hom(Nat'(L, T), I).
It follows that Nat"(L, T) classifies natural transformations L — T in the sense that
they correspond to arrows Nat"(L, T) — I in V. This does not mean that Nat(L, T)
is the left dual of Nat"(L, T), which in general will not have a left dual. Passing from
Nat"(L, T) to Nat(L, T) looses information.

) ) . U ) ) ) H
The unit of the adjunction L = Nat"(L, T)®T is a coevaluation, and if X — V),
it induces (in the usual manner) a cocomposition

Nat'(L, H) — Nat"(L, T) ® Nat'(T, H).

There is a counit Nat¥(T, T) %5 I determined by the arrows TC ® TC" =5 I of the
duality. All the preceding means exactly that the functors X — V), are the objects of a
“V-cocategory.

We define End’(T) = Nat'(T, T), which is therefore a coalgebra in V. The coeval-
uation in this case becomes a End"(T)-comodule structure 7TC BN End"(T)®TC on

TC. In this way there is a lifting of the functor 7" into Cmdy(H), X SN Cmdy(H), for
H = End"(T), and Cmdy(H) the full subcategory of comodules with underlying object
in (110.

Proposition A.4. If X and T are monoidal, and V has a symmetry, then End"(T) is a
bialgebra. If in addition X has a symmetry and T respects it, End"(T) is commutative
(as an algebra). O

We will not prove this proposition here, but show how the multiplication and the
unit are constructed, since they are used explicitly in The multiplication

End"(T) ® End"(T) — End"(T)

is induced by the composites

Axey

myy : TX®TX'@TYRTY — T(X®Y)®T(X®Y)* =3 End"(T).

The unit is given by the composition
w:l—I1eI" = T()® TU) - End"(T).
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Proposition A.5. If in addition to the hypothesis of every object of X has a right
dual, then End"(T) is a Hopf algebra. O

The antipode End"(T) s End"(T) is induced by the composites

= AxA
b TX®TX" = T(X) @ TX 25 End"(T).
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Appendix B Elevators calculus

This is a graphic notatiorﬂ to write equations in a monoidal category V, ignoring
associativity and suppressing the tensor symbol ® and the neutral object I. Arrows
are written as cells, the identity arrow as a double line, and the symmetry as crossed
double lines. The notation, in particular, exhibits clearly the permutation associated to
a composite of symmetries, allowing to see if any two composites are the same simply
by checking that they codify the same permutatimﬂ Compositions are read from top to
bottom.

B.1. Given an algebra B in the monoidal category V, we specify witha @ the tensor
product ®; over B, and leave the tensor product ® of V unwritten.

Given arrows C 7, D, C’ i D', the bifunctoriality of the tensor product is the
basic equality:

LTl e
(PR

D D D D

This allows to move cells up and down when there are no obstacles, as if they were
elevators. The naturality of the symmetry is the basic equality:

\Z/ Z: \C/ C’ C><C’ (B.3)
T - % - 1
Nl i

Cells going up or down pass through symmetries by changing the column.

Combining the basic moves (B.2) and (B.3) we form configurations of cells that fit
valid equations in order to prove new equations. The visual aspect of this calculus really
helps to find how a given equation can (or cannot) be derived from another ones.

2Invented by Dubuc in 1969 (which has remained for private draft use for understandable typograph-
ical reasons).

3 This is justified by a simple coherence theorem for symmetrical categories ([26] Proposition 2.3),
particular case of [[16] Corollary 2.2 for braided categories.
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Appendix C Non-neutral Tannaka theory

In this section we make the constructions needed to develop a Non-neutral Tannaka the-
ory (as in [6]), over a general tensor category (V,®,k). Let B',B € Algy,
M € B-Mod, N € Mod-B, then we have M ® N € B-Mod-B, N @ M € V = k-Mod.

Consider the coequalizer N @ M 5 N ey M.

Proposition C.1. M N M’ in B-Mod, N =5 N’ in Mod-B, then

NeM-—Neom N M N M
Vel \rf Ve
¢ ¢ ,ie (recallBI) N M = NeM
NoM—2 N e Vel el V)
i i NeM  NoM
O
Proposition C.2. The isomorphism M = B @g M is given by
N
ul ||
/s\ =B M
BeM \c/
BoeM
O

C.1 Duality of modules

Definition C.3. Let M € B-Mod. We say that M has a right dual (as a B-module) if
there exists M" € Mod-B, M ® M" = B morphism of B-Mod-B and k L M@y M
morphism of V such that the triangular equations

(C4)

M M
Mo VA
meM M = | and M MeM = |
| e/ w /oo .

M ® B B ® M

hold. In this case, we say that M" is the right dual of M and we denote M 4 M".
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Proposition C.5. A duality M 4 M" yields an adjunction

(-)eM”
—_— T

B’ -Mod L B’ -Mod-B
v
(—)%M

given by the binatural bijection between morphisms

NeM" 5 L of B-Mod-B

o (C.6)
N> L % M of B'-Mod
for each N € B'-Mod, L € B'-Mod-B.
Proof. The bijection is given by
N e N (C.7)
o\ | /N
A: LeM M - p: N MeM
I \e/ i/
L B L ® M.
All the verifications are straightforward. O

Remark C.8. Considering B’ = k, we see that M", if it exists, is unique (except for a
canonical isomorphism), since it can be retrieved from the functor (-)® M”. n and & can
also be retrieved from the unit and counit of the adjunction, therefore are also unique.
This can as well be proved explicitly by computing the isomorphism between two right
duals of M.

