
UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales

Departamento de Matemática
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Teorı́a de Tannaka sobre Sup-Reticulados

El resultado principal de esta tesis es la construcción de un contexto tannakiano
sobre la categorı́a s` de sup-reticulados, asociado a un topos de Grothendieck arbitrario,
y la obtención de nuevos resultados en teorı́a de representación tannakiana a partir de
él.

Si bien numerosos resultados fueron obtenidos y publicados históricamente relacio-
nando teorı́as de Galois y teorı́as de Tannaka (ver introducción), estos son diferentes y
de menor generalidad pues asumen la existencia de clausuras de Galois y trabajan sobre
topos de Galois en lugar de sobre topos arbitrarios. En cambio nosotros, al hablar sobre
Teorı́a de Galois, nos referimos a la extensión de la misma a topos arbitrarios realizada
en el artı́culo [17], fundamental para obtener los resultados de esta tesis.

El contexto tannakiano asociado a un topos de Grothendieck se obtiene mediante
el proceso de tomar relaciones a su cubrimiento locálico. Luego, mediante una inves-
tigación y comparación exhaustiva de las construcciones de las teorı́as de Galois y de
Tannaka, se prueba la equivalencia entre sus teoremas fundamentales (ver sección 8).

Como las (bi)categorı́as de relaciones de un topos de Grothendieck fueron caracte-
rizadas en [3], se obtiene un nuevo teorema de tipo recognition (theorem 8.12) esencial-
mente diferente a los conocidos hasta el momento (ver introducción) .
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Tannaka Theory over Sup-Lattices

The main result of this thesis is the construction of a tannakian context over the
category s` of sup-lattices, associated with an arbitrary Grothendieck topos, and the
attainment of new results in tannakian representation theory from it.

Although many results were obtained and published historically linking Galois and
Tannaka theory (see introduction), these are different and less general since they assume
the existence of Galois closures and work on Galois topos rather than on arbitrary topos.
Instead we, when talking about Galois theory, mean the extension to arbitrary topos of
the article [17], critical to get the results of this thesis.

The tannakian context associated with a Grothendieck topos is obtained through the
process of taking relations of its localic cover. Then, through an investigation and ex-
haustive comparison of the constructions of the Galois and Tannaka theories, we prove
the equivalence of their fundamental recognition theorems (see section 8).

Since the (bi)categories of relations of a Grothendieck topos were characterized in
[3], a new recognition-type tannakian theorem (theorem 8.12) is obtained, essentially
different from those known so far (see introduction).
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Introduction
On Galois Theories. In SGA 1, Exposé V section 4, “Conditions axiomatiques d’une
theorie de Galois”, ([4], see also [10]) Grothendieck reinterprets Galois Theory as a

theory for functors C
F
−→ Ens<∞, and by doing so he lays the foundation for many

generalizations of this theory. In SGA 4 [1], Grothendieck himself makes a first gener-

alization of [4], by considering functors C
F
−→ Ens such that the elements (x, X) of the

diagram of F with X galoisian is cofinal. This axiom implies that the system consisting
of the groups Aut(X) is pro-discrete. As we will see in detail, to obtain representation
theorems for topoi as instances of Galois Theory, we must drop the pro-discreteness
completely. The article [9] contains an organized and detailed survey of these general-
izations of Galois Theory, including the representation theorems for topoi of [8], [17]
and many others. We refer the interested reader to [9], and focus now in the theories
we will work with, both of which are theories of representation of topoi: Localic Galois
Theory as in [8] and Joyal-Tierney’s extension of Galois Theory as in [17].

Neutral case. In [8], beginning with a topos E with a point Ens
p
−→ E, E

p∗=F
−→ Ens;

a localic group G = `Aut(F) and a lifting of F E
F̃
−→ βG into the classifying topos of G

are constructed, and the following is proved:

recognition theorem (theorem B in [8]): E is connected atomic if and only if the lifting
is an equivalence, i.e. E � βG.

We call E
F
−→ Ens a (neutral) Galois context.

Non-neutral case. In [17], VIII.3, beginning with an abritrary Grothendieck topos

E (over a base topos S), its spatial cover shH −→ E (with inverse image E
F
−→ shH)

is constructed and considered (though not explicitly) as a Galois context: a localic

groupoid G is built, all the information required for a lifting E
F̃
−→ βG is present and the

following is proved:

recognition theorem (theorem VIII.3.2 in [17]): the lifting is an equivalence, i.e.
E � βG.

We call E
F
−→ shH a (non-neutral) Galois context.

On Tannaka Theories. The interpretation of the results of Tannaka [27] as a theory of
representations of (affine) K-schemas was developed by Saavedra Rivano [23], Deligne
[6] and Milne [7].
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Neutral case. We begin by considering Joyal-Street’s description of (the neutral

case of) this theory in [15] as a theory for functors X
T
−→ K-Vec<∞ into the cate-

gory of finite dimensional K-vector spaces. A K-coalgebra L := End∨(T ) and a lifting

X
T̃
−→ Cmd<∞(L) into the category of finite dimensional L-comodules are constructed,

and the following is proved ([15], §7 Theorem 3):

recognition theorem: if X is abelian and F is faithful and exact, the lifting is an
equivalence.

We call X
T
−→ K-Vec<∞ a (neutral) tannakian context.

Non-neutral case. Part of the results of [6] (corresponding to the affine non-neutral
case, see [6] 6.1, 6.2, 6.8) can also be presented in the following way: given a K-algebra

B and a functor X
T
−→ B-Modpt f into the category of projective B-modules of finite

type, a cogèbroı̈de L := L(T ) sur B and a lifting X
T̃
−→ Cmdpt f (L) into the category

of L-comodules (called representations of L in [6]) whose subjacent B-module is in
B-Modpt f are constructed, and the following is proved:

recognition theorem: if X is tensorielle sur K ([6] 1.2, 2.1) and F is faithful and exact,
the lifting is an equivalence.

We call X
T
−→ B-Modpt f a (non-neutral) tannakian context.

Since then many generalizations of this theory have been made, mainly in two differ-
ent directions: either relaxing some hyphotesis for K (instead of a field we can consider
rings [13], valuation rings [31]), or considering an arbitrary base monoidal categoryV
instead of K-vector spaces ([25] [18], [24]). Though the constructions of Tannaka the-
ory and some of its results regarding for example the reconstruction theorem (see [5],
[18]) have been obtained, it should be noted that no proof has been made so far of a
satisfactory recognition theorem for an arbitrary base category.

There are also propositions that, under additional properties for the tannakian con-
text, give additional structure to L (see [15], §8 and §9, [6] 6.4 and 6.8). This results
are independent of the recognition theorem and can be generalized to an arbitrary base
category (see A.4 and A.5, C.25 and C.26).

On the relations between both theories. Strong similarities are evident to the
naked eye, and have been long observed, between different “versions” of Galois and
Tannaka representation theories. Various approaches to relate Tannaka and Galois The-
ory are developed for example in [22] and [14], where the existence of Galois closures
(disguised in one form or another) is essential, and which cover Galois topoi but not the
Joyal-Tierney extension to atomic or arbitrary topoi.
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In this thesis, to relate Tannaka and Galois Theory we proceed as follows: from a
Galois context as in [8], [17], we construct an associated Tannaka context over s`, and
by comparing the constructions of both theories in each context we obtain new Tannaka
recognition theorems from the Galois recognition theorems.

As a first, simpler example, consider the neutral version that we develop in section
1. Here by Galois theory we refer to Localic Galois Theory as developed by Dubuc in
[8], and by Tannaka theory we refer to the generalization to an arbitrary base monoidal
categoryV of the definitions and constructions of [15] that we do in appendix A. These
are the “strong similarities”: both in Galois and Tannaka theories, from a context we
construct an object (G or L) and a lifting into a category of representations of the object.
The recognition theorems are as follows: the lifting is an equivalence of categories if and
only if some conditions on the context are satisfied (like “ifX is abelian and F is faithful
and exact” for neutral Tannaka theory over vector spaces, or “E is connected atomic”
for Localic Galois Theory). Note that G is a group object in a geometric category and
L a cogroup object in an algebraic category, the cogroup structure for L yields a group
structure for its formal dual L.

However, these similarities are just of the “form” of both theories, and don’t allow
us a priori to translate any result from one theory to another, in particular Localic Galois
Theory and neutral Tannaka theory over vector spaces remain independent. But what
we can do is find the tannakian context corresponding to a Galois context, and we do this

by taking relations: from E
F
−→ Ens we construct X

T
−→ V := Rel(E)

Rel(F)
−→ Rel ↪→ s`

and we prove the following compatibilities.

1. The objects constructed from both contexts are isomorphic as localic groups
(G = L, i.e. O(G) = L where O(G) is the locale corresponding to the space G).

2. For any localic group G, the categories of representations Cmd0(O(G)) and Rel(βG)
are equivalent.

With these compatibilities, we can complete the following diagram that relates Ga-
lois theory to a neutral tannakian theory over the base category s` of sup-lattices:

βG //

��5555555555555555
Rel(βG) = // Cmd0(O(G)) = // Cmd0(L)

���������������������

E

F
��

//

F̃
ccGGGGGGGGGG

Rel(E)

Rel(F̃)
ggNNNNNNNNNNN

T
��

T̃
77oooooooooooo

Ens // Rel = s`0 ⊂ s`.

We obtain immediately that the Tannaka lifting functor T̃ is an equivalence if and
only F̃ is so (Theorem 1.57). Then, from the fundamental theorem of localic Galois
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theory (Theorem 1.59, Theorem B of [8]), we obtain the following Tannaka recognition

theorem for the (neutral) Tannaka context X
T
−→ V = Rel(E)

Rel(F)
−→ Rel ↪→ s` associated

to a pointed topos: T̃ is an equivalence if and only if the topos is connected atomic
(Theorem 1.60). These topoi are then a new concrete example where the recognition
theorem holds which is completely different than the other cases in which the Tannaka
recognition theorem is known to hold, where the unit of the tensor product is an object
of finite presentation. Simultaneously, the non atomic pointed topoi furnish examples
where the lifting is not an equivalence, i.e. the categories of relations of non atomic
pointed topoi are not neutral tannakian categories (we will show later that they are non-
neutral tannakian categories).

It should be noted that the properties of the Tannaka context equivalent to the lifting
being an equivalence are expressed in terms of the topos, i.e. of the Galois context. This
is not exactly what one would expect from a Tannaka recognition theorem, but we were
able to solve this by developing the more general non-neutral case (see theorem 8.12).
The results described so far, and developed with detail in section 1, were obtained in the
first years of our doctoral career and published as [11].

The non-neutral case and the new Tannaka recognition theorem for s`. As
we have mentioned before, both Localic Galois Theory and neutral Tannaka Theory
admit generalizations that we will refer to as Galois Theory (as developed by Joyal-
Tierney in [17]) and non-neutral Tannaka Theory (as developed by Deligne in [6], whose
constructions we make in an arbitrary base monoidal category in appendix C).

The jump in generality from pointed atomic to arbitrary topoi is the jump from
groups to (maybe pointless) groupoids, and corresponds exactly to the jump from neu-
tral to non-neutral Tannaka theory. Following the constructions of [6], from a monoid

B in a monoidal base category V and a monoidal functor X
T
−→ B-Mod (satisfying

some duality conditions, see C), we construct a cogèbroı̈de in V, L := End∨(T ), and

a lifting X
T̃
−→ Cmd0(L) into a full subcategory of the category of L-comodules. We

call X
T
−→ V a (non-neutral) tannakian context. In [6] it is shown that in the case of

schemas, which is deduced from the affine case that corresponds to vector spaces, if
T is faithful and exact (i.e. a fiber functor, see [6], 1.9) the lifting is an equivalence
(recognition theorem, [6], 1.12), but, as for the neutral case, no recognition theorem has
been proved so far for arbitrary base categories.

The same “similarities” of the neutral case appear here, and we exploit them by
constructing the non-neutral tannakian context over s` associated to the Galois context
given by the spatial cover. This generalization, corresponding to the jump in generality
from the pointed over Ens case of [8] to the unpointed general case of [17] is by no
means direct and conforms sections 2 to 8. Once again we do this by taking relations,
so in a way it is a similar process to the one of section 1, but it is instructive to examine
the differences between the neutral (from [8]) and non-neutral (from [17]) cases, while

8



we describe the contents of these sections:

• Since Joyal-Tierney in [17] work over an arbitrary base topos, we have to consider
`-relations in an arbitrary topos. These are arrows X × Y −→ G, where G is a
sup-lattice. We do this in section 2. We begin by proving results for relations (i.e.
where G = Ω), some of which are already known, but with different definitions
and proofs that are easier to extend to `-relations in section 2.1. In particular
we consider the axioms that make a relation a function (univalued, everywhere
defined) and show that functions correspond to (the graphs of) arrows of the topos.
We will show the corresponding result for `-relations in section 5.

• An analysis of �- and ♦-diagrams and cones (see 3.1, 4.3) is needed to show the
equivalence between the universal properties defining G and L. In section 3 and
4 we establish the results needed for this. The following phenomena is worth
mentioning: since the locales are commutative algebras, a Galois context yields a
non-neutral commutative tannakian context. But a non-neutral commutative tan-
nakian context is in a sense “neutralized” over the base category of B-bimodules.
Instead of a fiber functor, we now have two fiber functors corresponding to the
two inclusions B −→ B ⊗ B (see 7.14). We develop in section 4 a theory of cones
for two different functors that we will use in section 7 to exploit this fact.

We show in section 4 that �-cones of functions correspond to natural transfor-
mations, and analyse their behavior through topoi morphisms. This will allow us
to express the property defining the localic groupoid considered in [17], VIII.3
Theorem 2 p.68 as a universal property of �-cones (theorem 7.11).

We show that cones defined over a site of a topos can be extended uniquely to the
topos (preserving its properties). Since we will consider a tannakian coend that
is a universal ♦-cone over Rel(E), this will allow us to solve size problems when
constructing the coend by considering a small site of the topos E.

• Section 5 is the most technical section of this thesis and it is devoted essentially to
giving external characterizations, for a locale P in a topos S, of the developments
of section 2 when considered internally in the topos shP.

Recall that Joyal and Tierney develop in [17], VI a change of base for sup-lattices
and locales. In particular for a locale P in a topos S they characterize sup-lattices
and locales in the topos E = shP by showing that s`(shP)

γ∗
−→ P-Mod is an

equivalence that restricts as an equivalence Loc(shP)
γ∗
−→ P-Loc. (see 5.1). Also,

they characterize etale spaces as those spaces whose corresponding locale is of
the form γ∗(ΩX

P) = γ∗(O(Xdis)), with X ∈ shP, where ΩP is the subobject classifier
of shP. We denote Xd := γ∗(ΩX

P) = ΩX
P(1).
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We develop in section 5 what may be called a change of base for relations, given a
locale P ∈ Swe examine the correspondence between relations γ∗X×γ∗Y −→ ΩP

in the topos shP and arrows (that we call `-relations) X×Y −→ P in the base topos.

Then we consider `-relations X × Y
λ
−→ G in the topos shP, we show that they

correspond to P-module morphisms Xd ⊗P Yd
µ
−→ G(1) and give external (i.e. in

terms of µ, in the base topos S) formulae equivalent to the axioms of section 2.1.
We also “externalize” the formulae of the duality of ΩX

P in s`(shP). All this is
neccessary to treat the general unpointed case of Galois theory in the following
sections.

• In section 6 we establish the equivalence between discrete actions of a localic
groupoid and discrete comodules of its subjacent cogèbroı̈de, and between co-
module morphisms and relations in the category of discrete actions, generalizing
the results from section 1.4. The definition of action of [17] is a priori different to
the one of [8], so we had to show that in the discrete case they coincide in order
to generalize our previous results (see remarks 6.13, 6.18).

• In section 7 we show explicitly how the localic groupoid G constructed in [17],
VIII.3 from the spatial cover shH −→ E is a universal �-cone of `-bijections in
the topos sh(H ⊗ H) for two different functors, as mentioned before. This was
not neccessary when working with the neutral Galois context of [8], since G is
constructed there precisely as a universal �-cone of `-bijections, but Joyal and
Tierney deduce the existence of G with a different technique, so this result of
theorem 7.11 is crucial for us in order to prove G = L. This theorem is also
interesting by itself, since it shows a different way in which we can interpret
(and construct) the fundamental groupoid G. After showing this, the previous
properties of � and ♦ diagrams and cones let us show the isomorphism G = L.

• Finally, in section 8, we combine all the previous results to obtain a new non-
neutral Tannaka recognition type theorem over for a type of s`-enriched categories
(over a base topos) that are called distributive categories of relations (DCRs), that
generalize the categories of relations Rel(E) of topoi. We begin by proving an
analogous extension property to the one of section 4 for DCRs, that will allow us
to construct the tannaka coend L for bounded DCRs.

We use previous results from [21], [3] that relate DCRs with Grothendieck topoi
to construct a tannakian fiber functor A −→ B-Mod. In this way, we obtain
the following new Tannaka recognition theorem (for the base category s` of sup-
lattices),

recognition theorem, theorem 8.12: A bounded DCRA is complete if and only if
the liftingA −→ Cmd0(L) of its fiber functor is an equivalence.
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Resumen en castellano de la introducción

Sobre teorı́as de Galois. En el SGA 1, Exposé V section 4, “Conditions axioma-
tiques d’une theorie de Galois”, ([4], ver también [10]) Grothendieck reinterpreta la

teorı́a de Galois como una teorı́a para funtores C
F
−→ Ens<∞, y al hacer esto da el

primer paso hacia múltiples generalizaciones de esta teorı́a. Como veremos en detalle,
se pueden obtener teoremas de representación de topos como instancias de la teorı́a de
Galois; el artı́culo [9] contiene una descripción detallada y organizada de estas general-
izaciones. Referimos al lector interesado a [9], y describimos las teorı́as de Galois con
las que trabajaremos en esta tesis, ambas teorı́as de representación de topos: la Teorı́a
Locálica de Galois de [8] y la extensión de Joyal-Tierney de la teorı́a de Galois en [17].

Caso Neutral. En [8], a partir de un topos E con un punto Ens
p
−→ E, E

p∗=F
−→ Ens; se

construyen un grupo locálico G = `Aut(F) y un levantamiento de F E
F̃
−→ βG al topos

clasificante de G y se prueba:

teorema recognition (teorema B en [8]): E es conexo y atómico si y solo si el
levantamiento es una equivalencia, i.e. E � βG.

Llamamos a E
F
−→ Ens un contexto de Galois (neutral).

Caso no Neutral. En [17], VIII.3, a partir de un topos de Grothendieck arbitrario
E (sobre un topos de base S), se construye su cubrimiento espacial shH −→ E (con

imagen inversa E
F
−→ shH) y se lo considera (si bien no explı́citamente) como un

contexto de Galois: se construye un grupoide locálico G, toda la informacion necesaria

para el levantamiento E
F̃
−→ βG está presente y se prueba:

teorema recognition (teorema VIII.3.2 en [17]): el levantamiento es una equivalencia,
i.e. E � βG.

Llamamos a E
F
−→ shH un contexto de Galois (no-neutral).

Sobre teorı́as de Tannaka. La interpretación de los resultados de Tannaka [27]
como una teorı́a de representaciones de K-esquemas afines fue desarrollada por Saave-
dra Rivano [23], Deligne [6] y Milne [7].

Caso Neutral. Consideramos la descripción que hacen Joyal-Street del caso neutral

de esta teorı́a en [15] como una teorı́a para funtores X
T
−→ K-Vec<∞ a la categorı́a

de K-espacios vectoriales finitos. Se construyen una K-coalgebra L := End∨(T ) y un

levantamiento X
T̃
−→ Cmd<∞(L) a la categorı́a de L-comódulos de dimensión finita, y

se prueba ([15], §7 Theorem 3):
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teorema recognition: si X es abeliana y F es exacto y fiel, entonces el levantamiento es
una equivalencia.

Llamamos a X
T
−→ K-Vec<∞ un contexto de Tannaka (neutral).

Caso no Neutral. Parte de los resultados de [6] pueden ser presentados de la sigu-

iente forma: dados una K-álgebra B y un funtor X
T
−→ B-Modpt f a la categorı́a de

B-módulos proyectivos de tipo finito, se construyen un cogèbroı̈de L := L(T ) sur B

y un levantamiento X
T̃
−→ Cmdpt f (L) a la categorı́a de L-comódulos cuyo B-módulo

subyacente está en B-Modpt f , y se prueba:

teorema recognition: si X es tensorielle sur K ([6] 1.2, 2.1) y F es exacto y fiel,
entonces el levantamiento es una equivalencia.

Llamamos a X
T
−→ B-Modpt f un contexto de Tannaka (no-neutral).

Sobre la relación entre ambas teorı́as. Fuertes similitudes son evidentes a simple
vista, y ya han sido observadas, entre estas diferentes “versiones” de las teorı́as de rep-
resentación de Galois y de Tannaka. Existen varios desarrollos tendientes a relacionar
ambas teorı́as por ejemplo en [22] y en [14], donde la existencia de clausuras de Galois
es esencial, y que abarcan a los topos de Galois pero no la extensión de Joyal-Tierney a
topos atómicos o arbitrarios.

En esta tesis, para relacionar las teorı́as de Galois y de Tannaka realizamos lo sigu-
iente: dado un contexto de Galois como en [8], [17], construimos un contexto de Tan-
naka asociado sobre s`, y al comparar las construcciones de ambas teorı́as en cada
contexto obtenemos nuevos teoremas recognition de tipo tannakiano a partir de los teo-
remas recognition de Galois.
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1 The neutral case over Ens

In this section we construct an explicit (neutral) Tannakian context for the Galois theory
of atomic topoi, and prove the equivalence between its fundamental theorems. Since the
theorem is known for the Galois context, this yields, in particular, a proof of the fun-
damental (recognition) theorem for a new Tannakian context. This example is different
from the additive cases [15], [13], [2], or their generalization [24], where the theorem
is known to hold, and where the unit of the tensor product is always an object of finite
presentation (that is, filtered colimits in the tensor category are constructed as in the
category of sets), which is not the case in our context.

In this section by Galois theory we mean Grothendieck’s Galois theory of progroups
(or prodiscrete localic groups) and Galois topoi [1], [4], as extended by Joyal-Tierney in
[17]. More precisely, the particular case of arbitrary localic groups and pointed atomic
topoi.

For the Galois theory of atomic topoi we follow Dubuc [8], where he develops lo-
calic Galois theory and makes an explicit construction of the localic group of automor-

phisms Aut(F) of a set-valued functor E
F
−→ Ens, and of a lifting E

F̃
−→ βAut(F) into

the topos of sets furnished with an action of the localic group (see 1.46). He proves
in an elementary way1 that when F is the inverse image of a point of an atomic topos,
this lifting is an equivalence [8, Theorem 8.3], which is Joyal-Tierney’s theorem [17,
Theorem 1].

For Tannaka theory we follow Joyal-Street [15] (for the original sources see the
references therein). The construction of the Hopf algebra End∨(T ) of endomorphisms
of a finite dimensional vector space valued functor T can be developed for aV0-valued

functor, X
T
−→ V0 ⊂ V, where V is any cocomplete monoidal closed category, and

V0 a (small) full subcategory of objects with duals, see for example [20], [24], [25].

There is a lifting X
T̃
−→ Cmd0(End∨(T )) into the category of End∨(T )-comodules with

underlying object inV0. For a handy reference and terminology see section A. In [15],
[25] it is shown that in the case of vector spaces, if X is abelian and F is faithful and
exact, the lifting is an equivalence (recognition theorem).

Recall that given a regular category C we can consider the category Rel(C) of re-
lations in C. There is a faithful functor (the identity on objects) C → Rel(C), and any

regular functor C
F
−→ D has an extension Rel(C)

Rel(F)
−→ Rel(D).

The category Rel = Rel(Ens) is a full subcategory of the category s` of sup-lattices,
set Rel = s`0. This determines the base V,V0 of a Tannaka context. Furthermore, a
localic group is the same thing as an Hopf algebra in the category s` which is also a

1meaning, without recourse to change of base and other sophisticated tools of topos theory over an
arbitrary base topos.
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locale (see section 1.1).
Given any pointed topos with inverse image E

F
−→ Ens of a Galois context, we

associate a (neutral) Tannakian context as follows:

βG

!!BBBBBBBB E
F̃oo

F
��

// Rel(E)

T
��

T̃ // Cmd0(H)

xxppppppppppp

Ens // Rel = s`0,

where G = Aut(F), H = End∨(T ), and T = Rel(F).

We prove that F̃ is an equivalence if and only if T̃ is so (Theorem 1.57). The re-
sult is based in two theorems. First, we prove that for any localic group G, there
is an isomorphism of categories Rel(βG) � Cmd0(G) (Theorem 1.37). Second, we
prove that the Hopf algebra End∨(T ) is a locale, and that there is an isomorphism
Aut(F) � End∨(T ) (Theorem 1.55).

In particular, from Theorem 1.57 and the fundamental theorem of localic Galois
theory (Theorem 1.59), we obtain that the following Tannaka recognition theorem holds
in the (neutral) Tannaka context associated to a pointed topos: T̃ is an equivalence if
and only if the topos is connected atomic (Theorem 1.60).
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1.1 Background, terminology and notation
We begin by recalling some facts on sup-lattices, locales and monoidal categories, and
by doing so we fix notation and terminology.

We will consider the monoidal category s` of sup-lattices, whose objects are posets
S with arbitrary suprema

∨
(hence finite infima ∧, 0 and 1) and whose arrows are the

suprema-preserving-maps. We call these arrows linear maps. We will write S also for
the underlying set of the lattice. The tensor product of two sup-lattices S and T is the
codomain of the universal bilinear map S × T −→ S ⊗ T . Given (s, t) ∈ S × T , we
denote the corresponding element in S ⊗ T by s ⊗ t. The unit for ⊗ is the sup-lattice

2 = {0 ≤ 1}. The linear map S ⊗ T
ψ
→ T ⊗ S sending s⊗ t 7→ t⊗ s is a symmetry. Recall

that, as in any monoidal category, a duality between two sup-lattices T and S is a pair
of arrows 2

η
→ T ⊗ S , S ⊗ T

ε
→ 2 satisfying the usual triangular equations (see 1.45).

We say that T is right dual to S and that S is left dual to T , and denote T = S ∧, S = T∨.
Note that since sl is symmetric as a monoidal category, S has a right dual if and only if
it has a left dual, and S ∧ = S ∨.

There is a free sup-lattice functor Ens
`
−→ s`. Given X ∈ Ens, `X is the power

set of X, and for X
f
→ Y , ` f = f is the direct image. This functor extends to a functor

Rel
`
−→ s`, defined on the category Rel of sets with relations as morphisms. A linear

map `X → `Y is the “same thing” as a relation R ⊂ X × Y . In this way Rel can be

identified with a full subcategory Rel
`
↪→ s`. We define s`0 as the full subcategory of

s` of objects of the form `X. Thus, abusing notation, Rel = s`0 ⊂ s` (“=” here is
actually an isomorphism of categories). Recall that Rel is a monoidal category with
tensor product given by the cartesian product of sets (which is not a cartesian product in
Rel). It is immediate to check that `X ⊗ `Y = `(X × Y) in a natural way.

1.1. The functor Rel
`
↪→ s` is a tensor functor, and the identification Rel = s`0 is an

isomorphism of monoidal categories.

The arrows 2
η
→ `X⊗`X, `X ⊗ `X

ε
→ 2, defined on the generators as η(1) =

∨
x x⊗ x

and ε(x ⊗ y) = δx=y determine a duality, and in this way the objects of the form `X have
both duals and furthermore they are self-dual, (`X)∧ = (`X)∨ = `X. Under the isomor-
phism Rel = s`0, ε and η both correspond to the diagonal relation ∆ ⊂ X × X. Du-
als are contravariant functors, if R ⊂ X × Y is the relation corresponding to a linear
map `X → `Y , then the opposite relation Rop ⊂ Y × X corresponds to the dual map
(`Y)∧ → (`X)∧.

1.2. We will abuse notation (see for example (1.6)) by omitting to write the functor

Ens
`
−→ s`0 = Rel, i.e. by denoting by X

f
−→ Y the direct image of f which is the

16



relation given by its graph R f ⊆ X × Y. Rop
f is the relation corresponding to the inverse

image of f , which we will denote by Y
f op

−→ X.

As in any monoidal category, an algebra (or monoid) in s` is an object G with an
associative multiplication G ⊗ G

∗
−→ G which has a unit u ∈ G. If ∗ preserves the

symmetry ψ, the algebra is commutative. An algebra morphism is a linear map which
preserves ∗ and u.

A locale is a sup-lattice G where finite infima ∧ distributes over arbitrary suprema∨
, that is, it is bilinear, and so induces a multiplication G ⊗G

∧
−→ G. A locale morphism

is a linear map which preserves ∧ and 1. In this way locales are commutative algebras,
and there is a full inclusion of categories Loc ⊂ Algs` into the category of commutative
algebras in s`.

1.3. In [17], III.1, p.21, Proposition 1, locales are characterized as those commutative
algebras such that x ∗ x = x and u = 1.

A (commutative) Hopf algebra in s` is a group object in (Algs`)op. A localic group
(resp. monoid) G is a group (resp. monoid) object in the category Sp of localic spaces,
which is defined to be the formal dual of the category of locales, Sp = Locop. There-
fore G can be also considered as a Hopf algebra in s`. The unit and the multiplication
of G in Sp are the counit G

e
−→ 2 and comultiplication G

w
−→ G ⊗ G of a coalge-

bra structure for G in Algs`. The inverse is an antipode G
ι
−→ G. Morphisms corre-

spond but change direction, and we actually have a contravariant equality of categories
(Hop fLoc)op = Loc-Group, where Hop fLoc consists of those Hopf algebras in s` which
happen to be a locale, i.e. which satisfy the conditions of 1.3.

Remark 1.4. Throughout this thesis, a number or symbol above an “≤” or an “=” indi-
cates the previous result that justifies the assertion.

17



1.2 Preliminaries on bijections with values in a locale
As usual we view a relation λ between two sets X and Y as a map (i.e. function of sets)

X × Y
λ
−→ 2. We consider maps X × Y

λ
−→ G with values in an arbitrary sup-lattice G,

that we will call `-relations. Since `(X ×Y) = `X ⊗ `Y , it follows that `-relations are the
same thing that linear maps `X ⊗ `Y

λ
−→ G. The results of this section are established

in order to be used in the next sections, and they are needed only in the case X = Y .

1.5. Consider two `-relations X × Y
λ
−→ G, X′ × Y ′

λ′

−→ G, and two maps X
f
−→ X′,

Y
g
−→ Y ′, or, more generally, two spans (which induce relations that we also denote

with the same letters),

Rp
zzuuuu p′

%%KKKK

X X′,

Sq
yytttt q′

&&LLLL

Y Y ′ R = p′ ◦ pop, S = q′ ◦ qop ,

and a third `-relation R × S
θ
−→ G.

These data give rise to the following diagrams:

♦1 = ♦1( f , g) ♦2 = ♦2( f , g) ♦ = ♦(R, S ) (1.6)

X × Y
λ

""EEEEEE

X × Y ′

f×Y′ $$JJJJJJJ

X×gop 99ttttttt
≡ G ,

X′ × Y ′
λ′

<<yyyyyy

X × Y
λ

""EEEEEE

X′ × Y

X′×g $$JJJJJJJ

f op×Y 99ttttttt
≡ G ,

X′ × Y ′
λ′

<<yyyyyy

X × Y
λ

""EEEEEE

X × Y ′

R×Y′ $$JJJJJJJ

X×S op 99ttttttt
≡ G ,

X′ × Y ′
λ′

<<yyyyyy

expressing the equations:

♦1 : λ′〈 f (a), b′〉 =
∨

g(y)=b′
λ〈a, y〉 , ♦2 : λ′〈a′, g(b)〉 =

∨
f (x)=a′

λ〈x, b〉,

and ♦:
∨

(y, b′)∈S

λ〈a, y〉 =
∨

(a, x′)∈R

λ′〈x′, b′〉.

