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Cohomología de Hochschild
de álgebras de operadores diferenciales

asociadas a arreglos de hiperplanos

Dado un arreglo de hiperplanos A en un espacio vectorial V sobre un cuerpo de caracterı́stica
cero, estudiamos el álgebra Diff (A) de operadores diferenciales enV tangentes a los hiperplanos
de A desde el punto de vista del álgebra homológica.

Hacemos un estudio detallado de este álgebra para el caso de un arreglo central de rectas
en un espacio vectorial de dimensión 2. Entre otras cosas, determinamos la cohomologı́a de
Hochschild HH • (Diff (A)) como álgebra de Gerstenhaber, establecemos un vı́nculo entre ésta
y la cohomologı́a de de Rham del complemento M (A) del arreglo, determinamos el grupo de
isomor�smos de Diff (A), clasi�camos las álgebras de esta forma a menos de isomor�smo y
estudiamos las deformaciones formales de Diff (A).

Mostramos que en el contexto general de un arreglo de hiperplanos de dimensión arbi-
traria el álgebra Diff (A) es isomorfa al álgebra envolvente del par de Lie–Rinehart formado
por el álgebra de funciones coordenadas del espacio vectorial y el álgebra de Lie de deriva-
ciones tangentes al arreglo. El cálculo de la cohomologı́a de Hochschild de Diff (A) puede
ser ubicado entonces en el contexto del cálculo de la del álgebra envolvente U de un par de
Lie–Rinehart (S,L): damos un método para hacer esto en el caso en que L es un S-módulo
proyectivo. Concretamente, presentamos una sucesión espectral que converge a HH • (U ) cuya
segunda página involucra la cohomologı́a de Lie–Rinehart del par (S,L) y la cohomologı́a de
Hochschild de S a valores en U .

Palabras clave: Arreglos de hiperplanos, Cohomologı́a de Hochschild, Álgebras de operadores
diferenciales, Pares de Lie–Rinehart, Teorı́a de deformaciones.





Hochschild cohomology
of algebras of differential operators

associated with hyperplane arrangements

Given a free hyperplane arrangement A in a vector space V over a �eld of characteristic
zero, we study the algebra Diff (A) of di�erential operators on V which are tangent to the
hyperplanes of A from the point of view of homological algebra.

We make a thorough study of this algebra for the case of a central arrangement of lines
in a vector space of dimension 2. Among other things, we determine the Hochschild coho-
mology HH • (Diff (A)) as a Gerstenhaber algebra, establish a connection between that coho-
mology and the de Rham cohomology of the complement M (A) of the arrangement, determine
the isomorphism group of Diff (A), classify the algebras of that form up to isomorphism and
study the formal deformations of Diff (A).

We show that in the general se�ing of a free arrangement of hyperplanes of arbitrary
dimension the algebra Diff (A) is isomorphic to the enveloping algebra of the Lie–Rinehart
pair formed by the algebra of coordinates functions on the vector space and the Lie algebra
of derivations tangent to the arrangement. �e computation of the Hochschild cohomology
of Diff (A) can be then put in the context of computing that of the enveloping algebra U of a
Lie–Rinehart pair (S,L): we provide a method to do this if L is S-projective. Concretely, we
present a spectral sequence which converges to HH • (U ) and whose second page involves the
Lie—Rinehart cohomology of the pair and the Hochschild cohomology of S with values on U .

Keywords: Hyperplane arrangements, Hochschild cohomology, Algebras of di�erential oper-
ators, Lie–Rinehart pairs, Deformation theory.





Agradecimientos
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Introduction

Let us �x a ground �eld k of characteristic zero, a vector space V of �nite dimension and a
central arrangement of hyperplanes A in V , that is, a �nite set {H1, . . . ,Hl } of subspaces of V
of codimension 1. For each i ∈ {1, . . . , l }, let αi : V → k be a linear form with kernel Hi . We
let S be the algebra of polynomial functions of V , �x a de�ning polynomial Q = α1 · · ·αl ∈ S

for A, and consider, following K. Saito in [Sai80], the Lie algebra

DerA = {δ ∈ Der(S ) : δ (Q ) ∈ QS }

of derivations of S logarithmic with respect to A, which is, geometrically speaking, the Lie
algebra of vector �elds on V which are tangent to the hyperplanes of A. �is Lie algebra is
a very interesting invariant of the arrangement and has been the subject of a lot of work —
we refer to the book of P. Orlik and H. Terao [OT92] and the one by A. Dimca [Dim17] for
surveys on this subject. In particular, using this Lie algebra we can de�ne an important class of
arrangements: we say that an arrangement A is free if DerA is free as a le� S-module. For
example, central arrangements of lines in the plane are free, as are, according to a beautiful
result of Terao [Ter80a], the arrangements of re�ecting hyperplanes of a �nite group generated
by pseudo-re�ections.

Now, along with DerA we can consider also the associative algebra Diff (A) of di�erential
operators on S which preserve the ideal QS of S and all its powers: we call it the algebra
of di�erential operators tangent to the arrangement A. As shown by F. J. Calderón-Moreno
in [CM99] or by M. Suárez-Álvarez in [SÁ18], when A is free Diff (A) coincides with the
subalgebra of the algebra Endk (S ) of linear endomorphisms of the vector space S generated by
DerA and the set of maps given by le� multiplication by elements of S . �e algebraic structure
of Diff (A) is determined by both the S-module structure of DerA and its Lie structure, so it is
a very natural object to study. �e main goal of this thesis is precisely to do this from the point
of view of homological algebra and deformation theory in the special situation in which the
arrangement A is free.

Our �rst step is to �nd a description of the algebra Diff (A) that is convenient for performing
explicit calculations. �e language of Lie–Rinehart pairs provides the required formalism to do
this: indeed, the pair (S,DerA) determined by the polynomial algebra S and the Lie algebra
of derivations tangent to A is a Lie–Rinehart pair, as those studied by G. Rinehart in [Rin63]
and by J. Huebschmann in [Hue90], and the algebra Diff (A) can be identi�ed to the universal
enveloping algebra U (S,DerA) of this pair. �is is the content of our �eorem 2.19.

�eorem. Let A be a free hyperplane arrangement on a vector space V and let S be the algebra
of coordinate functions on V . �ere is a canonical isomorphism of algebras

U (S,DerA) → Diff (A).
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2 Introduction

�at there is such a morphism and that it is surjective is an interpretation of the re-
sults in [CM99] and in [SÁ18]. To prove that it is injective we use the calculation of the
Gelfand-Kirillov dimension of the enveloping algebra of a Lie–Rinehart pair done by J. Matczuk
in [Mat88] and the fact that Diff (A) and the algebra of di�erential operators on S become
isomorphic a�er localization at the single element Q . With this theorem at hand we are able
to give in Proposition 2.20 a presentation of Diff (A) by generators and relations and, using
the results by �. Lambre and P. Le Meur in [LLM18], to prove in 2.25 that Diff (A) has the
twisted Calabi–Yau property.

We then focus on central arrangement of lines A in a 2-dimensional vector space V with
at least �ve lines, which are the simplest free arrangements. �e bulk of Chapter 3 is a lengthy
calculation that culminates in Proposition 3.15, where we give a description of the Hochschild
cohomology of Diff (A) in a completely explicit fashion. Let us just state here the following
result, which follows from the proposition, and omit the details.

Proposition. If A is a central line arrangement of l lines with l ≥ 5, the Hilbert series of
HH • (Diff (A)) is

hHH • (U ) (t ) = 1 + lt + (2l − 1)t2 + lt3.

When the arrangement consists of less than �ve lines, the conclusion of the proposition does
not hold: we deal with this special case using di�erent techniques by the end of the thesis.

�e next step is to describe the algebra structure of HH • (Diff (A)) and its Gerstenhaber
structure: it is in order to do this that we need such an explicit description. �e results appear
in Proposition 3.19 and 3.22 and are, again, too technical to reproduce here. In any case,
these structures provide a be�er understanding of our computations and allow us to relate
Diff (A) with a well-known invariant of the arrangement, the Orlik–Solomon algebra. �is
algebra, studied by P. Orlik and L. Solomon in [OS80], is a combinatorial analogue of the algebra
obtained as the de Rham cohomology of the complement of A for the case in which k = C,
which was found by E. Brieskorn in [Bri73] and, previously, by V. I. Arnold in [Arn69] for the
family of braid arrangements. �is algebra appears in our situation in Proposition 3.20:

Proposition. �e subalgebraH of HH • (Diff (A)) generated by HH 1 (Diff (A)) is isomorphic to
the Orlik–Solomon algebra of A.

Along with these results, we are also able to obtain the Hochschild homology, the cyclic
homology, the periodic cyclic homology, the K-theory of Diff (A) and a direct proof of the
twisted Calabi–Yau property for the special case of line arrangements: these are the contents
of Propositions 3.23 and 3.25.

We can extract consequences of our computation of cohomology. Indeed, applying the meth-
ods developed by J. Alev and M. Chamarie in [AC92], we are able to describe the automorphism
group Diff (A) in �eorem 4.7:
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�eorem. �e group Aut(Diff (A)) is the semidirect product Aut0 (Diff (A)) n Exp(Diff (A))

of the subgroups Aut0 (Diff (A)) of automorphisms of Diff (A) that preserve the grading and
Exp(Diff (A)) of exponentials of locally nilpotent inner derivations of Diff (A). �e action
of Aut0 (Diff (A)) on Exp(Diff (A)) is given by

θ0 · exp ad( f ) = exp ad(θ−1 ( f ))

for all θ0 ∈ Aut0 (Diff (A)) and f ∈ S .

Along with this theorem, we give in Chapter 4 a complete description of the groups
Aut0 (Diff (A))) and Exp(Diff (A)). We show that the �rst one is a �nite dimensional algebraic
group which “sees” the symmetries of the arrangement and the second one is an in�nite
dimensional group whose structure does not depend on the arrangement at all. �is description
of the automorphism group, in turn, allows us to give a complete solution to the problem of
determining which pairs of arrangements of linesA andA ′ have isomorphic algebras Diff (A)

and Diff (A ′).

Proposition. Two central arrangements of lines have isomorphic algebras of di�erential operators
if and only if they are themselves isomorphic.

�e explicitness of our calculation of the Hochschild cohomology of Diff (A) continues
to be useful: in Section 5.2 we put to use our �ndings on HH 2 (Diff (A)) to study the formal
deformation theory of the algebra Diff (A) in the sense of M. Gerstenhaber [Ger64]. With the
help of the Diamond Lemma of G. Bergman [Ber78] we show, on one hand, that many of the
in�nitesimal deformations of the algebra can be integrated to formal deformations and, on the
other, exhibit obstructed in�nitesimal deformations.

Let us go back to the general case of free arrangements of hyperplanes of arbitrary dimen-
sion. As we mentioned above, the pair (S,DerA) determined by the polynomial algebra S

and the Lie algebra DerA is a Lie–Rinehart pair and its enveloping algebra is isomorphic
to Diff (A). In view of this observation, the problem of determining the Hochschild cohomology
of Diff (A) has a rather natural generalization: given a Lie–Rinehart pair (S,L) with universal
enveloping algebra U = U (S,L), to determine the Hochschild cohomology HH • (U ).

Following the ideas of �. Lambre and P. Le Meur in [LLM18], we construct a spectral
sequence that reduces that problem to the computation of the Hochschild cohomology of the
commutative algebra S with values in U and the Lie–Rinehart cohomology of the pair (S,L).
Explicitly, we obtain the following result in Corollary 6.8.

�eorem. For each U -bimodule M there is a �rst-quadrant spectral sequence E• converging
to HH • (U ,M ) such that

E
p,q
2 � Hp (L|S,Hq (S,M )).

We give several concrete examples in which this spectral sequence makes it possible to
completely determine HH • (U ) and we show how this method is applied to the special case of
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the computation of the cohomology of the algebra Diff (A) associated to a line arrangement.
In particular, we extend our computation of the Hochschild cohomology of Diff (A) as a
graded vector space to arrangements with 3 or 4 lines, which were excluded before. �is
result appears in the text as Proposition 6.50 for the case of 3 lines. In order to perform this
computation, it is important to have a concrete description of the action ofU on the Hochschild
cohomology H • (S,U ) as computed from a projective resolution of S : we are able to obtain it
in �eorem 6.18 following [SÁ17]. Finally, to enrich the description of our spectral sequence,
we provide in �eorem 6.30 an interpretation of the di�erentials of its page E2 in terms of
appropriate cup products that is obtained emulating what is done in [SÁ07].

S S S

Let us end this introduction with a brief summary of the contents of the thesis.
In Chapter 1, we provide de�nitions, examples and results from the theory of hyperplane

arrangements that will be useful throughout the thesis. We �rst focus on the general se�ing of
hyperplane arrangements, the module of derivations and the complex of logarithmic forms.
With these notions at hand, we present some of the results that started to raise interest in the
area and that relate the cohomology of the complement space of a complex arrangement with
other constructions, such as those by V. I. Arnold in [Arn69], by E. Brieskorn’s in [Bri73] and
by P. Orlik and L. Solomon in [OS80].

In Chapter 2 we present the algebra Diff (A) of di�erential operators tangent to a hyperplane
arrangement A and give a useful description of this algebra for the case of a free arrangement
building on the results of [SÁ18]. We then turn on to the case of central line arrangements,
providing a presentation and showing that in this case the algebra is isomorphic to an iterated
Ore extension. A�er that, we recall the notions of Lie–Rinehart pairs and of their enveloping
algebras, due to G. Rinehart in [Rin63]. �ese concepts are proven vital for us because the
algebra Diff (A) is isomorphic to the enveloping algebra of the pair (S,DerA) whenever A is
free. Using this, we �nd a presentation for Diff (A) and show it has the twisted Calabi–Yau
property using a result from [LLM18].

From Chapters 3 to 5 we study the case of a central arrangement of lines A in a 2-
dimensional vector space over a �eld of characteristic zero. We determine the Hochschild
cohomology of Diff (A) as a Gerstenhaber algebra, establish a connection between that coho-
mology and the de Rham cohomology of the complement M (A) of the arrangement, determine
the isomorphism group of Diff (A), classify the algebras of that form up to isomorphism and
study their deformation theory.

In our �nal Chapter 6, we construct a spectral sequence converging to the Hochschild
cohomology of the enveloping algebra of a Lie–Rinehart pair, we show that the di�erentials on
its second page are given by cup products and we end the thesis by using the spectral sequence
to extend our results on the Hochschild cohomology of Diff (A) to the case in which A has
few lines — this was in fact our motivation for the construction of the sequence.
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�e contents of Chapters 3 and 4 form part of the article [KSÁ18], which has been accepted
for publication in Documenta Mathematica. On the other hand, the preprint [Kor18] contains
most of Chapter 6 and has been submi�ed.





Introducción

Sean k un cuerpo de caracterı́stica cero, V un espacio vectorial de dimensión �nita y A un
arreglo de hiperplanos de V , esto es, un conjunto �nito {H1, . . . ,Hn } de subespacios de V

de codimensión 1. Para cada i ∈ {1, . . . , l }, sea αi : V → k una forma lineal con núcleo Hi .
Llamemos S al álgebra de funciones coordenadas en V , �jemos el polinomio Q = α1 · · ·αl ∈ S ,
que de�ne A, y consideremos, siguiendo a K. Saito in [Sai80], el álgebra de Lie

DerA = {δ ∈ Der(S ) : δ (Q ) ∈ QS }

de derivaciones de S logarı́tmicas con respecto aA, que es, en términos geométricos, el álgebra
de Lie de campos vectoriales enV que son tangentes a los hiperplanos deA. Este álgebra de Lie
es un invariante interesante del arreglo y ha sido objeto de estudio de varios trabajos: el libro
de P. Orlik y H. Terao [OT92] y el de A. Dimca [Dim17] son útiles como referencias generales.
Sirviéndonos del álgebra de Lie de derivaciones, podemos de�nir una clase importante de
arreglos: decimos que un arreglo A es libre si DerA es un S-módulo libre. Por ejemplo, un
arreglo central de rectas en el plano es libre y son libres también, de acuerdo a un resultado de
H. Terao en [Ter80a], los arreglos de hiperplanos de re�exión de un grupo �nito generado por
pseudo-re�exiones.

Junto con el álgebra de Lie DerA podemos considerar el álgebra asociativa Diff (A) de
operadores diferenciales en S que presevan el ideal QS de S y todas sus potencias: la llamamos
el álgebra de operadores diferenciales tangentes al arreglo A. Es un resultado de F. J. Calderón-
Moreno en [CM99] y de M. Suárez-Álvarez en [SÁ18] que cuando A es libre, Diff (A) coincide
con la subálgebra de End(S ), el álgebra de endomor�smos lineales del espacio vectorial S ,
generada por DerA y el conjunto de funciones dadas por la multiplicación a izquierda por
elementos de S .

La estructura algebraica de Diff (A) está determinada por la estructura de S-módulo de
DerA y por su estructura de Lie, de manera que es un objeto muy natural de estudiar. El
objetivo principal de esta tesis es precisamente hacer esto desde el punto de vista del álgebra
homológica y la teorı́a de deformaciones en la situación especial en que el arreglo A es libre.

Nuestro primer paso es encontrar una descripción del álgebra Diff (A) que sea conveniente
para realizar cálculos explı́citos. El lenguaje de los pares de Lie–Rinehart nos provee del
formalismo necesario: el par (S,DerA) determinado por el álgebra de polinomios S y el
álgebra de Lie de derivaciones tangentes a A es un par de Lie–Rinehart, como los estudiados
por G. Rinehart en [Rin63] y por J. Huebschmann en [Hue90], y el álgebra Diff (A) puede
identi�carse con el álgebra envolvente universal U (S,DerA) de este par. Este es el contenido
de nuestro Teorema 2.19.
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8 Introducción

Teorema. Sea A un arreglo de hiperplanos libre en un espacio vectorial V y sea S el álgebra de
funciones coordenadas en V . Hay un isomor�smo canónico de álgebras

U (S,DerA) → Diff (A).

La existencia de este mor�smo sigue inmediatamente de los resultados en [CM99] y
en [SÁ18]. Para probar que es inyectivo, utilizamos el cálculo de la dimensión de Gelfand-
Kirillov del álgebra envolvente de un par de Lie–Rinehart hecho por J. Matczuk en [Mat88]
y el hecho de que Diff (A) y el álgebra de operadores diferenciales en S se tornan isomorfas
al localizar en el elemento Q . Con este teorema a mano, damos en la Proposición 2.20 una
presentation de Diff (A) por generadores y relaciones y, usando los resultados de �. Lambre
y P. Le Meur en [LLM18], probamos en 2.25 que Diff (A) tiene la propiedad de Calabi–Yau
torcida.

Nos enfocamos después en los arreglos centrales de rectas A en un espacio vectorial V de
dimensión 2 con al menos cinco rectas, que son los arreglos libres más simples. Una buena parte
del Capı́tulo 3 es un cálculo extenso que culmina en la Proposición 3.15, en la que damos una
descripción de la cohomologı́a de Hochschild de Diff (A) de manera completamente explı́cita.
Sin entrar en detalles, la proposición nos da la siguiente información.

Proposición. Si A es un arreglo central de rectas de l rectas con l ≥ 5, la serie de Hilbert
de HH • (Diff (A)) es

hHH • (U ) (t ) = 1 + lt + (2l − 1)t2 + lt3.

Cuando el arreglo tiene menos de cinco rectas, la conclusión de la proposición no sigue siendo
cierta: lidiamos con esta situación especial utilizando técnicas diferentes sobre el �nal de la
tesis.

El siguiente paso es describir la estructura de álgebra de HH • (Diff (A)) y su estructura
de Gerstenhaber: es para esto que necesitamos una descripción tan explı́cita. Los resultados
aparecen en las Proposiciones 3.19 y 3.22 y son, una vez más, demasiado técnicos para reproducir
aquı́. De cualquier manera, estas estructuras nos dan un mejor entendimiento de nuestros
cálculos previos y nos permiten relacionar Diff (A) con un invariante conocido del arreglo,
el álgebra de Orlik–Solomon. Este álgebra, estudiada por P. Orlik y L. Solomon en [OS80], es
un análogo combinatorio del álgebra encontrada por E. Brieskorn en [Bri73] y, previamente,
por V. I. Arnold en [Arn69] para la familia de arreglos de trenzas, como la cohomologı́a de de
Rham del complemento de A para el caso en que k = C. Aparece en nuestra situación en la
Proposición 3.20:

Proposición. La subálgebra H de HH • (Diff (A)) generada por HH 1 (Diff (A)) es isomorfa al
álgebra de Orlik–Solomon de A.
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Además de estos resultados, calculamos la homologı́a de Hochschild, la homologı́a cı́clica,
la homologı́a cı́clica periódica y la K-teorı́a de Diff (A), y obtenemos una prueba directa de la
propiedad de Calabi–Yau para el caso especial de arreglos centrales de rectas: estos son los
contenidos de las Proposiciones 3.23 y 3.25.

Procedemos a continuación a extraer consecuencias de nuestro cálculo de la cohomologı́a.
Utlizando los métodos desarrollados por J. Alev y M. Chamarie en [AC92], describimos el grupo
de automor�smos de Diff (A) en el Teorema 4.7:

Teorema. El grupo Aut(Diff (A)) es el producto semidirecto Aut0 (Diff (A)) n Exp(Diff (A))

de los subgrupos Aut0 (Diff (A)) de automor�smos de Diff (A) que preservan la graduación
y Exp(Diff (A)) de las exponenciales de derivaciones internas localmente nilpotentes de Diff (A).
La acción de Aut0 (Diff (A)) en Exp(Diff (A)) está dada por

θ0 · exp ad( f ) = exp ad(θ−1 ( f ))

para cada θ0 ∈ Aut0 (Diff (A)) y f ∈ S .

Junto con este teorema, damos en el Capı́tulo 4 una descripción completa de los grupos
Aut0 (Diff (A)) y Exp(Diff (A)). Mostramos que el primero es un grupo algebraico de dimensión
�nital que “ve” las simetrı́as del arreglo y que el segundo es un grupo de dimensión in�nita
cuya estructura es independiente del arreglo. Esta descripción del grupo de automor�smos,
a su vez, nos permite dar una solución completa al problema de determinar cuáles pares de
arreglos de rectas A y A ′ tienen álgebras Diff (A) y Diff (A ′) isomorfas.

Proposición. Dos arreglos de rectas tienen álgebras de operadores diferenciales isomorfas si y
solo si son isomorfos.

Lo explı́cito de nuestros resultados sobre la cohomologı́a de Hochschild de Diff (A) continúa
siendo útil: en la Sección 5.2 utilizamos nuestra descripción de HH 2 (Diff (A)) para estudiar la
teorı́a de deformaciones formales del álgebra Diff (A) en el sentido de M. Gerstenhaber [Ger64].
Con la ayuda del Lema del diamante de G. Bergman [Ber78] mostramos, por un lado, que
muchas de las deformaciones in�nitesimales del álgebra pueden ser integradas a deformaciones
y, por otro, exhibimos deformaciones in�nitesimales obstruidas.

Volvamos ahora a la situación general de un arreglo libre de hiperplanos de dimensión
arbitraria. Como mencionamos arriba, el par (S,DerA) determinado por el álgebra de poli-
nomios S y el álgebra de Lie DerA es un par de Lie–Rinehart y su álgebra envolvente es
isomorfa a Diff (A). En vista de esta observación, el problema de determinar la cohomologı́a
de Hochschild de Diff (A) tiene una generalización natural más bien clara: dado un par
de Lie–Rinehart (S,L) con álgebra envolvente U = U (S,L), determinar la cohomologı́a de
Hochschild HH • (U ).

Siguiendo las ideas de �. Lambre y P. Le Meur en [LLM18], construimos una sucesión
espectral que reduce el problema al del cálculo de la cohomologı́a de Hochschild del álgebra con-
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mutativa S a valores enU y al de la cohomologı́a de Lie–Rinehart del par (S,L). Explı́citamente,
obtenemos el siguiente resultado en el Corolario 6.8.

Teorema. Para cada U -bimódulo M hay una sucesión espectral E• en el primer cuadante que
converge a HH • (U ,M ) tal que

E
p,q
2 � Hp (L|S,Hq (S,M )).

Después de este resultado, damos varios ejemplos en los que la sucesión espectral hace
posible determinar completamente HH • (U ) y mostramos cómo este método se aplica al caso
especial del cálculo de la cohomologı́a del álgebra Diff (A) asociada a un arreglo de rectas. En
particular, extendemos nuestros resultados del Capı́tulo 3 sobre la cohomologı́a de Hochschild
de Diff (A) como espacio vectorial graduado a arreglos con 3 o 4 rectas, que habı́amos excluı́do
anteriormente. Este resultado aparece en el texto como la Proposición 6.50 para el caso de 3
rectas. Para realizar este cálculo, es importante tener una descripción concreta de la acción deU
sobre la cohomologı́a de Hochschild H • (S,U ) en la situación en que esta última es calculada
mediante una resolución proyectiva de S : obtenemos tal descripción en el Teorema 6.18,
siguiendo [SÁ17]. Finalmente, para enriquecer la descripción de nuestra sucesión espectral,
damos en el Teorema 6.30 una interpretación de los diferenciales de la página E2 en términos
de productos cup apropiados, que se obtiene emulando lo hecho en [SÁ07].

S S S

Terminamos esta introducción con un breve sumario de los contenidos de la tesis.
En el Capı́tulo 1, damos de�niciones, ejemplos y resultados de la teorı́a de arreglos de

hiperplanos que serán útiles a través de la tesis. Primero nos enfocamos en las nociones
generales sobre los arreglos de hiperplanos, el módulo de derivaciones y el complejo de formas
logarı́tmicas. Después, presentamos algunos de los resultados que empezaron a generar interés
en el área y que relacionan la cohomologı́a de de Rham del complemento de un arreglo complejo
con otras construcciones, tales como las de V. I. Arnold en [Arn69], de E. Brieskorn en [Bri73] y
de P. Orlik y L. Solomon en [OS80].

En el Capı́tulo 2 presentamos el álgebra Diff (A) de operadores diferenciales tangentes a
un arreglo de hiperplanos A y damos una descripción conveniente de este álgebra para el
caso de arreglos libres a partir de los resultados de [SÁ18]. A continuación, nos centramos
en el caso de los arreglos centrales de rectas, dando una presentación y mostrando que en
este caso el álgebra es isomorfa a una extensión de Ore iterada. Volviendo a la situación
general, presentamos los pares de Lie–Rinehart y sus álgebras envolventes, que se deben a
G. Rinehart en [Rin63]. Estos conceptos son vitales para nosotros puesto que el álgebra Diff (A)

es isomorfa al álgebra envolvente del par (S,DerA) si A es libre. Usando esto, encontramos
una presentación para Diff (A) y mostramos que tiene la propiedad de Calabi–Yau torcida
usando un resultado de [LLM18].
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Entre los Capı́tulos 3 y 5 estudiamos el caso de un arreglo central de rectasA en un espacio
vectorial de dimensión 2 sobre un cuerpo de caracterı́stica cero. Determinamos la cohomologı́a
de Hochschild de Diff (A) como álgebra de Gerstenhaber, establecemos una conexión entre
esta cohomologı́a y la de de Rham del complemento M (A) del arreglo, determinamos el grupo
de isomor�smo de Diff (A), clasi�camos las álgebras de esa forma a menos de isomor�smo y
estudiamos su teorı́a de deformaciones.

En nuestro capı́tulo �nal, el Capı́tulo 6, construimos una sucesión espectral que converge a
la cohomologı́a de Hochschild del álgebra envolvente de un par de Lie–Rinehart, mostramos
que los diferenciales de la segunda página están dados por productos cup y terminamos la
tesis utilizando la sucesión espectral para extender nuestros resultados sobre la cohomologı́a
de Hochschild de Diff (A) en el caso en que A tiene pocas rectas: ésta fue, de hecho, nuestra
motivación para la construcción de la sucesión.

Los contenidos de los Capı́tulos 3 y 4 forman parte del artı́culo [KSÁ18], que ha sido
aceptado para publicación en Documenta Mathematica. Por otro lado, el preprint [Kor18]
contiene la mayorı́a del Capı́tulor 6 y ha sido submitido.





– 1 –
Hyperplane arrangements

In this chapter we de�ne and illustrate the objects with which we deal throughout the thesis.
�e �rst de�nitions cover combinatorial aspects of hyperplane arrangements, the Lie module
of derivations tangent to an arrangement, and the complex of logarithmic forms. A�erwards,
we deal with the cohomology of the complement of a complex arrangement and its relation
with our previous constructions. Finally, we present the Orlik–Solomon algebra, which is a
combinatorial analogue of the algebra obtained as the cohomology of the complement in the
general situation where the ground �eld is not C.

1.1 Basic definitions

1.1. Let us �rst introduce some notation that we will keep throughout this thesis. We let k be
a ground �eld and assume that all vector spaces and algebras are implicitly de�ned over k. We
will also take unadorned ⊗ and hom with respect to k and, sometimes, we will write | instead
of ⊗.

1.2. A hyperplane arrangement or an arrangement of hyperplanes A over k is a �nite collection
of a�ne hyperplanes {H1, . . . ,Hl } of a k-vector space V of �nite dimension. Most of the times,
we shall omit the reference to k. An arrangement is central if its hyperplanes are actually
subspaces.

We will denote the dimension of V by n and call it the dimension of A. Choosing a
basis, we may identify the algebra of coordinate functions on V with the polynomial algebra
S = k[x1, . . . ,xn]. Let us denote, if l is any positive integer, the set {1, . . . , l } by ~l�. For each
i ∈ ~l�, let αi : V → k be an a�ne function such that Hi is the zero locus of αi . �e de�ning
polynomial of A is

Q (A) = α1α2 · · ·αl

and is usually denoted simply by Q . As di�erent choices of linear forms give rise to the same
arrangement, Q is de�ned up to a scalar multiple. If A is a central arrangement, Q is an
homogeneous polynomial of degree l .

Unless we claim otherwise, we will keep in the general situation and with the notation
explained in this paragraph.

13
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1.3. Let A be a hyperplane arrangement. �e rank of A is the dimension of the space A⊥

generated by the normals of its hyperplanes. We callA essential if its rank equals its dimension.
�e complement of A is the set M (A) = V \

⋃
H ∈A H . If k = R, a connected component of

M (A) is called a chamber ; the set of chambers of A is denoted by C (A).

1.4. Example. �e boolean arrangement Booln in V = kn is de�ned by Q = x1x2 · · · xn . It is an
essential central arrangement. To determine the chamber to which a point belongs it is enough
to give the signs of its coordinates: the number of chambers is thus 2n .

1.5. Example. �e braid arrangement Bn in kn has hyperplanes

Hi j = {(x1, . . . ,xn ) ∈ k
n : xi − x j = 0} for 1 ≤ i < j ≤ n,

so it has
(
n
2

)
hyperplanes. �is central arrangement is not essential, for the normal of each

hyperplane satis�es the equation x1 + . . . + xn = 0: in fact, the rank of Bn is n − 1. Let us now
assume that k = R and let p = (p1, . . . ,pn ) ∈ R

n . Given i and j such that 1 ≤ i < j ≤ n, we
observe that p lies on one or another side of the hyperplane xi −x j if and only if pi is greater or
smaller than pj . As a consequence of this, a connected component of M (A) is determined by a
total order on ~n�, or, in other words, to a permutation of that set. �e number of chambers of
M (A) is then n!.

1.6. �ere are many ways to construct arrangements; let us review two of the most important
ones. IfA1 is an arrangement inV1 andA2 is an arrangement inV2, their product A1×A2 is the
arrangement inV1⊕V2 with hyperplanesH ⊕V2 forH ∈ A1 andV1⊕H forH ∈ A2. For example,
the nth boolean arrangement Booln can be viewed as the n-fold product of the arrangement in k
whose only hyperplane is the point at the origin. Furthermore, every arrangement can be viewed
as the product of an empty arrangement and an essential arrangement, the essentialization
of A, whose hyperplanes are the intersections of those of A with the subspace A⊥. Notice
that this construction produces an arrangement not in V but in A⊥. We call an arrangement
reducible if it is, a�er a change of coordinates, the product of two arrangements on nonzero
vector spaces.

Another basic construction is that of coning, whose point is to relate a�ne —that is, not
necessarily central— and central arrangements: given an a�ne arrangement A in V , the cone
cA is a central arrangement in k ⊕ V such that A is “embedded” in cA. Let us denote the
algebra of coordinates on k ⊕V by S ′ = k[x0, . . . ,xn]: if Q ∈ S is the de�ning polynomial ofA,
we let Q ′ ∈ S ′ be the homogenization of Q and cA be the arrangement determined by x0Q

′.
For instance, if Q = (x1 + 1) (x2 − 2) then cA has de�ning polynomial x0 (x1 − x0) (x2 − 2x0).
�ere is one more hyperplane in cA than in A: the one de�ned by x0 = 0.

1.7. We now describe an important family of arrangements that is, in fact, a big motivation of
the theory. We call an automorphism s ∈ GL(V ) of V a pseudo-re�ection if it has �nite order
and its �xed point set is a hyperplane, which we call the re�ecting hyperplane of s , and we call
it a re�ection if its order is two. A �nite subgroup G of GL(V ) is a (pseudo-) re�ection group if it
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is generated by (pseudo-) re�ections; if k = R it is called a Coxeter group. �e set of re�ecting
hyperplanes A (G ) of a re�ection group G is the re�ection arrangement of G.

A root system is a �nite set R of nonzero vectors in Rn , the roots, that satisfy certain
combinatorial properties that can be found, for instance, in [Bou68, Chapitre VI]. �e setA (R)

of hyperplanes in Rn orthogonal to the roots of R is an arrangement, and one can show that
every such arrangement is, in fact, a re�ection arrangement: the corresponding group is
the one generated by the re�ections with respect to its hyperplanes. We call these Coxeter
arrangements. For instance, the arrangement associated to the class of root systems

An−1 =
{
ei − ej : 1 ≤ i < j ≤ n

}
⊂ Rn

is the real nth braid arrangement Bn = A (An−1) that we saw in Example 1.5. Identifying the
re�ection with respect to the plane xi − x j = 0 with the permutation (ij ) ∈ Sn , we see that the
corresponding re�ection group is Sn .

�ere is a complete description of the family of pseudo-re�ection arrangements in the
complex case due to G. Shephard and J. Todd, who have classi�ed irreducible �nite complex
pseudo-re�ection groups in [ST54].

1.2 Combinatorics

1.8. Let A be an arrangement in V . �e intersection poset L (A) is the set of all nonempty
intersections of hyperplanes in A —including V , the intersection of the empty set— with order
given by reverse inclusion, that is, X ≤ Y if and only if Y ⊆ X . When A is central, L (A) is a
la�ice.

1.9. Example. Let us consider the boolean arrangement Booln of Example 1.4, de�ned by
x1 . . . xn = 0. As every subset of hyperplanes in Booln has a di�erent nonempty intersection,
L (A) is isomorphic to the poset of all subsets of ~n� ordered by inclusion. As a ma�er of fact,
this is the reason for the name of the arrangement.

Let us show that, on the other hand, the intersection poset L (Bn ) of the braid arrangement
Bn = {Hi j : 1 ≤ i < j ≤ n}, introduced in Example 1.5, is isomorphic to the la�ice P of
partitions of the set ~n� ordered by re�nement. Indeed, if X ∈ L (Bn ), there is an equivalence
relation ∼X on ~n� such that

i ∼X j ⇐⇒ X ⊂ Hi j ,

with the convention that Hi j denotes V if i = j, and we may therefore consider the partition
ΛX of ~n� into its corresponding equivalence classes. �e map

φ : L (Bn ) 3 X 7→ ΛX ∈ P

is the desired isomorphism of la�ices: it preserves order, it is injective, for we can write X

as the intersection of the hyperplanes Hi j such that i ∼X j, and it is also surjective: given a
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partition Λ of ~n� that determines a relation ∼, we may de�ne X as the intersection of all
hyperplanes Hi j such that i ∼ j.
1.10. From an arrangement A and a choice of X ∈ L (A) we can construct two arrangements:
the �rst one is

AX B {H ∈ A : X ⊆ H } ,

which is a subarrangement of A, and the second one is the arrangement

AX B {X ∩ H : X * H and X ∩ H , ∅}

inX , which we call the restriction ofA toX . IfH0 is a hyperplane ofA, we letA ′ = A\{H0} and
A ′′ = AH0 . We call (A,A ′,A ′′) a triple with distinguished hyperplane H0. �is construction is
useful to perform inductive arguments, as we show in the next example, which will be relevant
in the proof of Zaslavsky’s �eorem 1.18.

1.11. Example. Let (A,A ′,A ′′) be a triple of real arrangements with distinguished hyperplane
H . We claim that the number of chambers of each arrangement satisfy

|C (A) | = |C (A ′′) | + |C (A ′) |. (1.1)

Let us, in order to prove this equality, denote by P the set of chambers of A ′ that intersect H
and by Q the set of those that do not. Of course, every chamber in P gives rise to two chambers
inA when it is split by H ; on the other hand, each chamber in Q is a chamber ofA. We see in
this way that

|C (A) | = 2|P | + |Q | = |P | + |C (A ′) |,

and this, together with the observation that the map P 3 c 7→ c ∩ H ∈ C (A ′′) is a bijection,
�nishes the proof.
1.12. Let L be a �nite poset. �e Möbius function µ : L × L → Z is de�ned recursively by

• µ (x ,x ) = 1;
• ∑

x ≤z≤y µ (x , z) = 0 if x < y;
• µ (x ,y) = 0 if x > y.

�is function plays a key role in the Möbius inversion formulas, which we now state for
the special case of in which L is the la�ice of intersections L (A) of a central hyperplane
arrangement A.

