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COHOMOLOGIA DE HOCHSCHILD
DE ALGEBRAS DE OPERADORES DIFERENCIALES
ASOCIADAS A ARREGLOS DE HIPERPLANOS

Dado un arreglo de hiperplanos A en un espacio vectorial V sobre un cuerpo de caracteristica
cero, estudiamos el algebra Diff (A) de operadores diferenciales en V tangentes a los hiperplanos
de A desde el punto de vista del algebra homologica.

Hacemos un estudio detallado de este algebra para el caso de un arreglo central de rectas
en un espacio vectorial de dimension 2. Entre otras cosas, determinamos la cohomologia de
Hochschild HH*(Diff(A)) como algebra de Gerstenhaber, establecemos un vinculo entre ésta
y la cohomologia de de Rham del complemento M(A) del arreglo, determinamos el grupo de
isomorfismos de Diff(A), clasificamos las algebras de esta forma a menos de isomorfismo y
estudiamos las deformaciones formales de Diff (A).

Mostramos que en el contexto general de un arreglo de hiperplanos de dimension arbi-
traria el algebra Diff(A) es isomorfa al algebra envolvente del par de Lie-Rinehart formado
por el algebra de funciones coordenadas del espacio vectorial y el algebra de Lie de deriva-
ciones tangentes al arreglo. El calculo de la cohomologia de Hochschild de Diff (A) puede
ser ubicado entonces en el contexto del calculo de la del algebra envolvente U de un par de
Lie-Rinehart (S, L): damos un método para hacer esto en el caso en que L es un S-modulo
proyectivo. Concretamente, presentamos una sucesion espectral que converge a HH*(U) cuya
segunda pagina involucra la cohomologia de Lie-Rinehart del par (S, L) y la cohomologia de
Hochschild de S a valores en U.

Palabras clave: Arreglos de hiperplanos, Cohomologia de Hochschild, Algebras de operadores
diferenciales, Pares de Lie-Rinehart, Teoria de deformaciones.






HOCHSCHILD COHOMOLOGY
OF ALGEBRAS OF DIFFERENTIAL OPERATORS
ASSOCIATED WITH HYPERPLANE ARRANGEMENTS

Given a free hyperplane arrangement A in a vector space V over a field of characteristic
zero, we study the algebra Diff(A) of differential operators on V' which are tangent to the
hyperplanes of A from the point of view of homological algebra.

We make a thorough study of this algebra for the case of a central arrangement of lines
in a vector space of dimension 2. Among other things, we determine the Hochschild coho-
mology HH®(Diff (A)) as a Gerstenhaber algebra, establish a connection between that coho-
mology and the de Rham cohomology of the complement M(:A) of the arrangement, determine
the isomorphism group of Diff(:A), classify the algebras of that form up to isomorphism and
study the formal deformations of Diff(A).

We show that in the general setting of a free arrangement of hyperplanes of arbitrary
dimension the algebra Diff(A) is isomorphic to the enveloping algebra of the Lie-Rinehart
pair formed by the algebra of coordinates functions on the vector space and the Lie algebra
of derivations tangent to the arrangement. The computation of the Hochschild cohomology
of Diff(A) can be then put in the context of computing that of the enveloping algebra U of a
Lie-Rinehart pair (S, L): we provide a method to do this if L is S-projective. Concretely, we
present a spectral sequence which converges to HH®(U) and whose second page involves the
Lie—Rinehart cohomology of the pair and the Hochschild cohomology of S with values on U.

Keywords: Hyperplane arrangements, Hochschild cohomology, Algebras of differential oper-
ators, Lie-Rinehart pairs, Deformation theory.
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INTRODUCTION

Let us fix a ground field k of characteristic zero, a vector space V of finite dimension and a
central arrangement of hyperplanes A in V, that is, a finite set {Hj, ..., H;} of subspaces of V
of codimension 1. For each i € {1,...,1},let a; : V — k be a linear form with kernel H;. We
let S be the algebra of polynomial functions of V, fix a defining polynomial Q = a; ---a; € S
for A, and consider, following K. Saito in [Sai80], the Lie algebra

Der A = {5 € Der(S) : 5(Q) € OS}

of derivations of S logarithmic with respect to A, which is, geometrically speaking, the Lie
algebra of vector fields on V which are tangent to the hyperplanes of A. This Lie algebra is
a very interesting invariant of the arrangement and has been the subject of a lot of work —
we refer to the book of P. Orlik and H. Terao [OT92] and the one by A. Dimca [Dim17] for
surveys on this subject. In particular, using this Lie algebra we can define an important class of
arrangements: we say that an arrangement A is free if Der A is free as a left S-module. For
example, central arrangements of lines in the plane are free, as are, according to a beautiful
result of Terao [Ter80a], the arrangements of reflecting hyperplanes of a finite group generated
by pseudo-reflections.

Now, along with Der A we can consider also the associative algebra Diff(A) of differential
operators on S which preserve the ideal QS of S and all its powers: we call it the algebra
of differential operators tangent to the arrangement A. As shown by F.J. Calderon-Moreno
in [CM99] or by M. Suarez-Alvarez in [SA18], when A is free Diff(A) coincides with the
subalgebra of the algebra Endy(S) of linear endomorphisms of the vector space S generated by
Der A and the set of maps given by left multiplication by elements of S. The algebraic structure
of Diff (A) is determined by both the S-module structure of Der A and its Lie structure, so it is
a very natural object to study. The main goal of this thesis is precisely to do this from the point
of view of homological algebra and deformation theory in the special situation in which the
arrangement A is free.

Our first step is to find a description of the algebra Diff (A) that is convenient for performing
explicit calculations. The language of Lie-Rinehart pairs provides the required formalism to do
this: indeed, the pair (S, Der A) determined by the polynomial algebra S and the Lie algebra
of derivations tangent to A is a Lie—Rinehart pair, as those studied by G. Rinehart in [Rin63]
and by J. Huebschmann in [Hue90], and the algebra Diff(A) can be identified to the universal
enveloping algebra U(S, Der A) of this pair. This is the content of our Theorem 2.19.

Theorem. Let A be a free hyperplane arrangement on a vector space V and let S be the algebra
of coordinate functions on V. There is a canonical isomorphism of algebras

U(S, Der A) — Diff(A).
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That there is such a morphism and that it is surjective is an interpretation of the re-
sults in [CM99] and in [SA18]. To prove that it is injective we use the calculation of the
Gelfand-Kirillov dimension of the enveloping algebra of a Lie-Rinehart pair done by J. Matczuk
in [Mat88] and the fact that Diff (A) and the algebra of differential operators on S become
isomorphic after localization at the single element Q. With this theorem at hand we are able
to give in Proposition 2.20 a presentation of Diff (A) by generators and relations and, using
the results by Th. Lambre and P.Le Meur in [LLM18], to prove in 2.25 that Diff (A) has the
twisted Calabi-Yau property.

We then focus on central arrangement of lines A in a 2-dimensional vector space V with
at least five lines, which are the simplest free arrangements. The bulk of Chapter 3 is a lengthy
calculation that culminates in Proposition 3.15, where we give a description of the Hochschild
cohomology of Diff (A) in a completely explicit fashion. Let us just state here the following
result, which follows from the proposition, and omit the details.

Proposition. If A is a central line arrangement of | lines with | > 5, the Hilbert series of
HH* (Diff (A)) is

hamey(t) = 1+ 1t + (21 = 1)* + 1.

When the arrangement consists of less than five lines, the conclusion of the proposition does
not hold: we deal with this special case using different techniques by the end of the thesis.
The next step is to describe the algebra structure of HH*® (Diff(A)) and its Gerstenhaber
structure: it is in order to do this that we need such an explicit description. The results appear
in Proposition 3.19 and 3.22 and are, again, too technical to reproduce here. In any case,
these structures provide a better understanding of our computations and allow us to relate
Diff (A) with a well-known invariant of the arrangement, the Orlik—Solomon algebra. This
algebra, studied by P. Orlik and L. Solomon in [OS80], is a combinatorial analogue of the algebra
obtained as the de Rham cohomology of the complement of A for the case in which k = C,
which was found by E. Brieskorn in [Bri73] and, previously, by V.I. Arnold in [Arn69] for the
family of braid arrangements. This algebra appears in our situation in Proposition 3.20:

Proposition. The subalgebra H of HH® (Diff(A)) generated by HH' (Diff (A)) is isomorphic to
the Orlik—Solomon algebra of A.

Along with these results, we are also able to obtain the Hochschild homology, the cyclic
homology, the periodic cyclic homology, the K-theory of Diff(:A) and a direct proof of the
twisted Calabi-Yau property for the special case of line arrangements: these are the contents
of Propositions 3.23 and 3.25.

We can extract consequences of our computation of cohomology. Indeed, applying the meth-
ods developed by J. Alev and M. Chamarie in [AC92], we are able to describe the automorphism
group Diff(A) in Theorem 4.7:
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Theorem. The group Aut(Diff(A)) is the semidirect product Auty(Diff(A)) < Exp(Diff(A))
of the subgroups Auty(Diff(A)) of automorphisms of Diff(A) that preserve the grading and
Exp(Diff (A)) of exponentials of locally nilpotent inner derivations of Diff(A). The action
of Aut(Diff (A)) on Exp(Diff(A)) is given by

60 - expad(f) = expad(6(f))
for all 6y € Auty(Diff(A)) and f € S.

Along with this theorem, we give in Chapter 4 a complete description of the groups
Auty(Diff(A))) and Exp(Diff (A)). We show that the first one is a finite dimensional algebraic
group which “sees” the symmetries of the arrangement and the second one is an infinite
dimensional group whose structure does not depend on the arrangement at all. This description
of the automorphism group, in turn, allows us to give a complete solution to the problem of
determining which pairs of arrangements of lines A and A’ have isomorphic algebras Diff (A)
and Diff(A").

Proposition. Two central arrangements of lines have isomorphic algebras of differential operators
if and only if they are themselves isomorphic.

The explicitness of our calculation of the Hochschild cohomology of Diff(A) continues
to be useful: in Section 5.2 we put to use our findings on HH?(Diff(A)) to study the formal
deformation theory of the algebra Diff (A) in the sense of M. Gerstenhaber [Ger64]. With the
help of the Diamond Lemma of G. Bergman [Ber78] we show, on one hand, that many of the
infinitesimal deformations of the algebra can be integrated to formal deformations and, on the
other, exhibit obstructed infinitesimal deformations.

Let us go back to the general case of free arrangements of hyperplanes of arbitrary dimen-
sion. As we mentioned above, the pair (S, Der A) determined by the polynomial algebra S
and the Lie algebra Der A is a Lie-Rinehart pair and its enveloping algebra is isomorphic
to Diff (A). In view of this observation, the problem of determining the Hochschild cohomology
of Diff (A) has a rather natural generalization: given a Lie-Rinehart pair (S, L) with universal
enveloping algebra U = U(S, L), to determine the Hochschild cohomology HH® (U).

Following the ideas of Th. Lambre and P.Le Meur in [LLM18], we construct a spectral
sequence that reduces that problem to the computation of the Hochschild cohomology of the
commutative algebra S with values in U and the Lie-Rinehart cohomology of the pair (S, L).
Explicitly, we obtain the following result in Corollary 6.8.

Theorem. For each U-bimodule M there is a first-quadrant spectral sequence E, converging
to HH®* (U, M) such that

ED? = HP(L|S,HY(S, M)).

We give several concrete examples in which this spectral sequence makes it possible to
completely determine HH®*(U) and we show how this method is applied to the special case of
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the computation of the cohomology of the algebra Diff (A) associated to a line arrangement.
In particular, we extend our computation of the Hochschild cohomology of Diff(A) as a
graded vector space to arrangements with 3 or 4 lines, which were excluded before. This
result appears in the text as Proposition 6.50 for the case of 3 lines. In order to perform this
computation, it is important to have a concrete description of the action of U on the Hochschild
cohomology H*(S, U) as computed from a projective resolution of S: we are able to obtain it
in Theorem 6.18 following [SA17]. Finally, to enrich the description of our spectral sequence,
we provide in Theorem 6.30 an interpretation of the differentials of its page E, in terms of
appropriate cup products that is obtained emulating what is done in [SA07].

* % %

Let us end this introduction with a brief summary of the contents of the thesis.

In Chapter 1, we provide definitions, examples and results from the theory of hyperplane
arrangements that will be useful throughout the thesis. We first focus on the general setting of
hyperplane arrangements, the module of derivations and the complex of logarithmic forms.
With these notions at hand, we present some of the results that started to raise interest in the
area and that relate the cohomology of the complement space of a complex arrangement with
other constructions, such as those by V.1. Arnold in [Arn69], by E. Brieskorn’s in [Bri73] and
by P. Orlik and L. Solomon in [OS80].

In Chapter 2 we present the algebra Diff (A) of differential operators tangent to a hyperplane
arrangement A and give a useful description of this algebra for the case of a free arrangement
building on the results of [SA18]. We then turn on to the case of central line arrangements,
providing a presentation and showing that in this case the algebra is isomorphic to an iterated
Ore extension. After that, we recall the notions of Lie-Rinehart pairs and of their enveloping
algebras, due to G.Rinehart in [Rin63]. These concepts are proven vital for us because the
algebra Diff (A) is isomorphic to the enveloping algebra of the pair (S, Der A) whenever A is
free. Using this, we find a presentation for Diff (A) and show it has the twisted Calabi-Yau
property using a result from [LLM18].

From Chapters 3 to 5 we study the case of a central arrangement of lines A in a 2-
dimensional vector space over a field of characteristic zero. We determine the Hochschild
cohomology of Diff (A) as a Gerstenhaber algebra, establish a connection between that coho-
mology and the de Rham cohomology of the complement M(A) of the arrangement, determine
the isomorphism group of Diff(A), classify the algebras of that form up to isomorphism and
study their deformation theory.

In our final Chapter 6, we construct a spectral sequence converging to the Hochschild
cohomology of the enveloping algebra of a Lie-Rinehart pair, we show that the differentials on
its second page are given by cup products and we end the thesis by using the spectral sequence
to extend our results on the Hochschild cohomology of Diff (:A) to the case in which A has
few lines — this was in fact our motivation for the construction of the sequence.
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The contents of Chapters 3 and 4 form part of the article [KSA18], which has been accepted
for publication in Documenta Mathematica. On the other hand, the preprint [Kor18] contains
most of Chapter 6 and has been submitted.






INTRODUCCION

Sean k un cuerpo de caracteristica cero, V un espacio vectorial de dimension finita y A un
arreglo de hiperplanos de V, esto es, un conjunto finito {Hj, ..., H,} de subespacios de V
de codimension 1. Para cadai € {1,...,1}, sea a; : V — k una forma lineal con nucleo H;.
Llamemos S al algebra de funciones coordenadas en V, fijemos el polinomio Q = a; --- a7 € S,
que define A, y consideremos, siguiendo a K. Saito in [Sai80], el algebra de Lie

Der A = {5 € Der(S) : (Q) € OS)

de derivaciones de S logaritmicas con respecto a A, que es, en términos geométricos, el algebra
de Lie de campos vectoriales en V que son tangentes a los hiperplanos de ‘A. Este algebra de Lie
es un invariante interesante del arreglo y ha sido objeto de estudio de varios trabajos: el libro
de P. Orlik y H. Terao [OT92] y el de A. Dimca [Dim17] son utiles como referencias generales.
Sirviéndonos del algebra de Lie de derivaciones, podemos definir una clase importante de
arreglos: decimos que un arreglo A es libre si Der A es un S-modulo libre. Por ejemplo, un
arreglo central de rectas en el plano es libre y son libres también, de acuerdo a un resultado de
H. Terao en [Ter80a], los arreglos de hiperplanos de reflexion de un grupo finito generado por
pseudo-reflexiones.

Junto con el algebra de Lie Der A podemos considerar el algebra asociativa Diff (A) de
operadores diferenciales en S que presevan el ideal QS de S y todas sus potencias: la llamamos
el algebra de operadores diferenciales tangentes al arreglo A. Es un resultado de F.J. Calderon-
Moreno en [CM99] y de M. Suérez-Alvarez en [SA18] que cuando A es libre, Diff (A) coincide
con la subalgebra de End(S), el algebra de endomorfismos lineales del espacio vectorial S,
generada por Der A y el conjunto de funciones dadas por la multiplicacion a izquierda por
elementos de S.

La estructura algebraica de Diff(A) esta determinada por la estructura de S-modulo de
Der A y por su estructura de Lie, de manera que es un objeto muy natural de estudiar. El
objetivo principal de esta tesis es precisamente hacer esto desde el punto de vista del algebra
homolodgica y la teoria de deformaciones en la situacion especial en que el arreglo A es libre.

Nuestro primer paso es encontrar una descripcion del algebra Diff (A) que sea conveniente
para realizar calculos explicitos. El lenguaje de los pares de Lie-Rinehart nos provee del
formalismo necesario: el par (S, Der A) determinado por el algebra de polinomios S y el
algebra de Lie de derivaciones tangentes a A es un par de Lie-Rinehart, como los estudiados
por G.Rinehart en [Rin63] y por J. Huebschmann en [Hue90], y el algebra Diff (A) puede
identificarse con el algebra envolvente universal U(S, Der A) de este par. Este es el contenido
de nuestro Teorema 2.19.
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Teorema. Sea A un arreglo de hiperplanos libre en un espacio vectorial V y sea S el algebra de
funciones coordenadas en V. Hay un isomorfismo canonico de algebras

U(S, Der A) — Diff (A).

La existencia de este morfismo sigue inmediatamente de los resultados en [CM99] y
en [SA18]. Para probar que es inyectivo, utilizamos el calculo de la dimension de Gelfand-
Kirillov del algebra envolvente de un par de Lie-Rinehart hecho por J. Matczuk en [Mat88]
y el hecho de que Diff(A) y el algebra de operadores diferenciales en S se tornan isomorfas
al localizar en el elemento Q. Con este teorema a mano, damos en la Proposiciéon 2.20 una
presentation de Diff(A) por generadores y relaciones y, usando los resultados de Th. Lambre
y P.Le Meur en [LLM18], probamos en 2.25 que Diff(A) tiene la propiedad de Calabi-Yau
torcida.

Nos enfocamos después en los arreglos centrales de rectas A en un espacio vectorial V de
dimension 2 con al menos cinco rectas, que son los arreglos libres mas simples. Una buena parte
del Capitulo 3 es un calculo extenso que culmina en la Proposicion 3.15, en la que damos una
descripcion de la cohomologia de Hochschild de Diff(A) de manera completamente explicita.
Sin entrar en detalles, la proposicion nos da la siguiente informacion.

Proposicion. Si A es un arreglo central de rectas de | rectas con ] > 5, la serie de Hilbert

de HH® (Diff(A)) es
hure @) (t) = 1+ 1t + (2] - Dt + 185,

Cuando el arreglo tiene menos de cinco rectas, la conclusion de la proposicion no sigue siendo
cierta: lidiamos con esta situacion especial utilizando técnicas diferentes sobre el final de la
tesis.

El siguiente paso es describir la estructura de algebra de HH®(Diff (A)) y su estructura
de Gerstenhaber: es para esto que necesitamos una descripcion tan explicita. Los resultados
aparecen en las Proposiciones 3.19 y 3.22 y son, una vez mas, demasiado técnicos para reproducir
aqui. De cualquier manera, estas estructuras nos dan un mejor entendimiento de nuestros
calculos previos y nos permiten relacionar Diff(A) con un invariante conocido del arreglo,
el algebra de Orlik-Solomon. Este algebra, estudiada por P. Orlik y L. Solomon en [OS80], es
un analogo combinatorio del algebra encontrada por E. Brieskorn en [Bri73] y, previamente,
por V.1 Arnold en [Arn69] para la familia de arreglos de trenzas, como la cohomologia de de
Rham del complemento de A para el caso en que k = C. Aparece en nuestra situacion en la
Proposicion 3.20:

Proposicién. La subdlgebra H de HH*(Diff(A)) generada por HH'(Diff(A)) es isomorfa al
algebra de Orlik—Solomon de A.
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Ademas de estos resultados, calculamos la homologia de Hochschild, la homologia ciclica,
la homologia ciclica periodica y la K-teoria de Diff (A), y obtenemos una prueba directa de la
propiedad de Calabi—Yau para el caso especial de arreglos centrales de rectas: estos son los
contenidos de las Proposiciones 3.23 y 3.25.

Procedemos a continuacion a extraer consecuencias de nuestro calculo de la cohomologia.
Utlizando los métodos desarrollados por J. Alev y M. Chamarie en [AC92], describimos el grupo
de automorfismos de Diff(A) en el Teorema 4.7:

Teorema. El grupo Aut(Diff(A)) es el producto semidirecto Auty(Diff(A)) < Exp(Diff(A))
de los subgrupos Auty(Diff(A)) de automorfismos de Diff(A) que preservan la graduacion
y Exp(Diff(A)) de las exponenciales de derivaciones internas localmente nilpotentes de Diff (A).
La accion de Auty(Diff (A)) en Exp(Diff(A)) esta dada por

0o - expad(f) = expad(07'(f))

para cada 6, € Auty(Diff(A)) y f € S.

Junto con este teorema, damos en el Capitulo 4 una descripcion completa de los grupos
Auty(Diff (A)) y Exp(Diff (A)). Mostramos que el primero es un grupo algebraico de dimension
finital que “ve” las simetrias del arreglo y que el segundo es un grupo de dimension infinita
cuya estructura es independiente del arreglo. Esta descripcion del grupo de automorfismos,
a su vez, nos permite dar una solucion completa al problema de determinar cuales pares de

arreglos de rectas A y A’ tienen algebras Diff (A) y Diff (A’) isomorfas.

Proposicion. Dos arreglos de rectas tienen algebras de operadores diferenciales isomorfas si y
solo si son isomorfos.

Lo explicito de nuestros resultados sobre la cohomologia de Hochschild de Diff (A) continta
siendo util: en la Seccion 5.2 utilizamos nuestra descripcion de HH?(Diff(A)) para estudiar la
teoria de deformaciones formales del algebra Diff (A) en el sentido de M. Gerstenhaber [Ger64].
Con la ayuda del Lema del diamante de G. Bergman [Ber78] mostramos, por un lado, que
muchas de las deformaciones infinitesimales del algebra pueden ser integradas a deformaciones

y, por otro, exhibimos deformaciones infinitesimales obstruidas.

Volvamos ahora a la situacion general de un arreglo libre de hiperplanos de dimension
arbitraria. Como mencionamos arriba, el par (S, Der A) determinado por el algebra de poli-
nomios S y el algebra de Lie Der A es un par de Lie—Rinehart y su algebra envolvente es
isomorfa a Diff (A). En vista de esta observacion, el problema de determinar la cohomologia
de Hochschild de Diff(A) tiene una generalizacion natural mas bien clara: dado un par
de Lie-Rinehart (S, L) con algebra envolvente U = U(S, L), determinar la cohomologia de
Hochschild HH*(U).

Siguiendo las ideas de Th. Lambre y P.Le Meur en [LLM18], construimos una sucesion

espectral que reduce el problema al del calculo de la cohomologia de Hochschild del algebra con-
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mutativa S a valores en U y al de la cohomologia de Lie-Rinehart del par (S, L). Explicitamente,
obtenemos el siguiente resultado en el Corolario 6.8.

Teorema. Para cada U-bimodulo M hay una sucesion espectral E, en el primer cuadante que
converge a HH*(U, M) tal que

ED? = HP(L|S,H1(S, M)).

Después de este resultado, damos varios ejemplos en los que la sucesion espectral hace
posible determinar completamente HH®(U) y mostramos como este método se aplica al caso
especial del calculo de la cohomologia del algebra Diff (A) asociada a un arreglo de rectas. En
particular, extendemos nuestros resultados del Capitulo 3 sobre la cohomologia de Hochschild
de Diff(A) como espacio vectorial graduado a arreglos con 3 o 4 rectas, que habiamos excluido
anteriormente. Este resultado aparece en el texto como la Proposicién 6.50 para el caso de 3
rectas. Para realizar este calculo, es importante tener una descripcion concreta de la accion de U
sobre la cohomologia de Hochschild H*(S, U) en la situacion en que esta tltima es calculada
mediante una resolucion proyectiva de S: obtenemos tal descripcion en el Teorema 6.18,
siguiendo [SA17]. Finalmente, para enriquecer la descripcion de nuestra sucesion espectral,
damos en el Teorema 6.30 una interpretacion de los diferenciales de la pagina E, en términos
de productos cup apropiados, que se obtiene emulando lo hecho en [SA07].

* K K

Terminamos esta introduccion con un breve sumario de los contenidos de la tesis.

En el Capitulo 1, damos definiciones, ejemplos y resultados de la teoria de arreglos de
hiperplanos que seran utiles a través de la tesis. Primero nos enfocamos en las nociones
generales sobre los arreglos de hiperplanos, el moédulo de derivaciones y el complejo de formas
logaritmicas. Después, presentamos algunos de los resultados que empezaron a generar interés
en el area y que relacionan la cohomologia de de Rham del complemento de un arreglo complejo
con otras construcciones, tales como las de V. 1. Arnold en [Arn69], de E. Brieskorn en [Bri73] y
de P. Orlik y L. Solomon en [0S80].

En el Capitulo 2 presentamos el algebra Diff(A) de operadores diferenciales tangentes a
un arreglo de hiperplanos A y damos una descripcion conveniente de este algebra para el
caso de arreglos libres a partir de los resultados de [SA18]. A continuacién, nos centramos
en el caso de los arreglos centrales de rectas, dando una presentacion y mostrando que en
este caso el algebra es isomorfa a una extension de Ore iterada. Volviendo a la situacion
general, presentamos los pares de Lie-Rinehart y sus algebras envolventes, que se deben a
G.Rinehart en [Rin63]. Estos conceptos son vitales para nosotros puesto que el algebra Diff (A)
es isomorfa al algebra envolvente del par (S, Der A) si A es libre. Usando esto, encontramos
una presentacion para Diff(A) y mostramos que tiene la propiedad de Calabi—Yau torcida
usando un resultado de [LLM18].
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Entre los Capitulos 3 y 5 estudiamos el caso de un arreglo central de rectas A en un espacio
vectorial de dimension 2 sobre un cuerpo de caracteristica cero. Determinamos la cohomologia
de Hochschild de Diff(A) como algebra de Gerstenhaber, establecemos una conexion entre
esta cohomologia y la de de Rham del complemento M(A) del arreglo, determinamos el grupo
de isomorfismo de Diff(A), clasificamos las algebras de esa forma a menos de isomorfismo y
estudiamos su teoria de deformaciones.

En nuestro capitulo final, el Capitulo 6, construimos una sucesion espectral que converge a
la cohomologia de Hochschild del algebra envolvente de un par de Lie-Rinehart, mostramos
que los diferenciales de la segunda pagina estan dados por productos cup y terminamos la
tesis utilizando la sucesion espectral para extender nuestros resultados sobre la cohomologia
de Hochschild de Diff(A) en el caso en que A tiene pocas rectas: ésta fue, de hecho, nuestra
motivacion para la construccion de la sucesion.

Los contenidos de los Capitulos 3 y 4 forman parte del articulo [KSA18], que ha sido
aceptado para publicacion en Documenta Mathematica. Por otro lado, el preprint [Kor18]
contiene la mayoria del Capitulor 6 y ha sido submitido.






_ 1 _
HYPERPLANE ARRANGEMENTS

In this chapter we define and illustrate the objects with which we deal throughout the thesis.
The first definitions cover combinatorial aspects of hyperplane arrangements, the Lie module
of derivations tangent to an arrangement, and the complex of logarithmic forms. Afterwards,
we deal with the cohomology of the complement of a complex arrangement and its relation
with our previous constructions. Finally, we present the Orlik-Solomon algebra, which is a
combinatorial analogue of the algebra obtained as the cohomology of the complement in the
general situation where the ground field is not C.

1.1 BASIC DEFINITIONS

1.1. Let us first introduce some notation that we will keep throughout this thesis. We let k be
a ground field and assume that all vector spaces and algebras are implicitly defined over k. We
will also take unadorned ® and hom with respect to k and, sometimes, we will write | instead
of ®.

1.2. A hyperplane arrangement or an arrangement of hyperplanes A over k is a finite collection
of affine hyperplanes {Hj, ..., H;} of a k-vector space V of finite dimension. Most of the times,
we shall omit the reference to k. An arrangement is central if its hyperplanes are actually
subspaces.

We will denote the dimension of V by n and call it the dimension of A. Choosing a
basis, we may identify the algebra of coordinate functions on V with the polynomial algebra
S =k[x1,...,x,]. Let us denote, if [ is any positive integer, the set {1, ...,I} by [I]. For each
i €[], let &; : V — k be an affine function such that H; is the zero locus of «;. The defining
polynomial of A is

QA) =may -

and is usually denoted simply by Q. As different choices of linear forms give rise to the same
arrangement, Q is defined up to a scalar multiple. If A is a central arrangement, Q is an
homogeneous polynomial of degree I.

Unless we claim otherwise, we will keep in the general situation and with the notation
explained in this paragraph.

13
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1.3. Let A be a hyperplane arrangement. The rank of A is the dimension of the space A+
generated by the normals of its hyperplanes. We call A essential if its rank equals its dimension.
The complement of A is the set M(A) = V \ Ugesn H. If k = R, a connected component of
M(A) is called a chamber; the set of chambers of A is denoted by C(A).

1.4. Example. The boolean arrangement Bool,, in V = k" is defined by Q = x1x5 - - - x,,. It is an
essential central arrangement. To determine the chamber to which a point belongs it is enough
to give the signs of its coordinates: the number of chambers is thus 2".

1.5. Example. The braid arrangement 8, in k" has hyperplanes
Hij = {(x1,...,x,) €k" : x; — xj = 0} fori1<i<j<n,

so it has ('21) hyperplanes. This central arrangement is not essential, for the normal of each
hyperplane satisfies the equation x; + ... + x, = 0: in fact, the rank of B,, is n — 1. Let us now
assume thatk = Rand letp = (p1,...,pn) € R". Giveniand jsuchthat1 <i <j < n, we
observe that p lies on one or another side of the hyperplane x; — x; if and only if p; is greater or
smaller than p;. As a consequence of this, a connected component of M(A) is determined by a
total order on [[n]], or, in other words, to a permutation of that set. The number of chambers of
M(A) is then n!.

1.6. There are many ways to construct arrangements; let us review two of the most important
ones. If A, is an arrangement in V; and A, is an arrangement in V5, their product A, X A; is the
arrangement in V; @V, with hyperplanes H®V, for H € ‘A; and V;®H for H € A,. For example,
the nth boolean arrangement Bool,, can be viewed as the n-fold product of the arrangement in k
whose only hyperplane is the point at the origin. Furthermore, every arrangement can be viewed
as the product of an empty arrangement and an essential arrangement, the essentialization
of A, whose hyperplanes are the intersections of those of A with the subspace A+. Notice
that this construction produces an arrangement not in V but in A*. We call an arrangement
reducible if it is, after a change of coordinates, the product of two arrangements on nonzero
vector spaces.

Another basic construction is that of coning, whose point is to relate affine —that is, not
necessarily central— and central arrangements: given an affine arrangement A in V, the cone
cA is a central arrangement in k @ V such that A is “embedded” in ¢A. Let us denote the
algebra of coordinates onk ® V by S’ = k[xy, . . ., x,]: if Q € S is the defining polynomial of A,
we let Q' € S’ be the homogenization of Q and cA be the arrangement determined by x,Q’.
For instance, if Q = (x; + 1)(x2 — 2) then ¢ A has defining polynomial xy(x; — x0) (32 — 2xp).
There is one more hyperplane in ¢A than in A: the one defined by x, = 0.

1.7. We now describe an important family of arrangements that is, in fact, a big motivation of
the theory. We call an automorphism s € GL(V) of V a pseudo-reflection if it has finite order
and its fixed point set is a hyperplane, which we call the reflecting hyperplane of s, and we call
it a reflection if its order is two. A finite subgroup G of GL(V) is a (pseudo-) reflection group if it



1.2. COMBINATORICS 15

is generated by (pseudo-) reflections; if k = R it is called a Coxeter group. The set of reflecting
hyperplanes A(G) of a reflection group G is the reflection arrangement of G.

A root system is a finite set R of nonzero vectors in R”, the roots, that satisfy certain
combinatorial properties that can be found, for instance, in [Bou68, Chapitre VI]. The set A(R)
of hyperplanes in R" orthogonal to the roots of R is an arrangement, and one can show that
every such arrangement is, in fact, a reflection arrangement: the corresponding group is
the one generated by the reflections with respect to its hyperplanes. We call these Coxeter
arrangements. For instance, the arrangement associated to the class of root systems

An_lz{ei—ej:1§i<j§n}CR"

is the real nth braid arrangement 8, = A(A,-;) that we saw in Example 1.5. Identifying the
reflection with respect to the plane x; — x; = 0 with the permutation (ij) € S,, we see that the
corresponding reflection group is S,,.

There is a complete description of the family of pseudo-reflection arrangements in the
complex case due to G. Shephard and ]. Todd, who have classified irreducible finite complex
pseudo-reflection groups in [ST54].

1.2 COMBINATORICS

1.8. Let A be an arrangement in V. The intersection poset L(A) is the set of all nonempty
intersections of hyperplanes in A —including V, the intersection of the empty set— with order
given by reverse inclusion, that is, X < Y if and only if Y C X. When A is central, L(A) is a
lattice.

1.9. Example. Let us consider the boolean arrangement Bool, of Example 1.4, defined by
X1...%, = 0. As every subset of hyperplanes in Bool, has a different nonempty intersection,
L(A) is isomorphic to the poset of all subsets of [n]] ordered by inclusion. As a matter of fact,
this is the reason for the name of the arrangement.

Let us show that, on the other hand, the intersection poset £(%5,,) of the braid arrangement
B, = {Hijj : 1 £ i < j < n}, introduced in Example 1.5, is isomorphic to the lattice P of
partitions of the set [n]] ordered by refinement. Indeed, if X € L£(8,,), there is an equivalence
relation ~x on [[n]] such that

iNXj = XCH,']',

with the convention that H;; denotes V if i = j, and we may therefore consider the partition
Ax of [n]] into its corresponding equivalence classes. The map

0: L(By)>3X > AxeP

is the desired isomorphism of lattices: it preserves order, it is injective, for we can write X
as the intersection of the hyperplanes H;; such that i ~x j, and it is also surjective: given a
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partition A of [n] that determines a relation ~, we may define X as the intersection of all
hyperplanes H;; such that i ~ j.

1.10. From an arrangement A and a choice of X € L(A) we can construct two arrangements:
the first one is

Ax ={He A:X C H},
which is a subarrangement of A, and the second one is the arrangement
AX ={XNH:X¢Hand X NH # o}

in X, which we call the restriction of A to X. If Hy is a hyperplane of A, we let A’ = A\{H,} and
A" = A, We call (A, A", A") a triple with distinguished hyperplane Hy. This construction is
useful to perform inductive arguments, as we show in the next example, which will be relevant
in the proof of Zaslavsky’s Theorem 1.18.

1.11. Example. Let (A, A’, A"") be a triple of real arrangements with distinguished hyperplane
H. We claim that the number of chambers of each arrangement satisfy

IC(A)| = IC(A")| + IC(A'). (1.1)

Let us, in order to prove this equality, denote by P the set of chambers of A’ that intersect H
and by Q the set of those that do not. Of course, every chamber in P gives rise to two chambers
in A when it is split by H; on the other hand, each chamber in Q is a chamber of A. We see in
this way that

IC(A)| = 2P| + Q] = |P| + |C(A")],

and this, together with the observation that the map P 3 ¢ = ¢ N H € C(A”) is a bijection,
finishes the proof.

1.12. Let L be a finite poset. The Mobius function p : L X L — Z is defined recursively by

o plx,x) =1,

© Dx<z<y B(x,2) = 0if x < y;

o p(x,y) =0ifx > y.
This function plays a key role in the Mébius inversion formulas, which we now state for
the special case of in which L is the lattice of intersections L(A) of a central hyperplane
arrangement A.

1.13. Proposition. Let f and g be functions on L(A) with values on an abelian group. The
following two equivalencies hold:

)= Y f) = f)= > pX.Y)X),
XeL(Ay) XeL(Ay)

gX)= D, fV) = fOO= > uXY)g(Y).

Y e L(AX) Ye L(AX)
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1.14. Let A be a central hyperplane arrangement and let us write p(X) = pu(V, X) for each
X € L(A); notice that V is the unique minimal element of the lattice £(A). The characteristic
polynomial y# € Z[t] of the arrangement A is

xat)= ), pCOEm.

XeL(A)

This polynomial collects important combinatorial information of the arrangement —the number
of hyperplanes, for instance: it is readly seen, using the recurrence that defines y, that u(X) = -1
if X is a hyperplane, so that y#(t) = t" — |A[t" 1 +....

1.15. Example. The characteristic polynomial of the boolean arrangement is (¢t — 1)". To see
this, let us first show by induction with respect to the codimension r(Y), with Y € L(A), that
1(Y) = (=1)"¥)_ This is immediate when Y = V, so let us suppose that k := r(Y) is positive. If
0 < i < k, the number of subspaces X € L(A) suchthat X < Y and r(X) = iis (’f) Using this,

the second property in the definition of i and the inductive hypothesis we see that

o=§]mxw:§](ﬂeﬁf+mn.

X<Y 0<i<k

AsO=(1-1k=3k (?)(—1)", we conclude that y(Y) = (=1)* and, finally, that

n

yal(t) = Z (_1)r(X)tdim(X) — Z (ril)(_l)itn—i =(t-1)".

XeL(A) i=0

1.16. Example. Let k = F, be the finite field of g elements and A the arrangement in V = k" of
all hyperplanes that pass through the origin.