Remark 1.7. It is clear that diagrams ♦1 and ♦2 are particular cases of diagram ♦. Take
R = f , S = g, then ♦1( f , g) = ♦( f , g), and R = f op, S = gop, then ♦2( f , g) = ♦( f op, gop).

The general ♦ diagram follows from these two particular cases.

Proposition 1.8. Let R, S be any two spans connected by an `-relation θ as above. If
♦1(p′, q′) and ♦2(p, q) hold, then so does ♦(R, S ).
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Proof. We use the elevators calculus, see appendix B (and recall our remark 1.4 on
notation):

X Y ′

������

$$$$$$

S op

X Y

G

�����
λ

$$$$$

♦2
=

X Y ′

������

$$$$$$

q′op

X S

������

######

q

X Y

G

�����
λ

$$$$$

♦2
=

X Y ′

������

$$$$$$

q′op

X

������

$$$$$$

pop

S

R S

G

�����
θ

$$$$$

♦2
=

X

������

$$$$$$

pop

Y ′

R Y ′

������

$$$$$$

q′op

R S

G

�����
θ

$$$$$

♦1
=

X

������

$$$$$$

pop

Y ′

R

������

######

p′

Y ′

X′ Y ′

G

�����
λ′

&&&&&

♦2
=

X

������

######

R

Y ′

X′ Y ′

G

�����
λ′

&&&&&

�

1.9. Two maps X
f
−→ X′, Y

g
−→ Y ′ also give rise to the following diagram:

� = �( f , g) :

X × Y λ

**VVVVVVVVV

f×g
��

≥ G .

X′ × Y ′ λ′

44hhhhhhhh

Proposition 1.10. If either ♦1( f , g) or ♦2( f , g) holds, then so does �( f , g).

Proof. λ〈a, b〉 ≤
∨

g(y)=g(b)

λ〈a, y〉 = λ′〈 f (a), g(b)〉 using ♦1. Clearly a symmetric arguing

holds using ♦2. �

For the rest of this section G is assumed to be a locale.
Consider the following axioms:

1.11. Axioms on an `-relation

ed)
∨

y∈Y λ〈a, y〉 = 1, for each a (everywhere defined).

uv) λ〈x, b1〉 ∧ λ〈x, b2〉 = 0, for each x, b1 , b2 (univalued).

su)
∨

x∈X λ〈x, b〉 = 1, for each b (surjective).

in) λ〈a1, y〉 ∧ λ〈a2, y〉 = 0, for each y, a1 , a2 (injective).

Clearly any morphism of locales G → H preserves these four axioms.

An `-relation λ is a `-function if and only if satisfies axioms ed) and uv). We say that
an `-relation is a `-opfunction when it satisfies axioms su) and in). Then an `-relation is
a `-bijection if and only if it is an `-function and an `-opfunction.
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1.12. Given two `-relations, X × Y
λ
−→ G, X′ × Y ′

λ′

−→ G, the product `-relation λ � λ′

is defined by the composition

X × X′ × Y × Y ′
X×ψ×Y′
−→ X × Y × X′ × Y ′

λ×λ′

−→ G ×G
∧
−→ G

(λ � λ′)〈(a, a′), (b, b′)〉 = λ〈a, b〉 ∧ λ′〈a′, b′〉.

The following is immediate and straightforward:

Proposition 1.13. Each axiom in 1.11 for λ and λ′ implies the respective axiom for the
product λ � λ′. 2

Proposition 1.14. We refer to 1.5: If equations ♦1(p, q) and ♦1(p′, q′) hold, and θ sat-
isfies uv), then equation 1) below holds. Symmetrically, if ♦2(p, q) and ♦2(p′, q′) hold,
and θ satisfies in), then equation 2) below holds.

1) λ〈p(r), b〉 ∧ λ′〈p′(r), b′〉 =
∨

q(v)=b
q′(v)=b′

θ〈r, v〉.

2) λ〈a, q(s)〉 ∧ λ′〈a′, q′(s)〉 =
∨

p(u)=a
p′(u)=a′

θ〈u, s〉.

Proof. We only prove the first statement, since the second one clearly has a symmetric
proof.

λ〈p(r), b〉 ∧ λ′〈p′(r), b′〉 ♦1
=
∨

q(v)=b

θ〈r, v〉 ∧
∨

q′(w)=b′
θ〈r,w〉 =

=
∨

q(v)=b
q′(w)=b′

θ〈r, v〉 ∧ θ〈r,w〉
uv)
=
∨

q(v)=b
q′(v)=b′

θ〈r, v〉. �

We study now the validity of the reverse implication in proposition 1.10.

Proposition 1.15. We refer to 1.5:
1) If λ is ed) and λ′ is uv) (in particular, if they are `-functions), then�( f , g) implies

♦1( f , g).

2) If λ is su) and λ′ is in) (in particular, if they are `-opfunctions), then �( f , g)
implies ♦2( f , g).

Proof. We prove 1), a symmetric proof yields 2).
λ′〈 f (a), b′〉

ed)λ
= λ′〈 f (a), b′〉 ∧

∨
y λ〈a, y〉 =

∨
y λ
′〈 f (a), b′〉 ∧ λ〈a, y〉

(∗)
=∨

g(y)=b′ λ
′〈 f (a), b′〉 ∧ λ〈a, y〉 �

=
∨

g(y)=b′ λ〈a, y〉,
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where for the equality marked with (∗) we used that if g(y) , b′ then

λ′〈 f (a), b′〉 ∧ λ〈a, y〉
�
≤ λ′〈 f (a), b′〉 ∧ λ′〈 f (a), g(y)〉

uv)λ′
= 0.

�

1.16. More generally, consider two spans as in 1.5. We have the following � diagrams:

R × S θ

**UUUUUUUUU

p×q

��
≥ G ,

X × Y λ

44iiiiiiiii

R × S θ

**VVVVVVVVV

p′×q′

��
≥ G .

X′ × Y ′ λ′

44hhhhhhhh

(1.17)

Proposition 1.18. We refer to 1.5: Assume that λ is in), λ′ is uv), and that the �(p, q),
�(p′, q′) diagrams hold. Then if θ is ed) and su), diagram ♦(R, S ) holds.

Proof. Use proposition 1.15 twice: First with f = p′, g = q′, λ = θ, λ′ = λ′ to have
♦1(p′, q′). Second with f = p, g = q, λ = θ, λ′ = λ to have ♦2(p, q). Then use
proposition 1.8. �

Remark 1.19. Note that the diagrams � in 1.17 mean that θ ≤ λ � λ′ ◦ (p, p′) × (q, q′)
(see 1.12). In particular, when G is a locale, there is always an `-relation θ in 1.5, which

may be taken to be the composition R × S
(p,p′)×(q,q′)
−→ X × X′ × Y × Y ′

λ�λ′

−→ G. However,
it is important to consider an arbitrary `-relation θ (see propositions 1.26 and 1.30).

Proposition 1.20. We refer to 1.5: Assume that R and S are relations, that λ, λ′ are `-
bijections, and that �(p, q), �(p′, q′) in (1.17) hold. Take θ = λ � λ′ ◦ (p, p′) × (q, q′).
Then, if ♦(R, S ) holds, θ is an `-bijection.

Proof. We can safely assume R ⊂ X × X′ and S ⊂ Y × Y ′, and λ � λ′ ◦ (p, p′) × (q, q′)
to be the restriction of λ � λ′ to R × S . From the � diagrams (1.17) we easily see that
axioms uv) and in) for θ follow from the corresponding axioms for λ and λ′. We prove
now axiom ed), axiom su) follows in a symmetrical way. Let (a, a′) ∈ R, we compute:∨

(y,y′)∈S

θ〈(a, a′), (y, y′)〉 =
∨

y′

∨
(y,y′)∈S

λ〈a, y〉 ∧ λ′〈a′, y′〉 ♦=

♦
=
∨

y′

∨
(a,x′)∈R

λ′〈x′, y′〉 ∧ λ′〈a′, y′〉 ≥
∨

y′
λ′〈a′, y′〉

ed)
= 1 �

We found convenient to combine 1.18 and 1.20 into:

Proposition 1.21. Let R ⊂ X × X′, S ⊂ Y × Y ′ be any two relations, and X × Y
λ
−→ G,

X′ × Y ′
λ′

−→ G be `-bijections. Let R × S
θ
−→ G be the restriction of λ � λ′ to R × S .

Then, ♦(R, S ) holds if and only if θ is an `-bijection. 2
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1.3 On � and ♦ cones

We consider a pointed topos Ens
f
−→ E, with inverse image f ∗ = F.

1.22. Let Rel(E) be the category of relations in E. Rel(E) is a symmetric monoidal
category with tensor product given by the cartesian product in E (which is not cartesian
in Rel(E)). Every object X has a dual, and it is self dual, the unit and the counit of the
duality are both given by the diagonal relation ∆ ⊂ X × X (see 1.1). There is a faithful
functor E → Rel(E), the identity on objects and the graph on arrows, we will often abuse

notation and identify an arrow with its graph. The functor E
F
−→ Ens has an extension

Rel(E)
Rel(F)
−→ Rel, if R ⊂ X × Y is a relation, then FR ⊂ FX × FY , and Rel(F) is in this

way a tensor functor. We have a commutative diagram:

E //

F
��

Rel(E)

T
��

Ens // Rel � � ` // s` (where T = Rel(F))

1.23. It can be seen that F is an equivalence if and only if T is so. 2

Note that on objects T X = FX and on arrows in E, T ( f ) = F( f ). Since F is the
inverse image of a point, the diagram of F is a cofiltered category, T (X×Y) = T X×TY ,
if Ci → X is an epimorphic family in E, then TCi → T X is a surjective family of sets.
If R is an arrow in Rel(E), T (Rop) = (TR)op.

Definition 1.24. Let H be a sup-lattice furnished with an `-relation T X×T X
λX
−→ H for

each X ∈ E. Each arrow X
f
−→ Y in E and each arrow X

R
−→ Y in Rel(E) (i.e relation

R ↪→ X × Y), determine the following diagrams:

FX × FX
λX

&&NNNNNNNN

F( f )×F( f )

��

≥ H ,

FY × FY

λY
88pppppppp

T X × T X
λX

''NNNNNNNN

T X × TY

TR×TY ((RRRRRRRRR

T X×TRop 66lllllllll
≡ H .

TY × TY

λY
77pppppppp

We say that T X × T X
λX
−→ H is a �-cone if the �(F( f ), F( f )) diagrams hold, and

that it is a ♦-cone if the ♦(TR,TR) diagrams hold. Similarly we talk of ♦1-cones and
♦2-cones if the ♦1(F( f ), F( f )) and ♦2(F( f ), F( f )) diagrams hold. We will abbreviate
♦(R) = ♦(TR,TR), and similarly �( f ), ♦1( f ) and ♦2( f ). If H is a locale and the λX are
`-bijections, we say that we have a ♦-cone or a �-cone of `-bijections.

Proposition 1.25. A family T X × T X
λX
−→ H of `-relations is a ♦-cone if and only if it is

both a ♦1 and a ♦2-cone.
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Proof. Use proposition 1.8 with R = TR, S = TR, p = p′ = π1, q = q′ = π2, λ = λX,
λ′ = λY , and θ = λR. Then, ♦1(π2) and ♦2(π1) imply ♦(R) �

Proposition 1.26. Any �-cone T X × T X
λX
−→ H of `-bijections with values in a locale

H is a ♦-cone (of `-bijections).

Proof. Given any relation R ↪→ X × Y , consider proposition 1.18 with λ = λX, λ′ = λY ,
and θ = λR. �

Definition 1.27. Let T X ×T X
λX
−→ H be a ♦-cone with values in a commutative algebra

H in s`, with multiplication ∗ and unit u. We say that it is compatible if the following
equations hold:

λX〈a, a′〉 ∗ λY〈b, b′〉 = λX×Y〈(a, b), (a′, b′)〉 , λ1(∗, ∗) = u.

Any compatible ♦-cone wich covers H forces H to be a locale, and such a cone is
necessarily a cone of `-bijections (and vice versa). We examine this now:

Given a compatible cone, consider the diagonal X
∆
−→ X × X, the arrow X

π
−→ 1,

and the following ♦1 diagrams:

T X×T X
λX

''NNNNNNNNNNN T X×T X
λX

""DDDDDDDD

T X×T X×T X

T X×∆op
55kkkkkkkkkkkkk

∆×T X×T X ))SSSSSSSSSSSSS ≡ H, T X×1

T X×πop
::uuuuuuuu

π×1 $$IIIIIIII ≡ H.

T X×T X×T X×T X
λX×X

77ppppppppppp
1×1

λ1

<<zzzzzzz

Let a, b1, b2 ∈ T X, and let b stand for either b1 or b2. Chasing (a, b1, b2) in the first
diagram and (a, ∗) in the second it follows:

(1) λX〈a, b1〉 ∗ λX〈a, b2〉 = λX×X〈(a, a), (b1, b2)〉 = δb1=b2 λX〈a, b〉.

(2) λX(a, b) ≤
∨

x λX〈a, x〉 = λ1(∗, ∗) = u.

Proposition 1.28. Let H be a commutative algebra, and T X × T X
λX
−→ H be a com-

patible ♦-cone such that the elements of the form λX(a, a′), a, a′ ∈ T X are sup-lattice
generators. Then H is a locale and ∗ = ∧.

Proof. We have to prove that for all w ∈ H, (L1) w ∗ w = w and (L2) w ≤ u (see 1.3).
It immediately follows from equations (1) and (2) above that (L1) and (L2) hold for

w = λC(a, b). Then clearly (L2) holds for any supremum of elements of this form. To
show (L1) we do as follows:

w ∗w ≤ w ∗ 1 = w always holds, and to show ≥, if w =
∨
i∈I

wi satisfying wi ∗wi = wi

we compute:
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∨
i∈I

wi ∗
∨
i∈I

wi ≥
∨
i∈I

wi ∗ wi
(L1)
=
∨
i∈I

wi.

�

Proposition 1.29. A ♦-cone T X × T X
λX
−→ H with values in a locale H is compatible if

and only if it is a ♦-cone of `-bijections.

Proof. (⇒): Clearly equations (1) and (2) above are the axioms uv) and ed) for λX.
Axioms in) and su) follow by the symmetric argument using the corresponding ♦2 dia-
grams.

(⇐) u = 1 in H, so the second equation in definition 1.27 is just axiom ed) (or su))
for λ1. To prove the first equation we do as follows:

Consider the projections X ×Y
π1
−→ X, X ×Y

π2
−→ Y . The ♦1(π1) and ♦1(π2) diagrams

express the equations:

λX〈a, a′〉 =
∨

y λX×Y〈(a, b), (a′, y)〉, λY〈b, b′〉 =
∨

x λX×Y〈(a, b), (x, b′)〉.

Taking the infimum of these two equations:

λX〈a, a′〉 ∧ λY〈b, b′〉 =
∨

x,y λX×Y〈(a, b), (a′, y)〉 ∧ λX×Y〈(a, b), (x, b′)〉
(∗)
=

(∗)
= λX×Y〈(a, b), (a′, b′)〉, as desired (

(∗)
= justified by uv) for λX×Y). �

Proposition 1.30. Let T X×T X
λX
−→ H be a ♦-cone of `-bijections such that the elements

of the form λX(a, a′), a, a′ ∈ T X are locale generators. Then, any linear map H
σ
−→ G

into another ♦-cone of `-bijections, T X × T X
λX
−→ G, satisfying σλX = λX, preserves

infimum and 1, thus it is a locale morphism.

Proof. By axiom ed) for λ1, in both locales λ1(∗, ∗) = 1. Since σλ1 = λ1, this shows
that σ preserves 1.

To show that infima are preserved it is enough to prove that infima of the form

λX〈a, a′〉 ∧ λY〈b, b′〉, a, a′ ∈ T X, b, b′ ∈ TY are preserved. Take
(X, a)

(Z, c)
f 44iiii

g **UUUU

(Y, b)
in the diagram of F. Then, by proposition 1.14 with λ = λX, λ′ = λY , and θ = λZ, it
follows that the equation λX〈a, a′〉 ∧ λY〈b, b′〉 =

∨
T ( f )(z)=a′ ,T (g)(z)=b′

λZ〈c, z〉 holds in both

locales. The proof finishes using that σ preserves suprema and σλZ = λZ. �

Consider now a (small) site of definition C ⊂ E of the topos E. Suitable cones
defined over C can be extended to E. More precisely:
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Proposition 1.31.
1) Let TC × TC

λC
−→ H be a ♦1-cone (resp. a ♦2-cone) over C. Then, H can be

(uniquely) furnished with `-relations λX for all objects X ∈ E in such a way to determine
a ♦1-cone (resp. a ♦2-cone) over E.

2) If H is a locale and all the λC are `-bijections, so are all the λX.

Proof. 1) Let X ∈ E and (a, b) ∈ T X × T X. Take C
f
−→ X and c ∈ TC such that

a = T ( f )(c). If λX were defined so that the ♦1( f ) diagram commutes, the equation

(1) λX〈a, b〉 =
∨

T ( f )(y)=b

λC〈c, y〉

should hold (see 1.6). We define λX by this equation. This definition is independent of
the choice of c, C, and f . In fact, let D

g
−→ X and d ∈ T D such that a = T (g)(d), and

take (e, E) in the diagram of F, E
h
−→ C, E

`
−→ D such that T (h)(e) = c, T (`)(e) = d

and T ( f h) = T (g`). Then we compute∨
T ( f )(y)=b

λC〈c, y〉
♦1(h)
=

∨
T ( f )(y)=b

∨
T (h)(w)=y

λE〈e, w〉 =
∨

T ( f h)(w)=b

λE〈e, w〉.

From this and the corresponding computation with d, D, and ` it follows:∨
T ( f )(y)=b

λC〈c, y〉 =
∨

T (g)(y)=b

λD〈d, y〉.

Given X
g
−→ Y in E, we check that the ♦1(g) diagram commutes: Let (a, b) ∈ T X × TY ,

take C
f
−→ X such that a = T ( f )(c), and let d = T (g)(a) = T (g f )(c). Then:

λY〈d, b〉 =
∨

T (g f )(z)=b

λC〈c, z〉 =
∨

T (g)(x)=b

∨
T ( f )(z)=x

λC〈c, z〉 =
∨

T (g)(x)=b

λX〈a, b〉.

Clearly a symmetric argument can be used if we assume at the start that the ♦2 diagram
commutes. In this case, λX would be defined by:

(2) λX〈a, b〉 =
∨

T ( f )(y)=a

λC〈y, c〉

with T ( f )(c) = b.

If the TC × TC
λC
−→ H form a ♦1 and a ♦2 cone, definitions (1) and (2) coincide. In

fact, since they are both independent of the chosen c, it follows they are equal to∨
T ( f )(y)=b, T ( f )(c)=a

λC〈c, y〉 =
∨

T ( f )(y)=a, T ( f )(c)=b

λC〈y, c〉

2) It is straightforward and we leave it to the reader. �
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It is worthwhile to consider the case of a locally connected topos. In this case it
clearly follows from the above (abusing notation) that given a, b ∈ T X, if a, b are in
the same connected component C ⊂ X, a, b ∈ TC, then λX(a, b) = λC(a, b), and if they
are in different connected components, then λX(a, b) = 0. When the topos is atomic and
H = Aut(F) (see 1.46), the reverse implication holds, namely, if λX(a, b) = 0, then a, b
must be in different connected components (Theorem 1.58, 1)).
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1.4 The isomorphism Cmd0(G) = Rel(βG)
The purpose of this section is to establish an isomorphism of categories between
Cmd0(G) and Rel(βG), where G is a fixed localic group, or, what amounts to the same
thing, an idempotent Hopf algebra in the monoidal category s` of sup-lattices, as we
explained in section 1.1.

1.32. The category Cmd0(G).

As for any coalgebra, a comodule structure over G is a sup-lattice S ∈ s` together
with a map S

ρ
→ G ⊗ S satisfying the coaction axioms:

(G ⊗ ρ) ◦ ρ = (w ⊗ S ) ◦ ρ, and (e ⊗ S ) ◦ ρ = �S . (1.33)

where w, e are the comultiplication and the counit of G, and �S is the isomorphism
2 ⊗ S � S .

A comodule morphism between two comodules is a map which makes the usual
diagrams commute (see [15]). We define the category Cmd0(G) as the full subcategory
with objects the comodules of the form S = `X, for any set X. If we forget the comodule
structure we have a faithful functor

Cmd0(G)
T
−→ s`0 = Rel.

1.34. The category βG.

The construction of the category βG of sets furnished with an action of G (namely,
the classifying topos of G) requires some considerations (for details see [8]). Given a set
X, we define the locale Aut(X) to be the universal `-bijection in the category of locales,

X × X
λ
−→ Aut(X). It is constructed in two steps: first consider the free locale on X × X,

X×X

−→ Rel(X). Clearly it is the universal `-relation in the category of locales. Second,

Rel(X) −→ Aut(X) is determined by the topology generated by the covers that force the
four axioms in 1.11 (see [28], [8]). Notice that it follows by definition that the points
of the locales Rel(X) and Aut(X) are the relations and the bijections of the set X. Given
(x, y) ∈ X × X, we will denote 〈x | y〉 = 〈x, y〉 = λ〈x, y〉 indistinctly in both cases. We
abuse notation and omit to indicate the associated sheaf morphism Rel(X) −→ Aut(X).
The elements of the form 〈x | y〉 generate both locales by taking arbitrary suprema of
finite infima.

It is straightforward to check that the following maps are `-bijections.

w : X × X −→ Aut(X) ⊗ Aut(X), w〈x | y〉 =
∨

z
〈x | z〉 ⊗ 〈z | y〉 ,

e : X × X −→ 2, e〈x | y〉 = δx=y.

ι : X × X −→ Aut(X), ι〈x | y〉 = 〈y | x〉 .
(1.35)
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It follows (from the universal property) that they determine locale morphisms with
domain Aut(X). They define a coalgebra structure on the locale Aut(X), which further-
more results a Hopf algebra (or localic group).

An action of a localic group G in a set X is defined as a localic group morphism

G
µ̂
−→ Aut(X). This corresponds to a Hopf algebra morphism Aut(X)

µ
−→ G, which is

completely determined by its value on the generators, that is, an `-bijection X×X
µ
−→ G,

that in addition satisfies

wµ = (µ ⊗ µ)w , eµ = e , µι = ιµ. (1.36)

(the structures in both Hopf algebras are indicated with the same letters).
As we shall see in Proposition 1.40, the equation µι = ιµ follows from the other

two. That is, any action of G viewed as a monoid is automatically a group action.
Given two objects X, X′ ∈ βG, a morphism between them is a function between the

sets X
f
−→ X′ satisfying µ〈a|b〉 ≤ µ′〈 f (a)| f (b)〉. Notice that this is a � diagram as in

section 1.2.

If we forget the action we have a faithful functor βG F
−→ Ens (which is the inverse

image of a point of the topos, see [8] Proposition 8.2). Thus, we have a commutative
square (see 1.22):

βG //

F
��

Rel(βG)

Rel(F)
��

Ens // Rel.
We have the following theorem, that we will prove in the rest of this section.

Theorem 1.37. There is an isomorphism of categories making the triangle commuta-
tive:

Cmd0(G) = //

T ""FFFFFFFFF Rel(βG)

Rel(F)
||zzzzzzzz

s`0 = Rel.

The identification between relations R ⊂ X × X′ and linear maps `X → `X′ lifts to the
upper part of the triangle. 2

Recall that since the functor F is the inverse image of a point, it follows that mono-
morphisms of G-sets are injective maps.

Proposition 1.38. Let f : X → X′ a morphism of G-sets. Then for each a, b ∈ X,

µ′〈 f (a)| f (b)〉 =
∨

f (x)= f (b)

µ〈a|x〉.

In particular, if f is a monomorphism, we have µ′〈 f (a)| f (b)〉 = µ〈a|b〉.
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Proof. Since the actions are `-bijections, in particular `-functions, by proposition 1.15
the � diagram implies the ♦1 diagram. The statement follows by taking (a, f (b)) ∈
X × X′. �

Proposition 1.38 says that the subobjects Z ↪→ X of an object X in βG are the subsets
Z ⊂ X such that the restriction of the action Z × Z ⊂ X × X

µ
−→ G is an action on Z. We

have:

Proposition 1.39. Let X be a G-set and Z ⊂ X any subset. If the restriction of the action
to Z is an `-bijection, then it is already an action.

Proof. We have to check the equations in 1.36. The only one that requires some care
is the first. Here it is convenient to distinguish notationally as wZ, wX and w the
comultiplications of Aut(Z), Aut(X) and G respectively. By hypothesis we have (1)
wµ〈a|b〉 = (µ ⊗ µ)wX〈a|b〉 =

∨
x∈X

µ〈a|x〉 ⊗ µ〈x|b〉. We claim that when a, b ∈ Z, this

equation still holds by restricting the supremum to the x ∈ Z, which is the equation
wµ〈a|b〉 = (µ ⊗ µ)wZ. In fact, from axioms ed) and su) for µ on Z it follows (2)
1 =
∨

y, z ∈Z

µ〈a|y〉 ⊗ µ〈z|b〉. Then, the claim follows by taking the infimum in both sides of

equations (1) and (2), and then using the axioms uv) and in) for µ on X. �

Proposition 1.40. Given a localic group G and a localic monoid morphism G
µ̂
→

Rel(X), there exists a unique action of G in X such that

Rel(X) G,
µ̂oo

µ̂{{w
w

w
w

i.e. Rel(X)
µ //

%%KKKKKKKKK G.

Aut(X)

eeKKKKKKKKK

Aut(X)
µ

;;w
w

w
w

Proof. µ is determined by an `-relation X × X
µ
−→ G preserving w and e (see equations

1.36). It factorizes through Aut(X) provided it is an `-bijection, and the factorization
defines an action if it also preserves ι.

Consider the following commutative diagram

X × X w //

µ

��

e

||yyyyyyyyy
Rel(X) ⊗ Rel(X)

µ⊗µ

��
2

u
""EEEEEEEEE G w //eoo G ⊗G

ι⊗G
��

G⊗ι
��

G G ⊗G.∧oo
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Chasing an element (b, b) ∈ X×X all the way down to G using the arrow G⊗ ι it follows∨
y

µ〈b|y〉 ∧ ιµ〈y|b〉 = 1. Thus, in particular, we have (1)
∨

y

µ〈b|y〉 = 1. Chasing in the

same way an element (a, b) with a , b, but this time using the arrow ι ⊗ G, it follows∨
x

ιµ〈a|x〉 ∧ µ〈x|b〉 = 0. Thus (2) ιµ〈a|x〉 ∧ µ〈x|b〉 = 0 for all x.

We will see now that ιµ ≤ µι (since ι2 = id, it follows that also µι ≤ ιµ).

ιµ〈a|b〉
(1)
= ιµ〈a|b〉 ∧

∨
y

µ〈b|y〉 =
∨

y

ιµ〈a|b〉 ∧ µ〈b|y〉
(2)
= ιµ〈a|b〉 ∧ µ〈b|a〉, since all the

other terms in the supremum are 0. Then ιµ〈a|b〉 ≤ µ〈b|a〉 = µι〈a|b〉.

Thus we have ιµ〈a|b〉 = µι〈a|b〉 (= µ〈b|a〉). With this, it is clear from the equations
(1) and (2) above that the four axioms 1.11 of an `-bijection hold. �

Proposition 1.41. There is a bijection between the objects of the categories Cmd0(G)
and Rel(βG).

Proof. Since (`X)∧ = `X, we have a bijection of linear maps

`X
ρ // G ⊗ `X

`X ⊗ `X
µ // G.

As with every duality (ε, η), µ is defined as the composition

µ : `X ⊗ `X
ρ⊗`X // G ⊗ `X ⊗ `X G⊗ε // G.

And conversely, we construct ρ as the composition

ρ : `X
`X⊗η // `X ⊗ `X ⊗ `X

µ⊗`X // G ⊗ `X.

It is easy to check (for example, using the elevators calculus) that that ρ satisfies equa-
tions 1.33 if and only if µ satisfies the first two equations 1.36 (by proposition 1.40, such
a µ satisfies also the third equation). �

The product of two G-sets X and X′ is equipped with the action given by the product
`-relation µ � µ′ (1.12), which is an action by proposition 1.13.

An arrow of the category Rel(βG) is a monomorphism R ↪→ X × X′, in particular, a
relation of sets R ⊂ X × X′. It follows from propositions 1.38 and 1.39, that a relation
R ↪→ X × X′ in the category βG is the same thing that a relation of sets R ⊂ X × X′ such
that the restriction of the product action to R is still an `-bijection (on R). The following
proposition finishes the proof of theorem 1.37.
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Proposition 1.42. Let X, X′ be any two G-sets, and R ⊂ X × X′ a relation on the
underlying sets. Then, R underlines a monomorphism of G-sets R ↪→ X × X′ if and only
if the corresponding linear map R : `X → `X′ is a comodule morphism.

Proof. Let θ be the restriction of the product action µ × µ′ to R. We claim that the
diagram expressing that R : `X → `X′ is a comodule morphism is equivalent to the
diagram ♦(R,R) in 1.5. The proof follows then by proposition 1.21.

proof of the claim: It can be done by chasing elements in the diagrams, or more
generally by using the elevators calculus explained in appendix B:

The comodule morphism diagram is the equality

`X

�����
η ***** `X

����
R$$$$

�����
η +++++

`X
,,,,,
µX

`X

�����
`X

�����
R$$$$$ = `X′

.....
µX′

`X′

�����
`X′

G `X′ G `X′,

(1.43)

while the diagram ♦ is

`X

�����
η ***** `X′ `X

����
R$$$$ `X′

`X `X `X

����
R$$$$ `X′ = `X′

/////
µX′

`X′

�����

`X
,,,,
µX

`X

����
`X′

*****
ε

`X′

�����
G.

G

(1.44)

Recall that the triangular equations of a duality pairing are:

�����
&&&&&

η

X Y

�����
&&&&&

ηX Y
X Y

&&&&&
ε

X

�����
X = X XXandXX Y

&&&&&
ε

X

�����
Y X = X

X Y.
X Y

(1.45)

Proof of (1.43) =⇒ (1.44):

`X

�����
,,,,,

η

`X′ `X

�����
,,,,,

η

`X′ `XR

����
�����

*****

η

`X′

`X `X `XR

����
`X′

=

`X
,,,,
µX

`X

����
`XR

����
`X′

(1.43)
=

`X′

00000
µX′

`X′

�����
`X′ `X′

=

`X
,,,,
µX

`X

����
`X′

,,,,,
ε

`X′

�����
G `X′

,,,,,
ε

`X′

�����
G `X′

*****
ε

`X′

�����

G
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`XR

����
�����

*****

η

`X′ `XR

����
`X′

=

`XR

����
`X′

=

`X′ `X′ `X′

*****
ε

`X′

�����
(4)
=

`X′ `X′ `X′

11111
µX′

`X′

�����

`X′

00000
µX′

`X′

����
`X′

00000
µX′

`X′

����
G.

G G

Proof of (1.44) =⇒ (1.43):

`XR
���

����
....