1.13. Proposition. Let f and д be functions on L (A) with values on an abelian group. �e
following two equivalencies hold:

д(Y ) =
∑

X ∈L (AY )

f (X ) ⇐⇒ f (Y ) =
∑

X ∈L (AY )

µ (X ,Y )д(X ),

д(X ) =
∑

Y ∈L (AX )

f (Y ) ⇐⇒ f (X ) =
∑

Y ∈L (AX )

µ (X ,Y )д(Y ).
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1.14. Let A be a central hyperplane arrangement and let us write µ (X ) = µ (V ,X ) for each
X ∈ L (A); notice that V is the unique minimal element of the la�ice L (A). �e characteristic
polynomial χA ∈ Z[t] of the arrangement A is

χA (t ) =
∑

X ∈L (A)

µ (X )tdim(X ) .

�is polynomial collects important combinatorial information of the arrangement —the number
of hyperplanes, for instance: it is readly seen, using the recurrence that de�nes µ, that µ (X ) = −1
if X is a hyperplane, so that χA (t ) = tn − |A|tn−1 + . . ..

1.15. Example. �e characteristic polynomial of the boolean arrangement is (t − 1)n . To see
this, let us �rst show by induction with respect to the codimension r (Y ), with Y ∈ L (A), that
µ (Y ) = (−1)r (Y ) . �is is immediate when Y = V , so let us suppose that k B r (Y ) is positive. If
0 ≤ i ≤ k , the number of subspaces X ∈ L (A) such that X ≤ Y and r (X ) = i is

(
k
i

)
. Using this,

the second property in the de�nition of µ and the inductive hypothesis we see that

0 =
∑
X ≤Y

µ (X ) =
∑

0≤i<k

(
k

i

)
(−1)i + µ (Y ).

As 0 = (1 − 1)k = ∑k
i=0

(
k
i

)
(−1)i , we conclude that µ (Y ) = (−1)k and, �nally, that

χA (t ) =
∑

X ∈L (A)

(−1)r (X )tdim(X ) =

n∑
i=0

(
n

i

)
(−1)itn−i = (t − 1)n .

1.16. Example. Let k = Fq be the �nite �eld of q elements andA the arrangement in V = kn of
all hyperplanes that pass through the origin.

IfW is a Fq-vector space of �nite dimension and w denotes its cardinality then, evidently,
|hom(W ,V ) | = wn . Let us de�ne, for X ∈ L (A), PX to be the subset of hom(W ,V ) of maps
with image equal to X and QX that of maps with image contained in X but not necessarily
equal to it. Of course, we have QX =

⋃
Y ≥X PY and, with the help of the Möbius inversion

formulas in 1.12, we see that |PY | =
∑

X ≥y µ (Y ,X ) |QX |. In particular, for Y = V , this means
that

|PV | =
∑
X ≥Y

µ (X )wdimX . (1.2)

As a linear mapW → V is surjective if and only if its transpose V ∗ →W ∗ is injective, |PV | is
the number of injective maps in hom(V ∗,W ∗). Let us now �x a basis {x1, . . . ,xn } of V ∗ and
suppose that ϕ is a monomorphism from V ∗ toW ∗. �ere are wn − 1 possibilities for ϕ (x1);
once we have chosen one, we remove all its multiples to see that there are wn − q elements
where x2 can be sent: an inductive argument following these lines shows that

|PV | = (wn − 1) (wn − q) · · · (wn − qn−1).
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Since equation (1.2) means that |PV | = χA (w ), we may conclude that

χA (t ) = (tn − 1) (tn − q) · · · (tn − qn−1),

for this result holds for an in�nite number of integer values of t .

1.17. Example. We follow the ideas in the previous example, now to compute the characteristic
polynomial of a braid arrangement. Let n ∈ N and let A be the nth braid arrangement. Recall
from Example 1.9 that L (A) is isomorphic to the la�ice of partitions of I B ~n�; the partition
associated to X ∈ L (A) is denoted by ΛX .

LetW be a set of cardinality w . If ϕ : I →W , we write Λϕ the partition {ϕ−1 (w ) : w ∈W }
of I and for each X ∈ L (A) we put

PX = {ϕ : I →W : Λϕ = ΛX }, QX = {ϕ : I →W : Λϕ ≥ ΛX }.

As the disjoint union of PY with Y ≥ X is QX , we can apply the Möbius inversion formula to
see that

|PY | =
∑
X ≥Y

µ (Y ,X ) |QX |. (1.3)

Let us now compute |QX |. As maps ϕ ∈ QX are constant on each of the classes determined by
the equivalence relation ∼X that we saw in Example 1.9, there is a bijection between QX and
W ΛX . Moreover, |ΛX | = dimX , for the subset of V formed by the vectors vλ = ∑

i ∈λ ei with
λ ∈ ΛX is a basis of X . If we now set Y = V in (1.3) we obtain that

|PV | =
∑

X ∈L (A)

µ (X )wdimX .

On the other hand, |PV | is the number of injective maps I → W and therefore equals to
w (w − 1) · · · (w − (n − 1)). We conclude that

χA (t ) = t (t − 1) · · · (t − (n − 1)),

for we have seen, once again, that the equality holds for an in�nite number of instances of t .
1.18. �e Poincaré polynomial of A,

π (A, t ) =
∑

X ∈L (A)

µ (X ) (−t )r (X ),

has the same information as the characteristic polynomial, since we have

χA (t ) = tnπ (A,−t−1).

For instance, we may deduce from Example 1.17 that the Poincaré polynomial of the braid
arrangement Bn is given by

π (M (Bn ), t ) = (1 + t ) (1 + 2t ) · · · (1 + (n − 1)t ). (1.4)
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�is polynomial can be sometimes more convenient than the characteristic polynomial to work
with. �e following two results should help to illustrate this point. �e �rst assertion is known
as the Deletion–Restriction �eorem and the second one, due to T. Zaslavsky, is a consequence
of the comparison of �rst one with (1.1) of Example 1.11.

�eorem. If (A,A ′,A ′′) is a triple then

π (A, t ) = π (A ′, t ) + tπ (A ′′, t ).

�eorem. If A is a real arrangement then the number of chambers of A is π (A, 1).

Proof. �is appears in I.2.A of [Zas75].

1.3 Derivations

1.19. From now on and unless we say otherwise all our arrangements will be central.
1.20. We denote by Der(S ) the set of derivations of S , that is, the linear maps θ : S → S such
that the Leibniz rule

θ ( f д) = θ ( f )д + f θ (д)

holds for every f and д in S . It is straightforward to see that Der(S ) is an S-submodule and a
sub-Lie algebra of the algebra End(S ) of endomorphisms of S . We view S as a graded algebra
as usual, with each variable xi of degree 1 for i ∈ ~n� and for each p ≥ 0 we write Sp the
homogeneous component of S of degree p. �e Lie algebra Der(S ) is a le� graded S-module,
and it is freely generated by the set of partial derivatives {∂i : S → S : i ∈ ~n�}, which are
homogeneous elements of Der(S ) of degree −1.

�e Lie algebra of derivations of the arrangement A is the Lie subalgebra

Der(A) B {θ ∈ Der(S ) : θ (Q ) ∈ QS }

of Der(S ), which happens to be also a graded S-submodule of Der(S ). �is invariant of A was
�rst considered by K. Saito in the more general context of the study of di�erential forms with
logarithmic singularities along a divisor of a complex manifold in [Sai80] and, in particular,
its Lie algebra and S-module structures subtly codify geometric, arithmetic and combinatorial
properties of the arrangement. In geometrical terms, Der(A) has a rather clear description: it
is the algebra of polynomial vector �elds tangent to each of the hyperplanes of A.
1.21. A derivation θ belongs to DerA if and only if α divides θ (α ) for every linear form α

such that kerα belongs to A. Indeed, if Q = α1 · · ·αl for coprime linear forms α1, . . . ,αl then
the claim follows from the equality

θ (Q ) = θ (α1)α2 · · ·αl + α1θ (α2 · · ·αl ).
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As an immediate consequence of this observation we see that if A is a central arrangement
then the eulerian derivation E B x1∂1 + . . . + xn∂n is a derivation of A, for E (α ) = α if α is a
homogeneous linear form.

1.22. An arrangement A is free if DerA is a free S-module. �e notion of freeness was
introduced in [Sai80] as well; as we shall illustrate in Example 1.31, freeness is not a generic
property, but this condition is nevertheless satis�ed in many important examples. Indeed,
it is a theorem by H. Terao in [Ter80a] that re�ection arrangements (see 1.7) over C are
free —we recommend the exposition of this subject in [OT92, §6.3]. In [Ter80b], H. Terao
states the yet unse�led conjecture that the freeness of an arrangement is a combinatorial
property, that is, that it depends only on the intersection poset L (A). We do know, as a
consequence of �eorem 1.52 in Section 1.5 below, that the cohomology of the complement
of a complex arrangement is a combinatorial property; in contrast, Rybnikov in [Ryb11] has
constructed two complex arrangements with the same combinatorics but whose complements
have nonisomorphic fundamental groups.

1.23. As a �rst example of a free arrangement, we may see by hand that the module of
derivations of the boolean arrangement Booln of Example 1.4 admits {xi∂i : 1 ≤ i ≤ n} as a
basis. Let us show that this is actually a consequence of the fact that we saw in Example 1.6
that Booln is the n-fold product of Bool1, which is evidently a free arrangement. Indeed, let
us consider the general situation in which A1 and A2 are arrangements in V1 and V2 and let
A1×A2 be their product, as we de�ned in Example 1.6, which is an arrangement inV = V1⊕V2.
Let S , S1 and S2 be the algebras of coordinate functions on V , V1 and V2, respectively, and let us
identify as usual S with the tensor product algebra S1 ⊗ S2 and view S1 and S2 as subalgebras
of S . If Der(A1) and Der(A2) are the S1- and S2-modules of derivations of A1 and A2, then it
is easy to see that there is an isomorphism of S-modules

Der(A) � S ⊗S1 Der(A1) ⊕ S ⊗S2 Der(A2).

In particular, the product A1 × A2 is free if and only if the factors A1 and A2 are free.
�e su�ciency of the condition is obvious, and the necessity follows from the facts that (i)
projective �nitely generated graded S-modules are free and (ii) a �nitely generated S1-module
M is projective if the S-module S ⊗S1 M is projective, since the inclusion S1 → S is faithfully
�at; see [TSpa19, Proposition 058S].

1.24. To provide more examples e�ciently, we need to make a few preliminary observations.
�e �rst one is that if an arrangement is free then the rank of the module of derivations is
n and that, moreover, there is a basis of DerA formed by homogeneous derivations. As a
consequence of this last fact, each time that we pick a basis of DerA we will be able to assume
without loss of generality that it is one of that form.

Proposition. If an arrangement A in a vector space of dimension n is free, then its S-module of
derivations DerA has a basis of n homogeneous elements.

https://stacks.math.columbia.edu/tag/058S
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Proof. Let r be the rank of the S-module DerA. As the set of derivations {∂i : 1 ≤ i ≤ n} is
an S-basis of Der(S ), the set {Q∂i : 1 ≤ i ≤ n} is one of Q Der(S ) and therefore, looking at
the ranks of each of the S-modules in the chain Q Der(S ) ⊂ DerA ⊂ Der(S ), we conclude
n ≤ r ≤ n. Let us now consider all the homogeneous components of the members of a basis of
DerA: they form a set of generators and, then, choosing a minimal set of generators among
them we �nd a homogeneous basis of DerA.

1.25. If θ1, . . . ,θn ∈ DerA are derivations of A, the Saito matrix is

M (θ1, . . . ,θn ) B
*...
,

θ1 (x1) · · · θ1 (xn )
...

. . .
...

θn (x1) · · · θn (xn )

+///
-

.

Lemma. �e de�ning polynomial Q divides detM (θ1, . . . ,θn ) in S .

Proof. Let α be a linear form de�ning a hyperplane in A. Without losing generality, we may
write α = x1 +c2x2 + · · ·+cnxn , for scalars c2, . . . , cn —we may, if needed, rename the variables
and multiply α by an appropriate scalar. If θ is a derivation then

θ (x1) = θ (α ) − c2θ (x2) − · · · − cnθ (xn ),

and therefore detM (θ1, . . . ,θn ) is equal to

det
*...
,

θ1 (α ) · · · θ1 (xn )
...

...

θn (α ) · · · θn (xn )

+///
-

= α det
*...
,

θ1 (α )/α · · · θ1 (xn )
...

...

θn (α )/α · · · θn (xn )

+///
-

∈ αS .

Since α was arbitrary, it follows from is that detM (θ1, . . . ,θn ) ∈ QS .

1.26. �eorem (Saito’s criterion, [Sai80, �eorem 1.8.ii]). A set of n derivations {θ1, . . . ,θn } in
DerA is an S-basis if and only if the determinant of the matrix M (θ1, . . . ,θn ) is a nonzero scalar
multiple of Q .

Proof. Suppose, to begin with, that the condition on the determinant holds. �e derivations
θ1, . . . ,θn are linearly independent over S : indeed, if θ1 were equal to an S-linear combination
of θ2, . . . ,θn then the evaluation of the determinant of the matrix M (θ1, . . . ,θn ) at any point p
of V would be equal to zero and, since the �eld is in�nite, the determinant itself would be zero,
contradicting the hypothesis.

We may assume that detM (θ1, . . . ,θn ) = Q ; else, we simply replace θ1 with an scalar
multiple. For each i ∈ ~n�, we have θi =

∑
θi (x j )∂j , so, applying essentialy Cramer’s rule, we

get that

Q∂j = det
*...
,

θ1 (x1) · · · θ1 · · · θ1 (xn )
...

...
...

θn (x1) · · · θn · · · θn (xn )

+///
-
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and therefore

Q∂j ∈ Sθ1 + . . . + Sθn . (1.5)

Let now η ∈ DerA and i ∈ ~n�. We see from (1.5) that there exist f1, . . . , fn ∈ S such that
Qη =

∑n
j=1 fjθ j . As Q divides detM (θ1, . . . ,θi−1,η,θi+1, . . . ,θn ) in virtue of Lemma 1.25 we

have that

Q det M (θ1, . . . ,θi−1,η,θi+1, . . . ,θn )

= detM (θ1, . . . ,θi−1,Qη,θi+1, . . . ,θn )

= detM (θ1, . . . ,θi−1, fiθi ,θi+1, . . . ,θn )

= fi detM (θ1, . . . ,θn )

= fiQ,

so that fiQ belongs to Q2S and then Q divides fi . �is shows that η = ∑n
j=1

fj
Q θ j and, therefore,

that {θ1, . . . ,θn } spans the S-module DerA, which is what it remained to see.

Let us suppose now that {θ1, . . . ,θn } is a basis of DerA. Using again 1.25, we know there
exists f ∈ S \ {0} such that f Q = detM (θ1, . . . ,θn ). Given a hyperplane H inA, which we may
suppose to be de�ned by the linear form x1, the arrangementA \ {H } is de�ned by QH = Q/x1.
Consider now the derivations

η1 = Q∂1, ηi = QH ∂i for 2 ≤ i ≤ n.

�ese derivations belong to DerA, so, in view of our hypothesis, can be wri�en as an S-linear
combination of θ1, . . . ,θn : this implies that there exists an square matrix N with entries in S

such that M (η1, . . . ,ηn ) = M (θ1, . . . ,θn )N . As

QQ l−1
H = detM (η1, . . . ,ηn ) = detM (θ1, . . . ,θn ) detN = f Q detN ,

we see that f divides Q l−1
H . As this is true for every H ∈ A and gcdH ∈A Q l−1

H = 1, we conclude
that f ∈ k.

1.27. Recall from 1.24 that if an arrangement is free we may take a basis {θ1, . . . ,θn } consisting
of homogeneous derivations. Looking at the degrees in the equality detM (θ1, . . . ,θn ) = f Q of
Saito’s criterion we arrive at the following result.

Corollary. �e set B = {θ1, . . . ,θn } of homogeneous and linearly independent derivations
in DerA is a basis of DerA if and only if

∑n
i=1 |θi | = l − n.

1.28. Example. Let us consider a central arrangement A of lines in the plane k2, and let us
denote x and y the coordinates of k2. Up to a change of coordinates, we may assume that the
line with equation x = 0 is one of the lines in A, so that the de�ning polynomial Q of the
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arrangement is of the form xF for some square-free homogeneous polynomial F ∈ S which
does not have x as a factor. Saito’s criterion allows us to show that the two derivations

E = x∂x + y∂y , D = F∂y

form an S-basis of DerA. Indeed, we have

detM (E,D) = det *
,

x y

0 F
+
-
= Q .

1.29. Example. As we said in 1.22, re�ection arrangements are free. In particular, the braid
arrangement Bn , de�ned in Example 1.5, admits the set {δ−1, . . . ,δn−2} with

δi =
n∑
j=1

x i+1
j ∂j

as a basis of DerBn , as we check using Saito’s criterion once again. �e matrixM (δ−1, . . . ,δn−2)

is the Vandermonde matrix and its determinant Q = ∏
1≤i<j≤n (xi − x j ), the discriminant of

x1, . . . ,xn , is the de�ning polynomial of Bn .
1.30. Let A be a free arrangement and let {θ1, . . . ,θl } be an S-basis of DerA. �e multiset of
exponents of A is

expA = {|θ1 | + 1, . . . |θl | + 1} .

For instance, we deduce from Example 1.17 that for the braid arrangement Bn we have

expBn = {0, 1, 2, . . . ,n − 1} .

�e following result is a part of [OT92, Proposition 4.29] and will be helpful to show an example
of a non-free arrangement.

Proposition. LetA be a free arrangement and letA1, . . . ,Ak be irreducible arrangements such
that A = A1 × · · · × Ak . �e multiplicity of 0 in expA is the di�erence between the dimension
of A and its rank, and the multiplicity of 1 is k .

If G is a re�ection group, the exponents of the corresponding re�ection arrangementA (G )

have an interpretation in terms of invariant theory and this allows their determination using
the character table of G. �is is done in [OT92, Appendix B] for each of the groups appearing
in the Shephard–Todd classi�cation.

1.31. Example. Let us present an example of the fact, noted above, that freeness is not a generic
property. �e arrangement in V = k3 de�ned by

Q = xyz (ax + by + cz)

is free if and only if abc = 0. On one hand, if, for instance, c = 0 then Saito’s criterion allows
us to see that the derivations x∂x + y∂y , y (ax + by)∂y and z∂z form an S-basis of DerA.
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Let us show that, on the other hand, if abc , 0 then A is not free. We can extract two
consequences from Proposition 1.30: as the arrangement is essential, 0 is not an exponent ofA
and, as it is irreducible, the multiplicity of 1 as an exponent is 1. According to Proposition 1.24,
ifA were free then the number of exponents would be equal to its rank, which is 3, and two of
the exponents would be at least 2. As the number of planes is 4, Corollary 1.27 implies that
DerA is not free.

Even though in this case DerA is not free, it not too far from being free: the S-module
DerA has projective dimension 1. In order to simplify our calculations, performing a change
of coordinates we may assume that a = b = c = 1. We claim that the derivations

E = x1∂1 + x2∂2 + x3∂3,

Di j = xix j (x j − xi ) for (i, j ) ∈ {(1, 2), (2, 3), (3, 1)}

generate the S-module DerA. Let, in order to see this, θ be a derivation in DerA. In view
of 1.21, we have that

xi | θ (xi ) for 1 ≤ i ≤ 3, and x1 + x2 + x3 | θ (x1 + x2 + x3).

We thus see that there exist polynomials a1, a2, a3 and f in S such that θ (xi ) = xiai and
(x1 + x2 + x3) f = x1a1 + x2a2 + x3a3. �is last equation amounts to the equality

0 = x1 (a1 − f ) + x2 (a2 − f ) + x3 (a3 − f ). (1.6)

Let now K• be the Koszul complex described in [Wei94, §4.5] associated to the ring S and the
regular sequence (x1,x2,x3). Denoting byW the k-vector space with basis {x1,x2,x3}, we have
K• = S ⊗ Λ•W and the di�erential d1 : K1 → K0 is given by

d1 (b1 ⊗ x1 + b2 ⊗ x2 + b3 ⊗ x3) = b1x1 + b2x2 + b3x3.

In particular, equation (1.6) tells us that the 1-cochain ω = ∑3
i=1 (ai − f ) ⊗ xi in K1 is a cocycle,

and, since the complex is exact, a coboundary: there exist therefore c1, c2 and c3 in S such that

ω = d2 (c3 ⊗ x1 ∧ x2 − c2 ⊗ x1 ∧ x3 + c1 ⊗ x2 ∧ x3)

= (c2x3 − c3x2) ⊗ x1 + (c3x1 − c1x3) ⊗ x2 + (c1x2 − c2x1) ⊗ x3.

�is equation implies at once that θ = f E + c1D23 + c2D31 + c3D12, as we wanted. One way to
restate this fact is that the morphism of S-modules π : S ⊕4 → S such that

( f , c1, c2, c3) 7→ f E + c1D23 + c2D31 + c3D12

is surjective and therefore the �rst step towards a projective resolution of DerA. In order to
complete the resolution, we observe that DerA is a submodule of Der S , which is free of rank
3, and that the composition S ⊕4 → DerA ↪→ Der S � S ⊕3 has matrix

*..
,

x1 0 x1x3 −x1x2
x2 −x2x3 0 x1x2
x3 x2x3 −x1x3 0

+//
-
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Using this as input for Macaulay command resolution, we �nd that the kernel of π is
free of rank one generated by (0,x1,x2,x3). We have thus found an S-projective resolution of
DerA of length 1

0 DerA S ⊗4 S 0π

Since this resolution is in fact minimal, we see that the projective dimension of DerA is 1.

1.4 Forms

The complex of logarithmic forms

In this subsection we present a few basic facts and constructions regarding the complex of
di�erential forms and that of logarithmic forms on a hyperplane arrangement. We refer
to [OT92, §4.4] for the missing proofs.

1.32. Let S , as before, be the algebra of coordinates on V and denote by F the �eld of fractions
of S . We identify S and F with the algebra of polynomials k[x1, . . . ,xn] and the �eld of
rational functions k(x1, . . . ,xn ). Let Ω1 (V ) be the F -vector space F ⊗kV ∗ and denote by Ω• (V )

the exterior algebra of Ω1 (V ) over F . �is is a graded algebra and the elements of its pth
homogeneous component, which we write Ωp (V ), are called rational di�erential p-forms. We
denote, as usual, the product of Ω• (V ) by the symbol ∧ and o�en simply omit it.

�ere is an unique k-linear map d : F → Ω1 (V ) such that d ( f д) = d ( f )д + f d (д) for f and
д in F and d (xi ) = 1 ⊗ xi ∈ F ⊗ V ∗ for each i ∈ ~n�, which is given by the formula

d f =
n∑
i=1

∂ f

∂xi
dxi

whenever f ∈ F . �is map extends naturally to Ω• (V ) as described in the next proposition.

Proposition. �ere exists an unique k-linear map d : Ω• (V ) → Ω• (V ) such that
(i) the restriction of d to Ω0 (V ) = F coincides with the map d : F → Ω1 (V ) de�ned above;

(ii) the map d is a di�erential, so that d2 = 0;
(iii) the graded Leibniz identity holds, that is,

d (ωη) = (dω)η + (−1)pω (dη) if ω ∈ Ωp (V ) and η ∈ Ωq (V ).

We have, in fact, that

d ( f dxi1 ∧ · · · ∧ dxip ) =
n∑
j=1

∂ f

∂x j
dx j ∧ dxi1 ∧ · · · ∧ dxip

if 1 ≤ p ≤ n, 1 ≤ i1 < · · · < ip ≤ n and f ∈ F .
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�e graded vector space Ω• (V ), along with the di�erential d , is the complex of rational
di�erential forms on V . We de�ne the complex of regular di�erential forms on V to be the
subcomplex Ω•[V ] of Ω• (V ) such that Ω0[V ] = S and, for p ≥ 0,

Ωp[V ] =
⊕

1≤i1<i2< · · ·<ip ≤n
Sdxi1 ∧ · · · ∧ dxip .

1.33. Let now A be a hyperplane arrangement in V with de�ning polynomial Q . For each
p ≥ 0, we de�ne the module of logarithmic p-forms with poles along A —or, for short, of
logarithmic p-forms on A— to be

Ωp (A) =
{
ω ∈ Ωp (V ) such that Qω ∈ Ωp[V ] and Qdω ∈ Ωp+1[V ]

}
.

For instance, we have that Ωn (A) = (1/Q )Ωn[V ]. One can check that the module of logarithmic
p-forms is an S-submodule and that, moreover,

Ω• (A) B
⊕
p≥0

Ωp (A)

is an S-subcomplex of Ω• (V ) which is closed under exterior product. We can �nd some useful
examples of forms in Ω1 (A) with the help of the next proposition.

Proposition. (i) �e 1-form dQ/Q belongs to Ω1 (A).
(ii) If α ∈ V ∗, then dα/α ∈ Ω1 (A) if and only if kerα ∈ A.

(iii) A rational p-form ω belongs to Ωp (A) if and only if the forms Qω and dQ ∧ω are regular.

Proof. �e �rst assertion is immediate. For the second one, we observe that for any lin-
ear form α we have d (dα/α ) = 0 and therefore the condition dα/α ∈ Ω1 (A) reduces to
Qdα/α = Q

α dα ∈ Ω
1[V ], which is easily seen to be equivalent to the condition that α divides Q .

�e third statement can be found in [OT92, Proposition 4.69].

1.34. �e module of logarithmic 1-forms onA is closely related to the Lie algebra of derivations
ofA: they are S-dual to each other. We now make explicit the pairing that induces this duality.
Given 1 ≤ p ≤ n, the interior product

〈·, ·〉 : Derk (S ) × Ωp (V ) → Ωp−1 (V )

is the S-bilinear map de�ned by

〈θ ,dxi1 ∧ · · · ∧ dxip 〉 =

p∑
k=1

(−1)k−1θ (xik )dxi1 ∧ · · · ∧ d̂xik ∧ · · · ∧ dxip ,

for θ ∈ Derk (S ) and 1 ≤ i1 < · · · < ip ≤ n. A somewhat tedious calculation shows that the
interior product restricts to a pairing

〈·, ·〉 : Derk (A) × Ωp (A) → Ωp−1 (A),

which gives our desired duality.



1.4. Forms 27

Proposition. �e morphisms of S-modules

α : Derk (A) 3 θ 7→ 〈θ ,−〉 ∈ homS (Ω
1 (A), S )

and

β : Ω1 (A) 3 ω 7→ 〈−,ω〉 ∈ homS (Derk (A), S )

are isomorphisms.

Proof. We �rst show that α is a monomorphism: if θ ∈ kerα , then for all f in S we have
0 = 〈θ ,d f 〉 = θ ( f ), and therefore θ is the zero derivation. In order to see that it is also an
epimorphism, let η ∈ hom(Ω1 (A), S ). �e map θ : S 3 f 7→ η(d f ) ∈ S is a derivation of S . We
may evaluate η at the form dQ/Q ∈ Ω1 (A) to obtain η(dQ/Q ). As this is an element of S , we
see that θ (Q ) = Qη(dQ/Q ) ∈ QS , so that θ is a derivation of A.

In order to see that β is a monomorphism, let ω = ∑n
i=1ωidxi ∈ Ω1 (A) and assume that

β (ω) = 0. Since Qω is regular, there are f1, . . . , fn ∈ S such that ωi = Q fi ; evaluating, we see
that fi = β (ω) (Q∂i ) = 0 and therefore that ω = 0.

Finally, let ξ ∈ homS (Derk (A), S ). We put ωi B (1/Q )ξ (Q∂i ) for each 1 ∈ ~n� and claim
that the form ω B

∑n
i=1ωidxi belongs Ω1 (A). It is clear that Qω is regular; to prove the claim

it is enough, in view of Proposition 1.33, to see that dQ ∧ ω is also regular: this follows from
the fact that the coe�cient of dxi ∧ dx j in dQ ∧ ω is

1
Q

(
∂iQω (Q∂j ) − ∂jQω (Q∂i )

)
= ω (∂iQ∂j − ∂jQ∂i ),

which is an element in S . Now, as ω is regular, for every θ ∈ DerA we have

β (ω) (θ ) = ω (θ ) =
∑

ωiθ (xi ) =
∑

(1/Q )ξ (Q∂i )θ (xi )

= ξ
(∑

(1/Q )Qθ (xi )∂i
)
= ξ (θ ),

from which we conclude that β (ω) = ξ , as we wanted.

1.35. A consequence of this proposition is that both S-modules DerA and Ω1 (A) are re�exive.
In particular, if dimV = 2 then DerA is free: this follows from a result that states that a
re�exive module over a �nitely generated ring of dimension 2 is free. �is gives us another,
independent, proof of the freeness of arrangements of lines that we established in Example 1.28.
1.36. We �nish this subsection by stating a result that relates the complex of logarithmic forms
with the freeness of the arrangement.

Proposition. (i) �e S-module Ω1 (A) is free if and only if A is free.
(ii) If Ω1 (A) is S-free with basis (ωi : 1 ≤ i ≤ l ) then for every p ∈ ~n� the S-module Ωp (A)

is free with basis
{
ωi1 ∧ · · · ∧ ωip : 1 ≤ i1 < · · · < ip ≤ n

}
.

Proof. �is can be found in Corollary 4.76 and Proposition 4.81 of [OT92].
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The algebra R•(A)

1.37. �e algebra R• (A) was �rst considered by Arnold for braid arrangements in [Arn69],
which is one of the works that started to raise interest on hyperplane arrangements, and
appears several times throughout this thesis. We will see that when k = C it is isomorphic to
the cohomology of the complement M (A) of A in Cn .

For each hyperplane H in A we choose a linear form αH : V → k such that kerαH = H

and consider the 1-form ωH B dαH
αH
∈ Ω1 (V ). Observe that ωH does not depend on the choice

of the linear form αH but only on the hyperplane H .
We de�ne the graded associative algebra R• (A) to be the subalgebra of Ω• (V ) generated by

the set {ωH : H ∈ A}. It follows from Proposition 1.33 that R1 (A) is a subspace of Ω1 (A); as
Ω• (A) is closed under exterior product, R• (A) is in fact a subalgebra of Ω• (A). �e Z-grading
on R• (A) is induced by that of Ω• (V ), so that Rp (A) = R• (A) ∩ Ωp (V ) for each p ∈ Z. Since
dωH = 0 for every hyperplane H in A, the restriction of the di�erential d of Ω• (V ) to R• (A)

is zero. We observe as well that R0 (A) = k and that Rp (A) = 0 if p > n.

1.38. Example. We return to the situation of Example 1.28, where we consider a central arran-
gement A of lines H1, . . . ,Hl . For each 1 ≤ i ≤ l we let αi : V → k be a linear form with
kernel Hi and we put ωi =

dαi
αi

. �e 1-forms ω1, . . .ωl span R1 (A) and they are in fact linearly
independent. For each i ∈ ~l� there are scalars ai and bi such that αi = aix +biy; let us suppose
that λ1, . . . , λl in k are such that

0 =
∑

λiωi =
∑ λiai

αi
dx +

λibi
αi

dy.

�e coe�cients of dx and of dy must be zero, so that, for instance, 0 = ∑ λiai
αi

in F or, equiva-
lently, 0 = ∑

λiai
Q
αi

in S . Now, if 1 ≤ j ≤ l , we see that λjaj Qα j ≡ 0 modulo α j and, since Q is
square-free, this implies that actually λjaj = 0. �e same argument with the coe�cients of dy
allows us to conclude that λj = 0 for every j, as we claimed.

Since ω2
i = 0 and ωiωj = −ωjωi , the set {ωiωj : i < j} spans R2 (A). We immediately see

that ωiωj = (aibj − biaj )dxdy and therefore for any i , j and k we have

αkdαidα j + αidα jdαk + α jdαkdαi = det
*..
,

ai aj ak
bi bj bk
αi α j αk

+//
-
dxdy = 0.

Multiplying by 1
αiα jαk

, we obtain the relation

0 = ωiωj + ωjωk + ωkωi for any i, j,k in ~l�.

�is relation allows to write any ωiωj as ωiωl − ωjωl and, as a consequence of this, the set
{ωiωl : 1 ≤ i < l } spans R2 (A): we claim that this set is linearly independent. Let µ1, . . . , µl−1
be in k and suppose that∑

µiωiωl = 0. (1.7)
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�ere is an F -linear map ∂ : Ω2 (V ) → Ω1 (V ) such that f dxdy 7→ f xdy − f ydx and one
can see that ∂(ωiωj ) = ωj − ωi . Now, applying ∂ to the linear combination in the le� hand
side of (1.7) we obtain ∑

µi (ωl − ωi ) and, as {ω1, . . .ωl } is k-linearly independent, we get that
µ1 = · · · = µl−1 = 0.

Let F =
⊕

k≥0 Fk be the free graded-commutative algebra generated by l generators
w1, . . . , wl of degree 1 subject to the relations wiw j +w jwk +wkwi = 0, one for each choice of
i , j, k ∈ ~l�. We have Fk = 0 if k ≥ 3: indeed, if i , j, k ∈ ~l� then

wiw jwk = (wiw j +w jwk +wkwi )wk = 0,

because of the graded-commutativity. Since the generators wi satisfy the same relations as
the forms ωi , we may proceed as before to �nd that the set of monomials {w1wi : 1 ≤ i ≤ l }

spans F2 and, therefore, that the dimension of F2 is at most l − 1. �ere is clearly a surjective
morphism of graded algebras f : F → R• (A) such that f (wi ) = ∂αi for all i ∈ ~l�. �is map
is also injective because the dimension of R2 (A) is l − 1, so that there is an isomorphism of
graded algebras F � R• (A).

1.39. Example. For the braid arrangement Bn de�ned in Example 1.5 we have that the 1-forms
given by ωi j =

dxi−dx j
xix j

, with i, j ∈ ~n�, generate the algebra R• (Bn ). Let us show by induction
that {ωi j : 1 ≤ i < j ≤ n} is a basis of R1 (Bn ): we immediately see that the claim holds for
n = 2. For the inductive step, let ci j be scalars such that 0 = ∑

1≤i<j≤n µi jωi j .�e component
in dxn of equation

0 =
∑

1≤i<j≤n−1
µi jωi j +

n−1∑
i=1

µinωin (1.8)

is 0 = −∑n−1
i=1

cin
xi−xn

in F or, equivalently, 0 = −∑n−1
i=1

∏
j,i (x j − xn )cin in S . If i ∈ ~n − 1�, we

see that this equation means that ∏
j,i (x j − xn )cin = 0 and therefore that cin = 0. We conclude

now from (1.8) and the inductive hypothesis that ci j = 0 for every possible i and j.
It is straightforward to check that the relation 0 = ωi jωjk +ωjkωki +ωkiωi j with i , j and k

in ~n� holds in R2 (Bn ). Choosing n = 3, we see that R3 (A) is generated by

ω12ω23ω13 = −(ω23ω31 + ω31ω12)ω13 = 0

and therefore Rp (B3) = 0 if p ≥ 3. We now claim that the dimension of R2 (B3) is 2: as the
forms ω12ω13 and ω12ω23 are generators, we need only see that they are linearly independent.
�is is easily achieved following the idea in our previous example, for the F -linear map
∂ : Ω2 (V ) → Ω1 (V ) such that ∂(dxidx j ) = x jdxi − x jdxi if i, j ∈ ~3� can be seen to satisfy
∂(ωi jωjk ) = ωjk − ωi j whenever i, j,k ∈ ~3�.

Let now A• =
⊕

i≥0 A
i be the free graded-commutative algebra generated by the three

symbols w12, w13 and w23 of degree 1 subject to the relations

0 = wi jw jk +w jkwki +wkiwi j , if 1 ≤ i, j,k ≤ 3. (1.9)
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�e surjective morphism of graded algebras φ : A• → R• (A) such that φ (wi j ) = ωi j evidently
restricts to an isomorphism in degrees zero and one. Proceeding, again, as in our previous
example, we see that relations (1.9) imply that w12w13 and w12w23 span A2, and then the fact
that the restriction of φ to degree two is surjective implies that it is an isomorphism.

1.5 The cohomology of M (A) and the Orlik–Solomon algebra

The cohomology of M (A)

In this subsection, our base �eld is C and all cohomology groups have complex values. We will
go over the seminal paper of E. Brieskorn [Bri73] in which he deals with the cohomology of
the complement M (A) of a hyperplane arrangement A as a topological space.
1.40. Given a hyperplane H with de�ning linear form αH : V → C we denote MH its comple-
ment V \ H . �e restriction αH : MH → C

× induces a morphism of groups in cohomology

α∗H : H • (C×) → H • (MH ).

�e class of the rational form η = 1
2π i

dz
z on C× is a generator of H 1 (C×) and the rational 1-form

on V

ηH =
1

2πi
dαH
αH
. (1.10)

has α∗H ([η]) = [ηH ], where the brackets denote taking cohomology class. Restricting along the
inclusion M ↪→ MH , the 1-form ηH pulls back to a form on M which we will denote also by ηH .

With this notation in place we are ready to state the main result on the cohomology
of M (A).

�eorem (E. Brieskorn). �e cohomology classes of the forms ηH corresponding to the hyperplanes
H of A generate the algebra H • (M (A)). Moreover, there is an isomorphism of graded algebras
R• (A) � H • (M (A)) which maps ωH to [ηH ].

Proof. See [Bri73, Lemme 5].

1.41. �e normalization in (1.10) is chosen so that the class [ηH ] is integral. Indeed, E. Brieskorn
proves the corresponding result of �eorem 1.40 with integral coe�cients.