If W is a IF;-vector space of finite dimension and w denotes its cardinality then, evidently,
lhom(W, V)| = w". Let us define, for X € L(A), Px to be the subset of hom(W, V) of maps
with image equal to X and Qx that of maps with image contained in X but not necessarily
equal to it. Of course, we have Qx = Jy>x Py and, with the help of the Mobius inversion
formulas in 1.12, we see that |Py| = 2Xzy u(Y,X)|0x|. In particular, for Y = V, this means
that

Pyl = > pCOwImX, (1.2)
X>Y
As a linear map W — V is surjective if and only if its transpose V* — W™ is injective, |Py| is
the number of injective maps in hom(V*, W*). Let us now fix a basis {xi,...,x,} of V* and
suppose that ¢ is a monomorphism from V* to W*. There are w" — 1 possibilities for ¢(x;);
once we have chosen one, we remove all its multiples to see that there are w” — g elements
where x; can be sent: an inductive argument following these lines shows that

Pyl = (w"—1)(w" —q)--- (w" = q"").
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Since equation (1.2) means that |Py| = y#(w), we may conclude that

xa(t) =" =D(t" - q)- (" = ¢"),
for this result holds for an infinite number of integer values of t.

1.17. Example. We follow the ideas in the previous example, now to compute the characteristic
polynomial of a braid arrangement. Let n € N and let A be the nth braid arrangement. Recall
from Example 1.9 that £(A) is isomorphic to the lattice of partitions of I := [n]]; the partition
associated to X € L(A) is denoted by Ax.

Let W be a set of cardinality w. If ¢ : I — W, we write A the partition {¢~!(w) : w € W}
of I and for each X € L(A) we put

PX={¢:I—>W:A¢=A)(}, QX={¢:I—>WZA¢ZA)(}.

As the disjoint union of Py with Y > X is Qx, we can apply the Mobius inversion formula to
see that

Pyl = D (Y. X)I0x]. (13)

XY

Let us now compute |Qx|. As maps ¢ € Qx are constant on each of the classes determined by
the equivalence relation ~x that we saw in Example 1.9, there is a bijection between Qx and
WAX . Moreover, [Ax| = dim X, for the subset of V formed by the vectors v} = ;¢ e; with
A € Ay is a basis of X. If we now set Y = V in (1.3) we obtain that

Pvl= > p(wimX,

XeL(A)

On the other hand, |Py| is the number of injective maps I — W and therefore equals to
w(w—1)---(w— (n—1)). We conclude that

xa(t) =tt—=1)---(t—-(n-1)),

for we have seen, once again, that the equality holds for an infinite number of instances of t.

1.18. The Poincaré polynomial of A,

r( A= Y, a0,

XeL(A)
has the same information as the characteristic polynomial, since we have
xa(t) = t"n(A,~t7).

For instance, we may deduce from Example 1.17 that the Poincaré polynomial of the braid
arrangement 5, is given by

T(M(Bn),t) = (1 +t)(1+2t) -+ (1 + (n— 1)t). (1.4)
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This polynomial can be sometimes more convenient than the characteristic polynomial to work
with. The following two results should help to illustrate this point. The first assertion is known
as the Deletion—Restriction Theorem and the second one, due to T. Zaslavsky, is a consequence
of the comparison of first one with (1.1) of Example 1.11.

Theorem. If (A, A’, A”) is a triple then
x(A,t) = n(A',t) + tn (A", t).
Theorem. If A is a real arrangement then the number of chambers of A is (A, 1).

Proof. This appears in 1.2.A of [Zas75]. O

1.3 DERIVATIONS

1.19. From now on and unless we say otherwise all our arrangements will be central.

1.20. We denote by Der(S) the set of derivations of S, that is, the linear maps 8 : S — S such
that the Leibniz rule

0(fg) = 6(f)g + f0(9)

holds for every f and g in S. It is straightforward to see that Der(S) is an S-submodule and a
sub-Lie algebra of the algebra End(S) of endomorphisms of S. We view S as a graded algebra
as usual, with each variable x; of degree 1 for i € [[n] and for each p > 0 we write S, the
homogeneous component of S of degree p. The Lie algebra Der(S) is a left graded S-module,
and it is freely generated by the set of partial derivatives {9; : S — S : i € [n]]}, which are
homogeneous elements of Der(S) of degree —1.

The Lie algebra of derivations of the arrangement A is the Lie subalgebra

Der(A) := {0 € Der(S) : 0(Q) € OS}

of Der(S), which happens to be also a graded S-submodule of Der(S). This invariant of A was
first considered by K. Saito in the more general context of the study of differential forms with
logarithmic singularities along a divisor of a complex manifold in [Sai80] and, in particular,
its Lie algebra and S-module structures subtly codify geometric, arithmetic and combinatorial
properties of the arrangement. In geometrical terms, Der(A) has a rather clear description: it
is the algebra of polynomial vector fields tangent to each of the hyperplanes of A.

1.21. A derivation 6 belongs to Der A if and only if & divides 0(«) for every linear form o
such that ker a belongs to A. Indeed, if Q = «; - - - @; for coprime linear forms ay, . . ., a; then
the claim follows from the equality

0(Q) = 0(ar)az -+ -y + o1 0(az - - - p).
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As an immediate consequence of this observation we see that if (A is a central arrangement
then the eulerian derivation E := x10; + ... + x,0, is a derivation of A, for E(a) = a if a is a
homogeneous linear form.

1.22. An arrangement A is free if Der A is a free S-module. The notion of freeness was
introduced in [Sai80] as well; as we shall illustrate in Example 1.31, freeness is not a generic
property, but this condition is nevertheless satisfied in many important examples. Indeed,
it is a theorem by H. Terao in [Ter80a] that reflection arrangements (see 1.7) over C are
free —we recommend the exposition of this subject in [0T92, §6.3]. In [Ter80b], H. Terao
states the yet unsettled conjecture that the freeness of an arrangement is a combinatorial
property, that is, that it depends only on the intersection poset L(A). We do know, as a
consequence of Theorem 1.52 in Section 1.5 below, that the cohomology of the complement
of a complex arrangement is a combinatorial property; in contrast, Rybnikov in [Ryb11] has
constructed two complex arrangements with the same combinatorics but whose complements
have nonisomorphic fundamental groups.

1.23. As a first example of a free arrangement, we may see by hand that the module of
derivations of the boolean arrangement Bool,, of Example 1.4 admits {x;0; : 1 <i <n}asa
basis. Let us show that this is actually a consequence of the fact that we saw in Example 1.6
that Bool, is the n-fold product of Bool;, which is evidently a free arrangement. Indeed, let
us consider the general situation in which A; and A, are arrangements in V; and V; and let
Ay X A, be their product, as we defined in Example 1.6, which is an arrangementin V = V; V.
Let S, S; and S; be the algebras of coordinate functions on V, V; and V;, respectively, and let us
identify as usual S with the tensor product algebra S; ® S, and view S; and S, as subalgebras
of S. If Der(A;) and Der(A,) are the S;- and S;-modules of derivations of ‘A; and As, then it
is easy to see that there is an isomorphism of S-modules

Der(A) = S ®s, Der(A;) ® S ®s, Der(Ay).

In particular, the product A; X A, is free if and only if the factors A; and A; are free.
The sufficiency of the condition is obvious, and the necessity follows from the facts that (i)
projective finitely generated graded S-modules are free and (ii) a finitely generated S;-module
M is projective if the S-module S ®g, M is projective, since the inclusion S; — S is faithfully
flat; see [TSpal9, Proposition 058S].

1.24. To provide more examples efficiently, we need to make a few preliminary observations.
The first one is that if an arrangement is free then the rank of the module of derivations is
n and that, moreover, there is a basis of Der A formed by homogeneous derivations. As a
consequence of this last fact, each time that we pick a basis of Der A we will be able to assume
without loss of generality that it is one of that form.

Proposition. If an arrangement A in a vector space of dimension n is free, then its S-module of
derivations Der A has a basis of n homogeneous elements.
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Proof. Let r be the rank of the S-module Der A. As the set of derivations {0; : 1 < i < n} is
an S-basis of Der(S), the set {Q0; : 1 < i < n} is one of Q Der(S) and therefore, looking at
the ranks of each of the S-modules in the chain Q Der(S) ¢ Der A c Der(S), we conclude
n < r < n. Let us now consider all the homogeneous components of the members of a basis of

Der A: they form a set of generators and, then, choosing a minimal set of generators among

them we find a homogeneous basis of Der A. O
1.25. If 64, ..., 0, € Der A are derivations of A, the Saito matrix is
O1(x1) -+ 01(xn)
M(@l,,G,,) =
On(x1) -+ Onlxn)

Lemma. The defining polynomial Q divides det M(6,,...,6,) inS.

Proof. Let a be a linear form defining a hyperplane in A. Without losing generality, we may
write @ = x1 + c2X + - - - + cp Xy, for scalars ¢y, . . ., ¢, —we may, if needed, rename the variables

and multiply a by an appropriate scalar. If 0 is a derivation then
0(x1) = 0(a) = c20(xz) = -+ = cab(xn),

and therefore det M (0, . . ., 0y) is equal to

Or(a) - Oi(xn) bi(a)/a -+ O1(xn)
det| : : = o det : : € as.
On(a) -+ Onlxn) On(a)/a -+ On(xn)
Since « was arbitrary, it follows from is that det M(6,, ..., 6,) € OS. O

1.26. Theorem (Saito’s criterion, [Sai80, Theorem 1.8.ii]). A set of n derivations {0, . ..,0,} in
Der A is an S-basis if and only if the determinant of the matrix M(6, . . ., 0,) is a nonzero scalar

multiple of Q.

Proof. Suppose, to begin with, that the condition on the determinant holds. The derivations
01, ..., 0, are linearly independent over S: indeed, if 6; were equal to an S-linear combination
of 6, ..., 0, then the evaluation of the determinant of the matrix M(0;, ..., 0,) at any point p
of V would be equal to zero and, since the field is infinite, the determinant itself would be zero,
contradicting the hypothesis.

We may assume that det M(6;,...,0,) = Q; else, we simply replace 6; with an scalar
multiple. For each i € [n]], we have 0; = } 0;(x;)d;, so, applying essentialy Cramer’s rule, we
get that

Or(x1) -+ O - Oi(xn)
Q0 = det : :
On(x1) -+ On -+ On(xn)
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and therefore
Q0; € SO, + ...+ 50,. (1.5)

Let now € Der A and i € [[n]. We see from (1.5) that there exist fi, ..., f, € S such that
Qn = Z]’-’zl fi0;. As Q divides det M (61, . ..,0;-1,1,0i41, ..., 0,) in virtue of Lemma 1.25 we
have that

Qdet M1, ..., 0i_1,1, 0is1, - . ., 6n)
= det M1, . ..,0i_1,00, Ois1, .. ., On)
= det M(0s, . ..., 051, f:0:, 0isrs - . . On)
= fidet M(6,, ..., 0,)
= fiQ,

so that f;Q belongs to QS and then Q divides f;. This shows that = 2o ge)j and, therefore,

that {0y, ..., 0,} spans the S-module Der A, which is what it remained to see.

Let us suppose now that {0y, .. .,0,} is a basis of Der A. Using again 1.25, we know there
exists f € S\ {0} such that fQ = det M(0y,...,0,). Given a hyperplane H in A, which we may
suppose to be defined by the linear form x;, the arrangement A \ {H} is defined by Qg = Q/x;.
Consider now the derivations

n = Qo ni = Qpod; for2<i<n

These derivations belong to Der A, so, in view of our hypothesis, can be written as an S-linear
combination of 6y, . .., 8,: this implies that there exists an square matrix N with entries in S
such that M(n1,...,n,) = M(04,...,0,)N. As

Q0L = det M(ny, ..., 1,) = det M0, .. .,0,) det N = fQ det N,

we see that f divides Q;I_I. As this is true for every H € A and gcdyc 4 Q};l = 1, we conclude
that f € k. O

1.27. Recall from 1.24 that if an arrangement is free we may take a basis {0, . . ., 8, } consisting
of homogeneous derivations. Looking at the degrees in the equality det M(6y,...,60,) = fQ of
Saito’s criterion we arrive at the following result.

Corollary. The set B = {0y,...,0,} of homogeneous and linearly independent derivations

in Der A is a basis of Der A if and only if 3.7 10;| =1 —n. O

1.28. Example. Let us consider a central arrangement A of lines in the plane k?, and let us
denote x and y the coordinates of k?. Up to a change of coordinates, we may assume that the
line with equation x = 0 is one of the lines in A, so that the defining polynomial Q of the
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arrangement is of the form xF for some square-free homogeneous polynomial F € S which
does not have x as a factor. Saito’s criterion allows us to show that the two derivations

E = x0x + ydy, D = Fo,

form an S-basis of Der A. Indeed, we have

_ X Y\
detM(E,D)—det(O F)—Q.

1.29. Example. As we said in 1.22, reflection arrangements are free. In particular, the braid

arrangement 8B, defined in Example 1.5, admits the set {6_1, ..., d,—2} with
n
51’ = Z x}“ﬁj
Jj=1
as a basis of Der B,,, as we check using Saito’s criterion once again. The matrix M(5_1, . . ., dn—2)

is the Vandermonde matrix and its determinant Q = [];<;<;<n(xi — x;), the discriminant of
X1s - . - » Xn, is the defining polynomial of B,.

1.30. Let A be a free arrangement and let {61, . . ., ;} be an S-basis of Der A. The multiset of
exponents of A is

expA = {10 +1,...16,] +1}.
For instance, we deduce from Example 1.17 that for the braid arrangement 8, we have
expB, =1{0,1,2,...,n—1}.

The following result is a part of [OT92, Proposition 4.29] and will be helpful to show an example
of a non-free arrangement.

Proposition. Let A be a free arrangement and let Ay, . . ., Ay be irreducible arrangements such
that A = Ay X - - - X Ay. The multiplicity of 0 in exp A is the difference between the dimension
of A and its rank, and the multiplicity of 1 is k. O

If G is a reflection group, the exponents of the corresponding reflection arrangement A(G)
have an interpretation in terms of invariant theory and this allows their determination using
the character table of G. This is done in [OT92, Appendix B] for each of the groups appearing
in the Shephard-Todd classification.

1.31. Example. Let us present an example of the fact, noted above, that freeness is not a generic
property. The arrangement in V = k® defined by

Q = xyz(ax + by + cz)

is free if and only if abc = 0. On one hand, if, for instance, ¢ = 0 then Saito’s criterion allows
us to see that the derivations xd, + ydy, y(ax + by)d, and zd, form an S-basis of Der A.
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Let us show that, on the other hand, if abc # 0 then A is not free. We can extract two
consequences from Proposition 1.30: as the arrangement is essential, 0 is not an exponent of A
and, as it is irreducible, the multiplicity of 1 as an exponent is 1. According to Proposition 1.24,
if A were free then the number of exponents would be equal to its rank, which is 3, and two of
the exponents would be at least 2. As the number of planes is 4, Corollary 1.27 implies that
Der A is not free.

Even though in this case Der A is not free, it not too far from being free: the S-module
Der A has projective dimension 1. In order to simplify our calculations, performing a change
of coordinates we may assume that a = b = ¢ = 1. We claim that the derivations

E= x161 + x282 + x3(93,
Dij = xixj(xj - xi) for (19]) € {(19 2)7 (2a3)7 (3’ 1)}

generate the S-module Der A. Let, in order to see this, 8 be a derivation in Der A. In view
of 1.21, we have that

x; | O0(x;) for1<i <3, and X1+ X0 +x3 | 0(x1 + x3 + x3).

We thus see that there exist polynomials aj, az, as and f in S such that 6(x;) = x;a; and
(1 + x2 + x3) f = x1a1 + X205 + x3as. This last equation amounts to the equality
0= xl(al - f) + Xz(az - f) + X3(a3 - f) (16)

Let now K, be the Koszul complex described in [Wei94, §4.5] associated to the ring S and the
regular sequence (x1, x2, x3). Denoting by W the k-vector space with basis {x1, x3, x3}, we have
Ko =S ® A*W and the differential d; : K; — Kj is given by

dl(bl ® x1 + bg ® xo + b3 ® X3) = b1x1 + ngz + b3X3.

In particular, equation (1.6) tells us that the 1-cochain w = ¥>_,(a; — f) ® x; in K] is a cocycle,
and, since the complex is exact, a coboundary: there exist therefore ¢y, c; and c3 in S such that
w=dy(c3®x1 Ax3—Co®x1 AX3+ 1 ®x3 AX3)
= (cax3 — €3x2) ® X1 + (C3X1 — €1X3) ® x2 + (C1X2 — C2x1) ® X3.

This equation implies at once that 8 = fE + ¢1Dj3 + c2D31 + c3D13, as we wanted. One way to
restate this fact is that the morphism of S-modules 7 : $%* — S such that

(f,c1,c2,¢3) = fE + c1Dy3 + c3D3q + c3Dyy

is surjective and therefore the first step towards a projective resolution of Der A. In order to
complete the resolution, we observe that Der A is a submodule of Der S, which is free of rank
3, and that the composition $%* — Der A < Der S = S®* has matrix

X1 0 X1X3 —X1X2
X9 —X2X3 0 X1X2
X3 XpX3 —X1X3 0
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Using this as input for Macaulay command resolution, we find that the kernel of r is
free of rank one generated by (0, x1, x2, x3). We have thus found an S-projective resolution of

Der A of length 1

0 ¢<— DerA <5— $%* ¢ S ¢ 0

Since this resolution is in fact minimal, we see that the projective dimension of Der A is 1.

1.4 Forwms

THE COMPLEX OF LOGARITHMIC FORMS

In this subsection we present a few basic facts and constructions regarding the complex of
differential forms and that of logarithmic forms on a hyperplane arrangement. We refer
to [0T92, §4.4] for the missing proofs.

1.32. Let S, as before, be the algebra of coordinates on V and denote by F the field of fractions
of S. We identify S and F with the algebra of polynomials k[xi,...,x,] and the field of
rational functions k(xi, . . ., x,). Let Q' (V) be the F-vector space F ®, V* and denote by Q*(V)
the exterior algebra of Q'(V) over F. This is a graded algebra and the elements of its pth
homogeneous component, which we write Qf (V), are called rational differential p-forms. We
denote, as usual, the product of Q°*(V') by the symbol A and often simply omit it.

There is an unique k-linear map d : F — Q!(V) such that d(fg) = d(f)g + fd(g) for f and
gin Fandd(x;) = 1®x; € F® V* for each i € [n]], which is given by the formula

df:ZIa_xidxi

whenever f € F. This map extends naturally to Q*(V') as described in the next proposition.

Proposition. There exists an unique k-linear map d : Q*(V) — Q*(V) such that
(i) the restriction of d to Q°(V') = F coincides with the map d : F — Q! (V) defined above;
(ii) the map d is a differential, so that d* = 0;
(iit) the graded Leibniz identity holds, that is,

d(wn) = (dw)n + (-1)?w(dn) ifoe QP (V)andn e QIV).
We have, in fact, that

o)
d(fdxi, A+ Adxi,) = a—fdxj Adxiy Ao Adxy,

j=1 Xj

ifi<p<nl<ii<---<i,<nandf €F. O
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The graded vector space Q°*(V), along with the differential d, is the complex of rational
differential forms on V. We define the complex of regular differential forms on V to be the
subcomplex Q°*[V] of Q*(V) such that Q°[V] = S and, for p > 0,

Qr[v] = @ Sdxi, A -+ Adx,.
1<ii<iz<---<ip<n

1.33. Let now A be a hyperplane arrangement in V with defining polynomial Q. For each
p > 0, we define the module of logarithmic p-forms with poles along A —or, for short, of
logarithmic p-forms on A— to be

QP (A) = {w € QP(V) such that Qo € Q°[V] and Qdw € QP*'[V]} .

For instance, we have that Q" (A) = (1/Q)Q"[V]. One can check that the module of logarithmic
p-forms is an S-submodule and that, moreover,

Q*(A) = @ QP (A)
>0

is an S-subcomplex of Q*(V) which is closed under exterior product. We can find some useful
examples of forms in Q!(A) with the help of the next proposition.

Proposition. (i) The 1-form dQ/Q belongs to Q' (A).
(i) Ifx € V*, thenda/a € QY(A) if and only ifker a € A.
(iii) A rational p-form « belongs to QP (A) if and only if the forms Qw and dQ A w are regular.

Proof. The first assertion is immediate. For the second one, we observe that for any lin-
ear form a we have d (da/a) = 0 and therefore the condition da/a € Q!(A) reduces to
Qda/a = %da € Q![V], which is easily seen to be equivalent to the condition that « divides Q.
The third statement can be found in [OT92, Proposition 4.69]. O

1.34. The module of logarithmic 1-forms on A is closely related to the Lie algebra of derivations
of A: they are S-dual to each other. We now make explicit the pairing that induces this duality.
Given 1 < p < n, the interior product

() : Derg(8) x QP (V) - QF(V)
is the S-bilinear map defined by

P
(0,dxi, A~ Adxy) = Z(—l)k_IQ(xik)dxil A Adxg Ao Adx,,
k=1

for 0 € Dery(S) and 1 < i; < --- < i, < n. A somewhat tedious calculation shows that the
interior product restricts to a pairing

(-, : Derg(A) x QP(A) —» QP71(A),

which gives our desired duality.
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Proposition. The morphisms of S-modules

a : Dery(A) 3 6 — (0,-) € homg(Q(A),S)
and

B: QY (A) 3w+ (— w) € homs(Dery(A),S)
are isomorphisms.

Proof. We first show that « is a monomorphism: if 6 € ker a, then for all f in S we have
0 =(0,df) = 0(f), and therefore 9 is the zero derivation. In order to see that it is also an
epimorphism, let 7 € hom(Q!(A), S). Themap 0 : S > f > n(df) € S is a derivation of S. We
may evaluate 75 at the form dQ/Q € Q'(A) to obtain n(dQ/Q). As this is an element of S, we
see that 8(Q) = On(dQ/Q) € QS, so that 6 is a derivation of A.

In order to see that f§ is a monomorphism, let w = 37| w;dx; € Q'(A) and assume that
B(w) = 0. Since Qu is regular, there are fi, ..., f, € S such that w; = Qf;; evaluating, we see
that f; = f(w)(Q9;) = 0 and therefore that v = 0.

Finally, let &£ € homg(Dery(A),S). We put w; = (1/Q)&(Q0;) for each 1 € [n] and claim
that the form w := 37" | w;dx; belongs Q' (A). It is clear that Qu is regular; to prove the claim
it is enough, in view of Proposition 1.33, to see that dQ A w is also regular: this follows from
the fact that the coefficient of dx; A dx; in dQ A w is

1
Q

which is an element in S. Now, as w is regular, for every 6 € Der A we have
Bl0)(0) = w(0) = )" @i0(xi) = > (1/Q)E(Q:)0(x:)
= £ (D (1/Q)Q0(x)d;) = £(0),

from which we conclude that f(w) = &, as we wanted. O

(6:00(Q8)) - 8;00(Q8;)) = ©(8:Q; — 8;Q0;).

1.35. A consequence of this proposition is that both S-modules Der A and Q! (A) are reflexive.
In particular, if dimV = 2 then Der A is free: this follows from a result that states that a
reflexive module over a finitely generated ring of dimension 2 is free. This gives us another,
independent, proof of the freeness of arrangements of lines that we established in Example 1.28.
1.36. We finish this subsection by stating a result that relates the complex of logarithmic forms

with the freeness of the arrangement.

Proposition. (i) The S-module Q'(A) is free if and only if A is free.
(i) If Q'(A) is S-free with basis (w; : 1 < i < 1) then for every p € [n] the S-module QP (A)
is free with basis

{a),-l/\---/\wip:1§i1<---<ip§n}.

Proof. This can be found in Corollary 4.76 and Proposition 4.81 of [OT92]. O
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THE ALGEBRA R*(A)

1.37. The algebra R*(A) was first considered by Arnold for braid arrangements in [Arn69],
which is one of the works that started to raise interest on hyperplane arrangements, and
appears several times throughout this thesis. We will see that when k = C it is isomorphic to
the cohomology of the complement M(A) of A in C".

For each hyperplane H in (A we choose a linear form o : V — k such that keray = H
and consider the 1-form wy = '{f’—HH € QY(V). Observe that wy does not depend on the choice
of the linear form aj but only on the hyperplane H.

We define the graded associative algebra R®(A) to be the subalgebra of Q°(V') generated by
the set {wy : H € A}. It follows from Proposition 1.33 that R'(A) is a subspace of Q!(A); as
Q°(A) is closed under exterior product, R*(A) is in fact a subalgebra of Q*(A). The Z-grading
on R*(A) is induced by that of Q*(V), so that R?(A) = R*(A) N QP (V) for each p € Z. Since
dwp = 0 for every hyperplane H in A, the restriction of the differential d of Q°*(V') to R*(A)
is zero. We observe as well that R°(A) = k and that R?(A) = 0if p > n.

1.38. Example. We return to the situation of Example 1.28, where we consider a central arran-
gement A of lines Hy,...,H;. Foreach1 < i < [ welet a; : V — k be a linear form with
kernel H; and we put w; = da—of‘ The 1-forms @y, . . . @; span R'(A) and they are in fact linearly
independent. For each i € [[] there are scalars a; and b; such that a; = a;x + b;y; let us suppose
that A4, ..., 4; in k are such that
Aia; Aib;
0= Zliwi = Z a—idx + a—idy.

Aia;
[24]

lently, 0 = Z/liaio% inS . Now, if 1 < j <[, we see that Ajaj(% = 0 modulo a; and, since Q is

The coefficients of dx and of dy must be zero, so that, for instance, 0 = }’ in F or, equiva-
square-free, this implies that actually A;a; = 0. The same argument with the coefficients of dy
allows us to conclude that A; = 0 for every j, as we claimed.

Since w? = 0 and w;w; = —w;w;, the set {w;w; : i < j} spans R*(A). We immediately see
that w;w; = (a;b; — b;a;)dxdy and therefore for any i, j and k we have

a; aj dag
arda;da; + aidajday + ajdagda; = det| by  b; by |dxdy = 0.
ai o Ok

1

wraa We obtain the relation
Lt

Multiplying by
0 = wjwj + Wjwk + VLw; for any i, j, k in [[I].

This relation allows to write any w;w; as w;w; — wjw; and, as a consequence of this, the set
{wjw; : 1 < i <1} spans R?(A): we claim that this set is linearly independent. Let y1, . ..,y
be in k and suppose that

Zyiwiwl = 0. (1.7)
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There is an F-linear map 8 : Q*(V) — Q!(V) such that fdxdy — fxdy — fydx and one
can see that d(w;wj) = w; — w;. Now, applying 9 to the linear combination in the left hand
side of (1.7) we obtain }; y;(w; — w;) and, as {w;, . . . w;} is k-linearly independent, we get that
p1 == -1 =0.

Let ¥ = P k>0 Tx be the free graded-commutative algebra generated by ! generators
w1, ..., w; of degree 1 subject to the relations w;w; + wjwg + wiw; = 0, one for each choice of
i, j, k € [I]. We have ¥ = 0if k > 3: indeed, if i, j, k € [I] then

Wiwiwi = (Wiwj + wiwi + wew;)wg = 0,

because of the graded-commutativity. Since the generators w; satisfy the same relations as
the forms w;, we may proceed as before to find that the set of monomials {w;w; : 1 <i <[}
spans 7 and, therefore, that the dimension of 7 is at most [ — 1. There is clearly a surjective
morphism of graded algebras f : # — R*(A) such that f(w;) = 9, for all i € [I]. This map
is also injective because the dimension of R?(A) is [ — 1, so that there is an isomorphism of
graded algebras ¥ = R*(A).

1.39. Example. For the braid arrangement 8, defined in Example 1.5 we have that the 1-forms

dxifdxj
Xix_]‘

given by w;; = , with i, j € [n]], generate the algebra R*(%5,). Let us show by induction
that {w;; : 1 < i < j < n} is a basis of R'(8,): we immediately see that the claim holds for
n = 2. For the inductive step, let ¢;; be scalars such that 0 = 3, ., <, pijw;j. The component

in dx, of equation

n—1
0= Z Hijwij + Z/Jinwin (1.8)
1<i<j<n-1 i=1

is0=-yr} xlci—"xn in F or, equivalently, 0 = — 3/} [1j2i(xj = xp)cin in S. If i € [n— 1], we
see that this equation means that [];,;(x; — x»)cin = 0 and therefore that ¢;, = 0. We conclude
now from (1.8) and the inductive hypothesis that c;; = 0 for every possible i and j.

It is straightforward to check that the relation 0 = w;jwjx + wWjkwk; + wk;w;j with i, j and k

in [n] holds in R*(8,). Choosing n = 3, we see that R*(A) is generated by
12023013 = —(W331 + W31012)W13 = 0

and therefore R?(8B;) = 0 if p > 3. We now claim that the dimension of R*(8B;) is 2: as the
forms wipw13 and wyz2ws3 are generators, we need only see that they are linearly independent.
This is easily achieved following the idea in our previous example, for the F-linear map
d : Q*(V) » QY(V) such that d(dx;dx;) = xjdx; — xjdx; if i, j € [3] can be seen to satisfy
O0(wijwjr) = wjr — w;j whenever i, j, k € [[3].

Let now A®* = @izo A be the free graded-commutative algebra generated by the three
symbols wyz, w3 and wsys of degree 1 subject to the relations

0 = wijWjk + WjxWk; + WiiWij, if1<i,j,k<3. (1.9)
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The surjective morphism of graded algebras ¢ : A* — R*(A) such that ¢(w;;) = w;; evidently
restricts to an isomorphism in degrees zero and one. Proceeding, again, as in our previous
example, we see that relations (1.9) imply that wi,wi3 and wizwo3 span A%, and then the fact
that the restriction of ¢ to degree two is surjective implies that it is an isomorphism.

1.5 THE COHOMOLOGY OF M(:A) AND THE ORLIK-SOLOMON ALGEBRA

THE COHOMOLOGY OF M(A)

In this subsection, our base field is C and all cohomology groups have complex values. We will
go over the seminal paper of E. Brieskorn [Bri73] in which he deals with the cohomology of
the complement M(A) of a hyperplane arrangement (A as a topological space.

1.40. Given a hyperplane H with defining linear form ay : V. — C we denote My its comple-
ment V \ H. The restriction ay : Mg — C* induces a morphism of groups in cohomology

apy  H(CX) — H* (M)

The class of the rational form n = # % on C* is a generator of H' (C*) and the rational 1-form
onV
1 dag
NH =5 ——- (1.10)
27i oy

has a7, ([7]) = [nu], where the brackets denote taking cohomology class. Restricting along the
inclusion M < My, the 1-form ng pulls back to a form on M which we will denote also by 7y.
With this notation in place we are ready to state the main result on the cohomology

of M(A).

Theorem (E. Brieskorn). The cohomology classes of the forms ny corresponding to the hyperplanes
H of A generate the algebra H*(M(A)). Moreover, there is an isomorphism of graded algebras
R*(A) = H*(M(A)) which maps wg to [nx].

Proof. See [Bri73, Lemme 5]. O

1.41. The normalization in (1.10) is chosen so that the class [5y] is integral. Indeed, E. Brieskorn
proves the corresponding result of Theorem 1.40 with integral coefficients.

1.42. Example. The cohomology ring of the complement of a braid arrangement $8,, was de-
scribed by V. Arnold in [Arn69] some years before the general result of Brieskorn while
studying the cohomology of braid groups. As we saw in 1.5, the hyperplanes of 8, are defined
by equations x; — x; = 0 for 1 < i < j < n. Arnold showed that there is an isomorphism of
graded rings between H*(M(8B,,)) and the quotient of the exterior algebra of the vector space
with basis {w;; : 1 < i < j < I} by the ideal generated by the relations

WjjWjk + WjkWki + WkiWij-
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This isomorphism is induced by the identification of the class of w;; with the class of sz %
i—Zj

for each 1 < i < j < n. Brieskorn’s result is in fact a generalization of this statement.

1.43. In addition to the precedent remarkable theorem, E. Brieskorn gives a description of the
cohomology ring of the complement of a reflection arrangement with reflection group G in
terms of its exponents.

The action of G on V induces another action of G on S; let S€ be its subalgebra of invariants
polynomials. A result from C. Chevalley in [Che55, 1.(A)] states that there exists algebraically
independent homogeneous polynomials f;, . .., f, in S such that S = k[f, ..., f,]. These
polynomials are not unique, but their degrees are. The integers deg f; — 1 with 1 < i < n are
the exponents of the group G.

Theorem (E. Brieskorn). For each p > 0, the dimension of H? (M(A(G))) is the number of words
in G of length p, where the length of a word is the minimal number of reflections required to
factorize it. If G is a Coxeter group then the Poincaré polynomial of M(A(G)) is

n

1_[(1 + m;t),

i=1
where my, . .., my are the exponents of G, which coincide with those of the arrangement A(G).

If the reflection group G is not a Coxeter group, Brieskorn shows that there is a similar
formula for the Poincaré polynomial but in terms of the coexponents of G; this numbers coincide
with the exponents in the Coxeter case.

Proof. See [Bri73, Théoréme 6]. O

1.44. Example. Recall that the braid arrangement 8, is the reflection arrangement correspond-
ing to the symmetric group G = S, acting onk” by permuting its coordinates. The Fundamental
Theorem of Symmetric Functions tells us that the algebra of invariants S is freely generated

by the elementary symmetric polynomials

Sk = Z Xj, * " Xj, for1 <k <n.

1<j1<...<jg<n

The exponents of G are therefore 0,...,n — 1 and an immediate application of Brieskorn’s
theorem yields

2(M(Bn),t) = (1 +t)(1+2t) -+ (1 + (n— 1)t).

THE ORLIK-SOLOMON ALGEBRA

We now return to the situation in which k need not be C. The Orlik-Solomon algebra A®(A),
presented by P. Orlik and L. Solomon in [OS80], gathers important combinatorial information
of A and, if k is C, it is also isomorphic to the cohomology of the complement M(A).
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1.45. Let E! be the vector space freely generated by symbols ep, one for each H € A, let
E*(A) = A®E! be the exterior algebra of E' and write uv = u A v if u,v € E*(A). The
pth homogeneous component of E®(A) is spanned as a vector space by the monomials
em,eH, - - - e, with each H; in A. For each H € A, there is a unique linear graded derivation
0 : E*(A) — E*(A) of degree —1 such that d(ey) = 1. This map satisfies

k-1
e, - en,) = ZeHl b e,
k=1
forp > 2and Hy,...,H, € A and 0% = 0, as can be seen by a direct computation.
Let I be the ideal of E*(A) generated by all elements of the form 9 (eH1 e er) such that
the hyperplanes Hj, ..., H, are not in general position, that is, that the corresponding linear

forms are linearly dependent. As I is generated by homogeneous elements, it is a graded ideal:
its pth homogeneous component is I, = I N EP (A).

The Orlik—Solomon algebra A®*(A) is the quotient of E*(A) by I. It is a graded commutative
algebra and, since I = 0, connected. Denoting the class of ey in A*(A) by ay for each H € A,
we observe that {ay : H € A} is a basis of A'(A). If p > 1 and Hy, . . ., Hp are hyperplanes not
in general position then

e, " eH, = er,0(eq, - --er) el,

so that ag, - - - ag, = 0in A*(A). In particular, A?(A) = 0if p > n.

1.46. Let us write, if S = {H,,...,H,} is a subset of A, es = ep, - - en,. Given S,T C A,
we have d(erdes) = derdes and therefore we see that d(I) C I. As a consequence of this,
0 : E*(A) — E*(A) descends to A*(A), inducing a graded derivation 9 : A*(A) — A*(A)
that satisfies 6% = 0.

Proposition. The complex (A®*(A), ) is acyclic.

Proof. Let us choose H € A. As day = 1, for every b € A*(A) we have b = d(bay) + aygdb. It
follows that if b is a cocycle then it is a coboundary. O

1.47. There is a standard basis for A*(A), the broken circuit basis. We do not give here an
explicit construction of this basis —it can be found, for instance, in [0T92, §3.1]—, but we
remark that it depends only on the poset of intersections L (A) and an arbitrary total order on
A the idea is essentially that of the Grobner bases. The existence of this basis emphasizes the
fact that A®*(A) depends only on the combinatorics of A.

We begin now to state a series of propositions that lead to the main result of this section,
Theorem 1.52, which asserts that A*(A) is isomorphic to H*(M(:A)) when k = C. In view of
our previous remark, this result implies that the cohomology of M(A) depends only on the
combinatorics of A, as we promised in 1.22. To prove that the algebra A®*(A) is isomorphic to
H*(M(A)) or, equivalently, in view of Theorem 1.40, to R*(A), we will first construct an epi-
morphism A®*(A) — R*(A) and then, comparing dimensions, show that it is an isomorphism.
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1.48. We start with a particular case of a result of P. Orlik and L. Solomon, who consider, more
generally, geometric lattices and not only those that come from hyperplane arrangements.
Both the statement and its proof are purely combinatorial.

Theorem. The Hilbert series of A®*(A) is the Poincaré polynomial of the arrangement (A, t). [
Proof. This is Theorem 2.6 of [0S80]. O

1.49. The next step in our plan is the construction of an algebra morphism A®*(A) — R*(A).

Proposition (P. Orlik and L. Solomon, [OS80]). There exists a surjective morphism of graded
algebras A*(A) — R*(A) such that ag — wg for every H € A.

Proof. Lety : E*(A) — R*(A) be the morphism of algebras such that y(ey) = wy for each
H € A. Evidently, y is surjective: we will prove that y(I) = 0, so that y factors through A®(A).
Let S = {Hy,...,H,} be a subset of A in general position and, for each i € [p]], let ; be a
linear form with kernel H;, so that, in particular, the set S = {a, ..., ap} is linearly dependent.
We need to show that y(des) = 0.
We may assume without loss of generality that no proper subset of S is in general position.
Indeed, if, for example, the subset {0{2, A zxp} of S is linearly dependent then

865 =eH, - er + eHla(eHz cee er)

and therefore, as ep, - - - eq, =0 because of linear dependence, we see that y(degs) is zero if and
only if y(d(en, - - - en,)) = 0.