η

`X
����

....
η

`X
����

....
η

`X′ `X′ `X′
=

`XR
���

`X′ `X′
(1.44)

=

`X
����

0000
η

`X′ `X′
=

G

���
µX′

555

`X′ `X′ `X′ `X′ `X `X `XR
���

`X′ `X

G

���
µX′

555

`X′ `X `X `X′ `X′ `X′

G




µX
111 ����

ε
0000

`X′

`X
����

0000
η

`X
����

0000
η

`X
����

0000
η

=

`X `X `XR
��� (4)

=

`X `X `XR
��� =

`X `X `XR
���

`X `X `X′

����
....

η

`X `X `X′ G




µX
111

`X′.

G




µX
111

`X′ `X′ `X′ G




µX
111

`X′
����

ε
0000

`X′

�
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1.5 The Galois and the Tannakian contexts
The Galois context.

1.46. The localic group of automorphisms of a functor.

Let Ens
f
−→ E be any pointed topos, with inverse image f ∗ = F, E

F
−→ Ens. The

localic group of automorphisms of F is defined to be the universal�-cone of `-bijections
in the category of locales, as described in the following diagram (see [8]):

FX × FX
λX

''OOOOOOOOOOO φX

&&
F( f )×F( f )

��

≥ Aut(F)
φ //_______ H.

FY × FY

λY

77ppppppppppp
φY

88

(φ a locale morphism)

(1.47)

From propositions 1.26 and 1.31 it immediately follows

Proposition 1.48. The localic group Aut(F) exists and it is isomorphic to the localic
group of automorphisms of the restriction of F to any small site of definition for E. 2

A point Aut(F)
φ
−→ 2 corresponds exactly to the data defining a natural isomor-

phism of F. Given (a, b) ∈ FX × FX, we will denote 〈X, a|b〉 = λX(a, b). This element
of Aut(F) corresponds to the open set {φ | φX(a) = b} of the subbase for the product
topology in the set of natural isomorphisms of F. For details of the construction of this
locale see [8].

The `-bijections λX determine morphisms of locales Aut(FX)
µX
−→ Aut(F),

µX〈a|b〉 = 〈X, a|b〉. It is straightforward to check that the following three families of
arrows are �-cones of `-bijections:

FX × FX
wX
−→ Aut(F) ⊗ Aut(F), wX(a, b) =

∨
x∈FX

〈X, a|x〉 ⊗ 〈X, x|b〉,

FX × FX
ιX
−→ Aut(F), ιX(a, b) = 〈X, b|a〉,

FX × FX
eX
−→ 2, eX(a, b) = δa=b.

(1.49)

By the universal property they determine localic morphisms with domain Aut(F) which
define a localic group structure on Aut(F), such that µX becomes an action of Aut(F) on

FX, and such that for any X
f
−→ Y ∈ E, F( f ) is a morphism of actions. In this way

there is a lifting F̃ of the functor F into βG, E
F̃
−→ βG, for G = Aut(F).
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1.50. The (Neutral) Tannakian context associated to pointed topos.
For generalities, notation and terminology concerning Tannaka theory see appendix

A. We consider a topos with a point Ens
f
−→ E, with inverse image f ∗ = F, E

F
−→ Ens.

We have a diagram (see 1.22):

E //

F
��

Rel(E)

Rel(F)
��

Ens // Rel = s`0

This determines a Tannakian context as in appendix A, with X = Rel(E), V = s`,
V0 = Rel = s`0 and T = Rel(F). Furthermore, in this case X, V are symmetric, T is
monoidal (1.1, 1.22), and every object of X has a right dual. Thus, the (large) coend
End∨(T ) (which exists, as we shall see) is a (commutative) Hopf algebra (proposition
A.5).

The universal property which defines the coend End∨(T ) is that of a universal ♦-cone
in the category of sup-lattices, as described in the following diagram:

T X × T X
λX

''OOOOOOOOOOO φX

&&
T X × TY

TR×TY &&NNNNNNNNNNNN

T X×TRop
77pppppppppppp
≡ End∨(T )

φ //______ H.

TY × TY

λY

77oooooooooooo
φY

88

(φ a linear map)

Given (a, b) ∈ T X× T X, we will denote [X, a, b] = λX〈a, b〉.
From proposition 1.31 and 1.25 it immediately follows:

Proposition 1.51. The large coend defining End∨(T ) exists and can be computed by
the coend corresponding to the restriction of T to the full subcategory of Rel(E) whose
objects are in any small site C of definition of E. 2

By the general Tannaka theory we know that the sup-lattice End∨(T ) is a Hopf alge-
bra in s`. The description of the multiplication m and a unit u given below proposition
A.4 yields in this case, for X, Y ∈ X (here, F(1C) = 1Ens = {∗}):

m([X, a, a′], [Y, b, b′]) = [X × Y, (a, b), (a′, b′)], u(1) = [1C, ∗, ∗]. (1.52)

This shows that T X × T X
λX
−→ End∨(T ) is a compatible ♦-cone, thus by proposi-

tion 1.28 it follows that End∨(T ) is a locale, with top element [1C, ∗, ∗] and infimum
[X, a, a′] ∧ [Y, b, b′] = [X × Y, (a, b), (a′, b′)].

We let the reader check the following:
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1.53. The descriptions in the general Tannaka theory of the comultiplication w, the
counit ε and the antipode ι (see appendix A) yield in this case the formulae

wX(a, b) =
∨
x∈FX

[X, a, x] ⊗ [X, x, b], ιX(a, b) = [X, b, a] and εX(a, b) = δa=b.

2

1.54. The isomorphism End∨(T ) � Aut(F).

From propositions 1.26 and 1.29 it immediately follows (recall that T = F on E) that

T X × T X
λX
−→ Aut(F) and T X × T X

λX
−→ End∨(T ) are both �-cones and ♦-cones of `-

bijections. From proposition 1.30 and the respective universal properties it follows that
they are isomorphic locales respecting the cone maps λX. Furthermore, by the formulae
in 1.49 and 1.53 we see that under this isomorphism the comultiplication, counit and
antipode correspond. Thus, we have:

Theorem 1.55. Given any pointed topos, there is a unique isomorphism of localic
groups End∨(T ) � Aut(F) commuting with the λX. 2
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1.6 The main Theorems

A pointed topos Ens
f
−→ E, with inverse image f ∗ = F, E

F
−→ Ens, determines a

situation described in the following diagram:

βG //

��5555555555555555
Rel(βG) = // Cmd0(G) = // Cmd0(H)

��������������������

E

F
��

//

F̃
ccGGGGGGGGGG

Rel(E)

Rel(F̃)
ffLLLLLLLLLL

T
��

T̃
88qqqqqqqqqqq

Ens // Rel = s`0 ⊂ s`.

(1.56)

where G = Aut(F), T = Rel(F), H = End∨(T ) and the two isomorphisms in the first
row of the diagram are given by Theorems 1.37 and 1.55.

Theorem 1.57. The (Galois) lifting functor F̃ is an equivalence if and only if the (Tan-
naka) lifting functor T̃ is such. 2

Assume now that E is a connected atomic topos. The full subcategory of connected
objects C ⊂ E furnished with the canonical topology is a small site for E. In [8] it is

proved that the diagram of the functor F restricted to this site C
F
−→ Ens is a poset

(This fact distinguishes atomic topoi from general locally connected topoi), an explicit
construction of Aut(F) is given, and the following key result of localic Galois Theory is
proved:

Theorem 1.58 ([8] 6.9, 6.11).

1) For any C ∈ C and (a, b) ∈ FC × FC, 〈C, a|b〉 , 0.

2) Given any other (a′, b′) ∈ FC′ × FC′, if 〈C, a|b〉 ≤ 〈C′, a′|b′〉, then there exists

C
f
−→ C′ in C such that a′ = F( f )(a), b′ = F( f )(b).

The following theorem follows from 1.58 by a formal topos theoretic reasoning.

Theorem 1.59 ([8] 8.3). The (Galois) lifting functor F̃ is an equivalence if and only if
the topos E is connected atomic. 2

From 1.57 and 1.59 we have:

Theorem 1.60. The (Tannaka) lifting functor T̃ is an equivalence if and only if the topos
E is connected atomic. 2
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Resumen en castellano de la sección 1

En esta sección, con “teorı́a de Galois” nos referimos a la Teorı́a Locálica de Galois
desarrollada por Dubuc en [8], y por “teorı́a de Tannaka” nos referimos a la general-
ización a una categorı́a monoidal arbitraria de base V de las definiciones y construc-
ciones de [15] que hacemos en el apéndice.

Como hemos mencionado en la introducción, se tienen las siguientes fuertes simil-
itudes entre ambas teorı́as: tanto en la teorı́a de Galois como en la teorı́a de Tannaka, a
partir de un contexto se construye un objeto (G o L) y un levantamiento a la categorı́a
de representaciones del objeto. Los teoremas recognition son: el levantamiento es una
equivalencia de categorı́as si y solo si el contexto satisface ciertas condiciones (“si X es
abeliana y F es exacto y fiel para la teorı́a neutral de Tannaka sobre espacios vectoriales,
o ”E es conexo y atómico“ para la Teorı́a Locálica de Galois).

Sin embargo, estas similitudes son solo entre la ”forma“ de ambas teorı́as, y no
nos dejan a priori traducir ningún resultado de una teorı́a a la otra, en particular la
Teorı́a Locálica de Galois y la teorı́a neutral de Tannaka sobre espacios vectoriales son
independientes. Pero lo que sı́ podemos hacer es encontrar el contexto de Tannaka
correspondiente al contexto de Galois, y lo hacemos tomando relaciones: a partir de

E
F
−→ Ens construimos X

T
−→ V := Rel(E)

Rel(F)
−→ Rel ↪→ s` y probamos las siguientes

compatibilidades:

1. Los objetos construidos en ambos contextos son isomorfos como grupos locálicos
(G = L, i.e. O(G) = L donde O(G) es el local correspondiente al espacio G)

2. Para cualquier grupo locálico G, las categorı́as de representaciones Cmd0(O(G))
y Rel(βG) son equivalentes.

Con estas compatibilidades, podemos completar el siguiente diagrama que relaciona
la teorı́a de Galois con una teorı́a de Tannaka sobre la categorı́a s` de sup-reticulados:

βG //

��5555555555555555
Rel(βG) = // Cmd0(O(G)) = // Cmd0(L)

���������������������

E

F
��

//

F̃
ccGGGGGGGGGG

Rel(E)

Rel(F̃)
ggNNNNNNNNNNN

T
��

T̃
77oooooooooooo

Ens // Rel = s`0 ⊂ s`.

Obtenemos inmediatamente que el levantamiento de Tannaka T̃ es una equivalen-
cia si y solo si F̃ lo es (Theorem 1.57). Entonces, a partir del teorema fundamental de
la Teorı́a Locálica de Galois (teorema 1.59, teorema B en [8]), obtenemos el siguiente

teorema recognition de Tannaka para el contexto (neutral) de Tannaka X
T
−→ V =
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Rel(E)
Rel(F)
−→ Rel ↪→ s` asociado a un topos punteado: T̃ es una equivalencia si y solo si

el topos es conexo y atómico (teorema 1.60). Estos topos son entonces un nuevo ejem-
plo concreto donde el teorema recognition vale, completamente diferente a los otros
casos en los que se sabe que el teorema recognition de Tannaka vale, en los cuales la
unidad del producto tensorial es un objeto de presentación finita. Simultáneamente, los
topos punteados no atómicos dan ejemplos donde el levantamiento no es una equiva-
lencia, es decir que las categorı́as de relaciones de estos topos no son categorı́as tan-
nakianas neutrales (veremos en las siguientes secciones que con categorı́as tannakianas
no-neutrales).
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2 Relations, functions and bijections in a topos
We begin this section with the first previous steps necessary to develop the results of
section 1 over an arbitrary elementary topos.

Following Joyal and Tierney in [17], Introduction p.vii, we fix an elementary topos
S (with subobject classifier Ω), and work in this universe in the internal language of
this topos, as we would in naive set theory (but without axiom of choice or law of the
excluded middle). This means for us that:

• We are able to consider elements x of objects X of S, a situation which we denote

by x ∈ X, and to apply arrows X
f
−→ Y to obtain f (x) ∈ Y .

• We may consider equality of such elements, given by the characteristic function

X ×X
δX
−→ Ω of the diagonal X

4
−→ X ×X. We will denote ~x= x′� = δ(x, x′) ∈ Ω,

for x, x′ ∈ X.

• A internal structure for an object X in S becomes in this way a structure as in set
theory, for example we think in this way of the Heyting algebra structure of Ω

(see [29], 5.13)

• Also following the work of [17], we won’t make the distinction between elements
of XY and arrows Y −→ X in S, though of course there is. More precisely, to
prove a statement about the elements of XY , we will consider arrows Y −→ X.

We don’t claim originality of the main results of this section up to 2.38 (that ΩX is
the free sup-lattice on X, that functional relations correspond to arrows of S), as most
of these can be found in the references or are folkloric, but we make nevertheless a
complete development including full (sketches of the) proofs since we do these in a way
that can be generalized to any sup-lattice (or locale) G in place of Ω in section 2.1.

Remark 2.1. Given x, y ∈ X, f ∈ YX, we have ~x = y� ≤ ~ f (x) = f (y)�. f is a
monomorphism if and only if the equality holds (for every x, y ∈ X).

Proof. Consider the commutative diagram 1 :
X × X

( f , f ) //

2

Y × Y
δY //

p.b.

Ω

X

4

OO

f // Y

4

OO

// 1

1

OO
It yields a in-

clusion of subobjects of X × X that is carried via the isomorphism
S ub(X × X) � [X × X,Ω] to the desired inequality δX ≤ δY ◦ ( f , f ).

Also, f is a monomorphism if and only if 2 is a pull-back, if and only if 1 is so, if
and only if δX = δY ◦ ( f , f ). �

Proposition 2.2. For each a, b ∈ Ω, a ∧ ~a=b� ≤ b.
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Proof. Consider, as in [29] p.137, Ω1 −→ Ω × Ω the equalizer of ∧ and π1, with
classifying map ⇒, and denote ~a ≤ b� = ⇒ (a, b). Then it is enough to show that
(∗) : ~a=b� ≤ ~a≤b� since by the adjunction ∧ a ⇒ we have a ∧ ~a≤b� ≤ b.

In fact (*) holds because Ω
4
−→ Ω × Ω is contained in Ω1 −→ Ω × Ω as subobjects

of Ω × Ω, since 4 equalizes ∧ and π1. This yields the inequality of the characteristic
functions ~(−)= (−)� ≤ ~(−)≤ (−)�. �

2.3. Relations in a topos.
A relation between X and Y is a subobject R ↪→ X × Y or, equivalently, an ar-

row X × Y
λ
−→ Ω. Relations are composed using pullbacks and image factorizations

in S, or equivalently if they are given as X × Y
λ
−→ Ω, Y × Z

µ
−→ Ω by the formula

c(x, z) =
∨

y λ(x, y) ∧ µ(y, z), i.e. matrix multiplication. This yields a category
Rel = Rel(S) of relations in S. We have the following correspondence:

(in particular for the diagonal 4)

R ↪→ X × Y a relation X
4
↪→ X × X the identity relation

X × Y
λ
−→ Ω a relation X × X

δ
−→ Ω the identity relation

Y
λ∗

−→ ΩX its inverse image X
{}
−→ ΩX

X
λ∗
−→ ΩY its direct image

λ∗(y)(x) = λ(x, y) = λ∗(x)(y) {y}(x) = ~x=y� = {x}(y)

(2.4)

Lemma 2.5. For each x, x1, x2 ∈ X, we have

i)
∨
y∈X

~x=y� = 1, ii)~x= x1� ∧ ~x= x2� ≤ ~x1 = x2�.

Proof. Only ii) requires a proof. The pull-back of monomorphisms

X
4

��

4 // X × X
f
��

X × X
g // X × X × X,

where f (x, x1) = (x, x1, x) and g(x, x2) = (x, x, x2), computes the intersection
{(x, x1, x2)|x = x1} ∩ {(x, x1, x2)|x = x2} = 4(X) ⊆ X × X × X.

Now the commutative square
X × X × X

π2,3 // X × X
δX // Ω

X

4

OO

// 1

1

OO
shows the inclusion

of subobjects {(x, x1, x2)|x = x1} ∩ {(x, x1, x2)|x = x2} ⊆ {(x, x1, x2)|x1 = x2} which, when
translated to the characteristic functions, yields the desired inequality. �
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Remark 2.6. Lemma 2.5 says that X × X
δX
−→ Ω is a function in the sense of definition

2.31 below.

2.7. On the structure of ΩX.
The power set PX = ΩX has the sup-lattice (and locale) structure given pointwise by

the structure of Ω ([17], I.1 p.1). Via the isomorphism s` � Ω-Mod ([17], II.1 Propo-
sition 1 p.8), we obtain a Ω-module structure for ΩX which is given by the canonical
isomorphism Ω ⊗ΩX ·

−→ ΩX, (a · θ)(x) = a ∧ θ(x).

Lemma 2.8. For each θ ∈ ΩX, x, y ∈ X, we have θ(x) ∧ ~x=y� ≤ θ(y)

Proof. Recall remark 1.4. θ(x) ∧ ~x=y�
2.1
≤ θ(x) ∧ ~θ(x)=θ(y)�

2.2
≤ θ(y). �

Proposition 2.9. For each θ ∈ ΩX, θ =
∨
x∈X

θ(x) · {x}. This shows how any arrow

X
f
−→ M into a Ω-module can be extended uniquely to ΩX as f (θ) =

∨
x∈X

θ(x) · f (x),

so the singleton X
{}
−→ ΩX is a free Ω-module structure on X (i.e. a free sup-lattice

structure, cf. [17], II.1 p.8).

Proof. We can show the equality pointwise, we have to show that for each y ∈ X,
θ(y) =

∨
x∈X(θ(x) · {x})(y) =

∨
x∈X θ(x) ∧ ~x = y�. The inequality ≥ is given by lemma

2.8, and the inequality ≤ is obtained by taking x = y. �

Lemma 2.10. For each, x, y ∈ X, we have ~x=y� · {x} ≤ {y} in ΩX.

Proof. We can show the inequality pointwise, for each z ∈ X,

(~x=y� · {x})(z) = ~x=y� ∧ ~x=z�
2.5
≤ ~y=z� = {y}(z).

�

The following lemma will be the key for many following computations.

Lemma 2.11. If L is a Ω-module (i.e. a sup-lattice), then any arrow f ∈ LX satisfies

~x=y� · f (x) = ~x=y� · f (y).

Proof. By symmetry it is enough to show that ~x = y� · f (x) ≤ ~x = y� · f (y), i.e.

~x=y� · f (x) ≤ f (y). Consider the extension ΩX f
−→ L as a Ω-module morphism given

by proposition 2.9. Then

~x=y� · f (x) = f (~x=y� · {x})
2.10
≤ f ({y}) = f (y).

�
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Remark 2.12. If L is a locale, we have a unique locale morphism Ω −→ L ([17], II.1
p.8), then we can think that the elements of Ω are in L, in a way that is compatible with
the structure of L (like we think of Z in any ring R).

Corollary 2.13. Given any arrow Y
f
−→ L into a locale L, we have:

f (x) ∧ f (y) ≤ ~x=y� ⇐⇒ f (x) ∧ f (y) = ~x=y� · f (x) = ~x=y� · f (y).

�

Lemma 2.14. The singleton arrow Y
{}
−→ ΩY determines a presentation of the locale

ΩY in the following sense:

i) 1 =
∨
y∈Y

{y}, ii) {x} ∧ {y} ≤ ~x=y�.

Given any other arrow Y
f
−→ L into a locale L such that:

i) 1 =
∨

y

f (y), ii) f (x) ∧ f (y) ≤ ~x=y�

there exists a unique locale morphism ΩY f
−→ L such that f ({y}) = f (y).

Proof. Equations i) and ii) for {}, when considered pointwise, are the equations in
lemma 2.5.

Now, given Y
f
−→ L by proposition 2.9 there is a unique Ω-module morphism

ΩY f
−→ L such that f ({y}) = f (y). Since equation i) holds in both locales, f preserves 1.

Since equation ii) holds in both locales and is equivalent to f (x) ∧ f (y) = ~x=y� · f (x)
by corollary 2.13, f preserves ∧. �

Remark 2.15. By looking at the proof, we see that we have proved that given any arrow

Y
f
−→ L into a locale, its extension as a Ω-module morphism to ΩY preserves 1 if and

only if equation i) holds in L, and preserves ∧ if and only if equation ii) holds in L.

2.16. The four axioms for relations.
The following axioms for relations are considered in [28], see also [11] and compare
with [12] and [19], 16.3.

Definition 2.17. A relation X × Y
λ
−→ Ω is:

ed) Everywhere defined, if for each x ∈ X,
∨
y∈Y

λ(x, y) = 1.

uv) Univalued, if for each x ∈ X, y1, y2 ∈ Y, λ(x, y1) ∧ λ(x, y2) ≤ ~y1 =y2�.

su) Surjective, if for each y ∈ Y,
∨
x∈X

λ(x, y) = 1.

in) Injective, if for each y ∈ Y, x1, x2 ∈ X, λ(x1, y) ∧ λ(x2, y) ≤ ~x1 = x2�.
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Remark 2.18. Notice the symmetry between ed) and su), and between uv) and in).
Many times in this thesis we will work with axioms ed) and uv), but symmetric state-
ments always hold with symmetric proofs.

Remark 2.19. By corollary 2.13 axiom uv) is equivalent to:
uv) for each x ∈ X, y1, y2 ∈ Y, λ(x, y1) ∧ λ(x, y2) = ~y1 =y2� · λ(x, y1).

By remark 2.15, we obtain:

Proposition 2.20. Consider a relation λ and its inverse image ΩY λ∗

−→ ΩX. λ∗ respects
1 if and only if λ satisfies axiom ed), and λ∗ respects ∧ if and only if λ satisfies axiom
uv).

Proof. Consider Y
λ∗

−→ ΩX. λ is ed) if and only if for each x ∈ X,
∨

y λ
∗(y)(x) = 1. Since

the structure of ΩX is given pointwise, this happens if and only if
∨

y λ
∗(y) = 1, which

by remark 2.15 happens if and only if the extension ΩY λ∗

−→ ΩX respects 1. We have a
similar situation for axiom uv) that we leave for the reader to check. �

2.21. The inverse and the direct image of a relation.
Using proposition 2.9, we can continue the correspondences of (2.4) as

X × Y
λ
−→ Ω a relation

ΩY λ∗

−→ ΩX a Ω-module morphism

ΩX λ∗
−→ ΩY a Ω-module morphism

λ∗({y})(x) = λ(x, y) = λ∗({x})(y)

(2.22)

λ∗({y}) =
∨
x∈X

λ(x, y) · {x}, λ∗({x}) =
∨
y∈Y

λ(x, y) · {y}

2.23. Given X × Y
λ
−→ Ω, Y × Z

µ
−→ Ω, by (2.22) the composition µ∗λ∗ of their

direct images maps {x} to
∨
z∈Z

∨
y∈Y

λ(x, y) ∧ µ(y, x) · {z}, which is the direct image of their

composition as relations defined in 2.3. This yields a full-and-faithful inclusion functor

Rel // (−)∗ // s`

X × Y
λ
−→ Ω

� //
ΩX λ∗
−→ ΩY

Remark 2.24. Note that the product of S is not a product in Rel, it is instead a tensor
product that is mapped via this inclusion to the tensor product ⊗ of s`, since
ΩX×Y = ΩX ⊗ΩY .
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2.25. Arrows versus functions.
Consider an arrow X

f
−→ Y in the topos S. We define its graph

R f = {(x, y) ∈ X × Y | f (x) = y}, and denote its characteristic function by X × Y
λ f
−→ Ω,

λ f (x, y) = ~ f (x)=y�.

Remark 2.26. Using the previous constructions, we can form commutative diagrams

S
λ(−) //

P

66Rel
(−)∗ // s` S

λ(−) //

Ω(−)

55Rel
(−)∗ // s`op

Given X
f
−→ Y , P( f ) is the extension of X

f
−→ Y

{}
−→ ΩY to ΩX, and Ω f : ΩY −→ ΩX

is given by precomposition with f . Then we have the commutativities because for each
x ∈ X, y ∈ Y ,

(λ f )∗({x})(y) = λ f (x, y) = ~ f (x)=y� = { f (x)}(y) = P( f )({x})(y), and

(λ f )∗({y})(x) = λ f (x, y) = ~ f (x)=y� = {y}( f (x)) = Ω f ({y})(x).

In other words, P( f ) is the direct image of (the graph of) f , and Ω f is its inverse
image. We will use the notations f∗ := P( f ) = (λ f )∗, f ∗ := Ω f = (λ f )∗.

The relations which are the graphs of arrows of the topos are characterized as fol-
lows, for example in [19], theorem 16.5.

Proposition 2.27. Consider a relation X × Y
λ
−→ Ω, the corresponding subobject

R ↪→ X × Y and the arrows R
p
−→ X, R

q
−→ Y obtained by composing with the projec-

tions from the product. There is an arrow X
f
−→ Y of the topos such that λ = λ f if and

only if p is an isomorphism, and in this case f = q ◦ p−1. �

Remark 2.28. Consider a subobject A ↪→ X with characteristic function α, and let

Y
f
−→ X. Then, by pasting the pull-backs, it follows that the characteristic function of

f −1A is α ◦ f . This means that the square

S ub(X)

f −1

��
a

� // ΩX

f ∗

��
a

S ub(Y)

Im f

OO

� // ΩY

∃ f

OO

is commutative when

considering the arrows going downwards, then also when considering the left adjoints
going upwards.

In particular for a relation X×Y
λ
−→ Ω with corresponding subobject R ↪→ X×Y , and

the projection X × Y
π1
−→ X, the commutativity of the square

S ub(X) � // ΩX

S ub(X × Y)

Imπ1

OO

� // ΩX×Y

∃π1

OO
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identifies Imπ1(R) with ∃π1(λ), in particular R
p
−→ X is an epimorphism if and only if

∃π1(λ)(x) = 1 for each x ∈ X.

Proposition 2.29. Consider a relation X × Y
λ
−→ Ω, the corresponding subobject

R ↪→ X × Y and the arrow R
p
−→ X. λ is (ed) if and only if p is epi, and λ is (uv)

if and only if p is mono.

Proof. The quantifier ∃π1 of remark 2.28 is given by the suprema
∨

Y as follows: for
each λ ∈ ΩX×Y , α ∈ ΩX ∨

y∈Y λ(−, y) ≤ α
for each x ∈ X,

∨
y∈Y λ(x, y) ≤ α(x)

for each x ∈ X, y ∈ Y , λ(x, y) ≤ α(x)
λ ≤ π1

∗(α)

By unicity of the adjoint, we obtain for each λ ∈ ΩX×Y , x ∈ X,

∃π1λ(x) =
∨
y∈Y

λ(x, y) (2.30)

By remark 2.28, we conclude that λ is (ed) if and only if p is epi.

Now, by remark 2.28, the characteristic functions of (X × π1)∗R, (X × π2)∗R are
λ1(x, y1, y2) = λ(x, y1), λ2(x, y1, y2) = λ(x, y2).

Then axiom uv) is equivalent to stating that for each x ∈ X, y1, y2 ∈ Y ,

λ1(x, y1, y2) ∧ λ2(x, y1, y2) ≤ ~y1 =y2�,

i.e. that we have an inclusion of subobjects of X × Y × Y

(X × π1)∗R ∩ (X × π2)∗R ⊆ X × 4Y .

But this inclusion is equivalent to stating that for each x ∈ X, y1, y2 ∈ Y , (x, y1) ∈ R
and (x, y2) ∈ R imply that y1 = y2, i.e. that p is mono.

�

Definition 2.31. We say that a relation X × Y
λ
−→ Ω is a function if it is uv) univalued

and ed) everywhere defined.

Combining proposition 2.29 with 2.27, we obtain

Proposition 2.32. A relation λ is a function if and only if there is an arrow f of the
topos such that λ = λ f . �
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Remark 2.33. A symmetric work shows that if we define op-functions as those relations
which are in) injective and su) surjective, then a relation λ is an op-function if and only
if λop corresponds to an actual arrow in the topos.

If we now define bijections as those relations that are simultaneusly functions and
op-functions, that is, if they satisfy the four axioms 2.17, then a relation λ is a bijection
if and only if there are two arrows in the topos such that λ = λ f , λop = λg. Then we
have that for each x ∈ X, y ∈ Y ,

~ f (x)=y� = λ f (x, y) = λ(x, y) = λop(y, x) = λg(y, x) = ~g(y)= x�,

i.e. f (x) = y if and only if g(y) = x, in particular f g(y) = y and g f (x) = x, i.e. f and
g are mutually inverse. In other words, bijections correspond to isomorphisms in the
topos in the usual sense.

2.34. The autoduality of ΩX. We show now that ΩX is autodual as a sup-lattice (i.e. as
a Ω-module). We then use this autoduality to construct the inverse (and direct) image of
a relation in a different way.

Proposition 2.35. ΩX is autodual in s`.

Proof. Recall remark 2.24.
We define the s`-morphism Ω

η
−→ ΩX ⊗ΩX using the diagonal X

4
−→ X × X, i.e. by

the formula η(1) =
∨
x∈X

{x} ⊗ {x}.

We define the s`-morphism ΩX ⊗ ΩX ε
−→ Ω using X × X

δ
−→ Ω, i.e. by the formula

ε({x} ⊗ {y}) = ~x=y�.
We need to prove two triangular equations, we will show that the composition

ΩX id⊗η
−→ ΩX ⊗ΩX ⊗ΩX ε⊗id

−→ ΩX is the identity since the other one is symmetric. Chasing
a generator {x}, we have to show the equation {x} =

∨
y~x=y� · {y}, which is immediate

from 2.9. �

Proposition 2.36. Consider the extension of a relation λ as a s`-morphism

ΩX ⊗ ΩY λ
−→ Ω (recall remark 2.24), and the corresponding s`-morphism ΩY µ

−→ ΩX

given by the autoduality of ΩX. Then µ = λ∗.

Proof. µ is constructed as the composite ΩY η⊗id
−→ ΩX ⊗ ΩX ⊗ ΩY id⊗λ

−→ ΩX. Following a
generator {y} we obtain that µ({y}) =

∨
x∈X λ(x, y) · {x}

(2.22)
= λ∗({y}) �

Corollary 2.37. Taking dual interchanges direct and inverse image, i.e.

ΩX λ∗=(λ∗)∨
−→ ΩY , ΩY λ∗=(λ∗)∨

−→ ΩX.
�
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2.38. An application to the inverse image.
As an application of our previous results, we will give an elementary proof of [17],

IV.2 Proposition 1. This is a different characterization of arrows of S: they are the
relations whose inverse image is not only a sup-lattice morphism, but a locale one.

The “geometric aspect of the concept of Locale” is studied by considering the cat-
egory of spaces Sp = Locop ([17], IV, p.27). If H ∈ Loc, we denote its corresponding
space by H, and if X ∈ Sp we denote its corresponding locale (of open parts) by O(X).

If H
f
−→ L, then we denote L

f
−→ H, and if X

f
−→ Y then we denote O(Y)

f −1

−→ O(X).

Proposition 2.39. We have a full and faithful functor S
(−)dis
−→ Sp that maps

X 7→ Xdis = ΩX, f 7→ f ∗.

Proof. By propositions 2.20 and 2.32, the functor Ω(−) from remark 2.26 co-restricts to

Sp as a full and faithful functor S
(−)dis
−→ Sp. �

2.1 `-relations and `-functions in a topos
We consider now a generalization of the concept of relation, that we will call `-relation,
by letting Ω be any sup-lattice:

Definition 2.40. Let G ∈ s`. An `-relation (in G) is an arrow X × Y
λ
−→ G.

Definition 2.41. The four axioms of definition 2.17, exactly as they are written, make
sense for any `-relation with values in a locale G. As for relations, an `-function is a
`-relation satisfying uv) and ed). Remark 2.33 also applies here to define `-op-functions
and `-bijections.