1.42. Example. �e cohomology ring of the complement of a braid arrangement Bn was de-
scribed by V. Arnold in [Arn69] some years before the general result of Brieskorn while
studying the cohomology of braid groups. As we saw in 1.5, the hyperplanes of Bn are de�ned
by equations xi − x j = 0 for 1 ≤ i < j ≤ n. Arnold showed that there is an isomorphism of
graded rings between H • (M (Bn )) and the quotient of the exterior algebra of the vector space
with basis {ωi j : 1 ≤ i < j ≤ l } by the ideal generated by the relations

ωi jωjk + ωjkωki + ωkiωi j .



1.5. The cohomology of M (A) and the Orlik–Solomon algebra 31

�is isomorphism is induced by the identi�cation of the class of ωi j with the class of 1
2π i

dzi−dzj
zi−zj

for each 1 ≤ i < j ≤ n. Brieskorn’s result is in fact a generalization of this statement.
1.43. In addition to the precedent remarkable theorem, E. Brieskorn gives a description of the
cohomology ring of the complement of a re�ection arrangement with re�ection group G in
terms of its exponents.

�e action ofG onV induces another action ofG on S ; let SG be its subalgebra of invariants
polynomials. A result from C. Chevalley in [Che55, 1.(A)] states that there exists algebraically
independent homogeneous polynomials f1, . . . , fn in SG such that SG = k[f1, . . . , fn]. �ese
polynomials are not unique, but their degrees are. �e integers deg fi − 1 with 1 ≤ i ≤ n are
the exponents of the group G.

�eorem (E. Brieskorn). For each p ≥ 0, the dimension of Hp (M (A (G ))) is the number of words
in G of length p, where the length of a word is the minimal number of re�ections required to
factorize it. If G is a Coxeter group then the Poincaré polynomial of M (A (G )) is

n∏
i=1

(1 +mit ),

wherem1, . . . ,mn are the exponents of G, which coincide with those of the arrangement A (G ).

If the re�ection group G is not a Coxeter group, Brieskorn shows that there is a similar
formula for the Poincaré polynomial but in terms of the coexponents ofG; this numbers coincide
with the exponents in the Coxeter case.

Proof. See [Bri73, �éorème 6].

1.44. Example. Recall that the braid arrangement Bn is the re�ection arrangement correspond-
ing to the symmetric groupG = Sn acting on kn by permuting its coordinates. �e Fundamental
�eorem of Symmetric Functions tells us that the algebra of invariants SG is freely generated
by the elementary symmetric polynomials

sk =
∑

1≤j1<...<jk ≤n

x j1 · · · x jk for 1 ≤ k ≤ n.

�e exponents of G are therefore 0, . . . ,n − 1 and an immediate application of Brieskorn’s
theorem yields

π (M (Bn ), t ) = (1 + t ) (1 + 2t ) · · · (1 + (n − 1)t ).

The Orlik-Solomon algebra

We now return to the situation in which k need not be C. �e Orlik-Solomon algebra A• (A),
presented by P. Orlik and L. Solomon in [OS80], gathers important combinatorial information
of A and, if k is C, it is also isomorphic to the cohomology of the complement M (A).
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1.45. Let E1 be the vector space freely generated by symbols eH , one for each H ∈ A, let
E• (A) = Λ•E1 be the exterior algebra of E1 and write uv B u ∧ v if u,v ∈ E• (A). �e
pth homogeneous component of E• (A) is spanned as a vector space by the monomials
eH1eH2 . . . eHp with each Hi in A. For each H ∈ A, there is a unique linear graded derivation
∂ : E• (A) → E• (A) of degree −1 such that ∂(eH ) = 1. �is map satis�es

∂(eH1 · · · eHp ) =
k−1∑
k=1

eH1 · · · êHk · · · eHp

for p ≥ 2 and H1, . . . ,Hp ∈ A and ∂2 = 0, as can be seen by a direct computation.
Let I be the ideal of E• (A) generated by all elements of the form ∂

(
eH1 · · · eHp

)
such that

the hyperplanes H1, . . . ,Hp are not in general position, that is, that the corresponding linear
forms are linearly dependent. As I is generated by homogeneous elements, it is a graded ideal:
its pth homogeneous component is Ip = I ∩ Ep (A).

�e Orlik–Solomon algebra A• (A) is the quotient of E• (A) by I . It is a graded commutative
algebra and, since I0 = 0, connected. Denoting the class of eH in A• (A) by aH for each H ∈ A,
we observe that {aH : H ∈ A} is a basis of A1 (A). If p ≥ 1 and H1, . . . ,Hp are hyperplanes not
in general position then

eH1 · · · eHp = eH1∂(eH1 · · · eHp ) ∈ I ,

so that aH1 · · ·aHp = 0 in A• (A). In particular, Ap (A) = 0 if p > n.
1.46. Let us write, if S = {H1, . . . ,Hp } is a subset of A, eS B eH1 · · · eHp . Given S,T ⊂ A,
we have ∂(eT ∂eS ) = ∂eT ∂eS and therefore we see that ∂(I ) ⊂ I . As a consequence of this,
∂ : E• (A) → E• (A) descends to A• (A), inducing a graded derivation ∂ : A• (A) → A• (A)

that satis�es ∂2 = 0.

Proposition. �e complex (A• (A), ∂) is acyclic.

Proof. Let us choose H ∈ A. As ∂aH = 1, for every b ∈ A• (A) we have b = ∂(baH ) + aH ∂b . It
follows that if b is a cocycle then it is a coboundary.

1.47. �ere is a standard basis for A• (A), the broken circuit basis. We do not give here an
explicit construction of this basis —it can be found, for instance, in [OT92, §3.1]—, but we
remark that it depends only on the poset of intersections L (A) and an arbitrary total order on
A; the idea is essentially that of the Gröbner bases. �e existence of this basis emphasizes the
fact that A• (A) depends only on the combinatorics of A.

We begin now to state a series of propositions that lead to the main result of this section,
�eorem 1.52, which asserts that A• (A) is isomorphic to H • (M (A)) when k = C. In view of
our previous remark, this result implies that the cohomology of M (A) depends only on the
combinatorics of A, as we promised in 1.22. To prove that the algebra A• (A) is isomorphic to
H • (M (A)) or, equivalently, in view of �eorem 1.40, to R• (A), we will �rst construct an epi-
morphism A• (A) → R• (A) and then, comparing dimensions, show that it is an isomorphism.
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1.48. We start with a particular case of a result of P. Orlik and L. Solomon, who consider, more
generally, geometric la�ices and not only those that come from hyperplane arrangements.
Both the statement and its proof are purely combinatorial.

�eorem. �e Hilbert series ofA• (A) is the Poincaré polynomial of the arrangement π (A, t ).

Proof. �is is �eorem 2.6 of [OS80].

1.49. �e next step in our plan is the construction of an algebra morphism A• (A) → R• (A).

Proposition (P. Orlik and L. Solomon, [OS80]). �ere exists a surjective morphism of graded
algebras A• (A) → R• (A) such that aH 7→ ωH for every H ∈ A.

Proof. Let γ : E• (A) → R• (A) be the morphism of algebras such that γ (eH ) = ωH for each
H ∈ A. Evidently, γ is surjective: we will prove that γ (I ) = 0, so that γ factors through A• (A).

Let S = {H1, . . . ,Hp } be a subset of A in general position and, for each i ∈ ~p�, let αi be a
linear form with kernel Hi , so that, in particular, the set Ŝ B {α, . . . ,αp } is linearly dependent.
We need to show that γ (∂eS ) = 0.

We may assume without loss of generality that no proper subset of S is in general position.
Indeed, if, for example, the subset

{
α2, . . . ,αp

}
of Ŝ is linearly dependent then

∂eS = eH2 · · · eHp + eH1∂(eH2 · · · eHp )

and therefore, as eH2 · · · eHp = 0 because of linear dependence, we see that γ (∂eS ) is zero if and
only if γ (∂(eH2 · · · eHp )) = 0.

Now, our assumption is that there is a linear combination ∑p
i=1 ciαi = 0 with every ci

nonzero; up to rescaling the elements of Ŝ , we may in fact take ci = 1 for every i . We then have
that ∑p

i=1 dαi = 0 and therefore, for each j ∈ ~p − 1�, that

0 = *
,

p∑
i=1

dαi+
-
dα1 · · ·dα̂ jdα̂ j+1 · · ·dαp = dα1 · · ·dα̂ j · · ·dαp + dα1 · · ·dα̂ j+1 · · ·dαp .

For each j ∈ ~p� we de�ne the rational form ηj

ηj =
(−1) j−1

α j
ω1 · · · ω̂j · · ·ωp .

Assuming that j < p, we multiply this equation by α1 · · ·αp and obtain that

α1 · · ·αpηj = (−1) j−1dα1 · · ·dα̂ j · · ·dαp

= (−1) jdα1 · · ·dα̂ j+1 · · ·dαp

= α1 · · ·αpηj+1,
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so that in fact η1 = · · · = ηp . With all this in hand, we conclude that

γ (∂eS ) =

p∑
j=1

(−1) j−1ω1 · · · ω̂j · · ·ωp =
*.
,

p∑
j=1

α j
+/
-
η1 = 0,

as we wanted.

1.50. �e following result is known as Brieskorn’s Lemma and is useful when performing
inductive arguments.

Lemma (E. Brieskorn). Let X ∈ L (A) and recall that Ax is the set of hyperplanes of A that
contain X . Let k be an integer such that 0 ≤ k ≤ n. �e inclusion maps iX : M (A) → M (AX )

induce isomorphisms⊕
rank(X )=k

Hk (M (AX )) � Hk (M (A)).

Proof. See [Bri73, Lemme 3].

1.51. �e following theorem is of vital importance in the theory of hyperplane arrangements.

1.52. �eorem (P. Orlik and L. Solomon, [OS80, �eorem 5.2]). Let A be a complex hyper-
plane arrangement. �ere exists an isomorphism of graded algebras A• (A) � H • (M (A)) such
that αH 7→ [ηH ].

Proof. Recall from �eorem 1.40 that the map

R• (A) 3 ωH 7→ [ηH ] ∈ H • (M (A))

is an isomorphism of graded algebras. As the morphismA• (A) → R• (A) from Proposition 1.49
is surjective, it will be enough to see that dimA• (A) = dimH • (M (A)).

�e dimension of A• (A) is the value at t = 1 of the Hilbert series of A• (A) that we gave
in �eorem 1.48: in this way we see that

dimA• (A) =
∑

X ∈L (A)

(−1)r (X )µ (X ).

It su�ces to show, then, that this number equals dimH • (M (A)) and, in order to prove this
equality, we let Z B

⋂
H ∈A H and check that if q is the codimension of Z then

dimHq (M (A)) = (−1)qµ (Z ).

�is is is immediate if q = 0: both sides are equal to one. We proceed by induction supposing
that q is a positive integer and that X ∈ L (A) is such that r (X ) < q. Applying the inductive
hypothesis to the complement M (AX ) and using the fact that X = ⋂

H ∈AX H , we see that
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the dimension of H r (X ) (M (AX )) is (−1)r (X )µ (X ). As the Euler characteristic of M (AX ) is 0
because r (X ) > 0 we can use the isomorphism in Brieskorn’s Lemma 1.50 to we see that

0 =
q∑

p=0
(−1)p dimHp (M ) =

q−1∑
p=0

∑
r (X )=p

dimHp (M (AX )) + (−1)qH (M )

=
∑

r (X )<q

(−1)r (X )µ (X ) + (−1)q dimHq (M ).

�e second de�ning property of the Möbius function in 1.12 now tells us that

0 = −µ (
⋂
H ∈A

H ) + (−1)q dimHq (M )

and this completes the inductive step. With this at hand, we use one more time Brieskorn’s
Lemma 1.50 to �nally obtain

dimH • (M ) =

q∑
p=0

dimHp (M ) =

q∑
p=0

∑
r (X )=p

dimHp (M (AX ))

=
∑

X ∈L (A)

(−1)r (X )µ (X ),

which is what we wanted to prove.

1.53. Combining �eorem 1.52 with �eorem 1.48 we obtain at once our next remark.

Corollary. �e Poincaré polynomial of M (A) is equal to the Poincaré polynomial of the arrange-
ment π (A, t ).

�is statement generalizes the fact that the Poincaré polynomial of the braid arrangement
Bn that we computed in (1.4) agrees with the Poincaré polynomial of M (Bn ) that we found in
Example 1.44.

A remarkable consequence of this corollary is the following. Let A be an arrangement in
Rn and A ′ be the arrangement in Cn whose hyperplanes are de�ned by the same equations as
those of A. �is corollary and �eorem 1.18 imply that the dimension of the total cohomology
H • (M (A ′)) is equal to the number of chambers of the arrangement A in Rn .

1.54. Some years a�er the proof of �eorem 1.52 , P. Orlik, L. Solomon and H. Terao were
able to generalize the statement to the case in which the ground �eld k is not C.

�eorem (P. Orlik, L. Solomon and H. Terao, [OST84]). �e surjective morphism of algebras
A• (A) → R• (A) of Proposition 1.49 is an isomorphism.

�e exists of this isomorphism, in particular, shows the non-evident combinatorial nature
of R• (A). An improved version of the proof can be found in [OT92, §3.5]. �e argument
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is di�erent from the one we used above: their key idea is that if (A,A ′,A ′′) is a triple of
arrangements as in 1.10 then there are exact sequences of algebras

0 A• (A ′) A• (A) A• (A ′′) 0

and

0 R• (A ′) R• (A) R• (A ′′) 0

which, along with the epimorphism A• (A) → R• (A), are used to set up an inductive argument.
1.55. We end this chapter by stating an important result that describes the cohomology of the
complex of logarithmic forms on A for a large family of arrangements.

A central arrangement A is tame if for every p ≥ 0 the projective dimension of the S-
module Ωp (A) is at most p. �is condition is satis�ed in many important situations. First,
as a consequence of 1.36, for a free central arrangement each Ωp (A) is free and thus its
projective dimension is 0: it follows that free arrangements are tame. Another big family
of examples is that of generic arrangements, that is, those arrangements A with at least n
hyperplanes, any n of which are in general position. For example, the arrangement de�ned by
x1 · · · xn (x1+ . . .+xn ) = 0 that we worked with in Example 1.31 is generic. L. Rose and H. Terao
have found in [RT91] a projective resolution of Ωp (A) of length p for each p ∈ ~n�, so that, in
particular, generic arrangements are tame —more information on this class of arrangements
can be found in [OT92, §5.1]. As a �nal example, one can show that all arrangements in k3 are
tame. Not all arrangements are tame, though: the smallest example of a non-tame arrangement
is the set of ��een hyperplanes in k4 with equations ∑4

i=0 aixi = 0 for ai ∈ {0, 1}. �ese last
two facts are explained by J. Wiens and S. Yuzvinsky in [WY97, Section 2].

We are interested in tame arrangements because of the following result, which is known
sometimes as the Logarithmic Comparison �eorem.

�eorem (J. Wiens and S. Yuzvinsky). LetA be a tame arrangement. �e natural embedding of
R• (A) into Ω• (A) is a quasi-isomorphism.

Proof. See [WY97, Corollary 2.3].

1.6 Resumen

El capı́tulo empieza con las de�niciones básicas sobre arreglos de hiperplanos, estableciendo
notación y presentando los ejemplos y construcciones con los que lidiamos a lo largo de la
tesis. Concretamente, �jado un cuerpo k, un arreglo de hiperplanos A es un conjunto �nito
de hiperplanos a�nes {H1, . . . ,Hl } en un espacio vectorial V de dimensión �nita y es central
si todos sus hiperplanos son en verdad subespacios. Llamamos S al álgebra de funciones
coordenadas de V y la identi�camos con k[x1, . . . ,xn]. Para cada i ∈ {1, . . . , l }, sea αi : V → k
una forma lineal con núcleo Hi : decimos que el polinomio Q = α1 · · ·αl ∈ S de�ne al arregloA.
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Una vez establecido esto, estudiamos en 1.10 el poset de intersecciones L (A) del arreglo. A
continuación, vemos los polinomios caracterı́stico y de Poincaré del arreglo, que son importantes
invariantes combinatorios, y los calculamos en los casos concretos del arreglo booleano, el
arreglo de todos los subespacios de codimensión 1 en un espacio vectorial sobre un cuerpo
�nito y el arreglo de trenzas. Este es el contenido de los Ejemplos 1.15, 1.16 y 1.17.

Desde la Sección 1.3 hasta el �nal de la tesis suponemos que los arreglos son centrales. En
esta sección nos ocupamos del álgebra de derivaciones tangentes al arreglo A, de�nida por

Der(A) B {θ ∈ Der(S ) : θ (Q ) ∈ QS }

y que es una subálgebra de Lie y un S-submódulo de Der(S ), el módulo de las derivaciones
de S . Este álgebra de Lie es un invariante interesante del arreglo y ha sido objeto de estudio de
varios trabajos: el libro de P. Orlik y H. Terao [OT92] y el de A. Dimca [Dim17] sirven como
referencias generales. Sirviendonos del álgebra de Lie de derivaciones, podemos de�nir una
clase importante de arreglos: decimos que un arreglo A es libre si DerA es un S-módulo libre.
Por ejemplo, un arreglo central de rectas en el plano es libre; también son libres, de acuerdo
a un resultado de H. Terao en [Ter80a], los arreglos de hiperplanos de re�exión de un grupo
�nito generado por pseudo-re�exiones.

En la Sección 1.4 estudiamos el subcomplejo de Ω• (A) del complejo formas racionales
Ω• (V ) llamado de formas logarı́tmicas en A, dado por

Ωp (A) =
{
ω ∈ Ωp (V ) tal que Qω ∈ Ωp[V ] y Qdω ∈ Ωp+1[V ]

}

si p ≥ 0. En particular, vemos en la Propisición 1.34 que el S-módulo Ω1 (A) es S-dual al álgebra
DerA. De�nimos a continuación el álgebra R• (A) como la subálgebra de Ω• (A) generada por
el conjunto {ωH : H ∈ A} y encontramos una presentación por generadores y relaciones para
los casos de arreglos centrales de rectas y el arreglos de trenzas B3 en los Ejemplos 1.38 y 1.39.

Terminamos el capı́tulo con la Sección 1.5, en que damos algunos resultados de la teorı́a
que son importantes para la tesis. El primero, que se se debe a E. Brieskorn en [Bri73], fue
encontrado para el caso especial de arreglos de trenzas por V. I. Arnold en [Arn69] y aparece
en la Sección 1.5 como Teorema 1.40.

Teorema. SeaA un arreglo de hiperplanos en un espacio vectorial complejo. Hay un isomor�smo
de álgebras entre R (A) y la cohomologı́a de de Rham H • (M (A)) del espacio complementario al
arreglo M (A).

El otro resultado importante muestra que si A es un arreglo en un espacio vectorial
complejo entonces la cohomologı́a del espacio complementario a A depende solamente de la
combinatoria del arreglo. Para ver esto estudiamos el álgebra A• (A), de�nida para un arreglo
sobre un cuerpo cualquiera de caracterı́stica cero por P. Orlik y L. Solomon en [OS80] en
términos combinatorios, y probamos en el Teorema 1.52 que, efectivamente, este álgebra es un
análogo combinatorio del álgebra de cohomologı́a de H • (M (A)):
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Teorema. Si A un arreglo de hiperplanos en un espacio vectorial complejo, hay un isomor�smo
de álgebras graduadas A• (A) � H • (M (A)).



– 2 –
The algebra of differential operators tangent to a

hyperplane arrangement

In this chapter we introduce the associative algebra Diff (A) of di�erential operators tangent
to a hyperplane arrangement. We show that this algebra is the subalgebra generated by S

and DerA inside Diff (S ) if the arrangement is free and, moreover, that it is isomorphic to the
enveloping algebra of a suitable Lie–Rinehart pair. With these results at hand, we are able to
give a precise description of Diff (A) in the case of a central line arrangement and also to study
the twisted Calabi–Yau property for Diff (A) in the general situation.

2.1 Algebras of differential operators

2.1. We assume from now on that the characteristic of the ground �eld k is zero. Let B be
a commutative algebra and write EndB the algebra of k-linear endomorphisms of B as a
vector space. We inductively de�ne subspaces Diff (B)p of EndB, one for each p ≥ −1, se�ing
Diff (B)−1 = 0 and

Diff (B)p = { f : B → B : f b − b f ∈ Diff (B)p−1 for all b ∈ B} if p ≥ 0.

In [MR01, §15.5] we can �nd the following result.

Lemma. �e union Diff (B) B
⋃

p≥−1 Diff (Bp ) is a subalgebra of End(B) and {Diff (Bp )}p≥−1
is an exhaustive and increasing �ltration of Diff (B) which is compatible with its multiplicative
structure and such that the associated graded algebra gr Diff (B) is commutative.

�e algebra Diff (B) is called the algebra of di�erential operators onB. We say that f ∈ Diff (B)

has order p if it belongs to Diff (B)p and not to Diff (B)p−1. �ere is an injective morphism of
algebras ϕ : B → Diff (B) such that ϕ (b) (x ) = xb for all b, x ∈ B which we will view as an
identi�cation. On the other hand, a non-zero derivation θ in Der B is a di�erential operator of
order 1, so that Der B is a subspace of Diff (B) which is easily seen to be a Lie subalgebra.

�e following theorem of Grothendieck gives us generators of Diff (B) in an important case.

2.2. �eorem. Let B be a regular commutative �nitely generated algebra which is a domain. �e
algebra Diff (B) is generated as a subalgebra of End(B) by B and Der B.

Y. Nakai in [Nak70] has conjectured that, conversely, B has to be regular if Diff B is genera-
ted by B and Der B. �is conjecture is open except in very special cases.

39
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2.3. Example. Let S = k[x1, . . . ,xn] be the polynomial algebra on n variables and let us denote
the usual partial derivatives on S by ∂1, . . . , ∂n . �eorem 2.2 allows us to �nd a presentation
of Diff (S ) as follows.

As {x1, . . . ,xn } and {∂1, . . . , ∂n } generate S as an algebra and Der S as an S-module, the set
{x1, . . . ,xn , ∂1, . . . , ∂n } generate Diff S as an algebra. A straightforward calculation shows that

[∂i , ∂j ] = 0, [xi ,x j ] = 0, [∂i ,x j ] = δi, j

for each i and j in ~n�. On the other hand, recall the nth Weyl algebra An is the quotient of the
free algebra with 2n generators q1, . . . ,qn ,p1, . . . ,pn by the two-sided ideal generated by the
elements

[qi ,qj ], [pi ,pj ], [qi ,pj ] − δi, j

for every 1 ≤ i, j ≤ n. �ere is then a unique morphism of algebras ϕ : An → Diff (B) such that
xi 7→ qi and pi 7→ ∂i for i ∈ ~n� and it is clearly surjective. Since An is, as it is well-known, a
simple algebra, this morphism is also injective and therefore an isomorphism.

�is example generalizes, with a substantial amount of work, in the following way: V. V.
Bavula in [Bav10] gives an explicit construction of a �nite set of algebra generators and a �nite
set of de�ning relations for the ring of di�erential operators on a regular algebra in terms of a
presentation of the algebra.
2.4. Let A be a hyperplane arrangement on V and let us keep the usual notation; in particular,
let Q be the de�ning polynomial of A. We would like to construct a version of the algebra
of di�erential operators on V relative to A. For this we need the following notion: if R is an
algebra and I ⊂ R is a right ideal, the largest subalgebra IR (I ) of R that contains I as an ideal
can be seen to be {r ∈ R : rI ⊂ I } and it is called the idealizer of I in R. �e algebra of di�erential
operators tangent to the arrangement A is

Diff (A) =
⋂
t ≥1
IDiff (S ) (Q

t Diff (S )).

We have a variant of �eorem 2.2 for this situation.

�eorem. If A is a free hyperplane arrangement then the algebra Diff (A) is generated by
S ∪ Der(A).

�is theorem is proved by F. J. Calderón Moreno in [CM99] and by M. Schulze in [Sch07]
using techniques from analytic geometry for the case k = C and by M. Suárez-Álvarez in [SÁ18]
for any �eld of characteristic zero by “extending to di�erential operators of arbitrary order”
Saito’s criterion 1.26.

�e algebra Diff (A) may be generated by S ∪ DerA even if the arrangement is not free.
Indeed, this is the case of the arrangement in k3 with de�ning polynomial xyz (x + y + z) that
we studied in Example 1.31: this was shown by [Sch07, §5]. �ere are no known necessary and
su�cient conditions for the conclusion of the theorem to hold.
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2.5. Example. �e nth Boolean arrangement Bn can be viewed as the product B×n1 of n copies of
the 1-dimension non-empty central arrangement B1. In view of 1.23, we have an isomorphism
of algebras Diff (Bn ) � Diff (B1)

⊗n . Now the arrangement B1, de�ned in V = k by Q = x ,
is free, with Der(B1) freely generated by the derivation θ = x∂x . It follows that the algebra
Diff (B1) is generated by x and θ . Computing, we �nd that [θ ,x] = x . If we let D be the quotient
algebra

D =
k〈y, t〉

(ty − yt − y)
,

there there is a surjective map of algebras π : D → Diff (B1) such that π (y) = x and π (t ) = θ .
�e algebraD is manifestly the enveloping algebra of the non-abelian Lie algebra of dimension 2
spanned by t andy with [t ,y] = t . In particular, the set {yit j : i, j ≥ 0} is a basis of D. Using this
it is easy to check that the map π is injective so, pu�ing everything together, an isomorphism.

�e conclusion of this is that the algebra Diff (Bn ) is isomorphic to the algebra freely
generated by le�ers y1, . . . , yn , t1, . . . , tn , subject to the relations

[yi ,yj ] = [ti , tj ] = 0, [ti ,yj ] = δi, jyj , with 1 ≤ i, j ≤ n.

2.2 The algebra of differential operators tangent to a
central arrangement of lines

2.6. We �x a ground �eld k of characteristic zero and put S = k[x ,y]. We view S as a graded
algebra as usual, with both x andy of degree 1, and for each p ≥ 0 we write Sp the homogeneous
component of S of degree p. �e Lie algebra Der(S ) of derivations of S , which is a free le�
graded S-module, is freely generated by the usual partial derivatives ∂x , ∂y : S → S , which are
homogeneous elements of Der(S ) of degree −1.

Recall, as in 2.1, that Diff (S ) is the associative algebra of regular di�erential operators on S ,
that we may view S as a subalgebra of Diff (S ) and, from Example 2.3, that Diff (S ) is generated
as a subalgebra of End(S ) by S and Der(S ). �e algebra Diff (S ) is generated by x , y, ∂x and ∂y ,
and in fact these elements generate it freely subject to the relations

[x ,y] = [∂x ,y] = [∂y ,x] = [∂x , ∂y] = 0, [∂x ,x] = [∂y ,y] = 1.

It follows easily from this that Diff (S ) has a Z-grading with x and y in degree 1 and ∂x and ∂y
in degree −1, and that with respect to this grading, S is a graded Diff (S )-module.
2.7. We �x an integer r ≥ −1 and consider a central arrangement A of r + 2 lines in the
plane k2. Up to a change of coordinates, we may assume that the line with equation x = 0 is
one of the lines in A, so that the de�ning polynomial Q of the arrangement is of the form xF

for some square-free homogeneous polynomial F ∈ S of degree r + 1 which does not have x as
a factor. Up to multiplying by a scalar, which does not change anything substantial, we may
assume that F = xF̄ + yr+1 for some F̄ ∈ Sr .
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�e Lie algebra of derivations of S that preserve the arrangement, de�ned in 1.20, is a
graded Lie subalgebra of Der(S ). �e two derivations

E = x∂x + y∂y , D = F∂y

are elements of Der(A) of degrees 0 and r , and it follows immediately from Saito’s criterion 1.26
that the set {E,D} is a basis of Der(A) as a graded S-module: this is the content of Example 1.28.
2.8. �e algebra of di�erential operators tangent to the arrangementA is the subalgebra Diff (A)

of Diff (S ) generated by S and Der(A), as we saw in 2.4. It follows immediately from the remarks
above that Diff (A) is generated by x , y, E and D, and a computation shows that the following
commutation relations hold in Diff (A):

[y,x] = 0,
[D,x] = 0, [D,y] = F , (2.1)
[E,x] = x , [E,y] = y, [E,D] = rD.

Since these generators are homogeneous elements in Diff (S ) —with E of degree 0, x and y of
degree 1 and D of degree r— we see that the algebra Diff (A) is a graded subalgebra of Diff (S )

and, by restricting the structure from Diff (S ), that S is a graded Diff (A)-module.
�e set of commutation relations given above is in fact a presentation of the algebra Diff (A).

More precisely, we have the following lemma.

Lemma. �e algebra Diff (A) is isomorphic to the iterated Ore extension S[D][E]. It is a noetherian
domain and the set {x iy jDkEl : i, j,k, l ≥ 0} is a k-basis for Diff (A).

Here we view D as a derivation of S , so that we way construct the Ore extension S[D], and
view E as a derivation of this last algebra, so as to be able extend once more to obtain S[D][E].

Proof. It is clear at this point that the obvious map π : S[D][E] → Diff (A) is a surjective
morphism of algebras, so we need only prove that it is injective. To do that, let us suppose
that there exists a non-zero element L in S[D][E] whose image under the map π is zero, and
suppose that L = ∑

i, j≥0 fi, jD
iE j , with coe�cients fi, j ∈ S for all i , j ≥ 0, almost all of which

are zero. As L is non-zero, we may consider the numberm = max{i + j : fi, j , 0}.
Let us now �x a point p = (a,b) ∈ A2 which is not on any line of the arrangement A, so

that aF (a,b) , 0, and let Op be the completion of S at the ideal (x −a,y−b) or, more concretely,
the algebra of formal series in x − a and y − b. We view Op as a le� module over Diff (S ) in
the tautological way and, by restriction, as a le� Diff (A)-module. �ere exist formal series ϕ
andψ in Op such that

E · ϕ = 1, D · ϕ = 0, E ·ψ = 0, D ·ψ = xr .

Indeed, we may choose ϕ = lnx to satisfy the �rst two conditions, and the last two ones are
equivalent to the equations

∂xψ = −
xr−1y

F
, ∂yψ =

xr

F
,
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which can be solved for ψ , as the usual well-known su�cient integrability condition from
elementary calculus holds. If now s , t ∈ N0 are such that s + t = m, a straightforward
computation shows that L · ϕsψ t = s!t !xr t fs,t in Op , and this implies that fs,t = 0. �is
contradicts the choice ofm and this contradiction proves what we want.

2.3 Lie–Rinehart pairs

2.9. In Section 2.2 we were able to give a very concrete description of the algebra of di�erential
operators tangent to an arrangement of lines. As soon as one tries to do the same by hand
in larger examples the task becomes prohibitively laborious. �e language of Lie–Rinehart
pairs provides a formalism that allows us to handle this complexity. Originally, this pairs were
de�ned by G. Rinehart in [Rin63], in order to generalize the algebraic structure of vector �elds
and smooth functions on a manifold to commutative algebras and Lie algebras.

A Lie–Rinehart pair (S,L) consists of a commutative k-algebra S and a k-Lie algebra L such
that L acts on S by k-linear derivations, L is an S-module and

(sα ) (t ) = s (α (t )), [α , sβ] = s[α , β] + α (s )β

for s , t in S and α and β in L. Given such a pair, a Lie–Rinehart module —or (S,L)-module— is a
vector space M that is at the same time an S-module and an L-Lie module in such a way that

(sα ) (m) = s (α (m)), α (sm) = sα (m) + α (s )m (2.2)

for s ∈ S , α ∈ L andm ∈ M . �e �rst important example of a module is given by M = S , with
the obvious actions of S and of L.

2.10. Example. A Lie–Rinehart pair (S,L) in which the action of L on S is trivial can be simply
described as an S-Lie algebra and the corresponding (S,L)-modules are just Lie L-modules. We
encounter this situation o�en with S = k: this is Lie theory.

2.11. Example. If S is a commutative algebra and L is a subalgebra of the Lie algebra of deriva-
tions Der S that is at the same time an S-submodule, then (S,L) is a Lie–Rinehart pair.

A particular case of this is obtained by taking S = k[x1, . . . ,xn] and L = Der S , the full
algebra of derivations, which is freely generated as an S-module by the derivations ∂1, . . . , ∂n .
It is easy to construct Lie–Rinehart modules for the pair (S,L). One need only notice that the
Weyl algebra An of Example 2.3 is an (S,L)-module with actions induced by le� multiplications
and then use the fact that any An-module can be viewed as an (S,L)-module in a similar way.

A similar example but of a di�erent category can be constructed as follows. If M is a
�nite dimensional smooth manifold, we put S = C∞ (M ), the algebra of smooth functions, and
L = X(M ), the Lie-algebra of vector �elds on M . Notice that L is the Lie algebra of derivations
of S ; this is the content of Lemma 3.3 in [KMS93]. We can construct Lie–Rinehart modules for
the pair (S,L) from geometric data as follows. Let E → M be a smooth vector bundle on M and
let Γ(E) be the space of smooth sections of E: an (S,L)-module structure on Γ(E) compatible
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with the usual S-module structure turns out to be the same a linear connection on E → M with
zero curvature.

2.12. Example. Another instance of the Example 2.11 that interests us particularly arises from
hyperplane arrangements. If A is a hyperplane arrangement in a vector space V , it is straight-
forward to check that the algebra of coordinate functions S = k[x1, . . . ,xl ] ofV and L = DerA

form a Lie–Rinehart pair.

2.13. Let (S,L) be a Lie–Rinehart pair. J. Huebschmann shows in [Hue90] that there is an
associative algebra U = U (S,L), the universal enveloping algebra of the pair, endowed with a
morphism of algebras i : S → U and a morphism of Lie algebras j : L → U that satisfy, for
s ∈ S and α ∈ L,

i (s )j (α ) = j (sα ), j (α )i (s ) − i (s )j (α ) = i (α (s ))

and universal with these properties. Let us brie�y describe the construction ofU (S,L) presented
in [Hue90, §1]; there is an alternative, less conceptual, description in [Rin63]. We start by
considering the usual enveloping algebra U (L) of L as a Lie k-algebra. As S is L-Lie module,
we can view S as a le� U (L)-module and, using this structure, we can turn the vector space
S ⊗ U (L) into an associative algebra in such a way that the obvious maps S → S ⊗ U (L) and
U (L) → S ⊗ U (L) are multiplicative and

(1 ⊗ α ) · (s ⊗ 1) = s ⊗ α + α (s ) ⊗ 1

whenever s ∈ S and α ∈ L. �e enveloping algebra of the pair (S,L) is the quotient of S ⊗U (L)

by the right ideal generated by the elements st ⊗ α − s ⊗ tα for s and t in S and α in L, which
turn out to be a bilateral ideal.

One of the points of this construction is that the category of U -modules is isomorphic to
that of (S,L)-modules. As a particular example, since S is an (S,L)-module, as we saw, it is also
an U -module.

2.14. Example. If g is Lie algebra, the universal enveloping algebra of the pair (k, g) is simply
the usual enveloping algebra of g. Indeed, this is clear from the construction we have just
described.

2.15. Example. If S = k[x1, . . . ,xn], then full Lie algebra of derivations L = Der S is freely
generated as an S-module by the n derivations yi = ∂

∂xi
: S → S with 1 ≤ i ≤ n. �e

construction sketched above now shows us that the enveloping algebra of the pair (S,L) admits
the presentation

k〈xi ,yi : 1 ≤ i ≤ n〉(
yix j − x jyi − δi j

) ,
so it isomorphic to the algebra of di�erential operators Diff (S ) = An , the Weyl algebra.
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2.16. Example. In the situation of Example 2.11, the enveloping algebra of the Lie–Rinehart
pair (C∞ (M ),X(M )) can be seen to be isomorphic to the algebra of globally de�ned di�erential
operators on the manifold —we refer for this to the �rst section of [Hue90].
2.17. A key result about the enveloping algebra is the following generalization of the Poincaré–
Birkho�–Wi� �eorem.

�eorem. Let (S,L) be a Lie–Rinehart pair such that L is a free S-module of �nite rank and let
{α1, . . . ,αn } be a basis. �ere is an increasing algebra �ltration F• on U (S,L) with

F0 = S, F1 = S + L, Fp = (F1)
p for each p ≥ 2,

and a canonical isomorphism of algebras from the symmetric algebra SymmS (L) to the associated
graded algebra grU (S,L). Moreover, the set of monomials

αk1
1 . . . α

kn
n with k1, . . . ,kn ≥ 0

is a basis of U (S,L) as a le� S-module.

Proof. See [Rin63, §3].

We deduce immediately from this PBW theorem the following.

Corollary. If (S,L) is a Lie–Rinehart pair such that L is a free S-module of �nite rank then the
algebra U (S,L) is a noetherian domain.

2.18. A less trivial consequence of �eorem 2.17 is the following result. In order to state, we
need the notion of Gelfand–Kirillov dimension, GKdim, for which we refer to the book [KL00]
by G. R. Krause and T. H.Lanagan or to [MR01, Chapter 8].

Corollary. Let (S,L) be a Lie–Rinehart pair such that L is a free S-module of �nite rank. If S is a
�nitely generated algebra, then

GKdimU (S,L) = GKdim S + rankS L.

Proof. �is follows from �eorem A in J. Matczuk’s article [Mat88].

2.19. �e reason we are interested in these last results is that they allow us to describe the
algebra of di�erential operators Diff (A) in the case of a free arrangement.

�eorem. Let A be a free hyperplane arrangement on a vector space V of dimension n and let S
be the algebra of coordinate functions on V . �ere is a canonical isomorphism of algebras

U (S,DerA) → Diff (A).

In particular, Diff (A) is a noetherian domain of Gelfand-Kirillov dimension 2n.
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Proof. In view of �eorem 2.4 there is an obvious surjective morphism of algebras

ϕ : U (S,DerA) → Diff (A).