Now, our assumption is that there is a linear combination Zle c;a; = 0 with every c;
nonzero; up to rescaling the elements of $, we may in fact take ¢; = 1 for every i. We then have
that Zle da; = 0 and therefore, for each j € [p — 1], that

P
0= (Zdai)dal---do?jdo?j+1---dap =day---dd;- - dap +da; - - ddjyy - daty.
i=1

For each j € [p]] we define the rational form 7;

-y
@j

Assuming that j < p, we multiply this equation by ; - - - @, and obtain that

= (—1)jd0{1 e dO?j.;,l ce d(Xp

=01 Oplj+ls
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so that in fact ; = - - - = 1,. With all this in hand, we conclude that
) . P
)/(aes) = Z(_l)l_lwl...(bj...wp = Zaj n =0,
j=1 j=1
as we wanted. O

1.50. The following result is known as Brieskorn’s Lemma and is useful when performing

inductive arguments.

Lemma (E. Brieskorn). Let X € L(A) and recall that Ay is the set of hyperplanes of A that
contain X. Let k be an integer such that 0 < k < n. The inclusion maps ix : M(A) - M(Ax)
induce isomorphisms

P HmAx) = H M),

rank(X)=k
Proof. See [Bri73, Lemme 3]. O
1.51. The following theorem is of vital importance in the theory of hyperplane arrangements.

1.52. Theorem (P. Orlik and L. Solomon, [OS80, Theorem 5.2]). Let A be a complex hyper-
plane arrangement. There exists an isomorphism of graded algebras A*(A) = H*(M(A)) such
thataH (g [r]H]

Proof. Recall from Theorem 1.40 that the map
R.(ﬂ) S wH [?]H] € H.(M(ﬂ))

is an isomorphism of graded algebras. As the morphism A®*(A) — R*(A) from Proposition 1.49
is surjective, it will be enough to see that dim A*(A) = dim H*(M(A)).

The dimension of A®(A) is the value at t = 1 of the Hilbert series of A®*(A) that we gave
in Theorem 1.48: in this way we see that

dimA*(A) = > (-1)"Op(X).
XeL(A)

It suffices to show, then, that this number equals dim H*(M(:A)) and, in order to prove this
equality, we let Z = (gea H and check that if g is the codimension of Z then

dim HY(M(A)) = (-1)1u(Z).

This is is immediate if ¢ = 0: both sides are equal to one. We proceed by induction supposing
that g is a positive integer and that X € £L(A) is such that r(X) < q. Applying the inductive
hypothesis to the complement M(Ax) and using the fact that X = (g4, H, we see that
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the dimension of H"®)(M(Ax)) is (=1)"®) u(X). As the Euler characteristic of M(Ax) is 0
because r(X) > 0 we can use the isomorphism in Brieskorn’s Lemma 1.50 to we see that

q q-1
0= Z(—w dim HP (M Z dim HP (M(Ax)) + (-1)7H(M)
p=0 P=0r(X)=p
= > () XpX) + (-1)7 dim HY(M).

r(X)<q

The second defining property of the Mobius function in 1.12 now tells us that

0=—p([ ) H)+ (-1)7 dim HI(M)
HeA

and this completes the inductive step. With this at hand, we use one more time Brieskorn’s
Lemma 1.50 to finally obtain

dim H? (M(Ax))

M=

q
dim H* (M) = Z dim HP (M) =

p=0 p=0r(X)=p
= > ) Mpu00,
XeL(A)
which is what we wanted to prove. O

1.53. Combining Theorem 1.52 with Theorem 1.48 we obtain at once our next remark.

Corollary. The Poincaré polynomial of M(A) is equal to the Poincaré polynomial of the arrange-
ment (A, t).

This statement generalizes the fact that the Poincaré polynomial of the braid arrangement
B, that we computed in (1.4) agrees with the Poincaré polynomial of M(8,,) that we found in
Example 1.44.

A remarkable consequence of this corollary is the following. Let A be an arrangement in
R™ and A’ be the arrangement in C" whose hyperplanes are defined by the same equations as
those of \A. This corollary and Theorem 1.18 imply that the dimension of the total cohomology
H*(M(A")) is equal to the number of chambers of the arrangement A in R".

1.54. Some years after the proof of Theorem 1.52 , P. Orlik, L. Solomon and H. Terao were
able to generalize the statement to the case in which the ground field k is not C.

Theorem (P. Orlik, L. Solomon and H. Terao, [OST84]). The surjective morphism of algebras
A*(A) — R*(A) of Proposition 1.49 is an isomorphism. O

The exists of this isomorphism, in particular, shows the non-evident combinatorial nature
of R*(A). An improved version of the proof can be found in [OT92, §3.5]. The argument
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is different from the one we used above: their key idea is that if (A, A’, A"”) is a triple of
arrangements as in 1.10 then there are exact sequences of algebras

0 — A*(A') —> A*(A) —> A*(A") —> 0
and
0 — R*(A') — R°(A) — R*(A") — 0

which, along with the epimorphism A®*(A) — R*(A), are used to set up an inductive argument.

1.55. We end this chapter by stating an important result that describes the cohomology of the
complex of logarithmic forms on A for a large family of arrangements.

A central arrangement A is tame if for every p > 0 the projective dimension of the S-
module Qf(A) is at most p. This condition is satisfied in many important situations. First,
as a consequence of 1.36, for a free central arrangement each Qf (A) is free and thus its
projective dimension is 0: it follows that free arrangements are tame. Another big family
of examples is that of generic arrangements, that is, those arrangements A with at least n
hyperplanes, any n of which are in general position. For example, the arrangement defined by
X1+ Xp(x1+. .. +x,) = 0 that we worked with in Example 1.31 is generic. L. Rose and H. Terao
have found in [RT91] a projective resolution of Qf (A) of length p for each p € [[n]], so that, in
particular, generic arrangements are tame —more information on this class of arrangements
can be found in [0T92, §5.1]. As a final example, one can show that all arrangements in k> are
tame. Not all arrangements are tame, though: the smallest example of a non-tame arrangement
is the set of fifteen hyperplanes in k* with equations Z‘il:O a;x; = 0 for a; € {0,1}. These last
two facts are explained by J. Wiens and S. Yuzvinsky in [WY97, Section 2].

We are interested in tame arrangements because of the following result, which is known
sometimes as the Logarithmic Comparison Theorem.

Theorem (J. Wiens and S. Yuzvinsky). Let A be a tame arrangement. The natural embedding of
R*(A) into Q°(A) is a quasi-isomorphism.

Proof. See [WY97, Corollary 2.3]. O

1.6 RESUMEN

El capitulo empieza con las definiciones basicas sobre arreglos de hiperplanos, estableciendo
notacion y presentando los ejemplos y construcciones con los que lidiamos a lo largo de la
tesis. Concretamente, fijado un cuerpo k, un arreglo de hiperplanos A es un conjunto finito
de hiperplanos afines {Hj, . .., H;} en un espacio vectorial V de dimension finita y es central
si todos sus hiperplanos son en verdad subespacios. Llamamos S al algebra de funciones
coordenadas de V y la identificamos con k[x1, ..., x,]. Paracadai € {1,...,l},seaa; : V > k
una forma lineal con nucleo H;: decimos que el polinomio Q = a; - - - a; € S define al arreglo A.
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Una vez establecido esto, estudiamos en 1.10 el poset de intersecciones £ (A) del arreglo. A
continuacion, vemos los polinomios caracteristico y de Poincaré del arreglo, que son importantes
invariantes combinatorios, y los calculamos en los casos concretos del arreglo booleano, el
arreglo de todos los subespacios de codimension 1 en un espacio vectorial sobre un cuerpo
finito y el arreglo de trenzas. Este es el contenido de los Ejemplos 1.15, 1.16 y 1.17.

Desde la Seccidén 1.3 hasta el final de la tesis suponemos que los arreglos son centrales. En
esta seccion nos ocupamos del algebra de derivaciones tangentes al arreglo A, definida por

Der(A) := {0 € Der(S) : 6(Q) € OS}

y que es una subalgebra de Lie y un S-submodulo de Der(S), el modulo de las derivaciones
de S. Este algebra de Lie es un invariante interesante del arreglo y ha sido objeto de estudio de
varios trabajos: el libro de P. Orlik y H. Terao [OT92] y el de A. Dimca [Dim17] sirven como
referencias generales. Sirviendonos del algebra de Lie de derivaciones, podemos definir una
clase importante de arreglos: decimos que un arreglo A es libre si Der A es un S-modulo libre.
Por ejemplo, un arreglo central de rectas en el plano es libre; también son libres, de acuerdo
a un resultado de H. Terao en [Ter80a], los arreglos de hiperplanos de reflexion de un grupo
finito generado por pseudo-reflexiones.

En la Seccion 1.4 estudiamos el subcomplejo de Q°*(A) del complejo formas racionales
Q°*(V) llamado de formas logaritmicas en A, dado por

QP (A) = {w € OP(V) tal que Qw € OP[V] y Qdw € QP! [V]}

sip > 0. En particular, vemos en la Propisicion 1.34 que el S-médulo Q!(A) es S-dual al algebra
Der A. Definimos a continuacion el algebra R®*(A) como la subalgebra de Q°*(A) generada por
el conjunto {wy : H € A} y encontramos una presentacion por generadores y relaciones para
los casos de arreglos centrales de rectas y el arreglos de trenzas 85 en los Ejemplos 1.38 y 1.39.

Terminamos el capitulo con la Seccion 1.5, en que damos algunos resultados de la teoria
que son importantes para la tesis. El primero, que se se debe a E.Brieskorn en [Bri73], fue
encontrado para el caso especial de arreglos de trenzas por V.I. Arnold en [Arn69] y aparece
en la Seccion 1.5 como Teorema 1.40.

Teorema. Sea A un arreglo de hiperplanos en un espacio vectorial complejo. Hay un isomorfismo
de algebras entre R(A) y la cohomologia de de Rham H*(M(A)) del espacio complementario al
arreglo M(A).

El otro resultado importante muestra que si A es un arreglo en un espacio vectorial
complejo entonces la cohomologia del espacio complementario a A depende solamente de la
combinatoria del arreglo. Para ver esto estudiamos el algebra A®(A), definida para un arreglo
sobre un cuerpo cualquiera de caracteristica cero por P.Orlik y L. Solomon en [OS80] en
términos combinatorios, y probamos en el Teorema 1.52 que, efectivamente, este algebra es un
analogo combinatorio del algebra de cohomologia de H*(M(A)):



38 CHAPTER 1. HYPERPLANE ARRANGEMENTS

Teorema. Si A un arreglo de hiperplanos en un espacio vectorial complejo, hay un isomorfismo
de algebras graduadas A*(A) = H*(M(A)).



— 2 —
THE ALGEBRA OF DIFFERENTIAL OPERATORS TANGENT TO A
HYPERPLANE ARRANGEMENT

In this chapter we introduce the associative algebra Diff (A) of differential operators tangent
to a hyperplane arrangement. We show that this algebra is the subalgebra generated by S
and Der A inside Diff(S) if the arrangement is free and, moreover, that it is isomorphic to the
enveloping algebra of a suitable Lie-Rinehart pair. With these results at hand, we are able to
give a precise description of Diff (A) in the case of a central line arrangement and also to study
the twisted Calabi-Yau property for Diff (A) in the general situation.

2.1 ALGEBRAS OF DIFFERENTIAL OPERATORS

2.1. We assume from now on that the characteristic of the ground field k is zero. Let B be
a commutative algebra and write End B the algebra of k-linear endomorphisms of B as a
vector space. We inductively define subspaces Diff(B), of End B, one for each p > —1, setting
Diff(B)-; = 0 and

Diff(B), ={f : B— B: fb—bf € Diff(B),_, for all b € B} ifp > 0.
In [MRO1, §15.5] we can find the following result.

Lemma. The union Diff(B) := (J,>_; Diff(Bp) is a subalgebra of End(B) and {Diff(B,)}p>-1
is an exhaustive and increasing filtration of Diff (B) which is compatible with its multiplicative
structure and such that the associated graded algebra gr Diff(B) is commutative. O

The algebra Diff (B) is called the algebra of differential operators on B. We say that f € Diff(B)
has order p if it belongs to Diff(B), and not to Diff(B),-;. There is an injective morphism of
algebras ¢ : B — Diff(B) such that ¢(b)(x) = xb for all b, x € B which we will view as an
identification. On the other hand, a non-zero derivation 6 in Der B is a differential operator of
order 1, so that Der B is a subspace of Diff(B) which is easily seen to be a Lie subalgebra.

The following theorem of Grothendieck gives us generators of Diff(B) in an important case.

2.2. Theorem. Let B be a regular commutative finitely generated algebra which is a domain. The
algebra Diff (B) is generated as a subalgebra of End(B) by B and Der B. O

Y. Nakai in [Nak70] has conjectured that, conversely, B has to be regular if Diff B is genera-
ted by B and Der B. This conjecture is open except in very special cases.

39
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2.3. Example. Let S = k[x1, . .., x,] be the polynomial algebra on n variables and let us denote
the usual partial derivatives on S by 04, . . ., d,. Theorem 2.2 allows us to find a presentation
of Diff(S) as follows.
As {x1,...,x,} and {0y, ..., 0,} generate S as an algebra and Der S as an S-module, the set
{x1,...,Xp, 01, ...,0,} generate Diff S as an algebra. A straightforward calculation shows that
[0:,0;] = 0, [xi,x;] =0, [0, xj] = b5

for each i and j in [n]]. On the other hand, recall the nth Weyl algebra A, is the quotient of the
free algebra with 2n generators g, . . ., qn, p1, - - - , Pn by the two-sided ideal generated by the
elements

(i, g/l [pi, pjl (i, pj] = 6ij

for every 1 < i,j < n. There is then a unique morphism of algebras ¢ : A, — Diff(B) such that
x; — q; and p; — 0; for i € [n] and it is clearly surjective. Since A, is, as it is well-known, a
simple algebra, this morphism is also injective and therefore an isomorphism.

This example generalizes, with a substantial amount of work, in the following way: V. V.
Bavula in [Bav10] gives an explicit construction of a finite set of algebra generators and a finite
set of defining relations for the ring of differential operators on a regular algebra in terms of a
presentation of the algebra.

2.4. Let A be a hyperplane arrangement on V and let us keep the usual notation; in particular,
let Q be the defining polynomial of A. We would like to construct a version of the algebra
of differential operators on V relative to A. For this we need the following notion: if R is an
algebra and I C R is a right ideal, the largest subalgebra Iz(I) of R that contains I as an ideal
can be seen to be {r € R: rI C I} and it is called the idealizer of I in R. The algebra of differential
operators tangent to the arrangement ‘A is

Diff(A) = [ Ipite(s) (Q" Dff(S)).

t>1

We have a variant of Theorem 2.2 for this situation.

Theorem. If A is a free hyperplane arrangement then the algebra Diff(A) is generated by
S U Der(A). O

This theorem is proved by F. J. Calderon Moreno in [CM99] and by M. Schulze in [Sch07]
using techniques from analytic geometry for the case k = C and by M. Suarez-Alvarez in [SA18]
for any field of characteristic zero by “extending to differential operators of arbitrary order”
Saito’s criterion 1.26.

The algebra Diff(A) may be generated by S U Der A even if the arrangement is not free.
Indeed, this is the case of the arrangement in k® with defining polynomial xyz(x + y + z) that
we studied in Example 1.31: this was shown by [Sch07, §5]. There are no known necessary and
sufficient conditions for the conclusion of the theorem to hold.



2.2. THE ALGEBRA Diff(A) FOR CENTRAL LINE ARRANGEMENTS 41

2.5. Example. The nth Boolean arrangement 8,, can be viewed as the product 8" of n copies of
the 1-dimension non-empty central arrangement $;. In view of 1.23, we have an isomorphism
of algebras Diff(8,) = Diff(8;)®". Now the arrangement B, defined in V = k by Q = x,
is free, with Der(%5;) freely generated by the derivation § = xd,. It follows that the algebra
Diff(8;) is generated by x and . Computing, we find that [0, x] = x. If we let D be the quotient
algebra

Do Kyt ’

(ty —yt —y)

there there is a surjective map of algebras 7 : D — Diff($;) such that z(y) = x and 7 (t) = 6.

The algebra D is manifestly the enveloping algebra of the non-abelian Lie algebra of dimension 2

spanned by t and y with [¢,y] = t. In particular, the set {y’#/ : i, j > 0} is a basis of D. Using this

it is easy to check that the map 7 is injective so, putting everything together, an isomorphism.
The conclusion of this is that the algebra Diff(8,) is isomorphic to the algebra freely

generated by letters yi, ..., yn, t1, ..., tn, Subject to the relations

[y, y;] = [ti, tj] = O, [t y;] = 8iy), with1 <1i,j < n.

2.2 THE ALGEBRA OF DIFFERENTIAL OPERATORS TANGENT TO A
CENTRAL ARRANGEMENT OF LINES

2.6. We fix a ground field k of characteristic zero and put S = k[x, y]. We view S as a graded
algebra as usual, with both x and y of degree 1, and for each p > 0 we write S, the homogeneous
component of S of degree p. The Lie algebra Der(S) of derivations of S, which is a free left
graded S-module, is freely generated by the usual partial derivatives dy, d, : S — S, which are
homogeneous elements of Der(S) of degree —1.

Recall, as in 2.1, that Diff (S) is the associative algebra of regular differential operators on S,
that we may view S as a subalgebra of Diff(S) and, from Example 2.3, that Diff(S) is generated
as a subalgebra of End(S) by S and Der(S). The algebra Diff(S) is generated by x, y, dx and d,,
and in fact these elements generate it freely subject to the relations

[x’ y] = [axa y] = [ay’x] = [ax76y] = 0’ [ax’x] = [ay’y] = 1

It follows easily from this that Diff(S) has a Z-grading with x and y in degree 1 and d, and 9,
in degree —1, and that with respect to this grading, S is a graded Diff(S)-module.

2.7. We fix an integer r > —1 and consider a central arrangement A of r + 2 lines in the
plane k%. Up to a change of coordinates, we may assume that the line with equation x = 0 is
one of the lines in (A, so that the defining polynomial Q of the arrangement is of the form xF
for some square-free homogeneous polynomial F € S of degree r + 1 which does not have x as
a factor. Up to multiplying by a scalar, which does not change anything substantial, we may
assume that F = xF + y"*! for some F € S,.
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The Lie algebra of derivations of S that preserve the arrangement, defined in 1.20, is a
graded Lie subalgebra of Der(S). The two derivations

E = x0x + ydy, D = Fo,

are elements of Der(A) of degrees 0 and r, and it follows immediately from Saito’s criterion 1.26
that the set {E, D} is a basis of Der(A) as a graded S-module: this is the content of Example 1.28.

2.8. The algebra of differential operators tangent to the arrangement A is the subalgebra Diff (A)
of Diff(S) generated by S and Der(A), as we saw in 2.4. It follows immediately from the remarks
above that Diff(A) is generated by x, y, E and D, and a computation shows that the following
commutation relations hold in Diff (A):

[y’ X] =0,
[D,x] =0, [D,y] = F, (2.1)
[E,x] = x, (E,y] = v, [E,D] = rD.

Since these generators are homogeneous elements in Diff (S) —with E of degree 0, x and y of
degree 1 and D of degree r— we see that the algebra Diff (A) is a graded subalgebra of Diff(S)
and, by restricting the structure from Diff (S), that S is a graded Diff(A)-module.

The set of commutation relations given above is in fact a presentation of the algebra Diff (A).
More precisely, we have the following lemma.

Lemma. The algebra Diff (A) is isomorphic to the iterated Ore extension S[D][E]. It is a noetherian
domain and the set {x'y/D¥E' : i,j,k,1 > 0} is a k-basis for Diff (A).

Here we view D as a derivation of S, so that we way construct the Ore extension S[D], and
view E as a derivation of this last algebra, so as to be able extend once more to obtain S[D][E].

Proof. 1t is clear at this point that the obvious map 7 : S[D][E] — Diff(A) is a surjective
morphism of algebras, so we need only prove that it is injective. To do that, let us suppose
that there exists a non-zero element L in S[D][E] whose image under the map 7 is zero, and
suppose that L = 3); ;5 fi ;D'E’, with coefficients f; ; € S for all i, j > 0, almost all of which
are zero. As L is non-zero, we may consider the number m = max{i +j: f; ; # 0}.

Let us now fix a point p = (a,b) € A? which is not on any line of the arrangement A, so
that aF(a, b) # 0, and let O, be the completion of S at the ideal (x — a, y — b) or, more concretely,
the algebra of formal series in x — a and y — b. We view O, as a left module over Diff(S) in
the tautological way and, by restriction, as a left Diff (A)-module. There exist formal series ¢
and ¢ in O, such that

E-¢=1, D-¢=0, E-y=0, D-y=x".
Indeed, we may choose ¢ = In x to satisfy the first two conditions, and the last two ones are
equivalent to the equations
xr—ly
7

xr
8xlﬁ = - ay¢ = F,
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which can be solved for ¢, as the usual well-known sufficient integrability condition from
elementary calculus holds. If now s, t € Ny are such that s + t = m, a straightforward
computation shows that L - ¢°¢ = slt!x" f;; in Op, and this implies that f; , = 0. This
contradicts the choice of m and this contradiction proves what we want. O

2.3 LIE-RINEHART PAIRS

2.9. In Section 2.2 we were able to give a very concrete description of the algebra of differential
operators tangent to an arrangement of lines. As soon as one tries to do the same by hand
in larger examples the task becomes prohibitively laborious. The language of Lie—Rinehart
pairs provides a formalism that allows us to handle this complexity. Originally, this pairs were
defined by G. Rinehart in [Rin63], in order to generalize the algebraic structure of vector fields
and smooth functions on a manifold to commutative algebras and Lie algebras.

A Lie—Rinehart pair (S, L) consists of a commutative k-algebra S and a k-Lie algebra L such
that L acts on S by k-linear derivations, L is an S-module and

(sa)(t) = s(a(?)), [a,sB] = s[a, p] + a(s)p

fors, tin S and @ and f in L. Given such a pair, a Lie—Rinehart module —or (S, L)-module— is a
vector space M that is at the same time an S-module and an L-Lie module in such a way that

(sa)(m) = s(a(m)), a(sm) = sa(m) + a(s)m (2.2)

fors € S, a € L and m € M. The first important example of a module is given by M = S, with
the obvious actions of S and of L.

2.10. Example. A Lie-Rinehart pair (S, L) in which the action of L on § is trivial can be simply
described as an S-Lie algebra and the corresponding (S, L)-modules are just Lie L-modules. We
encounter this situation often with S = k: this is Lie theory.

2.11. Example. If S is a commutative algebra and L is a subalgebra of the Lie algebra of deriva-
tions Der S that is at the same time an S-submodule, then (S, L) is a Lie-Rinehart pair.

A particular case of this is obtained by taking S = k[x;,...,x,] and L = Der S, the full
algebra of derivations, which is freely generated as an S-module by the derivations 4, . . ., Jy,.
It is easy to construct Lie-Rinehart modules for the pair (S, L). One need only notice that the
Weyl algebra A,, of Example 2.3 is an (S, L)-module with actions induced by left multiplications
and then use the fact that any A,-module can be viewed as an (S, L)-module in a similar way.

A similar example but of a different category can be constructed as follows. If M is a
finite dimensional smooth manifold, we put S = C* (M), the algebra of smooth functions, and
L = X(M), the Lie-algebra of vector fields on M. Notice that L is the Lie algebra of derivations
of S; this is the content of Lemma 3.3 in [KMS93]. We can construct Lie-Rinehart modules for
the pair (S, L) from geometric data as follows. Let E — M be a smooth vector bundle on M and
let T'(E) be the space of smooth sections of E: an (S, L)-module structure on I'(E) compatible
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with the usual S-module structure turns out to be the same a linear connection on E — M with
zero curvature.

2.12. Example. Another instance of the Example 2.11 that interests us particularly arises from
hyperplane arrangements. If (A is a hyperplane arrangement in a vector space V, it is straight-
forward to check that the algebra of coordinate functions S = k[xy, ..., x;] of V.and L = Der A

form a Lie-Rinehart pair.

2.13. Let (S, L) be a Lie-Rinehart pair. J. Huebschmann shows in [Hue90] that there is an
associative algebra U = U(S, L), the universal enveloping algebra of the pair, endowed with a
morphism of algebras i : S — U and a morphism of Lie algebras j : L — U that satisfy, for
seSanda € L,

i(s)j(a) = j(sa), J(@)i(s) —i(s)j(a) = i(a(s))

and universal with these properties. Let us briefly describe the construction of U (S, L) presented
in [Hue90, §1]; there is an alternative, less conceptual, description in [Rin63]. We start by
considering the usual enveloping algebra U(L) of L as a Lie k-algebra. As S is L-Lie module,
we can view S as a left U(L)-module and, using this structure, we can turn the vector space
S ® U(L) into an associative algebra in such a way that the obvious maps S — S ® U(L) and
U(L) = S ® U(L) are multiplicative and

1®a)- (s®1)=sQa+ua(s)®1

whenever s € S and « € L. The enveloping algebra of the pair (S, L) is the quotient of S ® U(L)
by the right ideal generated by the elements st ® @ — s ® ta for s and ¢ in S and « in L, which
turn out to be a bilateral ideal.

One of the points of this construction is that the category of U-modules is isomorphic to
that of (S, L)-modules. As a particular example, since S is an (S, L)-module, as we saw, it is also
an U-module.

2.14. Example. If g is Lie algebra, the universal enveloping algebra of the pair (k, g) is simply
the usual enveloping algebra of g. Indeed, this is clear from the construction we have just
described.

2.15. Example. If S = k[xy, ..., x,], then full Lie algebra of derivations L = DerS is freely
generated as an S-module by the n derivations y; = aix,- S - Swith1 < i < n. The
construction sketched above now shows us that the enveloping algebra of the pair (S, L) admits
the presentation

k(xj,y; : 1 <i < n)
(yixj = x59: = 8i5)

2

so it isomorphic to the algebra of differential operators Diff(S) = A,, the Weyl algebra.
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2.16. Example. In the situation of Example 2.11, the enveloping algebra of the Lie—Rinehart
pair (C* (M), X(M)) can be seen to be isomorphic to the algebra of globally defined differential
operators on the manifold —we refer for this to the first section of [Hue90].

2.17. A key result about the enveloping algebra is the following generalization of the Poincaré-
Birkhoff-Witt Theorem.

Theorem. Let (S, L) be a Lie—Rinehart pair such that L is a free S-module of finite rank and let
{a1,...,an} be a basis. There is an increasing algebra filtration F, on U (S, L) with

Fy =S, F,=S+1L, F, = (Fy)? foreachp > 2,

and a canonical isomorphism of algebras from the symmetric algebra Symmg (L) to the associated
graded algebra gr U(S, L). Moreover, the set of monomials

kn withky, ..., ky >0

Ky
at . .ay

is a basis of U(S, L) as a left S-module.
Proof. See [Rin63, §3]. O
We deduce immediately from this PBW theorem the following.

Corollary. If (S, L) is a Lie—Rinehart pair such that L is a free S-module of finite rank then the
algebra U (S, L) is a noetherian domain.

2.18. A less trivial consequence of Theorem 2.17 is the following result. In order to state, we
need the notion of Gelfand—Kirillov dimension, GKdim, for which we refer to the book [KL00]
by G. R. Krause and T. H.Lanagan or to [MR01, Chapter 8].

Corollary. Let (S, L) be a Lie—Rinehart pair such that L is a free S-module of finite rank. If S is a
finitely generated algebra, then

GKdimU(S, L) = GKdim S + rankg L.
Proof. This follows from Theorem A in J. Matczuk’s article [Mat88]. ]

2.19. The reason we are interested in these last results is that they allow us to describe the
algebra of differential operators Diff(A) in the case of a free arrangement.

Theorem. Let A be a free hyperplane arrangement on a vector space V of dimension n and let S
be the algebra of coordinate functions on V. There is a canonical isomorphism of algebras

U(S, Der A) — Diff(A).

In particular, Diff (A) is a noetherian domain of Gelfand-Kirillov dimension 2n.
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Proof. In view of Theorem 2.4 there is an obvious surjective morphism of algebras
¢ : U(S, Der A) — Diff(A).

Let I be its kernel and suppose, to reach a contradiction, that I # 0. As U(S, L) is a domain and
contains non-zero regular elements, Proposition 3.15 in [KL00] tells us that

2n = GKdim U(S, L) > GKdim U(S, L)i/I + 1 = GKdim Diff(A) + 1.

Let Q = {Q" : i > 0}. This is a multiplicatively closed subset of Diff(S), its elements are regular
and commute, and the corresponding linear derivations are locally nilpotent: Theorem 4.9
of [KLO00] tells us that Q is an Ore set in Diff(S) and that

GKdim Diff(S)Q™! = GKdim Diff(S).

This last number is 2n, as can be deduced from Corollary 2.18 in view that Diff(S) is the
enveloping algebra of the Lie-Rinehart pair (S, Der S). On the other hand, Q is contained in
Diff (A) and has the same properties as in Diff(S), so that the same theorem now tells us that

GKdim Diff(A)Q ! = GKdim Diff(A).

To find the contradiction we want, it is therefore enough to show that Diff(S)Q~! = Diff(A)Q 1.
As Diff(A) is contained in Diff(S), to see this we need only show that for each u € Diff(S)
there exists i > 0 such that Q'u € Diff(A) and, according to Proposition 8 in [SA18], we may
take i = (p ;1) with p the order of u. O

2.20. The result in last theorem can be made completely explicit.

Proposition. Let A be a free hyperplane arrangement in a vector space V with coordinate
algebra S and let B = {0, .. ., 0,} be a basis of Der A. Let clkj € S be the structure coefficients of
Der A with respect to B, so that

n

[0:, 0,1 = > k0.
k=1
The algebra Diff (A) is isomorphic to the free algebra generated by letters x1, ..., %xu, 61, ...,6,
subject to the relations

[xi, xj] =0, [0i, x;] = 0i(x;), [0:,0;] = Z Ci'cjek
k=1

foreveryi, j and k in [n]. ]
2.21. In Section 2.2 we found that when A is an arrangement of lines, Diff(A) is an iterated
Ore extension of S: this is not the case in the general situation. Indeed, if A = Bs, the third

braid arrangement, then Der A = S ® sl, as a Lie algebra, and this can be used to show that
Diff(A) is not an iterated Ore extension.
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2.22. A simple and final observation that we can make at this point, and that we have actually
proved at the end of the proof of Theorem 2.19, is that our algebra Diff(A) and the full
algebra Diff(S) of regular differentials operators of S are birational, that is, that they have
the same skew-fields of quotients. In fact, the two algebras become isomorphic already after

localization at the single element Q.

Proposition. The inclusion Diff (A) — Diff(S) induces after localization at Q an isomorphism

Diff(ﬂ)[é] - Diff(S)[é] and, in particular, Diff (A) and Diff(S) have isomorphic fields of

fractions.

2.4 TwiSTED CALABI-YAU ALGEBRAS

2.23. Let us recall the notion of twisted Calabi-Yau algebras from the article [Gin06] by V.
Ginzburg. We will see that when a hyperplane arrangement is free, its algebra of differential
operators is twisted Calabi-Yau.

Let n > 0. An algebra A has Van den Bergh duality of dimension n if A has a resolution
of finite length by finitely generated projective A-bimodules and there exists an invertible
A-bimodule D such that there is an isomorphism of A-bimodules

0 ifi#n;

Extl. (A, A® A) =
el : {D ifi =n.

An algebra A is twisted Calabi-Yau or has the twisted Calabi—Yau property of dimension n if,
moreover, there exists an automorphism o of A, the Nakayama automorphism, such that the
dualizing bimodule D can be taken to be A, the A-bimodule obtained from A by twisting its
right action using the automorphism o, so that a>x <b = axo(b) foralla,b € Aand all x € A,.
If the automorphism o is the identity of A, we simply say that A is Calabi-Yau.

The Van den Bergh duality property for an algebra A is important because, as can be seen
in [vdB98], it relates the Hochschild cohomology of A with its homology in a way analogue to
Poincaré duality. Explicitly, for each A-bimodule M there is a canonical isomorphism

H'(A,M) — H,_;(A,D ®4 M).

In the case that A is twisted Calabi-Yau, so that there exists an automorphism o of A such that
we may take D = A;, we observe that if ¢ is not the identity of A, the bimodule A, ®4 M is
not generally isomorphic to M.

2.24. Let (S, L) be a Lie-Rinehart pair. The following result by Th. Lambre and P. Le Meur gives
a sufficient condition for the enveloping algebra of the pair to have the twisted Calabi—Yau
property that is satisfied in important examples. Notice that the following theorem includes
the hypothesis that L be finitely generated projective of constant rank —that is, that the
localizations of L are all free of the same rank— implies that L is finitely generated as a
consequence of Proposition 1.3 of [Vas69].
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Theorem. Let (S, L) be a Lie-Rinehart pair. If S is twisted Calabi—Yau of dimension n, L is finitely
generated and projective of constant rank d and AgL is free then the enveloping algebra U(S, L) is
twisted Calabi—Yau of dimension n + d.

In addition to the precedent theorem, the authors give concrete simple formulas for the
Nakayama automorphism of U(S, L).

Proof. This is Theorem 2 in [LLM18]. One can streamline their argument using the spectral
sequence we construct in Chapter 6 of this thesis to compute Extye (U, U ® U). O

2.25. Let A be a free hyperplane arrangement in V and let, as usual, n be the dimension of V.
As we have seen in 1.24 and in Theorem 2.19, the free module Der A has rank n and the algebra
of differential operators on A is isomorphic to the enveloping algebra of the Lie-Rinehart pair
(S, Der A), and therefore Theorem 2.24 tells us that Diff (A) is a twisted Calabi-Yau algebra of
dimension 2n. We will give an direct proof of this fact for the case of an arrangement of lines
as in Section 2.2 and describe explicitly the Nakayama automorphism.

2.5 RESUMEN

En este capitulo presentamos el algebra de operadores diferenciales Diff(A) tangentes a los
hiperplanos de un arreglo A, que es el principal objeto de estudio de la tesis. Primero, vemos
en 2.4 que Diff(A) admite un sistema de generadores manejable en el caso en que A es un
arreglo libre.

Teorema. Si A es un arreglo de hiperplanos libre entonces el algebra Diff (A) esta generada por
S U Der(A).

Este resultado fue demostrado por F. J. Calderon Moreno en [CM99] y M. Schulze en [Sch07]
para el caso de arreglos complejos usando técnicas de geometria analitica, y por M. Suarez-
Alvarez en [SA18] para el caso en que k es un cuerpo cualquiera de caracteristica cero.

A continuacion, nos detenemos a analizar el caso de un arreglo central A de rectas, que es
el que mas nos interesa en esta tesis, para encontrar en 2.8 una presentacion de Diff(A) que
no reproducimos aqui. Inmediatamente después obtenemos la siguiente descripcion:

Proposicion. El algebra Diff (A) es isomorfa a una extension de Ore iterada.

Volvemos luego al caso general de un arreglo libre de hiperplanos de dimension arbitraria.
Introducimos en la Seccion 2.3 la nocion de pares de Lie-Rinehart. Un par de Lie-Rinehart
(S, L) consta de un algebra conmutativa S y un algebra de Lie L que es un S-modulo y actia en
S por derivaciones de manera que

(sa)(t) = s(a(?)), [, sB] = sla, ] + a(s)p

sis, t pertenecena Sy ay f aL. En 2.13 damos una construccion del algebra envolvente
U = U(S, L) de un par de Lie-Rinehart (S, L), que es la “menor” algebra asociativa que contiene
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a Sy a L. Esta construccion es central para nosotros: probamos en el Teorema 2.19 que el
algebra Diff (A) puede identificarse con el algebra envolvente del par dado por el algebra de
funciones coordenadas de V' y el algebra de Lie de derivaciones de A.

Teorema. Sea A un arreglo de hiperplanos libre en un espacio vectorial V y sea S el algebra de
funciones coordenadas en V. Hay un isomorfismo canonico de algebras

U(S, Der A) — Diff(A).

La existencia de este morfismo sigue inmediatamente de los resultados de [CM99] y [SAIS]
que recién mencionamos. Para probar que es inyectivo, utilizamos el calculo de la dimension
de Gelfand-Kirillov del algebra envolvente de un par de Lie-Rinehart hecho por J. Matczuk
en [Mat88] y el hecho de que Diff(A) y el algebra de operadores diferenciales en S se tornan
isomorfas al localizar en el elemento Q. La seccion termina dando en la Proposicion 2.20 una
presentacion de Diff (A) por generadores y relaciones.

Finalmente, en la Seccion 2.4 nos dedicamos a estudiar la dualidad de Van den Bergh y
la propiedad de Calabi-Yau torcida para un algebra. Usando los resultados de Th. Lambre y
P.Le Meur en [LLM18], obtenemos en 2.25 lo siguiente:

Proposicion. Si A es un arreglo libre de hiperplanos, el algebra Diff (A) tiene la propiedad de
Calabi-Yau torcida.






— 3 —
THE HOCHSCHILD COHOMOLOGY OF THE ALGEBRA OF
DIFFERENTIAL OPERATORS TANGENT TO A LINE
ARRANGEMENT

In this chapter we study the Hochschild cohomology of the algebra of differential operators
tangent to a central arrangement of lines as a Gerstenhaber algebra. We start by constructing a
useful projective resolution for the algebra, which we then use to compute explicitly Hochschild
cohomology, the cup product and the Gerstenhaber bracket. We devote the last two sections
to the much simpler calculation of Hochschild and cyclic homology, K-theory and to a direct
proof of the twisted Calabi-Yau property.