Assumption 2.42. In the sequel, whenever we consider the ∧ or the 1 of G, we assume
implicitly that G is a locale (for example, when considering any of the four axioms of
2.17 (in particular `-functions or `-bijections), or when considering G-modules).

2.43. On the structure of GX.
We generalize the results of the previous section to GX instead of ΩX. When the

proof of these results is the same as for ΩX, we omit it.
GX has the sup-lattice (or locale) structure given pointwise by the structure of G.

The arrow G ⊗GX ·
−→ GX given by (a · θ)(x) = a∧ θ(x) is a G-module structure for GX.

We have a G-singleton X
{}G
−→ GX defined by {x}G(y) = ~x=y� (recall remark 2.12).

Lemma 2.44 (cf. lemma 2.8). For each θ ∈ GX, x, y ∈ X, we have θ(x) ∧ ~x=y� ≤ θ(y)

Proof. This was shown in the proof of lemma 2.11. �
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Proposition 2.45 (cf. proposition 2.9). For each θ ∈ GX, θ =
∨
x∈X

θ(x) · {x}G. This

shows how any arrow X
f
−→ M into a G-module can be extended uniquely to GX as

f (θ) =
∨
x∈X

θ(x) · f (x), so the G-singleton X
{}G
−→ GX is a free-G-module structure. �

Lemma 2.46 (cf. lemma 2.14). The G-singleton arrow Y
{}G
−→ GY determines a presen-

tation of the G-locale GY in the following sense:

i) 1 =
∨
y∈Y

{y}G, ii) {x}G ∧ {y}G ≤ ~x=y�.

Given any other arrow Y
f
−→ L into a G-locale L such that:

i) 1 =
∨

y

f (y), ii) f (x) ∧ f (y) ≤ ~x=y�

there exists a unique G-locale morphism GY f
−→ L such that f ({y}G) = f (y). �

Remark 2.47 (cf. remark 2.15). We have proved that given any arrow Y
f
−→ L into a

G-locale, its extension as a G-module morphism to GY preserves 1 if and only if equation
i) holds in L, and preserves ∧ if and only if equation ii) holds in L.

2.48 (cf. 2.21). The inverse and the direct image of an `-relation. We have the
correspondence between an `-relation, its direct image and its inverse image given by
proposition 2.45:

X × Y
λ
−→ G an `-relation

GY λ∗

−→ GX a G-Mod morphism

GX λ∗
−→ GY a G-Mod morphism

λ∗({y}G)(x) = λ(x, y) = λ∗({x}G)(y)

(2.49)

λ∗({y}G) =
∨
x∈X

λ(x, y) · {x}G, λ∗({x}G =
∨
y∈Y

λ(x, y) · {y}G

Proposition 2.50 (cf. proposition 2.20). In the correspondence (2.49), λ∗ respects 1
(resp ∧) if and only if λ satisfies axiom ed) (resp. uv)). In particular an `-relation λ is a

`-function if and only if its inverse image GY λ∗

−→ GX is a G-locale morphism. �
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Remark 2.51. We can also replace in (2.4) only one appearance of Ω by G to obtain
the equivalences

X × Y
λ
−→ G an `-relation

ΩY λ∗

−→ GX a s` morphism

ΩX λ∗
−→ GY a s` morphism

(2.52)

A proof symmetric to the one of proposition 2.20 shows that λ is an `-op-function if
and only if λ∗ is a locale morphism.

2.53 (cf. 2.34). The autoduality of GX. We show now that GX is autodual as a
G-module. We then use this autoduality to construct the inverse (and direct) image
of an `-relation in a different way.

Remark 2.54 (cf. remark 2.24). Given X,Y ∈ S, GX ⊗
G

GY is the free G-module on

X × Y , with the singleton given by the composition of X × Y
<{}G ,{}G>
−→ GX ×GY with the

univeral bi-morphism GX × GY −→ GX ⊗
G

GY (see [17], II.2 p.8). We will denote this

composition by {}G ⊗
G
{}G.

Proposition 2.55 (cf. proposition 2.35 ). GX is autodual in G-Mod (in the sense of
definition C.12), with G-module morphisms G

η
−→ GX ⊗

G
GX, GX ⊗

G
GX ε
−→ G given by

the formulae
η(1) =

∨
x∈X

{x}G ⊗ {x}G, ε({x}G ⊗ {y}G) = ~x=y�.

�

Proposition 2.56 (cf. proposition 2.36). Consider the extension of an `-relation λ as

a G-module morphism GX ⊗
G

GY λ
−→ G, and the corresponding G-module morphism

GY µ
−→ GX given by the autoduality of GX. Then µ = λ∗. �

Corollary 2.57 (cf. corollary 2.37). Taking dual interchanges direct and inverse image,
i.e.

GX λ∗=(λ∗)∨
−→ GY , GY λ∗=(λ∗)∨

−→ GX. �
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Resumen en castellano de la sección 2

Como Joyal-Tierney en [17] trabajan sobre un topos de base arbitrario, tenemos que
considerar `-relaciones en un topos arbitrario. Estas son flechas X × Y −→ G, donde G
es un sup-reticulado.

Comenzamos probando resultados para relaciones (i.e. cuando G = Ω), algunos de
los cuales son conocidos, pero con definiciones y pruebas diferentes a las usuales y que
se extienden más sencillamente a las `-relaciones en la subsección 2.1.

En particular consideramos los axiomas que hacen de una relación una función (uni-
valuada, definida sobre todo su dominio) y mostramos que las funciones corresponden
a (los gráficos de) las flechas del topos. Mostraremos el resultado corespondiente para
`-relaciones en la sección 5 (proposición 5.3) utilizando los siguientes desarrollos:

En la proposición 2.45 (cf. proposición 2.9) mostramos que GX es el G-módulo libre
en X. A partir de aquı́ se tiene la correspondencia

X × Y
λ
−→ G una `-relación

GY λ∗

−→ GX un morfirmo de G-Mod

GX λ∗
−→ GY un morfirmo de G-Mod

λ∗({y}G)(x) = λ(x, y) = λ∗({x}G)(y)

(2.58)

entre una `-relación, su imagen directa y su imagen inversa. En la proposición 2.55
(cf. proposición 2.35) mostramos que además GX es autodual como G-módulo.

A continuación, en la proposición 2.50 (cf. proposición 2.20) mostramos que λ es
una `-función si y solo si λ∗ es un morfismo de locales.

Finalmente, en la proposición 2.56 (cf. proposición 2.36) mostramos que λ∗ se
obtiene de λ usando la autodualidad de GX.
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3 � and ♦ diagrams
We now want to generalize to `-relations in an arbitrary toposS the work done in section
1.2, since this will let us generalize the equivalence between the Tannaka and the Galois
contexts in the next sections. We include the reference to each corresponding result in
section 1.2, and we omit the proof when it is the same as the one there. Consider the
following situation (cf. 1.5).

3.1. Let X × Y
λ
−→ G, X′ × Y ′

λ′

−→ G, be two `-relations and X
f
−→ X′, Y

g
−→ Y ′ be

two maps, or, more generally, consider two spans (which induce relations that we also
denote with the same letters),

Rp
zzuuuu p′

%%KKKK

X X′,

Sq
yytttt q′

&&LLLL

Y Y ′ R = p′ ◦ pop, S = q′ ◦ qop ,

and a third `-relation R × S
θ
−→ G.

These data give rise to the following diagrams in Rel(S):

♦1 = ♦1( f , g) ♦2 = ♦2( f , g) ♦ = ♦(R, S ) (3.2)

X × Y
λ

""EEEEEE

X × Y ′

f×Y′ $$JJJJJJJ

X×gop 99ttttttt
≡ G ,

X′ × Y ′
λ′

<<yyyyyy

X × Y
λ

""EEEEEE

X′ × Y

X′×g $$JJJJJJJ

f op×Y 99ttttttt
≡ G ,

X′ × Y ′
λ′

<<yyyyyy

X × Y
λ

""EEEEEE

X × Y ′

R×Y′ $$JJJJJJJ

X×S op 99ttttttt
≡ G ,

X′ × Y ′
λ′

<<yyyyyy

with corresponding diagrammatic versions (see appendix B)

X Y ′

������

$$$$$$

gop

X Y

G

�����
λ

$$$$$

=

X

������

######

f

Y ′

X′ Y ′

G

�����
λ′

&&&&&

,

X′

������

$$$$$$

f op

Y

X Y

G

�����
λ

&&&&&

=

X′ Y

������

######

g

X′ Y ′

G

�����
λ′

&&&&&

,

X Y ′

������

$$$$$$

S op

X Y

G

�����
λ

$$$$$

=

X

������

######

R

Y ′

X′ Y ′

G

�����
λ′

&&&&&

(3.3)

We want to write the equations expressed by the diagrams. We will do this in the
case where R, S are relations, therefore the monomorphisms R ↪→ X × X′, S ↪→ Y × Y ′

correspond to morphisms into the subobject classifier X × X′
~−R−�
−→ Ω, Y × Y ′

~−S−�
−→ Ω.

If we define s`0 := s`0(S) as the full subcategory of s` := s`(S) with objects of the

form ΩX, X ∈ S, then the functor Rel
(−)∗
−→ s`0 that maps X to the power set PX = ΩX

(see 2.7), R 7→ R∗ is an isomorphism of categories (see 2.23). Corollary 2.37 implies
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that the opposite relation Rop corresponds in s` to R∧ defined by the autoduality of ΩX.
By looking at the definitions of η and ε in the proof of proposition 2.35 and chasing
elements, we obtain that the previous diagrams express the equations:

♦1 : for each a ∈ X, b′ ∈ Y ′, λ′( f (a), b′) =
∨
y∈Y

~g(y)=b′� · λ(a, y),

♦2 : for each a′ ∈ X′, b ∈ Y, λ′(a′, g(b)) =
∨
x∈X

~ f (x)=a′� · λ(x, b), (3.4)

♦ : for each a ∈ X, b′ ∈ Y ′,
∨
y∈Y

~yS b′� · λ(a, y) =
∨
x′∈X′

~aRx′� · λ′(x′, b′).

Remark 3.5 (cf. remark 1.7). It is clear that diagrams ♦1 and ♦2 are particular cases of
diagram ♦. Take R = f , S = g, then ♦1( f , g) = ♦( f , g), and R = f op, S = gop, then
♦2( f , g) = ♦( f op, gop).

The general ♦ diagram follows from these two particular cases:

Proposition 3.6 (cf. proposition 1.8). Let R, S be any two spans connected by an `-
relation θ as above. If ♦1(p′, q′) and ♦2(p, q) hold, then so does ♦(R, S ). �

3.7 (cf. 1.9). Two maps X
f
−→ X′, Y

g
−→ Y ′ also give rise to the following diagram:

� = �( f , g) :

X × Y λ

**VVVVVVVVV

f×g
��

≥ G ,

X′ × Y ′ λ′

44hhhhhhhh

expressing the equation � : for each a ∈ X, b ∈ Y, λ(a, b) ≤ λ′( f (a), g(b)).

Proposition 3.8 (cf. proposition 1.10). If either ♦1( f , g) or ♦2( f , g) holds, then so does
�( f , g).

Proof. For each a ∈ X, b ∈ Y, λ(a, b) ≤
∨
y∈Y

~g(y) = g(b)� · λ(a, y) = λ′( f (a), g(b)) using

♦1. Clearly a symmetric arguing holds using ♦2. �

The reverse implication holds under some extra hypotheses.

Proposition 3.9 (cf. proposition 1.15).

1. If λ is ed) and λ′ is uv) (in particular, if they are `-functions), then �( f , g) implies
♦1( f , g).
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2. If λ is su) and λ′ is in) (in particular, if they are `-opfunctions), then �( f , g)
implies ♦2( f , g).

Proof. We prove 1., a symmetric proof yields 2. For each a ∈ X, b′ ∈ Y ′,

λ′( f (a), b′)
ed)λ
= λ′( f (a), b′) ∧

∨
y∈Y

λ(a, y) =
∨
y∈Y

λ′( f (a), b′) ∧ λ(a, y) �
=

∨
y∈Y

λ′( f (a), b′) ∧ λ′( f (a), g(y)) ∧ λ(a, y)
uv)λ′
=
∨
y∈Y

~g(y)=b′� · λ′( f (a), g(y)) ∧ λ(a, y)

�
=
∨
y∈Y

~g(y)=b′� · λ(a, y).

�

3.10 (cf. 1.16). More generally, consider two spans as in 3.1. We have the following
� diagrams:

R × S θ

**UUUUUUUUU

p×q

��
≥ G ,

X × Y λ

44iiiiiiiii

R × S θ

**VVVVVVVVV

p′×q′

��
≥ G .

X′ × Y ′ λ′

44hhhhhhhh

(3.11)

Proposition 3.12 (cf. proposition 1.18). We refer to 3.1: Assume that λ is in), λ′ is uv),
and that the�(p, q),�(p′, q′) diagrams hold. Then if θ is ed) and su), diagram ♦(R, S )
holds. �

3.13 (cf. 1.12). Given two `-relations, X×Y
λ
−→ G, X′×Y ′

λ′

−→ G, the product `-relation
λ � λ′ is defined by the composition

X × X′ × Y × Y ′
X×ψ×Y′
−→ X × Y × X′ × Y ′

λ×λ′

−→ G ×G
∧
−→ G

(λ � λ′)((a, a′), (b, b′)) = λ(a, b) ∧ λ′(a′, b′).

The following is immediate and straightforward:

Proposition 3.14 (cf. proposition 1.13). Each axiom in definition 2.17 for λ and λ′

implies the respective axiom for the product λ � λ′. 2

Remark 3.15 (cf. remark 1.19). The diagrams � in 3.11 mean that

θ ≤ λ � λ′ ◦ (p, p′) × (q, q′).

In particular, there is always an `-relation θ in 3.1 such that (3.11) holds, which may be

taken as the composition R×S
(p,p′)×(q,q′)
−→ X×X′×Y×Y ′

λ�λ′

−→ G. However, it is important
to consider an arbitrary `-relation θ (see propositions 4.11 and 4.12).

For θ = λ � λ′ ◦ (p, p′) × (q, q′), the converse of proposition 3.12 holds:
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Proposition 3.16 (cf. proposition 1.20). We refer to 3.1: Assume that R and S are rela-
tions, that λ, λ′ are `-bijections, and take θ = λ � λ′ ◦ (p, p′) × (q, q′). Then, if ♦(R, S )
holds, θ is an `-bijection.

Proof. First we prove axiom uv). From the � diagrams (3.11) we get the following
equations: for each r ∈ R, s1, s2 ∈ S ,

θ(r, s1) ∧ θ(r, s2) ≤ λ(p(r), q(s1)) ∧ λ(p(r), q(s2))
uv)λ
≤ ~q(s1)=q(s2)�,

θ(r, s1) ∧ θ(r, s2) ≤ λ′(p′(r), q′(s1)) ∧ λ′(p′(r), q′(s2))
uv)λ′
≤ ~q′(s1)=q′(s2)�.

Taking infima we have: θ(r, s1) ∧ θ(r, s2) ≤ ~(q, q′)(s1) = (q, q′)(s2)� = ~s1 = s2�, since
(q, q′) is a monomorphism (see remark 2.1).

We prove now axiom ed). We can safely assume R ⊂ X × X′ and S ⊂ Y × Y ′, and
λ � λ′ ◦ (p, p′) ⊗ (q, q′) to be the restriction of λ � λ′ to R × S . For each (a, a′) ∈ R, we
compute: ∨

(y,y′)∈S

θ((a, a′), (y, y′)) =
∨
y′∈Y′

∨
y∈Y

~yS y′� · λ(a, y) ∧ λ′(a′, y′) ♦=

=
∨
y′∈Y′

∨
x′∈X′

~aRx′� · λ′(x′, y′) ∧ λ′(a′, y′) ≥
∨

y′
λ′(a′, y′)

ed)λ′
= 1

The inequality is justified by taking x′ = a′ in the supremum and using that since
(a, a′) ∈ R, ~aRa′� = 1. Axioms in) and su) follow in a symmetrical way. �

We found convenient to combine 3.12 and 3.16 into:

Proposition 3.17 (cf. proposition 1.21). Let R ⊂ X×X′, S ⊂ Y×Y ′ be any two relations,

and X × Y
λ
−→ G, X′ × Y ′

λ′

−→ G be `-bijections. Let R × S
θ
−→ G be the restriction of

λ � λ′ to R × S . Then, ♦(R, S ) holds if and only if θ is an `-bijection. 2
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Resumen en castellano de la sección 3

En esta sección generalizamos a `-relaciones en un topos arbitrario S el trabajo
hecho en la sección 1.2. Consideramos la siguiente situación (cf. 1.5):

Sean X×Y
λ
−→ G, X′ × Y ′

λ′

−→ G, dos `-relaciones y X
f
−→ X′, Y

g
−→ Y ′ dos flechas,

o, más en general, dos spans (que inducen relaciones que también denotamos con las
mismas letras),

Rp
zzuuuu p′

%%KKKK

X X′,

Sq
yytttt q′

&&LLLL

Y Y ′ R = p′ ◦ pop, S = q′ ◦ qop ,

y una tercer `-relación R × S
θ
−→ G.

Estos datos dan lugar a los siguientes diagramas en Rel(S):

♦1 = ♦1( f , g) ♦2 = ♦2( f , g) ♦ = ♦(R, S )

X × Y
λ

""EEEEEE

X × Y ′

f×Y′ $$JJJJJJJ

X×gop 99ttttttt
≡ G ,

X′ × Y ′
λ′

<<yyyyyy

X × Y
λ

""EEEEEE

X′ × Y

X′×g $$JJJJJJJ

f op×Y 99ttttttt
≡ G ,

X′ × Y ′
λ′

<<yyyyyy

X × Y
λ

""EEEEEE

X × Y ′

R×Y′ $$JJJJJJJ

X×S op 99ttttttt
≡ G ,

X′ × Y ′
λ′

<<yyyyyy

con versiones diagramáticas correspondientes (ver apéndice B)

X Y ′

������

$$$$$$

gop

X Y

G

�����
λ

$$$$$

=

X

������

######

f

Y ′

X′ Y ′

G

�����
λ′

&&&&&

,

X′

������

$$$$$$

f op

Y

X Y

G

�����
λ

&&&&&

=

X′ Y

������

######

g

X′ Y ′

G

�����
λ′

&&&&&

,

X Y ′

������

$$$$$$

S op

X Y

G

�����
λ

$$$$$

=

X

������

######

R

Y ′

X′ Y ′

G

�����
λ′

&&&&&

expresando las ecuaciones (para el caso de relaciones)

♦1 : para cada a ∈ X, b′ ∈ Y ′, λ′( f (a), b′) =
∨
y∈Y

~g(y)=b′� · λ(a, y),

♦2 : para cada a′ ∈ X′, b ∈ Y, λ′(a′, g(b)) =
∨
x∈X

~ f (x)=a′� · λ(x, b),

♦ : para cada a ∈ X, b′ ∈ Y ′,
∨
y∈Y

~yS b′� · λ(a, y) =
∨
x′∈X′

~aRx′� · λ′(x′, b′).
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Los diagramas ♦1 y ♦2 son casos particulares de diagramas ♦ (ver observación 3.5)
y se tiene una recı́proca (ver proposición 3.6).

Se tiene también un diagrama

� = �( f , g) :

X × Y λ

**VVVVVVVVV

f×g
��

≥ G ,

X′ × Y ′ λ′

44hhhhhhhh

expresando la ecuación � : para cada a ∈ X, b ∈ Y, λ(a, b) ≤ λ′( f (a), g(b)).
Los diagramas ♦1 o ♦2 implican independientemente � (ver proposición 3.8), y se

tiene la recı́proca bajo ciertas hipótesis (ver proposición 3.9).
Combinando convenientemente estos resultados se obtiene que los siguientes dia-

gramas � (si R, S son relaciones, y λ, λ′ son `-biyecciones)

R × S θ

**UUUUUUUUU

p×q

��
≥ G ,

X × Y λ

44iiiiiiiii

R × S θ

**VVVVVVVVV

p′×q′

��
≥ G .

X′ × Y ′ λ′

44hhhhhhhh

implican el diagrama diamante ♦(R, S ) (proposición 3.12) bajo la hipótesis adicional
de que θ, la restricción de λ � λ′ a R × S , es una `-biyección. La recı́proca de esta
propiedad también vale (proposición 3.16) y fue conveniente unirlas en la siguiente
proposición para su referencia posterior (proposición 3.17): en las hipótesis anteriores
♦(R, S ) se satisface si y solo si θ es una `-biyección.
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4 � and ♦ cones
In this section we generalize the results of section 1.3 in two ways, both needed for our
purpose. We work over any arbitrary topos S instead of over S et, and we develop a
theory of � and ♦ cones for two different functors F, F′ instead of just one. As in the
previous section, we include the reference to each corresponding result in section 1.3
and omit the proof when it is the same as the one there.

4.1 (cf. 1.22). Consider a geometric morphism S // E , with inverse image

E
F // S . Consider the extension T of F to Rel(E) as in the following commutative

diagram (recall remark 2.26):

E
λ(−) //

F
��

Rel(E)

T
��

S
λ(−) //

P

88Rel � � (−)∗ // s`

On objects T X = FX, and the value of T in a relation R ↪→ X × Y in E is the relation
FR ↪→ FX×FY in S. In particular, for arrows f in E, T (R f ) = RF( f ) (see 2.25), or, if we
abuse the notation by identifying f with the relation given by its graph, T ( f ) = F( f ).

Since F preserves products, T is a tensor functor (recall 2.23). From that fact (since
tensor functors preserve dualities, see 2.37), or immediately from the definition, we
obtain that for every relation R in E we have T (Rop) = (TR)op.

4.2 (cf. 1.23). It can be seen that F is an equivalence if and only if T is so. 2

Consider now two geometric morphisms with inverse images E
F //

F′
// S , and their

respective extensions to the Rel categories T , T ′.

Definition 4.3 (cf. definition 1.24). Let H be a sup-lattice in S. A cone λ (with vertex

H) is a family of `-relations FX × F′X
λX
−→ H, one for each X ∈ E. Note that, a

priori, a cone is just a family of arrows without any particular property. This isn’t
standard terminology, but we do this in order to use a different prefix depending on

which diagrams commute. Each arrow X
f
−→ Y in E and each arrow X

R
−→ Y in Rel(E)

(i.e relation R ↪→ X × Y in E), determine the following diagrams:
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�( f ) = �(F( f ), F′( f )) ♦(R) = ♦(TR,T ′R)

FX × F′X
λX

''NNNNNNNNN

F( f )×F′( f )

��

≥
H

FY × F′Y
λY

77ppppppppp

T X × T ′X
λX

&&NNNNNNNN

T X × T ′Y

TR×T ′Y ))RRRRRRRRR

T X×T ′Rop 55lllllllll
≡ H

TY × T ′Y
λY

88pppppppp

♦1( f ) = ♦1(F( f ), F′( f )) ♦2( f ) = ♦2(F( f ), F′( f ))

FX × F′X
λX

$$IIIIIII

FX × F′Y

F( f )×F′Y ''PPPPPPPP

FX×F′( f )op 77nnnnnnnn
≡ H

FY × F′Y
λY

::vvvvvvv

FX × F′X
λX

$$IIIIIII

FY × F′X

FY×F′( f ) ''PPPPPPPP

F( f )op×F′X 77nnnnnnnn
≡ H

FY × F′Y
λY

::vvvvvvv

We say that λ is a �-cone if the �( f ) diagrams hold, and that it is a ♦-cone if the
♦(R) diagrams hold. Similarly we talk of ♦1-cones and ♦2-cones if the ♦1( f ) and ♦2( f )
diagrams hold. If H is a locale and the λX are `-functions, `-bijections, we say that we
have a cone of `-functions, `-bijections.

The following proposition shows that ♦1-cones correspond to natural transforma-
tions.

Proposition 4.4. Consider a family of arrows FX
θX
−→ F′X, one for each X ∈ E.

Each θX corresponds by the autoduality of F′X (see proposition 2.35) to a function
FX ×F′X

ϕX
−→ Ω yielding in this way a cone ϕ. θ is a natural transformation if and only

if ϕ is a ♦1-cone.

Proof. As with every duality (see (C.7)), the correspondence between θX and ϕX is given
by the diagrams:

ϕX :

FX

������

######

θX

F′X

F′X F′X
������

ε

666666

θX :

FX

�������

.......

η

FX F′X F′X
�������

ϕX

2222222
F′X

Also, the naturality N of theta and the ♦1 diagrams (see (3.3) and recall from corol-
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lary 2.37 that f op = f ∧) can be expressed as: for each X
f
−→ Y ,

N( f ) :

FX
���)))

F( f )

FY
���'''

θY

F′Y

=

FX
���'''

θX

F′X
���)))

F′( f )

,

F′Y

♦1( f ) :

FX
����

....
η

F′Y

FX F′X F′X
���)))

F′( f )
F′Y

FX F′X F′Y F′Y
����

ϕX
7777 ����

ε
::::

=

FX
���)))

F( f )
F′Y

FY F′Y
����

ϕY
7777

N( f )⇒ ♦1( f ) : replace θ as in the correspondence above in N( f ) to obtain

FX
����

....
η

FX F′X F′X
���)))

F′( f )				
ϕX

3333
F′Y

N( f )
=

FX
���)))

F( f ) ����
....

η

FY F′Y F′Y
				

ϕY
3333

F′Y

Compose with ε and use a triangular identity to obtain ♦1( f ).
♦1( f )⇒ N( f ) : replace ϕ as in the correspondence above in ♦1( f ) to obtain

FX
���)))

F( f )
F′Y

FY
���%%%

θY

F′Y

F′Y F′Y
���

ε
000

♦1( f )
=

FX
���%%%

θX ����
....

η

F′Y

F′X F′X F′X
���)))

F′( f )
F′Y

����
ε

....
F′Y F′Y

���
ε

111

4
=

FX
���%%%

θX

F′Y

F′X
���)))

F( f )
F′Y

F′Y F′Y
���

ε
111

Compose with η and use a triangular identity to obtain N( f ). �

4.5. Consider now the previous situation together with a topos over S,

GKK

γ∗ a γ∗

��
E

F //

F′
// S

A natural transformation γ∗FX
θX
−→ γ∗F′X corresponds to a ♦1-cone of functions

γ∗FX × γ∗F′X
ϕX
−→ ΩG in G. As established in 4.1, γ∗ can be extended to Rel = s`0

as a tensor functor (therefore preserving duals), then using the naturality of the ad-
junction γ∗ a γ∗ it follows that γ∗FX × γ∗F′X

ϕX
−→ ΩG is a ♦1-cone if and only if

FX × F′X
λX
−→ γ∗ΩG is a ♦1-cone (in S). We have proved:
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Proposition 4.6. A family of arrows γ∗FX
θX
−→ γ∗F′X (one for each X ∈ E) is a nat-

ural transformation if and only if the corresponding cone FX × F′X
λX
−→ γ∗ΩG is a

♦1-cone. �

4.7. Consider finally the previous situation together with a morphism F −→ G of topoi
over S, as in the following diagram:

G
h∗

,,kk
h∗

F

E
F //

F′
// S

γ∗

``

  

γ∗ f ∗

II

		

f∗

Consider the locales in S of subobjects of 1 in G, resp. F , G := γ∗ΩG, L := f∗ΩF .
Since h∗ is an inverse image, it maps subobjects of 1 to subobjects of 1 and thus induces

a locale morphism that we will denote G
h
−→ L.

Remark 4.8. Consider the comparison morphism h∗ΩG
φ1
−→ ΩF , induced by the sub-

object 1 // h∗(t) // h∗ΩG . (see for example [29], A.2.1 p.69). Then, for any subobject

M // //

��

X
φM
��

1 1 // ΩG

by composing the pull-backs

h∗M // //

��

h∗X
h∗(φM)
��

1 // h∗(1) //

��

h∗ΩG
φ1

��
1 1 // ΩF

it follows that the

characteristic function of the subobject h∗M is φ1 ◦ h∗(φM).

Proposition 4.9. In the hypothesis of 4.7, for X ∈ E, if FX × F′X
λ
−→ G corresponds

to γ∗FX × γ∗F′X
ϕ
−→ ΩG via the adjunction γ∗ a γ∗, then FX × F′X

λ
−→ G

h
−→ L

corresponds to f ∗FX × f ∗F′X
h∗(ϕ)
−→ h∗ΩG

φ1
−→ ΩF via the adjunction f ∗ a f∗.

Proof. The adjunction f ∗ a f∗ consists of composing the adjunctions γ∗ a γ∗ and h∗ a h∗,
then we obtain:

h∗γ∗FX × h∗γ∗F′X
h∗(ϕ)
−→ h∗ΩG

φ1
−→ ΩF

γ∗FX × γ∗F′X
ϕ
−→ ΩG

ψ1
−→ h∗ΩF

FX × F′X
λ
−→ G

γ∗(ψ1)
−→ L,
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where ψ1 corresponds to φ1 in the adjunction h∗ a h∗. So we have to check that
γ∗(ψ1) = h. h is h∗ applied to a subobject U ↪→ 1. This subobject can be consid-
ered in G = γ∗ΩG = [1,ΩG] via its characteristic function φU . Now, γ∗(ψ1)(φU) is the

composition 1
φU
−→ ΩG

ψ1
−→ h∗ΩF in γ∗h∗ΩF , and the corresponding arrow 1 −→ ΩF

is given by the adjunction h∗ a h∗. But this arrow is 1
h∗(φU )
−→ h∗ΩG

φ1
−→ ΩF , which by

remark 4.8 is φh∗U , and we are done.
�

Corollary 4.10. In the hypothesis of 4.7, consider a natural transformation

γ∗FX
θX
−→ γ∗F′X and the corresponding ♦1-cone FX × F′X

λX
−→ G obtained by proposi-

tion 4.6. Then the ♦1-cone with vertex L corresponding by proposition 4.6 to the horizon-
tal composition idh∗ ◦ θ of natural transformations, whose components are

f ∗FX
h∗(θX)
−→ f ∗F′X, is FX × F′X

λX
−→ G

h
−→ L.

Proof. Each γ∗FX
θX
−→ γ∗F′X corresponds to a relation γ∗FX × γ∗F′X

ϕX
−→ ΩG, which

corresponds to FX × F′X
λX
−→ G via the adjunction γ∗ a γ∗. Denote by

RX ↪→ γ∗FX × γ∗F′X the subobject corresponding to ϕX.

The subobject corresponding to f ∗FX
h∗(θX)
−→ f ∗F′X, is h∗RX ↪→ f ∗FX × f ∗F′X,

whose characteristic function (applying remark 4.8) is the relation

f ∗FX × f ∗F′X
h∗(ϕX)
−→ h∗ΩG

φ1
−→ ΩF .

Proposition 4.9 finishes the proof. �

The results of section 3 yield the following corresponding results for cones.

Proposition 4.11 (cf. proposition 1.25). A cone FX × F′X
λ
−→ H is a ♦-cone if and

only if it is both a ♦1 and a ♦2-cone.