Also, from the adjunction we see that if M” exists, then (—) ®3 M and Homg(M", —)
are right adjoints of (-) ® M”, so we have Homg(M",L) = L ®p M" for each
L € B'-Mod-B.

Definition C.9. We will denote by (B-Mod), the full subcategory of B-Mod consisting
of those modules that have a right dual.
Proposition C.10. There is a contravariant functor (=)" : (B-Mod), —Mod-B defined
on the arrows M N N as
N/\
/N
ffr MeM N

| A7

Me®N N

I \e/

M ® B
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Proof. 1t is straightforward. O

C.11. The case where B is commutative.

Assume that V is symmetric and B is a commutative algebra in V. Then there are
obvious isomorphisms of categories B-Mod = Mod-B = B=Mod, where the last cate-
gory is defined as the full subcategory of B-Mod-B consisting of those B-bimodules
such that left and right multiplication coincide. The tensor product ®p of B-bimodules
restricts to this category and in this way B-Mod is a tensor category with tensor product
®p and neutral element B. The known concept of dual in a tensor category yields in this
case the following definition that we will compare with definition

Definition C.12. Let B be a commutative algebra in V, let M € B-Mod. We say that
M has a right dual (as a B=bimodule) if there exists M" € Mod-B, M ®g M" 5 Band

B L M ®p M morphisms of B=bimodules such that the triangular equations

B ® M M ® B (C.13)
AV .4 AV
moMaom = | and ~ MoMoM = |
| e/ w LA
M ® B B ® M

hold. In this case, we say that M" is the right dual of M and we denote M 4 M".

The last sentence of the definition does not introduce any ambiguity because of the
following proposition.

Proposition C.14. Let B be a commutative algebra in V, let M € B-Mod. Then any
right B-module, that we’ll denote M", is the right dual of M as a B-module if and only
if it is the right dual of M as a B=bimodule. The arrows ' and & are also in bijective
correspondence with the arrows n and &.

Proof. The correspondence is given by

M M
o |
m- B ’ e MoM

/7

M e M B
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B Me M"

I/ ~

n”: B MeoM - c jB
H g
M BeoM M @z M"
N/
M M

Let’s verify the correspondence between the triangular identities, we only do the
first one since the other one is symmetric (recall propositions|C.T|and [C.2).

M M M
A [ [
B M B M M
/N /\ I Ve o
mMmeM M =MeM M = B o M = |
[ e VAN B 7 4
MeMepMM (MaeMaepy (MaeMaoepm
I \e/ [ \¢/ I \e/
M ® B M ® B M\ ® B
I Y
u I
M B w
B/ = \@MA \ . |
B ® M
| N
B M ® M®M = B M/\@M@M/\ =

Il N

MA B®M®MA M/\ B@M@M/\

\m/ I m
M/\ ® M ®MA \M/\/ ® M @M/\
I \e'/ H \e'/
M ® B M/\ ® B
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M/\

[\ [ M
A

oM M
B MaM m Ly "
I I m BemM m /N e
M BeM M o= \n/ | | =moM M= |
ANCZ M oM M| N/ M
M eM) M | \ e/ M @ B
\ ¢ / M oM ®M
M eM)e M | \e'/
H \e/ M ® B
M ® B
O
C.2 The Nat' adjunction
Consider now a category C and a functor H : C —-Mod-B. We have an adjunction
(—)%H
—_— T
(B’-Mod)¢ L B’-Mod-B (C.15)
-—
Homp(H,—)

where the functors are given by the formulae
XeC
F®:H= f FX® HX, Homg(H,M)(C)= Homp(HC, M).

Assume now we have a full subcategory (B-Mod), of (B-Mod), (recall definition
[C.9), i.e. a full subcategory (B-Mod), of B-Mod such that every object has a right dual.
Given G : C — (B-Mod),, using proposition we construct G* : C -»Mod-B.

Definition C.16. Given G : C — (B-Mod),, F : C — B’-Mod, we define
XeC
Nat'(F,G) = F ®; G" = f FX®GX".

Proposition C.17. Given G : C — (B-Mod),, we have an adjunction

Nat((-),G)

—_— T
(B’-Mod)¢ L B’-Mod-B (C.18)
-
(-)%G

where the functor (—) ®g G is given by the formula (M @5 G)(C) = M ® (GC).
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Proof. The value of the functor Nat"((-),G) in an arrow F :9> H of (B’-Mod)° is the
B’-B-bimodule morphism induced by

Ox®(GX)"
—

FX®GX" HX ® GX" 25 Nat'(H,G).