The results we obtain are pivotal to the study of the automorphisms and the deformations
of A that we develop further ahead.

3.1. As in Section 2.2, we let A be a central line arrangement in k? and denote by A the
associative algebra Diff(A) defined in 2.8. We let S be the algebra of coordinate functions on
k? and identify it, as usual, with k[x, y]; if p > 0, we denote by S, the homogeneous component
of S of degree p. Recall that we have written the defining polynomial Q of A as Q = xF for a
square free homogeneous polynomial F € S of degree r + 1 such that x t F. After multiplying
by an scalar if necessary, we may in fact write F = y"*! + xF, for F € S,.

We will use frequently the following non-standard notation from now on: if M is a vector
space we write for an element of M about which we do not need to be specific.

3.1 A PROJECTIVE RESOLUTION

3.2. Our immediate objective is to construct a projective resolution of A as an A-bimodule,
and we do this by looking at A as a deformation of a commutative polynomial algebra, which
suggests that it should have a resolution resembling the usual Koszul complex.

3.3. Let us introduce some more notation that will be useful throughout our calculations. If
U is a vector space and u € U, there are derivations V¥, VZ :S > S®U ®S of S into the
S-bimodule S ® U ® S uniquely determined by the condition that

Vix)=1®u®1, Vi(y) =0, vy (x) =0, Vyy)=10uel,

51
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and, in fact, for every i, j > 0 we have that

Vi(x'y) = Z *ouex'y, VZ(xiyj)z Z P eouey’.

s+i+1=i s+t+1=j

We consider the derivation V = V¥ + VZ :5 = S®S; ®S; it is the unique derivation such that
V(a) =1®a®1forall « € S;. There is, on the other hand, a unique morphism of S-bimodules
d:505,®S5S > S®Ssuchthatd(1®a®1)=a®1-1Q® a forall @ € Sy, and we have

dV(f)) =fel-1ef

for all f € S. To check this last equality, it is enough to notice that doV : § - S® Sisa
derivation and, since S; generates S as an algebra, that the equality holds when f € §;.

3.4. Let V be the subspace of A spanned by x, y, D and E. This is a homogeneous subspace and
its grading induces on the exterior algebra A®(V) an internal grading. If » is an element of an
exterior power A? (V) of V, we write (=) A w for the map of A-bimodules

A®S QA > AQANTIV ® A

suchthat(1®a® 1) Aw=10aAw®1lforalaeS;.
3.5. There is a chain complex P of free graded A-bimodules of the form

AIMVIA “B5 AIASVIA “E5 AAVIA —2 AviA “4S AlA (3.1)

where, we recall from 1.1, the symbol | stands for tensor product over k, and with A®-linear
maps homogeneous of degree zero and such that

di(1]v]1) = [v, 1]1], Yu eV,
dy(1lx A yl1) = [x, 1yl1] = [y, 11x|1];
dy(1|x A E|1) = [x, 1|E|1] — [E, 1]x|1] + 1]x]|1;
d2(1ly A E|1) = [y, 1|E|1] — [E, 1|y|1] + 1]y|1;
dz(1lx A DI1) = [x,1|D|1] - [D, 1]x|1];
d2(1ly A DI1) = [y, 1{D[1] = [D, 1ly|1] + V(F);
dy(1|D A E|1) = [D, 1|E|1] = [E, 1|D|1] + r|D|1;
ds(1|x Ay A DI|1) = [x, 1|y A D|1] — [y, 1|x A D|1] + [D, 1|x A y|1] + V(F) A x;
ds(1lx Ay A E|1) = [x,1ly A E|1] = [y, 1|x A E|1] + [E, 1|x A y|1] — 2|x A y|1;
d;(1|lx AD ANE|1) = [x,1|D A E|1] — [D, 1|x A E|1] + [E, 1|x A D|1]
—(r+1)|x ADJ1;

ds(1ly AD ANE|1) = [y,1|D A E[1] — [D, 1|y A E|1] + [E, 1|y A D|1]

+ V(F) NE—(r+1)|y AD|1;
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dy(1lx Ay AD AE|1) = [x,1ly AD AE|1] — [y, 1|x A D A E|1]
+ [D,1|x Ay A E[1] — [E, 1|x Ay A D|1]
+V(F)AxANE+ (r+2)|[x Ay AD|1.

That P is indeed a complex follows from a direct calculation. More interestingly, it is exact:

Lemma. The complex P is a projective resolution of A as an A-bimodule, with augmentation
dy : AJA — A such that dy(1|1) = 1.

Proof. For each p € Ny we consider the subspace F,A = (x'y/DFE! : k+1 < p)of A. Asa
consequence of Lemma 2.8, we see that FA = (F,A),( is an exhaustive and increasing algebra
filtration on A and that the corresponding associated graded algebra gr(A) is isomorphic to the
usual commutative polynomial ring k[x, y, D, E]. Since V is a subspace of A, we can restrict
the filtration of A to one on V, and the latter induces as usual a filtration on each exterior
power APV. In this way we obtain a filtration on each component of the complex P, which turns
out to be compatible with its differentials, as can be checked by inspection. The complex gr(P)
obtained from P by passing to associated graded objects in each degree is isomorphic to the
Koszul resolution of gr(A) as a gr(A)-bimodule and it is therefore acyclic over gr(A). A standard
argument using the filtration of P concludes from this that the complex P is itself acyclic over A.

As its components are manifestly free A-bimodules, this proves the lemma. O

3.6. One almost immediate application of having a bimodule projective resolution for our
algebra is in computing its global dimension.

Proposition. The global dimension of A is equal to 4.

Of course, as A is noetherian, there is no need to distinguish between the left and the right
global dimensions.

Proof. If A € k we let M, be the left A-module which as a vector space is freely spanned by an
element uj and on which the action of Ais such that x-u)y =y-uy = D-uy = 0and E-uy = Auy.
It is easy to see that all 1-dimensional A-modules are of this form and that My = M, iff A = p,
but we will not need this.

The complex P ®4 M} is a projective resolution of M, as a left A-module, and therefore the
cohomology of hom(P ®4 M;, M,) is canonically isomorphic to Ext% (M;, M,). Identifying
as usual homa(P ®4 M;, M) to M, ® A°V* ® Mﬁ, we compute that the complex is

M, ® M, =25 M, @ V' ® M} — M, ® AV* & M ——
— M, 8 AV @ M, =5 M, @ ATV @ M
with differentials given by

8'(1) = (u -V ® L,
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§'(a®%+b®@j+c@D+d®D)
:(/1+1—/1)a®fc/\ﬁ+()L+1—,u)b®y/\E+(/1+r—/J)c®D/\E,
F@@XANG+bOXAE+c®iAE+d®%AD+ejAD+ fDAE)
= (u-A-2)a®XAJAE+(u-A-r-1)d®XADAE o
+(p-A-r-1)e®yADAE,
B@@FANGAD+bRXAGAE+c@FADAE+d®)ADAE)
=A+r+2-pa®xAjADAE.

An easy computation shows that

dim Ext, (M, My 1712 = {1’ fp=dorp =

0, in any other case.
In particular, Exti(M 1 Mairi2) # 0 and therefore gldim A > 4. On the other hand, we have
constructed a projective resolution of A as an A-bimodule of length 4, so that the projective
dimension of A as a bimodule is pdim 4 A < 4. The proposition now follows from this and that
gldim A < pdim 4. A. O

3.7. We will use the following two simple lemmas a few times; the conclusion of its statement
is false if r < 2.

Lemma. Suppose thatr > 2. If a, f € Sy are such that aFyx + pF, = 0, thena = f = 0.

Proof. Suppose that Fy, F, and F; are three distinct linear factors of F (here is where we need
the hypothesis that r is at least 2) so that F = F;F,F;F’ for some F’ € S,_,; as F has degree
at least 3, this is possible. We have Fy = Fi,F,F5F’ and F, = F;,F,F3F’ modulo Fi, so that
(aFix+pF1y)F,FsF' =0 mod Fy. Since F is square free, this tells us that F; divides aFyx + fFy
and, since both polynomials have the same degree and F; # 0, that there exists a scalar A such
that aFy + fF1y = AF;. Of course, we can do the same with the other two factors F; and Fs.

We can state this by saying that the matrix ( Z’; g’y‘ ) has the three vectors (g’; ), (EZ ) and

(2’; ) as eigenvectors. Since no two of these are linearly dependent, because F is square-free,
this implies that the matrix is in fact a scalar multiple of the identity, and there is a p € k such

that « = px and f = py. The hypothesis is then that p(r + 1)F = p(xFy + yF,) = 0, so that
u = 0. This proves the claim. O

3.8. Lemma. Ifay, ..., ar41 € S are such that F = lr;'ll aj, the set of quotients {ail, .

a basis for S,.

Proof. Suppose cy, ..., ¢r+1 € k are scalars such that er:ll c,~§ =0.Ifje{1,...,r+1}, we

then have ¢; & = 0 modulo a; and, since F is square-free, this implies that in fact ¢; = 0. The
J
F
? Ori

proof. O

set {ail, e } is therefore linearly independent. Since dim S, = r + 1, this completes the
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3.2 THE HoCHSCHILD COHOMOLOGY OF Diff(A)

3.9. We want to compute the Hochschild cohomology of the algebra A = Diff(A). Applying
the functor hom 4e (—, A) to the resolution P of 3.5 we get, after standard identifications, the
cochain complex

AzE ARV 22 AR NV 22 AB NV 22 A AV — 0
Sl 32 53 54

which we denote simply by A ® AV*, with differentials such that

d%(a) = [x,a] ® % + [y,a] ® § + [D,a] ® D + [E, a] ® E;

A N

d'(a®%)=-[y,al@x A+ (a—[E,a)) ®X AE—[D,a]® %A D
+ V3(F) ® § A D;

d'(a®§) =[x.a] ®X A+ (a—[E.a]) ®§ AE+ (VI(F) - [D.a]) ® § A D;
d(a®D)=[x,al ® %X AD+[y,a] @ AD + (ra—[E,a]) ® D A E;
d'(a®E) = [x,a]®x/\E+[y,a]®;}/\}§+[D,a]®ﬁ/\E;

A

d(a®xAi) = ([D,a] - (F))®fc/\y/\f)+([Ea]—2a)®fc/\y E;
d?(@®%ANE)=—[y,a] X AGAE—-[D,a] @ X ADAE+V(F)®jADAE;
(@@ AE) =[x,a] ®% AgAE+(va(F) [D,a]) ® § AD AE;
d(a®xAD)=-[y,al X AGAD+ ([E,a] - (r + 1)a) ® X AD A E;
@i AD)=[xal @ AJAD+([E,a]l - (r+1)a)®§ADAE;
d@®DAE)=[x,al X ADAE+[y,al ® §AD A E;
dP@@xAjAD) = (-[E,al+(r+2)a)®%AjADAE;
(@@ A AE) = ([D,a] - Vi(F)) ® % A AD A E;

dPa®@x ADANE)=-[y,al % AijjAD AE;
Pa@)ADANE)=[x,a] @2 AjJADAE.

These differentials are homogeneous with respect to the natural internal grading on the com-
plex A ® AV* coming from the grading of A. We denote y : A® AV* — A® AV* the k-linear
map whose restriction to each homogeneous component of A ® AV* is simply multiplication
by the degree. There is a homotopy, drawn in the diagram (3.1) with dashed arrows, with

s'(a@%+b@j+c@D+d®E) =d,
SPA@RXAT+bRFAE+c®IAE+d@iAD+e®GAD+ f@DAE)
=-b@x-c®y—-fD,
S@QFANGAD+bRXAGAE+c@FADAE+d®)ADAE)
=b@FANG+c®XAD+d®§AD,
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sf@®@XAGADAE)=-a®%AGAD

and such that d o s + s o d = y: this tells us that y induces the zero map on cohomology. Since
our ground field k has characteristic zero, this implies that the inclusion (AQ AV*)y - A® AV*
of the component of degree zero of our complex A ® AV* is a quasi-isomorphism.

3.10. From now on and until the end of this section, we will assume that r > 3. Let us
write the complex (A ® AV*)q simply X and let us put T = k[E], which coincides with Ay. The
complex X has components

x° = A,,
X'=A @ kiok)) @A, kD @ Ay ® KE,

X =A Rkt AOA QIAEGKIAE)®A, QkDAE
®Ar+1® kx AD@kyj A D),
B =ARFAJAER A @ kXADAESK)ADAE)
QA ®kEAGAD,
X' =A@ AGJADAE

and, since r > 2, we have

A() = T, A1 = SlT, Az = SzT,
A, = (S, ®kD)T, Ari1 = (Sr41 ® S1D)T, Ariz = (Sr42® S:D)T.
In fact, this is where our assumption that » > 3 intervenes: if r < 2, these subspaces of A have

a different description.
The differentials in X can be computed to be given by

8%(a) = x11(a) ® % + yr1(a) ® § + Dr,(a) ® D,

S (pa® %) = —pyri(a) ® % A §j — (Fpya+ ¢D1,(a)) @2 A D+ VE“(F) @ § A D,
§'(pa®g) = ¢xri(a) ® % A G+ (VI*(F) = Fya — ¢Dr,(a) ® § A D,
5'((¢ + AD)a ® D) = (¢x11(a) + AxDry(a)) ® X A D

+ (¢yr1(a) + AF(z1(a) —

) + AyDry(a)) ® § A D,
S a®E) =xr(a) @ % ANE +yri(a) ® § AE + Dr(a) @ D AE,

52(pa® % A §) = (Fpya + $Dr,(a) — V) (F)) ® R A A D,
8*(pa® % AE) = —¢pyri(a) ® X AN§AE — (Fpya + ¢D1,(a)) ® X ADAE
+V2(F) @ AD AE,
5 (pa® G AE) = pxry(a) ® X AGAE
+(VO(F) = Fpya — ¢Dr.(a) @ G AD A E,
5*((¢ +yD)a® % A D) = (~yri(a) — YF(r1(a) — a) — yyDri(a) ® X A A D,
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82((p + yD)a ® §j A D) = (¢pxt1(a) + YyxDri(a)) ® X A A D,
82((¢p + AD)a ® D A E) = (¢x1(a) + AxDry(a)) ® F AD A E
+ (¢yri(a) + AyDry(a) + AF(r1(a) —a)) ® G A D A E,
8 ((p+yD)a® % AjAD) =0,
5 (pa®@x A AE) = (Fpya+ ¢Dr(a) - V' (F)) @ AGADAE,

(¢ +yD)a® % ADAE) o
= —(dyri(a) + yyDri(a) + YF(r1(a) —a)) ® X AYADAE,

8¢ +yD)a®§ AD AE) = (¢px11(a) + yxDr(a)) ® X AGAD AE.

Here and below 7; : T — T is the k-linear map such that 7, (E") = E" — (E + t)" for all n € Ny,

and ¢ and ¢ denote homogeneous elements of S of appropriate degrees and A a scalar.

3.11. We proceed to compute the cohomology of the complex X, starting with degrees zero
and four, for which the computation is almost immediate. Indeed, since the kernel of 7; and of
1, isk C T, it is clear that H(X) = ker §° = k. On the other hand, ifty € S, and a € T, we can
write ¢ = 1 x + Yy for some ¢4, ¥, € S; and there is a b € T such that 7;(b) = a, so that

5*(~yoDb® £ ADANE+y1Db®§ A D AE) = (yDa+[S,2T|) @ AGADAE.

Similarly, we have 5%(S, 1T ® X A DAE+S,,T® gA DA E) =S, T ®XAGA D A E. These
two facts imply that the map §° is surjective, so that H*(X) = 0.

3.12. Letw € X' bea 1-cocycle in X. There are thena, b,c,d,e, f € T,k € Nyand ¢y, ..., pr. € S,
such that either k = 0 or ¢y # 0, and

i=0

k
a)=(xa+yb)®fc+(xc+yd)®Q+(Z¢iEi+De)®ﬁ+f®f?.

If & € T is such that 7,(€) = e, then by replacing w by w — §°(€), which does not change the
cohomology class of @, we can assume that e = 0. The formula for §° then shows that w is a

coboundary iff it is equal to zero. The coefficient of £ A § in §'(w) is
x’1i(e) + xy(n(d) - n1(a)) - y’n (b) = 0.

We therefore have b, ¢, d — a € k. The coeflicient of DA E, on the other hand, is Dz, (f) = 0,
so that also f € k; exactly the same information comes from the vanishing of the coefficients
of £ A E and of § A E. Since b € k, the coefficient of £ A D is

k
—Fb — xDr,(a) + Z $ixt (E') = 0.
i=0

We thus see that 7, (a) = 0, so that a € k, and that Zf:o ¢;xt(E?) = Fb. This implies that k < 1,
that —¢1x = Fb and therefore, since x is not a factor of F by hypothesis, that ¢; = 0 and b = 0.
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Finally, using all the information we have so far, we can see that the vanishing of the
coefficient of § A D in 6 (w) implies that Fyxa + Fy(xc + yd) = Fd. Together with Euler’s
relation Fyx + Fyy = (r + 1)F this tells us that

(ex+(d—-a)y)F, = (d— (r+1)a)F. (3.2)

As F is square-free, it follows' from this equality that the polynomial cx + (d — a)y is zero, so
that ¢ = 0 and d = a, and, finally, that a = 0. We conclude in this way that the set of 1-cocycles

@D+ fQE, peS., fek
is a complete, irredundant set of representatives for the elements of H!(X).
3.13. Let now w € X° be a 3-cocycle, so that
w=a@XAJAD+bRFXAGAE+c®@XADAE+d®GADAE

for some a € (S,12 ® $;D)T, b € S;T, ¢, d € (Sy+1 ® S$;D)T and §°(w) = 0. For all ¢ € S; and
e € T we have

5*(pe@% NE) = —gyri(e) ® X AGAE+|Ar1|®@XADANE+[Arys | @ JADAE

and

5% (pe ® G AE) = ¢xri(e) ®X AGAE+[Ar1| @ GAD AE,

so that by adding to w an element of §%(S;T ® £ A E + ;T ® § A E), which does not change the
cohomology class of w, we can suppose that b = 0. Similarly, for all ¢ € S; and alle € T we
have that

S (pe®@ % AT = ( +¢Dr1,(e)) ® X A A D,
and, for all ¢ € S,,; and all e € T, that

5% (e ® X AD) = —pyri(e) ® X AGAD
and

5%(¢pe ® § A D) = pxri(e) @ X A A D.

Using this we see that, up to changing w by adding to it a 3-coboundary, we can suppose that
a = 0. Finally, for each ¢ € S, and all e € T we have

5*(pe ® DAE) = gxri(e) @ ADAE+[Arys | @ G ADAE,
5*(De® D AE) = xDri(e) ® X ADANE+[Ar1 | @G ADAE

ISuppose that u = cx + (d — a)y is not zero. Differentiating in (3.2) with respect to y, we find that —raFy = uFy,.
Since x does not divide F, we have Fyy # 0, and then a # 0 and u divides Fy: from (3.2) it follows then that u?
divides F, since the left hand side of that equality is non-zero, and this is absurd because F is square-free.
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and
S (~y@*ANE+FEQ@DAE) =y @ X ADANE+[Ar1 | @ ADAE,

so we can also suppose that ¢ € y"*'ET + yDT.

There are [ > 0, Ay, ..., A, poy -, 1 €K, ¢, ooy 1 € Spi1s Yo, ---s Y1 € S1, Lo, -+, § € 51
such that c = !, ;g™ E' + ! piyDE" and d = 3!_ (¢; + 1;D)E’. The vanishing of §°(w)
means precisely that

1 1
3y P (E) + Z(y,-yzpﬁ (E') — piyF(E + 1) — gixry(E') — ixDry (E")) =0,
i=1 i=0

The left hand side of this equation is an element of S,;,T @ S;DT. The component in S,DT is
Zﬁzo(yiyz —1;x)Dry(E") = 0 and therefore y; = y; = 0 for all i € {1,...,1}. On the other hand,
the component in S,,T is

l l
DAy () - poyF - ) gixri (E) = 0.
i=1 i=0

This implies that A;y"*% — ¢;x = 0if i € {2,...,1}, so that A; = ¢; = 0 for such i, and then the

1 4 xF, we deduce

equation reduces to A;y" 2 + poyF — ¢ x = 0. Recalling from 3.1 that F = y
from this that A; = —p and ¢; = peyF and, putting everything together, that every 3-cocycle

is cohomologous to one of the form
(toyD — proy" ' E)2 A D A E + (g0 + oD + poyFEYg AD A E (3.3)

with po € k, ¢g € Sy11 and ¢ € S;. A direct computation shows that moreover every 3-cochain
of this form is a 3-cocycle.
Let now 7 be a 2-cochain 7 in X, so that

N=|A ki AN @A @ kXEADSKIAD) | +u@FAE+vQ@JAE+w®DAE

with u, v € A; and w € A,, and let us suppose that §?(5) is equal to the 3-cocycle (3.3). There
arel >0, ag, ..., a1, Po, ---» P1 € S1, Y05 ---» Y1 € Sy and &, ..., & € ksuch thatu = ZgzoaiEi,
v=Y! piE andw = Y!_ (y; + &D)E. The coefficient of % A §j A E in §(17) must be equal to
zero, so that

1
D (—ay + pix)n (E') = 0,
i=0

and this implies that there are scalars py, ..., p; € k such that a; = p;x and f; = p;y for all
ie{l,...,1}. Looking now at the coefficient of x A D A E in 8%(n) and comparing with (3.3)
we find that

)
(~FaiyE' — a;Dry(E') + yixri (E') + ExDry (E')) = poyD — poy” ' E. (3.4)
i=0

1
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This is an equality of two elements of ST & SDT. Considering the components in DT, we find
that xD Zgzl(—pirr(Ei) + &11(EY)) = poyD, and this tells us that gy = 0 and that

)
Z (=pite (E") + &mi(EY)) = 0. (3.5)

i=1
On the other hand, as the components in ST of the two sides of (3.4) are equal, we have

1
—Fayy + Z Yixtn (Ei) =0,

i=0

sothaty; = 0foralli € {2,...,I} and Fap, + y1x = 0. As x does not divide F, we must have
@y = 0 and y; = 0: in particular, there is py € k such that oy = pox.
Finally, considering the coefficient of § A D A E of 6%(57) and of (3.3) we see that

l .
Z(V;‘C"‘Ei(F) + VBB (F) = FBi,E — BiDr, (E')

i=0
+ yiyri(B) + EyDri(E') = &F(E +1)') = go + oD,

which at this point we can rewrite, using in the process the equality (3.5) above and the fact
that VXE'(F) + VY5 (F) = FY/_(E + 1)', as

I r
poxF + foF,y —F(ﬂoy +&- Z(pi DUE+t) —E(E+ 1)")) = g0 + YoD.

i=1 t=1

It follows at once that /y = 0 and that, in fact,

I r
POXFx+ﬁ0Fy_F(ﬁ0y+§0_Z(PiZti—§i))=¢o-

i=

The polynomial ¢ is then in the linear span of xFy, xF,, yF, and F inside S,;. Euler’s relation
implies that already the first three polynomials span this subspace, and we have

S(x®%ANE)=xF, ® §ADAE,
S(x®§AE)=xF,®j ADAE, (3.6)
S(y® yAE-D®DE) = yF,® § AD A E.

We conclude in this way that the only 3-coboundaries among the cocycles of the form (3.3) are
the linear combinations of the right hand sides of the equalities (3.6); these three cocycles are,
moreover, linearly independent. This means that there is an isomorphism

Sr+1

HX) 2kos®S D®GADANE® —1
3 ! y (xe,xFy,yFy)

®jADAE, (3.7)



3.2. THE HOCHSCHILD COHOMOLOGY OF Diff (A) 61

with
ws=(@yD—y"Ey@ * A\DANE+yFE®jADAE.

In particular, we have that dim H3(X) = r + 2, since the denominator appearing in the right
hand side of the isomorphism (3.7) is a 3-dimensional vector space —this follows at once from
Lemma 3.7.

3.14. It only remains for us to compute the second cohomology space HH?(A). We consider a
2-cocycle w € X2 and a € S,T, b, c € $;T,d, e € S,11T ® $;DT and f € S,T @ DT such that

W=a@XAN)+bOXANE+cQJAE+d@FAD+e®@jAD+ fQEAD.

Adding to  an element of §'(T ® E), we can assume that f € S,T; adding an element of
5'($,T®%®S,T®1), we can suppose that a = 0; finally, adding an element of §' ((S,T@®DT)®D)
we can suppose thatd € y" AT g yDT. In this situation, there are an integer [ > 0, «, ..., aj,
ﬁo, cees ﬁ[ € 5, Ao, cees /11, Ho, ---» HI € k, gﬁo, cees ¢l € Sr+1, 1,00, cees lﬁ[ € S; and §0, e §1 €S,

such that
l . l . l . l .
b= aE, o= BE, d=) Ay +pyD)E, e= > (¢ +¥iD)E,
i=0 i=0 i i

and

I
f= Z EE'.
i=0

8'(-y@x+FE®@D) =y @ AD+[Srs1| @G AD,

we can assume that Ao = 0.

The coefficient of X A §j A E in 6%(w) is 2520(—0(1;/ + Bix)11(E") = 0, and this implies that
there are scalars py, ..., p; € k such that @; = p;x and f; = p;y foreach i € {1,...,1}. The
coefficient of £ A D A E in 6%(w) is

1
(~FaiyE' - ;D7 (') + &xry (E)) = 0. (3.8)
i=0
It follows that ZLO a;D7,(E') = 0, so that a; = -+ = a; = 0; as a consequence of this, we
have that p; = -+ = p; = 0and f; = --- = f; = 0. The equality (3.8) also tells us that
—Fogy + Zgzo Eixti(E') = 0, and from this we see that & = --- = & = 0 and —Fopy — &1x =0,

so that ap, = 0 and £; = 0, since x does not divide F. In particular, there is a py € k such that

Qo = PoX.
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The coefficient of §j A D A E in §%(w) is

!
Z(V“ ' (F) + Vﬁ’ ( ) — FBiyE' — BiDr,(E') + finI(Ei))

i=0
= pOXFx + ﬁoFy — ‘BOyF
= (po = (r + 1) Boy ) xFx + (Boxx + (1= (1 + 7)) Boyy)Fy =0,

and our Lemma 3.7 implies then that f, = 0 and p, = 0. Finally, we consider the coefficient of
£AGAD:

1
Z( ) + wiyF(E + 1) - piyzDrl(Ei) + ¢ixrl(Ei) + lﬁixDrl(Ei)) =0.
i=0

Looking at the terms involving D in this equation, we see that

1
D (~uy* + yix)Dri (E) =0,
i=0

sop; ==y =0and ¢y =--- =1y = 0. The terms not involving D add up to

)
HoyF + > (=A™ + i) (E) = 0,

sothat Ay =---=1; =0, =--- = ¢; = 0 and poyF + A;y"*! — ¢;x = 0, which implies that
A = —pp and ¢y = poyF.
After all this, we see that every 2-cocycle in our complex is cohomologous to one of the form

N

(toyD — poy" ' E)2 A D + ($o + oD + poyFEYG A D + §D A E (3.9)

o>

with pg € k, ¢ € Sr41, Yo € S1 and & € S,. Thanks to a direct computation we find that all
elements of this form are 2-cocycles.

Let us now suppose that the cocycle (3.9), which we call again w, is a coboundary, so that
there exist k > 0, ay, ..., @k, Pos ---» Pk € S1, 015 -, 0k €Sy, (o ---, {k € kand u € T such that if

||M>v
M»

k
Z i + (;D)E'D + uE,
i=0 i=0

we have §!(17) = . The coefficient of DAEin 51(n) is Dz, (u) so, comparing with (3.9), we see
that we must have & = 0 and u € k; it follows from this that the coefficients of EAE and of §j A E
in 8'(17) vanish. On the other hand, the coefficient of % A § in 61 () is X%_ (~a;y + Bix) 1 (EP):
as this has to be zero, we see that there exist py, ..., pr € k such that a; = p;x and B; = p;y for
eachie {1,...,k}.
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Next, the coefficient of £ A D in 8'(n) is
k
(~FaiyE' — ai Dt (E') + 03x71 (E') + {ixDry (E)) = poyD — proy”*'E. (3.10)
i=0
This means, first, that Zle (—pixDrr (E") + (ixDr (Ei)) = poyD, and this is only possible if
Ho = 0 and
k

Z(—pirr(Ei) + gvirl(Ei)) =0. (3.11)

i=1
Second, the equality (3.10) implies that

k k
Z(—F(ZiyEi + O'iXTl(Ei)) = —Faoy + Z CfiXTl(Ei) =0,
i=0

i=1
so that o3 = -+ = 0x = 0 and Fayy + o1x = 0, which tells us that o; = 0 and ap, = 0: there is
then a py € k such that oy = pox.

Finally, the coefficient of § A D in 8'(y) is

er E Vﬁl ( ) — FﬁiyEl ﬁlDTr(E ) + oiyni(E ) GF(E+ 1)1 + glnyl(E ))

M»

l=0
= ¢o + oD

Looking only at the terms which are in $; DT, we see that

k
yD )" (=pity (E') + Giz(EY)) = YD
i=1

and, in view of (3.11), it follows from this that ¢, = 0. The terms in S, T, on the other hand,
are

poxFyx + PoFy +F( Boy — §0+Z(p,z (E+1)! g”i(E+1)i))=¢0,

i=0 = 1=
and proceeding as before we see that ¢ is in the linear span of xFy, xF, and yF,. Computing,
we find that

S'(x®%) =xF, ® A D,

§'(x ® §) = xF, ® i AD,

8"(y® g —DD) =yF, ® § A D.

We thus conclude that there is an isomorphism

S+1 A A A A
H(X) 2k, o —"  QGAD®S, DRJAD®S, ® DAE,
(%) [0y} <xe,xFy,yFy> y 1 y r

with w, = (yD —y"*'E) ® £ AD + yFE ® §j A D, and that, in particular, the dimension of H?(X)
is 2r + 3.
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3.15. We can summarize our findings as follows:
Proposition. Suppose thatr > 3. For all p > 4 we have HH? (A) = 0. There are isomorphisms

HH°(A) = k,
HH'(A) =S, @ Dok QE,

Sr+1
(xFx,xFy,yFy,)
Sr+1
(xFy, xFy,yFy)

HH?(A) = ko, QIAD®SDRGAD®S, ® D AE,

HH?(A) = kos @ @GADAE®SD®GADAE,

with

wy=uyD—-y"EY® X AD+yFE®{ A D,
ws=@yD—-y"E)@ * ADANE+yFE®jADAE.

The Hilbert series of the Hochschild cohomology of A is

hamea)(t) = 1+ (r + 2)t + (2r + 3)2 + (r + 2)8°
=(1+)A+ (r+1Dt+(r+2)t%). O

In fact, in each of the isomorphisms appearing in the statement of the proposition we have
given a set of representing cocycles. This will be important in what follows, when we compute
the Gerstenhaber algebra structure on the cohomology of A.

We have chosen a system of coordinates in the vector space containing the arrangement A
in such a way that one of the lines is given by the equation x = 0. This was useful in picking a
basis for the S-module of derivations Der(A) and, as a consequence, obtaining a presentation
of the algebra A amenable to the computations we wanted to carry out, but the unnaturality
of our choice is reflected in the rather unpleasant form of the representatives that we have
found for cohomology classes. In the next section we will be able to obtain a more natural
description.

3.16. In Proposition 3.15 we considered only line arrangements with r > 3, that is, with at
least 5 lines. As we explained in 3.10, without this restriction the method of calculation that
we followed has to be modified, and it turns out that this is not only a technical difference: the
actual results are different. Let us describe what happens, starting with the factorizable cases:
« If there are no lines, so that r = -2, the arrangement is empty and Diff (A) is the second
Weyl algebra A; = k(x,y, dx, dy).
« If there is one line, then Diff (A) is k(x, y, x0x, d,) and this is isomorphic to U(s) ® Ay,
with U(s) the enveloping algebra of the non-abelian 2-dimensional Lie algebra s and
A1 = K(y, ), the first Weyl algebra.
« If there are two lines, so that r = 0, then Diff (A) is k(x, y, x0x, ydy), which is isomorphic
to U(s) ® U(s).
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The Hochschild cohomology of the Weyl algebras is well-known as is that of U(s) —see, for
example [Sri61]. Using this and Kiinneth’s formula we find that when —2 < r < 0 we have for
all i > 0 that

dim HH' (Diff (A)) = (rtz).

Finally, we have the cases of three and four lines. Up to isomorphism of arrangements, we can
assume that the defining polynomials are, respectively, Q = xy(x—y) and Q = xy(x —y)(x —Ay)
for some A € k \ {0, 1}. One can compute the cohomology of Diff(A) in these cases along the
lines of what we did above, but the computation is surprisingly much more involved. We have
done the computation using an alternative, much more efficient approach —using a spectral
sequence that computes in general the Hochschild cohomology of the enveloping algebra of a
Lie—Rinehart pair— with which we deal in Chapter 6. Let us for now simply summarize the
result: when r is 2 or 3, the Hilbert series of HH®(A) is

hirrea)(t) = 1+ (r + 2)t + 2r + )% + (r +3)2°.

This differs from the general case of Proposition 3.15 in the coefficients of t* and #°.

3.3 THE GERSTENHABER ALGEBRA STRUCTURE ON HH*(Diff (A))

3.17. Let BA be the usual bar resolution for A as an A-bimodule. There is a morphism of
complexes ¢ : P — BA over the identity map of A such that ¢ = dx+¢n with ¢x, on : P — BA
maps of A-bimodules such that

Px(Lvg A=+ Aopll) = Z (D)o @)l [og 1,

TES)

whenever p > 0 and vy, ..., v, € V, with the sum running over all permutations of degree p,
and

dn(1]1) = 0;
dn(1lo1) =0, Yo eV

SN (1lx Ayll) = dn(1]x A E[1) = ¢n(1ly A E[1) = dn(1]x A DI1)
= ¢n(1ID A E|1) = 0;

én(1ly A DI1) = q1ylG2)lqs)|1 — FI1[1]1;
¢n(1lx Ay A ElL) = ¢n(1lx A D A E|1) = 0;

¢n(1lx Ay ADIT) = qu)ld2)lqe) 1x11 = 9(1)G2) 1x1g9(3) 11 + g 1x1g(2) 193) 11
— Flx|1[1]1 = F|1|1]x|1;

dn(1ly AD A E|1) = qylq(2)1q93)|EI1 — q1)lG2)|Elqes) 11 + gy |EIG(2)1q(3)11
— F|E|1|1|1 — F|1|1|E|1.
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Here q(1)|q(2)|q(3) denotes the element V(F) € S ® S; ® S, with an omitted sum.
On the other hand, there is a morphism of complexes of A-bimodules i/ : A — P over the
identity map of A such that

Yo(111) = 1]1,

Y1 (1w[1) = waylw) W), for all standard monomials w;
¥2(1lyDlyl1) = —yly A DI1 = q@)lqe) A ylg(s);

Y(1ly"™Elyl1) =~y 'y AEl1;

V2 (1E|w(|1) = —wq)|lwiey A Elw) for all standard monomials w;
Ve (1]olw|l) = —1|w A 1, if v,w € {x,y, D, E} and vw is not standard;
Va2 (1wlx|1) = —wp)lx A wig) [ws) for all standard monomials w;
and
Y2(1lulvll) =0

whenever u and v are standard monomials of A such that the concatenation uv is also a standard
monomial. We omit the description of /3 and /4 because we do not need them. This morphism ¢/
can and will be taken normalized, so that it vanishes on elementary tensors of 8A with a scalar
factor.

3.18. We need the comparison morphisms that we have just described in order to compute the
Gerstenhaber bracket on HH®(A), but we start with a more immediate application: obtaining a
natural basis of the first cohomology space HH!(A).

Proposition. (i) If « is a non-zero element of Sy that divides Q, so that ker « is one of the lines
in A, then there exists a unique derivation 0, : A — A such that 0,(f) =0 forall f € S
and

forall § € Der(A).
(i) IfQ = ag . .. ar41 is a factorization of Q as a product of elements of Sy, then the cohomology
classes of the r + 2 derivations Oy, ..., Oq,,, of A freely span the vector space HH' (A).

Here we are viewing HH'(A) as the vector space of outer derivations of A, as usual. It
should be noticed that the derivation d, associated to a linear factor of Q does not change if
we replace a by one of its non-zero scalar multiples: this means that the basis of HH'(A) is
really indexed by the lines of the arrangement A.

Proof. (i) Let us fix a non-zero element « in S; dividing Q. There is at most one deriva-
tion d, : A — A as in the statement of the proposition simply because the algebra A is
generated by the set SU Der(A). In order to prove that there is such a derivation, we need only
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recall from 1.21 that §(a) € S for all § € Der(A) and check that the candidate derivation
respects the relations (2.1) of 3.1 that present the algebra A.

(ii) We need to pass from the description of HH!(A) as the space of outer derivations to
its description in terms of the complex X that was used to compute it: we do this with the
comparison morphism ¢ : P — $BA over the identity map that we describedin 3.17. If§ : A —» A
is a derivation of Aand § : A® A® A — A is the map such that 5(a®b®c) = ad(b)c for
all a, b, c € A, which is a 1-cocycle on BA then the composition So P : ARV ®A— Aisa
1-cocycle in the complex hom 4 (P, A) whose cohomology class corresponds to § in the usual
description of HH!(A) as the space of outer derivations of A. In the notation that we used in 3.9,
this cohomology class is that of

S(x)®x+6(y) @) +5(D)@D+S(E)QEcAQV.