Proof. The implication ⇒ is given by remark 3.5, and to prove ⇐ given any relation
R ↪→ X×Y use proposition 3.6 with R = FR, S = F′R, λ = λX, λ′ = λY , and θ = λR. �

Proposition 4.12 (cf. proposition 1.26). Let H ∈ Loc. A �-cone FX × F′X
λ
−→ H of

`-bijections is a ♦-cone (of `-bijections). �

Consider a topos E over S, and a small site of definition C for E. Let C
F
−→ S be (the

inverse image of) a point of the site, and Cop X
−→ S be a sheaf, X ∈ E. Let ΓF −→ C be

the (small) diagram (discrete fibration) of F, recall that it is a cofiltered category whose

objects are pairs (c,C) with c ∈ FC, and whose arrows (c,C)
f
−→ (d,D) are arrows
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C
f
−→ D that satisfy F( f )(c) = d. Abuse notation and denote also by F, E

F
−→ S, the

inverse image of the corresponding morphism of topoi. Recall the formulae:

FX = X ⊗C F =

∫ C

XC × FC � lim
−−−−−−−−→
(c,C)∈ΓF

XC
ρ
←−

∐
C∈C

XC × FC (4.13)

By Yoneda we have E(C, X)
�
−→ XC, and under this identification we have,

for C
f
−→ X and c ∈ FC, F( f )(c) = ρ( f , c) ∈ FX,

(4.14)
for E

h
−→ C in C, X(h)( f ) = f h.

Remark 4.15. Let a ∈ FX. Since ρ is an epimorphism, there exist C, f ∈ XC and
c ∈ FC such that F( f )(c) = a.

Remark 4.16. Let C, D ∈ C, f ∈ XC, c ∈ FC, and g ∈ XD, d ∈ FD, be such
that F( f )(c) = F(g)(d), i.e. ρ( f , c) = ρ(g, d). Since the category ΓF is cofiltered, by

construction of filtered colimits there exist E, e ∈ FE and E
h
−→ C, E

`
−→ D such that

F(h)(e) = c, F(`)(e) = d and X(h)( f ) = X(`)(g), i.e. f h = g`. 2

Proposition 4.17 (cf. proposition 1.31). Consider a small site of definition C of the
topos E. Then suitable cones defined over C can be extended to E, more precisely:

1) Let TC × T ′C
λC
−→ H be a ♦1-cone (resp. ♦2-cone, resp. ♦-cone) defined over C.

Then, H can be uniquely furnished with `-relations λX for all objects X ∈ E in such a
way to determine a ♦1-cone (resp. ♦2-cone, resp. ♦-cone) over E extending λ.

2) If H is a locale and λC (one for each C ∈ C) is a ♦1-cone of `-functions (resp.
♦2-cone of `-opfunctions, resp. ♦-cone of `-bijections), so is λX (one for each X ∈ E).

Proof. 1) Recall that T = F on C. Let X ∈ E, then T X = FX, T ′X = F′X and let

(a, b) ∈ T X × T ′X. By (4.13), (4.14) and remark 4.15 we can take C
f
−→ X and c ∈ TC

such that a = T ( f )(c) = F( f )(c) (see 4.1) If λX were defined so that the ♦1( f ) diagram
commutes, the equation

(1) λX(a, b) =
∨

y∈T ′C

~T ′( f )(y)=b� · λC(c, y)

should hold (see (3.4)). We define λX by this equation. This definition is independent of
the choice of c, C, and f . In fact, let D

g
−→ X and d ∈ T D be such that a = T (g)(d). By

remark 4.16 we can take (e, E) in the diagram of T (or F), E
h
−→ C, E

`
−→ D such that

T (h)(e) = c, T (`)(e) = d and f h = g`. Then we compute
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∨
y∈T ′C

~T ′( f )(y)=b� · λC(c, y)
♦1(h)
=

=
∨

y∈T ′C

∨
w∈T ′E

~T ′( f )(y)=b� · ~T ′(h)(w)=y� · λE(e, w) =

=
∨

w∈T ′E

~T ′( f h)(w)=b� · λE(e, w).

From this and the corresponding computation with d, D, and ` it follows:∨
y∈T ′C

~T ′( f )(y)=b� · λC(c, y) =
∨

y∈T ′D

~T ′(g)(y)=b� · λD(d, y).

Given X
g
−→ Y in E, we check that the ♦1(g) diagram commutes: Let (a, b) ∈ T X×T ′Y ,

take C
f
−→ X, c ∈ TC such that a = T ( f )(c), and let d = T (g)(a) = T (g f )(c). Then

λY(d, b) =
∨

z∈T ′C

~T ′(g f )(z)=b� · λC(c, z) =

=
∨

z∈T ′C

∨
x∈X

~T ′( f )(z)= x� · ~T ′(g)(x)=b� · λC(c, z) =

=
∨

x∈T ′X

~T ′(g)(x)=b� ·
∨

z∈T ′Z

~T ′( f )(z)= x� · λC(c, z) =
∨

x∈T ′X

~T ′(g)(x)=b� · λX(a, x).

Clearly a symmetric argument can be used if we assume at the start that the ♦2

diagram commutes. In this case, λX would be defined by taking C
f
−→ X and c ∈ T ′C

such that b = T ′( f )(c) and computing:

(2) λX(a, b) =
∨
y∈TC

~T ( f )(y)=a� · λC(y, c).

If the TC × T ′C
λC
−→ H form a ♦-cone (i.e. a ♦1-cone and a ♦2-cone), definitions (1)

and (2) coincide. In fact, since they are independent of the chosen c, it follows they are
both equal to:∨

C
f
−→X

∨
c∈TC

∨
y∈T ′C

~T ( f )(c)=a� · ~T ′( f )(y)=b� · λC(c, y) =∨
C

f
−→X

∨
c∈T ′C

∨
y∈TC

~T ′( f )(c)=b� · ~T ( f )(y)=a� · λC(y, c).

2) It suffices to prove that if λC (one for each C ∈ C) is a ♦1-cone of `-functions, so

is λX (one for each X ∈ X). Let X ∈ E, a ∈ T X, b1, b2 ∈ T ′X. Take as in item 1. C
f
−→ X

and c ∈ TC such that a = T ( f )(c).

ed)
∨

b∈T ′X

λX(a, b) =
∨

b∈T ′X

∨
y∈T ′C

~T ′( f )(y)=b� · λC(c, y) =
∨

y∈T ′C

λC(c, y)
ed)
= 1
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uv) λX(a, b1) ∧ λX(a, b2) =∨
y1,y2∈T ′C

~T ′( f )(y1)=b1� · ~T ′( f )(y2)=b2� · λC(c, y1) ∧ λC(c, y2)
uv)
≤∨

y1,y2∈T ′C

~T ′( f )(y1)=b1� · ~T ′( f )(y2)=b2� · ~y1 =y2�
2.1
≤∨

y1,y2∈T ′C

~T ′( f )(y1)=b1�·~T ′( f )(y2)=b2�·~T ′( f )(y1)=T ′( f )(y2)�
2.5
≤ ~b1 =b2�.

�

Assumption 4.18. For the rest of this section we consider a small site C (with binary
products and 1) of the topos E, and cones defined over C.

We now introduce the notion of compatible cone. It is a very useful notion to obtain
results for locales from results for sup-lattices, as the following propositions show. Any
compatible ♦-cone which covers a commutative algebra H forces H to be a locale, and
such a cone is necessarily a cone of `-bijections (and vice versa):

Definition 4.19 (cf. definition 1.27). Let H be a commutative algebra in s`, with
multiplication ∗ and unit u (We consider H × H

∗
−→ H bilinear and thus inducing

H ⊗ H
∗
−→ H, and u given by u ∈ H, i.e. 1

u
−→ H inducing a linear morphism

Ω
u
−→ H).
Let TC×T ′C

λC
−→ H be a cone. We say that λ is compatible if the following equations

hold:

[C1]For each a ∈ TC, a′ ∈ T ′C, b ∈ T D, b′ ∈ T ′D,

λC(a, a′) ∗ λD(b, b′) = λC×D((a, b), (a′, b′)) ;

[C2] λ1 = u.

Given a compatible cone, consider the diagonal C
∆
−→ C × C, the arrow C

π
−→ 1,

and the following ♦1 diagrams (see 3.1):

TC×T ′C
λC

((PPPPPPPPPPPPP TC×T ′C
λC

""EEEEEEEE

TC×(T ′C×T ′C)

TC×∆op
44iiiiiiiiiiiiiii

∆×(T ′C×T ′C) **TTTTTTTTTTTTTT
≡ H, TC×1

TC×πop
::uuuuuuuuu

π×1 $$IIIIIIIII ≡ H.

(TC×TC)×(T ′C×T ′C)
λC×C

77nnnnnnnnnnnn
1×1

λ1

<<zzzzzzzz

expressing the equations: for each a ∈ TC, b1, b2 ∈ T ′C,
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♦1(4) : λC×C((a, a), (b1, b2)) =
∨

x∈T ′C

~(x, x)= (b1, b2)� · λC(a, x),

♦1(π) : λ1 =
∨

x∈T ′C

λC(a, x).

Lemma 4.20. Let TC × T ′C
λ
−→ H be a compatible ♦1-cone (or ♦2-cone, or ♦-cone)

with vertex a commutative algebra H. Then, for each a ∈ TC, b1, b2 ∈ T ′C,

1. λC(a, b1) ∗ λC(a, b2) = ~b1 =b2� · λC(a, b1).

2. u =
∨

x∈T ′C

λC(a, x).

Proof. 2. is immediate from [C2] and ♦1(π) above. To prove 1. we compute
λC(a, b1) ∗ λC(a, b2) [C1]

= λC×C((a, a), (b1, b2))
♦1(4)
=
∨

x∈T ′C

~x=b1� · ~x=b2� · λC(a, x) 2.11
=

=
∨

x∈T ′C

~x=b1� · ~b1 =b2� · λC(a, b1) = ~b1 =b2� · λC(a, b1).

�

Proposition 4.21 (cf. proposition 1.28). Let λ be a compatible ♦-cone with vertex a
commutative algebra (H, ∗) such that the elements of the form λC(a, b), a ∈ TC, b ∈ T ′C
are sup-lattice generators of H. Then H is a locale and ∗ = ∧.

Proof. The same proof of proposition 1.28 can be used, replacing equations (1) and (2)
by lemma 4.20 �

Proposition 4.22 (cf. proposition 1.29). Conider a cone λ with vertex a locale H.

1. If λ is a ♦1-cone, then λ is compatible if and only if it is a ♦1-cone of `-functions.

2. If λ is a ♦2-cone, then λ is compatible if and only if it is a ♦2-cone of
`-op-functions.

3. If λ is a ♦-cone, then λ is compatible if and only if it is a ♦-cone of `-bijections.

Proof. We prove 1, 2 follows by symmetry and combining 1 and 2 we obtain 3.
(⇒): Since ∧ = ∗ and 1 = u in H, equations 1. and 2. in lemma 4.20 become the

axioms ed) and uv) for λX.
(⇐) u = 1 in H, so equation [C2] in definition 4.19 is axiom ed) for λ1. To prove

equation [C1] we consider the projections C × D
π1
−→ C, C × D

π2
−→ D. The ♦1(π1) and

♦1(π2) diagrams express the equations:

For each a ∈ TC, b ∈ T D, a′ ∈ T ′C, λC(a, a′) =
∨

y∈T ′D

λC×D((a, b), (a′, y)),
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For each a ∈ TC, b ∈ T D, b′ ∈ T ′D, λD(b, b′) =
∨

x∈T ′C

λC×D((a, b), (x, b′)).

Taking the infimum of these two equations we obtain for each a ∈ TC, b ∈ T D,
a′ ∈ T ′C, b′ ∈ T ′D:

λC(a, a′) ∧ λD(b, b′) =
∨

x∈T ′C

∨
y∈T ′D

λC×D((a, b), (a′, y)) ∧ λC×D((a, b), (x, b′)) =

uv)λC×D
=
∨

x∈T ′C

∨
y∈T ′D

~(a′, y)= (x, b′)� · λC×D((a, b), (a′, y)) 2.11
= λC×D((a, b), (a′, b′))

�

Also, sup-lattice morphisms of cones with compatible domain are automatically
locale morphisms:

Proposition 4.23. Let λ be a compatible cone with vertex a locale H such that the
elements of the form λC(a, a′), a ∈ TC, a′ ∈ T ′C are sup-lattice generators of H. Let
λ be another compatible cone with vertex a locale H′. Then, any sup-lattice morphism
H

σ
−→ H′ satisfying σλC = λC is a locale morphism.

Proof. Equation [C2] in defintion 4.19 implies immediately that σu = u′ (i.e. σ pre-
serves 1).

Equation [C1] implies immediately that the infima ∧ between two sup-lattice gener-
ators λC(a, a′) and λD(b, b′) is preserved by σ, which suffices to show that σ preserves
∧ between two arbitrary elements since σ is a sup-lattice morphism. �

Combining the previous proposition with proposition 4.22 we obtain

Corollary 4.24 (cf. proposition 1.30). Let λ be a ♦-cone of `-bijections with vertex a
locale H such that the elements of the form λC(a, b), a ∈ TC, b ∈ T ′C are sup-lattice
generators of H. Let λ be another ♦-cone of `-bijections with vertex a locale H′. Then,
any sup-lattice morphism H

σ
−→ H′ satisfying σλC = λC is a locale morphism. �
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Resumen en castellano de la sección 4

En esta sección realizamos un análisis de�- y ♦-conos que es necesario para mostrar
la equivalencia entre las propiedades universales que definen a G y a L, los objetos
construidos en la teorı́a de Galois y de Tannaka respectivamente.

El siguiente hecho merece ser mencionado: como los locales son álgebras conmuta-
tivas, un contexto de Galois da lugar a un contexto no-neutral de Tannaka conmutativo.
Pero un contexto no-neutral de Tannaka conmutativo es en cierto sentido “neutralizado”
sobre la categorı́a de base de los B-bimódulos. En lugar de un solo funtor fibra como
en la subsección 1.3, tenemos ahora dos funtores fibras correspondientes a las dos in-
clusiones B −→ B⊗ B (ver 7.14). Desarrollamos entonces en esta sección una teorı́a de
conos para dos funtores diferentes que usaremos luego en la sección 7.

Consideramos entonces dos morfismos geométricos con imágenes inversas E
F //

F′
// S ,

y sus respectivas extensiones a las categorı́as de relaciones T , T ′ como indica el sigu-
iente diagrama

E
λ(−) //

F
��

Rel(E)

T
��

S
λ(−) //

P

88Rel � � (−)∗ // s`

Realizamos la siguiente definción de �-, ♦1-, ♦2- y ♦-conos (definición 4.3, cf.
definición 1.24)

Sea H un sup-reticulado en S. Un cono λ (con vértice H) es una familia de `-

relaciones FX × F′X
λX
−→ H, una por cada X ∈ E (sin ninguna propiedad en particular).

Cada flecha X
f
−→ Y en E y cada flecha X

R
−→ Y en Rel(E) (i.e relación R ↪→ X × Y in

E) determinan los siguientes diagramas
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�( f ) = �(F( f ), F′( f )) ♦(R) = ♦(TR,T ′R)

FX × F′X
λX

''NNNNNNNNN

F( f )×F′( f )

��

≥
H

FY × F′Y
λY

77ppppppppp

T X × T ′X
λX

&&NNNNNNNNN

T X × T ′Y

TR×T ′Y ))RRRRRRRRR

T X×T ′Rop 55lllllllll
≡ H

TY × T ′Y
λY

88ppppppppp

♦1( f ) = ♦1(F( f ), F′( f )) ♦2( f ) = ♦2(F( f ), F′( f ))

FX × F′X
λX

$$HHHHHHH

FX × F′Y

F( f )×F′Y ''OOOOOOOO

FX×F′( f )op 77oooooooo
≡ H

FY × F′Y
λY

::vvvvvvv

FX × F′X
λX

$$HHHHHHH

FY × F′X

FY×F′( f ) ''OOOOOOOO

F( f )op×F′X 77oooooooo
≡ H

FY × F′Y
λY

::vvvvvvv

λ es un �-cono si los diagramas �( f ) se cumplen, y es un ♦-cono si los diagramas
♦(R) se cumplen. Similarmente hablamos de ♦1-conos y ♦2-conos. Si H es un local
y los λX son `-funciones, `-biyecciones, decimos que se tiene un cono de `-funciones,
`-biyecciones.

Mostramos en la proposición 4.4 que los �-conos de funciones corresponden a las
transformaciones naturales, y analizamos su comportamiento a través de morfismos de
topos (corolario 4.10). Esto nos permitirá luego expresar la propiedad que define al
grupoide locálico considerado en [17], VIII.3 Theorem 2 p.68 como una propiedad uni-
versal de �-conos (teorema 7.11).

También mostramos en la proposición 4.17 que los conos definidos sobre un sitio del
topos pueden ser extendidos de una única forma al topos (preservando sus propiedades).
Como consideraremos el coend tannakiano, que es un ♦-cono universal sobre Rel(E),
esto nos permitirá solucionar los problemas de tamaño que aparecen en la construcción
del coend considerando un sitio pequeño del topos E.
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5 The case E = shP

5.1. Assume now we have a base topos S, a locale P ∈ Loc := Loc(S) and we consider
E = shP. We recall from [17], VI.2 and VI.3, p.46-51, the different ways in which we
can consider objects, sup-lattices and locales in E.

1. We consider the inclusion of topoi shP ↪→ SPop
given by the adjunction # a i. A

sup-lattice M ∈ s`(shP) yields a sup-lattice iM ∈ SPop
, in which the supremum

of a sub-presheaf S −→ iM is computed as the supremum of the corresponding
sub-sheaf #S −→ M (see [17], VI.1 Proposition 1 p.43). The converse actually
holds, i.e. if iM ∈ s`(SPop

) then M ∈ s`(shP), see [17], VI.3 Lemma 1 p.49.

2. We omit to write i and consider a sheaf M ∈ shP as a presheaf Pop M
−→ S that is a

sheaf, i.e. that believes covers are epimorphic families. A sup-lattice structure for

M ∈ shP corresponds in this way to a sheaf Pop M
−→ s` satisfying the following

two conditions (these are the conditions 1) and 2) in [17], VI.2 Proposition 1 p.46
for the particular case of a locale):

a) For each p′ ≤ p in P, the s`-morphism Mp
p′ : M(p) −→ M(p′), that we will

denote by ρp
p′ , has a left adjoint Σ

p
p′ .

b) For each q ∈ P, p ≤ q, p′ ≤ q, we have ρq
p′Σ

q
p = Σ

p′

p∧p′ρ
p
p∧p′ .

Sup-lattice morphisms correspond to natural transformations that commute with
the Σ’s.

When interpreted as a presheaf, ΩP(p) = P≤p := {q ∈ P|q ≤ p}, with ρp
q = (−) ∧ q

and Σ
p
q the inclusion. The unit 1

1
−→ ΩP is given by 1p = p.

3. If M ∈ s`(SPop
) (in particular if M ∈ s`(shP)), the supremum of a sub-presheaf

S −→ M can be computed in SPop
as the global section 1

s
−→ M, sq =

∨
p≤q

x∈S (p)

Σq
px

(see [17], VI.2 proof of proposition 1, p.47).

4. Locales L in shP correspond to sheaves Pop L
−→ Loc such that, in addition to the

s` condition, satisfy Frobenius reciprocity: if q ≤ p, x ∈ L(p), y ∈ L(q), then
Σ

p
q(ρp

q(x) ∧ y) = x ∧ Σ
p
qy.

Note that since ρΣ = id, Frobenius implies that if q ≤ p, x, y ∈ L(q) then
Σ

p
q(x∧ y) = Σ

p
q(ρp

qΣ
p
q(x)∧ y) = Σ

p
q x∧Σ

p
qy, in other words that Σ commutes with ∧.

5. The direct image functor establishes an equivalence of tensor categories
(s`(shP),⊗)

γ∗
−→ (P-Mod,⊗P) ([17], VI.3 Proposition 1 p.49), given G ∈ s`(shP)
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and p ∈ P multiplication by p in γ∗G = G(1) is given by Σ1
pρ

1
p ([17], VI.2 Propo-

sition 3 p.47).

The pseudoinverse of this equivalence is P-Mod
(̃−)
−→ s`(shP), N 7→ Ñ defined by

Ñ(p) = {x ∈ N |p · x = x} for p ∈ P.

6. The equivalence of item 5 restricts to an equivalence Loc(shP)
γ∗
−→ P-Loc, where

the last category is the category of locale extensions P −→ L ([17], VI.3 Proposi-
tion 2 p.51).

5.2. We will now consider relations in the topos shP and prove that `-functions in P
correspond to functions in shP, and therefore to arrows of the topos shP.

The unique locale morphism Ω
γ
−→ P induces a topoi morphism S � shΩ

γ∗

((
⊥ shP
γ∗

ii .

Let’s denote by ΩP the subobject classifier of shP. Since γ∗ΩP = P, we have the
correspondence

X × Y
λ
−→ P an `-relation

γ∗Y × γ∗X
ϕ
−→ ΩP a relation in shP

Proposition 5.3. In this correspondence, λ is an `-function if and only if ϕ is a function.
Then, by proposition 2.32, `-functions correspond to arrows γ∗X

ϕ
−→ γ∗Y in the topos

shP, and by remark 2.33 `-bijections correspond to isomorphisms.

Proof. Consider the extension λ̃ of λ as a P-module, and ϕ̃ of ϕ as a ΩP-module, i.e.
in s`(shP) (we add the (̃−) to avoid confusion). We have the binatural correspondence
between λ̃ and ϕ̃:

X × Y

λ

''
{}P⊗

P
{}P

// PX ⊗
P

PY

λ̃

// P

γ∗X × γ∗Y

ϕ

66
{}⊗{} // Ω

γ∗X
P ⊗Ω

γ∗Y
P

ϕ̃ // ΩP

given by the adjunction γ∗ a γ∗. But γ∗(Ω
γ∗X
P ) = (γ∗ΩP)X = PX and γ∗ is a tensor

functor, then γ∗(Ω
γ∗X
P ⊗Ω

γ∗Y
P ) = PX ⊗

P
PY and γ∗(ϕ̃) = λ̃.

Now, the inverse images λ∗, ϕ∗ are constructed from λ̃, ϕ̃ using the autoduality of
Ω
γ∗X
P , PX (see proposition 2.36), and since γ∗ is a tensor functor that maps Ω

γ∗X
P 7→ PX
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we can take η, ε of the autoduality of PX as γ∗(η′), γ∗(ε′) if η′, ε′ are the autoduality
structure of Ω

γ∗X
P . It follows that γ∗(ϕ∗) = λ∗, then by 5.1 (item 6) we obtain that ϕ∗ is a

locale morphism if and only if λ∗ is so. Proposition 2.50 finishes the proof. �

Consider now the situation of 4.5 for the case G = shP, i.e. assume we have

shPII
γ∗ a γ∗
		

E
F //

F′
// S.

Combining proposition 5.3 with 4.6 we obtain:

Corollary 5.4. There is a bijective correspondence given by the adjunction γ∗ a γ∗

between ♦1-cones of `-functions (resp `-bijections) FX × F′X
λX
−→ P and natural trans-

formations (resp. isomorphisms) γ∗F
ϕ

=⇒ γ∗F′. �

Remark 5.5. Though we will not use the result with this generality, we note that propo-
sition 5.3 (and therefore corollary 5.4) also holds for an arbitrary topos G. Consider

P = γ∗ΩG, the hyperconnected factorization
G

q //

γ
��>>>>>>> shP

γ
~~||||||||

S

(see [17], VI. 5 p.54)

and recall that q∗ΩG � ΩP and that the counit map q∗q∗ΩG −→ ΩG is, up to isomor-
phism, the comparison morphism q∗ΩP −→ ΩG of remark 4.8 (see [30], 1.5, 1.6). The
previous results imply that the correspondence between relations X × Y −→ ΩP and re-
lations q∗X × q∗Y −→ ΩG given by the adjunction q∗ a q∗ is simply the correspondence
between a relation R ↪→ X×Y in shP and its image by the full and faithful morphism q∗,
therefore functions correspond to functions. Since by proposition 5.3 we know that the
same happens for shP

γ
−→ S, by composing the adjunctions we obtain it for G

γ
−→ S.

Definition 5.6. Let p ∈ P, we identify by Yoneda p with the representable presheaf
p = [−, p]. If q ∈ P, then [q, p] = ~q≤ p� ∈ Ω. In particular if a ≤ p then [a, p] = 1.

For a ≤ p ∈ P, x ∈ X(p), consider X(p)
Xp

a
−→ X(a) in S. We will denote x|a := Xp

a (x).

We describe now the sup-lattice structure of the exponential GX. Recall that as a
presheaf, GX(p) = [p × X,G], and note that if θ ∈ GX(p), and a ≤ p, by definition 5.6

we have X(a)
θa
−→ G(a).

θ corresponds via the exponential law to X
θ̂
−→ Gp,

X(q)
θ̂q
−→ Gp(q) � [q ∧ p,G] � G(q ∧ p)
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by Yoneda lemma. Following θ through this correspondences, it follows that

X(q)
θ̂q
−→ G(q ∧ p) is defined by θ̂q(x) = θq∧p(x|q∧p).

This implies that θ ∈ GX(p) is completely characterized by its components θa for
a ≤ p. From now on we make this identification, i.e. we consider θ ∈ GX(p) as a family

{X(a)
θa
−→ G(a)}a≤p natural in a. Via this identification, if q ≤ p, it can be checked that

the morphism GX(p)
ρ

p
q
−→ GX(q) is given by {X(a)

θa
−→ G(a)}a≤p 7→ {X(a)

θa
−→ G(a)}a≤q.

Lemma 5.7. Let X ∈ shP, G ∈ s`(shP). Then the sup-lattice structure of GX is given as
follows:

1. For each p ∈ P, GX(p) = {{X(a)
θa
−→ G(a)}a≤p natural in a} is a sup-lattice point-

wise.

2. If q ≤ p the morphisms GX(q)
Σ

p
q --
⊥mm
ρ

p
q

GX(p) are defined by the formulae

(for θ ∈ GX(p), ξ ∈ GX(q)):

Fρ) (ρp
qθ)a(x) = θa(x) for x ∈ X(a), a ≤ q.

FΣ) (Σp
qξ)a(x) = Σa

a∧qξa∧q(x|a∧q) for x ∈ X(a), a ≤ p.

Proof. We have already showed above that ρp
q satisfies Fρ).

We have to prove that if Σ
p
q is defined by FΣ) then the adjunction holds, i.e. that

A : Σ
p
qξ ≤ θ if and only if B : ξ ≤ ρp

qθ.
By FΣ), A means that for each a ≤ p, for each x ∈ X(a) we have Σa

a∧qξa∧q(x|a∧q) ≤ θa(x)
in G(a).
By Fρ), B means that for each a ≤ q, for each x ∈ X(a) we have ξa(x) ≤ θa(x).

Then A implies B since if a ≤ q then a∧q = a, and B implies A since for each a ≤ p,
for each x ∈ X(a), by the adjunction Σ a ρ for G, Σa

a∧qξa∧q(x|a∧q) ≤ θa(x) holds in G(a)
if and only if ξa∧q(x|a∧q) ≤ ρa

a∧qθa(x) holds in G(a ∧ q), but this inequality is implied by
B since by naturality of θ we have ρa

a∧qθa(x) = θa∧q(x|a∧q). �

Proposition 5.8. If X ∈ shP, G ∈ Loc(shP), then the sup-lattice structure of GX defined
above satisfies Frobenius reciprocity as in 5.1 item 4, yielding in this way a locale
structure for GX.

Proof. For q ≤ p, θ ∈ GX(p), ξ ∈ GX(q), we have to check Σ
p
q(ρp

q(θ) ∧ ξ) = θ ∧ Σ
p
qξ. By

Fρ) and FΣ) above, it suffices to check that for each a ≤ p, x ∈ X(a),

Σa
a∧q(θa∧q(x|a∧q) ∧ ξa∧q(x|a∧q)) = θa(x) ∧ Σa

a∧qξa∧q(x|a∧q),

which follows from Frobenius reciprocity (for G) with x = θa(x), y = ξa∧q(x|a∧q). �
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Remark 5.9. If X ∈ shP, G ∈ Loc(shP), the unit 1 ∈ GX is a global section that

corresponds to the arrow X −→ 1
1
−→ ΩP −→ G, which by 5.1 item 2 maps 1p(x) = p

for each p ∈ P, x ∈ X(p).

5.10. For the remainder of this section, the main idea (that shouldn’t be lost in the
computations) is to consider some of the situations defined in section 2.1 for the topos
shP, and to “translate” them to the base topos S. In particular we will translate the four
axioms for an `-relation in shP (which are expressed in the internal language of the topos
shP) to equivalent formulae in the language of S (proposition 5.24), and also translate
the autoduality of GX, if G ∈ s`(shP), to an autoduality of P-modules (proposition 5.26).
All this will be needed later in section 6.2.

Consider X ∈ shP, G ∈ s`(shP) and an arrow X
α
−→ G. We want to compute the

internal supremum
∨
x∈X

α(x) ∈ G. This supremum is the supremum of the subsheaf of G

given by the image of α in shP, which is computed as #S ↪→ G, where S is the sub-
presheaf of G given by S (p) = {αp(x) | x ∈ X(p)}. Now, by 5.1 item 1 (or, it can be easily
verified), this supremum coincides with the supremum of the sub-presheaf S ↪→ G,
which by 5.1 item 3 is computed as the global section 1

s
−→ G, sq =

∨
p≤q

x∈X(p)

Σq
pαp(x).

Applying the equivalence γ∗ of 5.1, item 5 we obtain:

Proposition 5.11. Let X ∈ shP, G ∈ s`(shP) and an arrow X
α
−→ G. Then at the level

of P-modules, the element s ∈ G(1) corresponding to the internal supremum
∨
x∈X

α(x) is∨
p∈P

x∈X(p)

Σ1
pαp(x). �

Definition 5.12. Given X ∈ shP, recall that we denote by ΩP the object classifier of
shP and consider the sup-lattice in shP, ΩX

P (that is also a locale). We will denote by Xd

the P-module (that is also a locale extension P −→ Xd) corresponding to ΩX
P, in other

words Xd := γ∗(ΩX
P) = ΩX

P(1).
Given p ∈ P, x ∈ X(p) we define the element δx := Σ1

p{x}p ∈ Xd.

Consider now θ ∈ Xd, that is θ ∈ ΩX
P(1), i.e. X

θ
−→ ΩP in shP. Let α be X

θ·{}
−→ ΩX

P,
α(x) = θ(x) · {x}. Then proposition 2.9 states that θ =

∨
x∈X

α(x) (this is internally in shP).

Appyling proposition 5.11 we compute in Xd:

θ =
∨
p∈P

x∈X(p)

Σ1
p(θp(x) · {x}p) =

∨
p∈P

x∈X(p)

θp(x) · Σ1
p{x}p =

∨
p∈P

x∈X(p)

θp(x) · δx.

We have proved the following:

73



Proposition 5.13. The family {δx}p∈P,x∈X(p) generates Xd as a P-module, and further-
more, for each θ ∈ Xd, we have θ =

∨
p∈P

x∈X(p)

θp(x) · δx. �

Remark 5.14. Given q ≤ p ∈ P, x ∈ X(p), by naturality of X
{}
−→ ΩX

P we have
{x|q}q = ρ

p
q{x}p.

Lemma 5.15. For p, q ∈ P, x ∈ X(p), we have q · δx = δx|p∧q . In particular p · δx = δx.

Proof. Recall that multiplication by a ∈ P is given by Σ1
aρ

1
a, and that ρ1

aΣ
1
a = id. Then

p · δx = Σ1
pρ

1
pΣ

1
p{x}p = Σ1

p{x}p = δx, and

q · δx = q · p · δx = (p ∧ q) · δx = Σ1
p∧qρ

1
p∧qΣ

1
p{x}p =

= Σ1
p∧qρ

p
p∧qρ

1
pΣ

1
p{x}p = Σ1

p∧qρ
p
p∧q{x}p

5.14
= Σ1

p∧q{x|p∧q}p∧q = δx|p∧q . �

Corollary 5.16. For X,Y ∈ shP, p, q ∈ P, x ∈ X(p), y ∈ Y(q), we have
δx ⊗ δy = δx|p∧q ⊗ δy|p∧q in Xd ⊗P Yd.