Let I be its kernel and suppose, to reach a contradiction, that I , 0. As U (S,L) is a domain and
contains non-zero regular elements, Proposition 3.15 in [KL00] tells us that

2n = GKdimU (S,L) ≥ GKdimU (S,L)i/I + 1 = GKdim Diff (A) + 1.

Let Ω = {Q i : i ≥ 0}. �is is a multiplicatively closed subset of Diff (S ), its elements are regular
and commute, and the corresponding linear derivations are locally nilpotent: �eorem 4.9
of [KL00] tells us that Ω is an Ore set in Diff (S ) and that

GKdim Diff (S )Ω−1 = GKdim Diff (S ).

�is last number is 2n, as can be deduced from Corollary 2.18 in view that Diff (S ) is the
enveloping algebra of the Lie–Rinehart pair (S,Der S ). On the other hand, Ω is contained in
Diff (A) and has the same properties as in Diff (S ), so that the same theorem now tells us that

GKdim Diff (A)Ω−1 = GKdim Diff (A).

To �nd the contradiction we want, it is therefore enough to show that Diff (S )Ω−1 = Diff (A)Ω−1.
As Diff (A) is contained in Diff (S ), to see this we need only show that for each u ∈ Diff (S )

there exists i ≥ 0 such that Q iu ∈ Diff (A) and, according to Proposition 8 in [SÁ18], we may
take i =

(
p+1

2

)
with p the order of u.

2.20. �e result in last theorem can be made completely explicit.

Proposition. Let A be a free hyperplane arrangement in a vector space V with coordinate
algebra S and let B = {θ1, . . . ,θn } be a basis of DerA. Let cki j ∈ S be the structure coe�cients of
DerA with respect to B, so that

[θi ,θ j ] =
n∑

k=1
cki jθk .

�e algebra Diff (A) is isomorphic to the free algebra generated by le�ers x1, . . . ,xn ,θ1, . . . ,θn
subject to the relations

[xi ,x j ] = 0, [θi ,x j ] = θi (x j ), [θi ,θ j ] =
n∑

k=1
cki jθk

for every i , j and k in ~n�.

2.21. In Section 2.2 we found that when A is an arrangement of lines, Diff (A) is an iterated
Ore extension of S : this is not the case in the general situation. Indeed, if A = B3, the third
braid arrangement, then DerA � S ⊗ sl2 as a Lie algebra, and this can be used to show that
Diff (A) is not an iterated Ore extension.
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2.22. A simple and �nal observation that we can make at this point, and that we have actually
proved at the end of the proof of �eorem 2.19, is that our algebra Diff (A) and the full
algebra Diff (S ) of regular di�erentials operators of S are birational, that is, that they have
the same skew-�elds of quotients. In fact, the two algebras become isomorphic already a�er
localization at the single element Q .

Proposition. �e inclusion Diff (A) → Diff (S ) induces a�er localization at Q an isomorphism
Diff (A)[ 1

Q ] → Diff (S )[ 1
Q ] and, in particular, Diff (A) and Diff (S ) have isomorphic �elds of

fractions.

2.4 Twisted Calabi–Yau algebras

2.23. Let us recall the notion of twisted Calabi–Yau algebras from the article [Gin06] by V.
Ginzburg. We will see that when a hyperplane arrangement is free, its algebra of di�erential
operators is twisted Calabi–Yau.

Let n ≥ 0. An algebra A has Van den Bergh duality of dimension n if A has a resolution
of �nite length by �nitely generated projective A-bimodules and there exists an invertible
A-bimodule D such that there is an isomorphism of A-bimodules

ExtiAe (A,A ⊗ A) =



0 if i , n;
D if i = n.

An algebra A is twisted Calabi–Yau or has the twisted Calabi–Yau property of dimension n if,
moreover, there exists an automorphism σ of A, the Nakayama automorphism, such that the
dualizing bimodule D can be taken to be Aσ , the A-bimodule obtained from A by twisting its
right action using the automorphism σ , so that a .x /b = axσ (b) for all a, b ∈ A and all x ∈ Aσ .
If the automorphism σ is the identity of A, we simply say that A is Calabi–Yau.

�e Van den Bergh duality property for an algebra A is important because, as can be seen
in [vdB98], it relates the Hochschild cohomology of A with its homology in a way analogue to
Poincaré duality. Explicitly, for each A-bimodule M there is a canonical isomorphism

H i (A,M ) → Hn−i (A,D ⊗A M ).

In the case that A is twisted Calabi–Yau, so that there exists an automorphism σ of A such that
we may take D = Aσ , we observe that if σ is not the identity of A, the bimodule Aσ ⊗A M is
not generally isomorphic to M .
2.24. Let (S,L) be a Lie–Rinehart pair. �e following result by �. Lambre and P. Le Meur gives
a su�cient condition for the enveloping algebra of the pair to have the twisted Calabi–Yau
property that is satis�ed in important examples. Notice that the following theorem includes
the hypothesis that L be �nitely generated projective of constant rank —that is, that the
localizations of L are all free of the same rank— implies that L is �nitely generated as a
consequence of Proposition 1.3 of [Vas69].



48 Chapter 2. Algebras of differential operators

�eorem. Let (S,L) be a Lie–Rinehart pair. If S is twisted Calabi–Yau of dimension n, L is �nitely
generated and projective of constant rank d and Λd

SL is free then the enveloping algebra U (S,L) is
twisted Calabi–Yau of dimension n + d .

In addition to the precedent theorem, the authors give concrete simple formulas for the
Nakayama automorphism of U (S,L).

Proof. �is is �eorem 2 in [LLM18]. One can streamline their argument using the spectral
sequence we construct in Chapter 6 of this thesis to compute ExtU e (U ,U ⊗ U ).

2.25. Let A be a free hyperplane arrangement in V and let, as usual, n be the dimension of V .
As we have seen in 1.24 and in �eorem 2.19, the free module DerA has rank n and the algebra
of di�erential operators on A is isomorphic to the enveloping algebra of the Lie–Rinehart pair
(S,DerA), and therefore �eorem 2.24 tells us that Diff (A) is a twisted Calabi–Yau algebra of
dimension 2n. We will give an direct proof of this fact for the case of an arrangement of lines
as in Section 2.2 and describe explicitly the Nakayama automorphism.

2.5 Resumen

En este capı́tulo presentamos el álgebra de operadores diferenciales Diff (A) tangentes a los
hiperplanos de un arreglo A, que es el principal objeto de estudio de la tesis. Primero, vemos
en 2.4 que Diff (A) admite un sistema de generadores manejable en el caso en que A es un
arreglo libre.

Teorema. Si A es un arreglo de hiperplanos libre entonces el álgebra Diff (A) está generada por
S ∪ Der(A).

Este resultado fue demostrado por F. J. Calderón Moreno en [CM99] y M. Schulze en [Sch07]
para el caso de arreglos complejos usando técnicas de geometrı́a analı́tica, y por M. Suárez-
Álvarez en [SÁ18] para el caso en que k es un cuerpo cualquiera de caracterı́stica cero.

A continuación, nos detenemos a analizar el caso de un arreglo central A de rectas, que es
el que más nos interesa en esta tesis, para encontrar en 2.8 una presentación de Diff (A) que
no reproducimos aquı́. Inmediatamente después obtenemos la siguiente descripción:

Proposición. El álgebra Diff (A) es isomorfa a una extensión de Ore iterada.

Volvemos luego al caso general de un arreglo libre de hiperplanos de dimensión arbitraria.
Introducimos en la Sección 2.3 la noción de pares de Lie–Rinehart. Un par de Lie–Rinehart
(S,L) consta de un álgebra conmutativa S y un álgebra de Lie L que es un S-módulo y actúa en
S por derivaciones de manera que

(sα ) (t ) = s (α (t )), [α , sβ] = s[α , β] + α (s )β

si s , t pertenecen a S y α y β a L. En 2.13 damos una construcción del álgebra envolvente
U = U (S,L) de un par de Lie–Rinehart (S,L), que es la “menor” álgebra asociativa que contiene
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a S y a L. Esta construcción es central para nosotros: probamos en el Teorema 2.19 que el
álgebra Diff (A) puede identi�carse con el álgebra envolvente del par dado por el álgebra de
funciones coordenadas de V y el álgebra de Lie de derivaciones de A.

Teorema. Sea A un arreglo de hiperplanos libre en un espacio vectorial V y sea S el álgebra de
funciones coordenadas en V . Hay un isomor�smo canónico de álgebras

U (S,DerA) → Diff (A).

La existencia de este mor�smo sigue inmediatamente de los resultados de [CM99] y [SÁ18]
que recién mencionamos. Para probar que es inyectivo, utilizamos el cálculo de la dimensión
de Gelfand-Kirillov del álgebra envolvente de un par de Lie–Rinehart hecho por J. Matczuk
en [Mat88] y el hecho de que Diff (A) y el álgebra de operadores diferenciales en S se tornan
isomorfas al localizar en el elemento Q . La sección termina dando en la Proposición 2.20 una
presentación de Diff (A) por generadores y relaciones.

Finalmente, en la Sección 2.4 nos dedicamos a estudiar la dualidad de Van den Bergh y
la propiedad de Calabi–Yau torcida para un álgebra. Usando los resultados de �. Lambre y
P. Le Meur en [LLM18], obtenemos en 2.25 lo siguiente:

Proposición. Si A es un arreglo libre de hiperplanos, el álgebra Diff (A) tiene la propiedad de
Calabi–Yau torcida.





– 3 –
The Hochschild cohomology of the algebra of

differential operators tangent to a line
arrangement

In this chapter we study the Hochschild cohomology of the algebra of di�erential operators
tangent to a central arrangement of lines as a Gerstenhaber algebra. We start by constructing a
useful projective resolution for the algebra, which we then use to compute explicitly Hochschild
cohomology, the cup product and the Gerstenhaber bracket. We devote the last two sections
to the much simpler calculation of Hochschild and cyclic homology, K-theory and to a direct
proof of the twisted Calabi–Yau property.

�e results we obtain are pivotal to the study of the automorphisms and the deformations
of A that we develop further ahead.

3.1. As in Section 2.2, we let A be a central line arrangement in k2 and denote by A the
associative algebra Diff (A) de�ned in 2.8. We let S be the algebra of coordinate functions on
k2 and identify it, as usual, with k[x ,y]; if p ≥ 0, we denote by Sp the homogeneous component
of S of degree p. Recall that we have wri�en the de�ning polynomial Q of A as Q = xF for a
square free homogeneous polynomial F ∈ S of degree r + 1 such that x - F . A�er multiplying
by an scalar if necessary, we may in fact write F = yr+1 + xF̄ , for F̄ ∈ Sr .

We will use frequently the following non-standard notation from now on: if M is a vector
space we write M for an element of M about which we do not need to be speci�c.

3.1 A projective resolution

3.2. Our immediate objective is to construct a projective resolution of A as an A-bimodule,
and we do this by looking at A as a deformation of a commutative polynomial algebra, which
suggests that it should have a resolution resembling the usual Koszul complex.

3.3. Let us introduce some more notation that will be useful throughout our calculations. If
U is a vector space and u ∈ U , there are derivations ∇ux , ∇uy : S → S ⊗ U ⊗ S of S into the
S-bimodule S ⊗ U ⊗ S uniquely determined by the condition that

∇ux (x ) = 1 ⊗ u ⊗ 1, ∇ux (y) = 0, ∇uy (x ) = 0, ∇uy (y) = 1 ⊗ u ⊗ 1,
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and, in fact, for every i , j ≥ 0 we have that

∇ux (x
iy j ) =

∑
s+t+1=i

xs ⊗ u ⊗ x ty j , ∇uy (x
iy j ) =

∑
s+t+1=j

x iys ⊗ u ⊗ ys .

We consider the derivation ∇ = ∇xx + ∇
y
y : S → S ⊗ S1 ⊗ S ; it is the unique derivation such that

∇(α ) = 1 ⊗ α ⊗ 1 for all α ∈ S1. �ere is, on the other hand, a unique morphism of S-bimodules
d : S ⊗ S1 ⊗ S → S ⊗ S such that d (1 ⊗ α ⊗ 1) = α ⊗ 1 − 1 ⊗ α for all α ∈ S1, and we have

d (∇( f )) = f ⊗ 1 − 1 ⊗ f

for all f ∈ S . To check this last equality, it is enough to notice that d ◦ ∇ : S → S ⊗ S is a
derivation and, since S1 generates S as an algebra, that the equality holds when f ∈ S1.
3.4. LetV be the subspace of A spanned by x , y, D and E. �is is a homogeneous subspace and
its grading induces on the exterior algebra Λ• (V ) an internal grading. If ω is an element of an
exterior power Λp (V ) of V , we write (−) ∧ ω for the map of A-bimodules

A ⊗ S1 ⊗ A→ A ⊗ Λp+1V ⊗ A

such that (1 ⊗ α ⊗ 1) ∧ ω = 1 ⊗ α ∧ ω ⊗ 1 for all α ∈ S1.
3.5. �ere is a chain complex P of free graded A-bimodules of the form

A|Λ4V |A A|Λ3V |A A|Λ2V |A A|V |A A|A
d4 d3 d2 d1 (3.1)

where, we recall from 1.1, the symbol | stands for tensor product over k, and with Ae -linear
maps homogeneous of degree zero and such that

d1 (1|v |1) = [v, 1|1], ∀v ∈ V ;

d2 (1|x ∧ y |1) = [x , 1|y |1] − [y, 1|x |1];
d2 (1|x ∧ E |1) = [x , 1|E |1] − [E, 1|x |1] + 1|x |1;
d2 (1|y ∧ E |1) = [y, 1|E |1] − [E, 1|y |1] + 1|y |1;
d2 (1|x ∧ D |1) = [x , 1|D |1] − [D, 1|x |1];
d2 (1|y ∧ D |1) = [y, 1|D |1] − [D, 1|y |1] + ∇(F );
d2 (1|D ∧ E |1) = [D, 1|E |1] − [E, 1|D |1] + r |D |1;

d3 (1|x ∧ y ∧ D |1) = [x , 1|y ∧ D |1] − [y, 1|x ∧ D |1] + [D, 1|x ∧ y |1] + ∇(F ) ∧ x ;
d3 (1|x ∧ y ∧ E |1) = [x , 1|y ∧ E |1] − [y, 1|x ∧ E |1] + [E, 1|x ∧ y |1] − 2|x ∧ y |1;

d3 (1|x ∧ D ∧ E |1) = [x , 1|D ∧ E |1] − [D, 1|x ∧ E |1] + [E, 1|x ∧ D |1]
− (r + 1) |x ∧ D |1;

d3 (1|y ∧ D ∧ E |1) = [y, 1|D ∧ E |1] − [D, 1|y ∧ E |1] + [E, 1|y ∧ D |1]
+ ∇(F ) ∧ E − (r + 1) |y ∧ D |1;
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d4 (1|x ∧ y ∧ D ∧ E |1) = [x , 1|y ∧ D ∧ E |1] − [y, 1|x ∧ D ∧ E |1]
+ [D, 1|x ∧ y ∧ E |1] − [E, 1|x ∧ y ∧ D |1]

+ ∇(F ) ∧ x ∧ E + (r + 2) |x ∧ y ∧ D |1.

�at P is indeed a complex follows from a direct calculation. More interestingly, it is exact:

Lemma. �e complex P is a projective resolution of A as an A-bimodule, with augmentation
d0 : A|A→ A such that d0 (1|1) = 1.

Proof. For each p ∈ N0 we consider the subspace F̄pA = 〈x
iy jDkEl : k + l ≤ p〉 of A. As a

consequence of Lemma 2.8, we see that F̄A = (F̄pA)p≥0 is an exhaustive and increasing algebra
�ltration on A and that the corresponding associated graded algebra gr(A) is isomorphic to the
usual commutative polynomial ring k[x ,y,D,E]. Since V is a subspace of A, we can restrict
the �ltration of A to one on V , and the la�er induces as usual a �ltration on each exterior
power ΛpV . In this way we obtain a �ltration on each component of the complex P, which turns
out to be compatible with its di�erentials, as can be checked by inspection. �e complex gr(P)
obtained from P by passing to associated graded objects in each degree is isomorphic to the
Koszul resolution of gr(A) as a gr(A)-bimodule and it is therefore acyclic over gr(A). A standard
argument using the �ltration of P concludes from this that the complex P is itself acyclic over A.
As its components are manifestly free A-bimodules, this proves the lemma.

3.6. One almost immediate application of having a bimodule projective resolution for our
algebra is in computing its global dimension.

Proposition. �e global dimension of A is equal to 4.

Of course, as A is noetherian, there is no need to distinguish between the le� and the right
global dimensions.

Proof. If λ ∈ k we let Mλ be the le� A-module which as a vector space is freely spanned by an
elementuλ and on which the action ofA is such that x ·uλ = y ·uλ = D ·uλ = 0 and E ·uλ = λuλ .
It is easy to see that all 1-dimensional A-modules are of this form and that Mλ � Mµ i� λ = µ,
but we will not need this.

�e complex P ⊗A Mλ is a projective resolution of Mλ as a le� A-module, and therefore the
cohomology of homA (P ⊗A Mλ ,Mµ ) is canonically isomorphic to Ext•A (Mλ ,Mµ ). Identifying
as usual homA (P ⊗A Mλ ,Mµ ) to Mµ ⊗ Λ•V ∗ ⊗ M∗λ , we compute that the complex is

Mµ ⊗ M∗λ Mµ ⊗ V
∗ ⊗ M∗λ Mµ ⊗ Λ2V ∗ ⊗ M∗λ

δ 0 δ 1 δ 2

Mµ ⊗ Λ3V ∗ ⊗ M∗λ Mµ ⊗ Λ4V ∗ ⊗ M∗λ
δ 3

with di�erentials given by

δ 0 (1) = (µ − λ) ⊗ Ê,
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δ 1 (a ⊗ x̂ + b ⊗ ŷ + c ⊗ D̂ + d ⊗ D̂)

= (λ + 1 − µ )a ⊗ x̂ ∧ Ê + (λ + 1 − µ )b ⊗ ŷ ∧ Ê + (λ + r − µ )c ⊗ D̂ ∧ Ê,

δ 2 (a ⊗ x̂ ∧ ŷ + b ⊗ x̂ ∧ Ê + c ⊗ ŷ ∧ Ê + d ⊗ x̂ ∧ D̂ + eŷ ∧ D̂ + f D̂ ∧ Ê)

= (µ − λ − 2)a ⊗ x̂ ∧ ŷ ∧ Ê + (µ − λ − r − 1)d ⊗ x̂ ∧ D̂ ∧ Ê

+ (µ − λ − r − 1)e ⊗ ŷ ∧ D̂ ∧ Ê,

δ 3 (a ⊗ x̂ ∧ ŷ ∧ D̂ + b ⊗ x̂ ∧ ŷ ∧ Ê + c ⊗ x̂ ∧ D̂ ∧ Ê + d ⊗ ŷ ∧ D̂ ∧ Ê)

= (λ + r + 2 − µ )a ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê.

An easy computation shows that

dim Ext
p
A (Mλ ,Mλ+r+2) =




1, if p = 3 or p = 4;
0, in any other case.

In particular, Ext4
A (Mλ ,Mλ+r+2) , 0 and therefore gldimA ≥ 4. On the other hand, we have

constructed a projective resolution of A as an A-bimodule of length 4, so that the projective
dimension of A as a bimodule is pdimAe A ≤ 4. �e proposition now follows from this and that
gldimA ≤ pdimAe A.

3.7. We will use the following two simple lemmas a few times; the conclusion of its statement
is false if r < 2.

Lemma. Suppose that r ≥ 2. If α , β ∈ S1 are such that αFx + βFy = 0, then α = β = 0.

Proof. Suppose that F1, F2 and F3 are three distinct linear factors of F (here is where we need
the hypothesis that r is at least 2) so that F = F1F2F3F

′ for some F ′ ∈ Sr−2; as F has degree
at least 3, this is possible. We have Fx ≡ F1xF2F3F

′ and Fy ≡ F1yF2F3F
′ modulo F1, so that

(αF1x +βF1y )F2F3F
′ ≡ 0 mod F1. Since F is square free, this tells us that F1 divides αF1x +βF1y

and, since both polynomials have the same degree and F1 , 0, that there exists a scalar λ such
that αF1x + βF1y = λF1. Of course, we can do the same with the other two factors F2 and F3.
We can state this by saying that the matrix

( αx βx
αy βy

)
has the three vectors

( F1x
F1y

)
,
( F2x
F2y

)
and( F3x

F3y

)
as eigenvectors. Since no two of these are linearly dependent, because F is square-free,

this implies that the matrix is in fact a scalar multiple of the identity, and there is a µ ∈ k such
that α = µx and β = µy. �e hypothesis is then that µ (r + 1)F = µ (xFx + yFy ) = 0, so that
µ = 0. �is proves the claim.

3.8. Lemma. If α1, . . . , αr+1 ∈ S1 are such that F =
∏r+1

i=1 αi , the set of quotients { Fα1
, . . . , F

αr+1
} is

a basis for Sr .

Proof. Suppose c1, . . . , cr+1 ∈ k are scalars such that ∑r+1
i=1 ci

F
αi
= 0. If j ∈ {1, . . . , r + 1}, we

then have c j Fα j ≡ 0 modulo α j and, since F is square-free, this implies that in fact c j = 0. �e
set { Fα1

, . . . , F
αr+1
} is therefore linearly independent. Since dim Sr = r + 1, this completes the

proof.
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3.2 The Hochschild cohomology of Diff (A)

3.9. We want to compute the Hochschild cohomology of the algebra A = Diff (A). Applying
the functor homAe (−,A) to the resolution P of 3.5 we get, a�er standard identi�cations, the
cochain complex

A A ⊗ V ∗ A ⊗ Λ2V ∗ A ⊗ Λ3V ∗ A ⊗ Λ4V ∗ 0d0 d1

s1

d1

s2

d2

s3 s4

which we denote simply by A ⊗ ΛV ∗, with di�erentials such that

d0 (a) = [x ,a] ⊗ x̂ + [y,a] ⊗ ŷ + [D,a] ⊗ D̂ + [E,a] ⊗ Ê;

d1 (a ⊗ x̂ ) = −[y,a] ⊗ x̂ ∧ ŷ + (a − [E,a]) ⊗ x̂ ∧ Ê − [D,a] ⊗ x̂ ∧ D̂

+ ∇ax (F ) ⊗ ŷ ∧ D̂;

d1 (a ⊗ ŷ) = [x ,a] ⊗ x̂ ∧ ŷ + (a − [E,a]) ⊗ ŷ ∧ Ê + (∇ay (F ) − [D,a]) ⊗ ŷ ∧ D̂;

d1 (a ⊗ D̂) = [x ,a] ⊗ x̂ ∧ D̂ + [y,a] ⊗ ŷ ∧ D̂ + (ra − [E,a]) ⊗ D̂ ∧ Ê;
d1 (a ⊗ Ê) = [x ,a] ⊗ x̂ ∧ Ê + [y,a] ⊗ ŷ ∧ Ê + [D,a] ⊗ D̂ ∧ Ê;

d2 (a ⊗ x̂ ∧ ŷ) = ([D,a] − ∇ay (F )) ⊗ x̂ ∧ ŷ ∧ D̂ + ([E,a] − 2a) ⊗ x̂ ∧ ŷ ∧ Ê;

d2 (a ⊗ x̂ ∧ Ê) = −[y,a] ⊗ x̂ ∧ ŷ ∧ Ê − [D,a] ⊗ x̂ ∧ D̂ ∧ Ê + ∇ax (F ) ⊗ ŷ ∧ D̂ ∧ Ê;
d2 (a ⊗ ŷ ∧ Ê) = [x ,a] ⊗ x̂ ∧ ŷ ∧ Ê + (∇ay (F ) − [D,a]) ⊗ ŷ ∧ D̂ ∧ Ê;

d2 (a ⊗ x̂ ∧ D̂) = −[y,a] ⊗ x̂ ∧ ŷ ∧ D̂ + ([E,a] − (r + 1)a) ⊗ x̂ ∧ D̂ ∧ Ê;
d2 (a ⊗ ŷ ∧ D̂) = [x ,a] ⊗ x̂ ∧ ŷ ∧ D̂ + ([E,a] − (r + 1)a) ⊗ ŷ ∧ D̂ ∧ Ê;
d2 (a ⊗ D̂ ∧ Ê) = [x ,a] ⊗ x̂ ∧ D̂ ∧ Ê + [y,a] ⊗ ŷ ∧ D̂ ∧ Ê;

d3 (a ⊗ x̂ ∧ ŷ ∧ D̂) = (−[E,a] + (r + 2)a) ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê;
d3 (a ⊗ x̂ ∧ ŷ ∧ Ê) = ([D,a] − ∇ay (F )) ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê;

d3 (a ⊗ x̂ ∧ D̂ ∧ Ê) = −[y,a] ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê;
d3 (a ⊗ ŷ ∧ D̂ ∧ Ê) = [x ,a] ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê.

�ese di�erentials are homogeneous with respect to the natural internal grading on the com-
plex A ⊗ ΛV ∗ coming from the grading of A. We denote γ : A ⊗ ΛV ∗ → A ⊗ ΛV ∗ the k-linear
map whose restriction to each homogeneous component of A ⊗ ΛV ∗ is simply multiplication
by the degree. �ere is a homotopy, drawn in the diagram (3.1) with dashed arrows, with

s1 (a ⊗ x̂ + b ⊗ ŷ + c ⊗ D̂ + d ⊗ Ê) = d,

s2 (a ⊗ x̂ ∧ ŷ + b ⊗ x̂ ∧ Ê + c ⊗ ŷ ∧ Ê + d ⊗ x̂ ∧ D̂ + e ⊗ ŷ ∧ D̂ + f ⊗ D̂ ∧ Ê)

= −b ⊗ x̂ − c ⊗ ŷ − f ⊗ D̂,

s3 (a ⊗ x̂ ∧ ŷ ∧ D̂ + b ⊗ x̂ ∧ ŷ ∧ Ê + c ⊗ x̂ ∧ D̂ ∧ Ê + d ⊗ ŷ ∧ D̂ ∧ Ê)

= b ⊗ x̂ ∧ ŷ + c ⊗ x̂ ∧ D̂ + d ⊗ ŷ ∧ D̂,
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s4 (a ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê) = −a ⊗ x̂ ∧ ŷ ∧ D̂

and such that d ◦ s + s ◦ d = γ : this tells us that γ induces the zero map on cohomology. Since
our ground �eld k has characteristic zero, this implies that the inclusion (A⊗ΛV ∗)0 → A⊗ΛV ∗

of the component of degree zero of our complex A ⊗ ΛV ∗ is a quasi-isomorphism.
3.10. From now on and until the end of this section, we will assume that r ≥ 3. Let us
write the complex (A ⊗ ΛV ∗)0 simply X and let us put T = k[E], which coincides with A0. �e
complex X has components

X
0 = A0,

X
1 = A1 ⊗ (kx̂ ⊕ kŷ) ⊕ Ar ⊗ kD̂ ⊕ A0 ⊗ kÊ,

X
2 = A2 ⊗ kx̂ ∧ ŷ ⊕ A1 ⊗ (kx̂ ∧ Ê ⊕ kŷ ∧ Ê) ⊕ Ar ⊗ kD̂ ∧ Ê

⊕ Ar+1 ⊗ (kx̂ ∧ D̂ ⊕ kŷ ∧ D̂),

X
3 = A2 ⊗ x̂ ∧ ŷ ∧ Ê ⊕ Ar+1 ⊗ (kx̂ ∧ D̂ ∧ Ê ⊕ kŷ ∧ D̂ ∧ Ê)

⊕ Ar+2 ⊗ kx̂ ∧ ŷ ∧ D̂,

X
4 = Ar+2 ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê

and, since r > 2, we have

A0 = T , A1 = S1T , A2 = S2T ,

Ar = (Sr ⊕ kD)T , Ar+1 = (Sr+1 ⊕ S1D)T , Ar+2 = (Sr+2 ⊕ S2D)T .

In fact, this is where our assumption that r ≥ 3 intervenes: if r ≤ 2, these subspaces of A have
a di�erent description.

�e di�erentials in X can be computed to be given by

δ 0 (a) = xτ1 (a) ⊗ x̂ + yτ1 (a) ⊗ ŷ + Dτr (a) ⊗ D̂,

δ 1 (ϕa ⊗ x̂ ) = −ϕyτ1 (a) ⊗ x̂ ∧ ŷ − (Fϕya + ϕDτr (a)) ⊗ x̂ ∧ D̂ + ∇
ϕa
x (F ) ⊗ ŷ ∧ D̂,

δ 1 (ϕa ⊗ ŷ) = ϕxτ1 (a) ⊗ x̂ ∧ ŷ + (∇
ϕa
y (F ) − Fϕya − ϕDτr (a)) ⊗ ŷ ∧ D̂,

δ 1 ((ϕ + λD)a ⊗ D̂) = (ϕxτ1 (a) + λxDτ1 (a)) ⊗ x̂ ∧ D̂

+ (ϕyτ1 (a) + λF (τ1 (a) − a) + λyDτ1 (a)) ⊗ ŷ ∧ D̂,

δ 1 (a ⊗ Ê) = xτ1 (a) ⊗ x̂ ∧ Ê + yτ1 (a) ⊗ ŷ ∧ Ê + Dτr (a) ⊗ D̂ ∧ Ê,

δ 2 (ϕa ⊗ x̂ ∧ ŷ) = (Fϕya + ϕDτr (a) − ∇
ϕa
y (F )) ⊗ x̂ ∧ ŷ ∧ D̂,

δ 2 (ϕa ⊗ x̂ ∧ Ê) = −ϕyτ1 (a) ⊗ x̂ ∧ ŷ ∧ Ê − (Fϕya + ϕDτr (a)) ⊗ x̂ ∧ D̂ ∧ Ê

+ ∇
ϕa
x (F ) ⊗ ŷ ∧ D̂ ∧ Ê,

δ 2 (ϕa ⊗ ŷ ∧ Ê) = ϕxτ1 (a) ⊗ x̂ ∧ ŷ ∧ Ê

+ (∇
ϕa
y (F ) − Fϕya − ϕDτr (a)) ⊗ ŷ ∧ D̂ ∧ Ê,

δ 2 ((ϕ +ψD)a ⊗ x̂ ∧ D̂) = (−ϕyτ1 (a) −ψF (τ1 (a) − a) −ψyDτ1 (a)) ⊗ x̂ ∧ ŷ ∧ D̂,
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δ 2 ((ϕ +ψD)a ⊗ ŷ ∧ D̂) = (ϕxτ1 (a) +ψxDτ1 (a)) ⊗ x̂ ∧ ŷ ∧ D̂,

δ 2 ((ϕ + λD)a ⊗ D̂ ∧ Ê) = (ϕxτ1 (a) + λxDτ1 (a)) ⊗ x̂ ∧ D̂ ∧ Ê

+ (ϕyτ1 (a) + λyDτ1 (a) + λF (τ1 (a) − a)) ⊗ ŷ ∧ D̂ ∧ Ê,

δ 3 ((ϕ +ψD)a ⊗ x̂ ∧ ŷ ∧ D̂) = 0,

δ 3 (ϕa ⊗ x̂ ∧ ŷ ∧ Ê) = (Fϕya + ϕDτr (a) − ∇
ϕa
y (F )) ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê,

δ 3 ((ϕ +ψD)a ⊗ x̂ ∧ D̂ ∧ Ê)

= −(ϕyτ1 (a) +ψyDτ1 (a) +ψF (τ1 (a) − a)) ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê,

δ 3 ((ϕ +ψD)a ⊗ ŷ ∧ D̂ ∧ Ê) = (ϕxτ1 (a) +ψxDτ1 (a)) ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê.

Here and below τt : T → T is the k-linear map such that τt (En ) = En − (E + t )n for all n ∈ N0,
and ϕ andψ denote homogeneous elements of S of appropriate degrees and λ a scalar.
3.11. We proceed to compute the cohomology of the complex X, starting with degrees zero
and four, for which the computation is almost immediate. Indeed, since the kernel of τ1 and of
τr is k ⊆ T , it is clear that H 0 (X) = ker δ 0 = k. On the other hand, ifψ ∈ S2 and a ∈ T , we can
writeψ = ψ1x +ψ2y for someψ1,ψ2 ∈ S1 and there is a b ∈ T such that τ1 (b) = a, so that

δ 3 (−ψ2Db ⊗ x̂ ∧ D̂ ∧ Ê +ψ1Db ⊗ ŷ ∧ D̂ ∧ Ê) = (ψDa + Sr+2T ) ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê.

Similarly, we have δ 3 (Sr+1T ⊗ x̂ ∧ D̂ ∧ Ê + Sr+1T ⊗ ŷ ∧ D̂ ∧ Ê) = Sr+2T ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê. �ese
two facts imply that the map δ 3 is surjective, so that H 4 (X) = 0.
3.12. Letω ∈ X1 be a 1-cocycle inX. �ere are thena,b, c ,d , e , f ∈ T , k ∈ N0 andϕ0, . . . ,ϕk ∈ Sr
such that either k = 0 or ϕk , 0, and

ω = (xa + yb) ⊗ x̂ + (xc + yd ) ⊗ ŷ + *.
,

k∑
i=0

ϕiE
i + De+/

-
⊗ D̂ + f ⊗ Ê.

If ē ∈ T is such that τr (ē ) = e , then by replacing ω by ω − δ 0 (ē ), which does not change the
cohomology class of ω, we can assume that e = 0. �e formula for δ 0 then shows that ω is a
coboundary i� it is equal to zero. �e coe�cient of x̂ ∧ ŷ in δ 1 (ω) is

x2τ1 (c ) + xy (τ1 (d ) − τ1 (a)) − y
2τ1 (b) = 0.

We therefore have b, c , d − a ∈ k. �e coe�cient of D̂ ∧ Ê, on the other hand, is Dτr ( f ) = 0,
so that also f ∈ k; exactly the same information comes from the vanishing of the coe�cients
of x̂ ∧ Ê and of ŷ ∧ Ê. Since b ∈ k, the coe�cient of x̂ ∧ D̂ is

−Fb − xDτr (a) +
k∑
i=0

ϕixτ1 (E
i ) = 0.

We thus see that τr (a) = 0, so that a ∈ k, and that ∑k
i=0 ϕixτ1 (E

i ) = Fb. �is implies that k ≤ 1,
that −ϕ1x = Fb and therefore, since x is not a factor of F by hypothesis, that ϕ1 = 0 and b = 0.
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Finally, using all the information we have so far, we can see that the vanishing of the
coe�cient of ŷ ∧ D̂ in δ 1 (ω) implies that Fxxa + Fy (xc + yd ) = Fd . Together with Euler’s
relation Fxx + Fyy = (r + 1)F this tells us that

(cx + (d − a)y)Fy = (d − (r + 1)a)F . (3.2)

As F is square-free, it follows1 from this equality that the polynomial cx + (d − a)y is zero, so
that c = 0 and d = a, and, �nally, that a = 0. We conclude in this way that the set of 1-cocycles

ϕ ⊗ D̂ + f ⊗ Ê, ϕ ∈ Sr , f ∈ k

is a complete, irredundant set of representatives for the elements of H 1 (X).
3.13. Let now ω ∈ X3 be a 3-cocycle, so that

ω = a ⊗ x̂ ∧ ŷ ∧ D̂ + b ⊗ x̂ ∧ ŷ ∧ Ê + c ⊗ x̂ ∧ D̂ ∧ Ê + d ⊗ ŷ ∧ D̂ ∧ Ê

for some a ∈ (Sr+2 ⊕ S2D)T , b ∈ S2T , c , d ∈ (Sr+1 ⊕ S1D)T and δ 3 (ω) = 0. For all ϕ ∈ S1 and
e ∈ T we have

δ 2 (ϕe ⊗ x̂ ∧ Ê) = −ϕyτ1 (e ) ⊗ x̂ ∧ ŷ ∧ Ê + Ar+1 ⊗ x̂ ∧ D̂ ∧ Ê + Ar+1 ⊗ ŷ ∧ D̂ ∧ Ê

and
δ 2 (ϕe ⊗ ŷ ∧ Ê) = ϕxτ1 (e ) ⊗ x̂ ∧ ŷ ∧ Ê + Ar+1 ⊗ ŷ ∧ D̂ ∧ Ê,

so that by adding to ω an element of δ 2 (S1T ⊗ x̂ ∧ Ê + S1T ⊗ ŷ ∧ Ê), which does not change the
cohomology class of ω, we can suppose that b = 0. Similarly, for all ϕ ∈ S2 and all e ∈ T we
have that

δ 2 (ϕe ⊗ x̂ ∧ ŷ) = ( Sr+2T + ϕDτr (e )) ⊗ x̂ ∧ ŷ ∧ D̂,

and, for all ϕ ∈ Sr+1 and all e ∈ T , that

δ 2 (ϕe ⊗ x̂ ∧ D̂) = −ϕyτ1 (e ) ⊗ x̂ ∧ ŷ ∧ D̂

and
δ 2 (ϕe ⊗ ŷ ∧ D̂) = ϕxτ1 (e ) ⊗ x̂ ∧ ŷ ∧ D̂.