Using this, we can now prove the second part of the proposition. We can suppose without loss
of generality that & = x, and then the class of 8, in HH'(A) is that of 1 ® E. On the other
hand, for each i € {1,...,r + 1}, a direct computation shows that the class of 9, is

F A .
(Ziy—.®D+1®E.

1

It follows easily from the second part of Lemma 3.7 that these r + 2 classes span HH'(A) and,
since the dimension of this space is exactly r + 2, do so freely. O

THE CUP PRODUCT

3.19. We describe the associative algebra structure on HH®(A) given by the cup product.

Proposition. The cup product on HH*(A) is such that

S,®D S, ®D=0;

¢D — E = ¢D AE, Vo € Sy

S, ® D — HH?(A) = 0;

1®va2:w3;

1®EvK®QA15:K®QAEAﬁ, VK € Spy1/{xFx,xFy,yFy);
1E— yD®GAD=yDRGADAE Yy eS;
18E— S, @ DAE=0.

These equalities completely describe the multiplicative structure on HH®(A).

Proof. There is a morphism of complexes of A-bimodules A : P — P ®4 P that lifts the canonical
isomorphism A — A ®4 A such that A = Ag + Ay, with
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+ Ak : P — P®,4P the map of A-bimodules such that for wheneverp > 0Oand vy,...,v, € V
we have

Ak(1lor A== Avyl1) = Y (=1) 1oy, A+ Avg, 1@ 1oy, A== Av |1,

with the sum taken over all decompositions r + s = p with r, s > 0, and all permutations
(i1s - sipsJ1s---5js) of (1,...,p) such thati; <--- < i, and j; < --- < js, and where ¢
is the signature of the permutations,

« and Ay : P — P ®,4 P the map of A-bimodules such that

An(1]1) = 0;
An(1]v]1) =0, Yov e V;
An(1lv Aw|l) =0, ifv,we {x,y,D,E}, v # w and {v, w} # {y, D};
An(1ly A D|1) = fiylfio)l fz) ® 1 fiaylfis)s
AN(1lx Ay ADI|1) = AN(1lx Ay A E[1) = AN(1]x A D A E[1) = 0;
AN(1ly A D A EIT) = —fiylfie) A Elf3) © 1 fial f15)
+ flfolfe) ® 1w A Elfs).-
Here we have written f(1)| fi2)| f3)| f(a)| f(5) for the image of F under the composition

\vi id5®id51®V
S—> 50510 —————— > S5®5:195® 5, ®S,

with an omitted sum, a la Sweedler.
We leave the verification that this does define a morphism of complexes to the reader.

One can compute the cup product on HH*(A) using this diagonal morphism A. Indeed, we
view HH*®(A) as the cohomology of the complex hom 4¢ (P, A), and if ¢ and ¢/ are a p- and a
g-cocycle in that complex, the cup product of their cohomology classes is represented by the
composition

A
Pprg —2% P @ Py 2 A9y A=A,

with A, 4 the component P4 — P, ® P, of the morphism A. The multiplication table given
in the statement of the composition can be computed in this way, item by item. O

3.20. Using our description of the cup product we may understand a part of the cohomology
in geometrical terms.

Proposition. (i) Foralli,j, k € {0,...,r + 1} we have
Ou; = Oq; + 0g; — Ogy + 0y —~ 0g; =0 (3.12)

and HH'(A) — HH'(A) =S, ® D A E.
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(ii) The subalgebra H of HH®(A) generated by HH'(A) is the graded-commutative algebra
freely generated by its elements O, ..., Oq,,, of degree 1 subject to the (r;rz) relations (3.12).

This subalgebra H is isomorphic to the algebra R*(A) of Example 1.38 and, as in Theo-
rem 1.54, to the Orlik—Solomon algebra of the arrangement. Of course, when the base field
is C, there is therefore an isomorphism of algebras between H and the cohomology of the

complement of the arrangement, as we saw in Theorem 1.52.

Proof. Using Proposition 3.19 and the description given in the proof of Proposition 3.18 for
the derivations d,, we compute immediately that
Aix Ajx Q

Oy = Dy = —
aiaj

iy  Qjy
forall i, j € {0,...,r + 1}. Using this, we see that for all i, j, k € {0,...,r + 1} we have

(04 aj 247

80{,— ~ aaj + 80{j ~ 80{k + 8ak ~ 60(1- =~ |%ix Xjx OQkx =0,

Aidjxf
Gy Ajy  Cky

as the determinant vanishes. This proves the first claim of (i). The second one follows immedi-
ately from the description of the cup product of Proposition 3.19.

(ii) Let, as in Example 1.38, ¥ = P nso In be the free graded-commutative algebra genera-
ted by r + 2 generators wy, ..., w4 of degree 1 subject to the relations w;w; + wjwg + wrw; = 0,
one for each choice of i, j, k € {0,...,r + 1}. Recall that we have ¥, = 0 and dim %, = r + 1.
The first part of the proposition implies that there is a surjective morphism of graded algebras
f +F — H such that f(w;) = 0,4, foralli € {0,...,r + 1}, and this map is also injective
because the dimension of the component of degree 2 of M, whichis S, ® D AE,isr + 1. [

3.21. Proposition 3.20 describes meaningfully a part of the associative algebra HH®(A), the
subalgebra H generated by HH'(A), in terms of the geometry of the arrangement A. It is not
clear how to make sense of the complete algebra. We can make the following observation,

though. Let us write
HH?(A)’ = ke ® (Sy+1/(xFx, xFy, yF,) ® $;D) ® § A D,

which is a complement of H? in HH?(A), and let Q = . .. @41 be a factorization of Q as a
product of linear factors. If § : A — A is derivation of A, then our description of HH'(A) implies
that there exist scalars g, ..., 8,41 € k and an element u € A such that § = er:(} 6i0q, +ad(u),
and it follows easily from Proposition 3.19 that the map

{ € HH*(A) — § — { € HH*(A)

is either zero or an isomorphism, provided 3./} §; is zero or not.
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THE GERSTENHABER BRACKET

3.22. Using the comparison morphisms of 3.17, we can now compute the Gerstenhaber bracket.

As usual, this is very laborious.

Proposition. In HH®(A) we have

[0,e] { [HH(A),HH"(A)] =0,

{ [HH'(A).HH'(A)] =0,
[HH'(A),S, ® D AE] =0,

[ [u®D+/1®E(v+wD)®y/\D]_uw®y/\D
[u®D+A®E,wy] = ((n — AN)yFy + pyF — y?a) @ § A D,
[u®D+A®E (v+wD)®JADAE=uw®jADAE,

{ [u®D+A®E, ws] = (- NyFx + pyF —y*a) @ g AD A E,

[S,®DAE,S, ® DAE] =0,

[u®@DAE, (v+wD)®GAD=uw®jADA

A

A
A~

[u® D A E, w] = (uyFx + pyF — *i) ® 4
[(Sp41 +S1D)®GAD, (Sp41 +S1D)®GAD] =
[(Sr+1+S1D) ® § A D, wz] = 0,

E,
AE,
[2,2]
0,

[w3, @2] = 0.
Hereu e S, Aek,ve S, ,weS andpekandu € S,_; are such thatu = Ay" + xi.

Proof. Let us first recall from [Ger64] how one can compute the Gerstenhaber bracket in
the standard complex home (BA, A). If f : A®7 — A is a g-cochain in the standard com-
plex hom ¢ (BA, A), which we identify as usual with hom(A®®, A), and p > ¢, we denote
W, (f) : A®P — AP~1*! the p-cochain in the same complex such that

wy(f)(a1 ® - ®ap)
p—q+1
= Z (—1)(q_1)(i_1)a1 ®:---Q®ai—1® f(a,- ®---® ai+q_1) ® ai+q ®---Q ap.

If now o and f are a p- and a g-cocycle in the standard complex, the Gerstenhaber composition ¢
(which is usually written simply o) of « and f is the (p + g — 1)-cochain

aof=aowpig-1(f)

and the Gerstenhaber bracket is the graded commutator for this composition, so that

[.fl=aop—(-1)* V4 Vgoq.
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Next, if @ and f are now a p- and a g-cochain in the complex hom 4¢ (P, A), we can lift them to
a p-cochain @ = a 01, and a g-cochain ﬂ~ = p oy, in the standard complex hom 4¢ (BA, A), and
the Gerstenhaber bracket of the classes of @ and f is then represented by the (p + g — 1)-cochain
(&, f] o @p+qg-1- This is the computation we have to do in order to compute brackets in HH*(A),
except that in some favorable circumstances we can take advantage of the compatibility of the
bracket with the product to cut down the work. We do this in several steps.

« Since the morphism ¢/ is normalized and HH’(A) is spanned by 1 € k, it follows immedi-

ately that

[HH"(A), HH*(A)] = 0.

« The Gerstenhaber bracket on HH'(A) is induced by the commutator of derivations.
From Proposition 3.18 we have a basis of HH!(A) whose elements are classes of certain
derivations, and it is immediate to check that those derivations commute, so that

[HH'(A), HH' (A)] = 0. (3.13)

« We know that the subspace S, ® D A E of HH%(A) is HH'(A) — HH'(A). Since HH*(A)
is a Gerstenhaber algebra and we now that (3.13) holds, it follows that

[HH'(A),S, ® D AE] = 0.
For exactly the same reasons we also have that
[S,®DAES, ®DAE]=0.

eleta=u®D+A®E withue S, and X € k. Ifp = (v+wD)®g/\lA),withv € Sriq
and w € Sy, one can compute that (& ¢ ) 0 ¢ = uw ® §j A D and that (S o &) o ¢ = 0: it
follows from this that

[a,(v+wD)®;}/\D] :uw®y/\f).
On the other hand, we have (&, ¢ @) o ¢ = 0 and
[6,0]0¢p=(Gody)od=(yu—- Ay ™)@FAD+AYF®GAD
= ((u = DyFx + pyF - y*a) @ g A D
~8'((n=NF —ym)E®D + (A - p)y ® %)
with # € S,_; and p € k chosen so that u = py" + xi.

Finally, if v € S;4; and w € S;, using the compatibility of the bracket and the product
and what we know so far we see that

[a, (0 +wD) @ GADAE] = [a,1®E — (v+wD)®ij AD]
=1®F — [a, (v+wD)®j A D]
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=1QE—uw®ijAD
—uw®GADAE

and, similarly, that

[a,w3] = [@,wp — 1QE] = [at,w3] — 1QE +wy — [a,1® E]
= ((u—/l)ny+,uyF—y2a)®ﬁ/\]§/\}§.

e LetueS,. IfvesS, ;andw € S;, we have

[U®@DAE (v+wD)®GAD]=[u®D — 1®E, (v+wD)®7jAD]
=[u®D,(v+wD)®JAD] — 1QE
+u®D — [1QFE,(v+wD)®yAD]
—uw® JAD - 10E=uw®jADAE.

Similarly,

[U®DAE w]=u®D < 1®E, w)]

A

=[u®D,w] —19E+u®D — [1®E, w]
= (nyx+pyF—y2ﬂ)®gAﬁAE.
ifu=py" +xawithpyekanda e S,_;.
. Letnowaz(v+wD)®g/\ﬁand,B=(s+tD)®yAD,Withv,s€Sr+1 andw, t € S;.

We claim that (@ o ) o ¢ = 0, so that, by symmetry, we have [&, f] o ¢ = 0. To verify our
claim, we compute:

1lx Ay A E|T 2, k[x,y, E]®° RGN 0;

1x ADAEN S [x[x.D. E]1% | 22 .

1lx Ay ADJ|1 lﬂ 1|x|y|D|1 — 1|x|Dl|y|1 + 1|D|x|y|1
— 1|DJylx|1 + 1]y|Dlx|1 — 1]ylx|D[1 +| % |
w3 ()

—— 1|(s + tD)|x|1 — 1|x|(s + tD)|1

14
— —s(l)lx A 3(2)|3(3) - t(1)|x A t(2)|t(3)D —tlx AD|1
N 0;
1ly AD A E|1 li 1ly|D|E|1 - 1|y|E|D|1 + 1|E|y|D|1
— 1|EIDly|1 + 1|D|Ely|1 - 1IDIy|E|1 + | k[x, y, E]®°

2, 1 1(s + tD)|EIT — 11E|(s + tD)[1
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saylsey A Els@y + taylte) A EltsyD + t|D A E|1

I Is

0.

o Letagaina = (v+wD)® 7 A D, withv € S,,; and w € Sy, and let us compute that
(@0 @) 0 s = —w(yD —y""'E)® % A G A D.

Ilx AyAzll KR k[x,y, E]®° NEGN

w3 (&)

1lx AD A E|1 2, k[x, D, E]®®

1lx Ay A DJ|1 |¢—3> 1lx|y|D|1 — 1|x|Dly|1 + 1|D]x|y|1
— 1|Dly|x|1 + 1]y|Dlx|1 — 1|ylx|D|1 +| % |
Ws(&)

—— 1|(v + wD)|x|1 + 1|x|(v + wD)|1

1%

s —v)lx A vylvE)y — waylx A weylwie)D — wlx A DJ1
2 —w(yD — y"'E)

1lyADAE| 2, 1ly|DIE|1 — 1|y|E|D|1 + 1|E|y|D|1
~ 1|E|Dly|1 + 1|DIEly|1 — 1|DIy|EI1 + | K[x, y, E]®*

ws ()

+——— 1|(v + wD)|E|1 — 1|]E|(v + wD)|1

2

— ’0(1)|’U(2) A E|U(3) + W(1)|W(2) A E|W(3)D +w|D A E|1
N

Similarly, we have that (¢ o @) o ¢3 = y(v + wD) ® £ A § A D:

1 Ay Azl [, y, B

wz(@2)

0

1lx AD A E|1 |¢—3> 1|x|D|E[1 — 1|x|E|D|1 + 1|E|x|D|1
— 1|E|D|x|1 + 1|D|E|x|1 — 1|D|x|E|1

w3 (@2)

—— —1|E|(yD - y"*'E)|1 + 1|(yD — y"*)|E|1

,
Zs Ay NEID - yID AEIL+ Y yfly AEly
i=0

o
— 0

¢
1lx Ay A DJ|1 —> 1lx|y|D|1 — 1|x|Dly|1 + 1|D]x|y|1

~1|Dlylx|t + 1lyIDIx|1 - 1lylx|D1 +
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W3(£:)

0, lxlyFEIxI1 — 1(yD — Y E)lyl1
+ 1|yFE|x|1 + 1|y|(yD - y "' E) |1

L yly ADIT -y "y A Bl ) ) )
= (yFE))lx A (YFE)2)|(yFE) 3
s -y(v +wD)
1ly AD A E|1 Iﬁ) 1ly|D|E|1 - 1|y|E|D|1 + 1|E|y|D|1
— 1|E|Dly|1 + 1|D|E|y|1 — 1|D|y|E|1 + | k[x, y,E]®5

wi(

2 ElyFEI1 + 1|y FE|E|1
v ) )

> (YFE)1)|(yFE) ) A EI(yFE)3)
s 0.

It follows from this that

o

(&g, d) 0 ps = —w(yD -y " EY®@XAGAD +y(v+ wD) @ X A A
=(yo+y T E)@XAGAD

and, as we say in 3.13, this is a coboundary.
« The one computation that remains is that of the bracket of w, with itself, which is

represented by the 3-cocycle
[z, 2] © p3 = 2(@z © p) © 3 = 2y*FE® % A A D, (3.14)

as can be seen from the following calculation:

lx Ay Az|l KR k[x,y, E]®°

wz(@2)

1x A D AE1 S 1)x|DIE|T — 1]x|EID|1 + 1|E|x|D|1
— 1|E|D|x|1 + 1|D|E|x|1 — 1|D|x|E|1

w3 (&)

—1|El(yD - y"*'E)|1 + 1|(yD — y"*")|E1
2, 1ly AEID - yID A El1 +Zr:yi|y/\E|yr_i
i=0
5 0
1lx Ay A DJ1 & 1|x|y|D|1 - 1|x|D|y|1 + 1|D|x|y|1
— 1Dlylx|1 + 1lyIDIx|1 - 1lylxIDI1 +
ws(é

A, A lxlyFEIx|1 - 11(yD — 5™ E) yl1
+ 1|yFE|x|1 + 1|yl(yD — y"*'E)|1
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Zs yly A DI -y A ElL ) ) )
= (YFE))lx A (YFE) ) |(YFE)3)
(O] 25
— —y°FE
1y A D A E|L 2 1lyIDIEI - 1|y|EIDI1 + 1|Ely|D|1
— 1|EIDlyl1 + 1|DIEly|1 - 1IDIy|EI1 + | k[x,y, E]®

ws (G32) _ i
", _1|E|yFE|1 + 1|yFE|E]1

12 _ _ _
— (YFE)1)|(yFE)(2) A EI(YFE)3)
2500,

Now the 3-cocycle (3.14) is a coboundary, again by what we saw in 3.13, so that the class
of w, has bracket-square zero.
This completes the proof of the proposition. O

3.4 HOCHSCHILD HOMOLOGY, CYCLIC HOMOLOGY AND K-THEORY

3.23. For completeness, we determine the rest of the ‘usual’ homological invariants of our
algebra A. Recall that our ground field k is of characteristic zero.

Proposition. The inclusion T = k[E] — A induces an isomorphism in Hochschild homology and

in cyclic homology. In particular, there are isomorphisms of vector spaces

T, ifi=0o0ri=1;
0, ifi>2;

T, ifi=0;

HCi(4) = {HCi(k), ifi > 0.

PH‘I,(A) = {
On the other hand, the inclusionk — A induces an isomorphism in periodic cyclic homology and

in higher K-theory.

Proof. As we know, the algebra A is Ny-graded and for each n € Ny its homogeneous com-
ponent A, of degree n is the eigenspace corresponding to the eigenvalue n of the deriva-
tion ad(E) : A — A. On one hand, this grading of A induces as usual an Ny-grading on the
Hochschild homology HH,(A) of A; on the other, the derivation ad(E) induces a linear map
Lad(p) : HHe(A) — HH,(A) as in [Lod92, §4.1.4] and, in fact, for all n € N the homogeneous
component HH,(A), of degree n for that grading coincides with the eigenspace corresponding
to the eigenvalue n of L,q(g). As the derivation ad(E) is inner, it follows from [Lod92, Propo-
sition 4.1.5] that the map L,q(g) is actually the zero map and this tells us in our situation
that HH,(A), = 0 for all n # 0. Of course, this means that HH,(A) = HH.(A), and, since
A is non-negatively graded, it is immediate that the 0th homogeneous component HH, (A),
coincides with the Hochschild homology HH.(Ag) of Ay and that the map HH.(A) — HH.(A)
induced by the inclusion Ay < A is an isomorphism. Now, in the notation of [Lod92, Theorem
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4.1.13], this tells us that HH, (A) = 0 so that, by that theorem, we also have HC. (A) = 0: this
means precisely that the inclusion Ay < A induces an isomorphism HC,(Ay) — HC,.(A) in
cyclic homology. Together with the well-known computation of the Hochschild homology of a
polynomial ring and that of the cyclic homology of symmetric algebras [Lod92, Theorem 3.2.5],
this proves the first claim of the statement.

In the proof of the lemma of 3.5 we constructed an increasing filtration F on the algebra A
with F_1A = 0 and such that the corresponding graded algebra is the commutative polynomial
algebra gr A = k[x, y, D, E] with generators x and y in degree 0 and D and E in degree 1. In
particular, both gr A and its subalgebra gr, A of degree 0 have finite global dimension. It follows
from a theorem of D. Quillen [Qui73, p. 117, Theorem 7] that the inclusion k[x,y] = FpbA —» A
induces an isomorphism Kj(k[x,y]) — K;(A) in K-theory for all i > 0. Similarly, the the-
orem of J. Block [Blo87, Theorem 3.4] tells us that that inclusion induces an isomorphism
HP,(k[x,y]) = HP.(A) in periodic cyclic homology. As the inclusion k — k[x, y] induces an
isomorphism in K-theory and in periodic cyclic homology, we see that the second claim of the
proposition holds. O

3.5 THE TWISTED CALABI-YAU PROPERTY

3.24. The enveloping algebra A® of A is a bimodule over itself, with left and right actions » and
< given by ‘outer’ and ‘inner’ multiplication, respectively, so thatif a® b,c ® d and e ® f are
elementary tensors in A®, we have

a®brc®d<e® f =ace® fdb.
From this bimodule structure we obtain a duality functor
hom e (—, A®) : 4eMod — Mod ge.

On the other hand, using the anti-automorphism 7 : A° — A® such that r(a ® b) = b ® a for all
a, b € A we can turn a right A°-module M into a left A®-module, with action u>m = m<r(u) for
u € A° and m € M. In this way, we obtain an isomorphism of categories r* : Mod4e — 4<Mod.
We denote ()" : 4eMod — 4eMod the composition 7* o hom ge (—, A®).

Let now W be a finite dimensional vector space, let W* be the vector space dual to W, and
view AQ W ® Aand A® W* ® A as left A°-modules using the usual ‘exterior’ action. There is a
unique k-linear map

P:ARW RA— (AW ® A)Y

suchthat ?(a® ¢ @ b)(1® w® 1) = ¢p(w)b ® a and it is an isomorphism of left A°-modules:
we will view it in all that follows as an identification.

Notice that we have already proved in 2.25 that for any free hyperplane arrangement the
algebra of differential operators is twisted Calabi-Yau. Since in the case of a line arrangement
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the algebra Diff (A) is an iterated Ore extension —as we have shown in Lemma 2.8—, we can also
deduce this fact using the results by L. Liu, S. Wang and Q. Wu in [LWW14]. We prefer to give
a straightforward, computational proof, as the isomorphism of complexes that intervenes in it
is useful when one tries to explicit the duality between homology and cohomology described
in 2.23.

3.25. Proposition. The algebra A is twisted Calabi-Yau of dimension 4 with modular automor-
phism o : A — A such that

o(x) = x, o(y) =vy, o(D) =D + F,, o(E)=E+r+2.

Let us recall from Section 2.4 that this means that A has a resolution of finite length by finitely
generated projective A-bimodules, that Exti‘e (A, A%) = 0if i # 4 and that Extie (A A°) = A,
the A-bimodule obtained from A by twisting its right action using the automorphism o, so that
avx<b=axo(b)foralla,b e Aandall x € A,.

Proof. A direct computation shows that there is indeed an automorphism o of A as in the
statement of the proposition. We already know that A has a resolution P of length 4 by
finitely generated free A-bimodules, so we need only compute Ext’. (A, A°), and this is the
cohomology of the complex P¥ obtained by applying the functor described in 3.24 to P. Using
the identifications introduced there, this complex P is

dY dY dY d’
ARA S AQV QA S AQA V' @A S ANV QA > AQAV* QA
with left A¢-linear differentials such that

dY181)=-[x,108x®1]-[y,10§®1]-[D,198D®1] - [E,10E®1];
BY(18i01)=[1,18xAj®1]+[D,1@xAD®1]+[E, 10X AE®1]
+1®£AE®1+@§ZAD(F);
BY1®j®1)=-[x,10xAj®1]+[D,10§AD®1]+[E,. 10§ AE®1]
r1@gArLe1+VIN(F),
d;(l@b@l):—[x,1®32/\f)®1]—[y,l®Q/\ﬁ®1]+[E,1®f)/\E®Al] )
+r®®DANE®I;
BHO®E®1) =-[x,10*AE®1]-[y, 18§ AE®1] - [D,1®8DAE®1];
d1esrjen)=-[D1eirjrDe1]- vy () A
—[EL1I®XAJAE®LI]-2@XAJAE®L;
dY1®XAD®1) =[1, 18X AGJAD®1] - [E,18 X ADAE®1] o
-(r+1)®@xADAEQ®T;
BY1®XAE®1) =[y, 10X AJAE®1]+[D,1®8%ADAE®1]

R
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BY1®GAD®1) =[x, 1®XAJAD®1]-[E, 1@ §ADAE® 1]
~(r+1)®GADAE®T;

O®IAE®1) =[x, 10 AJAE®1]+[D,1®§ADAE® 1]+ VI"PE(F);
BYA®DAE®1) =[x, 10 ADAE®1]-[1,1®JADAE®1];
dY1®XAGAD®1) =[E,18XAGJADAE®1]

+(r+2) @ AJADAE®T;

s e A A = iAGADAE

dj1exAjAE®1) =-[D,1®@xA§JADAE® 1] - V""" 7" (F);
dYA®*ADAE®1)=[y, 18X AJADAE®1];
dYU®GADAE®1) =[x, 1@ AjJADAE®1],

where each V¥ is the image of V¥ under the map a ® u ® b - b ® u ® a, and the same with
each @Z

Let us now identify P ®4 A, with P as vector spaces, remembering that the bimodule
structure on P with this identification is given by a»x <b = axo(b) foralla,b € Aand all x € P.
There is a morphism of complexes of A-bimodules ¢/ : P¥ — P ®4 A, such that

YA®FAJADAE®1) =1®1;
YA1QJADAE®1) =-10x®1;
Yy10xADAE®1) =10y®1
YA®XAGAE®1)=-19D®1-¢
YI®XAGAD®1) =10E®1
Y1®DAE®1)=-10xAy®1;
Y1®X*AD®1) =10y AE®;
Y1®GIAD®1) =-19xAE®T;
YAQIAE®1)=1@xAD®1+xAE;
Y1®XAE®1) =-10yAD®1+(;
VA1®XxAj®1)=—-19DAE®1—-¢ANE;
JIQ®E®1) =108xAyAD®I;
Y10D®1)=-10xAyAE®1;
Y1®y®1)=1xADAE®1+xAEANE;
Y1®x®1)=-19yADANE®1+{ AE;
(

where € A® V® Aand { € A® A*V ® A are chosen so that

d\(£) = Vy(F) - 1|E,, () = &y — y& — 1ly|F, — VE(F) + V(F).
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That there are elements which satisfy these two conditions follows immediately from the
exactness of the Koszul resolution of S as an S-bimodule —indeed, the right hand sides of the
two conditions are cycles in that complex— but we can exhibit a specific choice: if we write

F =3 asbers1 Cax®y?, with co, ..., c,_; € k, then we can pick
§= Z (t + Deay’lylx?y’, { = Z cax® y°lx Aylxtyt.
a+b=r+1 a+b=r+1
s+t+1=b-1 s+t+1=b
s'+t'+1=a

That these formulas for ¢ do indeed define a morphism of complexes follows from a direct
computation and it is easy to see that it is in fact an isomorphism, as for an appropriate ordering
of the bases of the bimodules involved the matrices for the components of { are upper triangular.
Of course, it therefore induces an isomorphism in cohomology and, since A, is A-projective
on the left, we conclude that there are isomorphisms of A-bimodules

A, ifi=4

H'(PY) = H'(P®s A;) = .
0 if i > 0.

This completes the proof. O

3.6 RESUMEN

En este capitulo nos enfocamos en el estudio del algebra Diff (A) para el caso de un arreglo A
en un espacio vectorial V de dimension 2 con al menos cinco rectas: asi son los arreglos libres
mas simples. Recordemos del Capitulo 2 que ya disponemos de una presentacion para Diff (A)
en 2.8: escribiendo al polinomio que define al arreglo como Q = xF, vemos que Diff(A) es
el algebra generada por las letras x, y, E y D de manera que se satisfacen las relaciones de

conmutacion
[y,x] =0,
[D,x] =0, [D,y] = F,
[E’x] =X, [an] =y, [E7D] = (l—Z)D,

en donde [ es la cantidad de rectas de A. Encontramos en la Secciéon 3.1 una resolucion
proyectiva de Diff (A) como bimodulo sobre si mismo para, después de un calculo extenso, dar
en la Proposicion 3.15 una descripcion de la cohomologia de Hochschild de Diff ((A) de manera
completamente explicita. Sin entrar en detalles, la proposicion nos da la siguiente informacion.

Proposicion. Si A es un arreglo central de rectas de | rectas conl > 5, la serie de Hilbert
de HH® (Diff(A)) es

hame)(t) = 1+ 1t + (21 = 1)1* + 1.
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Cuando el arreglo tiene menos de cinco rectas, la conclusion de la proposicion no sigue siendo
cierta: lidiamos con esta situacion especial utilizando técnicas diferentes sobre el final de la
tesis.

El siguiente paso es describir la estructura de algebra de HH®(Diff (A)) y su estructura
de Gerstenhaber: es para esto que necesitamos una descripcion tan explicita. Los resultados
aparecen en las Proposiciones 3.19 y 3.22 y son, una vez mas, demasiado técnicos para reproducir
aqui. De cualquier manera, estas estructuras nos dan un mejor entendimiento de nuestros
calculos previos y nos permiten relacionar Diff(A) con un invariante conocido del arreglo, el

algebra de Orlik—Solomon. Esta aparece en nuestra situacion en la Proposicion 3.20:
Proposicion. La subalgebra H de HH* (Diff(A)) generada por HH' (Diff(A)) es isomorfa al
algebra de Orlik—Solomon de A.

Ademas de estos resultados, calculamos en la Proposicion 3.23 la homologia de Hochschild,

la homologia ciclica y la homologia ciclica periodica y la K-teoria de Diff(A).

Proposicion. La inclusion T = k[E] — Diff(A) induce un isomorfismo en homologia de
Hochschild y homologia ciclica. En particular, hay isomorfismos de espacios vectoriales

IR

T, sii=00i=1; T, sii=0;
0, sii>2;

fn{i(Diff(ﬂ))z{ HC;(Diff(A)) HC,(K). sii> 0

Mas aun, la inclusion k — Diff (A) induce un isomorfismo en homologia ciclica periédica y en
K-teoria superior.

Para terminar el capitulo, obtenemos en la Seccién 3.5 una prueba directa de la propiedad
de Calabi—Yau para el caso especial de arreglos centrales de rectas.

Proposicion. El algebra Diff (A) es twisted Calabi-Yau torcida de dimension 4 con automorfismo
modular o : Diff(A) — Diff(A) dado por

o(x) =x, o(y) =y, (D) =D +F,, o(E)=E+1L



- 4 —
AUTOMORPHISMS OF Diff(:A) AND THE ISOMORPHISM
PROBLEM

In this chapter we continue with the study of the algebra A = Diff (A) of differential operators
tangent to a central arrangement of lines A that we started in Chapter 3, bearing in mind that
the arrangement has r+2 lines and that r is at least 3. We take advantage of the explicitness of the
calculation of the first Hochschild cohomology group of A and employ the methods developed
by J. Alev and M. Chamarie in [AC92] to give a description of the group of automorphisms of A:
we show that Aut(A) is the semidirect product of the subgroup of homogeneous automorphisms
of degree 0 and that of the exponentials of locally ad-nilpotent elements. With this description
at hand, we solve the problem of determining which pairs of arrangements ‘A and A’ have
isomorphic algebras Diff(A) and Diff (A’) and, in particular, we show that the arrangement
A can be recovered from the algebra Diff (A).

41 AUTOMORPHISMS

4.1. Our next objective is to compute the group of automorphisms of the algebra A. We start
by describing some graded automorphisms of A. Later we will see that these are, in fact, all
the graded automorphisms of our algebra, and that together with the exponentials of locally
ad-nilpotent elements they generate the whole group Aut(A).

Lemma. If(‘cl Z) € GL,(k) and e € kK™ are such that

1

(ad = boye 2(@x + by.ex +dy) = Qlx.y),

andv € k and ¢y € S,, then there is a homogeneous algebra automorphism 0 : A — A such that
0(x) = ax + by, 0(y) = cx + dy, O(E)=E+v

and

ebF .
- E+eD, ifb+0;
(D) = {¢° ax+by f (4.1)

¢o +eD, if not.

Proof. This is proved by a straightforward calculation. It should be noted that the quotient
appearing in the formula (4.1) is always a polynomial. O

81



82 CHAPTER 4. AUTOMORPHISMS OF Diff(A) AND THE ISOMORPHISM PROBLEM

4.2. Recall form [AC92] that a higher derivation of A is a sequence d = (d;);»¢ of linear maps
A — Asuch that dy = id4 and for all a, b € A and all i > 0 we have the higher Leibniz identity

diab) = )" dy(a)dy(b).

s+t=i

It is clear that if d = (d;);s is a higher derivation and m > 0, then the sequence dl"] = (dEm])iZO
with

i

i) di/m, ifiis divisible by m;
- 0, if not

is also a higher derivation. On the other hand, if d = (d;)i»o and d’ = (d});»o are higher
derivations of A, we can construct a new higher derivation (d;’);»o, which we denote d o d’,
putting d;” = },s,;=;ds o dj for all i > 0. Finally, if § : A — A is a derivation of A, then the
sequence (%(5 ;>0 is a higher derivation, which we denote by exp(§); notice that this makes
sense because our ground field k has characteristic zero.

We let D(A) be the associative subalgebra of Endy(A) generated by Der(A), and say that
two higher derivations d = (d;);»o and d” = (d;);»¢ of A are equivalent, and write d ~ d’, if for
all i > 0 the map d; — d is in the subalgebra of Endy(A) generated by D(A) and d, ..., d;—1;

one can check that this is indeed an equivalence relation on the set of higher derivations.

4.3. We recall the following very useful lemma from [AC92]:

Lemma. Ifd = (d;);>o is a higher derivation of A, then d; € D(A) foralli > 0.

Proof. The result is an easy consequence of the fact that

ifd is a higher derivation of A and j > 1, then there exists a higher derivation
d’ = (d])io such thatd’ ~ d,d] = 0if1 < i < j, and dj’. is an element (4.2)
of Der(A).

To prove that this holds, let d = (d;);»o and suppose there is an j > 1 such that thatd; = 0
if 1 < i < j. The higher Leibniz identity implies that d; is an element of Der(A), and then
we can consider the higher derivation exp(—a'j)m. We let d” = (d])i»o be the composition
exp(—dj)m o d. It is immediate that d ~ d” and a simple computation shows that d; = 0 if
1 < i < j+ 1. The claim (4.2) follows inductively from this. O

4.4. Lemma. An element of A commutes with x and with y if and only if it belongs to S.

Proof. The sufficiency of the condition is clear. To prove the necessity, let e € A be such that
[x,e] = [y,e] = 0. There are an integer m > 0 and elements ¢y, ..., ¢, in the subalgebra

generated by x, y and D in A such that e = 37 ¢;E’, and we have 0 = [x,¢;] = X/ $it1 (E):
this tells us that ¢; = 0if i > 0, and that e = ¢. In particular, there are an integer n > 0
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iFD!

and elements Yy, ..., §, in S such that e = 37 y;D". If i > 0 we have [D',y]
mod EBJZ;?) SDV, so that

n n-2
0=[e,y]= Z ¥;[D',y] = ny, FD"™'  mod @ SD'.
i=0 Jj=0

Proceeding by descending induction we see from this that {/; = 0ifi > 0, sothate = ¢y € S. [

4.5. Proposition. If0 : A — A is an automorphism of A such that for alli > 0 and alla € A; we
have 6(a) € a + P

constant, such that

. Aj, then here exists an f € S, uniquely determined up to the addition of a

Jj>i

0(x) = x, 0(y) =y, 0(D) = D - Ffy, 0(E) = E - [E, f].

Conversely, every f € S determines in this way an automorphism of A satisfying that condition.

Proof. Let 0 : A — A be an automorphism of A as in the statement. For each j > 0 there is
a unique linear map 6; : A — A of degree j such that for each i > 0 and each a € A; the
element 0;(a) is the (i + j)th homogeneous component of 0(a). We have that for all a € A we
have 0;(a) = 0 for j > 0 and 0(a) = 3 ;> 0i(a) and, moreover, the sequence (6;);>o is a higher

derivation of A. In particular, it follows from Lemma 4.3 that
0; € D(A) foralli > 0. (4.3)

We know from Proposition 3.15 that Der(A) = S,D ® kE @ InnDer(A). If u is an irreducible
factor of xF, then (qﬁﬁ)(uA), E(uA) and [a, uA] are all contained in uA for all ¢ € S, and all
a € A, and therefore (4.3) implies that that 6(uA) C uA. As our argument also applies to the
inverse automorphism 67!, we have 07! (uA) C uA and, therefore, 0(uA) = uA. Since all units
of A are in k, we see that 6(u) = u. Since of xF has two linearly independent linear factors, we
can conclude that 6(x) = x and 6(y) = y.

LetO(E) =E+e; +---+e withe; € A; foreachi € {1,...,]}. We have
x = 0(x) = [0(E), 0(x)] = [E, x] + [er, x] + - - - + [eg, x]

and, by looking at homogeneous components, we see that [e;,x] = 0 for all i € {1,...,1}.
Similarly, [e;, y] = 0 for such i, and therefore Lemma 4.4 tells us that e, ..., e; € S.

Suppose now that (D) = D +dyq + -+ +d; withd; € Ajforeachj € {r+1,...,1}.
Considering the equality [0(E), 8(D)] = r6(D) we see that d,,; = %Fe,'y foreachi e {1,...,1}.
Putting f = — 25:1 %ei, we obtain the first part of the lemma. The second part follows from a
direct verification. O
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4.6. The automorphisms described in Proposition 4.5 are precisely the exponentials of the
inner derivations corresponding to locally ad-nilpotent elements of A. This is a consequence of

the following result:

Proposition. An element of A is locally ad-nilpotent if and only if it belongs to S. If f € S, then
the automorphism exp ad(f) maps x,y, D and E tox, y, D — Ff, and E — [E, f], respectively.

Proof. Suppose that e € A is a locally ad-nilpotent element. The kernel ker ad(e) is a factorially
closed subalgebra of A, so that whenever a, b € A and ad(e)(ab) = 0 we have ad(e)(a) = 0 or
ad(e)(b) = 0; see [Fre06]for the proof of this in the commutative case, which adapts to ours.
Since [x'y/D¥E!, x] = —x'*1y/ D7, (E?) for all i, j, k, I > 0, we have [A, x] C xA and from
this we see immediately that [A, xA] C xA. This implies that there is a sequence (ux)x»o in A
such that ad(e)*(x) = xuy for all k > 0. Since e is locally ad-nilpotent, we can consider the
integer ko = max{k € Ny : ad(e)*(x) # 0}, and then we have 0 # Xug, € kerad(e). As ker ad(e)
is factorially closed, we see that ad(e)(x) = 0. In other words, the element e commutes with x.