Proof. δx ⊗ δy = p · δx ⊗ q · δy = q · δx ⊗ p · δy = δx|p∧q ⊗ δy|p∧q . �

Definition 5.17. Consider now X × X
δX
−→ ΩP in shP, for each a ∈ P we have

X(a) × X(a)
δX a
−→ ΩP(a) 5.1, item 2.

= P≤a.

If x ∈ X(p), y ∈ X(q) with p, q ∈ P, we denote

~x=y�P := Σ1
p∧qδX p∧q(x|p∧q, y|p∧q) ∈ P.

This shouldn’t be confused with the internal (in shP) notation ~x = y� introduced
in section 2.3, though it is similar to how one would compute it using sheaf semantics;
here all these computations are “external”, i.e. in S.

Corollary 5.18. For p, q ∈ P, x ∈ X(p), y ∈ X(q), we have ~x=y�P · δx = ~x=y�P · δy.

Proof. Applying lemma 2.11 to X
{}
−→ ΩX

P it follows that for each p, q ∈ P, x ∈ X(p),
y ∈ X(q),

δX p∧q(x|p∧q, y|p∧q) · {x|p∧q}p∧q = δX p∧q(x|p∧q, y|p∧q) · {y|p∧q}p∧q

in ΩX
P(p∧q), where · is the p∧q-component of the natural isomorphism ΩP⊗ΩX

P
·
−→ ΩX

P.
Apply now Σ1

p∧q and use that · is a s`-morphism (therefore it commutes with Σ) to obtain

~x=y�P · δx|p∧q = ~x=y�P · δy|p∧q .

Then, by lemma 5.15,

~x=y�P · q · δx = ~x=y�P · p · δy,

which since ~x=y�P ≤ p ∧ q is the desired equation. �
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Let X,Y ∈ shP,G ∈ Loc(shP), then we have the correspondence

X × Y
λ
−→ G an `-relation

ΩX
P ⊗ΩY

P
λ
−→ G a s`-morphism

Xd ⊗P Yd
µ
−→ G(1) a morphism of P-Mod

(5.19)

The following propositions show how µ is computed from λ and vice versa.

Proposition 5.20. In the correspondence (5.19), for each p, q ∈ P, x ∈ X(p), y ∈ Y(q),

µ(δx ⊗ δy) = Σ1
p∧qλp∧q(x|p∧q, y|p∧q).

Proof. µ(δx ⊗ δy)
5.16
= λ1(δx|p∧q ⊗ δy|p∧q) = λ1Σ

1
p∧q({x|p∧q}p∧q ⊗ {y|p∧q}p∧q) =

= Σ1
p∧qλp∧q({x|p∧q}p∧q ⊗ {y|p∧q}p∧q) = Σ1

p∧qλp∧q(x|p∧q, y|p∧q). �

Corollary 5.21. Applying ρ1
p∧q and using that ρ1

p∧qΣ
1
p∧q = id, we obtain the reciprocal

computation
λp∧q(x|p∧q, y|p∧q) = ρ1

p∧qµ(δx ⊗ δy). �

Remark 5.22. In the correspondence (5.19) above, if λ = δX : X × X −→ Ω, then
µ(δx1 ⊗ δx2) = ~x1 = x2�P (recall definition 5.17).

Lemma 5.23. In the correspondence (5.19), for each p, q, r ∈ P, x ∈ X(p), y ∈ Y(q),

r · µ(δx ⊗ δy) = Σ1
p∧q∧rρ

p∧q
p∧q∧rλp∧q(x|p∧q, y|p∧q) = Σ1

p∧q∧rλp∧q∧r(x|p∧q∧r, y|p∧q∧r).

Proof. The second equality is just the naturality of λ. To prove the first one, we com-
pute:

r · µ(δx ⊗ δy)
5.20
= Σ1

rρ
1
r Σ

1
p∧qλp∧q(x|p∧q, y|p∧q)

5.1 item 2.b)
=

= Σ1
r Σ

r
p∧q∧r ρ

p∧q
p∧q∧r λp∧q(x|p∧q, y|p∧q) = Σ1

p∧q∧r ρ
p∧q
p∧q∧r λp∧q(x|p∧q, y|p∧q). �

The following proposition expresses the corresponding formulae for the four axioms

of an `-relation X×Y
λ
−→ G in shP (see definitions 2.17, 2.41), at the level of P-modules.

Proposition 5.24. Let X,Y ∈ shP,G ∈ Loc(shP), and an `-relation X × Y
λ
−→ G.

Consider the corresponding P-module morphism Xd ⊗P Yd
µ
−→ G(1) as in (5.19). Then

λ is ed, uv, su, in resp. if and only if:

• ed) for each p ∈ P, x ∈ X(p),
∨
q∈P

y∈Y(q)

µ(δx ⊗ δy) = p.
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• uv) for each p, q1, q2 ∈ P, x ∈ X(p), y1 ∈ Y(q1), y2 ∈ Y(q2),

µ(δx ⊗ δy1) ∧ µ(δx ⊗ δy2) ≤ ~y1 =y2�P.

• su) for each q ∈ P, y ∈ Y(q),
∨
p∈P

x∈X(p)

µ(δx ⊗ δy) = q.

• in) for each p1, p2, q ∈ P, x1 ∈ X(p1), x2 ∈ X(p2), y ∈ Y(q),

µ(δx1 ⊗ δy) ∧ µ(δx2 ⊗ δy) ≤ ~x1 = x2�P.

Proof. By proposition 2.50 and remark 2.47, λ is ed) if and only if
∨
y∈Y

λ∗(y) = 1

in GX. By proposition 5.11 and remark 5.9, this is an equality of global sections∨
q∈P

y∈Y(q)

Σ1
qλ
∗
q(y) = 1 in GX(1) =

M
[X,G]. Then λ is ed) if and only if for each p ∈ P, x ∈ X(p),

∨
q∈P

y∈Y(q)

(Σ1
qλ
∗
q(y))p(x) = p in G(p). But by FΣ) in lemma 5.7 we have

(Σ1
qλ
∗
q(y))p(x) =

M
Σ

p
p∧q(λ∗q(y))p∧q(x|p∧q) = Σ

p
p∧qλp∧q(x|p∧q, y|p∧q), where last equality holds

since by definition of λ∗ we have (λ∗q(y))M
p∧q(x|p∧q) = λp∧q(x|p∧q, y|p∧q).

We conclude that λ is ed) if and only if for each p ∈ P, x ∈ X(p),∨
q∈P

y∈Y(q)

Σ
p
p∧qλp∧q(x|p∧q, y|p∧q) = p in G(p). Since ρ1

pΣ
1
p = id, this holds if and only if it

holds after we apply Σ1
p. Then, proposition 5.20 yields the desired equivalence.

We now consider axiom uv):
λ is uv) if and only if for each p, q1, q2 ∈ P, x ∈ X(p), y1 ∈ Y(q1), y2 ∈ Y(q2),

ρ
p∧q1
p∧q1∧q2

λp∧q1(x|p∧q1 , y1|p∧q1) ∧ ρ
p∧q2
p∧q1∧q2

λp∧q2(x|p∧q2 , y2|p∧q2) ≤
ρ

q1∧q2
p∧q1∧q2

δY q1∧q2(y1|q1∧q2 , y2|q1∧q2).

We apply Σ1
p∧q1∧q2

and use that it commutes with ∧ to obtain that this happens if and
only if

Σ1
p∧q1∧q2

ρ
p∧q1
p∧q1∧q2

λp∧q1(x|p∧q1 , y1|p∧q1) ∧ Σ1
p∧q1∧q2

ρ
p∧q2
p∧q1∧q2

λp∧q2(x|p∧q2 , y2|p∧q2)
≤ Σ1

p∧q1∧q2
ρ

q1∧q2
p∧q1∧q2

δY q1∧q2(y1|q1∧q2 , y2|q1∧q2),

which by lemma 5.23 (see remark 5.22) is equation

q2 · µ(δx ⊗ δy1) ∧ q1 · µ(δx ⊗ δy2) ≤ p · ~y1 =y2�P,

but since qi · δyi = δyi (i = 1, 2), by corollary 5.16 this is equivalent to the equation
µ(δx ⊗ δy1) ∧ µ(δx ⊗ δy2) ≤ p · ~y1 =y2�P.
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This equation is equivalent to the one in the proposition since the right term is lower
or equal than ~y1 =y2�P, and multiplying by p the left term doesn’t affect it.

�

Definition 5.25. Let X,Y ∈ shP,G ∈ Loc(shP), and an `-relation X×Y
λ
−→ G. Consider

the corresponding P-module morphism Xd⊗P Yd
µ
−→ G(1). We say that µ is ed, uv, su, in

resp. if it satisfies the conditions of proposition 5.24 above. We say that µ is an
`-function, resp. `-op-function, resp. `-bijection if it is ed and uv, resp. su and in
resp. the four conditions.

Note that µ has each of the properties defined above if and only if λ does.

Consider now the autoduality of ΩX
P in s`(shP) given by proposition 2.35. Applying

the tensor equivalence s`(shP)
γ∗
−→ P-Mod it follows that Xd is autodual in P-Mod, in

the sense of definition C.12. We will now give the formulae for the η, ε of this duality.

Proposition 5.26. The P-module morphisms P
η
−→ Xd ⊗

P
Xd, Xd ⊗

P
Xd

ε
−→ P are given

by the formulae η(1) =
∨
p∈P

x∈X(p)

δx ⊗ δx, ε(δx ⊗ δy) = ~x = y�P for each p, q ∈ P, x ∈ X(p),

y ∈ X(q).

Proof. The internal formula for η given in the proof of proposition 2.35, together with
remark 5.11 yield the formula for η. The internal formula for ε, together with our def-
inition of the notation ~x = y�P yield that for each p, q ∈ P, x ∈ X(p), y ∈ X(q),
we have εp∧q({x|p∧q}p∧q ⊗ {y|p∧q}p∧q) = ~x = y�P in ΩP(p ∧ q). Apply Σ1

p∧q, use that it
commutes with the s`-morphism ε and recall remark 5.9 to obtain
ε1(δx|p∧q ⊗ δy|p∧q) = ~x=y�P in P, which by corollary 5.16 is the desired equation. �

5.1 A particular type of `-relation
Assume P is the coproduct of two locales, P = H ⊗ L. Then the inclusions into the
coproduct yield projections from the product of topoi shH

π1
←− sh(H ⊗ L)

π2
−→ shL.

Consider now X ∈ shH,Y ∈ shL, G ∈ Loc(sh(H ⊗ L)). We can consider an
`-relation π∗1X × π∗2Y

λ
−→ G, and the corresponding (H ⊗ L)-module morphism

(π∗1X)d ⊗
H⊗L

(π∗2Y)d
µ
−→ G(1).

To compute (π∗1X)d, note that Xd is the H-module corresponding to the locale of
open parts of the discrete space Xdis (recall corollary 2.39). By [17], VI.3 Proposition
3, p.51, H −→ Xd is the morphism of locales corresponding to the etale (over H) space
Xdis = ΩX

H. Then we have the following pull-back of spaces (push-out of locales)
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(π∗1X)dis //

��

Xdis

��

H ⊗ L // H

(π∗1X)d Xdoo

H ⊗ L

OO

Hoo

OO

which shows that (π∗1X)d = Xd ⊗ L, and similarly (π∗2Y)d = H ⊗ Yd. Then we have
(π∗1X)d ⊗

H⊗L
(π∗2Y)d = (Xd ⊗ L) ⊗

H⊗L
(H ⊗ Yd) � Xd ⊗ Yd, where the last tensor product

is the tensor product of sup-lattices in S, i.e. as Ω-modules. The isomorphism maps
δx ⊗ δy 7→ (δx ⊗ 1) ⊗ (1 ⊗ δy), then we have the following instance of proposition 5.24.

Proposition 5.27. Let X ∈ shH, Y ∈ shL,G ∈ Loc(sh(H ⊗ L)), and an `-relation

π∗1X × π∗2Y
λ
−→ G. Consider the corresponding (H ⊗ L)-module morphism

Xd ⊗ Yd
µ
−→ G(1). Then λ is ed, uv, su, in resp. if and only if:

• ed) for each h ∈ H, x ∈ X(h),
∨

l∈L
y∈Y(l)

µ(δx ⊗ δy) = h.

• uv) for each h ∈ H, l1, l2 ∈ L, x ∈ X(h), y1 ∈ Y(l1), y2 ∈ Y(l2),

µ(δx ⊗ δy1) ∧ µ(δx ⊗ δy2) ≤ ~y1 =y2�P.

• su) for each l ∈ L, y ∈ Y(l),
∨
h∈H

x∈X(h)

µ(δx ⊗ δy) = l.

• in) for each h1, h2 ∈ H, l ∈ L, x1 ∈ X(h1), x2 ∈ X(h2), y ∈ Y(l),

µ(δx1 ⊗ δy) ∧ µ(δx2 ⊗ δy) ≤ ~x1 = x2�P.

2

5.28. Consider the situation of 3.1 in the topos shP, with P = H ⊗ L. Since the ♦2( f , g)
diagram is a diagram in Rel(shP) ⊆ s`(shP) � P-Mod, it is equivalent to a correspond-
ing diagram in P-Mod that we will also denote ♦2 (recall that gop corresponds to g∧, see
2.37),

♦2( f , g) :

Xd ⊗ Yd
µ

##HHHHHH

X′d ⊗ Yd

f∧⊗Yd
::tttttt

X′d⊗g $$IIIIII
≡ G(1) ,

X′d ⊗ Y ′d
µ′

;;wwwwww

expressing the equation: for each h ∈ H, l ∈ L, x′ ∈ X′(h), y ∈ Y(l)

♦2( f , g) : µ′(δx′ ⊗ δg(l)) =
∨
b∈H

x∈X(b)

~ f (x)= x′�H · µ(δx ⊗ δl) (5.29)
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Resumen en castellano de la sección 5

La sección 5 es la sección más técnica de la tesis y su objetivo principal es dar
caracterizaciones externas, para un local P en un toposS, de los desarrollos de la sección
2 cuando se los considera internamente en el topos shP.

Recordemos que Joyal-Tierney desarrollan en [17], VI un cambio de base para sup-
reticulados y locales. En particular para un local P en un topos S caracterizan a los
sup-reticulados y locales en el topos E = shP al mostrar que s`(shP)

γ∗
−→ P-Mod

es una equivalencia que se restringe a una equivalencia Loc(shP)
γ∗
−→ P-Loc. (ver 5.1).

Además, caracterizan a los espacios etales como aquellos espacios cuyo correspondiente
local es de la forma γ∗(ΩX

P) = γ∗(O(Xdis)), con X ∈ shP, donde ΩP es el clasificador de
subobjetos de shP. Denotamos Xd := γ∗(ΩX

P) = ΩX
P(1).

Desarrollamos en esta sección lo que se podrı́a llamar un cambio de base para rela-
ciones, dado un local P ∈ S examinamos la correspondencia entre relaciones γ∗X ×
γ∗Y −→ ΩP en el topos shP y `-relaciones X × Y −→ P en el topos de base.

Luego consideramos `-relaciones X × Y
λ
−→ G en el topos shP, mostramos que

corresponden a morfismos de P-modulos Xd ⊗P Yd
µ
−→ G(1) y damos fórmulas externas

(i.e. en términos de µ, en el topos de base S) equivalentes a los axiomas de la sección
2.1 (proposición 5.24). También “externalizamos” las fórmulas de la dualidad de ΩX

P
en s`(shP) (proposición 5.26). Todo esto es necesario para tratar el caso general no
punteado en la sección 6.2.
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6 The equivalence Cmd0(O(G)) = Rel(βG)

6.1. We fix throughout this section a localic groupoid G (i.e. groupoid object in
Sp = Locop), with subjacent structure of localic category (i.e. category object in Sp)
given by (see [17], VIII.3 p.68)

G
G0
×
G0

G ◦ // G
∂0 //

∂1

// G0ioo

(we abuse notation by using the same letter G for the object of arrows of G).

We denote by L = O(G), B = O(G0) their corresponding locales of open parts,
and think of them as (commutative) algebras in the monoidal category s`. The locale

morphisms B
s=∂−1

0 //

t=∂−1
1

// L give L a structure of B-bimodule. We establish, following [6],

that B acts on the left via t and on the right via s. This is consistent with the pull-
back G ×G0 G above which is thought of as the pairs {( f , g) ∈ G × G|∂0( f ) = ∂1(g)} of
composable arrows, in the sense that O(G ×G0 G) = L ⊗B L (the push-out corresponding
to the pull-back above is the tensor product of B-bimodules).

In this way, the unit G0
i // G corresponds to a counit L

e
−→ B, and the multipli-

cation (composition) G ×G0 G
◦
−→ G corresponds to a comultiplication L

c
−→ L ⊗B L.

Therefore L is a coalgebra in the category B-bimod, i.e. a cogèbroı̈de agissant sur B. In
other words, a localic category structure for G is the same as a cogèbroı̈de structure for
L.

We define a localic Hopf algebroid as the exact formal dual structure of a localic

groupoid. The inverse G
(−)−1

−→ G of a localic groupoid corresponds to an antipode
L

a
−→ L. As was observed by Deligne in [6], p.117, the structure of cogèbroı̈de is the

subjacent structure of a Hopf algebroid which is used to define its representations (see
definition C.21), exactly like the subjacent localic category structure of the groupoid
is the subjacent structure required to define G-spaces as Sp-valued functors, namely,
actions of the category object on a family (internal) X −→ G0 (see definition 6.2).

6.1 The category βG

Groupoid objects G in Sp act on spaces over G0, X −→ G0, as groupoids (or categories
with object of objects G0) act on families over G0 in Sets, defining an internal functor.
We consider G ×G0 X, the pull-back of spaces over G0 constructed using ∂0, as a space
over G0 using ∂1:
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Definition 6.2. An action of a localic groupoid G in a space over G0, X −→ G0, is a

morphism G ×G0 X
θ
−→ X of spaces over G0 such that the following diagrams commute.

A1 :

G
G0
×
G0

G
G0
×
G0

X ◦×X //

G×θ
��

G
G0
×
G0

X

θ

��
G

G0
×
G0

X θ // X

A2 :

G
G0
×
G0

X θ // X

G0
G0
×
G0

X

i×X

OO

�

@@����������

Given two actions that we will denote by G y X, G y X′, an action morphism
(which corresponds to a natural transformation between the functors) is a morphism f
of spaces over G0 such that the following diagram commute.

AM :

G
G0
×
G0

X θ //

G× f
��

X

f

��
G

G0
×
G0

X′ θ′ // X′

Remark 6.3. The reader can easily check that these definitions are equivalent to the
ones of [17], VIII.3, p.68.

Remark 6.4. Recall from [17], VI.3 p.51, Proposition 3 (see also proposition 2.39 and
5.1, item 5), that the functor

shB
(−)dis
−→ Sp(shB)

γ∗
−→ B-Locop

Y � // (Yd → B),

where Yd = γ∗(ΩY) = γ∗O(Ydis) (recall definition 5.12 and proposition 2.39), yields an
equivalence of categories shB −→ EtB, where EtB is the category of etale spaces over
B, i.e. X

p
−→ B satisfying that p and the diagonal X

4
−→ X ×B X are open (see [17], V.5

p.41).

Definition 6.5. An action G y X is discrete if X −→ G0 is etale, i.e. in view of last
remark if X = Yd (or equivalently O(X) = Yd) with Y ∈ shB. We denote by βG the
category of discrete actions of G.

6.6. Consider s`0(shB) the full subcategory of s`(shB) with objects of the form ΩY
B.

Then we have the equivalence : Rel(shB)
(−)∗
−→ s`0(shB). consider also the restriction of

the equivalence s`(shB) � B-Mod to s`0(shB) = (B-Mod)0. Combining both we obtain
Rel(shB) = (B-Mod)0, mapping Y ↔ Yd.
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The objective of this section is to prove the following theorem:

Theorem 6.7. For any localic groupoid G, there is an equivalence of categories making
the triangle commutative (T, F are forgetful functors):

Cmd0(L) = //

T ''OOOOOOOOOOOO Rel(βG)

Rel(F)
wwppppppppppp

(B-Mod)0 � Rel(shB).

6.2 The equivalence at the level of objects
Consider an etale space X −→ G0, and assume O(X) = Yd, with Y ∈ shB. A (discrete)

action G y X (G ×G0 X
θ
−→ X satisfying A1, A2) corresponds exactly to a B-locale

morphism Yd
ρ
−→ L⊗B Yd satisfying C1, C2 (in definition C.21). Therefore, to establish

an equivalence between discrete actions Gy X and comodules Yd
ρ
−→ L⊗B Yd we need

to prove

Proposition 6.8. Every comodule structure Yd
ρ
−→ L ⊗B Yd is automatically a locale

morphism (when L is the cogèbroı̈de subjacent to a localic groupoid).

Next we prove this proposition (see 6.9 below for a clarifying diagram). In order to
do this, we will work in the category of B ⊗ B-modules. Since B is commutative, we
have an isomorphism of categories B-bimod � B ⊗ B-mod, but we consider the tensor
product ⊗

B⊗B
of B ⊗ B-modules as in C.11, not to be confused with the tensor product ⊗B

as B-bimodules. Via this isomorphism, L is a B⊗ B-module whose structure is given by

B ⊗ B
(t,s)
−→ L.

We first notice that L ⊗
B

Yd � L ⊗
B⊗B

(B ⊗ Yd), and via extension of scalars (using the

inclusion B −→ B ⊗ B in the first copy), ρ corresponds to a B ⊗ B-module morphism
Yd ⊗ B

ρ
−→ L ⊗

B⊗B
(B⊗ Yd). From the equivalence of tensor categories recalled in section

5.1 items 5,6, with P = B⊗B, ρ corresponds to a morphism ϕ in s`(sh(B⊗B)), ρ = γ∗(ϕ),
and ρ is a locale morphism if and only if ϕ is so.

From the results of section 5.1, Yd ⊗ B = (π∗1Y)d = γ∗(Ω
π∗1Y
B⊗B), and similarly

B ⊗ Yd = γ∗(Ω
π∗1Y
B⊗B), where ΩB⊗B is the subobject classifier of sh(B ⊗ B). Then

L ⊗
B⊗B

(B ⊗ Yd) 5.1
= γ∗(L̃

(1)
⊗ Ω

π∗2Y
B⊗B)

(2)
= γ∗(L̃π

∗
2Y),

where L̃ is as in 5.1 item 5, γ∗L̃ = L, the tensor product marked with (1) is as sup-
lattices in sh(B⊗ B) and the equality marked with (2) holds since L̃⊗Ω

π∗2Y
B⊗B and L̃π

∗
2Y are

the free L̃-module in π∗2Y (see proposition 2.45).
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Then ϕ is Ω
π∗1Y
B⊗B

ϕ
−→ L̃π

∗
2Y , therefore by remark 2.51 there is an `-relation

π∗1Y × π∗2Y
λ
−→ L̃ in the topos sh(B ⊗ B) such that ϕ = λ∗ and, to see that ρ is a lo-

cale morphism, we can prove that λ is an `-op-function.

6.9. We schematize the previous arguing in the following correspondence

Yd
ρ
−→ L ⊗

B
Yd B-module morphism B-locale morphism

Yd ⊗ B
ρ
−→ L ⊗

B⊗B
(B ⊗ Yd) (B ⊗ B)-module morphism (B ⊗ B)-locale morphism

Ω
π∗1Y
B⊗B

ϕ
−→ L̃π

∗
2Y s` morphism in sh(B ⊗ B) locale morphism

π∗1Y × π∗2Y
λ
−→ L̃ `-relation in sh(B ⊗ B) `-op-function

Proposition 6.10. The `-relation π∗1Y × π∗2Y
λ
−→ L̃ corresponding to a comodule struc-

ture Yd
ρ
−→ L ⊗B Yd, where L is the cogèbroı̈de subjacent to a localic groupoid, is an

`-bijection.

Proof. We will use the analysis of this particular kind of `-relations that we did in
section 5.1. We have seen that λ corresponds to a B-bimodule morphism Yd ⊗ Yd

µ
−→ L.

We have also seen, in proposition 5.27, which conditions in µ are equivalent to the
axioms for λ.

Since any duality induces an internal-hom adjunction and ΩY is autodual, µ cor-
responds to ρ via the duality of modules described in C.6. Then by lemma C.23, the
B1 and B2 subdiagrams in the following diagram are commutative. Also, the pentagon
subdiagram D is commutative by definition of the localic groupoid G, where a is the
antipode corresponding to the inverse of G (cf. proof of proposition 1.40).

B2

Yd ⊗ Yd
Yd⊗η⊗Yd //

µ

��

ε

{{wwwwwwwwwwww
Yd ⊗ Yd ⊗

B
Yd ⊗ Yd

B1 µ⊗Bµ

��

B
t

##GGGGGGGGGGGGG

s

##GGGGGGGGGGGGG L

D

c //eoo L ⊗
B

L

a⊗L
��

L⊗a
��

L L ⊗
B⊗B

L.∧oo

(6.11)

To prove axiom ed), let b0 ∈ B, x ∈ Y(b0). Chasing δx ⊗ δx in diagram (6.11)
all the way down to L using the arrow L ⊗ a we obtain (recall our formulae for η, ε
in proposition 5.26)

∨
b∈B

y∈Y(b)

µ(δx ⊗ δy) ∧ aµ(δy ⊗ δx) = b0, which implies the inequality
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∨
b∈B

y∈Y(b)

µ(δx ⊗ δy) ≥ b0, i.e. ≥ in ed) in proposition 5.27, but the inequality ≤ always holds.

To prove axiom uv), let b0, b1, b2 ∈ B, x ∈ Y(b0), y1 ∈ Y(b1), y2 ∈ Y(b2). Chasing
δy1 ⊗ δy2 , but this time using the arrow a ⊗ L, we obtain∨

c∈B
w∈Y(c)

aµ(δy1 ⊗ δw) ∧ µ(δw ⊗ δy2) = ~y1 =y2�B,

then in particular (1) aµ(δy1 ⊗ δx) ∧ µ(δx ⊗ δy2) ≤ ~y1 =y2�B.

To deduce uv) from (1) we need to see that aµ(δy1 ⊗ δx) = µ(δx ⊗ δy1). Since a2 = id,
it is enough to prove ≤:

aµ(δy1 ⊗ δx)
5.15
= aµ(δy1 ⊗ b0 · δx) = aµ(δy1 ⊗ δx) ∧ b0

ed)
= aµ(δy1 ⊗ δx) ∧

∨
b∈B

y∈Y(b)

µ(δx ⊗ δy)

=
∨
b∈B

y∈Y(b)

aµ(δy1 ⊗ δx) ∧ µ(δx ⊗ δy)
(1)
=
∨
b∈B

y∈Y(b)

aµ(δy1 ⊗ δx) ∧ µ(δx ⊗ δy) ∧ ~y1 =y�B
5.18
=

= aµ(δy1 ⊗ δx) ∧ µ(δx ⊗ δy1).

Axioms su) and in) follow symetrically. �

We have finished the proof of proposition 6.8. For future reference, we record the
results of this section:

Proposition 6.12. Given a localic groupoid G over G0, with subjacent cogèbroı̈de L sur
B, and Y ∈ shB , the following structures are in a bijective correspondence:

• Discrete actions G ×
G0

Yd
θ
−→ Yd.

• `-relations π∗1Y × π∗2Y
λ
−→ L̃ with a corresponding B-bimodule morphism

Yd ⊗ Yd
µ
−→ L such that the following diagrams commute:

B1 :

Yd ⊗ Yd
µ //

Yd⊗η⊗Yd
��

L

c
��

Yd ⊗ Yd ⊗
B

Yd ⊗ Yd
µ⊗Bµ // L ⊗

B
L

B2 :
Yd ⊗ Yd

µ //

ε
##GGGGGGGGG L

e
��

B

• Comodule structures Yd
ρ
−→ L ⊗B Yd. �

Remark 6.13. By proposition 1.40, in the case where G is a localic group, actions
Aut(X) −→ G defined as in [8] (see 1.34) also correspond to the previous structures.
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Notation 6.14. We fix until the end of this thesis the following notation: we use the
symbols θ, ρ, λ, µ only for the arrows in the correspondence above, adding a (−)′ if
neccessary.

Remark 6.15. In [6], the comodule structure considered is the opposite of C.21, i.e.
right L-comodules Yd

ρ
−→ Yd ⊗B L. By considering the inverse image λ∗ we obtain that

this structure is also equivalent to the other three.

6.3 The equivalence at the level of arrows
We start this section with some results that allow us to better understand the category
Rel(βG). We begin with a proposition that relates action morphisms with ♦2-cones as in
section 4.

Proposition 6.16. Given two discrete actions G×G0 Yd
θ
−→ Yd, G×G0 Y ′d

θ′

−→ Y ′d, a space

morphism Yd
f
−→ Y ′d is an action morphism if and only if the corresponding arrow

Y
g
−→ Y ′ in shB satisfies

♦2(g) :

Y ′

������

$$$$$$

gop

Y

Y Y

G

�����
λ

(((((

=

Y ′ Y

������

######

g

Y ′ Y ′

G

�����
λ′

(((((

i.e. by 5.28 :

Y ′d

������

$$$$$$

g∧

Yd

Yd Yd

L

�����
µ

'''''

=

Y ′d Yd

������

######

g

Y ′d Y ′d

L

�����
µ′

'''''

Proof. f −1 (the formal dual of f ) is the B-locale morphism Yd
g∧
−→ Yd, which is com-

puted with the autoduality of Yd (see 2.39 and 2.35), and the correspondence between θ
and µ in proposition 6.12 is also given by this duality, i.e.

f −1 = g∧ :

Y ′d
�����

+++++
η

Y ′d Yd

����$$$$
g

��������B Yd

Y ′d Y ′d ��������B Yd

B

���
ε

,,, ��������B Yd

θ−1 = ρ :

Y ′d
����

++++
η

Y ′d Y ′d ��������B Y ′d

L

����
µ

++++ ��������B Y ′d

Then the commutativity of the diagram AM in definition 6.2, expressing that f is an
action morphism, is equivalent when passing to the formal dual to the equality of the
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left and right terms of the equation (and therefore to the equality marked with an (*))

Y ′d
����

++++
η

Y ′d Y ′d ��������B Y ′d
�����

+++++
η

L

����
µ′

++++ ��������B Y ′d Yd

����$$$$
g

��������B Yd

L ��������B Y ′d Y ′d ��������B Yd

L ��������B B

���
ε

,,, ��������B Yd

4
=

Y ′d
�����

+++++
η

Y ′d Yd

����$$$$
g

��������B Yd

Y ′d Y ′d ��������B Yd

L

���
µ′

,,, ��������B Yd

(∗)
=

Y ′d
�����

+++++
η

Y ′d Yd

����$$$$
g

��������B Yd

�����
+++++

η

Y ′d Y ′d ��������B Yd Yd
��������B Yd

B

���
ε

,,, ��������B L

����
µ

,,,, ��������B Yd

But the equality (*) is ♦2(g) composed with η, to recover ♦2(g) compose with ε. �

Corollary 6.17. Using last proposition and proposition 6.12 we can think of the cate-
gory βG of discrete actions of G in a purely algebraic way (without considering spaces
over G0) as follows: an action is a B-bimodule morphism Yd ⊗ Yd

µ
−→ L satisfying B1,

B2, and an action morphism is an arrow Y
g
−→ Y ′ in shB such that ♦2(g) holds.

Remark 6.18. Since µ is an `-bijection, ♦2(g) holds if and only if �(g) does, so the
definitions of action morphism of [17] (see 6.2) and [8] (see 1.34) coincide.