Using this we see that, up to changing ω by adding to it a 3-coboundary, we can suppose that
a = 0. Finally, for each ϕ ∈ Sr and all e ∈ T we have

δ 2 (ϕe ⊗ D̂ ∧ Ê) = ϕxτ1 (e ) ⊗ x̂ ∧ D̂ ∧ Ê + Ar+1 ⊗ ŷ ∧ D̂ ∧ Ê,

δ 2 (De ⊗ D̂ ∧ Ê) = xDτ1 (e ) ⊗ x̂ ∧ D̂ ∧ Ê + Ar+1 ⊗ ŷ ∧ D̂ ∧ Ê

1Suppose that u = cx + (d −a)y is not zero. Di�erentiating in (3.2) with respect to y, we �nd that −raFy = uFyy .
Since x does not divide F , we have Fyy , 0, and then a , 0 and u divides Fy : from (3.2) it follows then that u2

divides F , since the le� hand side of that equality is non-zero, and this is absurd because F is square-free.
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and
δ 2 (−y ⊗ x̂ ∧ Ê + F̄E ⊗ D̂ ∧ Ê) = yr+1 ⊗ x̂ ∧ D̂ ∧ Ê + Ar+1 ⊗ ŷ ∧ D̂ ∧ Ê,

so we can also suppose that c ∈ yr+1ET + yDT .
�ere are l ≥ 0, λ1, . . . , λl , µ0, . . . , µl ∈ k, ϕ0, . . . , ϕl ∈ Sr+1, ψ0, . . . , ψl ∈ S1, ζ0, . . . , ζl ∈ S1

such that c = ∑l
i=1 λiy

r+1Ei +
∑l

i=0 µiyDE
i and d =

∑l
i=0 (ϕi +ψiD)E

i . �e vanishing of δ 3 (ω)

means precisely that
l∑

i=1
λiy

r+2τ1 (E
i ) +

l∑
i=0

(
µiy

2Dτ1 (E
i ) − µiyF (E + 1)i − ϕixτ1 (E

i ) −ψixDτ1 (E
i )
)
= 0.

�e le� hand side of this equation is an element of Sr+2T ⊕ S2DT . �e component in S2DT is∑l
i=0 (µiy

2 −ψix )Dτ1 (E
i ) = 0 and therefore µi = ψi = 0 for all i ∈ {1, . . . , l }. On the other hand,

the component in Sr+2T is
l∑

i=1
λiy

r+2τ1 (E
i ) − µ0yF −

l∑
i=0

ϕixτ1 (E
i ) = 0.

�is implies that λiyr+2 − ϕix = 0 if i ∈ {2, . . . , l }, so that λi = ϕi = 0 for such i , and then the
equation reduces to λ1y

r+2 + µ0yF −ϕ1x = 0. Recalling from 3.1 that F = yr+1 + xF̄ , we deduce
from this that λ1 = −µ0 and ϕ1 = µ0yF̄ and, pu�ing everything together, that every 3-cocycle
is cohomologous to one of the form

(µ0yD − µ0y
r+1E)x̂ ∧ D̂ ∧ Ê + (ϕ0 +ψ0D + µ0yF̄E)ŷ ∧ D̂ ∧ Ê (3.3)

with µ0 ∈ k, ϕ0 ∈ Sr+1 andψ0 ∈ S1. A direct computation shows that moreover every 3-cochain
of this form is a 3-cocycle.

Let now η be a 2-cochain η in X, so that

η = A2 ⊗ kx̂ ∧ ŷ ⊕ Ar+1 ⊗ (kx̂ ∧ D̂ ⊕ kŷ ∧ D̂) + u ⊗ x̂ ∧ Ê +v ⊗ ŷ ∧ Ê +w ⊗ D̂ ∧ Ê

with u, v ∈ A1 and w ∈ Ar , and let us suppose that δ 2 (η) is equal to the 3-cocycle (3.3). �ere
are l ≥ 0, α0, . . . , αl , β0, . . . , βl ∈ S1, γ0, . . . , γl ∈ Sr and ξ0, . . . , ξl ∈ k such that u = ∑l

i=0 αiE
i ,

v =
∑l

i=0 βiE
i and w =

∑l
i=0 (γi + ξiD)E

i . �e coe�cient of x̂ ∧ ŷ ∧ Ê in δ 2 (η) must be equal to
zero, so that

l∑
i=0

(−αiy + βix )τ1 (E
i ) = 0,

and this implies that there are scalars ρ1, . . . , ρl ∈ k such that αi = ρix and βi = ρiy for all
i ∈ {1, . . . , l }. Looking now at the coe�cient of x̂ ∧ D̂ ∧ Ê in δ 2 (η) and comparing with (3.3)
we �nd that

l∑
i=0

(
−FαiyE

i − αiDτr (E
i ) + γixτ1 (E

i ) + ξixDτ1 (E
i )
)
= µ0yD − µ0y

r+1E. (3.4)
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�is is an equality of two elements of ST ⊕ SDT . Considering the components in DT , we �nd
that xD ∑l

i=1 (−ρiτr (E
i ) + ξiτ1 (E

i )) = µ0yD, and this tells us that µ0 = 0 and that

l∑
i=1

(
−ρiτr (E

i ) + ξiτ1 (E
i )
)
= 0. (3.5)

On the other hand, as the components in ST of the two sides of (3.4) are equal, we have

−Fα0y +
l∑

i=0
γixτ1 (E

i ) = 0,

so that γi = 0 for all i ∈ {2, . . . , l } and Fα0y + γ1x = 0. As x does not divide F , we must have
α0y = 0 and γ1 = 0: in particular, there is ρ0 ∈ k such that α0 = ρ0x .

Finally, considering the coe�cient of ŷ ∧ D̂ ∧ Ê of δ 2 (η) and of (3.3) we see that

l∑
i=0

(
∇αiE

i

x (F ) + ∇
βiEi
y (F ) − FβiyE

i − βiDτr (E
i )

+ γiyτ1 (E
i ) + ξiyDτ1 (E

i ) − ξiF (E + 1)i
)
= ϕ0 +ψ0D,

which at this point we can rewrite, using in the process the equality (3.5) above and the fact
that ∇xEix (F ) + ∇

yEi
x (F ) = F

∑r
t=0 (E + t )

i , as

ρ0xFx + β0Fy − F
*.
,
β0y + ξ0 −

l∑
i=1

*
,
ρi

r∑
t=1

(E + t )i − ξi (E + 1)i+
-

+/
-
= ϕ0 +ψ0D.

It follows at once thatψ0 = 0 and that, in fact,

ρ0xFx + β0Fy − F
*.
,
β0y + ξ0 −

l∑
i=1

*
,
ρi

r∑
t=1

t i − ξi+
-

+/
-
= ϕ0.

�e polynomial ϕ0 is then in the linear span of xFx , xFy , yFy and F inside Sr+1. Euler’s relation
implies that already the �rst three polynomials span this subspace, and we have

δ (x ⊗ x̂ ∧ Ê) = xFx ⊗ ŷ ∧ D̂ ∧ Ê,

δ (x ⊗ ŷ ∧ Ê) = xFy ⊗ ŷ ∧ D̂ ∧ Ê,

δ (y ⊗ ŷ ∧ Ê − D ⊗ D̂Ê) = yFy ⊗ ŷ ∧ D̂ ∧ Ê.

(3.6)

We conclude in this way that the only 3-coboundaries among the cocycles of the form (3.3) are
the linear combinations of the right hand sides of the equalities (3.6); these three cocycles are,
moreover, linearly independent. �is means that there is an isomorphism

H 3 (X) � kω3 ⊕ S1D ⊗ ŷ ∧ D̂ ∧ Ê ⊕
Sr+1

〈xFx ,xFy ,yFy〉
⊗ ŷ ∧ D̂ ∧ Ê, (3.7)
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with

ω3 = (yD − yr+1E) ⊗ x̂ ∧ D̂ ∧ Ê + yF̄E ⊗ ŷ ∧ D̂ ∧ Ê.

In particular, we have that dimH 3 (X) = r + 2, since the denominator appearing in the right
hand side of the isomorphism (3.7) is a 3-dimensional vector space —this follows at once from
Lemma 3.7.

3.14. It only remains for us to compute the second cohomology space HH 2 (A). We consider a
2-cocycle ω ∈ X2 and a ∈ S2T , b, c ∈ S1T , d , e ∈ Sr+1T ⊕ S1DT and f ∈ SrT ⊕ DT such that

ω = a ⊗ x̂ ∧ ŷ + b ⊗ x̂ ∧ Ê + c ⊗ ŷ ∧ Ê + d ⊗ x̂ ∧ D̂ + e ⊗ ŷ ∧ D̂ + f ⊗ Ê ∧ D̂.

Adding to ω an element of δ 1 (T ⊗ Ê), we can assume that f ∈ SrT ; adding an element of
δ 1 (S1T ⊗x̂⊕S1T ⊗ŷ), we can suppose that a = 0; �nally, adding an element of δ 1 ((SrT ⊕DT )⊗D̂)

we can suppose that d ∈ yr+1T ⊕ yDT . In this situation, there are an integer l ≥ 0, α0, . . . , αl ,
β0, . . . , βl ∈ S1, λ0, . . . , λl , µ0, . . . , µl ∈ k, ϕ0, . . . , ϕl ∈ Sr+1, ψ0, . . . , ψl ∈ S1 and ξ0, . . . , ξl ∈ Sr
such that

b =
l∑

i=0
αiE

i , c =
l∑
i=0

βiE
i , d =

l∑
i=0

(λiy
r+1 + µiyD)E

i , e =
l∑
i=0

(ϕi +ψiD)E
i ,

and

f =
l∑

i=0
ξiE

i .

As

δ 1 (−y ⊗ x̂ + F̄E ⊗ D̂) = yr+1 ⊗ x̂ ∧ D̂ + Sr+1 ⊗ ŷ ∧ D̂,

we can assume that λ0 = 0.
�e coe�cient of x̂ ∧ ŷ ∧ Ê in δ 2 (ω) is ∑l

i=0 (−αiy + βix )τ1 (E
i ) = 0, and this implies that

there are scalars ρ1, . . . , ρl ∈ k such that αi = ρix and βi = ρiy for each i ∈ {1, . . . , l }. �e
coe�cient of x̂ ∧ D̂ ∧ Ê in δ 2 (ω) is

l∑
i=0

(
−FαiyE

i − αiDτr (E
i ) + ξixτ1 (E

i )
)
= 0. (3.8)

It follows that ∑l
i=0 αiDτr (E

i ) = 0, so that α1 = · · · = αl = 0; as a consequence of this, we
have that ρ1 = · · · = ρl = 0 and β1 = · · · = βl = 0. �e equality (3.8) also tells us that
−Fα0y +

∑l
i=0 ξixτ1 (E

i ) = 0, and from this we see that ξ2 = · · · = ξl = 0 and −Fα0y − ξ1x = 0,
so that α0y = 0 and ξ1 = 0, since x does not divide F . In particular, there is a ρ0 ∈ k such that
α0 = ρ0x .
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�e coe�cient of ŷ ∧ D̂ ∧ Ê in δ 2 (ω) is

l∑
i=0

(
∇αiE

i

x (F ) + ∇
βiEi
y (F ) − FβiyE

i − βiDτr (E
i ) + ξiyτ1 (E

i )
)

= ρ0xFx + β0Fy − β0yF

=
(
ρ0 − (r + 1)−1β0y

)
xFx +

(
β0xx + (1 − (1 + r )−1)β0yy)Fy = 0,

and our Lemma 3.7 implies then that β0 = 0 and ρ0 = 0. Finally, we consider the coe�cient of
x̂ ∧ ŷ ∧ D̂:

l∑
i=0

(
−λiy

r+2τ1 (E
i ) + µiyF (E + 1)i − µiy2Dτ1 (E

i ) + ϕixτ1 (E
i ) +ψixDτ1 (E

i )
)
= 0.

Looking at the terms involving D in this equation, we see that

l∑
i=0

(−µiy
2 +ψix )Dτ1 (E

i ) = 0,

so µ1 = · · · = µl = 0 andψ1 = · · · = ψl = 0. �e terms not involving D add up to

µ0yF +
l∑

i=0
(−λiy

r+2 + ϕix )τ1 (E
i ) = 0,

so that λ2 = · · · = λl = 0, ϕ2 = · · · = ϕl = 0 and µ0yF + λ1y
r+1 − ϕ1x = 0, which implies that

λ1 = −µ0 and ϕ1 = µ0yF̄ .
A�er all this, we see that every 2-cocycle in our complex is cohomologous to one of the form

(µ0yD − µ0y
r+1E)x̂ ∧ D̂ + (ϕ0 +ψ0D + µ0yF̄E)ŷ ∧ D̂ + ξ0D̂ ∧ Ê (3.9)

with µ0 ∈ k, ϕ0 ∈ Sr+1, ψ0 ∈ S1 and ξ0 ∈ Sr . �anks to a direct computation we �nd that all
elements of this form are 2-cocycles.

Let us now suppose that the cocycle (3.9), which we call again ω, is a coboundary, so that
there exist k ≥ 0, α0, . . . , αk , β0, . . . , βk ∈ S1, σ1, . . . , σk ∈ Sr , ζ0, . . . , ζk ∈ k and u ∈ T such that if

η =
k∑
i=0

αiE
i x̂ +

k∑
i=0

βiE
iŷ +

k∑
i=0

(σi + ζiD)E
i D̂ + uÊ,

we have δ 1 (η) = ω. �e coe�cient of D̂ ∧ Ê in δ 1 (η) is Dτr (u) so, comparing with (3.9), we see
that we must have ξ0 = 0 andu ∈ k; it follows from this that the coe�cients of Ê∧ Ê and of ŷ∧ Ê
in δ 1 (η) vanish. On the other hand, the coe�cient of x̂ ∧ ŷ in δ 1 (η) is ∑k

i=0 (−αiy + βix )τ1 (E
i ):

as this has to be zero, we see that there exist ρ1, . . . , ρk ∈ k such that αi = ρix and βi = ρiy for
each i ∈ {1, . . . ,k }.
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Next, the coe�cient of x̂ ∧ D̂ in δ 1 (η) is
k∑
i=0

(
−FαiyE

i − αiDτr (E
i ) + σixτ1 (E

i ) + ζixDτ1 (E
i )
)
= µ0yD − µ0y

r+1E. (3.10)

�is means, �rst, that ∑k
i=1

(
−ρixDτr (E

i ) + ζixDτ1 (E
i )
)
= µ0yD, and this is only possible if

µ0 = 0 and
k∑
i=1

(
−ρiτr (E

i ) + ζiτ1 (E
i )
)
= 0. (3.11)

Second, the equality (3.10) implies that
k∑
i=0

(
−FαiyE

i + σixτ1 (E
i )
)
= −Fα0y +

k∑
i=1

σixτ1 (E
i ) = 0,

so that σ2 = · · · = σk = 0 and Fα0y + σ1x = 0, which tells us that σ1 = 0 and α0y = 0: there is
then a ρ0 ∈ k such that α0 = ρ0x .

Finally, the coe�cient of ŷ ∧ D̂ in δ 1 (η) is

k∑
i=0

(
∇αiE

i

x (F ) + ∇
βiEi
y (F ) − FβiyE

i − βiDτr (E
i ) + σiyτ1 (E

i ) − ζiF (E + 1)i + ζiyDτ1 (E
i )
)

= ϕ0 + ψ0D.

Looking only at the terms which are in S1DT , we see that

yD
k∑
i=1

(−ρiτr (E
i ) + ζiτ (E

i )) = ψ0D

and, in view of (3.11), it follows from this thatψ0 = 0. �e terms in Sr+1T , on the other hand,
are

ρ0xFx + β0Fy + F
*.
,
−β0y − ζ0 +

k∑
i=0

(
ρi

r∑
t=1

(E + t )i − ζi (E + 1)i
)+/

-
= ϕ0,

and proceeding as before we see that ϕ0 is in the linear span of xFx , xFy and yFy . Computing,
we �nd that

δ 1 (x ⊗ x̂ ) = xFx ⊗ ŷ ∧ D̂,

δ 1 (x ⊗ ŷ) = xFy ⊗ ŷ ∧ D̂,

δ 1 (y ⊗ ŷ − DD̂) = yFy ⊗ ŷ ∧ D̂.

We thus conclude that there is an isomorphism

H 2 (X) � kω2 ⊕
Sr+1

〈xFx ,xFy ,yFy〉
⊗ ŷ ∧ D̂ ⊕ S1D ⊗ ŷ ∧ D̂ ⊕ Sr ⊗ D̂ ∧ Ê,

with ω2 = (yD −yr+1E) ⊗ x̂ ∧ D̂ +yF̄E ⊗ ŷ ∧ D̂, and that, in particular, the dimension of H 2 (X)

is 2r + 3.
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3.15. We can summarize our �ndings as follows:

Proposition. Suppose that r ≥ 3. For all p ≥ 4 we have HHp (A) = 0. �ere are isomorphisms

HH 0 (A) � k,

HH 1 (A) � Sr ⊗ D̂ ⊕ k ⊗ Ê,

HH 2 (A) � kω2 ⊕
Sr+1

〈xFx ,xFy ,yFy〉
⊗ ŷ ∧ D̂ ⊕ S1D ⊗ ŷ ∧ D̂ ⊕ Sr ⊗ D̂ ∧ Ê,

HH 3 (A) � kω3 ⊕
Sr+1

〈xFx ,xFy ,yFy〉
⊗ ŷ ∧ D̂ ∧ Ê ⊕ S1D ⊗ ŷ ∧ D̂ ∧ Ê,

with

ω2 = (yD − yr+1E) ⊗ x̂ ∧ D̂ + yF̄E ⊗ ŷ ∧ D̂,

ω3 = (yD − yr+1E) ⊗ x̂ ∧ D̂ ∧ Ê + yF̄E ⊗ ŷ ∧ D̂ ∧ Ê.

�e Hilbert series of the Hochschild cohomology of A is

hHH • (A) (t ) = 1 + (r + 2)t + (2r + 3)t2 + (r + 2)t3

= (1 + t ) (1 + (r + 1)t + (r + 2)t2).

In fact, in each of the isomorphisms appearing in the statement of the proposition we have
given a set of representing cocycles. �is will be important in what follows, when we compute
the Gerstenhaber algebra structure on the cohomology of A.

We have chosen a system of coordinates in the vector space containing the arrangementA
in such a way that one of the lines is given by the equation x = 0. �is was useful in picking a
basis for the S-module of derivations Der(A) and, as a consequence, obtaining a presentation
of the algebra A amenable to the computations we wanted to carry out, but the unnaturality
of our choice is re�ected in the rather unpleasant form of the representatives that we have
found for cohomology classes. In the next section we will be able to obtain a more natural
description.
3.16. In Proposition 3.15 we considered only line arrangements with r ≥ 3, that is, with at
least 5 lines. As we explained in 3.10, without this restriction the method of calculation that
we followed has to be modi�ed, and it turns out that this is not only a technical di�erence: the
actual results are di�erent. Let us describe what happens, starting with the factorizable cases:

• If there are no lines, so that r = −2, the arrangement is empty and Diff (A) is the second
Weyl algebra A2 = k〈x ,y, ∂x , ∂y〉.

• If there is one line, then Diff (A) is k〈x ,y,x∂x , ∂y〉 and this is isomorphic to U (s) ⊗ A1,
with U (s) the enveloping algebra of the non-abelian 2-dimensional Lie algebra s and
A1 = k〈y, ∂y〉, the �rst Weyl algebra.

• If there are two lines, so that r = 0, then Diff (A) is k〈x ,y,x∂x ,y∂y〉, which is isomorphic
to U (s) ⊗ U (s).
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�e Hochschild cohomology of the Weyl algebras is well-known as is that of U (s ) —see, for
example [Sri61]. Using this and Künneth’s formula we �nd that when −2 ≤ r ≤ 0 we have for
all i ≥ 0 that

dimHH i (Diff (A)) =

(
r + 2
i

)
.

Finally, we have the cases of three and four lines. Up to isomorphism of arrangements, we can
assume that the de�ning polynomials are, respectively,Q = xy (x−y) andQ = xy (x−y) (x−λy)

for some λ ∈ k \ {0, 1}. One can compute the cohomology of Diff (A) in these cases along the
lines of what we did above, but the computation is surprisingly much more involved. We have
done the computation using an alternative, much more e�cient approach —using a spectral
sequence that computes in general the Hochschild cohomology of the enveloping algebra of a
Lie–Rinehart pair— with which we deal in Chapter 6. Let us for now simply summarize the
result: when r is 2 or 3, the Hilbert series of HH • (A) is

hHH • (A) (t ) = 1 + (r + 2)t + (2r + 4)t2 + (r + 3)t3.

�is di�ers from the general case of Proposition 3.15 in the coe�cients of t2 and t3.

3.3 The Gerstenhaber algebra structure on HH •(Diff (A))

3.17. Let BA be the usual bar resolution for A as an A-bimodule. �ere is a morphism of
complexesϕ : P→ BA over the identity map ofA such thatϕ = ϕK+ϕN withϕK ,ϕN : P→ BA
maps of A-bimodules such that

ϕK (1|v1 ∧ · · · ∧vp |1) =
∑
π ∈Sp

(−1)ε (π )1|vπ (1) | · · · |vπ (p ) |1,

whenever p ≥ 0 and v1, . . . , vp ∈ V , with the sum running over all permutations of degree p,
and

ϕN (1|1) = 0;
ϕN (1|v |1) = 0, ∀v ∈ V ;

ϕN (1|x ∧ y |1) = ϕN (1|x ∧ E |1) = ϕN (1|y ∧ E |1) = ϕN (1|x ∧ D |1)
= ϕN (1|D ∧ E |1) = 0;

ϕN (1|y ∧ D |1) = q (1) |q̄ (2) |q (3) |1 − F |1|1|1;
ϕN (1|x ∧ y ∧ E |1) = ϕN (1|x ∧ D ∧ E |1) = 0;

ϕN (1|x ∧ y ∧ D |1) = q (1) |q̄ (2) |q (3) |x |1 − q (1) |q̄ (2) |x |q (3) |1 + q (1) |x |q̄ (2) |q (3) |1
− F |x |1|1|1 − F |1|1|x |1;

ϕN (1|y ∧ D ∧ E |1) = q (1) |q̄ (2) |q (3) |E |1 − q (1) |q̄ (2) |E |q (3) |1 + q (1) |E |q̄ (2) |q (3) |1
− F |E |1|1|1 − F |1|1|E |1.
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Here q (1) |q̄ (2) |q (3) denotes the element ∇(F ) ∈ S ⊗ S1 ⊗ S , with an omi�ed sum.
On the other hand, there is a morphism of complexes of A-bimodulesψ : BA→ P over the

identity map of A such that

ψ0 (1|1) = 1|1,
ψ1 (1|w |1) = w (1) |w (2) |w (3), for all standard monomials w ;
ψ2 (1|yD |y |1) = −y |y ∧ D |1 − q (1) |q (2) ∧ y |q (3) ;
ψ2 (1|yr+1E |y |1) = −yr+1 |y ∧ E |1;
ψ2 (1|E |w |1) = −w (1) |w (2) ∧ E |w (3) for all standard monomials w ;
ψ2 (1|v |w |1) = −1|w ∧v |1, if v,w ∈ {x ,y,D,E} and vw is not standard;
ψ2 (1|w |x |1) = −w (1) |x ∧w (2) |w (3) for all standard monomials w ;

and

ψ2 (1|u |v |1) = 0

wheneveru andv are standard monomials ofA such that the concatenationuv is also a standard
monomial. We omit the description ofψ3 andψ4 because we do not need them. �is morphismψ

can and will be taken normalized, so that it vanishes on elementary tensors of BA with a scalar
factor.

3.18. We need the comparison morphisms that we have just described in order to compute the
Gerstenhaber bracket on HH • (A), but we start with a more immediate application: obtaining a
natural basis of the �rst cohomology space HH 1 (A).

Proposition. (i) If α is a non-zero element of S1 that divides Q , so that kerα is one of the lines
in A, then there exists a unique derivation ∂α : A→ A such that ∂α ( f ) = 0 for all f ∈ S
and

∂α (δ ) =
δ (α )

α

for all δ ∈ Der(A).
(ii) IfQ = α0 . . . αr+1 is a factorization ofQ as a product of elements of S1, then the cohomology

classes of the r + 2 derivations ∂α0 , . . . , ∂αr+1 of A freely span the vector space HH 1 (A).

Here we are viewing HH 1 (A) as the vector space of outer derivations of A, as usual. It
should be noticed that the derivation ∂α associated to a linear factor of Q does not change if
we replace α by one of its non-zero scalar multiples: this means that the basis of HH 1 (A) is
really indexed by the lines of the arrangement A.

Proof. (i) Let us �x a non-zero element α in S1 dividing Q . �ere is at most one deriva-
tion ∂α : A → A as in the statement of the proposition simply because the algebra A is
generated by the set S ∪Der(A). In order to prove that there is such a derivation, we need only
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recall from 1.21 that δ (α ) ∈ αS for all δ ∈ Der(A) and check that the candidate derivation
respects the relations (2.1) of 3.1 that present the algebra A.

(ii) We need to pass from the description of HH 1 (A) as the space of outer derivations to
its description in terms of the complex X that was used to compute it: we do this with the
comparison morphismϕ : P→ BA over the identity map that we described in 3.17. If δ : A→ A

is a derivation of A and δ̃ : A ⊗ A ⊗ A → A is the map such that δ̃ (a ⊗ b ⊗ c ) = aδ (b)c for
all a, b, c ∈ A, which is a 1-cocycle on BA then the composition δ̄ ◦ ϕ1 : A ⊗ V ⊗ A→ A is a
1-cocycle in the complex homAe (P,A) whose cohomology class corresponds to δ in the usual
description of HH 1 (A) as the space of outer derivations ofA. In the notation that we used in 3.9,
this cohomology class is that of

δ (x ) ⊗ x̂ + δ (y) ⊗ ŷ + δ (D) ⊗ D̂ + δ (E) ⊗ Ê ∈ A ⊗ V̂ .

Using this, we can now prove the second part of the proposition. We can suppose without loss
of generality that α0 = x , and then the class of δα0 in HH 1 (A) is that of 1 ⊗ Ê. On the other
hand, for each i ∈ {1, . . . , r + 1}, a direct computation shows that the class of ∂αi is

αiy
F

αi
⊗ D̂ + 1 ⊗ Ê.

It follows easily from the second part of Lemma 3.7 that these r + 2 classes span HH 1 (A) and,
since the dimension of this space is exactly r + 2, do so freely.

The cup product

3.19. We describe the associative algebra structure on HH • (A) given by the cup product.

Proposition. �e cup product on HH • (A) is such that

Sr ⊗ D̂ ^ Sr ⊗ D̂ = 0;
ϕD̂ ^ Ê = ϕD̂ ∧ Ê, ∀ϕ ∈ Sr ;
Sr ⊗ D̂ ^ HH 2 (A) = 0;
1 ⊗ Ê ^ ω2 = ω3;
1 ⊗ Ê ^ κ ⊗ ŷ ∧ D̂ = κ ⊗ ŷ ∧ Ê ∧ D̂, ∀κ ∈ Sr+1/〈xFx ,xFy ,yFy〉;
1 ⊗ Ê ^ ψD ⊗ ŷ ∧ D̂ = ψD ⊗ ŷ ∧ D̂ ∧ Ê, ∀ψ ∈ S1;
1 ⊗ Ê ^ Sr ⊗ D̂ ∧ Ê = 0.

�ese equalities completely describe the multiplicative structure on HH • (A).

Proof. �ere is a morphism of complexes ofA-bimodules ∆ : P→ P⊗A P that li�s the canonical
isomorphism A→ A ⊗A A such that ∆ = ∆K + ∆N , with
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• ∆K : P→ P⊗AP the map ofA-bimodules such that for wheneverp ≥ 0 andv1, . . . ,vp ∈ V
we have

∆K (1|v1 ∧ · · · ∧vp |1) =
∑

(−1)ε1|vi1 ∧ · · · ∧vir |1 ⊗ 1|vj1 ∧ · · · ∧vjs |1,

with the sum taken over all decompositions r + s = p with r , s ≥ 0, and all permutations
(i1, . . . , ir , j1, . . . , js ) of (1, . . . ,p) such that i1 < · · · < ir and j1 < · · · < js , and where ε
is the signature of the permutations,

• and ∆N : P→ P ⊗A P the map of A-bimodules such that

∆N (1|1) = 0;
∆N (1|v |1) = 0, ∀v ∈ V ;
∆N (1|v ∧w |1) = 0, if v , w ∈ {x ,y,D,E}, v , w and {v,w } , {y,D};
∆N (1|y ∧ D |1) = f (1) | f (2) | f (3) ⊗ 1| f (4) | f (5) ;
∆N (1|x ∧ y ∧ D |1) = ∆N (1|x ∧ y ∧ E |1) = ∆N (1|x ∧ D ∧ E |1) = 0;

∆N (1|y ∧ D ∧ E |1) = −f (1) | f (2) ∧ E | f (3) ⊗ 1| f (4) | f (5)
+ f (1) | f (2) | f (3) ⊗ 1| f (4) ∧ E | f (5) .

Here we have wri�en f (1) | f (2) | f (3) | f (4) | f (5) for the image of F under the composition

S S ⊗ S1 ⊗ S S ⊗ S1 ⊗ S ⊗ S1 ⊗ S,
∇ idS ⊗idS1 ⊗∇

with an omi�ed sum, à la Sweedler.
We leave the veri�cation that this does de�ne a morphism of complexes to the reader.

One can compute the cup product on HH • (A) using this diagonal morphism ∆. Indeed, we
view HH • (A) as the cohomology of the complex homAe (P,A), and if ϕ and ψ are a p- and a
q-cocycle in that complex, the cup product of their cohomology classes is represented by the
composition

Pp+q Pp ⊗A Pq A ⊗A A � A,
∆p,q ϕ⊗ψ

with ∆p,q the component Pp+q → Pp ⊗ Pq of the morphism ∆. �e multiplication table given
in the statement of the composition can be computed in this way, item by item.

3.20. Using our description of the cup product we may understand a part of the cohomology
in geometrical terms.

Proposition. (i) For all i , j, k ∈ {0, . . . , r + 1} we have

∂αi ^ ∂α j + ∂α j ^ ∂αk + ∂αk ^ ∂αi = 0 (3.12)

and HH 1 (A) ^ HH 1 (A) = Sr ⊗ D̂ ∧ Ê.



3.3. The Gerstenhaber algebra structure on HH • (Diff (A)) 69

(ii) �e subalgebra H of HH • (A) generated by HH 1 (A) is the graded-commutative algebra
freely generated by its elements ∂α0 , . . . , ∂αr+1 of degree 1 subject to the

(
r+2

3

)
relations (3.12).

�is subalgebra H is isomorphic to the algebra R• (A) of Example 1.38 and, as in �eo-
rem 1.54, to the Orlik–Solomon algebra of the arrangement. Of course, when the base �eld
is C, there is therefore an isomorphism of algebras between H and the cohomology of the
complement of the arrangement, as we saw in �eorem 1.52.

Proof. Using Proposition 3.19 and the description given in the proof of Proposition 3.18 for
the derivations ∂αi we compute immediately that

∂αi ^ ∂α j = −

������

αix α jx
αiy α jy

������

Q

αiα j

for all i , j ∈ {0, . . . , r + 1}. Using this, we see that for all i , j, k ∈ {0, . . . , r + 1} we have

∂αi ^ ∂α j + ∂α j ^ ∂αk + ∂αk ^ ∂αi = −

��������

αi α j αk
αix α jx αkx
αiy α jy αky

��������

Q

αiα jαk
= 0,

as the determinant vanishes. �is proves the �rst claim of (i). �e second one follows immedi-
ately from the description of the cup product of Proposition 3.19.

(ii) Let, as in Example 1.38, F =
⊕

n≥0 Fn be the free graded-commutative algebra genera-
ted by r +2 generatorsw0, . . . ,wr+1 of degree 1 subject to the relationswiw j +w jwk +wkwi = 0,
one for each choice of i , j, k ∈ {0, . . . , r + 1}. Recall that we have Fn = 0 and dimF2 = r + 1.
�e �rst part of the proposition implies that there is a surjective morphism of graded algebras
f : F → H such that f (wi ) = ∂αi for all i ∈ {0, . . . , r + 1}, and this map is also injective
because the dimension of the component of degree 2 ofH , which is Sr ⊗ D̂ ∧ Ê, is r + 1.

3.21. Proposition 3.20 describes meaningfully a part of the associative algebra HH • (A), the
subalgebraH generated by HH 1 (A), in terms of the geometry of the arrangement A. It is not
clear how to make sense of the complete algebra. We can make the following observation,
though. Let us write

HH 2 (A)′ = kω2 ⊕ (Sr+1/〈xFx ,xFy ,yFy〉 ⊕ S1D) ⊗ ŷ ∧ D̂,

which is a complement ofH 2 in HH 2 (A), and let Q = α0 . . . αr+1 be a factorization of Q as a
product of linear factors. If δ : A→ A is derivation ofA, then our description of HH 1 (A) implies
that there exist scalars δ0, . . . , δr+1 ∈ k and an element u ∈ A such that δ = ∑r+1

i=0 δi∂αu + ad(u),
and it follows easily from Proposition 3.19 that the map

ζ ∈ HH 2 (A)′ 7→ δ ^ ζ ∈ HH 3 (A)

is either zero or an isomorphism, provided ∑r+1
i=0 δi is zero or not.
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The Gerstenhaber bracket

3.22. Using the comparison morphisms of 3.17, we can now compute the Gerstenhaber bracket.
As usual, this is very laborious.

Proposition. In HH • (A) we have

[0, •]
{

[HH 0 (A),HH • (A)] = 0,

[1, 1]
{

[HH 1 (A),HH 1 (A)] = 0,

[1, 2]



[HH 1 (A), Sr ⊗ D̂ ∧ Ê] = 0,
[u ⊗ D̂ + λ ⊗ Ê, (v +wD) ⊗ ŷ ∧ D̂] = uw ⊗ ŷ ∧ D̂,

[u ⊗ D̂ + λ ⊗ Ê,ω2] = ((µ − λ)yFx + µyF̄ − y
2ū) ⊗ ŷ ∧ D̂,

[1, 3]



[u ⊗ D̂ + λ ⊗ Ê, (v +wD) ⊗ ŷ ∧ D̂ ∧ Ê] = uw ⊗ ŷ ∧ D̂ ∧ Ê,

[u ⊗ D̂ + λ ⊗ Ê,ω3] = ((µ − λ)yFx + µyF̄ − y
2ū) ⊗ ŷ ∧ D̂ ∧ Ê,

[2, 2]




[Sr ⊗ D̂ ∧ Ê, Sr ⊗ D̂ ∧ Ê] = 0,
[u ⊗ D̂ ∧ Ê, (v +wD) ⊗ ŷ ∧ D̂] = uw ⊗ ŷ ∧ D̂ ∧ Ê,

[u ⊗ D̂ ∧ Ê,ω2] = (µyFx + µyF̄ − y2ū) ⊗ ŷ ∧ D̂ ∧ Ê,

[(Sr+1 + S1D) ⊗ ŷ ∧ D̂, (Sr+1 + S1D) ⊗ ŷ ∧ D̂] = 0,
[(Sr+1 + S1D) ⊗ ŷ ∧ D̂,ω2] = 0,
[ω2,ω2] = 0.

Here u ∈ Sr , λ ∈ k, v ∈ Sr+1, w ∈ S1 and µ ∈ k and ū ∈ Sr−1 are such that u = λyr + xū.

Proof. Let us �rst recall from [Ger64] how one can compute the Gerstenhaber bracket in
the standard complex homAe (BA,A). If f : A⊗q → A is a q-cochain in the standard com-
plex homAe (BA,A), which we identify as usual with hom(A⊗•,A), and p ≥ q, we denote
wp ( f ) : A⊗p → Ap−q+1 the p-cochain in the same complex such that

wp ( f ) (a1 ⊗ · · · ⊗ ap )

=

p−q+1∑
i=1

(−1) (q−1) (i−1)a1 ⊗ · · · ⊗ ai−1 ⊗ f (ai ⊗ · · · ⊗ ai+q−1) ⊗ ai+q ⊗ · · · ⊗ ap .

If now α and β are ap- and a q-cocycle in the standard complex, the Gerstenhaber composition �
(which is usually wri�en simply ◦) of α and β is the (p + q − 1)-cochain

α � β = α ◦ wp+q−1 (β )

and the Gerstenhaber bracket is the graded commutator for this composition, so that

[α , β] = α � β − (−1) (p−1) (q−1)β � α .
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Next, if α and β are now a p- and a q-cochain in the complex homAe (P,A), we can li� them to
a p-cochain α̃ = α ◦ψp and a q-cochain β̃ = β ◦ψq in the standard complex homAe (BA,A), and
the Gerstenhaber bracket of the classes of α and β is then represented by the (p+q−1)-cochain
[α̃ , β̃] ◦ ϕp+q−1. �is is the computation we have to do in order to compute brackets in HH • (A),
except that in some favorable circumstances we can take advantage of the compatibility of the
bracket with the product to cut down the work. We do this in several steps.

• Since the morphismψ is normalized and HH 0 (A) is spanned by 1 ∈ k, it follows immedi-
ately that

[HH 0 (A),HH • (A)] = 0.

• �e Gerstenhaber bracket on HH 1 (A) is induced by the commutator of derivations.
From Proposition 3.18 we have a basis of HH 1 (A) whose elements are classes of certain
derivations, and it is immediate to check that those derivations commute, so that

[HH 1 (A),HH 1 (A)] = 0. (3.13)

• We know that the subspace Sr ⊗ D̂ ∧ Ê of HH 2 (A) is HH 1 (A) ^ HH 1 (A). Since HH • (A)
is a Gerstenhaber algebra and we now that (3.13) holds, it follows that

[HH 1 (A), Sr ⊗ D̂ ∧ Ê] = 0.

For exactly the same reasons we also have that

[Sr ⊗ D̂ ∧ Ê, Sr ⊗ D̂ ∧ Ê] = 0.

• Let α = u ⊗ D̂ + λ ⊗ Ê, with u ∈ Sr and λ ∈ k. If β = (v +wD) ⊗ ŷ ∧ D̂, with v ∈ Sr+1
and w ∈ S1, one can compute that (α̃ � β̃ ) ◦ ϕ = uw ⊗ ŷ ∧ D̂ and that (β̃ � α̃ ) ◦ ϕ = 0: it
follows from this that

[α , (v +wD) ⊗ ŷ ∧ D̂] = uw ⊗ ŷ ∧ D̂.