There are an integer m > 0 and elements ¢y, ..., ¢, in the subalgebra generated by x, y
and D in A such that e = 3" ¢;E’, and we have 0 = [x,e] = 2,1 $;71(E"): this tells us that
¢; = 0if i > 0, and that e = . In particular, there are an integer n > 0 and elements v, ..., ¥,

in S such thate = Y7 ;D'

An induction shows that [D, F] € FA for all i > 0, and using this we can easily see that
le, F1 = X1, ¥i[D', F] € FA, from which it follows that in fact [e, FA] C FA. There is therefore
a sequence (v;);>o of elements of A such that ad(e)’(F) = Fv; for all i > 0. The local nilpotence
of the map ad(e) allows us to consider the integer

ip = max{i € Ny : ad(e)*(F) # 0},

and then 0 # Fv;, € kerad(e). If ax + by is any of the factors of F, we have b # 0 and
ax + by € ker ad(e): clearly, this implies that y commutes with e.

In view of Lemma 4.4, we see that e € S: this proves the necessity of the condition for local
ad-nilpotency given in the lemma. Its sufficiency is a direct consequence of the fact that the
graded algebra associated to the filtration on A described in 3.1 is commutative. Finally, the

truth of the last sentence of the proposition can be verified by an easy computation. O

4.7. We write Auty(A) the set all automorphisms of A described in Lemma 4.1, and Exp(A) the
set of all automorphisms of A described in Proposition 4.5; they are subgroups of the full group
of automorphisms Aut(A).

Theorem. The group Aut(A) is the semidirect product Auty(A) < Exp(A), corresponding to the
action of Auty(A) on Exp(A) given by

0o - expad(f) = expad(07'(f))
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forall 6y € Auty(A) and f € S. The subgroup Auty(A) is precisely the set of automorphisms of A

preserving the grading and Exp(A) is the set of exponentials of locally nilpotent inner derivations
of A.

Notice that the action described in this statement makes sense, as 6y(S) = S whenever 6,
belongs to Autg(A).

Proof. Let6 : A — Abe an automorphism and let us write 0(E) = eg+- - -+ey, 0(x) = xo+- - - +x7,
O(y) =e +---+y;, (D) =dy +--- +d; with e;, x;, y;, d; € A; for each i € {0,...,]}. Since
0 is an automorphism, we have

[0(E). 0(x)] = 0(x), [6(E), 6(y)] = 0(y), [0(E).0(D)] = rO(D).  (44)

Looking at the degree zero parts of these equalities, and remembering that A, is a commutative
ring, we see xg = o = do = 0. As 8(x) # 0, we can consider the number s = min{i € Ny : x; # 0}
and we have s > 0. Looking that the component of degree s of the first equality in (4.4), we
see that [eg, xs] = x5. This means that the restriction ad(ey) : As — A has a non-zero fixed
vector. Now Ay as a right k[E]-module is free with basis {x’y/D* : i + j + rk = s}, the map
ad(ep) is right k[E]-linear and coincides with right multiplication by —z5(eg) on As. Clearly, the
existence of non-zero fixed vector implies that —z5(ey) = 1, so that ey = uE + v for some u € k*
and v € k with su = 1. Putting now s’ = min{i € Ny : y; # 0} and s” = min{u € Ny : d; # 0}
and looking at the components in the least possible degree in the second and third equations
of (4.4), we find that s’u = 1 and s”’u = r. In particular, s = s” and s”’ = rs.

Suppose for a moment that s > 1. As 0(x), 8(y) and 6(D) are in the ideal (As) generated
by A, the composition q : A — A of 6 with the quotient map A — A/(A;) is a surjection such
that q(Ag) = A/(As). This is impossible, as A is a commutative ring and A/(Ag) is not: we
therefore have s = 1 and, as a consequence, u = 1.

There exist a, b, ¢, d € k[E] such that x; = xa + yb and y; = xc + yd. The four elements
O(E), 8(x), 6(y) and B(D) generate A and, as 8(D) is in EBin Aj, the elements x and y are in
the subalgebra generated by the first three. It follows at once that x, y € x1k[E] + y;k[E] and,
therefore, that (%) € GLy(K[E]).

Let us write f € k[E] — f € k[E] the unique algebra morphism such that E=E+1. We
have [6(x), 8(y)] = 0 and in degree 2 this tells us that

x?(al — dc) + xy + yz(bci— Ed) =0,
so that
ac = dc, bd =cd. (4.5)

Suppose that a is not constant. As the characteristic of k is zero (and possibly after replacing k
by an algebraic extension, which does not change anything) there is then a ¢ € k such that
a(é) = 0 and a(¢) = a(& + 1) # 0, and the first equality in (4.5) implies that ¢(¢) = 0. The
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determinant of ( a Z ) is thus divisible by E — ¢, and this is impossible. Similarly, we find that
all of b, ¢, d must be constant.

Since d, € A,, there existk > 0, ¢y, ..., ¢r € S, and h € k[E] such thatd, = Zfzo $;E* + Dh.
The component of degree r + 1 of [8(D), 8(x)] is

k
0=[dr,x1] =- Z(ax + by)¢;11 (E') — (ax + by)Dry(h) + bFh.
i=0

We thus see that h is constant, that ¢; = 0 if i > 2, and that
(ax + by)¢p; + bhF = 0.

If b = 0, then ¢ = 0, and if instead b # 0, then either h # 0 and we see that ax + by divides F
and that ¢; = —bhF/(ax + by), or h = 0 and ¢; = 0. In any case, we see that

ax+by

; ¢o — YL E+ hD, ifb #0;
¢ + hD, if not.
Finally, the component of degree r + 1 of the equality [0(D), 8(y)] = 6(F) tells us that

xF

F(ax + by, cx + dy) = (ad — bc)h .
ax + by

It follows now from Lemma 4.1 that there is a graded automorphism 6y : A — A such that
6o(x) = ax+by, 6y(y) = cx+dy, 6(E) = E+v and 6y(D) = d,. The composition 6, o 0 satisfies
the hypothesis of Proposition 4.5, and then there exists an f € S such that 8 = 6, o exp ad(f).
This shows that Aut(A) = Auty(A) - Exp(A). Moreover, if 8 is a graded automorphism, then so
is expad(f) = 6, o 0 and, since it maps E to E — [E, f], this is possible if and only if f € k,
that is, if and only if exp ad(f) = id4; this proves the last claim of the theorem.

Finally, computing the action of both sides of the equation on the generators of A, we see
that

expad(f) o 6y = 6y o expad(07'(f))
for all f € S and all 6y € Auty(A), and this tells us that Aut(A) is indeed a semidirect product
Auto(A) < Exp(A). O
4.2 'THE ISOMORPHISM PROBLEM

In this section we make use of our description of the group of automorphisms of Diff(A)
to give a complete solution of the problem of determining which pairs of arrangements of
lines A and A’ have isomorphic algebras Diff (A) and Diff (A’). In particular, we show that
the arrangement A can be recovered from the algebra Diff (A).
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4.8. As usual, we say that an element u of A is normal if uA = Au. Such an element, since it is
not a zero-divisor, determines an automorphism 6, : A — A uniquely by the condition that
ua = 0y(a)u forallu € A.

Proposition. Let Q = g - - - ar+1 be a factorization of Q as a product of linear factors. The set of
non-zero normal elements of A is

‘/V(A) = {Aaéo e 'airﬂ tA € kx,io, ce.,ipy1 € No}

r+1

This set is the saturated multiplicatively closed subset generated by Q both in A or in S.

Proof. A direct computation shows that each of the factors «y, ..., @,+1 of Q is normal in A, so
the set .#"(A) is contained in the set of normal elements of A, for the latter is multiplicatively
closed. The set .4 (A) is multiplicatively closed and it is saturated because S is closed under
divisors in A, and it is clear that as a saturated multiplicatively closed it is generated by Q.
To conclude the proof, we have to show that every non-zero normal element of A belongs
to A (A).

Let u be a normal element in A and let 6§, : A — A be the associated automorphism, so that
ua = 0,(a)u for all a € A. There are k, | € Ny with k < [ and elements uy, ... u; € A such that
u=ug+---+u,u; €A;ifk <i<l and ux # 0 # y;. Similarly, there are s, t € Ny withs < ¢
and elements eg, ..., e, € Asuchthat 0,(E) =es+---+e;,e; € A;if s <i <t,and es # 0 # e;.
As we have

ugE+ -+ wE =uE =0,(E)u = esug +--- + e;uy

with ugE, u;E, e;ur and e;u; all non-zero, looking at the homogeneous components of both
sides we see that s = t = 0. This means that 8, (E) = f(E) € k[E], and therefore the above
equality is really of the form

urE+---+wyE= f(E)uk + -0+ f(E)ul.

It follows from this that w;E = f(E)u; = u;f(E + i) for all i € {k,...,l} and therefore that
E = f(E + k) and that E = f(E + I). Since our ground field has characteristic zero, this is only
possible if k = I: the element u is thus homogeneous of degree [.

Now, since ua = 6, (a)u for all a € A, the homogeneity of u implies immediately that 6, is
a homogeneous map. There are n € Ny and ¢y, ..., ¢, in the subalgebra of A generated by x, y
and D, such that ¢, # 0 and u = 37" ) §;E’. As 0,(x) has degree 1, it belongs to S; and we have

0,(x) i GiE" = 0, (x)u = ux = Zn: ¢;E'x = xz $i(E+ 1)
i=0 i=0 i=0

Considering only the terms that have E™ as a factor we see that 8, (x) = x, and then the equality
tells us that in fact 37" ) ¢;E' = ;¢ $i(E + 1)". Looking now at the terms which have E"™! as
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a factor here we see that moreover n = 0, so that u € k[x, y, D]. There exist then m € N and
Yo, .-, Ym € S such that ,,, # 0 and u = 37 ¢;D*. As 0,,(y) has degree 1, it belongs to S; and
we have

0u(y) Zm: ¥iD' = 0,(y)u = uy = Zm: ¥:D'y = Zml yyiD' + Zml %i[D', y].
i=0 i=0 i=0 i=0

Comparing the terms that have D™ as a factor we conclude that also 8, (y) = y.

As 0, fixes x and y, the element u commutes with x and y, and Lemma 4.4 allows us to
conclude that u is in S;. Moreover, we know that all homogeneous automorphisms of A are
those described in Lemma 4.1, so there exist ¢ € S, and e € k* such that 6,(D) = ¢ + eD. We
then have that

uD = 0,(D)u = (¢ + eD)u = ¢du + euD + euyF

and this implies that e = 1 and ¢u + u, F = 0. Suppose now that « is a linear factor of u and let
k € Nand v € S be such that u = «Fv and v is not divisible by . The last equality becomes
pakv + kakilava + akva = 0 and implies that a divides a, F: this means that « is a non-zero
multiple of x or a linear factor of F. As u can be factored as a product of linear factors, we can
therefore conclude that u belongs to the set described in the statement of the proposition. [

4.9. There is a close connection between normal elements, the first Hochschild cohomology
space that we computed in Section 3.2 and the modular automorphisms of A.

Proposition. Let Q = a - - - ar4+1 be a factorization of Q as a product of linear factors.

(i) Every linear combination of the derivations Oy, ..., 0 : A — A described in Proposi-

Ar+1
tion 3.18 is locally nilpotent.
(i) Ifu=2Aay --- a7, withA € k* and iy, ..., ir+1 € Ny, is a normal element of A, then the

automorphism 0, : A — A associated to u is

r+1

0, = exp —Zijéaj .

Jj=0

This automorphism is such that 0,(f) = f forall f € S and

forall 5 € Der(A).
(iii) The modular automorphism o : A — A described in Proposition 3.25 coincides with the
automorphism 0g associated to the normal element Q. O

We omit the proof since it follows from a straightforward calculation using our previous
results.
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4.10. Another immediate application of the determination of the set of normal elements is the
classification under isomorphisms of our algebras.

Proposition. Let A and A’ be two central arrangements of lines ink?. The algebras D(A) and
D(A’) are isomorphic if and only if the arrangements A and A’ are isomorphic.

Proof. The sufficiency of the condition being obvious, we prove only its necessity. We will de-
note with primes the objects associated to the arrangement A’, so that for example A” = D(A’)
and so on. Moreover, in view of the sufficiency of the condition we can suppose without loss
of generality that both arrangements A and A’ contain the line with equation x = 0.

Let us suppose that there is an isomorphism of algebras ¢ : A — A’. Since ¢ maps locally
ad-nilpotent elements to locally ad-nilpotent elements, it follows from Proposition 4.6 that
¢(S) = S’ and therefore that ¢ restricts to an isomorphism of algebras ¢ : S — S’. On
the other hand, ¢ also maps normal elements to normal elements, so that ¢ restricts to a
monoid homomorphism ¢ : A (A) — A (A'). Let Q = ap- - apy1 and Q" = aj--- ), be
the factorizations of Q and of Q’ as products of linear factors. The invertible elements of
the monoid .4 (A) are the units of k and the quotient .4 (A)/k* is the free abelian monoid
generated by (the classes of) ay, ..., a,41 and, of course, a similar statement holds for the
other arrangement. Since ¢ induces an isomorphism .4 (A)/k* — A (A’)/k* we see, first,
that r = r’ and, second, that there are a permutation 7 of the set {0,...,r + 1} and a function
A:{0,...,r + 1} = k* such that ¢(a;) = )L(i)o:;(l.) foralli € {0,...,r + 1}. As there are at
least two lines in each arrangement, this implies that the restriction ¢|s : S — S’ restricts to an
isomorphism of vector spaces ¢ : S; — S|, so that ¢|[s is linear, and that ¢(Q) = Q’. It is clear
that this implies that the arrangements A and A’ are isomorphic. O

4.3 RESUMEN

Seguimos en este capitulo estudiando el algebra de operadores diferenciales Diff (A) tangentes
a un arreglo central A de al menos cinco rectas. Extraemos consecuencias de nuestro calculo de
la cohomologia: particularmente, del primer grupo de cohomologia de Hochschild de Diff (A).
Utlizando los métodos desarrollados por J. Alev y M. Chamarie en [AC92], describimos el grupo
de automorfismos de Diff(A) en el Teorema 4.7:

Teorema. El grupo Aut(Diff(A)) es el producto semidirecto Auty(Diff (A)) < Exp(Diff(A))
de los subgrupos Aut,(Diff(A)) de automorfismos de Diff (A) que preservan la graudacion
y Exp(Diff(A)) de exponenciales de derivaciones internas localmente nilpotentes de Diff (A).
Concretamente, la accion de Auty(Diff (A)) en Exp(Diff(A)) esta dada por

0o - expad(f) = expad(67'(f))

para cada 0, € Auty(Diff(A)) y f € S.
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Junto con este teorema, damos en el Lema 4.1 y la Proposicion 4.6 una descripciéon com-
pleta de los grupos Auty(Diff(A)) y Exp(Diff(A)). Mostramos que el primero es un grupo
algebraico de dimension finita que “ve” las simetrias del arreglo y que el segundo es un grupo
de dimension infinita cuya estructura es independiente del arreglo. Esta descripcion de grupo
de automorfismos, a su vez, nos permite dar una soluciéon completa al problema de determinar
cuales pares de arreglos de rectas A y A’ tienen algebras Diff (A) y Diff (A”’) isomorfas.

Proposicion. Dos arreglos de rectas tienen algebras de operadores diferenciales isomorfas si y

solo si son isomorfos.



— 5 —
DEFORMATIONS OF THE ALGEBRA OF DIFFERENTIAL
OPERATORS TANGENT TO A LINE ARRANGEMENT

We continue to extract consequences of our findings of Chapter 3. Let A be a central arran-
gement of lines and let A = Diff(A). In this chapter, we study the deformation theory of A
with the help of our explicit calculation of the second space of cohomology of A. We show that
many of the infinitesimal deformations of the algebra can be integrated to formal deformations
and we also exhibit obstructed infinitesimal deformations.

5.1 FORMAL AND nTH ORDER DEFORMATIONS

5.1. Let A be an associative k-algebra with underlying vector space V. A formal deformation
of A is a k[ t]]-algebra B with underlying vector space V[¢] such that there exists a family
Fe = (F;)i»o of maps F; € hom(V ® V,V) for i > 0 such that F; is the product of A and that
the product -g of B is continuous for the t-adic topology and given, when v and w belong to A,
by the formula

v-gw = Fy(v,w) + Fi (v, w)t + Fy(v, w)t? + - - -

When this is the case, there is an isomorphism of k-algebras ¢ : B ®j;) k — A. For example,
the algebra of formal series A[[t], which is a k[[¢]-algebra in the obvious way, is a formal
deformation of A with F; = 0 for i > 1, and the isomorphism ¢ corresponds to the evaluation
at t = 0 of formal series: we call this the trivial (formal) deformation of A.

Two formal deformations B and B’ are equivalent if there is an isomorphism of k[ ]| -algebras
¥ : B — B’ such that the diagram

®1
B ®k|[t]] k % B/ ®k[[t]] k
¢I
A

commutes. A formal deformation is trivial if it is equivalent to the trivial formal deformation.

5.2. We now recall the celebrated result by M. Gerstenhaber in [Ger64] that relates formal
deformations with Hochschild cohomology; in his words, the second cohomology space HH?(A)
“may be interpreted as the group of infinitesimal deformations of A”.

91
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Recall that the Hochschild cohomology of A can be computed as the cohomology of the
Hochschild complex (hom(A®°, A), d) with differentials given by

i-1
d(f)(aol---la;) = aof (a1l ---la;) + Zf(ao| clajajal - lag) + (1) f(aol - - lai-1),
=0

fori > 0and f € hom(A%’, A).

Theorem (M. Gerstenhaber). If B is a deformation of A there existsn > 1 and a deformation B’
of A equivalent to B given by a family of maps Fe such that F; =0 for1 <i<n-1andF, isa
2-cocycle in the Hochschild complex (hom(A®®, A), d). The class of F, in HH?(A) is non-zero if B
is not a trivial deformation.

Proof. This is Proposition 1 in [Ger64]. O

5.3. There is a finite order version of the definitions above, which is useful. Let n € N. A
nth-order deformation of an algebra A is a k[t]/(t"*!)-algebra B with underlying vector space
V[t]/(t"*') such that there exists a family F, = (F;)", of maps F; € hom(V ® V, V) such that
Fy is the multiplication of A and that

v-gw = Fy(v,w) + Fi (v, w)t + Fy(v, w)t? + - - - + Fp (v, w)t"

whenever v, w € V. One can show that this is the same as saying that B is a k[t]/(t"*!)-algebra
free asak[t]/(¢t"*1)-module such that there is an isomorphism of k-algebras B — k[t]/(t"*!)®A.
An example of an nth-order deformation is the k[¢]/(¢")-algebra A[t]/(¢t"), which has F; = 0
for every i > 1. This is called the trivial nth-order deformation. As before, two nth-order
deformations B and B’ are equivalent if there is an isomorphism of k[t]/(t"*!)-algebras B — B’
such that the diagram that corresponds to (5.1) is commutative.

If B is an nth-order deformation of A and m < n, the quotient algebra B/(t™*!) is an mth-
order deformation deformation of A. Similarly, a formal deformation gives rise to mth-order

deformations for every m € N.

5.4. The purpose of this chapter is to describe nth order deformations of the algebra of differ-
ential operators tangent to a central line arrangement. In order to do this we will make use of
Bergman’s Diamond Lemma, which requires a certain amount of preliminaries, which we now
recall following the neat exposition by F. Martin in [Mar16, §2.1].

Let us fix a commutative ring k and a set X, and let (X) denote the free monoid on X, whose
elements we call monomials. A monomial order on (X) is a partial order < with 1 as minimal
element such that whenever u, v, v’ and w are monomials and v < v’ we have uow < uv’w.
For example, if X is a totally ordered set then the graded lexicographical order —or grlex— is
a monomial order on (X): monomials are sorted first by length and then lexicographically,
according to the order on X. As usual, a monomial order satisfies the descending chain condition
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if every decreasing sequence of monomials is eventually constant. For example, every grlex
order on (X) satisfies this condition.

A rewriting system on X is a subset S of (X) X k(X) such that for every element ¢ = (wg, f5)
of S we have w, # f,. We call each such pair o a rewriting rule of S and sometimes we denote
it by wo — fo. The rewriting system S is compatible with a monomial order on X if for all its
rules o and every monomial u which appears with nonzero coefficient in f, we have u < w,.

A basic reduction is a triple r = (u, 0,v) with u and v monomials and ¢ a rewriting rule.
A basic reduction r defines a linear map r : k(X) — k(X) that maps the word uw,v to wf;v
and leaves the rest of the monomials fixed. A reduction is an element of the submonoid of
End(k(X)) generated by basic reductions.

Given a reduction system S, we say that an element x € k(X) is

o irreducible if r(x) = x for every reduction r,

« reduction-finite if for every sequence of reductions (r,) there exists ny such that r, acts

trivially on r,,—; o - - - o r(x) for every n > ny, and

« reduction-unique if it is reduction-finite and there exists x” € k(X) such that if r(x) is

irreducible for a given reduction r then r(x) = x’.

We next define the important notion of ambiguity. Let ¢ and 7 be rules of S and let u, v
and w be monomials. The 5-tuple a = (o, 7, u, v, w) is an overlap ambiguity of S if u, v and
w have positive length, v, = uv and @, = vw. In this case, the ambiguity « is solvable if
there exist reductions r and r’ such that r(f,w) = r’(uf;) —we depict this situation with a
diamond-shaped diagram in Figure 5.1. On the other hand, we say that « an inclusion ambiguity
if o # 7, wy, = vand w, = uvw and that it is solvable if there exist reductions r and r’ such that
r(ufsw) = r’(f;). In both cases, we say that the ambiguity is supported on the monomial uow.

fow -y
uow T”(foW) = ”,(“fr)
-y

ufy =

Figure 5.1. A solvable overlap ambiguity

5.5. We have now given all the necessary definitions to state the next theorem, whose name is
motivated by Figure 5.1.

Theorem (The Diamond Lemma of G.Bergman). Let k be a commutative algebra, let S be a
rewriting system on a set X and let < be a monomial order on X compatible with S that satisfies
the descending chain condition. Denote by Is the two-sided ideal of k(X) generated by the set
{fs — wo : 0 € S}. The following statements are equivalent.

(a) All ambiguities are solvable.

(b) All elements of k(X) are reduction-unique.



94 CHAPTER 5. DEFORMATIONS

(¢) The k-submodule k(X);,, of k(X) spanned by the irreducible monomials of (X) is an irre-
dundant set of representatives for the elements of the algebra k(X)/Is.

We say that S is confluent over k if these conditions hold and, in that case, there is an
isomorphism of k-modules from k(X)/Is to k(X);..

Proof. This appears in [Ber78] as part of the Theorem 1.2. O

5.6. Example. Let A be a central line arrangement and let us preserve the notation and conven-
tions of 3.1. We will call A = Diff (A) from now until the end of this chapter. Let X = {x, y, D, E}
and let us take the grlex monomial order on (X) with x < y < D < E. We claim that the
rewriting system

yx — xy ED — DE +rD
Ex - xE+x Dx — xD
Ey—>yE+y Dy - yD+F

is confluent over k. It is clear that this system is compatible with the monomial order, so,
according to Theorem 5.5, we need only check that its ambiguities are solvable. There are only
four ambiguities in our rewriting system, supported on the monomials Fyx, Dyx, EDx and
EDy. All of them are solvable: the calculation that shows this can be deduced from the proof of
the forthcoming Proposition 5.8, by taking ¢ = 0 there. The algebra k(X)/Is that is the subject
of Bergman’s Diamond Lemma is A, since it admits the presentation that we gave in 2.8.

5.7. From now on, we establish a connection between the deformations of A in the sense of 5.3
and the second cohomology space HH?(A). This connection arises from the specific choice of
resolution that we used to compute cohomology and provides information even before the
computation of Proposition 3.15. Let p = ax A+ bX AE+cJ AE+uD AE+ v AD+wij AD
be a 2-cochain in the complex X of 3.10 and let us consider the rewriting system on {x, y, D, E}
over k[t]/(t?) with rules

yx — xy + ta ED — DE+rD + tu
Ex > xE+x+tb Dx — xD + tv (5.2)
Ey - yE+y+tc Dy - yD+F +tw

Proposition. The rewriting system (5.2) is confluent modulo t?, that is, it is confluent over
k[t]/(t?), if and only if the cochain p is a cocycle. When that is the case, the algebra obtained
from this rewriting system as in Bergman’s Diamond Lemma of 5.4 is a first-order deformation of
A which is trivial if and only if p is a coboundary.

Proof. Our rewriting system has four ambiguities, supported on the monomials Eyx, Dyx, EDx
and EDy. The first assertion in our proposition follows from the fact that the solvability of
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each ambiguity is equivalent to the vanishing of the corresponding component of d?(p). We
illustrate this claim by studying the monomial Eyx. Starting from the right, we get

Eyx — Exy + tEa
— xEy + xy + tby + taE + t[E, a]
— xyE + 2xy + t (xc + [b,y] + yb + aE + [E, a))

and from the left

Eyx — yEx + yx + tcx
— yxE + yx + tyb + xy + t[c, x] + txc

— xyE + 2xy + t (2a + aE + yb + [c, x] + xc) .

As the two expressions that we found are irreducible, this ambiguity is solvable if and only if
[b,y] + [E, a] = [c,x] + 2a. On the other hand, inspecting the differentials in 3.9 we see that
the component of d?(p) in X A § A E is

[E,a] — 2a+ [b,y] — [c, x],

and this shows that the desired instance of our claim holds. The same situation repeats when
analyzing each of the other ambiguities. This proves the necessity of the condition that p be a
cocycle for the rewriting system to be confluent. Its sufficiency follows from essentially the
same calculation done in reverse.

In order to prove the second claim of the proposition, let us assume that p is cocycle, so that
the rewriting system is confluent and the k[t]/(t?)-algebra B = k{x, y, D, E)/Is, as in Bergman’s
Diamond Lemma, is free as an k[¢]/(t?)-module. The obvious morphism of k-algebras B — A
which maps t to 0 gives rise to a morphism B/tB — A of k-algebras that maps a basis to a basis:
this tells us that B is a first-order deformation of A.

Suppose now that p is a coboundary. Let @ be a 1-cochain such that d!(w) = —p and write
w = p% + qij + syD + t'E, with p, g, 5,1’ € A. We claim that the assignment

1®x > x+1tp, 1® D+ D +ts,
1@y y+tgq, 1QE - tt’

defines a morphism of k[¢]/(t?)-algebras ¢ : k[t]/(t?) ® A — B. To check this, one has to show
that it maps the defining relations of A to zero. There are six relations, let us write down this
computation for the easiest one and for the most complicated one as an illustration.

One of the relations is that x and y commute in A, so we have to show that¢(1 ® x) and
¢(1 ® y) commute in B. We have

P(1®y)(1®x) - d(1®x)P(1®Yy) = yx — xy + t(—[x, q] + [y, p])
= t(—a - [x,q] + [y, p])-
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The component in £ A g of the equality d'(w) = —p is [x, q] — [y, p] = —a and therefore the
desired commutation holds in B.

Let us now examine the most complicated instance, which is that of y and D. On one hand
we have

p(1©D)(1®y) - ¢(1®y)¢(1® D) = Dy —yD + t(-[y,s] + [D,q])
=F+ t(—W - [yas] + [D’ CI])

and on the other
_ P
$(1®F) = F + t(VL(F) + Vi (F)),

so that the relation Dy — yD — F is preserved if and only if the component in §j A D of d*(«w)
is equal to that of —p, as we see comparing our last two equations to the expression for the
second differential that we have in 3.9.

Assume, finally, that p is a 2-cocycle in X such that the deformation B is trivial and let
$ : k[t]/(t*) ® A — Bbe a k-algebra isomorphism as in 5.3. Since ¢ is the identity modulo ¢,
we may write

(1 ®x) = x +td'(x), ¢#(1® D) = D + t¢'(D),
p(1®y) =y +1¢'(y), $(1® E) = E +t¢'(E)

and it is straightforward to see that the 1-cochain
©=¢' ()% +¢'(y)§ +¢'(D)D + ¢'(E)E

satisfies d'(w) = —p. For example, its component in £ A Eis ¢’ (x) — [E, ¢’ (x)] + [x,¢’(E)] and
this is equal to —b because, as ¢ is a morphism of algebras,

0=9p(1®E)p(1®x) - (10 x)p(1®E) — $(1 ® x)
= (E+1¢"(E))(x + 1§ (x)) — (x + t¢"(x))(E + t¢'(E)) — (x + t¢'(x))
= Ex —xE—x+t([x,¢"(E)] - [E, ¢"(x)] - ¢"(x))
=t(=b+ [x,¢"(E)] - [E, ¢"(x)] — ¢'(x))).

This concludes the proof. O

5.8. We now look for second-order deformations. As a second-order deformation gives rise
to a first-order one, as we said in 5.3, we may take into account our findings of 5.7. Let then
u,v € Ar,w € A1 and p 1= X A D+ wi A D +uD A E be a 2-cochain in X and let us consider
the rewriting system over k[t]/(t3) given by the rules

yx — xy + tle ED — DE +rD + tu + t*y

Ex = xE + x + t’a Dx — xD + tv + %8 (5.3)
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Ey —» yE+y +t°p Dy — yD + F + tw + t*¢

where a, B, v, 9, €, { are such that these rules are homogeneous with respect to the grading
of A. Let us also define the 2-cochain & = eX Ajj+ aX AE+BGAE+yDAE+Sx AD+{jAD
in X. As the rewriting system is confluent modulo t2if a, b € A, there is a well-defined element
(b, @), € A such that it is a standard monomial and ba = ab + t(b,a); mod 2.

Proposition. The rewriting system (5.3) is confluent modulo t* if and only if
(i) the cochain p is a cocycle and
(ii) the following equation holds:

d*(€) = (—(0,y)1 + (w, )X AGAD = (E,0)1 ADAE+ ((u, y)1 — (E,w)1)§ ADAE.

Proof. There are four ambiguities in this rewriting system.
« We begin with the one supported by Eyx. Starting from the right, we get

Eyx — Exy + t*Ee — xyE + xy + xy + t*(x + ay + Ee)
and from the left

Eyx — yEx + yx + t*fx — yxE + yx + t*ya + yx + t*px
— 2xy + xyE + t* (ya + px + £(2 + E)) .

We see that this ambiguity is solvable modulo * if and only if the equation

[, y] + [x. f] = 0

holds in A.
« We consider now the ambiguity in Dyx. We have

Dyx — Dxy + t*De — (xD + tv + t28)y + t*De
— x(yD + F + tw + t*0) + tvy + t*(8y + De)
and
Dyx — (yD + F + tw + t*0)x — y(xD + tv + t*8) + Fx + twx + t*{x
— (xy + t%¢)D + xF + t(yv + wx) + t2(yd + {x + Vi)

The solvability modulo #* of this ambiguity is then equivalent to the conditions

vy+xw—yv—wx =0 mod t,

[0,y] + [D, e] + [x,{] - V;(F) + (v,y)1 — (W,x)1 =0 mod ¢.
» Consider now EDx: on one hand, we get

EDx — ExD + tEv + t°ES
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— xED + xD + t*aD + tvE + t(r + 1)v + t*0E + t*(r + 1)
— xDE + rxD + txu + t’xy
+xD + t?aD + tEv + t*SE + t*(r + 1)

and on the other

EDx — DEx + rDx + tux + t*yx
— DxE + Dx + t*Da + rDx + tux + t*yx

— (xD + tv + t*8)(E + r + 1) + t*Da + tux + t*yx.
We obtain in this case the following two equations:

xu—ux+Ev—-vE—-(r+1)v=0 modt,
[x,y] + [@,D] + (E,v); = 0.

« Finally, we look at EDy.

EDy — EyD + EF + tEw + t*E{
— yED + yD + t?BD + FE + (r + 1)F + t*(EF); + tEw + t*E{
— y(DE + rD + tu + t*y) + yD + t*BD + FE + (r + 1)F
+ t*(EF), + tEw + t*E(;
EDy — DEy + rDy + tuy + t*yy
— Dy + DyE + t*Df + rDy + tuy + t’yy
— (YD + F + tw + t*0)(E + r + 1) + t*Da + tuy + t*yy.

We get here

yu+Ew—-wE+r+1)—uy=0 modt,

[y, y] + [, D] + V4 (F) + VE(F) + (yu)s + (Ew); = 0.

Comparing these equations with the differentials in 3.9 we arrive to the desired claim. O

5.2 DEFORMATIONS OF Diff(A)

5.9. We now use our characterization of HH?(A) in Proposition 3.15. We consider the rewriting
system induced by a generic 2-cocycle

yx — xy Dx — xD + tAyD — tAy"'E
Dy — yD + F + tg + thD + tAyFE Ex — xE +x
Ey - yE+y ED — DE +rD +tf,
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with A €k, g € S;41, h € S; and f € S,. We know form that proposition that every cocycle is
cohomologous to one of this form.

In order to be confluent modulo #3, this rewriting system must satisfy the two conditions
of 5.8. The first one holds by construction and, considering the 3-cochain

n = (Ayg + A24*FE + Ahy" ' E)%0D + Ay fxDE + hfgDE (5.4)

in X, the second condition reads d¢ = —n. It is straightforward to see that dy = 0.

5.10. Example. Suppose A = 0 and h = 0. Then 1 = 0 and our reduction system is confluent
modulo 3. Our rewriting system consist of

Dy - yD+F +tg ED — DE +rD + tf, (5.5)

along with the other rules that determine A as in Example 5.6. We claim that this system is
confluent over k[[]. Indeed, the only ambiguity whose solvability is different from that in the
rewriting system that defined A is EDy, and we have

EDy — EyD + EF + Etg

— YED +yD + FE+ (r + 1)F + tgE + t(r + 1)g

— yDE+ryD+tyf +yD+ FE+ (r+ 1)F + tgE+ t(r + 1)g
EDy — DEy+rDy + tfy

— DyE + (r + 1)Dy + tfy

- (yYD+F+tg)(E+r+1)+tfy.

The algebra obtained from (5.5) as in Bergman’s Diamond Lemma 5.4 is a formal deformation
of A. We therefore have here as many formal deformations as there are pairs (f,g). This
determines a subspace of dimension 2r of HH?(A) of infinitesimal deformations which can be
integrated.

5.11. Example. When A = f = 0, the only rule that differs from the original rewriting system
of Ais

Dy — yD + F + tg + thD.

The system is easily seen to be confluent over k[[¢]l. This determines another subspace of
integrable cocycles in HH?(A), this one of dimension r + 1.

5.12. We can translate the condition that a deformation be trivial to one in terms of cocycles.

Proposition. Let € S, and Ay € k be such that x+Aoy"*! = Ay f. The cocyclen of equation (5.4)
is a coboundary if and only if

[¢p + Ao(Fx + F)ly — hf € (xFy,xFy,yFy). (5.6)
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Proof. We follow the process we carried out in 3.14 to compute cohomology. Once we have
finished adding coboundaries to 7, the remainder will be a coboundary if and only if it is zero.
To begin with, we should find a 2-cochain that covers the component £jE of 7; as it is zero,
this step is not necessary. For the component in £ A §j A D, it is easy to see that

d*([AE + 1 (A*Fy + Ahy")(E* - E)]%D)
= (Ayg + Ay*FE + Ahy" ' E)x9D.

Finally, we must cover x A D A E. We have

d?(=AyxE + (A F — ¢)EDE)
= A F£DE — AoyF gDE — (A F — $)xxDE — (A F — ¢)yDE
= (doy™*" + x$)%DE + [¢ — Ao(Fy + F)JygDE

and this implies that 7 is cohomologous to ([¢ — Ao(Fx + F)]y — hf)§DE. The conclusion now
follows from what we did in 3.14. O

5.13. Example. The deformation induced by a general cocycle with f = 0 satisfies the condition
of the proposition to be a 3-coboundary.

5.14. Example. Let us give an example in which confluence is not achieved. Let us choose
h € Sy and f € S, such that hf ¢ (xFy, xF,, yF,). If we consider the rewriting system (5.3) for
this particular choice, it follows at once from Proposition 5.12 that it is not confluent. This
means that the corresponding cocycle is obstructed. In the language of M. Gerstenhaber, we
have obtained a infinitesimal deformation that does not integrate, not even to a second order
deformation.

5.15. Example. Consider, finally, the 2-cocycle w, = (yD — y"*'E)XD + yFE{jD of 3.14. The
corresponding deformation is the one in 5.9 obtained by taking every parameter apart from
A equal to zero. As it is a cocycle, we know that the system is confluent modulo t?. The
obstruction is in this case

n = Ay FExqgD.

Proceeding as in 5.12, we take ¢ = 1y = 0 and we see that condition (5.6) is trivially fulfilled.
We follow the proof of Proposition 3.15 to construct a preimage of #: it is straightforward to
check that

d* (10°Fy(E? = E)x A D) = A*y*FE& A A D.
We now consider the deformation given by

Dx — xD + tA(yD — y"*'E) — t*2A°Fy(E* - E),
Dy — yD + F + tAyFE.
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This rewriting system is confluent over k[t]/(¢*). We claim that it confluent over k[¢]. Let
us call w = AyFE, v = A(yD — y""'E) and § = %Azﬁy(Ez — E). Let us examine the nontrivial
ambiguities; we start by EDy.

EDy — EyD + EF + tEw

— yED +yD + FE+ (r + 1)F + twE + t(r + )w
EDy — DEy +rDy — Dy + DyE + rDy

- (yD+F+tw)(E+r+1)

This is trivially satisfied. Next ambiguity is EDx.