Remark 6.19. Since the forgetful functor βG F
−→ shB, G y Yd 7→ Y , is left exact, a

monomorphism of discrete G-actions Z
g
−→ Y is also a monomorphism in shB.

Lemma 6.20. Given two actions Yd⊗Yd
µ
−→ L and Zd⊗Zd

µ′

−→ L and a monomorphism
Z

g
−→ Y of actions, for each δz, δw generators of Zd, µ′(δz ⊗ δw) = µ(δg(z) ⊗ δg(w)).

Proof. µ(δg(z) ⊗ δg(w))
6.16,(5.29)

=
∨
b∈B

x∈Y(b)

~g(x)=g(z)�B · µ
′(δx ⊗ δw) 6.19,2.1

=

=
∨
b∈B

x∈Y(b)

~x=z�B · µ
′(δx ⊗ δw) 5.18

= µ′(δz ⊗ δw). �

Lemma 6.21. Given an action Yd ⊗ Yd
µ
−→ L and a monomorphism Z

f
−→ Y, if the

restriction of the action to Z is an `-bijection, then it is an action. This is the only
possible action on Z that makes f a morphism of G-actions.

Proof. Unicity is clear from the previous lemma. We have to check B1 and B2 in
proposition 6.12 for Zd ⊗ Zd

µ
−→ L. The only one that requires some care is B1. By

hypothesis we have for b0, b′0 ∈ B, x ∈ Y(b0),w ∈ Y(b′0),

cµ(δx ⊗ δw) =
∨
b∈B

y∈Y(b)

µ(δx ⊗ δy) ⊗
B
µ(δy ⊗ δw)
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(we specify in the notation if the tensor product is over B).

We have to see that when x ∈ Z(b0),w ∈ Z(b′0), this equation still holds when
restricting the supremum to Z. In fact, in this case we have

∨
b∈B

y∈Y(b)

µ(δx ⊗ δy) ⊗
B
µ(δy ⊗ δw) 5.15

=
∨
b∈B

y∈Y(b)

b0 · µ(δx ⊗ δy) ⊗
B
µ(δy ⊗ δw) · b′0

ed), su)
=

=
∨
b∈B

y∈Y(b)

∨
b1∈B

z1∈Z(b1)

∨
b2∈B

z2∈Z(b2)

µ(δx ⊗ δz1) ∧ µ(δx ⊗ δy) ⊗
B
µ(δy ⊗ δw) ∧ µ(δz2 ⊗ δw)

uv), in), 5.18
=

=
∨
b∈B

z∈Z(b)

µ(δx ⊗ δz) ⊗
B
µ(δz ⊗ δw). �

We are ready to prove theorem 6.7.

Theorem 6.22. For any localic groupoid G as in 6.1, there is an equivalence of cate-
gories making the triangle commutative (T, F are forgetful functors):

Cmd0(L) � //

T ''OOOOOOOOOOOO Rel(βG)

Rel(F)
wwppppppppppp

(B-Mod)0 � Rel(shB).

The identification between relations R ⊂ Y × Y ′ in shB and B-module morphisms

Yd
R
−→ Y ′d lifts to the upper part of the triangle.

Proof. Since the equivalence (B-Mod)0 � Rel(shB) maps Yd ↔ Y , proposition 6.12
yields a bijection between the objects of Cmd0(L) and Rel(βG).

We have to show that this bijection respects the arrows of the categories. Using the
lemma 6.21, it is enough to see that for Y , Y ′ any two objects of βG, and R ⊂ Y × Y ′

a relation in shB, the restriction θ of the product action λ � λ′ to R is a bijection if and
only if the corresponding B-module map R : Yd → Y ′d is a comodule morphism.

We claim that the diagram expressing that R : Yd → Y ′d is a comodule morphism is
equivalent to the diagram ♦(R,R) in 3.1 (cf. proof of proposition 1.42). The proof
follows then by proposition 3.17. We prove the claim using the elevators calculus
described in appendix B, B.1:
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The comodule morphism diagram is the equality

Yd

�����
#####

R
�����

)))))

η

Y ′d Y ′d ��������B Y ′d

G

�����
µ′

***** ��������B Y ′d

=

Yd

�����

*****

η

Yd Yd
��������B Yd

�����
#####

R

G

�����
µ

***** ��������B Y ′d

(6.23)

while the diagram ♦ is
Yd

������

))))))

η

Y ′d

Yd Yd
��������B Yd

�����
#####

R

Y ′d

Yd Yd
��������B Y ′d Y ′d

G

�����
µ

+++++ ��������B H

����
ε

++++

=

Yd

�����
#####

R

Y ′d

Y ′d Y ′d

G

����
µ′

++++

(6.24)

Proof of (6.23) =⇒ (6.24):

Yd

������

))))))

η

Y ′d

Yd Yd
��������B Yd

�����
#####

R

Y ′d

Yd Yd
��������B Y ′d Y ′d

G

�����
µ

+++++ ��������B H

����
ε

++++

(6.23)
=

Yd

�����
#####

R
������

))))))

η

Y ′d

Y ′d Y ′d ��������B Y ′d Y ′d

G

����
µ′

++++ ��������B H

����
ε

++++

(4)
=

Yd

�����
#####

R

Y ′d

Y ′d Y ′d

G

����
µ′

++++

Proof of (6.24) =⇒ (6.23):

Yd

�����
#####

R
�����

)))))

η

Y ′d Y ′d ��������B Y ′d

G

�����
µ′

***** ��������B Y ′d

(6.24)
=

Yd

������

))))))

η
�����

)))))

η

Yd Yd
��������B Yd

�����
#####

R

Y ′d ��������B Y ′d

Yd Yd
��������B Y ′d Y ′d ��������B Y ′d

G

�����
µ

***** ��������B H

�����
ε

***** ��������B Y ′d

(4)
=

Yd

�����

*****

η

Yd Yd
��������B Yd

�����
#####

R

G

�����
µ

***** ��������B Y ′d

�
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Resumen en castellano de la sección 6

En esta sección establecemos la equivalencia entre las acciones discretas de un
grupoide locálico y los comódulos discretos de su cogèbroı̈de subyacente, y la equiv-
alencia entre los morfismos de comódulos y las relaciones en la categorı́a de acciones
discretas, generalizando ası́ los resultados de la sección 1.4.

Notemos que la definición de acción de [17] es a priori diferente a la de [8], por
lo que tuvimos que mostrar que en el caso discreto estas coinciden (ver observaciones
6.13, 6.18).

Fijemos un grupoide locálico G (i.e. objeto grupoide en Sp = Locop), con estructura
subyacente de categorı́a locálica (i.e. objeto categorı́a en Sp) dada por (ver [17], VIII.3
p.68)

G
G0
×
G0

G ◦ // G
∂0 //

∂1

// G0ioo

Denotamos por L = O(G), B = O(G0) a sus correspondientes locales de abiertos, y
los pensamos como álgebras (conmutativas) en la categorı́a monoidal s`. Los morfismos

de local B
s=∂−1

0 //

t=∂−1
1

// L le dan a L una estructura de B-bimódulo.

De esta forma, la unidad G0
i // G corresponde a una counidad L

e
−→ B, y

la multiplicación (composición) G ×G0 G
◦
−→ G corresponde a una comultiplicación

L
c
−→ L⊗BL. Por lo tanto L es una coálgebra en la categorı́a B-bimod, i.e. un cogèbroı̈de

agissant sur B. En otras palabras, una estructura de categorı́a locálica para G es equiva-
lente a una estructura de cogèbroı̈de para L.

Definimos un algebroide de Hopf locálico como el dual formal de la estructura de
groupoide locálico. Como fue observado por Deligne en [6], p.117, la estructura de
cogèbroı̈de es la estructura subyacente a un algebroide de Hopf que se usa para definir
sus representaciones (ver definición C.21), exactamente como la estructura de categorı́a
locálica subyacente a un grupoide locálico es la que se usa para definir los G-espacios
como funtores Sp-valuados, es decir, acciones del objeto categorı́a en una familia (in-
terna) X −→ G0 (ver definición 6.2).

El objetivo de la sección 6 es probar el siguiente teorema:
Para cualquier grupoide locálico G, hay una equivalencia de categorı́as que hace el

siguiente triángulo conmutativo (T, F son funtores de olvido):

Cmd0(L) = //

T ''OOOOOOOOOOOO Rel(βG)

Rel(F)
wwppppppppppp

(B-Mod)0 � Rel(shB).
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Para ello, en la subsección 6.2 probamos la equivalencia a nivel objetos, que es la
siguiente proposición (6.12)

Dado un grupoide locálico G sobre G0, con cogèbroı̈de L sur B subyacente, y dado
Y ∈ shB, las siguientes estructuras estan en correspondencia biyectiva:

• Acciones discretas G ×
G0

Yd
θ
−→ Yd.

• `-relaciones π∗1Y × π∗2Y
λ
−→ L̃ con un morfismo de B-bimódulos correspondiente

Yd ⊗ Yd
µ
−→ L tal que los siguientes diagramas conmutan:

B1 :

Yd ⊗ Yd
µ //

Yd⊗η⊗Yd
��

L

c
��

Yd ⊗ Yd ⊗
B

Yd ⊗ Yd
µ⊗Bµ // L ⊗

B
L

B2 :
Yd ⊗ Yd

µ //

ε
##GGGGGGGGG L

e
��

B

• Estructuras de comódulo Yd
ρ
−→ L ⊗B Yd.

Luego, en la subsección 6.3 probamos la equivalencia a nivel flechas, que nos per-
mite finalizar la prueba del mencionado teorema.
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7 The Galois and the Tannaka contexts
The Galois context associated to a topos. Consider an arbitrary topos over S,
E −→ S. In [17], VII.3 p.59-61, VIII.3 p.68-69 the following is proved. There is a
spatial cover of E, this is an open surjection of topos X

q
−→ E with X = shG0 for a

G0 ∈ sp. The 2-kernel pair of q, X ×
E
X

p1 //

p2
// X satisfies that there is a localic groupoid

G = G
G0
×
G0

G ◦ // G
∂0 //

∂1

// G0ioo such that

X ×
E
X

p1 //

p2
// X = shG

∂∗0 //

∂∗1

// shG0 (7.1)

(we use in this section the notation of [17] for sheaves on a space, shG = sh(O(G)),
shG0 = sh(O(G0)) ).

Joyal and Tierney use this to prove the equivalence E � βG (Galois recognition
theorem, see theorem 8.3) via descent techniques. They don’t construct G (they don’t
need to), though they make the remark (in p.70 of op. cit.) that (in the caseX = S −→ E,
with E an atomic topos, corresponding to the neutral case of Tannaka, see [11]) G is the
spatial group of automorphisms of (a model of the structure classified by the codomain
of) the point. This idea was developed by Dubuc in [8], who constructed G. Our work in
this section can be considered as a generalization of those results of [11], [8], and of the
remark of [17], since we construct G in the general case and describe it as a universal
�-cone of `-bijections (which is a generalization of the description of the localic group
of automorphisms of a point made in [8], 4, p.152-155).

Equation (7.1) means that the 2-kernel pair of q can be computed as the following
2-push out in the 2-category of topoi with inverse images.

E
q∗ //

q∗

��

shG0

∂∗0

��

f ∗0

��

�
ϕ

�� �����

����� (for each F , f ∗0 , f ∗1 , f ∗0 q∗
ψ

=⇒ f ∗1 q∗,

�
ψ

�� ����
���� there exists a unique `∗ such that

shG0 ∂∗1

//

f ∗1 //

shG
∃!`∗

%%

`∗∂∗i = f ∗i and id`∗ ◦ ϕ = ψ)

F

(7.2)
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7.3. Take, as in section 6, B = O(G0). By 5.1, items 5,6, (B⊗B)-locales B ⊗ B
g=(g0,g1)
−→ A

correspond to locales Ã ∈ Loc(sh(B ⊗ B)), γ∗Ã = A and the following diagram com-
mutes.

shB
g∗0 //

π∗1 %%JJJJJJJJJJ shÃ shB
g∗1oo

π∗2yytttttttttt

sh(B ⊗ B)

g∗
OO

(7.4)

Consider also the following commutative diagram

shÃ

sh(B ⊗ B)

g∗
OO

S

γ∗

ff

γ∗

OO

Since the composition of spatial morphisms is spatial (see for example [30], 1.1),
then shÃ is spatial (over S), i.e. shÃ � sh(γ∗ΩÃ). But γ∗ΩÃ = γ∗g∗ΩÃ = γ∗Ã = A.

In the sequel, we make no distinction between shA and shÃ. (7.5)

7.6. Recall from [17], VI.5 p.53-54 the fact that there is a left adjoint F to the full and

faithful functor Locop(S)
sh
↪→ Top/S, that maps E

p
−→ S to F(E) = p∗(ΩE).

Lemma 7.7. The universal property defining the 2-push out (7.2) is equivalent to the
following universal property for localic topoi:

E
q∗ //

q∗

��

shG0

∂∗0

��

g∗0

��

�
ϕ

�� �����

����� (for each A, g∗0, g
∗
1, g

∗
0q∗

φ
=⇒ g∗1q∗,

�
φ

�� ����
���� there exists a unique h∗ such that

shG0 ∂∗1

//

g∗1 //

shG
∃!h∗

&&

h∗∂∗i = g∗i and idh∗ ◦ ϕ = φ)

shA

(7.8)

Proof. Of course (7.2) implies (7.8). To show the other implication, given F , f ∗0 , f ∗1 , ψ

as in (7.2), consider F as a topos over sh(G0 ×G0) via F
f =( f0, f1)
−→ sh(G0 ×G0) and apply
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F as in 7.6. Then O(F(F )) = f∗ΩF is a locale in sh(G0 × G0). Take A = γ∗ f∗ΩF the

corresponding locale over B ⊗ B, B ⊗ B
g=(g0,g1)
−→ A, i.e. Ã = f∗ΩF , then we have the

commutative diagram (7.4).

The hyperconnected factorization of f is
F

f %%KKKKKKKKKKK
η // shA

gxxrrrrrrrrrr

sh(G0 ×G0)

, where η

is the unit of the adjunction described in 7.6. η is hyperconnected (see [17], VI.5 p.54),

in particular η∗ is full and faithful (see [30], 1.5). Then η∗g∗0q∗
ψ

=⇒ η∗g∗1q∗ determines

uniquely g∗0q∗
φ

=⇒ g∗1q∗ such that idη∗ ◦ φ = ψ and applying (7.8) we obtain

E
q∗ //

q∗

��

shG0

∂∗0

��
g∗0

��

f ∗0

��

�

ϕ
{� ����

�
φ
�� ������

shG0 ∂∗1

//

g∗1
//

f ∗1
33

shG
∃!h∗

&&
shA

η∗

!!DDDDDD

F

Now, by the adjunction described in 7.6, since taking sheaves is full and faithful, we
have a bijective correspondence between morphisms h∗ and `∗ in the following commu-
tative diagram:

F shA
η∗oo

shG

h∗

OO
`∗

eeLLLLLLLLLLL

sh(G0 ×G0)

f ∗

\\99999999999999999 ∂∗

OO g∗

aa (7.9)

To end the proof, we have to show that under this correspondence the conditions
of (7.2) and (7.8) are equivalent. The equivalence between l∗∂∗ = f ∗ and h∗∂∗ = g∗ is
immediate considering (7.9), and the equivalence between idl∗ ◦ ϕ = ψ and idh∗ ◦ ϕ = φ
follows from idη∗ ◦ φ = ψ using that η∗ is full and faithful.

�

7.10. Consider a B ⊗ B-locale A as in 7.3. We have the correspondence
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g∗0q∗
φ

=⇒ g∗1q∗ a natural isomorphism by (7.4)

g∗π∗1q∗
φ

=⇒ g∗π∗2q∗ a natural isomorphism by 5.4

A ♦1-cone π∗1q∗X × π∗2q∗X
αX
−→ Ã of `-bijections (in sh(B ⊗ B)) by 4.11, 4.12

A � -cone π∗1q∗X × π∗2q∗X
αX
−→ Ã of `-bijections (in sh(B ⊗ B))

In particular for L = O(G), the locale morphisms B
s=∂−1

0 //

t=∂−1
1

// L induce a locale mor-

phism B ⊗ B
γ=(b,s)// L , and ∂∗0q∗

ϕ
=⇒ ∂∗1q∗ correspond to a �-cone π∗1q∗X × π∗2q∗X

λX
−→ L̃

of `-bijections.

Theorem 7.11. Given the previous data, (7.2) is a 2-push out if and only if λ is universal
as a �-cone of `-bijections (in the topos sh(B ⊗ B)) in the following sense:

π∗1q∗X × π∗2q∗X
λX

&&NNNNNNNNNNN αX

&&
π∗1q∗( f )×π∗2q∗( f )

��

≥

L̃
∃!h //________ Ã.

π∗1q∗Y × π∗2q∗Y

λY

88qqqqqqqqqqq
αY

88

(h a locale morphism)

(7.12)

Proof. By lemma 7.7 it suffices to show that (7.8) is equivalent to (7.12). We have
shown in 7.10 that ϕ, φ in (7.8) correspond to λ, α in (7.12).

Since taking sheaves is full and faithful, a morphism L̃
h
−→ Ã of locales in sh(B⊗B)

corresponds to the inverse image shL
h∗
−→ shA (recall (7.5)) of a topoi morphism over

sh(B ⊗ B), i.e. h∗ as in (7.8) satisfying h∗∂∗i = f ∗i , i = 0, 1. It remains to show that
hλX = αX for each X in (7.12) if and only if idh∗ ◦ ϕ = ψ in (7.8).

In the correspondence between h and h∗ above, L̃
h
−→ Ã is given by the value of h∗

in the subobjects of 1 (L̃ = γ∗ΩshL, Ã = f∗ΩshA), then we are in the hypothesis of 4.7 as
the following diagram shows

shL
h∗

--mm
h∗

shA

E

π∗1q∗
//

π∗2q∗
// sh(B ⊗ B),

γ∗

ee

%%
γ∗ f ∗

CC

��

f∗

and the proof finishes by corollary 4.10. �
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Remark 7.13. From proposition 6.12, we have that for each X ∈ E, π∗1q∗X×π∗2q∗X
λX
−→ L̃

is equivalent to a discrete action G ×G0 Xdis
θ
−→ Xdis. In this way we can construct a

lifting E
q̃∗
−→ βG. This is the lifting E

φ
−→ Des(q) of [17], VIII.1 p.64, composed with

the equivalence Des(q)
�
−→ βG given by the correspondence in 7.10 for each X (see

[17], VIII.3 proof of theorem 2, p.69).

7.14. The Tannakian context associated to a topos.
For generalities, notation and terminology concerning Tannaka theory see appendix

C. Consider the fiber functor associated to the topos E (see 6.6):

Rel(E)
F=Rel(q∗)
−→ (B-Mod)0, FX = (q∗X)d.

This determines a Tannakian context as in appendix C, with X = Rel(E),V = s`.

The universal property which defines the coend End∨(F) is that of a universal ♦-cone
in the category of (B ⊗ B)-modules, as described in the following diagram:

FX ⊗ FX
µX

''OOOOOOOOOOO φX

&&
FX ⊗ FY

F(R)⊗FY &&NNNNNNNNNNNN

FX⊗F(R)∧
77ppppppppppp
≡ End∨(F)

φ //______ Z.

FY ⊗ FY

µY
77oooooooooooo

φY

88

(φ a linear map)

Via the equivalence B ⊗ B-Mod � s`(sh(B ⊗ B)), we can also think of this coend
internally in the topos sh(B ⊗ B) as

π∗1FX × π∗2FX
λX

((PPPPPPPPPPPP φX

&&
π∗1FX × π∗2FY

π∗1F(R)×π∗2FY ((QQQQQQQQQQQQQ

π∗1FX×π∗2F(R)∧
66mmmmmmmmmmmmm
≡ End∨(F)

φ //______ Z.

π∗1FY × π∗2FY

λY

66nnnnnnnnnnnn
φY

88

(φ a linear map)

Depending on the context, it can be convenient to think of End∨(F) as a
(B⊗B)-module or in s`(sh(B⊗B)): to use general Tannaka theory, we consider modules,
but to use the theory of ♦-cones developed in section 4 we work internally in the topos
sh(B ⊗ B). We apply proposition 4.17 to obtain:
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Proposition 7.15. The large coend defining End∨(F) exists and can be computed by
the coend corresponding to the restriction of F to the full subcategory of Rel(E) whose
objects are in any small site C of definition of E. 2

We fix a small site C (with binary products and 1) of the topos E. Then End∨(F)
can be constructed as a (B⊗ B)-module with generators µC(δa ⊗ δb), where δa, δb are the
generators of FC = (q∗C)d (see proposition 5.13), subject to the relations that make the
♦-diagrams commute. We will denote [C, δa, δb] = µC(δa ⊗ δb).

By the general Tannaka theory we know that End∨(F) is a cogèbroı̈de agissant sur
B and a (B ⊗ B)-algebra. The description of the multiplication m and the unit u given
below proposition C.25 yields in this case, for C, D ∈ C (here, F(I) = F(1C) = B):

m([C, δa, δa′], [D, δb, δb′]) = [C × D, (δa ⊗ δb), (δa′ ⊗ δb′)], u = λ1. (7.16)

When interpreted internally in sh(B ⊗ B), this shows that π∗1q∗C × π∗2q∗C
λC
−→ End∨(F)

is a compatible ♦-cone, with End∨(F) generated as a sup-lattice in sh(B ⊗ B) by the
elements λC(a, b), thus by proposition 4.21 it follows that End∨(F) is a locale.

By proposition C.26, we obtain that End∨(F) is also a (localic) Hopf cogèbroı̈de,
i.e. the dual structure in Algs` of a localic groupoid.

7.17. The construction of G.

Proposition 7.18. Take L = End∨(F). Then G = L satisfies (7.12), i.e. (by theorem
7.11) satisfies (7.2).

Proof. Given a �-cone of `-bijections over a locale A, by proposition 4.12 it factors
uniquely through a s`-morphism which by proposition 4.24 is a locale morphism. �

We show now that G is the localic groupoid considered by Joyal and Tierney. By
theorem 7.11, the dual L of a groupoid G satisfying (7.2) is unique as a locale in
sh(B ⊗ B), and so are the λX corresponding to the ϕ in (7.2).

Now, remark C.24, interpreted for G = L using proposition 6.12, states that i = e,
◦ = c are the only possible localic groupoid structure (with inverse given as (−)−1 = a,
see proposition C.26) such that the lifting q̃∗ lands in βG (see remark 7.13). We have
proved:

Theorem 7.19. Given any topos E over a base topos S, and a spatial cover shG0
q
−→ E,

the localic groupoid G = G
G0
×
G0

G ◦ // G
∂0 //

∂1

// G0ioo considered in [17] is unique and can

be constructed as G = End∨(Rel(q∗)), with i = e, ◦ = c and inverse (−)−1 = a. The

lifting E
q̃∗
−→ βG is also unique and defined as in remark 7.13. 2
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Resumen en castellano de la sección 7

En esta sección mostramos explı́citamente cómo el grupoide locálico G construido
en [17], VIII.3 a partir del cubrimiento espacial shH −→ E es un�-cono universal de `-
biyecciones en el topos sh(H⊗H) para dos funtores diferentes, como hemos mencionado
anteriormente.

Este trabajo no era necesario en la sección 1, es decir cuando trabajábamos con el
contexto neutral de Galois de [8], ya que allı́ G es construido precisamente como un
�-cono universal de `-biyecciones, pero Joyal-Tierney deducen la existencia de G con
una técnica diferente, por lo tanto este resultado (teorema 7.11) es crucial para nosotros
para poder probar el isomorfismo G = L. Este teorema también es interesante por sı́
mismo, ya que muestra una forma diferente en la que podemos interpretar (y construir)
al grupoide fundamental G.

Más precisamente, la propiedad universal que define a G está dada por el siguiente
2-push out de topos con imágenes inversas:

E
q∗ //

q∗

��

shG0

∂∗0

��

f ∗0

��

�
ϕ

�� �
����

����� (para cada F , f ∗0 , f ∗1 , f ∗0 q∗
ψ

=⇒ f ∗1 q∗,

�
ψ

�� ����
���� hay un único `∗ tal que

shG0 ∂∗1

//

f ∗1 //

shG
∃!`∗

%%

`∗∂∗i = f ∗i y id`∗ ◦ ϕ = ψ)

F

Usando la factorización hiperconexa de un morfismo de topos, probamos que la
propiedad anterior es equivalente a

E
q∗ //

q∗

��

shG0

∂∗0

��

g∗0

��

�
ϕ

�� �
����

����� (para cada A, g∗0, g
∗
1, g

∗
0q∗

φ
=⇒ g∗1q∗,

�
φ

�� ����
���� hay un único h∗ tal que

shG0 ∂∗1

//

g∗1 //

shG
∃!h∗

&&

h∗∂∗i = g∗i y idh∗ ◦ ϕ = φ)

shA

que luego, utilizando múltiples propiedades probadas a lo largo de la tesis, mostramos
que a su vez es equivalente a
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π∗1q∗X × π∗2q∗X
λX

&&NNNNNNNNNNN αX

&&
π∗1q∗( f )×π∗2q∗( f )

��

≥

L̃
∃!h //________ Ã.

π∗1q∗Y × π∗2q∗Y

λY

88qqqqqqqqqqq
αY

88

(h morfismo de locales)

Luego, en 7.14, aplicamos las construcciones del apéndice C para construir L, el co-
end de Tannaka que es un ♦-cono universal. Aplicamos cuidadosamente la proposición
4.17, considerando un sitio pequeño del topos, para evitar problemas de tamaño.

Una vez hecho este trabajo, las propiedades previas de �- y ♦-conos (y diagramas)
nos permiten probar el isomorfismo G = L.
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8 s`-Tannakian Categories

A spatial cover of a topos shB
q
−→ E, with inverse image E

q∗
−→ shB, determines by

theorem 7.19 a situation described in the following diagram (cf. (1.56))

βG //

��5555555555555555
Rel(βG) � //

""FFFFFFFFFFFFFFFFFFFFF
Cmd0(L)

{{xxxxxxxxxxxxxxxxxxxxxx

E

q∗

��

//

q̃∗
ccGGGGGGGGGG

Rel(E)

Rel(q̃∗)
iiRRRRRRRRRRRRRR

F
��

F̃
55lllllllllllllll

shB // Rel(shB) � (B-Mod)0.

(8.1)

where F = Rel(q∗), L = End∨(F), G = L and the isomorphism in the first row of the
diagram is given by Theorem 6.22.

Theorem 8.2 (cf. theorem 1.57). The (Galois) lifting functor q̃∗ is an equivalence if and
only if the (Tannaka) lifting functor F̃ is such. 2

From [17], VIII.3, theorem 2, p.68 (see also remark 7.13), we have

Theorem 8.3. The (Galois) lifting functor q̃∗ is an equivalence. 2

We obtain

Theorem 8.4. The (Tannaka) lifting functor F̃ is an equivalence. 2

We make now the first developments of a theory that we call s`-tannakian theory.
Theorem 8.4 yields the first examples of non-neutral s`-tannakian categories, the cate-
gories of relations of Grothendieck topoi.

We begin with some considerations regarding size, that will let us construct under
some hypothesis the coend End∨ of a s`-enriched functor.

We work as before over a base topos S, and denote s` = s`(S), Rel � s`0 = s`0(S).
Let A be a s`-enriched category. Let T,T ′ : A −→ s`0 be two s`-functors, L ∈ s`.

Then we define a ♦-cone over L as a family T X ⊗ T ′X
λX
−→ L, for X ∈ A such that for

each X
f
−→ Y inA, the ♦( f ) diagram

T X × T ′X
λX

&&MMMMMMMMM

T X × T ′Y

T f×T ′Y ))RRRRRRRRR

T X×T ′ f∧ 55lllllllll
≡ L

TY × T ′Y
λY

88qqqqqqqqq

commutes. This generalizes definition 4.3, ifA = Rel(E) they coincide.
We consider now the following concepts from [21], 1.7. p.442
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Definition 8.5. A collection B of objects of a s`-categoryA is s`-generating if, for each
X ∈ A,

1X =
∨

( f ,r)∈FX

f ◦ r, where (8.6)

FX = {( f , r) arrows ofA s.t. cod(r) = dom( f ) ∈ B and f ◦ r ≤ 1X}.
A is bounded if it possesses a small collection of s`-generators.

The motivating example is given by sites of topos, see 8.10 below or [21], 1.8. p.443.

Proposition 8.7. [cf proposition 4.17] For a s`-generating collection B of objects of a
s`-categoryA, suitable cones defined in B (considered as a full subcategory ofA) can
be extended toA, more precisely:

Let TC×T ′C
λC
−→ L be a ♦-cone defined inB. Then, there are unique T X×T ′X

λX
−→ L

for all objects X ∈ A in such a way to determine a ♦-cone extending λ.

Proof. Let X ∈ A, then by (8.6) we have 1X =
∨

( f ,r)∈FX

f ◦ r, therefore

1T X =
∨

( f ,r)∈FX

T ( f ) ◦ T (r), i.e. for each x ∈ FX, (1) x =
∨

( f ,r)∈FX

T ( f )T (r)x.

If T X × T ′X
λX
−→ L is a ♦-cone extending λ, in particular ♦( f ) should hold: if

dom( f ) = C then for each c ∈ TC, x′ ∈ T ′X,

♦( f ) : λX(T ( f )c ⊗ x′) =
∨

c′∈T ′C

~T ′( f )c′= x′� · λC(c ⊗ c′).

Then λX(x ⊗ x′)
(1)
=
∨

( f ,r)∈FX

λX(T ( f )T (r)x ⊗ x′)
♦( f )
=∨

( f ,r)∈FX

∨
c′∈T ′C

~T ′( f )c′= x′� · λC(T (r)x ⊗ c′).

That is the only possible definition of λX. Let’s check that it is in fact a ♦-cone, if
X

ϕ
−→ Y is an arrow inA we must show that ♦(ϕ) holds: for each x ∈ T X, y′ ∈ T ′Y ,

♦(ϕ) : λY(T (ϕ)x ⊗ y′) =
∨

x′∈T ′X

~T ′(ϕ)x′=y′� · λX(x ⊗ x′).

We make the following previous computations:
(1) Since 1X =

∨
( f ,r)∈FX

f ◦ r, then ϕ =
∨

( f ,r)∈FX

ϕ ◦ f ◦ r.

(2) Since 1Y =
∨

(g,q)∈FY

g ◦ q, then ϕ =
∨

(g,q)∈FY

g ◦ q ◦ ϕ.
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(3) For each ( f , r) ∈ FX, (g, q) ∈ FY we consider ψ = q ◦ ϕ ◦ f , then
dom(ψ) = dom( f ) = C ∈ B, cod(ψ) = cod(q) = D ∈ B and therefore ♦(ψ) holds
by hypothesis, i.e. for each c ∈ TC, d′ ∈ T ′D

♦(ψ) : λD(T (q)T (ϕ)T ( f )c ⊗ d′) =
∨

c′∈T ′C

~T ′(q)T ′(ϕ)T ′( f )c′=d′� · λC(c ⊗ c′).