On the other hand, we have (ω̃2 � α̃ ) ◦ ϕ = 0 and

[α̃ , ω̃2] ◦ ϕ = (α̃ � ω̃2) ◦ ϕ = (yu − λyr+1) ⊗ x̂ ∧ D̂ + λyF̄ ⊗ ŷ ∧ D̂

=
(
(µ − λ)yFx + µyF̄ − y

2ū
)
⊗ ŷ ∧ D̂

− δ 1
(
((µ − λ)F̄ − yū)E ⊗ D̂ + (λ − µ )y ⊗ x̂

)
with ū ∈ Sr−1 and µ ∈ k chosen so that u = µyr + xū.

Finally, if v ∈ Sr+1 andw ∈ S1, using the compatibility of the bracket and the product
and what we know so far we see that

[α , (v +wD) ⊗ ŷ ∧ D̂ ∧ Ê] = [α , 1 ⊗ E ^ (v +wD) ⊗ ŷ ∧ D̂]
= 1 ⊗ E ^ [α , (v +wD) ⊗ ŷ ∧ D̂]
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= 1 ⊗ E ^ uw ⊗ ŷ ∧ D̂

= uw ⊗ ŷ ∧ D̂ ∧ Ê

and, similarly, that

[α ,ω3] = [α ,ω2 ^ 1 ⊗ Ê] = [α ,ω2]^ 1 ⊗ Ê + ω2 ^ [α , 1 ⊗ Ê]

=
(
(µ − λ)yFx + µyF̄ − y

2ū
)
⊗ ŷ ∧ D̂ ∧ Ê.

• Let u ∈ Sr . If v ∈ Sr+1 and w ∈ S1, we have

[u ⊗ D̂ ∧ Ê, (v +wD) ⊗ ŷ ∧ D̂] = [u ⊗ D̂ ^ 1 ⊗ Ê, (v +wD) ⊗ ŷ ∧ D̂]
= [u ⊗ D̂, (v +wD) ⊗ ŷ ∧ D̂]^ 1 ⊗ Ê

+ u ⊗ D̂ ^ [1 ⊗ Ê, (v +wD) ⊗ ŷ ∧ D̂]

= uw ⊗ ŷ ∧ D̂ ^ 1 ⊗ Ê = uw ⊗ ŷ ∧ D̂ ∧ Ê.

Similarly,

[u ⊗ D̂ ∧ Ê,ω2] = [u ⊗ D̂ ^ 1 ⊗ Ê,ω2]
= [u ⊗ D̂,ω2]^ 1 ⊗ Ê + u ⊗ D̂ ^ [1 ⊗ Ê,ω2]

=
(
µyFx + µyF̄ − y

2ū
)
⊗ ŷ ∧ D̂ ∧ Ê.

if u = µyr + xū with µ ∈ k and ū ∈ Sr−1.
• Let now α = (v +wD) ⊗ ŷ ∧ D̂ and β = (s + tD) ⊗ ŷ ∧ D̂, with v , s ∈ Sr+1 and w , t ∈ S1.

We claim that (α̃ � β̃ ) ◦ϕ = 0, so that, by symmetry, we have [α̃ , β̃] ◦ϕ = 0. To verify our
claim, we compute:

1|x ∧ y ∧ E |1
ϕ
7−→ k[x ,y,E]⊗5 w3 (β̃ )

7−−−−→ 0;

1|x ∧ D ∧ E |1
ϕ
7−→ k[x ,D,E]⊗5 w3 (β̃ )

7−−−−→ 0;

1|x ∧ y ∧ D |1
ϕ
7−→ 1|x |y |D |1 − 1|x |D |y |1 + 1|D |x |y |1

− 1|D |y |x |1 + 1|y |D |x |1 − 1|y |x |D |1 + S ⊗5

w3 (β̃ )
7−−−−→ 1|(s + tD) |x |1 − 1|x |(s + tD) |1
ψ
7−→ −s (1) |x ∧ s (2) |s (3) − t (1) |x ∧ t (2) |t (3)D − t |x ∧ D |1
α
7−→ 0;

1|y ∧ D ∧ E |1
ϕ
7−→ 1|y |D |E |1 − 1|y |E |D |1 + 1|E |y |D |1

− 1|E |D |y |1 + 1|D |E |y |1 − 1|D |y |E |1 + k[x ,y,E]⊗5

w3 (β̃ )
7−−−−→ 1|(s + tD) |E |1 − 1|E |(s + tD) |1
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ψ
7−→ s (1) |s (2) ∧ E |s (3) + t (1) |t (2) ∧ E |t (3)D + t |D ∧ E |1
α
7−→ 0.

• Let again α = (v + wD) ⊗ ŷ ∧ D̂, with v ∈ Sr+1 and w ∈ S1, and let us compute that
(ω̃2 � α̃ ) ◦ ϕ3 = −w (yD − yr+1E) ⊗ x̂ ∧ ŷ ∧ D̂.

1|x ∧ y ∧ z |1
ϕ3
7−−→ k[x ,y,E]⊗5 w2 (α̃ )

7−−−−→ 0

1|x ∧ D ∧ E |1
ϕ3
7−−→ k[x ,D,E]⊗5 w3 (α̃ )

7−−−−→ 0

1|x ∧ y ∧ D |1
ϕ3
7−−→ 1|x |y |D |1 − 1|x |D |y |1 + 1|D |x |y |1

− 1|D |y |x |1 + 1|y |D |x |1 − 1|y |x |D |1 + S ⊗5

w3 (α̃ )
7−−−−→ 1|(v +wD) |x |1 + 1|x |(v +wD) |1
ψ2
7−−→ −v (1) |x ∧v (2) |v (3) −w (1) |x ∧w (2) |w (3)D −w |x ∧ D |1
ω2
7−−→ −w (yD − yr+1E)

1|y ∧ D ∧ E |1
ϕ3
7−−→ 1|y |D |E |1 − 1|y |E |D |1 + 1|E |y |D |1

− 1|E |D |y |1 + 1|D |E |y |1 − 1|D |y |E |1 + k[x ,y,E]⊗5

w3 (α̃ )
7−−−−→ 1|(v +wD) |E |1 − 1|E |(v +wD) |1
ψ2
7−−→ v (1) |v (2) ∧ E |v (3) +w (1) |w (2) ∧ E |w (3)D +w |D ∧ E |1
ω2
7−−→ 0.

Similarly, we have that (α̃ � ω̃2) ◦ ϕ3 = y (v +wD) ⊗ x̂ ∧ ŷ ∧ D̂:

1|x ∧ y ∧ z |1
ϕ3
7−−→ k[x ,y,E]⊗5

w2 (ω̃2)
7−−−−−→ 0

1|x ∧ D ∧ E |1
ϕ3
7−−→ 1|x |D |E |1 − 1|x |E |D |1 + 1|E |x |D |1

− 1|E |D |x |1 + 1|D |E |x |1 − 1|D |x |E |1
w3 (ω̃2)
7−−−−−→ −1|E |(yD − yr+1E) |1 + 1|(yD − yr+1) |E |1
ψ2
7−−→ −1|y ∧ E |D − y |D ∧ E |1 +

r∑
i=0

yi |y ∧ E |yr−i

α
7−→ 0

1|x ∧ y ∧ D |1
ϕ3
7−−→ 1|x |y |D |1 − 1|x |D |y |1 + 1|D |x |y |1

− 1|D |y |x |1 + 1|y |D |x |1 − 1|y |x |D |1 + S ⊗5



74 Chapter 3. The Hochschild cohomology of DiffA

w3 (ω̃2)
7−−−−−→ −1|x |yF̄E |x |1 − 1|(yD − yr+1E) |y |1

+ 1|yF̄E |x |1 + 1|y |(yD − yr+1E) |1
ψ2
7−−→ y |y ∧ D |1 − yr+1 |y ∧ E |1

− (yF̄E)(1) |x ∧ (yF̄E)(2) |(yF̄E)(3)
α
7−→ −y (v +wD)

1|y ∧ D ∧ E |1
ϕ3
7−−→ 1|y |D |E |1 − 1|y |E |D |1 + 1|E |y |D |1

− 1|E |D |y |1 + 1|D |E |y |1 − 1|D |y |E |1 + k[x ,y,E]⊗5

w3 (ω̃2)
7−−−−−→ −1|E |yF̄E |1 + 1|yF̄E |E |1
ψ2
7−−→ (yF̄E)(1) |(yF̄E)(2) ∧ E |(yF̄E)(3)
α
7−→ 0.

It follows from this that

[ω̃2, α̃] ◦ ϕ3 = −w (yD − yr+1E) ⊗ x̂ ∧ ŷ ∧ D̂ + y (v +wD) ⊗ x̂ ∧ ŷ ∧ D̂

= (yv + yr+1E) ⊗ x̂ ∧ ŷ ∧ D̂

and, as we say in 3.13, this is a coboundary.
• �e one computation that remains is that of the bracket of ω2 with itself, which is

represented by the 3-cocycle

[ω̃2, ω̃2] ◦ ϕ3 = 2(ω̃2 � ω̃2) ◦ ϕ3 = 2y2F̄E ⊗ x̂ ∧ ŷ ∧ D̂, (3.14)

as can be seen from the following calculation:

1|x ∧ y ∧ z |1
ϕ3
7−−→ k[x ,y,E]⊗5

w2 (ω̃2)
7−−−−−→ 0

1|x ∧ D ∧ E |1
ϕ3
7−−→ 1|x |D |E |1 − 1|x |E |D |1 + 1|E |x |D |1

− 1|E |D |x |1 + 1|D |E |x |1 − 1|D |x |E |1
w3 (ω̃2)
7−−−−−→ −1|E |(yD − yr+1E) |1 + 1|(yD − yr+1) |E |1
ψ2
7−−→ −1|y ∧ E |D − y |D ∧ E |1 +

r∑
i=0

yi |y ∧ E |yr−i

ω2
7−−→ 0

1|x ∧ y ∧ D |1
ϕ3
7−−→ 1|x |y |D |1 − 1|x |D |y |1 + 1|D |x |y |1

− 1|D |y |x |1 + 1|y |D |x |1 − 1|y |x |D |1 + S ⊗5

w3 (ω̃2)
7−−−−−→ −1|x |yF̄E |x |1 − 1|(yD − yr+1E) |y |1

+ 1|yF̄E |x |1 + 1|y |(yD − yr+1E) |1
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ψ2
7−−→ y |y ∧ D |1 − yr+1 |y ∧ E |1

− (yF̄E)(1) |x ∧ (yF̄E)(2) |(yF̄E)(3)
ω2
7−−→ −y2F̄E

1|y ∧ D ∧ E |1
ϕ3
7−−→ 1|y |D |E |1 − 1|y |E |D |1 + 1|E |y |D |1

− 1|E |D |y |1 + 1|D |E |y |1 − 1|D |y |E |1 + k[x ,y,E]⊗5

w3 (ω̃2)
7−−−−−→ −1|E |yF̄E |1 + 1|yF̄E |E |1
ψ2
7−−→ (yF̄E)(1) |(yF̄E)(2) ∧ E |(yF̄E)(3)
ω2
7−−→ 0.

Now the 3-cocycle (3.14) is a coboundary, again by what we saw in 3.13, so that the class
of ω2 has bracket-square zero.

�is completes the proof of the proposition.

3.4 Hochschild homology, cyclic homology and K-theory

3.23. For completeness, we determine the rest of the ‘usual’ homological invariants of our
algebra A. Recall that our ground �eld k is of characteristic zero.

Proposition. �e inclusion T = k[E]→ A induces an isomorphism in Hochschild homology and
in cyclic homology. In particular, there are isomorphisms of vector spaces

HHi (A) �



T , if i = 0 or i = 1;

0, if i ≥ 2;
HCi (A) �




T , if i = 0;

HCi (k), if i > 0.

On the other hand, the inclusion k→ A induces an isomorphism in periodic cyclic homology and
in higher K-theory.

Proof. As we know, the algebra A is N0-graded and for each n ∈ N0 its homogeneous com-
ponent An of degree n is the eigenspace corresponding to the eigenvalue n of the deriva-
tion ad(E) : A → A. On one hand, this grading of A induces as usual an N0-grading on the
Hochschild homology HH• (A) of A; on the other, the derivation ad(E) induces a linear map
Lad(E ) : HH• (A) → HH• (A) as in [Lod92, §4.1.4] and, in fact, for all n ∈ N0 the homogeneous
component HH• (A)n of degree n for that grading coincides with the eigenspace corresponding
to the eigenvalue n of Lad(E ) . As the derivation ad(E) is inner, it follows from [Lod92, Propo-
sition 4.1.5] that the map Lad(E ) is actually the zero map and this tells us in our situation
that HH• (A)n = 0 for all n , 0. Of course, this means that HH• (A) = HH• (A)0 and, since
A is non-negatively graded, it is immediate that the 0th homogeneous component HH• (A)0
coincides with the Hochschild homology HH• (A0) of A0 and that the map HH• (A0) → HH• (A)

induced by the inclusion A0 ↪→ A is an isomorphism. Now, in the notation of [Lod92, �eorem
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4.1.13], this tells us that
≈

HH • (A) = 0 so that, by that theorem, we also have
≈

HC• (A) = 0: this
means precisely that the inclusion A0 ↪→ A induces an isomorphism HC• (A0) → HC• (A) in
cyclic homology. Together with the well-known computation of the Hochschild homology of a
polynomial ring and that of the cyclic homology of symmetric algebras [Lod92, �eorem 3.2.5],
this proves the �rst claim of the statement.

In the proof of the lemma of 3.5 we constructed an increasing �ltration F on the algebra A
with F−1A = 0 and such that the corresponding graded algebra is the commutative polynomial
algebra grA = k[x ,y,D,E] with generators x and y in degree 0 and D and E in degree 1. In
particular, both grA and its subalgebra gr0 A of degree 0 have �nite global dimension. It follows
from a theorem of D. �illen [�i73, p. 117, �eorem 7] that the inclusion k[x ,y] = F0A→ A

induces an isomorphism Ki (k[x ,y]) → Ki (A) in K-theory for all i ≥ 0. Similarly, the the-
orem of J. Block [Blo87, �eorem 3.4] tells us that that inclusion induces an isomorphism
HP• (k[x ,y]) → HP• (A) in periodic cyclic homology. As the inclusion k→ k[x ,y] induces an
isomorphism in K-theory and in periodic cyclic homology, we see that the second claim of the
proposition holds.

3.5 The twisted Calabi–Yau property

3.24. �e enveloping algebra Ae of A is a bimodule over itself, with le� and right actions . and
/ given by ‘outer’ and ‘inner’ multiplication, respectively, so that if a ⊗ b, c ⊗ d and e ⊗ f are
elementary tensors in Ae , we have

a ⊗ b . c ⊗ d / e ⊗ f = ace ⊗ f db .

From this bimodule structure we obtain a duality functor

homAe (−,A
e ) : Ae Mod→ ModAe .

On the other hand, using the anti-automorphism τ : Ae → Ae such that τ (a ⊗ b) = b ⊗ a for all
a, b ∈ A, we can turn a rightAe -module M into a le�Ae -module, with actionu .m =m /τ (u) for
u ∈ Ae andm ∈ M . In this way, we obtain an isomorphism of categories τ ∗ : ModAe → Ae Mod.
We denote (−)∨ : Ae Mod→ Ae Mod the composition τ ∗ ◦ homAe (−,A

e ).
Let nowW be a �nite dimensional vector space, letW ∗ be the vector space dual toW , and

view A ⊗W ⊗A and A ⊗W ∗ ⊗A as le� Ae -modules using the usual ‘exterior’ action. �ere is a
unique k-linear map

Φ : A ⊗W ∗ ⊗ A→ (A ⊗W ⊗ A)∨

such that Φ(a ⊗ ϕ ⊗ b) (1 ⊗ w ⊗ 1) = ϕ (w )b ⊗ a and it is an isomorphism of le� Ae -modules:
we will view it in all that follows as an identi�cation.

Notice that we have already proved in 2.25 that for any free hyperplane arrangement the
algebra of di�erential operators is twisted Calabi–Yau. Since in the case of a line arrangement
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the algebra Diff (A) is an iterated Ore extension —as we have shown in Lemma 2.8—, we can also
deduce this fact using the results by L. Liu, S. Wang and Q. Wu in [LWW14]. We prefer to give
a straightforward, computational proof, as the isomorphism of complexes that intervenes in it
is useful when one tries to explicit the duality between homology and cohomology described
in 2.23.

3.25. Proposition. �e algebra A is twisted Calabi-Yau of dimension 4 with modular automor-
phism σ : A→ A such that

σ (x ) = x , σ (y) = y, σ (D) = D + Fy , σ (E) = E + r + 2.

Let us recall from Section 2.4 that this means thatAhas a resolution of �nite length by �nitely
generated projective A-bimodules, that ExtiAe (A,A

e ) = 0 if i , 4 and that Ext4
Ae (A,A

e ) � Aσ ,
the A-bimodule obtained from A by twisting its right action using the automorphism σ , so that
a . x / b = axσ (b) for all a, b ∈ A and all x ∈ Aσ .

Proof. A direct computation shows that there is indeed an automorphism σ of A as in the
statement of the proposition. We already know that A has a resolution P of length 4 by
�nitely generated free A-bimodules, so we need only compute Ext•Ae (A,A

e ), and this is the
cohomology of the complex P∨ obtained by applying the functor described in 3.24 to P. Using
the identi�cations introduced there, this complex P∨ is

A ⊗ A A ⊗ V ∗ ⊗ A A ⊗ Λ2V ∗ ⊗ A A ⊗ Λ3V ∗ ⊗ A A ⊗ Λ4V ∗ ⊗ A
d∨1 d∨2 d∨3 d∨4

with le� Ae -linear di�erentials such that

d∨1 (1 ⊗ 1) = −[x , 1 ⊗ x̂ ⊗ 1] − [y, 1 ⊗ ŷ ⊗ 1] − [D, 1 ⊗ D̂ ⊗ 1] − [E, 1 ⊗ Ê ⊗ 1];

d∨2 (1 ⊗ x̂ ⊗ 1) = [y, 1 ⊗ x̂ ∧ ŷ ⊗ 1] + [D, 1 ⊗ x̂ ∧ D̂ ⊗ 1] + [E, 1 ⊗ x̂ ∧ Ê ⊗ 1]
+ 1 ⊗ x̂ ∧ Ê ⊗ 1 + ∇̃ŷ∧D̂x (F );

d∨2 (1 ⊗ ŷ ⊗ 1) = −[x , 1 ⊗ x̂ ∧ ŷ ⊗ 1] + [D, 1 ⊗ ŷ ∧ D̂ ⊗ 1] + [E, 1 ⊗ ŷ ∧ Ê ⊗ 1]
+ 1 ⊗ ŷ ∧ Ê ⊗ 1 + ∇̃ŷ∧D̂y (F );

d∨2 (1 ⊗ D̂ ⊗ 1) = −[x , 1 ⊗ x̂ ∧ D̂ ⊗ 1] − [y, 1 ⊗ ŷ ∧ D̂ ⊗ 1] + [E, 1 ⊗ D̂ ∧ Ê ⊗ 1]
+ r ⊗ D̂ ∧ Ê ⊗ 1;

d∨2 (1 ⊗ Ê ⊗ 1) = −[x , 1 ⊗ x̂ ∧ Ê ⊗ 1] − [y, 1 ⊗ ŷ ∧ Ê ⊗ 1] − [D, 1 ⊗ D̂ ∧ Ê ⊗ 1];

d∨3 (1 ⊗ x̂ ∧ ŷ ⊗ 1) = −[D, 1 ⊗ x̂ ∧ ŷ ∧ D̂ ⊗ 1] − ∇̃x̂∧ŷ∧D̂y (F )

− [E, 1 ⊗ x̂ ∧ ŷ ∧ Ê ⊗ 1] − 2 ⊗ x̂ ∧ ŷ ∧ Ê ⊗ 1;

d∨3 (1 ⊗ x̂ ∧ D̂ ⊗ 1) = [y, 1 ⊗ x̂ ∧ ŷ ∧ D̂ ⊗ 1] − [E, 1 ⊗ x̂ ∧ D̂ ∧ Ê ⊗ 1]
− (r + 1) ⊗ x̂ ∧ D̂ ∧ Ê ⊗ 1;

d∨3 (1 ⊗ x̂ ∧ Ê ⊗ 1) = [y, 1 ⊗ x̂ ∧ ŷ ∧ Ê ⊗ 1] + [D, 1 ⊗ x̂ ∧ D̂ ∧ Ê ⊗ 1]
+ ∇̃

ŷ∧D̂∧Ê
x (F );
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d∨3 (1 ⊗ ŷ ∧ D̂ ⊗ 1) = −[x , 1 ⊗ x̂ ∧ ŷ ∧ D̂ ⊗ 1] − [E, 1 ⊗ ŷ ∧ D̂ ∧ Ê ⊗ 1]
− (r + 1) ⊗ ŷ ∧ D̂ ∧ Ê ⊗ 1;

d∨3 (1 ⊗ ŷ ∧ Ê ⊗ 1) = −[x , 1 ⊗ x̂ ∧ ŷ ∧ Ê ⊗ 1] + [D, 1 ⊗ ŷ ∧ D̂ ∧ Ê ⊗ 1] + ∇̃ŷ∧D̂∧Êy (F );

d∨3 (1 ⊗ D̂ ∧ Ê ⊗ 1) = −[x , 1 ⊗ x̂ ∧ D̂ ∧ Ê ⊗ 1] − [y, 1 ⊗ ŷ ∧ D̂ ∧ Ê ⊗ 1];

d∨4 (1 ⊗ x̂ ∧ ŷ ∧ D̂ ⊗ 1) = [E, 1 ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê ⊗ 1]
+ (r + 2) ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê ⊗ 1;

d∨4 (1 ⊗ x̂ ∧ ŷ ∧ Ê ⊗ 1) = −[D, 1 ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê ⊗ 1] − ∇̃x̂∧ŷ∧D̂∧Êy (F );
d∨4 (1 ⊗ x̂ ∧ D̂ ∧ Ê ⊗ 1) = [y, 1 ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê ⊗ 1];
d∨4 (1 ⊗ ŷ ∧ D̂ ∧ Ê ⊗ 1) = −[x , 1 ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê ⊗ 1],

where each ∇̃ux is the image of ∇ux under the map a ⊗ u ⊗ b 7→ b ⊗ u ⊗ a, and the same with
each ∇̃uy .

Let us now identify P ⊗A Aσ with P as vector spaces, remembering that the bimodule
structure on P with this identi�cation is given by a .x /b = axσ (b) for all a, b ∈ A and all x ∈ P.
�ere is a morphism of complexes of A-bimodulesψ : P∨ → P ⊗A Aσ such that

ψ (1 ⊗ x̂ ∧ ŷ ∧ D̂ ∧ Ê ⊗ 1) = 1 ⊗ 1;

ψ (1 ⊗ ŷ ∧ D̂ ∧ Ê ⊗ 1) = −1 ⊗ x ⊗ 1;
ψ (1 ⊗ x̂ ∧ D̂ ∧ Ê ⊗ 1) = 1 ⊗ y ⊗ 1;
ψ (1 ⊗ x̂ ∧ ŷ ∧ Ê ⊗ 1) = −1 ⊗ D ⊗ 1 − ξ ;
ψ (1 ⊗ x̂ ∧ ŷ ∧ D̂ ⊗ 1) = 1 ⊗ E ⊗ 1;

ψ (1 ⊗ D̂ ∧ Ê ⊗ 1) = −1 ⊗ x ∧ y ⊗ 1;
ψ (1 ⊗ x̂ ∧ D̂ ⊗ 1) = 1 ⊗ y ∧ E ⊗ 1;
ψ (1 ⊗ ŷ ∧ D̂ ⊗ 1) = −1 ⊗ x ∧ E ⊗ 1;
ψ (1 ⊗ ŷ ∧ Ê ⊗ 1) = 1 ⊗ x ∧ D ⊗ 1 + x ∧ ξ ;
ψ (1 ⊗ x̂ ∧ Ê ⊗ 1) = −1 ⊗ y ∧ D ⊗ 1 + ζ ;
ψ (1 ⊗ x̂ ∧ ŷ ⊗ 1) = −1 ⊗ D ∧ E ⊗ 1 − ξ ∧ E;

ψ (1 ⊗ Ê ⊗ 1) = 1 ⊗ x ∧ y ∧ D ⊗ 1;
ψ (1 ⊗ D̂ ⊗ 1) = −1 ⊗ x ∧ y ∧ E ⊗ 1;
ψ (1 ⊗ ŷ ⊗ 1) = 1 ⊗ x ∧ D ∧ E ⊗ 1 + x ∧ ξ ∧ E;
ψ (1 ⊗ x̂ ⊗ 1) = −1 ⊗ y ∧ D ∧ E ⊗ 1 + ζ ∧ E;

ψ (1 ⊗ 1) = 1 ⊗ x ∧ y ∧ D ∧ E ⊗ 1,

where ξ ∈ A ⊗ V ⊗ A and ζ ∈ A ⊗ Λ2V ⊗ A are chosen so that

d1 (ξ ) = ∇̃y (F ) − 1|Fy , d2 (ζ ) = ξy − yξ − 1|y |Fy − ∇̃xx (F ) + ∇(F ).
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�at there are elements which satisfy these two conditions follows immediately from the
exactness of the Koszul resolution of S as an S-bimodule —indeed, the right hand sides of the
two conditions are cycles in that complex— but we can exhibit a speci�c choice: if we write
F =

∑
a+b=r+1 cax

ayb , with c0, . . . , cr−1 ∈ k, then we can pick

ξ =
∑

a+b=r+1
s+t+1=b−1

(t + 1)cays |y |xayt , ζ =
∑

a+b=r+1
s+t+1=b
s ′+t ′+1=a

cax
s ′ys |x ∧ y |x t

′

yt .

�at these formulas for ψ do indeed de�ne a morphism of complexes follows from a direct
computation and it is easy to see that it is in fact an isomorphism, as for an appropriate ordering
of the bases of the bimodules involved the matrices for the components ofψ are upper triangular.
Of course, it therefore induces an isomorphism in cohomology and, since Aσ is A-projective
on the le�, we conclude that there are isomorphisms of A-bimodules

H i (P∨) � H i (P ⊗A Aσ ) �



Aσ if i = 4;
0 if i > 0.

�is completes the proof.

3.6 Resumen

En este capı́tulo nos enfocamos en el estudio del álgebra Diff (A) para el caso de un arreglo A
en un espacio vectorial V de dimensión 2 con al menos cinco rectas: ası́ son los arreglos libres
más simples. Recordemos del Capı́tulo 2 que ya disponemos de una presentación para Diff (A)

en 2.8: escribiendo al polinomio que de�ne al arreglo como Q = xF , vemos que Diff (A) es
el álgebra generada por las letras x , y, E y D de manera que se satisfacen las relaciones de
conmutación

[y,x] = 0,
[D,x] = 0, [D,y] = F ,

[E,x] = x , [E,y] = y, [E,D] = (l − 2)D,

en donde l es la cantidad de rectas de A. Encontramos en la Sección 3.1 una resolución
proyectiva de Diff (A) como bimódulo sobre si mismo para, después de un cálculo extenso, dar
en la Proposición 3.15 una descripción de la cohomologı́a de Hochschild de Diff (A) de manera
completamente explı́cita. Sin entrar en detalles, la proposición nos da la siguiente información.

Proposición. Si A es un arreglo central de rectas de l rectas con l ≥ 5, la serie de Hilbert
de HH • (Diff (A)) es

hHH • (U ) (t ) = 1 + lt + (2l − 1)t2 + lt3.
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Cuando el arreglo tiene menos de cinco rectas, la conclusión de la proposición no sigue siendo
cierta: lidiamos con esta situación especial utilizando técnicas diferentes sobre el �nal de la
tesis.

El siguiente paso es describir la estructura de álgebra de HH • (Diff (A)) y su estructura
de Gerstenhaber: es para esto que necesitamos una descripción tan explı́cita. Los resultados
aparecen en las Proposiciones 3.19 y 3.22 y son, una vez más, demasiado técnicos para reproducir
aquı́. De cualquier manera, estas estructuras nos dan un mejor entendimiento de nuestros
cálculos previos y nos permiten relacionar Diff (A) con un invariante conocido del arreglo, el
álgebra de Orlik–Solomon. Ésta aparece en nuestra situación en la Proposición 3.20:

Proposición. La subálgebra H de HH • (Diff (A)) generada por HH 1 (Diff (A)) es isomorfa al
álgebra de Orlik–Solomon de A.

Además de estos resultados, calculamos en la Proposición 3.23 la homologı́a de Hochschild,
la homologı́a cı́clica y la homologı́a cı́clica periódica y la K-teorı́a de Diff (A).

Proposición. La inclusión T = k[E] → Diff (A) induce un isomor�smo en homologı́a de
Hochschild y homologı́a cı́clica. En particular, hay isomor�smos de espacios vectoriales

HHi (Diff (A)) �



T , si i = 0 o i = 1;

0, si i ≥ 2;
HCi (Diff (A)) �




T , si i = 0;

HCi (k), si i > 0.

Más aún, la inclusión k → Diff (A) induce un isomor�smo en homologı́a cı́clica periódica y en
K-teorı́a superior.

Para terminar el capı́tulo, obtenemos en la Sección 3.5 una prueba directa de la propiedad
de Calabi–Yau para el caso especial de arreglos centrales de rectas.

Proposición. El álgebra Diff (A) es twisted Calabi-Yau torcida de dimensión 4 con automor�smo
modular σ : Diff (A) → Diff (A) dado por

σ (x ) = x , σ (y) = y, σ (D) = D + Fy , σ (E) = E + l .



– 4 –
Automorphisms of Diff (A) and the isomorphism

problem

In this chapter we continue with the study of the algebra A = Diff (A) of di�erential operators
tangent to a central arrangement of lines A that we started in Chapter 3, bearing in mind that
the arrangement has r+2 lines and that r is at least 3. We take advantage of the explicitness of the
calculation of the �rst Hochschild cohomology group of A and employ the methods developed
by J. Alev and M. Chamarie in [AC92] to give a description of the group of automorphisms of A:
we show that Aut(A) is the semidirect product of the subgroup of homogeneous automorphisms
of degree 0 and that of the exponentials of locally ad-nilpotent elements. With this description
at hand, we solve the problem of determining which pairs of arrangements A and A ′ have
isomorphic algebras Diff (A) and Diff (A ′) and, in particular, we show that the arrangement
A can be recovered from the algebra Diff (A).

4.1 Automorphisms

4.1. Our next objective is to compute the group of automorphisms of the algebra A. We start
by describing some graded automorphisms of A. Later we will see that these are, in fact, all
the graded automorphisms of our algebra, and that together with the exponentials of locally
ad-nilpotent elements they generate the whole group Aut(A).

Lemma. If
(
a b
c d

)
∈ GL2 (k) and e ∈ k× are such that

1
(ad − bc )e

Q (ax + by, cx + dy) = Q (x ,y),

and v ∈ k and ϕ0 ∈ Sr , then there is a homogeneous algebra automorphism θ : A→ A such that

θ (x ) = ax + by, θ (y) = cx + dy, θ (E) = E +v

and

θ (D) =



ϕ0 −
ebF

ax+byE + eD, if b , 0;

ϕ0 + eD, if not.
(4.1)

Proof. �is is proved by a straightforward calculation. It should be noted that the quotient
appearing in the formula (4.1) is always a polynomial.

81
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4.2. Recall form [AC92] that a higher derivation of A is a sequence d = (di )i≥0 of linear maps
!

A→ A such that d0 = idA and for all a, b ∈ A and all i ≥ 0 we have the higher Leibniz identity

di (ab) =
∑
s+t=i

ds (a)dt (b).

It is clear that ifd = (di )i≥0 is a higher derivation andm ≥ 0, then the sequenced[m] = (d[m]
i )i≥0

with

d[m]
i =




di/m , if i is divisible bym;
0, if not

is also a higher derivation. On the other hand, if d = (di )i≥0 and d ′ = (d ′i )i≥0 are higher
derivations of A, we can construct a new higher derivation (d ′′i )i≥0, which we denote d ◦ d ′,
pu�ing d ′′i =

∑
s+t=i ds ◦ d

′
t for all i ≥ 0. Finally, if δ : A → A is a derivation of A, then the

sequence ( 1
i !δ

i )i≥0 is a higher derivation, which we denote by exp(δ ); notice that this makes
sense because our ground �eld k has characteristic zero.

We let D (A) be the associative subalgebra of Endk (A) generated by Der(A), and say that
two higher derivations d = (di )i≥0 and d ′ = (d ′i )i≥0 of A are equivalent, and write d ∼ d ′, if for
all i ≥ 0 the map di − d

′
i is in the subalgebra of Endk (A) generated by D (A) and d0, . . . , di−1;

one can check that this is indeed an equivalence relation on the set of higher derivations.

4.3. We recall the following very useful lemma from [AC92]:

Lemma. If d = (di )i≥0 is a higher derivation of A, then di ∈ D (A) for all i ≥ 0.

Proof. �e result is an easy consequence of the fact that

if d is a higher derivation of A and j ≥ 1, then there exists a higher derivation
d ′ = (d ′i )i≥0 such that d ′ ∼ d , d ′i = 0 if 1 < i < j, and d ′j is an element
of Der(A).

(4.2)

To prove that this holds, let d = (di )i≥0 and suppose there is an j ≥ 1 such that that di = 0
if 1 < i < j. �e higher Leibniz identity implies that dj is an element of Der(A), and then
we can consider the higher derivation exp(−dj )

[j]. We let d ′ = (d ′i )i≥0 be the composition
exp(−dj )

[j] ◦ d . It is immediate that d ∼ d ′ and a simple computation shows that d ′i = 0 if
1 < i < j + 1. �e claim (4.2) follows inductively from this.

4.4. Lemma. An element of A commutes with x and with y if and only if it belongs to S .

Proof. �e su�ciency of the condition is clear. To prove the necessity, let e ∈ A be such that
[x , e] = [y, e] = 0. �ere are an integer m ≥ 0 and elements ϕ0, . . . , ϕm in the subalgebra
generated by x , y and D in A such that e = ∑m

i=0 ϕiE
i , and we have 0 = [x , el ] =

∑m
i=0 ϕiτ1 (E

i ):
this tells us that ϕi = 0 if i > 0, and that e = ϕ0. In particular, there are an integer n ≥ 0
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and elements ψ0, . . . , ψn in S such that e = ∑n
i=0ψiD

i . If i ≥ 0 we have [Di ,y] ≡ iFDi−1

mod
⊕i−2

j=0 SD
j , so that

0 = [e,y] =
n∑
i=0

ψi [Di ,y] ≡ nψnFD
n−1 mod

n−2⊕
j=0

SDi .

Proceeding by descending induction we see from this thatψi = 0 if i > 0, so that e = ψ0 ∈ S .

4.5. Proposition. If θ : A→ A is an automorphism of A such that for all i ≥ 0 and all a ∈ Ai we
have θ (a) ∈ a +

⊕
j>i Aj , then here exists an f ∈ S , uniquely determined up to the addition of a

constant, such that

θ (x ) = x , θ (y) = y, θ (D) = D − F fy , θ (E) = E − [E, f ].

Conversely, every f ∈ S determines in this way an automorphism of A satisfying that condition.

Proof. Let θ : A → A be an automorphism of A as in the statement. For each j ≥ 0 there is
a unique linear map θ j : A → A of degree j such that for each i ≥ 0 and each a ∈ Ai the
element θ j (a) is the (i + j )th homogeneous component of θ (a). We have that for all a ∈ A we
have θ j (a) = 0 for j ≥ 0 and θ (a) = ∑

j≥0 θi (a) and, moreover, the sequence (θ j )j≥0 is a higher
derivation of A. In particular, it follows from Lemma 4.3 that

θi ∈ D (A) for all i ≥ 0. (4.3)

We know from Proposition 3.15 that Der(A) = Sr D̂ ⊕ kÊ ⊕ InnDer(A). If u is an irreducible
factor of xF , then (ϕD̂) (uA), Ê (uA) and [a,uA] are all contained in uA for all ϕ ∈ Sr and all
a ∈ A, and therefore (4.3) implies that that θ (uA) ⊆ uA. As our argument also applies to the
inverse automorphism θ−1, we have θ−1 (uA) ⊆ uA and, therefore, θ (uA) = uA. Since all units
of A are in k, we see that θ (u) = u. Since of xF has two linearly independent linear factors, we
can conclude that θ (x ) = x and θ (y) = y.

Let θ (E) = E + e1 + · · · + el with ei ∈ Ai for each i ∈ {1, . . . , l }. We have

x = θ (x ) = [θ (E),θ (x )] = [E,x] + [e1,x] + · · · + [el ,x]

and, by looking at homogeneous components, we see that [ei ,x] = 0 for all i ∈ {1, . . . , l }.
Similarly, [ei ,y] = 0 for such i , and therefore Lemma 4.4 tells us that e1, . . . , el ∈ S .

Suppose now that θ (D) = D + dr+1 + · · · + dl with dj ∈ Aj for each j ∈ {r + 1, . . . , l }.
Considering the equality [θ (E),θ (D)] = rθ (D) we see that dr+i = 1

i Feiy for each i ∈ {1, . . . , l }.
Pu�ing f = −

∑l
i=1

1
i ei , we obtain the �rst part of the lemma. �e second part follows from a

direct veri�cation.