The adjunction is given by the binatural bijections

Nat"(F,G) —» C
FG"'—>C
C

F = Homg(G",C)
F=C % G

justified by the adjunction (C.15)) and the last part of the remark We leave the
verifications to the reader. O

The unit of the adjunction is called the coevaluation F = Nat'(F,G)®3 G. It can
be checked that it is given by

FCen A 1c8GC
pc: FC — FCR®GC" ® GC —> Nat'(F,G) ®p GC,

i.e. that it corresponds to A¢ via the correspondence (C.7).
We also have the counit Nat'(L ® G,G) % L. Tt is induced by the arrows

L&y GCoGCN 25 L
We now restrict to the case B’ = B.
Definition C.19. Given F : C — (B-Mod), , we define
L=L(F)=End'(F) = Nat'(F, F).
Remark C.20. L is universal among those B-bimodules satisfying the equation
A
oA

FC FD" FC FC'®FC FD"

\Fo/ | I \ro/ |

|
FD FD" = FC FC'®FD FD’
o/ I N/
L FC FC" ® B

\de/
L
for each C —f> DinC.
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As usual, given F,G,H : C — (B-Mod), we construct from the coevaluation a
cocomposition

Nat"(F,H) > Nat'(F,G) ® Nat"(G, H)
This is a B-bimodule morphism induced by the arrows

FCen®HC"

FC®HC" — FC®GCA®GC®HCAC Nat(FG)®Nat(GH)

The structure given by ¢ and e is that of a cocategory enriched over B-Bimod. There-
fore, L = L(F) is a coalgebra in the mon01dal category B-Bimod, 1 e. a B-bimodule with
a coassociative comultiplication L —> L ®p L and a counit L —%> B. This is called a
cogébroide agissant sur B in [6]. Cogébroides act on B-modules as follows

Definition C.21. Let L be a cogébroide agissant sur B, i.e. a coalgebra in B-Bimod. A
(left) representation of L, which we will also call a (left) L-comodule, is a B-module M
together with a coaction, or comodule structure M N L®g M, which is a morphism of
B-modules such that

M M M
y /?‘ /P M
Cl: L eM=L"® M C2: LoM = ||
/N 2l \e/ I M
LeLeM LeLeM BeM

We define in an obvious way the comodule morphisms, and we have that way a cate-
gory Cmd(L). We denote by Cmdy(L) the full subcategory of those comodules whose
subjacent B-module is in (B-Mod)y.

Proposition C.22. Given F : C — (B-Mod),, the unit FC L ®p FC yields a
comodule structure for each FC. Then we obtain a lifting of the functor F as follows

Co Fo Cmdy(L)
| A
(B-Mod),

Proof. Since we know explicitly what p, e and c are, it is easy to check both equations
on definition Both sides of the first equation are equal to the composition

TN A

FC FC'®@FC FC'®FC

e/ N/
L

L ® FC,
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and the second equation is just a triangular equation for FC 4 FC".

We now verify that given an arrow C =R D in C, F(f) is a comodule morphism

(recall remark [C.20)

FC
FC I /N /N FC
\F(/ Vs n\ FC FC'® FC FD'®FD | / n\
FC FD"®FD = &/ \r0/ | | =FC FC@®FC
\bo,/ | L ® FD FD'®FD \ie/  \Fn/
L FD \e/ H L ® FD

|
L ® B ® FD
O

Lemma C.23. Let M € (B-Mod),, L € B-Bimod, M® M" -5 L in B-Bimod, and p the
corresponding B-module morphism via (C77). Let L — B, L — L®g L be a structure

of cogébroide sur B. Then p is a comodule structure for M if and only if the following
diagrams commute:

Me M L
MM A—~1L
Bl : M®’7®MAl i“ B2 : s
/l%/l €
M®M’\<§)M®MA*>L%>L B

Proof. We can prove Bl <= CI1, B2 <= (2. All the implications can be proved in
a similar manner when using a graphical calculus, we show C1 — BI:

M M" M M"
AN i M M
M Mo M M Lo M M .
Ao s A S L eM M
LeM M® LeM M L®L®M M" /e \e/
N N/ N/ Lel @ B
L B ®L® B L®L ® B

O

Remark C.24. The previous lemma implies that L — B, L — L ®g L as defined

before is the only possible cogebroide structure for L that make each py a comodule
structure.

We now give L additional structure under some extra hypothesis (cf. propositions

A4 [A.5)
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Proposition C.25. If C and F are monoidal, and V has a symmetry, then L is a
B ® B-algebra. If in addition C has a symmetry and F respects it, L is commutative
(as an algebra). O

We will not prove this proposition here, but show how the multiplication and the unit

are constructed, since they are used explicitly in(7.14] The multiplication L B®B LS L
Q.

is induced by the composites
myy: (FX®FX") ® (FY® FY") — (FX® FY)® (FY" ® FX")
B®B B B

Axey

S FXRY)®FX®Y) =3 L.
The unit is given by the composition

u:B®B— F(I)® F(I)* =5 L.
Proposition C.26. If in addition C has a duality, then L has an antipode. O

The antipode L —% Lis induced by the composites

~ Ayn
ax: FX® FX" — F(X)®FX -5 L.
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