We now compute

λY(T (ϕ)x ⊗ y′)
de f .
=
∨

(g,q)∈FY

∨
d′∈T ′D

~T ′(g)d′=y′� · λC(T (q)T (ϕ)x ⊗ d′)
(1)
=∨

(g,q)∈FY

∨
( f ,r)∈FX

∨
d′∈T ′D

~T ′(g)d′=y′� · λD(T (q)T (ϕ)T ( f )T (r)x ⊗ d′)
♦(ψ) in (3)

=∨
(g,q)∈FY

∨
( f ,r)∈FX

∨
d′∈T ′D

∨
c′∈T ′C

~T ′(g)d′=y′� · ~T ′(q)T ′(ϕ)T ′( f )c′=d′� · λC(T (r)x ⊗ c′) =

=
∨

(g,q)∈FY

∨
( f ,r)∈FX

∨
c′∈T ′C

~T ′(g)T ′(q)T ′(ϕ)T ′( f )c′=y′� · λC(T (r)x ⊗ c′)
(2)
=∨

( f ,r)∈FX

∨
c′∈T ′C

~T ′(ϕ)T ′( f )c′=y′� · λC(T (r)x ⊗ c′) =∨
( f ,r)∈FX

∨
c′∈T ′C

∨
x′∈T ′X

~T ′(ϕ)x′=y′� · ~T ′( f )c′= x′� · λC(T (r)x ⊗ c′)
de f .
=∨

x′∈T ′X

~T ′(ϕ)x′=y′� · λX(x ⊗ x′).

�

8.8. Tannaka theory for DCRs We will now express theorem 8.4 as a tannakian
recognition-type theorem for some special type s`-enriched categories, distributive cat-
egories of relations (DCR), that generalize the categories of relations Rel(E) of topoi.
We recall from [21], chapter 2 p.443-451 the following definitions and constructions:

Definition 8.9. A distributive category of relations (DCR)A is a cartesian s`-category
in which every object is discrete (see [21], 2.1 p.444 for details). A morphism of DCRs
is a s`-functor which preserves this structure (see [21], 2.4 p.447 for details). A DCRA
is complete if it has small coproducts (as a category) and if all symmetric idempotents
inA split (see [21], p.448 for details).

8.10. The motivating example is: if E is a (Grothendieck) topos, then any full subcat-
egory of Rel(E) whose objects are closed under finite products in E is a DCR. In [3],
p.31, Theorem 6.3 (see also [21], 2.5 p.448), Carboni and Walters prove that a DCR
A is isomorphic to Rel(E) for a Grothendieck topos E if and only if A is bounded and
complete. Furthermore, Rel yields an equivalence of 2-categories between the dual of
the category of Grothendieck topoi and the category of bounded, complete DCRs ([21],
2.5).
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8.11. For any DCR A there exists its completion Â (see [21], 2.6 p.448). This is a
complete DCR together with a full and faithful morphism of DCRs A

η
−→ Â (the

counit of the inclusion of the category of complete DCRs into the category of DCRs)
such that the objects in the image of η are s`-generating in Â. η is an equivalence of
categories if and only ifA is already complete.

Let now A be a bounded DCR. Since its completion Â is a bounded and complete
DCR, there exists a topos E such that Â � Rel(E). We consider the situation of diagram

(8.1) for this E. We think of the s`-functor A
η
−→ Â

F
−→ (B-Mod)0 as a tannakian

fiber functor and obtain the following tannakian recognition-type theorem for bounded
DCRs:

Theorem 8.12. LetA be a bounded DCR. Then the coend L = End∨(F ◦ η) exists, and

the liftingA
F̂◦η
−→ Cmd0(L) is an equivalence of categories if and only ifA is complete.

Proof. Since the objects in the image of η are s`-generating in Â, by proposition 8.7 we

obtain L = End∨(F). Then the lifting A
F̂◦η
−→ Cmd0(L) is equal to

A
η
−→ Â

F̃
−→ Cmd0(L), and by theorem 8.4 we obtain that F̂ ◦ η is an equivalence

of categories if and only if η is, which by 8.11 happens if and only ifA is complete. �

8.13. A general recognition theorem for s`-tannakian categories (future work).
We end this thesis by briefly describing the contents of a theory that arises naturally

as a result of our work relating Galois and Tannaka theories. This is future work, we
pose conjectures which we plan to investigate.

We have shown that theorem 8.4 (and therefore theorem 8.3, i.e. Theorem 2 of
[17], VIII.3) corresponds to a tannakian recognition theorem for a particular case of
s`-enriched categories. In a sense, this theorem combines a recognition (the lifting is an
equivalence) theorem and an “additional structure” (G is a localic groupoid instead of
just a localic category) theorem (see our introduction, On Tannaka Theories). But we
can also consider a tannakian context for a general s`-enriched category, not neccesarily
the category of relations of a topos:

8.14. Let B ∈ Algs`, A a s`-enriched bounded category, A
F
−→ (B-Mod)0 a functor.

Define L as in definition C.19, then it exists by proposition 8.7 and we have the lifting
F̃ as in proposition C.22.

The fundamental property of the open spatial cover X
q
−→ E that is used in [17],

VIII.3 to prove Theorem 2 is that q is an open surjection. In [21], lemma 4.3, it is

shown that under the equivalence Topop Rel
−→ DCR (the inverse image of) an open sur-

jection corresponds to an open morphism of DCRs (see [21] 2.4 (ii)) that is faithful as a
functor. The definition of an open morphism between DCRs ([21], 4.1) uses only their
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underlying structure of s`-enriched categories, therefore we may consider open faithful
s`-functors between s`-categories.

Based on our previous developments, we make the conjecture that the following
more general recognition theorem should hold (or that at least it is worth research-
ing), of which theorem 8.4 (and therefore theorem 8.3) would be a particular case, for
s`-enriched categories and comodules of a (not neccesarily Hopf) cogëbroı̀de.

Conjecture 8.15. Under the hypothesis of 8.14, if F is a s`-enriched open and faithful
functor, then F̃ is an equivalence.

Theorems on the existence of fiber functors (i.e. functors for which the lifting is an
equivalence) are also common to both Galois and Tannaka theories. In [6], 7, an internal
characterization of tannakian categories is given, constructing under some hypotheses
(see [6], 7.1) a fiber functor (see [6], 7.18). In [17] VII. 3, for any Grothendieck topos
E its spatial cover is constructed, which we have showed that can be considered as a
fiber functor. Since the Diaconescu cover of E is also an open surjection, it can also be
considered as a fiber functor.

We think it would also be worth researching which conditions should be satisfied
by a sl-enriched category A so that there is an algebra B and a fiber functor (i.e. a s`-
enriched open and faithful functor if conjecture 8.15 holds) A −→ (B-Mod)0. Such a
result would be analogous to the one of [6] for the case of sup-lattices, and (if the con-
ditions are weaker than those that make A the category of relations of a Grothendieck
topos) would generalize the construction of the Diaconescu cover mentioned above.
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Resumen en castellano de la sección 8

En esta última sección de la tesis, combinamos todos los resultados anteriores para
obtener, a partir del cubrimiento espacial shB

q
−→ E de un topos arbitrario, la situación

descripta en el siguiente diagrama:

βG //

��5555555555555555
Rel(βG) � //

""FFFFFFFFFFFFFFFFFFFFF
Cmd0(L)

{{xxxxxxxxxxxxxxxxxxxxxx

E

q∗

��

//

q̃∗
ccGGGGGGGGGG

Rel(E)

Rel(q̃∗)
iiRRRRRRRRRRRRRR

F
��

F̃
55lllllllllllllll

shB // Rel(shB) � (B-Mod)0.

donde F = Rel(q∗), L = End∨(F), G = L y el isomorfismo de la primer fila del diagrama
está dado por el teorema 6.22. De ahı́ se obtiene el teorema 8.2:

El levantamiento (de Galois) q̃∗ es una equivalencia si t solo si el levantamiento (de
Tannaka) F̃ lo es.

Como a partir de [17], VIII.3, theorem 2, p.68 (ver también observación 7.13) se
tiene que q̃∗ es una equivalencia, obtenemos el teorema 8.4:

El levantamiento (de Tannaka) F̃ es una equivalencia.

Luego, hacemos los primeros desarrollos de una teorı́a que llamamos teorı́a s`-
tannakiana. (El teorema anterior da los primeros ejemplos de categorı́as s`-tannakianas
no neutrales, las categorı́as de relaciones de los topos de Grothendieck). Nuestro re-
sultado principal es la obtención de un nuevo teorema de tipo recognition no-neutral de
Tannaka para cierto tipo de categorı́as enriquecidas sobre s` (sobre un topos de base)
que son llamadas categorı́as distributivas de relaciones (DCRs por sus siglas en inglés).
Estas categorı́as generalizan las categorı́as de relaciones Rel(E) de los topos.

Comenzamos por probar una propiedad de extensión análoga a la proposición 4.17,
pero para DCRs, que nos permitirá construir el coend L de Tannaka para las DCRs
acotadas.

Luego usamos resultados previos de [21], [3] que relacionan a las DCRs con los
topos de Grothendieck para construir un funtor fibra tannakianoA −→ B-Mod. De esta
forma, obtenemos el siguiente teorema de tipo recognition Tannakiano (para la categorı́a
de base s` de los sup-reticulados):

teorema recognition, teorema 8.12: Una DCR acotadaA es completa si y solo si el
levantamientoA −→ Cmd0(L) de su funtor fibra es una equivalencia.
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Appendix A Neutral Tannaka theory
The Hopf algebra of automorphisms of aV-functor.

(For details see for example [25], [26]). Let V be a cocomplete monoidal closed
category with tensor product ⊗, unit object I and internal hom-functor hom. By defini-
tion for every object V ∈ V, hom(V,−) is right adjoint to (−) ⊗ V . That is, for every
X, Y , hom(X ⊗ V, Y) = hom(X, hom(V, Y)).

A pairing between two objects V , W is a pair of arrows W⊗V
ε
−→ I and I

η
−→ V⊗W

satisfying the usual triangular equations. We say that W is the left dual of V , and denote
W = V∨, and that V is right dual of W and denote V = W∧. When X has a left dual,
then X∨ = hom(X, I).

The following are basic equations:
If X has a right dual: Y has a left dual ⇐⇒ hom(Y, X)∧ = Y ⊗ X∧,

X = X∧
∨

, hom(X∧, Y) = Y ⊗ X.

If X has a left dual: X = X∨
∧

, hom(X, Y) = Y ⊗ X∨.

Recall that the object of natural transformations between V-valued functors L, T :
X → V, is given, if it exists, by the following end

Nat(L, T ) =

∫
X

hom(LX,T X) . (A.1)

We consider a pair (V0, V), where V0 ⊂ V is a full subcategory such that all its
objects have a right dual.

Let X be a V-category such that for any two functors X
L
−→ V and X

T
−→ V0 the

coend in the following definition exists in V (for example, if X is small). Then, we
define (in Joyal’s terminology) the Nat predual as follows:

Nat∨(L,T ) =

∫ X

LX ⊗ (T X)∧ =

∫ X

hom(LX, T X)∧ . (A.2)

However, the last expression is valid only if LX has a left dual for every X (for

example, if X
L
−→ V0 and every object inV0 also has a left dual).

Given V ∈ V, recall that there is a functor X
V⊗T
−→ V defined by (V ⊗ T )(X) = V ⊗ T X.

Proposition A.3. Given T ∈ V0
X, we have aV-adjunction

VX
Nat∨(−,T )
⊥
**
V

(−)⊗T
kk .
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Proof.

hom(Nat∨(L, T ),V) = hom(
∫ X

LX ⊗ T X∧, V) =

∫
X

hom(LX ⊗ T X∧, V)

=

∫
X

hom(LX, hom(T X∧, V) =

∫
X

hom(LX, V ⊗ T X) = Nat(L, V ⊗ T ). �

In particular we have that the end Nat(L, T ) exists and Nat(L, T ) = hom(Nat∨(L, T ), I).
It follows that Nat∨(L, T ) classifies natural transformations L =⇒ T in the sense that
they correspond to arrows Nat∨(L, T ) −→ I in V. This does not mean that Nat(L, T )
is the left dual of Nat∨(L, T ), which in general will not have a left dual. Passing from
Nat∨(L, T ) to Nat(L, T ) looses information.

The unit of the adjunction L
η

=⇒ Nat∨(L, T )⊗T is a coevaluation, and if X
H
−→ V0,

it induces (in the usual manner) a cocomposition

Nat∨(L, H)
w
−→ Nat∨(L, T ) ⊗ Nat∨(T, H).

There is a counit Nat∨(T, T )
ε
−→ I determined by the arrows TC ⊗ TC∨

ε
−→ I of the

duality. All the preceding means exactly that the functors X −→ V0 are the objects of a
V-cocategory.

We define End∨(T ) = Nat∨(T, T ), which is therefore a coalgebra inV. The coeval-
uation in this case becomes a End∨(T )-comodule structure TC

ηC
−→ End∨(T ) ⊗ TC on

TC. In this way there is a lifting of the functor T into Cmd0(H), X
T̃
−→ Cmd0(H), for

H = End∨(T ), and Cmd0(H) the full subcategory of comodules with underlying object
inV0.

Proposition A.4. If X and T are monoidal, and V has a symmetry, then End∨(T ) is a
bialgebra. If in addition X has a symmetry and T respects it, End∨(T ) is commutative
(as an algebra). 2

We will not prove this proposition here, but show how the multiplication and the
unit are constructed, since they are used explicitly in 1.50. The multiplication

End∨(T ) ⊗ End∨(T )
m
−→ End∨(T )

is induced by the composites

mX,Y : T X ⊗ T X∧ ⊗ TY ⊗ TY∧
�
−→ T (X ⊗ Y) ⊗ T (X ⊗ Y)∧

λX⊗Y
−→ End∨(T ).

The unit is given by the composition

u : I → I ⊗ I∧
�
−→ T (I) ⊗ T (I)∧

λI
−→ End∨(T ).
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Proposition A.5. If in addition to the hypothesis of A.4 every object of X has a right
dual, then End∨(T ) is a Hopf algebra. 2

The antipode End∨(T )
ι
−→ End∨(T ) is induced by the composites

ιX : T X ⊗ T X∧
�
−→ T (X∧) ⊗ T X

λX∧
−→ End∨(T ).

107



Appendix B Elevators calculus
This is a graphic notation2 to write equations in a monoidal category V, ignoring
associativity and suppressing the tensor symbol ⊗ and the neutral object I. Arrows
are written as cells, the identity arrow as a double line, and the symmetry as crossed
double lines. The notation, in particular, exhibits clearly the permutation associated to
a composite of symmetries, allowing to see if any two composites are the same simply
by checking that they codify the same permutation3. Compositions are read from top to
bottom.

B.1. Given an algebra B in the monoidal category V, we specify with a ��������B the tensor
product ⊗B over B, and leave the tensor product ⊗ ofV unwritten.

Given arrows C
f
−→ D, C′

f ′
−→ D′, the bifunctoriality of the tensor product is the

basic equality:
C

������

######

f

C′

D C′

������

######

f ′

D D′

=

C C′

������

######

f ′

C

������

######

f

D′

D D′

=

C

������

f###### C′

������

f ′######

D D′.

(B.2)

This allows to move cells up and down when there are no obstacles, as if they were
elevators. The naturality of the symmetry is the basic equality:

C

������

######

f

C′

D C′

������

######

f ′

D

......

...... D′

������

������

D′ D

=

C

������

######

f

C′

D

......

...... C′

������

������

C′

������

######

f ′

D

D′ D

=

C

......

...... C′

������

������

C′ C

������

######

f

C′

������

######

f ′

D

D′ D.

(B.3)

Cells going up or down pass through symmetries by changing the column.

Combining the basic moves (B.2) and (B.3) we form configurations of cells that fit
valid equations in order to prove new equations. The visual aspect of this calculus really
helps to find how a given equation can (or cannot) be derived from another ones.

2Invented by Dubuc in 1969 (which has remained for private draft use for understandable typograph-
ical reasons).

3 This is justified by a simple coherence theorem for symmetrical categories ([26] Proposition 2.3),
particular case of [16] Corollary 2.2 for braided categories.
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Appendix C Non-neutral Tannaka theory
In this section we make the constructions needed to develop a Non-neutral Tannaka the-
ory (as in [6]), over a general tensor category (V,⊗, k). Let B′, B ∈ AlgV,
M ∈ B-Mod, N ∈ Mod-B, then we have M ⊗ N ∈ B-Mod-B, N ⊗B M ∈ V = k-Mod.
Consider the coequalizer N ⊗ M

c
→ N ⊗B M.

Proposition C.1. M
f
−→ M′ in B-Mod, N

g
−→ N′ in Mod-B, then

N ⊗ M
g⊗ f //

c
��

N′ ⊗ M′

c
��

N
B
⊗
B

M
g⊗

B
f
// N′

B
⊗
B

M′

, i.e. (recall B.1)

N
���%%%

g
M

���%%%
f

N′
&&&

c
M′

���

N′ ��������B M′

=

N
&&&

c
M

���

N
���%%%

g

��������B M
���%%%

f

N′ ��������B M′

2

Proposition C.2. The isomorphism M � B ⊗B M is given by

M
��� 000
�

B ��������B M
=

���� &&&&
u

M

B
&&&

c
M

���

B ��������B M

2

C.1 Duality of modules
Definition C.3. Let M ∈ B-Mod. We say that M has a right dual (as a B-module) if
there exists M∧ ∈ Mod-B, M ⊗ M∧

ε
→ B morphism of B-Mod-B and k

η
→ M∧ ⊗B M

morphism ofV such that the triangular equations

�����
*****

η

M∧ M

�����
*****

ηM∧ M
M∧ ��������B M

++++
ε

M∧

����
= and M

++++
ε

M∧

����
��������B M =

M∧ M.
M∧ ��������B B B ��������B M

(C.4)

hold. In this case, we say that M∧ is the right dual of M and we denote M a M∧.
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Proposition C.5. A duality M a M∧ yields an adjunction

B′-Mod

(−)⊗M∧
++

⊥ B′-Mod-B
(−)⊗

B
M

kk

given by the binatural bijection between morphisms

N ⊗ M∧
λ
→ L of B′-Mod-B

N
ρ
→ L ⊗

B
M of B′-Mod

(C.6)

for each N ∈ B′-Mod, L ∈ B′-Mod-B.

Proof. The bijection is given by

N
��� ...
ρ

M∧

λ : L ��������B M M∧ ,

L ��������B B

���ε
---

N
����

....
η

ρ : N M∧ ��������B M

L

���λ
,,, ��������B M.

(C.7)

All the verifications are straightforward. �

Remark C.8. Considering B′ = k, we see that M∧, if it exists, is unique (except for a
canonical isomorphism), since it can be retrieved from the functor (−)⊗M∧. η and ε can
also be retrieved from the unit and counit of the adjunction, therefore are also unique.
This can as well be proved explicitly by computing the isomorphism between two right
duals of M.

Also, from the adjunction we see that if M∧ exists, then (−)⊗B M and HomB(M∧,−)
are right adjoints of (−) ⊗ M∧, so we have HomB(M∧, L) = L ⊗B M∧ for each
L ∈ B′-Mod-B.

Definition C.9. We will denote by (B-Mod)r the full subcategory of B-Mod consisting
of those modules that have a right dual.

Proposition C.10. There is a contravariant functor (−)∧ : (B-Mod)r →Mod-B defined

on the arrows M
f
−→ N as

����
++++

η

N∧

f ∧ : M∧ ��������B M

����
%%%%

f
N∧

M∧ ��������B N N∧

M∧ ��������B B

���ε
---
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Proof. It is straightforward. �

C.11. The case where B is commutative.
Assume that V is symmetric and B is a commutative algebra in V. Then there are

obvious isomorphisms of categories B-Mod � Mod-B � B=Mod, where the last cate-
gory is defined as the full subcategory of B-Mod-B consisting of those B-bimodules
such that left and right multiplication coincide. The tensor product ⊗B of B-bimodules
restricts to this category and in this way B-Mod is a tensor category with tensor product
⊗B and neutral element B. The known concept of dual in a tensor category yields in this
case the following definition that we will compare with definition C.3.

Definition C.12. Let B be a commutative algebra in V, let M ∈ B-Mod. We say that

M has a right dual (as a B=bimodule) if there exists M∧ ∈ Mod-B, M ⊗B M∧
ε′

→ B and

B
η′

→ M∧ ⊗B M morphisms of B=bimodules such that the triangular equations

B

����
++++

η′

��������B M∧ M ��������B B

����
++++

η′M∧ M
M∧ ��������B M ��������B

++++
ε′

M∧

����
= and M ��������B

++++
ε′

M∧

����
��������B M =

M∧ M.
M∧ ��������B B B ��������B M

(C.13)

hold. In this case, we say that M∧ is the right dual of M and we denote M a M∧.

The last sentence of the definition does not introduce any ambiguity because of the
following proposition.

Proposition C.14. Let B be a commutative algebra in V, let M ∈ B-Mod. Then any
right B-module, that we’ll denote M∧, is the right dual of M as a B-module if and only
if it is the right dual of M as a B =bimodule. The arrows η′ and ε′ are also in bijective
correspondence with the arrows η and ε.

Proof. The correspondence is given by

��� (((
u

η : B
��� ---
η′

,

M∧ ��������B M

M
&&&

c
M∧

���

ε : M ��������B M∧

B

���ε′
---
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B
����

,,,,
η

η′ : B
FFFFFF

FFFFFF M∧

xxxxx
xxxxx

��������B M ,

M∧ B ��������B M

M∧



m

444 ��������B M

M ⊗ M∧

ε

((PPPPPPPP

c

��

B

M ⊗B M∧
∃!ε′

77

Let’s verify the correspondence between the triangular identities, we only do the
first one since the other one is symmetric (recall propositions C.1 and C.2).

����
&&&&

u
M∧

B
��� ---
η′

M∧

M∧ ��������B M
&&&

c
M∧

���

M∧ ��������B M ��������B M∧

M∧ ��������B B

���ε′
---

=

����
&&&&

u
M∧

B



 ///
η′

M∧

(M∧
%%%
��������B M)

c
M∧

���

(M∧ ��������B M) ��������B M∧

M∧ ��������B B

����ε′
///

=

����
&&&&

u
M∧

B
&&&

c
M∧

���

B



 ///
η′

��������B M∧

(M∧ ��������B M) ��������B M∧

M∧ ��������B B

����ε′
///

=
M∧

M∧

M∧

ooooooooo
� JJJJJ

B






2222
η

��������B M∧

B
GGGGGG

GGGGGG M∧

wwwww
wwwww

��������B M ��������B M∧

M∧ B ��������B M ��������B M∧

M∧



m

444 ��������B M ��������B M∧

M∧ ��������B B

���ε′
---

=

����
&&&&

u
M∧

B
&&&

c
M∧

���

B
����

,,,,
η

��������B M∧

B
GGGGGG

GGGGGG M∧

wwwww
wwwww

��������B M ��������B M∧

M∧ B ��������B M ��������B M∧

M∧



m

444 ��������B M ��������B M∧

M∧ ��������B B

���ε′
---

=
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����
&&&&

u
M∧

B
����

....
η

M∧

B
IIIIIII

IIIIIII M∧

uuuuu
uuuuu

��������B M M∧

M∧ B ��������B M M∧

(M∧
����m

666

%%%
��������B

c

M) M∧

���

(M∧ ��������B M) ��������B M∧

M∧ ��������B B

����ε′
///

=

77777

zzzzzz
η

M∧

M∧

����
&&&&

u

��������B M M∧

M∧ B ��������B M M∧

M∧
���m

444 ��������B M
&&&

c
M∧

���

M∧ ��������B M ��������B M∧

M∧ ��������B B

���ε′
---

=
����

,,,,
η

M∧

M∧ ��������B M M∧

M∧ ��������B B

���ε
---

=
M∧

M∧

�

C.2 The Nat∨ adjunction
Consider now a category C and a functor H : C →Mod-B. We have an adjunction

(B′-Mod)C

(−)⊗
C

H

++
⊥ B′-Mod-B

HomB(H,−)
ll (C.15)

where the functors are given by the formulae

F ⊗C H =

∫ X∈C

FX ⊗ HX, HomB(H,M)(C) = HomB(HC,M).

Assume now we have a full subcategory (B-Mod)0 of (B-Mod)r (recall definition
C.9), i.e. a full subcategory (B-Mod)0 of B-Mod such that every object has a right dual.
Given G : C → (B-Mod)0, using proposition C.10 we construct G∧ : C →Mod-B.

Definition C.16. Given G : C → (B-Mod)0, F : C → B′-Mod, we define

Nat∨(F,G) = F ⊗C G∧ =

∫ X∈C

FX ⊗GX∧.

Proposition C.17. Given G : C → (B-Mod)0, we have an adjunction

(B′-Mod)C
Nat∨((−),G)

,,
⊥ B′-Mod-B

(−)⊗
B

G
ll (C.18)

where the functor (−) ⊗B G is given by the formula (M ⊗B G)(C) = M ⊗B (GC).
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Proof. The value of the functor Nat∨((−),G) in an arrow F
θ
⇒ H of (B′-Mod)C is the

B′-B-bimodule morphism induced by

FX ⊗GX∧
θX⊗(GX)∧
−→ HX ⊗GX∧

λX
−→ Nat∨(H,G).

The adjunction is given by the binatural bijections

Nat∨(F,G)→ C
F ⊗
C

G∧ → C

F ⇒ HomB(G∧,C)
F ⇒ C ⊗

B
G

justified by the adjunction (C.15) and the last part of the remark C.8. We leave the
verifications to the reader. �

The unit of the adjunction is called the coevaluation F
ρ=ρF
=⇒ Nat∨(F,G) ⊗B G. It can

be checked that it is given by

ρC : FC
FC⊗η
−→ FC ⊗GC∧ ⊗B GC

λC⊗GC
−→ Nat∨(F,G) ⊗B GC,

i.e. that it corresponds to λC via the correspondence (C.7).
We also have the counit Nat∨(L ⊗B G,G)

e=eL
−→ L. It is induced by the arrows

L ⊗B GC ⊗GC∧
L⊗Bε
−→ L.

We now restrict to the case B′ = B.

Definition C.19. Given F : C → (B-Mod)0 , we define

L = L(F) = End∨(F) = Nat∨(F, F).

Remark C.20. L is universal among those B-bimodules satisfying the equation

FC
���(((

F( f )
FD∧

FD FD∧

L




λD

111

=

FC
����

0000
η

FD∧

FC FC∧ ��������B FC
���(((

F( f )
FD∧

FC FC∧ ��������B FD FD∧

FC FC∧ ��������B B





ε
1111

L




λC

000

for each C
f
−→ D in C.
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As usual, given F,G,H : C → (B-Mod)0 we construct from the coevaluation a
cocomposition

Nat∨(F,H)
c
→ Nat∨(F,G)

B
⊗
B

Nat∨(G,H)

This is a B-bimodule morphism induced by the arrows

FC ⊗ HC∧
FC⊗η⊗HC∧
−→ FC ⊗GC∧

B
⊗
B

GC ⊗ HC∧
λC⊗λC
−→ Nat∨(F,G)

B
⊗
B

Nat∨(G,H)

The structure given by c and e is that of a cocategory enriched over B-Bimod. There-
fore, L = L(F) is a coalgebra in the monoidal category B-Bimod, i.e. a B-bimodule with
a coassociative comultiplication L

c
−→ L ⊗B L and a counit L

e
−→ B. This is called a

cogébroı̈de agissant sur B in [6]. Cogébroı̈des act on B-modules as follows

Definition C.21. Let L be a cogébroı̈de agissant sur B, i.e. a coalgebra in B-Bimod. A
(left) representation of L, which we will also call a (left) L-comodule, is a B-module M
together with a coaction, or comodule structure M

ρ
−→ L⊗B M, which is a morphism of

B-modules such that

C1 :

M
{{{{ρ

L
��� +++

c

��������B M

L ��������B L ��������B M

=

M
uuuuuu

ρ

L ��������B M
����ρ

L ��������B L ��������B M

C2 :

M
����ρ

L
���%%%

e

��������B M

B ��������B M

=
M

M

We define in an obvious way the comodule morphisms, and we have that way a cate-
gory Cmd(L). We denote by Cmd0(L) the full subcategory of those comodules whose
subjacent B-module is in (B-Mod)0.

Proposition C.22. Given F : C → (B-Mod)0, the unit FC
ρC
−→ L ⊗B FC yields a

comodule structure for each FC. Then we obtain a lifting of the functor F as follows

C
F̃ //

F
��

Cmd0(L)

Uxxppppppppppp

(B-Mod)0

Proof. Since we know explicitly what ρ, e and c are, it is easy to check both equations
on definition C.21. Both sides of the first equation are equal to the composition

FC
����

0000
η ����

1111
η

FC FC∧ ��������B FC FC∧ ��������B FC

L

���λC

0000 ��������B L

���λC

0000 ��������B FC,
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and the second equation is just a triangular equation for FC a FC∧.

We now verify that given an arrow C
f
−→ D in C, F( f ) is a comodule morphism

(recall remark C.20)

FC
���(((

F( f ) ����
0000

η

FC FD∧ ��������B FD

L




λD

000

FD

=

FC
����

0000
η ����

0000
η

FC FC∧ ��������B FC
���(((

F( f )
FD∧ ��������B FD

L

���λC

000 ��������B FD FD∧ ��������B FD

L ��������B B




ε
111 ��������B FD

=

FC
����

0000
η

FC FC∧ ��������B FC
���(((

F( f )

L

���λC

000 ��������B FD

�

Lemma C.23. Let M ∈ (B-Mod)r, L ∈ B-Bimod, M ⊗M∧
λ
−→ L in B-Bimod, and ρ the

corresponding B-module morphism via (C.7). Let L
e
−→ B, L

c
−→ L ⊗B L be a structure

of cogébroı̈de sur B. Then ρ is a comodule structure for M if and only if the following
diagrams commute:

B1 :

M ⊗ M∧ λ //

M⊗η⊗M∧
��

L

c
��

M ⊗ M∧
B
⊗
B

M ⊗ M∧
λ⊗

B
λ
// L

B
⊗
B

L

B2 :
M ⊗ M∧ λ //

ε

��

L

e
zzvvvvvvvvvvv

B

Proof. We can prove B1 ⇐⇒ C1, B2 ⇐⇒ C2. All the implications can be proved in
a similar manner when using a graphical calculus, we show C1 =⇒ B1:

M
}}}}}

η >>>>> M∧

M
����ρ

M∧ ��������B M
����ρ

M∧

L ��������B M M∧ ��������B L ��������B M M∧

L ��������B B




ε
--- ��������B L ��������B B




ε
---

4
=

M

pppppppp
ρ

M∧

L ��������B M
����ρ

M∧

L ��������B L ��������B M M∧

L ��������B L ��������B B




ε
---

C1
=

M
|||||

ρ

M∧

L
��� ***

c

��������B M M∧

L ��������B L ��������B B




ε
---

�

Remark C.24. The previous lemma implies that L
e
−→ B, L

c
−→ L ⊗B L as defined

before is the only possible cogèbroı̈de structure for L that make each ρX a comodule
structure.

We now give L additional structure under some extra hypothesis (cf. propositions
A.4, A.5)
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Proposition C.25. If C and F are monoidal, and V has a symmetry, then L is a
B ⊗ B-algebra. If in addition C has a symmetry and F respects it, L is commutative
(as an algebra). 2

We will not prove this proposition here, but show how the multiplication and the unit

are constructed, since they are used explicitly in 7.14. The multiplication L
B
⊗

B⊗B
L

m
−→ L

is induced by the composites

mX,Y : (FX ⊗ FX∧)
B
⊗

B⊗B
(FY ⊗ FY∧)

�
−→ (FX ⊗

B
FY) ⊗ (FY∧ ⊗

B
FX∧)

�
−→ F(X ⊗ Y) ⊗ F(X ⊗ Y)∧

λX⊗Y
−→ L.

The unit is given by the composition

u : B ⊗ B
�
−→ F(I) ⊗ F(I)∧

λI
−→ L.

Proposition C.26. If in addition C has a duality, then L has an antipode. 2

The antipode L
a
−→ L is induced by the composites

aX : FX ⊗ FX∧
�
−→ F(X∧) ⊗ FX

λX∧
−→ L.
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