EDx — ExD + tEv + t*ES
— XED + xD + tvE + t(r + 1)v + t20E + t*(r + 1)
— xDE + rxD + xD + tvE + t(r + 1)v + t*8E + t2(r + 1)5;

on the other hand,

EDx — DEx + rDx — DxE + Dx + rDx
— (xD+to+t*8)(E+r +1)

so this is also satisfied. Let us now look at Dyx; we have

Dyx — Dxy
— xDy + tA(yD — y" "' E)y — 1t*A°Fy(E* - E))y
— xDy + tA(yDy — y *°E — y"*?)
- tz%)tzﬁy (y(E2 —-E)+ ZyE)
— x(yD + F + tAYyFE) + tAy(yD + F + tAyFE) — tAy"*E — tAy"*?
— 1*12°Fy (y(E2 -E)+ 2yE)
= xyD + xF + tA(xyFE + y*D + yF — y"*2E — y"*?)
— t**1Fy*(E* - E)
and
Dyx — (yD + F + tAyFE)x
— yDx + xF + tA(xyFE + xyF)
— yxD + tA(y’D — y"*?E) — t*20%y*F(E® - E) + xF + tAxyFE + tAxyF
= xyD + xF + tA(y’D — y"**E + xyFE + xyF) — t*12*y*F(E* - E)

We conclude our deformation of second order is confluent.
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5.3 RESUMEN

En este capitulo continuamos extrayendo consecuencias de nuestro calculo de la cohomologia
de Hochschild de del algebra de operadores diferenciales Diff(A) de un arreglo central de
rectas A como la del Capitulo 3: en este capitulo, estudiamos la teoria de deformaciones
formales del algebra Diff (A) en el sentido de M. Gerstenhaber [Ger64].

Primero damos las definiciones basicas que involucran a las deformaciones formales y de
orden finito y recordamos en 5.2 un resultado fundamental de Gerstenhaber que relaciona
las deformaciones de un algebra con su segundo grupo de cohomologia calculado a partir del
complejo de Hochschild.

Una vez que establecemos el Lema del Diamante de Bergman, en 5.4, establecemos un resul-
tado analogo al de Gerstenhaber que relaciona las deformaciones de nuestra algebra Diff (A)
con nuestro calculo del segundo grupo de la cohomologia de Hochschild en la Proposicion 3.15
a partir de la resolucion X de 3.10. Sea p = aX AG+bX AE+cJAE+uDAE+vf AD+wjAD
una 2-cocadena genérica en este complejo.

Proposicion. El sistema de reescritura (5.2) es confluente modulo t%, esto es, es confluente sobre
k[t]/(t?), si y solo si la cocadena p es un cociclo. En este caso, el dlgebra que se obtiene del sistema
de reescritura como en el Lema del Diamante de Bergman es una deformacion de primer orden
de Diff (A) que es trivial si y solo si p es un coborde.

Lo explicito de nuestros resultados sobre la cohomologia de Hochschild de Diff (A) continta
siendo util: en la Seccion 5.2 consideramos cociclos que vienen de nuestra caracterizacion
de HH?(Diff(A)) en la Proposicion 3.15. Consideramos el sistema de reescritura inducido por
un 2-cociclo genérico

yx — xy Dx — xD + tAyD — tAy"'E
Dy — yD + F + tg + thD + tAyFE Ex - xE +x
Ey - yE+y ED — DE +rD +tf,

condek geS i, heS yfeSs,.

Mostramos, por un lado, que muchas de las deformaciones infinitesimales del algebra
pueden ser integradas a deformaciones y, por otro, exhibimos deformaciones infinitesimales
obstruidas. Concretamente, vemos que si f = 0 el sistema de reescritura es confluente y
nos provee de una deformacion de primer orden de Diff (A). Lo mismo sucede si tomamos
A =0y h = 0. Estas elecciones determinan subespacios de deformaciones infinitesimales que
pueden ser integradas. También, el cociclo w; determina una deformacion de primer orden que,
siendo corregida con un término de orden dos, da lugar a una deformacion formal. Por otra
parte, si elegimos h € S; y f € S, tales que hf ¢ (xFy, xF,, yF,), obtenemos una deformacion
infinitesimal que no se integra.
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THE SPECTRAL SEQUENCE

Let (S, L) be a Lie-Rinehart pair as in 2.9 and let U(S, L) be its universal enveloping algebra.
In this chapter we construct a spectral sequence converging to the Hochschild cohomology
of U(S, L), we describe its second page in a meaningful way and give an interpretation of the
differential of that page. Since for a free hyperplane arrangement A the enveloping algebra of
the pair (S, Der A) is isomorphic to the algebra of differential operators tangent to A —as we
saw in Theorem 2.19—, this spectral sequence gives us an alternative way to obtain our results
of Proposition 3.15 on the Hochschild cohomology of A = Diff A for a central arrangement of
lines and provides a possible method for extending these results. In particular, with this method
one can deal with arrangements of three and four lines, for which the approach of Chapter 3 is
not practical, as observed in 3.16.

6.1 A COHOMOLOGY THEORY FOR LIE-RINEHART PAIRS

As we saw in Section 2.3, a Lie-Rinehart pair (S, L) consists of a commutative algebra S and
a Lie algebra L with an S-module structure that acts on S by derivations, and which satisfies
certain compatibility conditions that generalize those satisfied by S and Der S. An example
important to us is the pair (S, Der A) with second component the Lie algebra of derivations
of an arrangement A. We denote by U = U(S, L) the universal enveloping algebra of (S, L),
whose construction we dealt with in 2.13.

Let (S,L) be a Lie-Rinehart pair. If M is a U-module, or, equivalently, a Lie—Rinehart
module, the Lie—Rinehart cohomology of the pair with values on M was defined by G. Rinehart
in [Rin63] to be

H*(L|S, M) := Ext}, (S, M).

This cohomology generalizes the usual Lie algebra cohomology of L by taking into account its
interaction with S.

6.1. In many important situations, some of which will be illustrated in the examples below,
L is a projective S-module, and in this case there is a well-known complex that computes the
Lie-Rinehart cohomology.

Proposition. Suppose that L is S-projective and let AL denote the exterior algebra of L over S.

103
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The complex of U-modules U ®s AL with differentials

dr (U@ O A - Z( D0, @ 0, A+ AOi A+ A B,
+ Z D) ul0;,0,1061 - A A NG AN,
1<i<j<r
whenever 0;,...,0, € L,u € U andr > 1 is an U-projective resolution of S with augmentation

e:U®sS2u®s—>u-ses.

In particular, the complex homg (AL, M) with Chevalley-Eilenberg differentials computes the
Lie—Rinehart cohomology H®*(L|S, M).

Proof. This is Theorem 4.2 in [Rin63]. O

6.2. Example. For the pair (k,g) with g a Lie algebra, M is simply a g-Lie module and the
complex homg(A}L, M) is the standard complex that computes the Lie algebra cohomology
H*(g, M), as in §9 of the article [CE48] by C. Chevalley and S. Eilenberg.

6.3. Example. If M is a differential manifold and S = C* (M), then L = X(M) is finitely generated
and projective over S—this is Proposition 11.32 in the book by J. Nestruev [Nes03]. The complex
homgs(A%L,S) is precisely the de Rham complex Q°(M) of differential forms and therefore the
cohomology H*(L|S, S) coincides with the de Rham cohomology of M.

6.4. Example. For the pair (S, L) associated to a free hyperplane arrangement (A, the complex
homg(A%L, S) is the complex of logarithmic differential forms Q*(A) that we met in 1.33, and
its cohomology is isomorphic to the Orlik-Solomon algebra of A, by the result of J. Wiens and
S. Yuzvinsky that we stated in 1.55. When k = C, this algebra is, in turn, isomorphic to the

cohomology of the complement of the arrangement.

6.2 THE SPECTRAL SEQUENCE

Let (S, L) be a Lie-Rinehart pair and let U be its enveloping algebra. In this section we construct
a spectral sequence that converges to the Hochschild cohomology of U. In order to do so we
follow the ideas and tools developed by Th. Lambre and P. Le Meur in [LLM18]. In particular,
we recall from that paper the construction of an adjunction between the category of U-modules
and that of U-bimodules.

6.5. If M is a U-bimodule, the S-invariant subspace of M is
MS :={meM:sm=msforalls € S}.

This is the maximal symmetric S-subbimodule of M and it is an U-module if we let each o € L
act so that

a-m:=am-—max
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for m € M°. The map homse (S, M) > f +— f(1) € M® is bijective and becomes U-linear if we
let U act on its domain with

(a-9)(s) = ap(s) — p(s)a — ¢ (als)), (t-@)(s) = to(s) (6.1)
when a € L, ¢ € homge (S, M) and s, ¢t € S. What is more, the assignment
G : yMody > M - homge(S, M) € yMod

is functorial.

Let, on the other hand, N be a left U-module. Again, the inclusion of S in U endows U
with a structure of left S-module; since S is commutative, N can also be regarded as a right
S-module. It is clear then that U ®g N is a left U-module and a right S-module. We can turn it
into a right U-module setting, foru e U,ne Nand ¢ € L

u®n)-a=ua®n—-u® a(n).

This construction extends to morphisms and defines a functor F : yMod — yMody with
F(N) = U ®s N. With these two functors in hand, we can state the very useful Proposition 3.4.1
of [LLM18].

Proposition. The functor F is left adjoint to G. O

6.6. Once we have established the following lemma we will be ready to construct the spectral
sequence we are after.

Lemma. Assume that L is a projective S-module. Let M be an U¢-module and let M — I* be an
injective resolution of U as an U®-module.
(i) The cohomology of the complex homge (S, I°) is H® (S, M).
(i) The U-module structure on homge (S, I*) defined in (6.1) induces an U-module structure
on H*(S, M).

Proof. The PBW-theorem in [Rin63, §3] ensures that U is a projective S-module: using Propo-
sition IX.2.3 of the book [CE56] by H. Cartan and S. Eilenberg, we obtain that U¢ is S¢-
projective. Given an injective U¢-module I, the functor homge (-, I) is naturally isomorphic to
homye (U® ®se —, I), which is the composition of the exact functors homge(—,I) and U¢ ®ge —,
and therefore I is an injective S®-module. As a consequence of this, M — I° is actually a
resolution of M by S¢-injective modules, so that the cohomology of homge (S, I®) is Extge (S, U).

In order to prove the assertion of (ii), it is enough to see that the differential of the
complex homge (S, I°) is a morphism of U-modules, and this follows from the functoriality
of G = homge (S, —). O

6.7. Theorem. Assume L is S-projective and let N and M be a left U-module and a U®-module.
There is a first-quadrant spectral sequence E, converging to Exty;. (F(N), M) with second page

EPY = Ext! (N,HY(S, M)).
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Proof. Let Qo — N be an U-projective resolution of N and let M — I®* be an U¢-injective

resolution. Consider the double complex
X** = homy(Q., G(I*))

and denote its total complex by Z°. There are two spectral sequences for this double complex:
we will use the first one to compute H*(Z) and the second one will be the one we are looking
for. From the filtration on Z* with
FizP = X"
D,
s=q
we obtain a first spectral sequence converging to H(Z*). Its zeroth page E, has

El? = homy (Qp, G(I7))

and its differential comes from the one on Q,. We claim that for each s > 0, the functor
homy (—, G(I®)) is exact. Indeed, by the adjunction of Proposition 6.5 it is naturally isomorphic
to homye (F(-), I®), which is the composition of the functors F = U ®g (—) and homye(—, I¥)
and these are exact because U is left projective over S and I°® is U¢-injective. The first page E;

of the spectral sequence is therefore given by

homy (N, G(I?)) = homye (F(N),17) if p = 0;
0 ifp#0

pPd _
E =

and its differential is induced by that of I°*. Now, as the complex homye (F(N), I®) computes

Ext(;e (F(N), M) using injectives, we obtain that the second page has

Extl.(F(N),M) ifp =0;
0 ifp#0.

P9 _
E; " =
This spectral sequence thus degenerates at its the second page, so that we see that H*(Z) is
isomorphic to Ext};. (F(N), M).

The other filtration on Z* is given by

FPz9 = ( xm

r+s=q
rzp

and determines a second spectral sequence E, that also converges to H(Z*®). Its differential
on Ey is induced by the one on I*; as Q, is U-projective for each p > 0, the cohomology of
homy (Q,, G(I®)) is given in its gth place precisely by Ef’q = homy (Q,, H1(S, M)) —recall
that, according to Lemma 6.6, the cohomology of G(I*) is H*(S,M). Since the differen-
tials in E; are induced by those of Q., for each g > 0 the cohomology of the row E}'? is
Eg’q = Ext’l]] (N, H1(S, M)). The spectral sequence E, is therefore the one we were looking
for. O
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6.8. Specializing Theorem 6.7 to the case in which N = S we obtain the following corollary,
which is in fact the result we are mainly interested in.

Corollary. If L is S-projective then for each U¢-module M there is a first-quadrant spectral
sequence E, converging to H*(U, M) with second page

P.q _
ED? = HP(L|S, HI(S, M)).

6.9. The following examples illustrate what happens in the two extreme situations.

Example. Suppose first that L = 0. The enveloping algebra U is just S and AJL = S, so
the resolution U ® A%L of S is simply Qs = U ®s S. The double complex X** is therefore
homg (S, homge (S, I*)), which is isomorphic to homge (S, I*) and the cohomology of the complex
Z* in the proof is HH*(S), the Hochschild cohomology of S.

Example. If S = k and L = g is a Lie algebra then H*(S,U) = Ext;. (k, U) is just U, the second
page of our spectral sequence is H*(g, U) and we recover from Corollary 6.8 the well-known
fact that the Hochschild cohomology of the enveloping algebra of a Lie algebra equals its Lie
cohomology with values on U with the adjoint action, as in [CE56, XIIL.5.1].

6.10. Another specialization of Theorem 6.7 allows us to recover one of the main results
of [LLM18], which we recall here. In proving it, we will use the following simple lemma a few
times.

Lemma. Let A be an algebra and T and P two A-modules such that T admits a projective resolution
by finitely generated A-modules and P is flat. There is an isomorphism

Ext% (T, P) = Ext%(T,A) ®4 P.

Proof. Let Q. be such a resolution of T. For each i > 0, the evident map from hom 4(Q;, A) ®4 P
to hom4(Q;, P) is an isomorphism because Q; is finitely generated and projective. As P is flat,
the cohomology of the complex hom4(Q., A) ®4 P is isomorphic to Ext% (T, A) ®4 P. O

6.11. Theorem (Th. Lambre and P. Le Meur, [LLM18, Theorem 1]). Let (S, L) be a Lie—Rinehart
pair such that S has Van den Bergh duality in dimension n and L is finitely generated and projective
with constant rank d as an S-module and let LY = homg(L, S). The enveloping algebra U of the
pair has Van den Bergh duality in dimension n + d and there is an isomorphism of U-bimodules

Extd (U.U°) = ALY ®5 Extfe(S.5°) ®5 U.

Notice that this expression for the dualizing module of U is not the one that appears in
the original paper, but an immediate application of Lemma 3.5.2 in [LLM18] yields the desired
identification.

Proof. The homological smoothness of U follows from Lemma 5.1.2 of [LLM18], whose proof
does not depend on this theorem.
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Let us write D for the dualizing bimodule Extg. (S, S®S). We take, specializing Theorem 6.7,
N =Sand M = U ® U to obtain a spectral sequence E, such that

ED? = HP(L|S,HI(S,U® U)) = H'(U,U®U).

Let us first deal with H4(S,U ® U). As we observed in the proof of Lemma 6.6, the U¢-module
U ® U is S®-projective and, since S has Van den Berg duality, it admits a resolution by finitely
generated projective S°-modules. We may therefore use Lemma 6.10 to see that

HY(S,U®U) = H1(S, S°) ®se (U®U),

which is zero if ¢ # n and isomorphic to D ®se (U ® U) if q¢ = n. As a consequence of this, our
spectral sequence E, degenerates at its the second page and thus H?*"(U,U ® U) is isomorphic
to HP(L|S,U ®s D ®s U) for each p € Z.

As the Chevalley-FEilenberg complex from Proposition 6.1 is an U-projective resolution of
S by finitely generated modules and D is S-projective because it is invertible —see Chapter 6 in
the book [AF92] by F. Anderson and K. Fuller—, another application of Lemma 6.10 yields an
isomorphism

H*(L|S,U ®s D®s U) = H*(L|S,U) ®y (U ®s D ®s U).

Now, our hypotheses on L are such that Theorem 2.10 in [Hue99] tells us that H? (L|S, U) is
zero if p # d and is isomorphic to AgLV if p = d, so that actually
ALY @y (U®sD®sU), ifi=n+d;

HY(U,U®U) =
{0 otherwise.

The dualizing bimodule of U is therefore isomorphic to ALY ®s D ®s U. O

6.3 THE LIE MODULE STRUCTURE ON H*(S,U)

Let (S,L) be a Lie-Rinehart pair and let U be its enveloping algebra. As we have already
seen, U can be regarded as an S°-module with the action defined by (s|t) - u = stu for s and
tin S and u in U. The Hochschild cohomology of S with values on U, denoted as before by
H*(S,U), has an U-module structure —described in Lemma 6.6— that arises when we compute
this cohomology from an injective resolution of U as a module over U¢. The computation of
this structure in concrete examples is therefore rather inconvenient: indeed, we rarely compute
Hochschild cohomology using injective resolutions.

The action of U on H*(S, U) is determined by actions of S and of L that satisfy the identities
in (2.2). Let M be a U-bimodule. In this section we construct an L-module structure on H*(S, M)
using this time an S¢-projective resolution of S and we show that when M = U, it coincides with
the action of L on H*(S, U) that we already had. This will allow us to compute the latter in
practice.
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THE CONSTRUCTION OF THE ACTION

6.12. Let ¢ : P, — S be an S®-projective resolution. Given a U-bimodule M, we will define
for each « € L a linear endomorphism a? of the complex homge (Po, M) which induces on its
cohomology H*(S,U) a Lie algebra action of L. In order to do so, we will adapt with minor
changes the considerations in the article [SA17] by M. Suérez-Alvarez. There, there is a
construction, for an algebra A, a derivation § : A — A and a so called §-operator f : N — N,
of a canonical morphism of graded vector spaces Vs : Ext}(N,N) — Ext(N,N) which,
suitably specialized, gives a way to compute part of the Gerstenhaber bracket in the Hochschild
cohomology of an associative algebra. The adaptation of this result to our situation is not
obvious. Let us take A = S¢. Each a € L determines a derivation of A; as opposed to the
situation in [SA17], what we need here is a graded automorphism of Ext%, (S, M) and not of
Ext’ (N, N). The observation that allows us to solve the problem is that there is a canonical

action of L on U by derivations that restricts to the action of L on S.

6.13. Let A be an algebra and let § : A — A a derivation. Given an A-module N, we say that a
linear map f : N — N is a §-operator if for every a € Aand n € N we have

f(an) = §(a)n + af (n).

If, moreover, ¢ : P, — N is an A-projective resolution of N, a §-lifting of f to P, is a family of
d-operators fo = (f; : P; = P;,i > 0) such that the diagram

> Py > Py > N
v s lf
> Py > Py > N

commutes. The following proposition, extracted from [SA17, §1.4], ensures é-liftings exist and

are in some sense unique.

Proposition. Let N be a left A-module, let f : N — N be a §-operator and lete : P, — N be a
projective resolution.

(i) There exists a 5-lifting fu of f to P..

(ii) If fo and f] are two S-liftings of f to P, then f, and f, are homotopic by an A-linear

homotopy. O

6.14. We return to our setting with a Lie—Rinehart pair (S, L). Let « € L. As L acts on S by
derivations, we can regard o as a derivation of S. It is easy to verify that the unique linear map
af : §¢ — 5¢ such that

af(s|t) = a(s)|t + s|a(t)

is a derivation of S¢. Viewing, as usual, S as a left S®-module via (s|t) - f := sft, the map «

becomes an a®-operator: indeed, if s|t € S° and f € S we have

a ((sI0f) = a(s)ft +sa(f)t +sfa(t) = a® (I f + (sIDa(f).
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6.15. Example. The standard bar resolution B, — S is an S¢-projective resolution that has
B; = S®*% —we refer for this to [CE56, IX.6]. Given « € L, there is a canonical a®-lifting e to

B,: if i > 0; the linear map «; : B; — B; such that

.
ai(solsil ... Isilsit1) = Zso|31| ce |Of(5j)| oo silsiv
=1
is an a®-operator and it is not difficult to see that ae = (¢; : i > 0) is an a®-lifting of a. This
particular way of choosing liftings gives us a function L 3 a — a, € Endy(P,) which is, as a

small calculation shows, a morphism of Lie algebras.

6.16. Fix @ € L, an S®-projective resolution P, — S and a U-bimodule M. Let us choose one
among all a¢-liftings of &« : S — S to P, provided by Proposition 6.13 and call it . Given i > 0
and ¢ € homge (P, M), we define af (§) : P; — M by

o @) p) = [ $(p)] = § (ai(p)  forpe P (6.2)
Proposition. For each i > 0, the rule (6.2) defines a function
a® : homge (P;, M) — homse (P;, M).

#_

The collection oy = (05?)1'20 is an endomorphism of the complex of vector spaces homge (P,, M).

Proof. For the first claim, we show that af (¢) is a morphism of S®-modules: given p € P; and
s|t € S¢ we have

(@) (s10p) = [, s$ ()] = § (i ((s1)p))
= a(s)¢(p)t + s[a. ¢(p)]t + sp(p)a(t) — ¢ (a*(slt)p + (slt)ai(p))

= s[a, ¢(p)]t — (slt) P (ai(p)) -
For the second one, we must see that the map af commutes with the differential of homge (P,, M).
Given i > 0 and ¢ in homge (P;, M), we have

& (¥ () () =} (@) [dP)) = [ $dP)] - p (i (d(P)))

and, as a, is a morphism of complexes, this is equal to af L, (d*9). t

6.17. Proposition 6.16 implies that 0{1j descends to cohomology and therefore induces a graded
endomorphism V¢, of H*(S, U). In order to construct V;, we have chosen an a¢-lifting a,: the
next lemma shows that V?, is independent of that choice and, moreover, of the choice of the
projective resolution € : P — S.
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Lemma. Fix ¢« € L and an U-bimodule M. Let¢ : P, — S and ¢’ : P, — S be two S°-projective
resolutions of S, let as and a be a®-liftings of « to P, and to P, respectively and, finally, let a?
and a:ﬁ be defined as in Proposition 6.16. If g : P, — P, is a morphism of complexes lifting the
identity of S, the diagram

af
homge (Ps, M) — homge (P,, M)

s ls

&
homge (P, M) —% homge (P., M)
commutes up to homotopy.

Proof. The morphism of complexes of vector spaces he : o, — Qage : P, — P, is S°-linear:
indeed, if i > 0, a € S® and q € P; we have

hi(aq) = gi(a®(a)q + ax;(q)) — ai(agi(q))
= a®(a)gi(q) + agi(a;(q)) — a®(a)gi(q) — axi(9(q))
= ah;(q).

The map h : homge (Ps, M) — homge (P, M) induced by h, is homotopic to zero because h, is
a lifting of the zero map in S to the projective resolution P,. Let us show that h; measures the
failure in the commutativity of the diagram that appears in the statement. We have, for i > 0
and ¢ € homge(P;, M),

(effgy = giaf) (9) = a* (b0 1) - g (@F (9)) = ¥ (0 91) - () 0 g1,

and evaluating this last expression on g € P; we find that (0{{‘i g; — g?aﬁ) (¢)(q) is equal to

i

[, $(9: ()] — ¢(gi ([ () — [, P(gi(9))] + $(ei(gi(q)))
= ¢(@i(9:(q))) — ¢(gi(;(q)))
= (gia; — ;" g;)($)(q)

We see from this that a; ﬁg;‘ -g; lﬁ = h, which is, as we wanted, homotopic to zero. O

This lemma corresponds to the Lemma 1.6 of [SA17]; in our case, the key step was the

# #

cancellation that happened when we evaluated ((xlf g; —gia] ) (¢) on an element of P;.

6.18. Now, with the help of Lemma 6.17, we see that each « € L defines a canonical graded
endomorphism of H* (S, M).

Theorem. Let M be an U-bimodule and let a € L. There is a morphism of graded vector spaces

Ve H*(S, M) — H*(S, M)
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such that for each S -projective resolution ¢ : Po — S and each a®-lifting as of @ to P, the diagram

H(homse (Po. M) —=%3 H(homse (Po, M))

l l (6.3)

V.
H*(S,M) ———=— H*(S,M)
commutes.

Proof. Choosing an S®-projective resolution ¢ : P, — S and an a®liftingof  : S — S
to P,, Proposition 6.16 gives us an endomorphism of complexes a¥ on homge (Ps, M): as the
cohomology of this complex is H*(S, M), this induces a graded endomorphism V¢ , of H*(S, M).
The square (6.3) defines an unique graded endomorphism V¢, of H*(S, M); as an immediate
consequence of Lemma 6.17, this endomorphism is independent of the choices of ¢ and of the

a¢-lifting. O

6.19. Example. It is easy to describe the endomorphism V9 of H°(S, U) for any given « € L. Let
us choose a resolution P, of S with Py = 5¢ and augmentation ¢ : S — S defined by &(s|t) = st.
As a® is a a®-operator and € o @ = a o ¢, we may choose an a°-lifting with oy = @®. According
to the rule (6.2) just before Proposition 6.16 we have

a}($)(111) = [, ¢(111)]  forall ¢ € homse (P, M). (6.4)

Identifying, as usual, each ¢ € homgse(S¢,U) with ¢(1|1) € U, we can view H°(S,U) as a
subspace of U and the equality (6.4) tells us that

V0 (u) = [a, u] for all u € H°(S,U).

6.20. Theorem 6.18 defines an assignment V :  — V,; we will now show that it actually gives
rise to a Lie action of L on H*(S, M), that is, that the identity Vfa’ 5= [V, Vk] holds.

Given ¢ and fin L and ¢ : P — S an S®-projective resolution, let a, and f, be a®- and
pe-liftings of @ and of f to P,. Call y = [a, f] € L: a straightforward calculation shows that

Yezaeoﬁe_ﬁeoae.

Lemma. In the setting of last paragraph, let M be an U-bimodule.
(i) The morphism of complexesys = tte © fo — fo © Qe is a y¢-lifting of y : S — S.
(ii) Let yiﬂ be the endomorphism of homge (P;, M) induced by y. as in Proposition 6.16. We have
g _ Bopt_plt H
vi =aiofi—pioa;.

Proof. For each i > 0, the map y; is a y®-operator: given p € P; and a € S we have

(a; o B;) (ap) = a; (B (a)p + afi(p))
= af(B(a))p + B (a)ai(p) + a®(a) Bi(p) + aa; Pi(p)
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and therefore y;(ap) = [a€, f¢](a)p + yi(p). As the a morphism of complexes y, lifts y because
L acts as a Lie algebra on S, we have proven the first statement.
In order to see the second one, we observe that for ¢ € homge(P;, M) and p € P; we have

rE@) () = [le. B1. 6(0)] - ¢ (i (Bi()) = Bl )))

and, on the other hand,

af (B ) = [ (B4($) (0)] - (B} ($)) (i (p))
= [, [B, p(p)]] = [t $(B: (P))] - [B. $(s(0))] + $(Bi (i (p))).-

These two expressions, together with the Jacobi identity, allow us to conclude that

o} (B 8)() ~ B @ (D) 0) = v @) ).
which is just what we wanted. O

6.21. Proposition. The assignment
V:L>aw V; €Endg (H*(S, M))
is a morphism of Lie algebras.

Proof. Let a, f € Land call y = [a, ff]. Let a., f. and y, be ¢, ¢ and y*-liftings, respectively.
Observe that it not necessarily the case that y, is the commutator of a, and f,. Let aP, /313 and
y.ﬁ be the endomorphisms of homge (P,, M) defined as in Proposition 6.16 and consider the
endomorphism 6, of homge (P,, M) with

0:(d)(p) = [y, ¢(P)] — ¢ (ai o Bi(p) — fi © ai(p)) »
where i > 0, ¢ € homge(P;, M) and p € P;. As we have seen in the first part of Lemma 6.20,

the commutator [a., f.] is a y-lifting of y and therefore Lemma 6.17 tells us that the diagram

#
homge (Po, M) —3 homge (Pa, M)

homse (Po, M) —23 homge (Po, M)

8

commutes up to homotopy. Now, the second part of Lemma 6.20 states that §; = af o ﬂ? - ﬁlﬂ oa;

and therefore 6, and yf induce the same endomorphism on cohomology, that is,
vy = H([a!, p)).

Finally, using the linearity of the functor H we can conclude that V} = [Vg, V;] O
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COMPARING THE TWO ACTIONS OF L

6.22. In Lema 6.6 we constructed an U-module structure on H*(S, U) using an U°-injective
resolution of U. As we have seen in Section 6.1, this is equivalent to having S- and L-module
structures on H*(S, U) that satisfy the identities in (2.2). We will now show that this L-module
structure coincides with the one defined in Subsection 6.3, using an S®-projective resolution
of S.

Theorem. Suppose L is S-projective. The L-module structure on H*(S,U) defined in Lemma 6.6
using injectives is equal to the one defined in Theorem 6.18 using projectives.

Proof. To begin with, we fix an U®-injective resolution 5 : U — I°, an S°-projective resolution
#

€: Py — Sand a € L. In Proposition 6.16, we constructed endomorphisms of complexes o,
of homgse (P,, U) and of homse (P,, I) for each j > 0 —we denote them the same way— which
induce the map V, on their cohomologies H*(S, U) and H*(S, I’). We claim that the map

N« : homge(Ps,U) 3 ¢ — no ¢ € homse (P, I*)
satisfies

1(a} ($)) = af (1.(9)) (6.5)
for each i > 0 and ¢ € homge(P;, U). Indeed, we have

1:@F (@) () = n(@! (@) ®) = 1@, $P)]) — 1 (¢ (@:(p)))

and this is equal to af (n+(4)) because 7 is a morphism of U-bimodules.
Let, on the other hand,

" homge(S,I°) 3 ¢ —> @ o ¢ € homge (P, I*).
For each a € L and ¢ € homge (S, I*) we have

e (a - ) = af (e(p)) (6.6)
because, given p € P,

(- 9)p) = a- p(e()) = [ p(e(p)] — p(a(e(p))

and, since a o £ = ¢ o qy, this is ag(s*((p))(p).

As the morphisms of complexes ¢* and 7. are quasi-isomorphisms, the fact that they are
equivariant with respect to the actions of @ —as shown by (6.5) and (6.6)— allows us to conclude
that the two actions of L on H*(S, U) coincide. O
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6.23. We end this section showing how the results above work in a minimal example.

Example. We take S = k[x], we fix a nonzero h € S and we consider the Lie algebra L which, as
an S-submodule of Der S, is freely generated by y = h%. The enveloping algebra U of the pair
(S, L) is isomorphic to the algebra Ay with presentation

k(x, y)

(yx —xy —h)

which we will identify with U. This algebra has been thoroughly studied by G. Benkart, S.
Lopes and M. Ondrus in the series of articles that start with [BLO15a]; we observe that setting
h = 1 we obtain the Weyl algebra that already appeared in Example 2.15. The augmented
Koszul complex

0 —> S¢ — 5¢ = 8,

with &;(s|t) = sx|t — s|xt and e(s|t) = st, is an S®-projective resolution of S and therefore

the Hochschild cohomology H*(S, U) is the cohomology of the complex U %, U with differ-
ential §(u) = [x,u]. After a small calculation we see that H°(S,U) = ker§ = k[x] and that
HY(S,U) = coker § = A/hA. As A/hA is the quotient of the free noncommutative algebra in x
and y by the relations xy — yx = h, and h = 0, we may identify H'(S, U) with 1%[y].

At this point we make use of our description of the action of U on H*(S, U) as in Theo-
rem 6.18. It is enough to determine the action of y. We use Example 6.19 to see that y acts on
H°(S,U) = S in the obvious way. To describe its action on H'(S, U) we need a lifting y.: we
obtain one defining yo(s|t) = hs’|1+1|ht" and y; (s|t) = hs’|1+1|ht’ +sA(h)t, where A : § — S°
is the unique derivation of S such that A(x) = 1|1. Since the diagram

&

se 2y 5e Ly s
le yoT yT
e O1 e €
§¢ — S¢* — S
commutes and y, and y; are y®-operators, the action of y on H!(S,U) can be obtained as
in (6.2). We now compute H*(L|S, H (S, U)). Using the complex in Proposition 6.1 to compute

Lie-Rinehart cohomology of (S, L), we see that for each i € Z this is the cohomology of the
complex

. Vi .
Hi(S,U) —5 H(S,U).

For i = 0, this amounts to the cohomology of S %5 ; the kernel of this map is k and its image, hS.
Consider now the case i = 1 and recall that we have identified H!(S, U) with H?[Tx)] lyl;if f € k[x],

let us write f its class in this quotient. Given u € H'(S,U), there are fy, ..., f; € k[x] such
thatu = 3)7_, fiy' and

vy =) Wy
i=0
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This expression is explicit enough to compute the kernel and cokernel of V!, and this calculation,
along with the help of Corollary 6.8, gives us the following description of the Hochschild

cohomology of Ap:
k ifi =0
S/(h) @& P _5 ifi=1;
; 0 ged(hh)? T
HH'(Ap) = s
@izo (h’ h’)yl lfl = 2;
0 otherwise.

This result had already been obtained by M. Valle in [Val17] and, partially, in [BLO15b]. With
our approach, nevertheless, we have isolated the most complicated steps to different calculations
and, as a consequence of that, this computation is significantly shorter.

6.4 'THE DIFFERENTIAL OF THE SECOND PAGE

In this section we make a straightforward adaptation of the ideas in the article [SA07] by
M. Suérez-Alvarez to give a description of the differential of the second page of our spectral
sequence. This is the reason why we chose to state Theorem 6.7 in a more general setting than
that of Corollary 6.8: we need the extra freedom with respect to the first argument in order to
use the argument of [SA07].

COHOMOLOGICAL OPERATORS

6.24. Let us fix an algebra U. Until 6.29, U can be any associative algebra and form there on
we will specialize to the situation in which U is the enveloping algebra of a Lie-Rinehart pair.

Let p and ¢ be integer numbers. We define the bifunctor COp?*? of a pair of U-modules M
and N by

COp” (N, M) = [Ext} (-, N), Ext{, (-, M)],

with the brackets denoting the class of natural transformations between the two functors.

Given d > 0, a cohomological operator of degree d from N to M is a sequence O = (Op)p>0

of natural transformations O, € COp?? *4(N, M). We denote by COp?(N, M) the class of
cohomological operators of degree d from N to M.

6.25. Let d > 0 and M and N be two U-modules. A cohomological operator O of degree d
from N to M is stable if for each short exact sequence 0 - T’ — T — T" — 0 of U-modules



6.4. THE DIFFERENTIAL OF THE SECOND PAGE 117

the diagram

Ext? (T",N) —2— Ext!'(T”, N)

\LO;D lop

Ext? (17, M) —2L5 Extt (17, M)

commutes for each p > 0. The class of such stable cohomological operators is denoted by

sCOp?(N, M).

6.26. Let d > 0 and let M and N be two U-modules. We can represent a class { € Extff‘(N, M)

by a d-extension of N by M, that is, an exact sequence of U-modules of length d + 1 of the form
{(:0->M—> .- > N-=0.

Ifnowp >0ande € Extf] (T, N), there is a well-defined class { o ¢ in Extf;rd(T, M) represented
by the (p + d)-extension that results from the splicing of extensions representing { and ¢. In

this way we can define a natural morphism
Y : Exté (N, M) € COp?(N, M)

by

Y({), : T € Ext? (Q,N) = (—1)P9 o 7 € Ext?(Q, M)
for each p > 0 and each U-module Q. We claim that Y takes values in sCOp?(N, M). Indeed,
let { be a class in Ext?](N, M) andlet0 - T/ - T — T"” — 0 be an exact sequence of
U-modules and o the corresponding class in Extb(T”, T’). We know from [Mac67, I11.9.1] that

for each p > 0 the connecting homomorphism 0 : Ext%(T’, M) — Ext@“(T”, M) is given by
7 (—1)P7 o 0, so the commutativity of the diagram

’ 6 1 144
Ext! (T, N) —=— Ext!"(T”,N)
ron r@
Ext! (17, M) —25 Ext? (T, M)
is just an instance of the associativity of the Yoneda product of extensions.

6.27. Theorem. The map Y defined above is an isomorphism of graded bifunctors
Y : Ext}, (=, —) — sCOp*(—, -).

Proof. 1t is rather clearly a monomorphism, for Y({')(1) = { for any class { of extensions of
U-modules. Let now N and M be two U-modules and let O € sCOpg(N, M). We consider the
class { = 0(1) € Extzl,(N, M) and the operator

0 =Y() -0 € sCOp(N, M).
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We claim that O = 0, so that Y is surjective. First, we show that Oy = 0: let Q be a U-module
andlet f : Q - N € Ext%](Q,N). If Q = Nand f = 1x then O(1y) = 0 immediatly. As
Ext(zj (f,N)(1n) = f, the fact that O is a natural transformation in its first variable implies that

O(f) = Ext},(f, M)(O(1y)) = 0.

Proceeding by induction, let us suppose that (jp = 0 for a given p > 0, let Q be a U-module
and choose a short exact sequence of U-modules 0 —» Q" - P — Q — 0 with P projective.
As EXt%H(P, —) = 0, the stability of O implies that there is a commutative diagram

Ext? (0, N) —2— Ext?" (Q,N) — 0
o, lé,,ﬂ
Ext) (0", M) 23 Ext? (0, M) — 0

and, since we are assuming Op = 0, we see that Op+1 restricted to Q is zero. O

6.28. The following result, which will be useful next subsection, can be found mutatis mutandis
in [SA07, 2.2.1], up to a different choice of filtration. We include the proof for completeness.