84 Chapter 4. Automorphisms of Diff (A) and the isomorphism problem

4.6. �e automorphisms described in Proposition 4.5 are precisely the exponentials of the
inner derivations corresponding to locally ad-nilpotent elements of A. �is is a consequence of
the following result:

Proposition. An element of A is locally ad-nilpotent if and only if it belongs to S . If f ∈ S , then
the automorphism exp ad( f ) maps x , y, D and E to x , y, D − F fy and E − [E, f ], respectively.

Proof. Suppose that e ∈ A is a locally ad-nilpotent element. �e kernel ker ad(e ) is a factorially
closed subalgebra of A, so that whenever a, b ∈ A and ad(e ) (ab) = 0 we have ad(e ) (a) = 0 or
ad(e ) (b) = 0; see [Fre06]for the proof of this in the commutative case, which adapts to ours.

!
Since [x iy jDkEl ,x] = −x i+1y jDkτ1 (E

l ) for all i , j, k , l ≥ 0, we have [A,x] ⊆ xA and from
this we see immediately that [A,xA] ⊆ xA. �is implies that there is a sequence (uk )k≥0 in A

such that ad(e )k (x ) = xuk for all k ≥ 0. Since e is locally ad-nilpotent, we can consider the
integer k0 = max{k ∈ N0 : ad(e )k (x ) , 0}, and then we have 0 , xuk0 ∈ ker ad(e ). As ker ad(e )

is factorially closed, we see that ad(e ) (x ) = 0. In other words, the element e commutes with x .
�ere are an integer m ≥ 0 and elements ϕ0, . . . , ϕm in the subalgebra generated by x , y

and D in A such that e = ∑m
i=0 ϕiE

i , and we have 0 = [x , e] = ∑m
i=0 ϕiτ1 (E

i ): this tells us that
ϕi = 0 if i > 0, and that e = ϕ0. In particular, there are an integer n ≥ 0 and elementsψ0, . . . ,ψn
in S such that e = ∑n

i=0ψiD
i .

An induction shows that [Di , F ] ∈ FA for all i ≥ 0, and using this we can easily see that
[e, F ] = ∑n

i=0ψi [Di , F ] ∈ FA, from which it follows that in fact [e, FA] ⊆ FA. �ere is therefore
a sequence (vi )i≥0 of elements of A such that ad(e )i (F ) = Fvi for all i ≥ 0. �e local nilpotence
of the map ad(e ) allows us to consider the integer

i0 = max{i ∈ N0 : ad(e )i (F ) , 0},

and then 0 , Fvi0 ∈ ker ad(e ). If ax + by is any of the factors of F , we have b , 0 and
ax + by ∈ ker ad(e ): clearly, this implies that y commutes with e .

In view of Lemma 4.4, we see that e ∈ S : this proves the necessity of the condition for local
ad-nilpotency given in the lemma. Its su�ciency is a direct consequence of the fact that the
graded algebra associated to the �ltration on A described in 3.1 is commutative. Finally, the
truth of the last sentence of the proposition can be veri�ed by an easy computation.

4.7. We write Aut0 (A) the set all automorphisms of A described in Lemma 4.1, and Exp(A) the
set of all automorphisms of A described in Proposition 4.5; they are subgroups of the full group
of automorphisms Aut(A).

�eorem. �e group Aut(A) is the semidirect product Aut0 (A) n Exp(A), corresponding to the
action of Aut0 (A) on Exp(A) given by

θ0 · exp ad( f ) = exp ad(θ−1 ( f ))



4.1. Automorphisms 85

for all θ0 ∈ Aut0 (A) and f ∈ S . �e subgroup Aut0 (A) is precisely the set of automorphisms of A
preserving the grading and Exp(A) is the set of exponentials of locally nilpotent inner derivations
of A.

Notice that the action described in this statement makes sense, as θ0 (S ) = S whenever θ0
belongs to Aut0 (A).

Proof. Let θ : A→ A be an automorphism and let us write θ (E) = e0+· · ·+el , θ (x ) = x0+· · ·+xl ,
θ (y) = e0 + · · · + yl , θ (D) = d0 + · · · + dl with ei , xi , yi , di ∈ Ai for each i ∈ {0, . . . , l }. Since
θ is an automorphism, we have

[θ (E),θ (x )] = θ (x ), [θ (E),θ (y)] = θ (y), [θ (E),θ (D)] = rθ (D). (4.4)

Looking at the degree zero parts of these equalities, and remembering that A0 is a commutative
ring, we see x0 = y0 = d0 = 0. As θ (x ) , 0, we can consider the number s = min{i ∈ N0 : xi , 0}
and we have s > 0. Looking that the component of degree s of the �rst equality in (4.4), we
see that [e0,xs ] = xs . �is means that the restriction ad(e0) : As → As has a non-zero �xed
vector. Now As as a right k[E]-module is free with basis {x iy jDk : i + j + rk = s}, the map
ad(e0) is right k[E]-linear and coincides with right multiplication by −τs (e0) on As . Clearly, the
existence of non-zero �xed vector implies that −τs (e0) = 1, so that e0 = uE +v for some u ∈ k×

and v ∈ k with su = 1. Pu�ing now s ′ = min{i ∈ N0 : yi , 0} and s ′′ = min{u ∈ N0 : di , 0}
and looking at the components in the least possible degree in the second and third equations
of (4.4), we �nd that s ′u = 1 and s ′′u = r . In particular, s = s ′ and s ′′ = rs .

Suppose for a moment that s > 1. As θ (x ), θ (y) and θ (D) are in the ideal (As ) generated
by As , the composition q : A→ A of θ with the quotient map A→ A/(As ) is a surjection such
that q(A0) = A/(As ). �is is impossible, as A0 is a commutative ring and A/(As ) is not: we
therefore have s = 1 and, as a consequence, u = 1.

�ere exist a, b, c , d ∈ k[E] such that x1 = xa + yb and y1 = xc + yd . �e four elements
θ (E), θ (x ), θ (y) and θ (D) generate A and, as θ (D) is in

⊕
i≥r Ai , the elements x and y are in

the subalgebra generated by the �rst three. It follows at once that x , y ∈ x1k[E] + y1k[E] and,
therefore, that

(
a b
c d

)
∈ GL2 (k[E]).

Let us write f ∈ k[E] 7→ ~f ∈ k[E] the unique algebra morphism such that ~E = E + 1. We
have [θ (x ),θ (y)] = 0 and in degree 2 this tells us that

x2 (a~c − ~ac ) + xy T + y2 (b~d − ~bd ) = 0,

so that

a~c = ~ac, b~d = ~cd . (4.5)

Suppose that a is not constant. As the characteristic of k is zero (and possibly a�er replacing k
by an algebraic extension, which does not change anything) there is then a ξ ∈ k such that
a(ξ ) = 0 and ~a(ξ ) = a(ξ + 1) , 0, and the �rst equality in (4.5) implies that c (ξ ) = 0. �e
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determinant of
(
a b
c d

)
is thus divisible by E − ξ , and this is impossible. Similarly, we �nd that

all of b, c , d must be constant.
Since dr ∈ Ar , there exist k ≥ 0, ϕ0, . . . , ϕk ∈ Sr and h ∈ k[E] such that dr =

∑k
i=0 ϕiE

i +Dh.
�e component of degree r + 1 of [θ (D),θ (x )] is

0 = [dr ,x1] = −
k∑
i=0

(ax + by)ϕiτ1 (E
i ) − (ax + by)Dτ1 (h) + bF~h.

We thus see that h is constant, that ϕi = 0 if i ≥ 2, and that

(ax + by)ϕ1 + bhF = 0.

If b = 0, then ϕ1 = 0, and if instead b , 0, then either h , 0 and we see that ax + by divides F
and that ϕ1 = −bhF/(ax + by), or h = 0 and ϕ1 = 0. In any case, we see that

dr =



ϕ0 −
hbF

ax+byE + hD, if b , 0;

ϕ0 + hD, if not.

Finally, the component of degree r + 1 of the equality [θ (D),θ (y)] = θ (F ) tells us that

F (ax + by, cx + dy) = (ad − bc )h
xF

ax + by
.

It follows now from Lemma 4.1 that there is a graded automorphism θ0 : A → A such that
θ0 (x ) = ax +by, θ0 (y) = cx +dy, θ0 (E) = E+v and θ0 (D) = dr . �e composition θ−1

0 ◦θ satis�es
the hypothesis of Proposition 4.5, and then there exists an f ∈ S such that θ = θ0 ◦ exp ad( f ).
�is shows that Aut(A) = Aut0 (A) · Exp(A). Moreover, if θ is a graded automorphism, then so
is exp ad( f ) = θ−1

0 ◦ θ and, since it maps E to E − [E, f ], this is possible if and only if f ∈ k,
that is, if and only if exp ad( f ) = idA; this proves the last claim of the theorem.

Finally, computing the action of both sides of the equation on the generators of A, we see
that

exp ad( f ) ◦ θ0 = θ0 ◦ exp ad(θ−1 ( f ))

for all f ∈ S and all θ0 ∈ Aut0 (A), and this tells us that Aut(A) is indeed a semidirect product
Aut0 (A) n Exp(A).

4.2 The isomorphism problem

In this section we make use of our description of the group of automorphisms of Diff (A)

to give a complete solution of the problem of determining which pairs of arrangements of
lines A and A ′ have isomorphic algebras Diff (A) and Diff (A ′). In particular, we show that
the arrangement A can be recovered from the algebra Diff (A).
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4.8. As usual, we say that an element u of A is normal if uA = Au. Such an element, since it is
not a zero-divisor, determines an automorphism θu : A → A uniquely by the condition that
ua = θu (a)u for all u ∈ A.

Proposition. Let Q = α0 · · ·αr+1 be a factorization of Q as a product of linear factors. �e set of
non-zero normal elements of A is

N (A) = {λα i00 · · ·α
ir+1
r+1 : λ ∈ k×, i0, . . . , ir+1 ∈ N0}.

�is set is the saturated multiplicatively closed subset generated by Q both in A or in S .

Proof. A direct computation shows that each of the factors α0, . . . , αr+1 of Q is normal in A, so
the set N (A) is contained in the set of normal elements of A, for the la�er is multiplicatively
closed. �e set N (A) is multiplicatively closed and it is saturated because S is closed under
divisors in A, and it is clear that as a saturated multiplicatively closed it is generated by Q .
To conclude the proof, we have to show that every non-zero normal element of A belongs
to N (A).

Let u be a normal element in A and let θu : A→ A be the associated automorphism, so that
ua = θu (a)u for all a ∈ A. �ere are k , l ∈ N0 with k ≤ l and elements uk , . . . ul ∈ A such that
u = uk + · · · + ul , ui ∈ Ai if k ≤ i ≤ l , and uk , 0 , ul . Similarly, there are s , t ∈ N0 with s ≤ t

and elements es , . . . , et ∈ A such that θu (E) = es + · · · + et , ei ∈ Ai if s ≤ i ≤ t , and es , 0 , et .
As we have

ukE + · · · + ulE = uE = θu (E)u = esuk + · · · + etul

with ukE, ulE, esuk and etul all non-zero, looking at the homogeneous components of both
sides we see that s = t = 0. �is means that θu (E) = f (E) ∈ k[E], and therefore the above
equality is really of the form

ukE + · · · + ulE = f (E)uk + · · · + f (E)ul .

It follows from this that uiE = f (E)ui = ui f (E + i ) for all i ∈ {k, . . . , l } and therefore that
E = f (E + k ) and that E = f (E + l ). Since our ground �eld has characteristic zero, this is only
possible if k = l : the element u is thus homogeneous of degree l .

Now, since ua = θu (a)u for all a ∈ A, the homogeneity of u implies immediately that θu is
a homogeneous map. �ere are n ∈ N0 and ϕ0, . . . , ϕn in the subalgebra of A generated by x , y
and D, such that ϕn , 0 and u = ∑n

i=0 ϕiE
i . As θu (x ) has degree 1, it belongs to S1 and we have

θu (x )
n∑
i=0

ϕiE
i = θu (x )u = ux =

n∑
i=0

ϕiE
ix = x

∑
i=0

ϕi (E + 1)i .

Considering only the terms that have En as a factor we see that θu (x ) = x , and then the equality
tells us that in fact ∑n

i=0 ϕiE
i =

∑
i=0 ϕi (E + 1)i . Looking now at the terms which have En−1 as
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a factor here we see that moreover n = 0, so that u ∈ k[x ,y,D]. �ere exist thenm ∈ N0 and
ψ0, . . . ,ψm ∈ S such thatψm , 0 and u = ∑m

i=0ψiD
i . As θu (y) has degree 1, it belongs to S1 and

we have

θu (y)
m∑
i=0

ψiD
i = θu (y)u = uy =

m∑
i=0

ψiD
iy =

m∑
i=0

yψiD
i +

m∑
i=0

ψi [Di ,y].

Comparing the terms that have Dm as a factor we conclude that also θu (y) = y.
As θu �xes x and y, the element u commutes with x and y, and Lemma 4.4 allows us to

conclude that u is in Sl . Moreover, we know that all homogeneous automorphisms of A are
those described in Lemma 4.1, so there exist ϕ ∈ Sr and e ∈ k× such that θu (D) = ϕ + eD. We
then have that

uD = θu (D)u = (ϕ + eD)u = ϕu + euD + euyF

and this implies that e = 1 and ϕu + uyF = 0. Suppose now that α is a linear factor of u and let
k ∈ N and v ∈ S be such that u = αkv and v is not divisible by α . �e last equality becomes
ϕαkv +kαk−1αyvF +α

kvyF = 0 and implies that α divides αyF : this means that α is a non-zero
multiple of x or a linear factor of F . As u can be factored as a product of linear factors, we can
therefore conclude that u belongs to the set described in the statement of the proposition.

4.9. �ere is a close connection between normal elements, the �rst Hochschild cohomology
space that we computed in Section 3.2 and the modular automorphisms of A.

Proposition. Let Q = α0 · · ·αr+1 be a factorization of Q as a product of linear factors.
(i) Every linear combination of the derivations ∂α0 , . . . , ∂αr+1 : A → A described in Proposi-

tion 3.18 is locally nilpotent.
(ii) If u = λα i00 · · ·α

ir+1
r+1 , with λ ∈ k× and i0, . . . , ir+1 ∈ N0, is a normal element of A, then the

automorphism θu : A→ A associated to u is

θu = exp *.
,
−

r+1∑
j=0

i j∂α j
+/
-
.

�is automorphism is such that θu ( f ) = f for all f ∈ S and

θu (δ ) = δ +
δ (u)

u

for all δ ∈ Der(A).
(iii) �e modular automorphism σ : A → A described in Proposition 3.25 coincides with the

automorphism θQ associated to the normal element Q .

We omit the proof since it follows from a straightforward calculation using our previous
results.
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4.10. Another immediate application of the determination of the set of normal elements is the
classi�cation under isomorphisms of our algebras.

Proposition. Let A and A ′ be two central arrangements of lines in k2. �e algebras D (A) and
D (A ′) are isomorphic if and only if the arrangements A and A ′ are isomorphic.

Proof. �e su�ciency of the condition being obvious, we prove only its necessity. We will de-
note with primes the objects associated to the arrangementA ′, so that for exampleA′ = D (A ′)

and so on. Moreover, in view of the su�ciency of the condition we can suppose without loss
of generality that both arrangements A and A ′ contain the line with equation x = 0.

Let us suppose that there is an isomorphism of algebras ϕ : A→ A′. Since ϕ maps locally
ad-nilpotent elements to locally ad-nilpotent elements, it follows from Proposition 4.6 that
ϕ (S ) = S ′ and therefore that ϕ restricts to an isomorphism of algebras ϕ : S → S ′. On
the other hand, ϕ also maps normal elements to normal elements, so that ϕ restricts to a
monoid homomorphism ϕ : N (A) → N (A′). Let Q = α0 · · ·αr+1 and Q ′ = α ′0 · · ·α

′
r ′+1 be

the factorizations of Q and of Q ′ as products of linear factors. �e invertible elements of
the monoid N (A) are the units of k and the quotient N (A)/k× is the free abelian monoid
generated by (the classes of) α0, . . . , αr+1 and, of course, a similar statement holds for the
other arrangement. Since ϕ induces an isomorphism N (A)/k× → N (A′)/k× we see, �rst,
that r = r ′ and, second, that there are a permutation π of the set {0, . . . , r + 1} and a function
λ : {0, . . . , r + 1} → k× such that ϕ (αi ) = λ(i )α ′π (i ) for all i ∈ {0, . . . , r + 1}. As there are at
least two lines in each arrangement, this implies that the restriction ϕ |S : S → S ′ restricts to an
isomorphism of vector spaces ϕ : S1 → S ′1, so that ϕ |S is linear, and that ϕ (Q ) = Q ′. It is clear
that this implies that the arrangements A and A ′ are isomorphic.

4.3 Resumen

Seguimos en este capı́tulo estudiando el álgebra de operadores diferenciales Diff (A) tangentes
a un arreglo centralA de al menos cinco rectas. Extraemos consecuencias de nuestro cálculo de
la cohomologı́a: particularmente, del primer grupo de cohomologı́a de Hochschild de Diff (A).
Utlizando los métodos desarrollados por J. Alev y M. Chamarie en [AC92], describimos el grupo
de automor�smos de Diff (A) en el Teorema 4.7:

Teorema. El grupo Aut(Diff (A)) es el producto semidirecto Aut0 (Diff (A)) n Exp(Diff (A))

de los subgrupos Aut0 (Diff (A)) de automor�smos de Diff (A) que preservan la graudación
y Exp(Diff (A)) de exponenciales de derivaciones internas localmente nilpotentes de Diff (A).
Concretamente, la acción de Aut0 (Diff (A)) en Exp(Diff (A)) está dada por

θ0 · exp ad( f ) = exp ad(θ−1 ( f ))

para cada θ0 ∈ Aut0 (Diff (A)) y f ∈ S .
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Junto con este teorema, damos en el Lema 4.1 y la Proposición 4.6 una descripción com-
pleta de los grupos Aut0 (Diff (A)) y Exp(Diff (A)). Mostramos que el primero es un grupo
algebraico de dimensión �nita que “ve” las simetrı́as del arreglo y que el segundo es un grupo
de dimensión in�nita cuya estructura es independiente del arreglo. Esta descripción de grupo
de automor�smos, a su vez, nos permite dar una solución completa al problema de determinar
cuáles pares de arreglos de rectas A y A ′ tienen álgebras Diff (A) y Diff (A ′) isomorfas.

Proposición. Dos arreglos de rectas tienen álgebras de operadores diferenciales isomorfas si y
solo si son isomorfos.



– 5 –
Deformations of the algebra of differential

operators tangent to a line arrangement

We continue to extract consequences of our �ndings of Chapter 3. Let A be a central arran-
gement of lines and let A = Diff (A). In this chapter, we study the deformation theory of A
with the help of our explicit calculation of the second space of cohomology of A. We show that
many of the in�nitesimal deformations of the algebra can be integrated to formal deformations
and we also exhibit obstructed in�nitesimal deformations.

5.1 Formal and nth order deformations

5.1. Let A be an associative k-algebra with underlying vector space V . A formal deformation
of A is a k~t�-algebra B with underlying vector space V ~t� such that there exists a family
F• = (Fi )i≥0 of maps Fi ∈ hom(V ⊗ V ,V ) for i ≥ 0 such that F0 is the product of A and that
the product ·B of B is continuous for the t-adic topology and given, when v and w belong to A,
by the formula

v ·B w = F0 (v,w ) + F1 (v,w )t + F2 (v,w )t2 + · · · .

When this is the case, there is an isomorphism of k-algebras ϕ : B ⊗k~t � k→ A. For example,
the algebra of formal series A~t�, which is a k~t�-algebra in the obvious way, is a formal
deformation of A with Fi = 0 for i ≥ 1, and the isomorphism ϕ corresponds to the evaluation
at t = 0 of formal series: we call this the trivial (formal) deformation of A.

Two formal deformationsB andB′ are equivalent if there is an isomorphism of k~t�-algebras
ψ : B → B′ such that the diagram

B ⊗k~t � k B′ ⊗k~t � k

A

ϕ

ψ ⊗1k

ϕ′
(5.1)

commutes. A formal deformation is trivial if it is equivalent to the trivial formal deformation.
5.2. We now recall the celebrated result by M. Gerstenhaber in [Ger64] that relates formal
deformations with Hochschild cohomology; in his words, the second cohomology spaceHH 2 (A)

“may be interpreted as the group of in�nitesimal deformations of A”.

91
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Recall that the Hochschild cohomology of A can be computed as the cohomology of the
Hochschild complex (hom(A⊗•,A),d ) with di�erentials given by

d ( f ) (a0 | · · · |ai ) = a0 f (a1 | · · · |ai ) +
i−1∑
j=0

f (a0 | · · · |ajaj+1 | · · · |ai ) + (−1)i f (a0 | · · · |ai−1),

for i ≥ 0 and f ∈ hom(A⊗i ,A).

�eorem (M. Gerstenhaber). If B is a deformation of A there exists n ≥ 1 and a deformation B′

of A equivalent to B given by a family of maps F• such that Fi = 0 for 1 ≤ i ≤ n − 1 and Fn is a
2-cocycle in the Hochschild complex (hom(A⊗•,A),d ). �e class of Fn in HH 2 (A) is non-zero if B
is not a trivial deformation.

Proof. �is is Proposition 1 in [Ger64].

5.3. �ere is a �nite order version of the de�nitions above, which is useful. Let n ∈ N. A
nth-order deformation of an algebra A is a k[t]/(tn+1)-algebra B with underlying vector space
V [t]/(tn+1) such that there exists a family F• = (Fi )

n
i=0 of maps Fi ∈ hom(V ⊗ V ,V ) such that

F0 is the multiplication of A and that

v ·B w = F0 (v,w ) + F1 (v,w )t + F2 (v,w )t2 + · · · + Fn (v,w )tn

wheneverv,w ∈ V . One can show that this is the same as saying that B is a k[t]/(tn+1)-algebra
free as a k[t]/(tn+1)-module such that there is an isomorphism of k-algebrasB → k[t]/(tn+1)⊗A.
An example of an nth-order deformation is the k[t]/(tn )-algebra A[t]/(tn ), which has Fi = 0
for every i ≥ 1. �is is called the trivial nth-order deformation. As before, two nth-order
deformations B and B′ are equivalent if there is an isomorphism of k[t]/(tn+1)-algebras B → B′

such that the diagram that corresponds to (5.1) is commutative.
If B is an nth-order deformation of A andm < n, the quotient algebra B/(tm+1) is anmth-

order deformation deformation of A. Similarly, a formal deformation gives rise tomth-order
deformations for everym ∈ N.

5.4. �e purpose of this chapter is to describe nth order deformations of the algebra of di�er-
ential operators tangent to a central line arrangement. In order to do this we will make use of
Bergman’s Diamond Lemma, which requires a certain amount of preliminaries, which we now
recall following the neat exposition by F. Martin in [Mar16, §2.1].

Let us �x a commutative ring k and a setX , and let 〈X 〉 denote the free monoid onX , whose
elements we call monomials. A monomial order on 〈X 〉 is a partial order ≤ with 1 as minimal
element such that whenever u, v , v ′ and w are monomials and v ≤ v ′ we have uvw ≤ uv ′w .
For example, if X is a totally ordered set then the graded lexicographical order —or grlex— is
a monomial order on 〈X 〉: monomials are sorted �rst by length and then lexicographically,
according to the order on X . As usual, a monomial order satis�es the descending chain condition
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if every decreasing sequence of monomials is eventually constant. For example, every grlex
order on 〈X 〉 satis�es this condition.

A rewriting system onX is a subset S of 〈X 〉×k〈X 〉 such that for every element σ = (wσ , fσ )

of S we have wσ , fσ . We call each such pair σ a rewriting rule of S and sometimes we denote
it by wσ → fσ . �e rewriting system S is compatible with a monomial order on X if for all its
rules σ and every monomial u which appears with nonzero coe�cient in fσ we have u < wσ .

A basic reduction is a triple r = (u,σ ,v ) with u and v monomials and σ a rewriting rule.
A basic reduction r de�nes a linear map r : k〈X 〉 → k〈X 〉 that maps the word uwσv to w fσv

and leaves the rest of the monomials �xed. A reduction is an element of the submonoid of
End(k〈X 〉) generated by basic reductions.

Given a reduction system S , we say that an element x ∈ k〈X 〉 is
• irreducible if r (x ) = x for every reduction r ,
• reduction-�nite if for every sequence of reductions (rn ) there exists n0 such that rn acts

trivially on rn0−1 ◦ · · · ◦ r1 (x ) for every n ≥ n0, and
• reduction-unique if it is reduction-�nite and there exists x ′ ∈ k〈X 〉 such that if r (x ) is

irreducible for a given reduction r then r (x ) = x ′.
We next de�ne the important notion of ambiguity. Let σ and τ be rules of S and let u, v

and w be monomials. �e 5-tuple α = (σ ,τ ,u,v,w ) is an overlap ambiguity of S if u, v and
w have positive length, ωσ = uv and ωτ = vw . In this case, the ambiguity α is solvable if
there exist reductions r and r ′ such that r ( fσw ) = r ′(u fτ ) —we depict this situation with a
diamond-shaped diagram in Figure 5.1. On the other hand, we say that α an inclusion ambiguity
if σ , τ ,wσ = v andωτ = uvw and that it is solvable if there exist reductions r and r ′ such that
r (u fσw ) = r ′( fτ ). In both cases, we say that the ambiguity is supported on the monomial uvw .

fσw

uvw r ( fσw ) = r ′(u fτ )

u fτ

Figure 5.1. A solvable overlap ambiguity

5.5. We have now given all the necessary de�nitions to state the next theorem, whose name is
motivated by Figure 5.1.

�eorem (�e Diamond Lemma of G. Bergman). Let k be a commutative algebra, let S be a
rewriting system on a set X and let ≤ be a monomial order on X compatible with S that satis�es
the descending chain condition. Denote by IS the two-sided ideal of k〈X 〉 generated by the set
{ fσ −wσ : σ ∈ S }. �e following statements are equivalent.

(a) All ambiguities are solvable.
(b) All elements of k〈X 〉 are reduction-unique.
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(c) �e k-submodule k〈X 〉irr of k〈X 〉 spanned by the irreducible monomials of 〈X 〉 is an irre-
dundant set of representatives for the elements of the algebra k〈X 〉/IS .

We say that S is con�uent over k if these conditions hold and, in that case, there is an
isomorphism of k-modules from k〈X 〉/IS to k〈X 〉irr.

Proof. �is appears in [Ber78] as part of the �eorem 1.2.

5.6. Example. LetA be a central line arrangement and let us preserve the notation and conven-
tions of 3.1. We will callA = Diff (A) from now until the end of this chapter. LetX = {x ,y,D,E}
and let us take the grlex monomial order on 〈X 〉 with x < y < D < E. We claim that the
rewriting system

yx → xy ED → DE + rD

Ex → xE + x Dx → xD

Ey → yE + y Dy → yD + F

is con�uent over k. It is clear that this system is compatible with the monomial order, so,
according to �eorem 5.5, we need only check that its ambiguities are solvable. �ere are only
four ambiguities in our rewriting system, supported on the monomials Eyx , Dyx , EDx and
EDy. All of them are solvable: the calculation that shows this can be deduced from the proof of
the forthcoming Proposition 5.8, by taking t = 0 there. �e algebra k〈X 〉/IS that is the subject
of Bergman’s Diamond Lemma is A, since it admits the presentation that we gave in 2.8.

5.7. From now on, we establish a connection between the deformations of A in the sense of 5.3
and the second cohomology space HH 2 (A). �is connection arises from the speci�c choice of
resolution that we used to compute cohomology and provides information even before the
computation of Proposition 3.15. Let ρ = ax̂ ∧ ŷ +bx̂ ∧ Ê + cŷ ∧ Ê +uD̂ ∧ Ê +vx̂ ∧ D̂ +wŷ ∧ D̂

be a 2-cochain in the complex X of 3.10 and let us consider the rewriting system on {x ,y,D,E}
over k[t]/(t2) with rules

yx → xy + ta ED → DE + rD + tu

Ex → xE + x + tb Dx → xD + tv (5.2)
Ey → yE + y + tc Dy → yD + F + tw

Proposition. �e rewriting system (5.2) is con�uent modulo t2, that is, it is con�uent over
k[t]/(t2), if and only if the cochain ρ is a cocycle. When that is the case, the algebra obtained
from this rewriting system as in Bergman’s Diamond Lemma of 5.4 is a �rst-order deformation of
A which is trivial if and only if ρ is a coboundary.

Proof. Our rewriting system has four ambiguities, supported on the monomials Eyx , Dyx , EDx
and EDy. �e �rst assertion in our proposition follows from the fact that the solvability of
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each ambiguity is equivalent to the vanishing of the corresponding component of d2 (ρ). We
illustrate this claim by studying the monomial Eyx . Starting from the right, we get

Eyx → Exy + tEa

→ xEy + xy + tby + taE + t[E,a]
→ xyE + 2xy + t (xc + [b,y] + yb + aE + [E,a])

and from the le�

Eyx → yEx + yx + tcx

→ yxE + yx + tyb + xy + t[c,x] + txc
→ xyE + 2xy + t (2a + aE + yb + [c,x] + xc ) .

As the two expressions that we found are irreducible, this ambiguity is solvable if and only if
[b,y] + [E,a] = [c,x] + 2a. On the other hand, inspecting the di�erentials in 3.9 we see that
the component of d2 (ρ) in x̂ ∧ ŷ ∧ Ê is

[E,a] − 2a + [b,y] − [c,x],

and this shows that the desired instance of our claim holds. �e same situation repeats when
analyzing each of the other ambiguities. �is proves the necessity of the condition that ρ be a
cocycle for the rewriting system to be con�uent. Its su�ciency follows from essentially the
same calculation done in reverse.

In order to prove the second claim of the proposition, let us assume that ρ is cocycle, so that
the rewriting system is con�uent and the k[t]/(t2)-algebra B = k〈x ,y,D,E〉/IS , as in Bergman’s
Diamond Lemma, is free as an k[t]/(t2)-module. �e obvious morphism of k-algebras B → A

which maps t to 0 gives rise to a morphism B/tB → A of k-algebras that maps a basis to a basis:
this tells us that B is a �rst-order deformation of A.

Suppose now that ρ is a coboundary. Let ω be a 1-cochain such that d1 (ω) = −ρ and write
ω = px̂ + qŷ + sγ D̂ + t ′Ê, with p,q, s, t ′ ∈ A. We claim that the assignment

1 ⊗ x 7→ x + tp, 1 ⊗ D 7→ D + ts,

1 ⊗ y 7→ y + tq, 1 ⊗ E 7→ tt ′

de�nes a morphism of k[t]/(t2)-algebras ϕ : k[t]/(t2) ⊗ A→ B. To check this, one has to show
that it maps the de�ning relations of A to zero. �ere are six relations, let us write down this
computation for the easiest one and for the most complicated one as an illustration.

One of the relations is that x and y commute in A, so we have to show thatϕ (1 ⊗ x ) and
ϕ (1 ⊗ y) commute in B. We have

ϕ (1 ⊗ y) (1 ⊗ x ) − ϕ (1 ⊗ x )ϕ (1 ⊗ y) = yx − xy + t (−[x ,q] + [y,p])
= t (−a − [x ,q] + [y,p]).
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�e component in x̂ ∧ ŷ of the equality d1 (ω) = −ρ is [x ,q] − [y,p] = −a and therefore the
desired commutation holds in B.

Let us now examine the most complicated instance, which is that of y and D. On one hand
we have

ϕ (1 ⊗ D) (1 ⊗ y) − ϕ (1 ⊗ y)ϕ (1 ⊗ D) = Dy − yD + t (−[y, s] + [D,q])
= F + t (−w − [y, s] + [D,q])

and on the other

ϕ (1 ⊗ F ) = F + t (∇
p
x (F ) + ∇

q
y (F )),

so that the relation Dy − yD − F is preserved if and only if the component in ŷ ∧ D̂ of d1 (ω)

is equal to that of −ρ, as we see comparing our last two equations to the expression for the
second di�erential that we have in 3.9.

Assume, �nally, that ρ is a 2-cocycle in X such that the deformation B is trivial and let
ϕ : k[t]/(t2) ⊗ A→ B be a k-algebra isomorphism as in 5.3. Since ϕ is the identity modulo t ,
we may write

ϕ (1 ⊗ x ) = x + tϕ ′(x ), ϕ (1 ⊗ D) = D + tϕ ′(D),

ϕ (1 ⊗ y) = y + tϕ ′(y), ϕ (1 ⊗ E) = E + tϕ ′(E)

and it is straightforward to see that the 1-cochain

ω = ϕ ′(x )x̂ + ϕ ′(y)ŷ + ϕ ′(D)D̂ + ϕ ′(E)Ê

satis�es d1 (ω) = −ρ. For example, its component in x̂ ∧ Ê is ϕ ′(x ) − [E,ϕ ′(x )] + [x ,ϕ ′(E)] and
this is equal to −b because, as ϕ is a morphism of algebras,

0 = ϕ (1 ⊗ E)ϕ (1 ⊗ x ) − ϕ (1 ⊗ x )ϕ (1 ⊗ E) − ϕ (1 ⊗ x )
= (E + tϕ ′(E)) (x + tϕ ′(x )) − (x + tϕ ′(x )) (E + tϕ ′(E)) − (x + tϕ ′(x ))

= Ex − xE − x + t ([x ,ϕ ′(E)] − [E,ϕ ′(x )] − ϕ ′(x ))
= t (−b + [x ,ϕ ′(E)] − [E,ϕ ′(x )] − ϕ ′(x ))).

�is concludes the proof.

5.8. We now look for second-order deformations. As a second-order deformation gives rise
to a �rst-order one, as we said in 5.3, we may take into account our �ndings of 5.7. Let then
u,v ∈ Ar , w ∈ Ar+1 and ρ := vx̂ ∧ D̂ +wŷ ∧ D̂ +uD̂ ∧ Ê be a 2-cochain in X and let us consider
the rewriting system over k[t]/(t3) given by the rules

yx → xy + t2ε ED → DE + rD + tu + t2γ

Ex → xE + x + t2α Dx → xD + tv + t2δ (5.3)



5.1. Formal and nth order deformations 97

Ey → yE + y + t2β Dy → yD + F + tw + t2ζ

where α , β , γ , δ , ε , ζ are such that these rules are homogeneous with respect to the grading
of A. Let us also de�ne the 2-cochain ξ = εx̂ ∧ ŷ + αx̂ ∧ Ê + βŷ ∧ Ê +γ D̂ ∧ Ê + δ x̂ ∧ D̂ + ζ ŷ ∧ D̂
in X. As the rewriting system is con�uent modulo t2 if a,b ∈ A, there is a well-de�ned element
(b,a)1 ∈ A such that it is a standard monomial and ba ≡ ab + t (b,a)1 mod t2.

Proposition. �e rewriting system (5.3) is con�uent modulo t3 if and only if
(i) the cochain ρ is a cocycle and

(ii) the following equation holds:

d2 (ξ ) = (−(v,y)1+ (w,x )1)x̂ ∧ŷ∧ D̂− (E,v )1x̂ ∧ D̂∧ Ê+ ((u,y)1− (E,w )1)ŷ∧ D̂∧ Ê.

Proof. �ere are four ambiguities in this rewriting system.
• We begin with the one supported by Eyx . Starting from the right, we get

Eyx → Exy + t2Eε → xyE + xy + xy + t2 (xβ + αy + Eε )

and from the le�

Eyx → yEx + yx + t2βx → yxE + yx + t2yα + yx + t2βx

→ 2xy + xyE + t2 (yα + βx + ε (2 + E)) .

We see that this ambiguity is solvable modulo t3 if and only if the equation

[α ,y] + [x , β] = 0

holds in A.
• We consider now the ambiguity in Dyx . We have

Dyx → Dxy + t2Dε → (xD + tv + t2δ )y + t2Dε

→ x (yD + F + tw + t2ζ ) + tvy + t2 (δy + Dε )

and
Dyx → (yD + F + tw + t2ζ )x → y (xD + tv + t2δ ) + Fx + twx + t2ζx

→ (xy + t2ε )D + xF + t (yv +wx ) + t2 (yδ + ζx + ∇εy ).

�e solvability modulo t3 of this ambiguity is then equivalent to the conditions

vy + xw − yv −wx ≡ 0 mod t ,

[δ ,y] + [D, ε] + [x , ζ ] − ∇εy (F ) + (v,y)1 − (w,x )1 ≡ 0 mod t .

• Consider now EDx : on one hand, we get

EDx → ExD + tEv + t2Eδ
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→ xED + xD + t2αD + tvE + t (r + 1)v + t2δE + t2 (r + 1)δ
→ xDE + rxD + txu + t2xγ

+ xD + t2αD + tEv + t2δE + t2 (r + 1)δ

and on the other

EDx → DEx + rDx + tux + t2γx

→ DxE + Dx + t2Dα + rDx + tux + t2γx

→ (xD + tv + t2δ ) (E + r + 1) + t2Dα + tux + t2γx .

We obtain in this case the following two equations:

xu − ux + Ev −vE − (r + 1)v ≡ 0 mod t ,

[x ,γ ] + [α ,D] + (E,v )1 = 0.

• Finally, we look at EDy.

EDy → EyD + EF + tEw + t2Eζ

→ yED + yD + t2βD + FE + (r + 1)F + t2 (EF )2 + tEw + t
2Eζ

→ y (DE + rD + tu + t2γ ) + yD + t2βD + FE + (r + 1)F
+ t2 (EF )2 + tEw + t

2Eζ ;
EDy → DEy + rDy + tuy + t2γy

→ Dy + DyE + t2Dβ + rDy + tuy + t2γy

→ (yD + F + tw + t2ζ ) (E + r + 1) + t2Dα + tuy + t2γy.

We get here

yu + Ew −w (E + r + 1) − uy ≡ 0 mod t ,

[y,γ ] + [β,D] + ∇βy (F ) + ∇αx (F ) + (yu)1 + (Ew )1 = 0.