Lemma. Let
0 — 1 X% L5 X Xt — 0

be a short exact sequence of double complexes and denote, for each 1 < i < 3, by ;Z° the total
complex of ; X*°. Let us assume that the filtrations defined by

FPz7= P x"

r+s=q
rzp

induce a sequence of cohomologically graded spectral sequences
e 0 j e, 0 k e 0
0 H lEl’ J% 2E1’ Hl 3E1’ H 0

which is also exact. If 0 : 3E12”q - 1E12J+1’q is the connecting homomorphism corresponding to the
differentials in this last sequence then the square

X 0 1,
3E§q s 1E§+ q

bl

p+2,q-1 0 p+3,q-1
3E2 ) 1E2

anti-commutes.
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Proof. If y is an element of some ,X?*7 such that d,,(x) = 0, we will denote by [y] the class of
X in l.Ef’q.

To begin with, let us fix p and g and a € 3Eg’q. Let a € , X9 be such that dy (a) = 0 and
dula] = 0 € ,E¥; let b € ,XP*197! be such that dy (b) = dp(a), so that the class of dy (b) in
the second page is da. Since k; is surjective, there exists ¢ € ,X?*7 such that dy(c) = 0 and
ki[c] = [a] or, in other words, there exists ¢ € ,X97! such that dy (t) = a — ko(c). Now, as

kodr (c) = dgko(c) = du(a—dv(t)) = dv (b +dg(t))

we see that the class of dr(c) belongs to the kernel of k; and therefore there exists x € | XP*4
such that d,,(x) = 0 and j;[x] = [dg(c)]. We observe that d[a] = [x].
Let s € ,XP*1971 be such that jo(x) = du(c) + dy (s); since

Jo(du (x)) = du(jo(x)) = dudy(s) = dv(=du(s))

we have that ji[dy(x)] = 0 and, as j; is a monomorphism, there exists r €  XP*>97! with
dy(r) = dg(x). This tells us that the class of [dy (r)] in 1E§+3’q_1 is equal to dy0a.
Let now z = jor + dy(s) € ,XP*%971. We have

dvko(s) = kojo(x) — kodr(c) = —duko(c) = —=du(a) + dudy (1),

so dg(a) = —dy (ko(s) — dg(t)). On the other hand, using that koj, = 0,
ko(z) = ko(du(s)) = du(ko(s)) = du(ko(s) — du(t))

and therefore the class of [ky(z)] in 3EjzJ 2971 s —dya. Finally, we observe that
Jodu(r) = dujo(r) = d(z)

and this, along with the fact that dyky(z) = 0, as yet another small calculation shows, allows
us to conclude that dyda = —dd,a. ]

THE DIFFERENTIALS

6.29. Using Theorem 6.27 we can give a description of the differential in the second page of
the spectral sequence of Theorem 6.7.

Let (S, L) be a Lie-Rinehart pair with enveloping algebra U and let M be a U®-module. Let
M — I° be an U*®-injective resolution of M and let

J k

0 3T > 2T 1T > 0

~
~

be a short exact sequence of U-modules. Using the Horseshoe Lemma from [Wei94, Lemma
2.2.8] we can take, for 1 < i < 3, U-projective resolutions ;P* — ;T and morphisms j, and k.,
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such that the diagram

0 —> 3T 15,7 £ T —50

[

Jx ks
0 —> 3P* —> »P° > 1P* > 0

commutes and the rows are exact. Let us recall from 6.5 the functor G on U¢-modules and

consider, for i € [3]], the double complexes
iX** = homy (;P*,G(I*)).

As seen in the proof of 6.7, G(I?) is an U-injective module for each g and therefore the sequence

j (N ) k. o0
0 — X% Ly ,x% By Xt —3 0 (6.7)
is exact. Fix now i € [3] and denote the total complex of ;X* by ;Z°. The filtration in ;Z*
given by
FPiz9 = (P X"
r+s=q
rzp

determines a spectral sequence ;E, whose differential on ;E, is induced by the one on I°. As
the sequence 0 — 3P — 2P — P — 0 splits, applying the functor homy (—, G(I*)) we see that
so does

0 —> BT Loy g0t Ky pra g
and thus taking cohomology we get another exact sequence

Js

k*
0 — (BP9 =5 EPT =5 3BT —» 0.

Fix p > 0 and i € [3]. Since each ;P? is U-projective, the cohomology of homy (;P?, G(I*)) is
precisely

EPT = homy (;PP, HY(S, M)).
The differentials in ;E; are induced by those of ;P*, so that we have
BN = Extl, (T, HI(S, M)) (6.8)

and we thus see that our exact sequence (6.7) is in the situation of Lemma 6.28. As a consequence
of this, the square

1
3E,g,q 2 \ 1E§+ ,q

b

p+2,q-1 0 p+3,9-1
3E2 ; 1E2
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is anti-commutative. This diagram, using identification (6.8), is isomorphic to

Extf, (,T, HY(S, M)) —2— Extl (T, H9(S, M))

ldz ldz (6.9)

Extl (T, HI7'(S, M) —25 Extl T, HI7(S, M)

6.30. The following theorem is the result we are after in this section.

Theorem. For each q > 0 there exists {;(M) € Ext%J(Hq(S, M),HI7Y(S, M)) such that the
differential of the second page in the spectral sequence of Corollary 6.8

d?? . HP (LIS, HY(S, M)) — HP**(L|S, HI™'(S, M))

is given by dg’q(gf) = (=1)PLy(M) o &.

Proof. We have seen in (6.9) that for each g > 0 the cohomological operator O = (O,) of degree
2 from H9(S, M) to H471(S, M) such that

O, = (-1)Pdl? . Ext? (-, HI(S, M)) — Ext?™(—, HT"}(S, M))
is stable, so that Theorem 6.27 gives us the desired class {;(M). O

6.31. If M is a U¢-module, one may conjecture that the 2-extension
0 —> MS =H"S,M) —> M —> Der(S,M) —> H'(S,M) —> 0.

represents the class {1(M) € Ext%] (HY(S, M), H*(S, M)) in Theorem 6.30.

6.5 CENTRAL LINE ARRANGEMENTS

In this section we use the machinery developed in this chapter to tackle the problem of
computing the Hochschild cohomology of the algebra A = Diff(A) of differential operators
tangent to a central arrangement of r + 2 lines A of Chapter 3. For r > 3, the Hochschild
cohomology of U was computed in Chapter 3 from an U®-projective resolution of U after
lengthy calculations. For r = 1 and r = 2 those calculations are even more tedious and rather
inconvenient. With the method developed in this chapter we recover our previous results and,
what is more, we are able to obtain HH*(U) as a vector space for every r > 1. We will study
the case in which r = 1 in detail: for r = 2, the calculations follow the same lines.

The key fact that makes our spectral sequence useful is that, as we have seen in Section 2.3,
the algebra of coordinate functions on the vector space together with the algebra of derivations
Der A form a Lie-Rinehart pair and its universal enveloping algebra U is isomorphic to A —we
will take this isomorphism as an identification.
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6.32. We use the notation from 3.1. Let r > 1 and A be a central line arrangement in V = k?
defined by the polynomial xF € S, where F is a square-free homogeneous polynomial of degree
r + 1 not divisible by x, and write F = xF + y"*'. Let us call S = k[x,y] and L = Der A. The
S-module Der A admits the basis given by the two derivations E = xdy + yd, and D = Fd,
and the enveloping algebra A of the Lie-Rinehart pair (S, L) admits the presentation in 2.8. We
put T = k[E] and, if ¢ € T, we write by ¢/ = 7;(f/) and / = 7,(i/), where 7, is the linear map
T — T such that 7, (E™) = E" — (E + t)" for every n € Ny.

6.5.1 THE coHOMOLOGY H*(L|S, M)

6.33. Let M be a Z-graded left U-module such that the action of E on homogeneous elements
of M satisfies E(m) = |m|m. We can compute H*(L|S, M) as the cohomology of the complex
hom S(AEL, M) with Chevalley-Eilenberg differentials. This, in turn, is isomorphic to the

complex
M 25 M &, homy (kD @ kE, k) —5 M @, homy (kD A E, k)
with differentials
d’(m) = DmD & EmE;
d'(nD + mE) = (Dm — En + rn)D A E.
The following observations describe the cohomology of this complex.
« If n € M is homogeneous then d'(nD) = (r — |n|)nD A E. This means that Im d* contains

all homogeneous components M;D A E with i # r. On the other hand, d'(mE) = DmD AE.
As D is homogeneous of degree r, we see that

H?(L|S, M) = cokerd" = coker(D : My — M,.).

« If m € M is homogeneous then the component of d’(m) in E is |m|m, and therefore
kerd' ¢ M,. In fact,

H°(LIS, M) = kerd® = ker(D : My — M,).

« A 1-cocycle is, up to adding coboundaries of elements of nonzero degree, cohomologous
to one of the form & = nD + mE with n € M and m € M,. What is more, using now
coboundaries of degree zero we can assume that n is not in the image of D : My — M,
As D(m) € M, and

d'(w) =Dm+ (—-En+rn) e M, & @Mi,
i#r
we must have Dm = 0 and also n € M,. We conclude in this way that

H'(L|S, M) = coker (D : My — M,)D & ker (D : My — M,) E.

We notice that the cohomology H*®(L|S, M) depends only on the map My — M, given by
multiplication by D.
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6.34. Let W be the k-vector space with basis {x,y}. It is well-known that the complex
P, = §¢ ® A*W —which we sometimes identify with S ® W* ® S— with Koszul differentials
ke : P — Po_; such that fors,t € Sandw e W

ki(s|wlt) = sw|t — s|wt,

ka(slx A ylt) = sxlylt — slylxt — sy|x|t + s|x|yt

isaresolution of S by free S°-modules. Applying homge (—, U) and using standard identifications
we obtain the complex

U -2 U®hom(W,k) = Ui @ Uj == U ® homy(kx A y, k) (6.10)
with differentials

8%(u) = [x, u]% + [y, ulg

&'(ax +bg) = ([x,b] = [y, a]) £ A 4,
where {%, 7} is the dual basis of {x,y} and X A § is the linear morphism kx A y — k that sends
x A y to one. The cohomology of the complex (6.10) is H*(S, U).

6.35. We now describe the U-module structure on H*(S, U) following Subsection 6.3. In order
to do that we fix the Koszul resolution we described in 6.34 and recall from Example 6.19 that
if « € L and we regard H°(S, U) as a submodule of U then V¢ (u) = a(u).

We first deal with the action of E; let E® be the induced derivation on S¢ and let, for p > 0,
E, be linear endomorphism of $* ® APW such that

Ep(slzlt) = (Is| + |z + [t])s]z|t

for homogeneous s, t € S and z € APW. It is immediate to see that the sequence (E,) is an
E¢-lifting of E : S — S; with this at hand we obtain that the endomorphism Eﬁ, defined by
equation (6.2) in Section 6.3, is given by

EY(a% + by) = (lal - 1)a% + (Ib] - 1)b§

whenever a,b € U are homogeneous, and that Eg is given by
E}u A §) = (Jul — 2)u A §.

for homogeneous u € U.

We now study the action of D: it is enough to give a D¢-lifting (D)) of D : S — S. Recall,
again from Example 6.19, that we may take D, equal to D¢, the derivation of S¢ induced by D.
The unique D¢-operator Dy of S ® W such that D;(1]|x|1) = 0 and

D;(1]yl1) = V(F)
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satisfies Dy o k1 = k; o Dy, for their evaluation in 1|x|1 is zero, and V(F) was defined precisely
so that k1 (V(F)) = y|1 — 1]y.

We define the remaining D¢-operator, that is, the endomorphism D, of S¢® ® AW, by
D,y(1]x A y|1) = x A V(F). It is not difficult to see that k, o D, = D; o k; by computing directly
on both sides.

6.36. The action of E induces a Z-grading on the complex (6.10) such that [X| = |§]| = -1
and |X A §| = —2, and, as the differentials preserve this grading, H*(S, U) inherits a Z-graded
structure. In view of the description of the action of E that we gave in 6.35, the U-modules
H? (S, U) satisty the hypothesis in 6.33. As a consequence of this, to get H*(L|S, H*(S,U)) we
need only to compute the homogeneous components of degree 0 and r of H*(S, U) and then to
describe the map given by the action of D.
6.37. Our plan is not difficult to execute for H°(S, U) and H?(S, U), but for of H'(S,U) the
calculations are more involved. In particular, the cases in which r < 2 and r > 3 are different:
we reserve a section for each of those situations. We take on the easy part here.
« Itis proven in Lemma 4.4 that H(S, U), the kernel of §°, is precisely S. The homogeneous
component of S of degree zero is k and the action of D is zero.
« Let us denote by S»; the space of polynomials with no constant term. We claim that
S>1DFT is contained in the image of §' for every k > 0. Indeed, if f,g € Sand ¢y € T
then

§'(gpx + fyh) = (xfy' —ygo')X A,

so that our claim is true if k = 0. Assume now that k > 0 and that for every j < k the
inclusion S»D/T C Im §! holds. Given f € S and ¢ € T, we have that

S'(fD*yg) = xfDM Y2 A g
and

S'(fD*y%) = (- fly, D"y — FD*yy" )% A i = (- fly. D*1(Y — ¥') — fyD*y ) A g

= —fyD*y’s Aj mod Im§?,

which proves the claim. We easily see, on the other hand, that the intersection of k[D]T
with Im 8! is trivial, so that

H%*(S,U) = k[D]T% A 0. (6.11)

6.5.2 THECASEr >3

We assume that r > 3, so that we are in the situation of Section 3.2. Following 6.36, for each
i € {0,1,2} we compute the homogeneous components of degree 0 and r of H(S, U) and then
the action of D.
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6.38. According to our calculation of H%(S,U) in (6.11), the only non-zero homogeneous
components of H2(S, U) have degrees —2 + tr, for t € Ny. For the component of degree zero to
be non-trivial we need that —2 + tr = 0, which never happens if r > 3. On the other hand, for
the component of degree r to be zero we need that —2 + tr = r, which, again, cannot happen
if r > 3. We conclude in this way that the components of H*(S,U) in degree zero and in
degree r are both trivial and therefore that H*(L|S, H*(S,U)) = 0.

6.39. Let us now compute the homogeneous component of H!(S,U) of degree 0. Let w be a
1-cocycle of degree zero in the complex (6.10) of 6.34 and write it in the form w = ax + by for
a and b in U of degree one, so that they belong to xT @ yT. Up to adding coboundaries we
can assume that the component of a in xT is zero, so that there exist a, § and y in T such that
a=yaand b =xp + yy.

The condition §!(w) = 0, which amounts to [x,b] = [y, a], implies that @,  and y are
scalars. Moreover, if @ were a coboundary, there should be a ¢ € T such that xy’ = ay and
yy’ = Px + yy, leaving only the possibility that « = f = y = 0. We conclude from these
calculations that the component of degree 0 of H'(S, U) is isomorphic to kyx @ kx7) & kyi).

6.40. Suppose now that w is a 1-cocycle of degree r in the complex (6.10) of 6.34 and write
® = ax + by, with both a and b homogeneous of degree r + 1. Up to coboundaries, we can
assume that there is no monomial in a divisible by x. We write

w = (yr+1l//1 + nypz) X+ ( Z x'y/ ¢ij + xDepy + yD¢)2)Q,

i+j=r+1

with the ¢/’s and ¢’s in T. The coboundary &' (w) belongs to U, 2% A § = (Sy42T @ SoDT)% A §
and its component in S,DT is x2D¢} + xyD¢} — y*Dy; = 0, so that i, ¢; and ¢, are in k. As
we now have

Sy =| D, xY -y Y + yF | £ A G
i+j=r+1

and F = y"*! + xF, since §'(») = 0 we must have {{ = ¢ and

D xYigl = —ypyxF.

i+j=r+1
These equalities imply that y; = —Ey, + i for some p € kand that };, ;44 x'y/dij = YoyFE+ T,
with f € S,41. This means that

® = Yon + ux + f + hDy, (6.12)

where n = (yD — y""'E)x + yFEj and h € S;.
Let us now determine when it is possible that w be a coboundary. Suppose now that there
exists u € U, such that §°(u) = w; write u = Y, x'y/ p;; + Dp with p’s in T and the sum taken
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qA

2 0 0 0

1 0 r+2 r+2
0 1 r+2 r+1

0 1 2 D
Figure 6.1. Dimensions of the second page of the spectral sequence for r > 3.

over all i, j such that i + j = r. We equal
8(w) = (D %"y pl; +xDp’) i+ (D x'y*pl + yDp’ + F(p' = p)) §
to w: looking at the component x we deduce that all p’s must be zero — that leaves us only
with §°(u) = —Fpi).
We thus see that the only cocycles w of the form (6.12) that are coboundaries are the scalar
multiples of Fij. We therefore have that
1 N Sr+1 N ~
H (S, U), 2knokt o F 7 ® S,Dy.
6.41. We now describe the map VlD : HY(S,U)y — H'(S,U),. Let a, B and y be scalars and
consider the cocycle of degree zero ¢ = ayx + (fx + yy)y. Using the formula for the D*-lifting
of D : S — S that we found in 6.35, we see that V,(£)(x) = F and that

V1D(§)(y) =yF — (ayFy + pxFy + nyy) = yxF; — ayF, — pxF,,

thanks to Euler’s identity. It follows from this that the map V}, : H'(S,U)y — H'(S,U), is
injective and has cokernel

S
ker(VL : (HY(S,U H'GS,U)),) 2kne —"1 @ S,Di.
coker(V : (H!(5. U)o = (H'(S,U),) =¥ @ s @ 1D

6.42. Collecting the information we have obtained so far about the dimensions of each vector
space appearing in the second page of our spectral sequence we see that it must degenerate,
for there is no possible non-zero arrow —see Figure 6.1. We conclude in this way that there is
an isomorphism of vector spaces

k, ifi =0;

S, D @ kE, ifi=1;
St o N ea A

i . R A = 2:

HHI(DIfFﬂ) ~ (k?] @ <xe’ ny’ xFy>y (&) SlDy) D& SrD E, if i 2; (613)

Sr+1 . I P I

k - S1Diy|D AE, fi=3;
( U®<xe’ny,xFy>y@ ! y) o

0, otherwise,
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where, we recall, = (yD—y" "' E)x +yFEj. The dimensions in each cohomological degree agree
with those found in Section 3.2, where the calculation was performed using the resolution P of
U constructed in 3.5. Moreover, there seems to be a correspondence between each cohomology
class in (6.13) and one in Proposition 3.15: without this identification, we would not know
how to relate this description of HH®(U) with the cohomology of the Hochschild complex, so
it could be difficult to describe the Gerstenhaber algebra structure on HH®*(U), and neither
would it be clear how to relate HH?(U) with the deformations of U: both of these issues are
well addressed when the cohomology is computed as in Section 3.2.

6.5.3 THECASEr =1

We may assume, without losing any generality, that the defining polynomial of our arrangement
is Q = xF with F = y(tx + y), for some t € k. We adopt the strategy of 6.36 to compute
H*(L|S,H*(S,U)), which is the second page of our spectral sequence of Corollary 6.8. This
case was excluded in our computations of Chapter 3.

THE SECOND PAGE

6.43. We see from equation (6.11) that the homogeneous components of degree 0 and 1 of
H?(S,U) are D?T% A §j and D3T% A 1, respectively. Let us compute the kernel and the cokernel
of V2 : H*(S,U)y — H*(S,U); using the description we obtain in 6.35. We have

DE(D*p% A §) = ([D.D*¢] - D¢ A § (Da(1lx A yl1)))
and, as in the second term there never appears a higher power of D than D?,
Df(D%*p% A ) = D*¢p% AG mod Im 5L,

We thus see that the kernel of Vf) : H%(S,U)y — H?(S,U), is kD% A 7 and its cokernel is 0.

6.44. We now compute the component of degree zero of H'(S, U). The homogeneous compo-
nent of degree zero of the complex (6.11) in 6.34 is

Us i> Uiz ® Upi) KN Up A
with Uy = T, U; = $;T @ DT,
U, = S,T @ $,DT ® D*T (6.14)
and differentials
8 = ¢ > x¢'% +yd'y
8 : (xp1 + yg2 + D)% = (=xyoi — y°0; — yDe — Q(¢} — 93)) £ A 9,
(xy1 + yyo + DYs)g = (¢ + xyy, + xDY3)x A 4,
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where all Greek letters denote elements of T.
Let a,b € U; and let o = ax + bij be a 1-cocycle. Up to adding a coboundary we may

suppose that the component of a in xT is zero: we may therefore write

a =yg2 + Dos, b = xy1 + yy + Dy,

with Greek letters in T. The coboundary §;(w) belongs to Uo% A 7, which decomposes as
in (6.14). The vanishing of the component in D?T does not give any information, that of the
one in $; DT tells us that ¢ = ¢; = 0 and, finally, that of S,T that

Y]+ xyyy = yPph — Foy. (6.15)
Let us put A := ¢3. Looking at the component on y?T of Equation (6.15) and keeping in mind
that F = y? + txy we see that ¢} = A and, using this, that xy; + yy; = —Aty. In this way we
obtain that

@2 = —AE + 41, xyn + Yy = AMtyE + f,
for certain p € k and f; € S;. We conclude that

H'(S,U), = kno @ kyx @ (S; @ kD)jj (6.16)

with g = (-yE + D)x + tyEq.
6.45. The homogeneous component of degree 1 of the complex (6.11) in 6.34 is

51 S1
U — U@ Uy) —> Usk A
where Uz = S3T @ S,DT @ S;D?*T @ D3T and the differentials are such that

81 (xd1 + ydz + Dp)
= (x"¢] + xyg; + xDp")% + (xyg] +y’d; + yDp’ + F(p’ = p)7,
51 (D, *'v i + xDg1 + yDe, + D*p) £)
== > %'yl - xyDe} - xF(¢} - 1) - 4" Do — yF (0} — p2)
—yD*¢" = 2FD(¢} = ¢2) = FFy(¢' = ¢),
61 (D5 x'y'¥iy +xDy +yDys + Dy ) §)
= Z x”lyjlﬁi’j + x2Dy| + xyDysy + xD*’,
In all the sums that appear here the indices i and j are such that i + j = 2 and we have omitted
the factor X A 7. Again, all Greek letters lie in T.

Let us write, once again, w = ax + by, this time with a and b in U,. Up to coboundaries, we

write, with the same conventions as before,

a =y’ pos +yDyz + Do, b= x'y/j + xDyr + yDys + D*y.
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Let us examine the condition ] (w) = 0 component by component according to our description
of U, above.

« In D3T there is no condition at all.
« In $;D?T we have xD*J)’ — yD?¢’ = 0, so that i/ and ¢ are scalars.
« In S, DT the condition reads

xleM + xyDy, = yzD(pé + 2FD(¢" — ¢). (6.17)

Writing F = y®+txy and looking at the terms that are in y*T we find 0 = ¢} —2¢, and then
@2 = —2¢E + A for some A € k. What remains of (6.17) implies that x| + yy, = —2ty¢
and therefore there exists h € S; such that

xDyy + yDy, = 2¢tyDE + hD.
« Finally, we look at S3T: we have
DXL = g, + yF(¢h - g2) + FFy (¢ = ).
In particular, using that F, = 2y + tx and looking at the terms in y*T, we find that

0 = @, + (@5 — @2) + 2(¢" — @), or, rearranging, ¢;, = 2¢E + A. “Integrating”, we see
there exists a € k such that

@02 = ¢(E — E*) — AE + pu.
Now, as FF, = 2y® + 3txy? + t2x%y, we must have
DXyl = txy(ph - g2) - (Bty” + Pxy)g,

and, integrating yet another time, we get 3, x'y/y;; = f2E*+ fiE+ fo, for some polynomials
fi and f; in S, that depend only and linearly on ¢ and A.

We conclude in this way that there exist a cocycle ¢ such that every 1-cocyle of degree 1 is
cohomologous to one of the form

=@l +An+ fij + hDj + yD*§ + py*x (6.18)
with n = (—=y?E + yD)X + ty*Eq), ¢, A, and g ink and h and f in S;.
It is easy to see from the expression we have for &7 that such a cocycle is a coboundary if

and only if it is a scalar multiple of Fgj. The upshot of all this is that

H'(S, Uy = (1) ©ky’% & (S;/(F) @ $iD @ kD) 3.
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6.46. We now study the action of D on the first cohomology group. We will give explicit
formulas for the evaluation of V}J : HY(S,U)y — H(S,U), and, at the same time, compute its
cokernel. Suppose that w is a representative of a class in H'(S, U) chosen as in (6.18).
« As D?(DyA) = -Dy(V(F))y = -F,D + , we see that up to adding to w an element in
the image of V}, we may suppose that h = hox, for some h, € k.
o Let @, f and y in k and define ¢ = ayx + (fx + yy)y. Since ¢(V(F)) is equal to
yxFx — ayFy — fxF,, we have

D¥(¢) = (D, ay] — $(D1(11x11))) % + ([D, fx + yy] - $(D1(11y11)) §
= aFx + (yyFy + ayFyx + BxFy)7.

In view of this, it is easy to see that we may choose a, f and y in such a way that
W+ D?(qﬁ), which is a cocycle of the form (6.18), has = 0 and f = 0, since {yFy, xFy, F}
spans S,.

« Let us see that the 1-cocycle n belongs to the image of V},. Consider the 1-cocycle
no = (—yE + D)X + tyEj. Using that Di(1ly|1) = V(F) = tlx|y + ylyl1 + 1lyly + tx[yl1,
we find

D (o) (1[x|1) = [D, ~yE + D] = =FE + yD,
and
D (o) (1lyl1]) = [D. tyE] = o(V/(F))
= tFE — tyD — t(—yE + D)y — (tx + y)tyE — tyEy
= ty*E + t*xyE — tyD + ty°E + ty* — tyD — t(y* + txy)
— t’xyE — tyE — ty°E — t*
= —2tyD + ty* + t(y* + txy),

which belongs to S, + kyD. We already know that the elements of (S, + kyD) § are
coboundaries: it follows that D? (n0) = (=FE + yD)x modulo coboundaries. Now, the
difference between Dlti (10) and 7 is cohomologous to txyEx +ty2Efj, which is in turn equal
to 6)(~tyE). As a consequence of this, we have that V] (10) is equal to 7 in cohomology.
We conclude from the preceding calculation that coker (V}) :HY(S,U)y — H(S, U)l) is ge-
nerated by the classes of {, xDi}, and D?7). As these classes are linearly independent, the
dimension of this cokernel is 3. Finally, we can use the dimension theorem to see that
Vi, : H(S,U)o = H'(S,U); is a monomorphism.
6.47. We have already made all the computations required in 6.36; the results are displayed
in Figure 6.2 on the next page. As opposed to what happens when r > 3, the differential in
the second page could be non-zero, since neither the domain nor the codomain of the map
dg’2 : Eg,z - Eg’l are. As dim Eg’z = 1, the differential dg’z is or zero or a monomorphism. If it
is zero, the sequence degenerates and using Corollary 6.8 we obtain —among other things—
that dim HH3(U) = 4; if not, we have dim HH3(U) = 3. It follows from this observation that to
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2| kD*%AG k(D% A9)E 0
1 0 (n.xDy,D*$D  (n.xDy, D*§D A E
0 k kE @ S$,D SSDAE
| 0 1 2 D

Figure 6.2. The second page for r = 1.

see whether the sequence degenerates or not it is enough to compute HH*(U). We will now
do this using our complex of Chapter 3: we will find that dim HH*(U) = 4, so that Figure 6.2
actually describes the Hochschild cohomology of U.

THE THIRD HOCHSCHILD COHOMOLOGY GROUP FOR ¥ = 1

As we saw in Section 3.2, the cohomology of the complex of 3.9 is HH*(U). We will use this
complex again to compute HH>(U): let us take a generic 3-cocycle

w = akjD + bXJE + cxDE + diDE

with a € A; and b, ¢ and d in A,, where, we recall, we have Ay = Zi+j=k S;DIT for k > 0.

6.48. We use the image of the second differential to simplify «.
+ We may suppose that a = 0: indeed, we have

d*(AyxD) = [y, A2]%0D = yA,%4D,
d?(AyD) = [x, A)*0D = xA, 20D

and the only coefficient of d?(D?y47) is in £jD and it is congruent to D*) modulo
SD=T.

. We may suppose that b € D?T. This follows from the facts that the components in £jE
of d2(A,%E) and of d? (Algﬁ) are [y, A;] and [x, A;] and that their components in fgf)
are zero.

« We may suppose that the scalar components of ¢ in y* and in yD are zero. The first
assumption follows from the equality d?(—yxE) = FXDE + FF,jDE and the second one

from
(o A E) = (FE - yD)iDE +[ A, |DE,

where 1 is the cocycle found in (6.16) and g A E is formally obtained from it. Moreover,
as d*(aDE) = [x, a]*DE + ly, a]yA]ﬁE, we may as well assume that ¢ has no monomials
from xA.
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« We may assume that d has zero scalar component in yD, for

d*(DyE) = (F,D +| S, |)9DE,
and, finally, we may suppose that d has no monomials that involve only x and y, since

d*(xiE) = xF,yDE, d*(yyE) = (yF, - F)yDE,
d?(DDE) = —~FjDE.

6.49. Taking all these assumptions into account, we can write

b= DZp,
¢ =y’ g2 + yDoy + D*p,
d= > x'y'ij+xDyr + yDys + Dy,

itj=2

with all Greek letters in T. We examine the equation d®(w) = 0 looking at each of its components

in S3_;D'T, for 0 < i < 3. The equation we have to solve is

[x,d] = [y,c] + V2 ° (F). (6.19)

« Looking at the components in DT, we immediately obtain that D*p = 0 and hence that

pek
The component in S; D?T of equation (6.19) is xD?y’ = yD?¢’ + p(2y + tx) D?, from which
we deduce that {/’ = ptx and that 0 = ¢’ + 2p. We may thus write

¢ = 2pE + o, Y = —ptxE + iy,

with ¢ and ¢ in k.
Using the information we have obtained thus far, we see that the component of the
equation in S, DT is

x*Dy] + xyDyy = y*De} + 2FD(¢’ — @) + 2pFD. (6.20)

Let us write S,DT = x*DT & xyDT @ y>DT. We look at equation (6.20) in y?DT: it reads
0 = @] +2(¢" — ¢) + 2p and from this we may write ¢’ in terms of p and ¢,. Integrating
and recalling that ¢ has its scalar component in yD equal to zero, we see that

1= 2p(E - E?) = 2(p — o)E.

Next, we quickly look at x*DT to get ¢/ = 0 and therefore that ; € k. Finally, we look
at xyD?. The equation there reads |, = 2t(¢’ — ¢) + 2tp and, again, as d has zero scalar
component in yD, this determines uniquely that y, = —t.
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« The only remaining component of our equation is the one in S57T,

D XY =y + yF (] — ¢1) + FFy(¢' = @) + pFF,. (6.21)
i+j=2

Let us take {x*y! : k + | = 3} as a basis of S3T as a T-right module: the component in ¢
of our equation is

05 = (1 — 1) +2(p — ¢") — 2p.

As the scalar component of ¢, is zero, this equation determines ¢,. Using this, the
equation (6.21) gives us an expression for Y x'y/y/ ; in terms of the already known

parameters and, integrating, we obtain the same for the ;;’s.

6.50. We have already seen at this point that dim HH>(A) < 4. A computation very similar to
the one in 3.13 and which we omit shows that actually the equality holds.

Proposition. The spectral sequence for r = 1 degenerates at the second page and therefore

k, ifi=0;
kE @ $;D ifi = 1;
HH'(Diff A) = {$,D A E @ (n,xDj, D2))D @ kD*% A §,  ifi = 2;
(n,xDj, D*)HD A E @ k(D?*% A ))E ifi =3;
0, otherwise.

Proof. As dim HH*(U) = 4, our argument from 6.47 implies that the spectral sequence degen-
erates at E;. The isomorphisms in the statement are a consequence of the convergence and the
information in Figure 6.2. t

6.5.4 RESEMBLANCE AND DISSEMBLANCE

We end this chapter with a comparison between the cases in which r > 3 and that in which r is 1
or 2. In both situations, to compute the second page of the spectral sequence E, of Corollary 6.8
we used the Koszul resolution P, of S, which is an S¢-projective resolution of length 2, and
computed the cohomology of homge(P,, S) to obtain H*(S,U). We then used the complex
of Proposition 6.1, which also has lenght 2, to obtain, for each 0 < g < 2, the Lie-Rinehart
cohomology of the pair (S, L) with values on H4(S, U). Since each of the complexes we used
has lenght 2, the second page has Eg’q = 0 for every p,q > 3.

It is at this point that the case r > 3 is different to the case r = 1, 2. Let us consider the first
case, depicted in Figure 6.3, when r > 3. We have

EPT=0 ifp>3andqg>2,

and, moreover, Eg’l = 0. As the differential on the second page has bidegree (2, —1), the spectral
sequence degenerates at Ey, thus immediately giving us a description of HH*(U). A problem
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q q

2 0 0 0 2 1 1 0

1 0 r+2 r+2 1 0 r+2 r+2

0 1 r+2 r+1 0 1 r+2 r+1
o 1 2 p o 1 2 p

Figure 6.3. Dimensions of E;, Figure 6.4. Dimensions of E,

forr >3 forr=1,2

with this is that it is not obvious how to compute the Gerstenhaber algebra structure on HH*(U):
in Chapter 3 we obtained explicit cocycles and this allowed us to compute cup products and
Gerstenhaber brackets. Here, we still do not know the relation between our spectral sequence
and the multiplicative structure of HH*(U). Another consequence of the lack of explicitness of
this procedure is that it is difficult to describe the formal deformations of U as in Chapter 5
even though we do know HH?(U).

Let us now consider the case in which r is equal to 1 or 2. The dimensions of the components
of the second page of the spectral sequence are tabulated in Figure 6.4. As opposed to the first
case, it is not evident that the spectral sequence degenerates at its second page: the differential
dg’z : Eg’z - E§’1 could be non-zero. Computing HH?(U) from the U¢-projective resolution of
U described in 3.5 we were able to check that, in fact, dg’z is zero, thus allowing us to obtain
the dimensions of HH®(U) as a graded vector space. The end result is that the Hilbert series of
HH*(U) is

1+ (r+2)t+ Qr+d)e2+(r+3)3, ifr=1,2;
hire ) (t) = {

1+ (r+2)t+ @2r+3)t2+ (r+2)3, ifr>3.

This shows that the case in which r is 1 or 2 is genuinely different to that in which r > 3.

6.6 RESUMEN

En el Capitulo 2 vimos que si A es un arreglo de hiperplanos libre, el par (S, Der A) determinado
por el algebra de polinomios S y el algebra de Lie Der A es un par de Lie-Rinehart y su algebra
envolvente es isomorfa a Diff (A). En este capitulo desarrollamos una herramienta que permite
abordar el problema, mas general, de determinar la cohomologia de Hochschild del algebra
envolvente U = U(S, L) de un par de Lie-Rinehart (S, L).

Precisamente, siguiendo las ideas de Th. Lambre y P.Le Meur en [LLM18], construimos
una sucesion espectral que reduce el problema del calculo de la cohomologia de Hochschild
del algebra conmutativa S a valores en U y de la cohomologia de Lie-Rinehart del par (S, L).
Explicitamente, obtenemos el siguiente resultado en el Corolario 6.8.
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Teorema. Para cada U-bimddulo M hay una sucesion espectral E, en el primer cuadante que
converge a HH*(U, M) tal que

EP? = HP(L|S, HI(S, M)).

Para poder utilizar esta sucesion espectral en el calculo de la cohomologia de Hochschild del
algebra Diff (A) asociada a un arreglo A es necesario contar con una descripcion practica de la
estructura de U-modulo en la cohomologia de Hochschild de S a valores en U: nos ocupamos
exitosamente de este problema en la Seccion 6.3, siguiendo [SA17].

A continuacion, dedicamos la Seccién 6.4 a dar una descripcion de los diferenciales de la
pagina E,. Para hacer esto, basandonos en [SA07], estudiamos primero los llamados operadores
cohomologicos estables y vemos que nuestra diferencial se corresponde con uno de ellos. El
resultado de esta seccion es el Teorema 6.30.

Teorema. Para cada q > 0 existe {;(M) € Ext%] (HY(S, M), HI71(S, M)) tal que la diferencial de
la segunda pagina de la sucesion espectral del Corolario 6.8

d?? . HP (LIS, HY(S, M)) — HP**(L|S, HI™'(S, M))

esta dada por dg’q(f) = (-1)PLg(M) o &.

Para terminar la tesis, nos ocupamos en la Seccién 6.5 de mostrar que nuestra sucesion
espectral hace posible determinar completamente HH®*(U) y mostramos como este método
se aplica al caso especial del calculo de la cohomologia del algebra Diff (A) asociada a un
arreglo de rectas. Primero recuperamos nuestros resultados de la cohomologia de Hochschild
en tanto espacio vectorial graduado para arreglos con al menos cinco rectas y, a continuacion,
extendemos estos resultados a arreglos con 3 o0 4 rectas, que habian sido excluidos anteriormente.
Este resultado aparece en el texto como la Proposicion 6.50 para el caso de 3 rectas. Observamos

los casos en que tenemos mas o menos de cinco rectas son genuinamente diferentes: si [ denota
la cantidad de rectas del arreglo, la serie de Hilbert de HH* (Diff (A)) es

T+t +202 + (1 +1)t3, sil=3,4;
1+It+ @ -1t +1t3, sil >5.

hare ) (t) = {
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