Comparing these equations with the di�erentials in 3.9 we arrive to the desired claim.

5.2 Deformations of Diff (A)

5.9. We now use our characterization of HH 2 (A) in Proposition 3.15. We consider the rewriting
system induced by a generic 2-cocycle

yx → xy Dx → xD + tλyD − tλyr+1E

Dy → yD + F + tд + thD + tλyF̄E Ex → xE + x

Ey → yE + y ED → DE + rD + t f ,
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with λ ∈ k, д ∈ Sr+1, h ∈ S1 and f ∈ Sr . We know form that proposition that every cocycle is
cohomologous to one of this form.

In order to be con�uent modulo t3, this rewriting system must satisfy the two conditions
of 5.8. �e �rst one holds by construction and, considering the 3-cochain

η = (λyд + λ2y2F̄E + λhyr+1E)x̂ŷD̂ + λy f x̂D̂Ê + hf ŷD̂Ê (5.4)

in X, the second condition reads dξ = −η. It is straightforward to see that dη = 0.

5.10. Example. Suppose λ = 0 and h = 0. �en η = 0 and our reduction system is con�uent
modulo t3. Our rewriting system consist of

Dy → yD + F + tд ED → DE + rD + t f , (5.5)

along with the other rules that determine A as in Example 5.6. We claim that this system is
con�uent over k~t�. Indeed, the only ambiguity whose solvability is di�erent from that in the
rewriting system that de�ned A is EDy, and we have

EDy → EyD + EF + Etд

→ yED + yD + FE + (r + 1)F + tдE + t (r + 1)д
→ yDE + ryD + ty f + yD + FE + (r + 1)F + tдE + t (r + 1)д

EDy → DEy + rDy + t f y

→ DyE + (r + 1)Dy + t f y
→ (yD + F + tд) (E + r + 1) + t f y.

�e algebra obtained from (5.5) as in Bergman’s Diamond Lemma 5.4 is a formal deformation
of A. We therefore have here as many formal deformations as there are pairs ( f ,д). �is
determines a subspace of dimension 2r of HH 2 (A) of in�nitesimal deformations which can be
integrated.

5.11. Example. When λ = f = 0, the only rule that di�ers from the original rewriting system
of A is

Dy → yD + F + tд + thD.

�e system is easily seen to be con�uent over k~t�. �is determines another subspace of
integrable cocycles in HH 2 (A), this one of dimension r + 1.
5.12. We can translate the condition that a deformation be trivial to one in terms of cocycles.

Proposition. Letϕ ∈ Sr and λ0 ∈ k be such thatxϕ+λ0y
r+1 = λy f . �e cocycleη of equation (5.4)

is a coboundary if and only if

[ϕ + λ0 (Fx + F̄ )]y − hf ∈ 〈xFx ,xFy ,yFy〉. (5.6)
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Proof. We follow the process we carried out in 3.14 to compute cohomology. Once we have
�nished adding coboundaries to η, the remainder will be a coboundary if and only if it is zero.
To begin with, we should �nd a 2-cochain that covers the component x̂ŷÊ of η; as it is zero,
this step is not necessary. For the component in x̂ ∧ ŷ ∧ D̂, it is easy to see that

d2 ([λдE + 1
2 (λ

2F̄y + λhyr ) (E2 − E)]x̂D̂)
= (λyд + λ2y2F̄E + λhyr+1E)x̂ŷD̂.

Finally, we must cover x̂ ∧ D̂ ∧ Ê. We have

d2 (−λ0yx̂ Ê + (λ0F̄ − ϕ)ED̂Ê)

= λ0Fx̂D̂Ê − λ0yFxŷD̂Ê − (λ0F̄ − ϕ)xx̂D̂Ê − (λ0F̄ − ϕ)yŷD̂Ê

= (λ0y
r+1 + xϕ)x̂D̂Ê + [ϕ − λ0 (Fx + F̄ )]yŷD̂Ê

and this implies that η is cohomologous to ([ϕ − λ0 (Fx + F̄ )]y − hf )ŷD̂Ê. �e conclusion now
follows from what we did in 3.14.

5.13. Example. �e deformation induced by a general cocycle with f = 0 satis�es the condition
of the proposition to be a 3-coboundary.

5.14. Example. Let us give an example in which con�uence is not achieved. Let us choose
h ∈ S1 and f ∈ Sr such that hf < 〈xFx ,xFy ,yFy〉. If we consider the rewriting system (5.3) for
this particular choice, it follows at once from Proposition 5.12 that it is not con�uent. �is
means that the corresponding cocycle is obstructed. In the language of M. Gerstenhaber, we
have obtained a in�nitesimal deformation that does not integrate, not even to a second order
deformation.

5.15. Example. Consider, �nally, the 2-cocycle ω2 = (yD − yr+1E)x̂D̂ + yF̄EŷD̂ of 3.14. �e
corresponding deformation is the one in 5.9 obtained by taking every parameter apart from
λ equal to zero. As it is a cocycle, we know that the system is con�uent modulo t2. �e
obstruction is in this case

η = λ2y2F̄Ex̂ŷD̂.

Proceeding as in 5.12, we take ϕ = λ0 = 0 and we see that condition (5.6) is trivially ful�lled.
We follow the proof of Proposition 3.15 to construct a preimage of η: it is straightforward to
check that

d2
(

1
2λ

2F̄y (E2 − E)x̂ ∧ D̂
)
= λ2y2F̄Ex̂ ∧ ŷ ∧ D̂.

We now consider the deformation given by

Dx → xD + tλ(yD − yr+1E) − t2 1
2λ

2F̄y (E2 − E),

Dy → yD + F + tλyF̄E.
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�is rewriting system is con�uent over k[t]/(t3). We claim that it con�uent over k~t�. Let
us call w = λyF̄E, v = λ(yD − yr+1E) and δ = 1

2λ
2F̄y (E2 − E). Let us examine the nontrivial

ambiguities; we start by EDy.

EDy → EyD + EF + tEw

→ yED + yD + FE + (r + 1)F + twE + t (r + 1)w
EDy → DEy + rDy → Dy + DyE + rDy

→ (yD + F + tw ) (E + r + 1)

�is is trivially satis�ed. Next ambiguity is EDx .

EDx → ExD + tEv + t2Eδ

→ xED + xD + tvE + t (r + 1)v + t2δE + t2 (r + 1)δ
→ xDE + rxD + xD + tvE + t (r + 1)v + t2δE + t2 (r + 1)δ ;

on the other hand,

EDx → DEx + rDx → DxE + Dx + rDx

→ (xD + tv + t2δ ) (E + r + 1)

so this is also satis�ed. Let us now look at Dyx ; we have

Dyx → Dxy

→ xDy + tλ(yD − yr+1E)y − 1
2t

2λ2F̄y (E2 − E))y

→ xDy + tλ(yDy − yr+2E − yr+2)

− t2 1
2λ

2F̄y
(
y (E2 − E) + 2yE

)
→ x (yD + F + tλyF̄E) + tλy (yD + F + tλyF̄E) − tλyr+2E − tλyr+2

− t2 1
2λ

2F̄y
(
y (E2 − E) + 2yE

)
= xyD + xF + tλ(xyF̄E + y2D + yF − yr+2E − yr+2)

− t2λ2 1
2 F̄y

2 (E2 − E)

and

Dyx → (yD + F + tλyF̄E)x

→ yDx + xF + tλ(xyF̄E + xyF̄ )

→ yxD + tλ(y2D − yr+2E) − t2 1
2λ

2y2F̄ (E2 − E) + xF + tλxyF̄E + tλxyF̄

= xyD + xF + tλ(y2D − yr+2E + xyF̄E + xyF̄ ) − t2 1
2λ

2y2F̄ (E2 − E)

We conclude our deformation of second order is con�uent.
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5.3 Resumen

En este capı́tulo continuamos extrayendo consecuencias de nuestro cálculo de la cohomologı́a
de Hochschild de del álgebra de operadores diferenciales Diff (A) de un arreglo central de
rectas A como la del Capı́tulo 3: en este capı́tulo, estudiamos la teorı́a de deformaciones
formales del álgebra Diff (A) en el sentido de M. Gerstenhaber [Ger64].

Primero damos las de�niciones básicas que involucran a las deformaciones formales y de
orden �nito y recordamos en 5.2 un resultado fundamental de Gerstenhaber que relaciona
las deformaciones de un álgebra con su segundo grupo de cohomologı́a calculado a partir del
complejo de Hochschild.

Una vez que establecemos el Lema del Diamante de Bergman, en 5.4, establecemos un resul-
tado análogo al de Gerstenhaber que relaciona las deformaciones de nuestra álgebra Diff (A)

con nuestro cálculo del segundo grupo de la cohomologı́a de Hochschild en la Proposición 3.15
a partir de la resolución X de 3.10. Sea ρ = ax̂ ∧ ŷ +bx̂ ∧ Ê +cŷ ∧ Ê +uD̂ ∧ Ê +vx̂ ∧ D̂ +wŷ ∧ D̂

una 2-cocadena genérica en este complejo.

Proposición. El sistema de reescritura (5.2) es con�uente módulo t2, esto es, es con�uente sobre
k[t]/(t2), si y solo si la cocadena ρ es un cociclo. En este caso, el álgebra que se obtiene del sistema
de reescritura como en el Lema del Diamante de Bergman es una deformación de primer orden
de Diff (A) que es trivial si y solo si ρ es un coborde.

Lo explı́cito de nuestros resultados sobre la cohomologı́a de Hochschild de Diff (A) continúa
siendo útil: en la Sección 5.2 consideramos cociclos que vienen de nuestra caracterización
de HH 2 (Diff (A)) en la Proposición 3.15. Consideramos el sistema de reescritura inducido por
un 2-cociclo genérico

yx → xy Dx → xD + tλyD − tλyr+1E

Dy → yD + F + tд + thD + tλyF̄E Ex → xE + x

Ey → yE + y ED → DE + rD + t f ,

con λ ∈ k, д ∈ Sr+1, h ∈ S1 y f ∈ Sr .
Mostramos, por un lado, que muchas de las deformaciones in�nitesimales del álgebra

pueden ser integradas a deformaciones y, por otro, exhibimos deformaciones in�nitesimales
obstruidas. Concretamente, vemos que si f = 0 el sistema de reescritura es con�uente y
nos provee de una deformación de primer orden de Diff (A). Lo mismo sucede si tomamos
λ = 0 y h = 0. Estas elecciones determinan subespacios de deformaciones in�nitesimales que
pueden ser integradas. También, el cociclo ω2 determina una deformación de primer orden que,
siendo corregida con un término de orden dos, da lugar a una deformación formal. Por otra
parte, si elegimos h ∈ S1 y f ∈ Sr tales que hf < 〈xFx ,xFy ,yFy〉, obtenemos una deformación
in�nitesimal que no se integra.
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The spectral seqence

Let (S,L) be a Lie–Rinehart pair as in 2.9 and let U (S,L) be its universal enveloping algebra.
In this chapter we construct a spectral sequence converging to the Hochschild cohomology
of U (S,L), we describe its second page in a meaningful way and give an interpretation of the
di�erential of that page. Since for a free hyperplane arrangement A the enveloping algebra of
the pair (S,DerA) is isomorphic to the algebra of di�erential operators tangent to A —as we
saw in �eorem 2.19—, this spectral sequence gives us an alternative way to obtain our results
of Proposition 3.15 on the Hochschild cohomology of A = DiffA for a central arrangement of
lines and provides a possible method for extending these results. In particular, with this method
one can deal with arrangements of three and four lines, for which the approach of Chapter 3 is
not practical, as observed in 3.16.

6.1 A cohomology theory for Lie–Rinehart pairs

As we saw in Section 2.3, a Lie–Rinehart pair (S,L) consists of a commutative algebra S and
a Lie algebra L with an S-module structure that acts on S by derivations, and which satis�es
certain compatibility conditions that generalize those satis�ed by S and Der S . An example
important to us is the pair (S,DerA) with second component the Lie algebra of derivations
of an arrangement A. We denote by U = U (S,L) the universal enveloping algebra of (S,L),
whose construction we dealt with in 2.13.

Let (S,L) be a Lie–Rinehart pair. If M is a U -module, or, equivalently, a Lie–Rinehart
module, the Lie–Rinehart cohomology of the pair with values on M was de�ned by G. Rinehart
in [Rin63] to be

H • (L|S,M ) B Ext•U (S,M ).

�is cohomology generalizes the usual Lie algebra cohomology of L by taking into account its
interaction with S .

6.1. In many important situations, some of which will be illustrated in the examples below,
L is a projective S-module, and in this case there is a well-known complex that computes the
Lie–Rinehart cohomology.

Proposition. Suppose that L is S-projective and let Λ•SL denote the exterior algebra of L over S .
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�e complex of U -modules U ⊗S Λ•SL with di�erentials

dr (u ⊗ θ1 ∧ · · · ∧ θr ) =
r∑
i=1

(−1)i+1uθi ⊗ θ1 ∧ · · · ∧ θ̂i ∧ · · · ∧ θr

+
∑

1≤i<j≤r
(−1)i+ju[θi ,θ j ] ⊗ θ1 · · · ∧ θ̂i ∧ · · · ∧ θ̂ j ∧ · · · ∧ θr

whenever θ1, . . . ,θr ∈ L, u ∈ U and r ≥ 1 is an U -projective resolution of S with augmentation

ε : U ⊗S S 3 u ⊗ s 7→ u · s ∈ S .

In particular, the complex homS (Λ
•
SL,M ) with Chevalley–Eilenberg di�erentials computes the

Lie–Rinehart cohomology H • (L|S,M ).

Proof. �is is �eorem 4.2 in [Rin63].

6.2. Example. For the pair (k, g) with g a Lie algebra, M is simply a g-Lie module and the
complex homk (Λ

•
k
L,M ) is the standard complex that computes the Lie algebra cohomology

H • (g,M ), as in §9 of the article [CE48] by C. Chevalley and S. Eilenberg.

6.3. Example. IfM is a di�erential manifold and S = C∞ (M ), then L = X(M ) is �nitely generated
and projective over S—this is Proposition 11.32 in the book by J. Nestruev [Nes03]. �e complex
homS (Λ

•
SL, S ) is precisely the de Rham complex Ω• (M ) of di�erential forms and therefore the

cohomology H • (L|S, S ) coincides with the de Rham cohomology of M .

6.4. Example. For the pair (S,L) associated to a free hyperplane arrangement A, the complex
homS (Λ

•
SL, S ) is the complex of logarithmic di�erential forms Ω• (A) that we met in 1.33, and

its cohomology is isomorphic to the Orlik–Solomon algebra ofA, by the result of J. Wiens and
S. Yuzvinsky that we stated in 1.55. When k = C, this algebra is, in turn, isomorphic to the
cohomology of the complement of the arrangement.

6.2 The spectral seqence

Let (S,L) be a Lie–Rinehart pair and letU be its enveloping algebra. In this section we construct
a spectral sequence that converges to the Hochschild cohomology of U . In order to do so we
follow the ideas and tools developed by �. Lambre and P. Le Meur in [LLM18]. In particular,
we recall from that paper the construction of an adjunction between the category ofU -modules
and that of U -bimodules.
6.5. If M is a U -bimodule, the S-invariant subspace of M is

MS B {m ∈ M : sm =ms for all s ∈ S }.

�is is the maximal symmetric S-subbimodule of M and it is an U -module if we let each α ∈ L
act so that

α ·m B αm −mα
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form ∈ MS . �e map homSe (S,M ) 3 f 7→ f (1) ∈ MS is bijective and becomes U -linear if we
let U act on its domain with

(α · φ) (s ) = αφ (s ) − φ (s )α − φ (α (s )) , (t · φ) (s ) = tφ (s ) (6.1)

when α ∈ L, φ ∈ homSe (S,M ) and s, t ∈ S . What is more, the assignment

G : U ModU 3 M 7→ homSe (S,M ) ∈ U Mod

is functorial.
Let, on the other hand, N be a le� U -module. Again, the inclusion of S in U endows U

with a structure of le� S-module; since S is commutative, N can also be regarded as a right
S-module. It is clear then that U ⊗S N is a le� U -module and a right S-module. We can turn it
into a right U -module se�ing, for u ∈ U , n ∈ N and α ∈ L

(u ⊗ n) · α = uα ⊗ n − u ⊗ α (n).

�is construction extends to morphisms and de�nes a functor F : U Mod → U ModU with
F (N ) = U ⊗S N . With these two functors in hand, we can state the very useful Proposition 3.4.1
of [LLM18].

Proposition. �e functor F is le� adjoint to G.

6.6. Once we have established the following lemma we will be ready to construct the spectral
sequence we are a�er.

Lemma. Assume that L is a projective S-module. Let M be an U e -module and let M → I • be an
injective resolution of U as an U e -module.

(i) �e cohomology of the complex homSe (S, I
•) is H • (S,M ).

(ii) �e U -module structure on homSe (S, I
•) de�ned in (6.1) induces an U -module structure

on H • (S,M ).

Proof. �e PBW-theorem in [Rin63, §3] ensures that U is a projective S-module: using Propo-
sition IX.2.3 of the book [CE56] by H. Cartan and S. Eilenberg, we obtain that U e is Se -
projective. Given an injective U e -module I , the functor homSe (−, I ) is naturally isomorphic to
homU e (U e ⊗Se −, I ), which is the composition of the exact functors homU e (−, I ) andU e ⊗Se −,
and therefore I is an injective Se -module. As a consequence of this, M → I • is actually a
resolution of M by Se -injective modules, so that the cohomology of homSe (S, I

•) is ExtSe (S,U ).
In order to prove the assertion of (ii), it is enough to see that the di�erential of the

complex homSe (S, I
•) is a morphism of U -modules, and this follows from the functoriality

of G = homSe (S,−).

6.7. �eorem. Assume L is S-projective and let N and M be a le� U -module and a U e -module.
�ere is a �rst-quadrant spectral sequence E• converging to Ext•U e (F (N ),M ) with second page

E
p,q
2 = Ext

p
U (N ,Hq (S,M )).
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Proof. Let Q• → N be an U -projective resolution of N and let M → I • be an U e -injective
resolution. Consider the double complex

X •,• = homU (Q•,G (I •))

and denote its total complex by Z •. �ere are two spectral sequences for this double complex:
we will use the �rst one to compute H • (Z ) and the second one will be the one we are looking
for. From the �ltration on Z • with

F̃qZp =
⊕
r+s=p
s≥q

X r,s

we obtain a �rst spectral sequence converging to H (Z •). Its zeroth page Ẽ0 has

Ẽ
p,q
0 = homU (Qp ,G (Iq ))

and its di�erential comes from the one on Q•. We claim that for each s ≥ 0, the functor
homU (−,G (I s )) is exact. Indeed, by the adjunction of Proposition 6.5 it is naturally isomorphic
to homU e (F (−), I s ), which is the composition of the functors F = U ⊗S (−) and homU e (−, I s )

and these are exact because U is le� projective over S and I s is U e -injective. �e �rst page Ẽ1
of the spectral sequence is therefore given by

Ẽ
p,q
1 =




homU (N ,G (Iq )) � homU e (F (N ), Iq ) if p = 0;
0 if p , 0

and its di�erential is induced by that of I •. Now, as the complex homU e (F (N ), I •) computes
Ext•U e (F (N ),M ) using injectives, we obtain that the second page has

Ẽ
p,q
2 =




Ext
q
U e (F (N ),M ) if p = 0;

0 if p , 0.

�is spectral sequence thus degenerates at its the second page, so that we see that H • (Z ) is
isomorphic to Ext•U e (F (N ),M ).

�e other �ltration on Z • is given by

FpZq =
⊕
r+s=q
r ≥p

X r,s

and determines a second spectral sequence E• that also converges to H (Z •). Its di�erential
on E0 is induced by the one on I •; as Qp is U -projective for each p ≥ 0, the cohomology of
homU (Qp ,G (I •)) is given in its qth place precisely by E

p,q
1 = homU (Qp ,H

q (S,M )) —recall
that, according to Lemma 6.6, the cohomology of G (I •) is H • (S,M ). Since the di�eren-
tials in E1 are induced by those of Q•, for each q ≥ 0 the cohomology of the row E

•,q
1 is

E
p,q
2 = Ext

p
U (N ,Hq (S,M )). �e spectral sequence E• is therefore the one we were looking

for.
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6.8. Specializing �eorem 6.7 to the case in which N = S we obtain the following corollary,
which is in fact the result we are mainly interested in.

Corollary. If L is S-projective then for each U e -module M there is a �rst-quadrant spectral
sequence E• converging to H • (U ,M ) with second page

E
p,q
2 = Hp (L|S,Hq (S,M )).

6.9. �e following examples illustrate what happens in the two extreme situations.

Example. Suppose �rst that L = 0. �e enveloping algebra U is just S and Λ•SL = S , so
the resolution U ⊗ Λ•SL of S is simply Q• = U ⊗S S . �e double complex X •,• is therefore
homS (S, homSe (S, I

•)), which is isomorphic to homSe (S, I
•) and the cohomology of the complex

Z • in the proof is HH • (S ), the Hochschild cohomology of S .

Example. If S = k and L = g is a Lie algebra then H • (S,U ) = Ext•ke (k,U ) is just U , the second
page of our spectral sequence is H • (g,U ) and we recover from Corollary 6.8 the well-known
fact that the Hochschild cohomology of the enveloping algebra of a Lie algebra equals its Lie
cohomology with values on U with the adjoint action, as in [CE56, XIII.5.1].
6.10. Another specialization of �eorem 6.7 allows us to recover one of the main results
of [LLM18], which we recall here. In proving it, we will use the following simple lemma a few
times.

Lemma. LetA be an algebra andT and P twoA-modules such thatT admits a projective resolution
by �nitely generated A-modules and P is �at. �ere is an isomorphism

Ext•A (T , P ) � Ext•A (T ,A) ⊗A P .

Proof. LetQ• be such a resolution ofT . For each i ≥ 0, the evident map from homA (Qi ,A) ⊗A P

to homA (Qi , P ) is an isomorphism because Qi is �nitely generated and projective. As P is �at,
the cohomology of the complex homA (Q•,A) ⊗A P is isomorphic to Ext•A (T ,A) ⊗A P .

6.11. �eorem (�. Lambre and P. Le Meur, [LLM18, �eorem 1]). Let (S,L) be a Lie–Rinehart
pair such that S has Van den Bergh duality in dimension n and L is �nitely generated and projective
with constant rank d as an S-module and let L∨ = homS (L, S ). �e enveloping algebra U of the
pair has Van den Bergh duality in dimension n + d and there is an isomorphism of U -bimodules

Extn+dU e (U ,U e ) � Λd
SL
∨ ⊗S ExtnSe (S, S

e ) ⊗S U .

Notice that this expression for the dualizing module of U is not the one that appears in
the original paper, but an immediate application of Lemma 3.5.2 in [LLM18] yields the desired
identi�cation.

Proof. �e homological smoothness of U follows from Lemma 5.1.2 of [LLM18], whose proof
does not depend on this theorem.
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Let us write D for the dualizing bimodule ExtnSe (S, S ⊗S ). We take, specializing �eorem 6.7,
N = S and M = U ⊗ U to obtain a spectral sequence E• such that

E
p,q
2 = Hp (L|S,Hq (S,U ⊗ U )) =⇒ Hp+q (U ,U ⊗ U ).

Let us �rst deal with Hq (S,U ⊗ U ). As we observed in the proof of Lemma 6.6, the U e -module
U ⊗ U is Se -projective and, since S has Van den Berg duality, it admits a resolution by �nitely
generated projective Se -modules. We may therefore use Lemma 6.10 to see that

Hq (S,U ⊗ U ) � Hq (S, Se ) ⊗Se (U ⊗ U ),

which is zero if q , n and isomorphic to D ⊗Se (U ⊗ U ) if q = n. As a consequence of this, our
spectral sequence E• degenerates at its the second page and thus Hp+n (U ,U ⊗U ) is isomorphic
to Hp (L|S,U ⊗S D ⊗S U ) for each p ∈ Z.

As the Chevalley–Eilenberg complex from Proposition 6.1 is an U -projective resolution of
S by �nitely generated modules and D is S-projective because it is invertible —see Chapter 6 in
the book [AF92] by F. Anderson and K. Fuller—, another application of Lemma 6.10 yields an
isomorphism

H • (L|S,U ⊗S D ⊗S U ) � H • (L|S,U ) ⊗U (U ⊗S D ⊗S U ).

Now, our hypotheses on L are such that �eorem 2.10 in [Hue99] tells us that Hp (L|S,U ) is
zero if p , d and is isomorphic to Λd

SL
∨ if p = d , so that actually

H i (U ,U ⊗ U ) �



Λd
SL
∨ ⊗U (U ⊗S D ⊗S U ), if i = n + d ;

0 otherwise.

�e dualizing bimodule of U is therefore isomorphic to ΛdL∨ ⊗S D ⊗S U .

6.3 The Lie module structure on H •(S,U )

Let (S,L) be a Lie–Rinehart pair and let U be its enveloping algebra. As we have already
seen, U can be regarded as an Se -module with the action de�ned by (s |t ) · u = stu for s and
t in S and u in U . �e Hochschild cohomology of S with values on U , denoted as before by
H • (S,U ), has an U -module structure —described in Lemma 6.6— that arises when we compute
this cohomology from an injective resolution of U as a module over U e . �e computation of
this structure in concrete examples is therefore rather inconvenient: indeed, we rarely compute
Hochschild cohomology using injective resolutions.

�e action ofU on H • (S,U ) is determined by actions of S and of L that satisfy the identities
in (2.2). Let M be aU -bimodule. In this section we construct an L-module structure onH • (S,M )

using this time an Se -projective resolution of S and we show that when M = U , it coincides with
the action of L on H • (S,U ) that we already had. �is will allow us to compute the la�er in
practice.
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The construction of the action

6.12. Let ε : P• → S be an Se -projective resolution. Given a U -bimodule M , we will de�ne
for each α ∈ L a linear endomorphism α ]

• of the complex homSe (P•,M ) which induces on its
cohomology H • (S,U ) a Lie algebra action of L. In order to do so, we will adapt with minor
changes the considerations in the article [SÁ17] by M. Suárez-Álvarez. �ere, there is a
construction, for an algebra A, a derivation δ : A→ A and a so called δ -operator f : N → N ,
of a canonical morphism of graded vector spaces ∇f : Ext•A (N ,N ) → Ext•A (N ,N ) which,
suitably specialized, gives a way to compute part of the Gerstenhaber bracket in the Hochschild
cohomology of an associative algebra. �e adaptation of this result to our situation is not
obvious. Let us take A = Se . Each α ∈ L determines a derivation of A; as opposed to the
situation in [SÁ17], what we need here is a graded automorphism of Ext•A (S,M ) and not of
Ext•A (N ,N ). �e observation that allows us to solve the problem is that there is a canonical
action of L on U by derivations that restricts to the action of L on S .
6.13. Let A be an algebra and let δ : A→ A a derivation. Given an A-module N , we say that a
linear map f : N → N is a δ -operator if for every a ∈ A and n ∈ N we have

f (an) = δ (a)n + af (n).

If, moreover, ε : P• → N is an A-projective resolution of N , a δ -li�ing of f to P• is a family of
δ -operators f• = ( fi : Pi → Pi , i ≥ 0) such that the diagram

· · · P1 P0 N

· · · P1 P0 N

f1 f0 f

commutes. �e following proposition, extracted from [SÁ17, §1.4], ensures δ -li�ings exist and
are in some sense unique.

Proposition. Let N be a le� A-module, let f : N → N be a δ -operator and let ε : P• → N be a
projective resolution.

(i) �ere exists a δ -li�ing f• of f to P•.
(ii) If f• and f ′• are two δ -li�ings of f to P• then f• and f ′• are homotopic by an A-linear

homotopy.

6.14. We return to our se�ing with a Lie–Rinehart pair (S,L). Let α ∈ L. As L acts on S by
derivations, we can regard α as a derivation of S . It is easy to verify that the unique linear map
αe : Se → Se such that

αe (s |t ) = α (s ) |t + s |α (t )

is a derivation of Se . Viewing, as usual, S as a le� Se -module via (s |t ) · f B s f t , the map α
becomes an αe -operator: indeed, if s |t ∈ Se and f ∈ S we have

α ((s |t ) f ) = α (s ) f t + sα ( f )t + s f α (t ) = αe (s |t ) f + (s |t )α ( f ).
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6.15. Example. �e standard bar resolution B• → S is an Se -projective resolution that has
Bi = S ⊗i+2 —we refer for this to [CE56, IX.6]. Given α ∈ L, there is a canonical αe -li�ing α• to
B•: if i ≥ 0; the linear map αi : Bi → Bi such that

αi (s0 |s1 | . . . |si |si+1) =
r∑
j=1

s0 |s1 | . . . |α (sj ) | . . . |si |si+1

is an αe -operator and it is not di�cult to see that α• = (αi : i ≥ 0) is an αe -li�ing of α . �is
particular way of choosing li�ings gives us a function L 3 α 7→ α• ∈ Endk (P•) which is, as a
small calculation shows, a morphism of Lie algebras.

6.16. Fix α ∈ L, an Se -projective resolution P• → S and a U -bimodule M . Let us choose one
among all αe -li�ings of α : S → S to P• provided by Proposition 6.13 and call it α•. Given i ≥ 0
and ϕ ∈ homSe (Pi ,M ), we de�ne α ]

i (ϕ) : Pi → M by

α ]
i (ϕ) (p) = [α ,ϕ (p)] − ϕ (αi (p)) for p ∈ Pi . (6.2)

Proposition. For each i ≥ 0, the rule (6.2) de�nes a function

α ]
i : homSe (Pi ,M ) → homSe (Pi ,M ).

�e collection α ]
• = (α ]

i )i≥0 is an endomorphism of the complex of vector spaces homSe (P•,M ).

Proof. For the �rst claim, we show that α ]
i (ϕ) is a morphism of Se -modules: given p ∈ Pi and

s |t ∈ Se we have

α ]
i (ϕ) ((s |t )p) = [α , sϕ (p)t] − ϕ (αi ((s |t )p))

= α (s )ϕ (p)t + s[α ,ϕ (p)]t + sϕ (p)α (t ) − ϕ (αe (s |t )p + (s |t )αi (p))

= s[α ,ϕ (p)]t − (s |t )ϕ (αi (p)) .

For the second one, we must see that the mapα ]
• commutes with the di�erential of homSe (P•,M ).

Given i ≥ 0 and ϕ in homSe (Pi ,M ), we have

d∗ (α ]
i (ϕ)) (p) = α

]
i (ϕ) (d (p)) = [α ,ϕ (d (p))] − ϕ (αi (d (p)))

and, as α• is a morphism of complexes, this is equal to α ]
i+1 (d

∗ϕ).

6.17. Proposition 6.16 implies that α ]
• descends to cohomology and therefore induces a graded

endomorphism ∇•α of H • (S,U ). In order to construct ∇•α we have chosen an αe -li�ing α•: the
next lemma shows that ∇•α is independent of that choice and, moreover, of the choice of the
projective resolution ε : P → S .
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Lemma. Fix α ∈ L and an U -bimodule M . Let ε : P• → S and ε ′ : P ′• → S be two Se -projective
resolutions of S , let α• and α ′• be αe -li�ings of α to P• and to P ′• respectively and, �nally, let α ]

•

and α ′]• be de�ned as in Proposition 6.16. If д : P ′• → P• is a morphism of complexes li�ing the
identity of S , the diagram

homSe (P•,M ) homSe (P•,M )

homSe (P
′
•,M ) homSe (P

′
•,M )

α ]
•

д∗• д∗•
α ′]•

commutes up to homotopy.

Proof. �e morphism of complexes of vector spaces h• : д•α ′• − α•д• : P ′• → P• is Se -linear:
indeed, if i ≥ 0, a ∈ Se and q ∈ P ′i we have

hi (aq) = дi (α
e (a)q + aα ′i (q)) − αi (aдi (q))

= αe (a)дi (q) + aдi (α
′
i (q)) − α

e (a)дi (q) − aαi (д(q))

= ahi (q).

�e map h∗• : homSe (P•,M ) → homSe (P
′
•,M ) induced by h• is homotopic to zero because h• is

a li�ing of the zero map in S to the projective resolution P•. Let us show that h∗• measures the
failure in the commutativity of the diagram that appears in the statement. We have, for i ≥ 0
and ϕ ∈ homSe (Pi ,M ),(

α ′]i д
∗
i − д

∗
i α

]
i

)
(ϕ) = α ′]i (ϕ ◦ дi ) − д

∗
i (α

]
i (ϕ)) = α

′]
i (ϕ ◦ дi ) − (α ]

i (ϕ)) ◦ дi ,

and evaluating this last expression on q ∈ P ′i we �nd that
(
α ′]i д

∗
i − д

∗
i α

]
i

)
(ϕ) (q) is equal to

[α ,ϕ (дi (q))] − ϕ (дi (α ′i (q))) − [α ,ϕ (дi (q))] + ϕ (αi (дi (q)))
= ϕ (αi (дi (q))) − ϕ (дi (α

′
i (q)))

= (д∗i α
∗
i − α

′∗
i д
∗
i ) (ϕ) (q).

We see from this that α ′]i д∗i − д∗i α
]
i = h

∗
i , which is, as we wanted, homotopic to zero.

�is lemma corresponds to the Lemma 1.6 of [SÁ17]; in our case, the key step was the
cancellation that happened when we evaluated

(
α ′]i д

∗
i − д

∗
i α

]
i

)
(ϕ) on an element of P ′i .

6.18. Now, with the help of Lemma 6.17, we see that each α ∈ L de�nes a canonical graded
endomorphism of H • (S,M ).

�eorem. Let M be an U -bimodule and let α ∈ L. �ere is a morphism of graded vector spaces

∇•α : H • (S,M ) → H • (S,M )
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such that for each Se -projective resolution ε : P• → S and each αe -li�ing α• of α to P• the diagram

H (homSe (P•,M )) H (homSe (P•,M ))

H • (S,M ) H • (S,M )

∇•ε,α

� �

∇•α

(6.3)

commutes.

Proof. Choosing an Se -projective resolution ε : P• → S and an αe -li�ing of α : S → S

to P•, Proposition 6.16 gives us an endomorphism of complexes α ]
• on homSe (P•,M ): as the

cohomology of this complex isH • (S,M ), this induces a graded endomorphism ∇•ε,α ofH • (S,M ).
�e square (6.3) de�nes an unique graded endomorphism ∇•α of H • (S,M ); as an immediate
consequence of Lemma 6.17, this endomorphism is independent of the choices of ε and of the
αe -li�ing.

6.19. Example. It is easy to describe the endomorphism ∇0
α of H 0 (S,U ) for any given α ∈ L. Let

us choose a resolution P• of S with P0 = Se and augmentation ε : Se → S de�ned by ε (s |t ) = st .
As αe is a αe -operator and ε ◦αe = α ◦ ε , we may choose an αe -li�ing with α0 = α

e . According
to the rule (6.2) just before Proposition 6.16 we have

α ]
0 (ϕ) (1|1) = [α ,ϕ (1|1)] for all ϕ ∈ homSe (P0,M ). (6.4)

Identifying, as usual, each ϕ ∈ homSe (S
e ,U ) with ϕ (1|1) ∈ U , we can view H 0 (S,U ) as a

subspace of U and the equality (6.4) tells us that

∇0
α (u) = [α ,u] for all u ∈ H 0 (S,U ).

6.20. �eorem 6.18 de�nes an assignment ∇ : α 7→ ∇α ; we will now show that it actually gives
rise to a Lie action of L on H • (S,M ), that is, that the identity ∇•[α,β ] = [∇•α ,∇•β ] holds.

Given α and β in L and ε : P → S an Se -projective resolution, let α• and β• be αe - and
βe -li�ings of α and of β to P•. Call γ = [α , β] ∈ L: a straightforward calculation shows that
γ e = αe ◦ βe − βe ◦ αe .

Lemma. In the se�ing of last paragraph, let M be an U -bimodule.
(i) �e morphism of complexes γ• B α• ◦ β• − β• ◦ α• is a γ e -li�ing of γ : S → S .

(ii) Let γ ]
i be the endomorphism of homSe (Pi ,M ) induced by γ• as in Proposition 6.16. We have

γ ]
i = α

]
i ◦ β

]
i − β

]
i ◦ α

]
i .

Proof. For each i ≥ 0, the map γi is a γ e -operator: given p ∈ Pi and a ∈ Se we have

(αi ◦ βi ) (ap) = αi (β
e (a)p + aβi (p))

= αe (βe (a))p + βe (a)αi (p) + α
e (a)βi (p) + aαiβi (p)
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and therefore γi (ap) = [αe , βe ](a)p + γi (p). As the a morphism of complexes γ• li�s γ because
L acts as a Lie algebra on S , we have proven the �rst statement.

In order to see the second one, we observe that for ϕ ∈ homSe (Pi ,M ) and p ∈ Pi we have

γ ]
i (ϕ) (p) = [[α , β],ϕ (p)] − ϕ (αi (βi (p)) − βi (αi (p)))

and, on the other hand,

α ]
i (β

]
i (ϕ)) (p) = [α , (β ]i (ϕ)) (p)] − (β ]i (ϕ)) (αi (p))

= [α , [β,ϕ (p)]] − [α ,ϕ (βi (p))] − [β,ϕ (αi (p))] + ϕ (βi (αi (p))).

�ese two expressions, together with the Jacobi identity, allow us to conclude that

α ]
i (β

]
i (ϕ)) (p) − β

]
i (α

]
i (ϕ)) (p) = γ

]
i (ϕ) (p),

which is just what we wanted.

6.21. Proposition. �e assignment

∇ : L 3 α 7→ ∇•α ∈ Endk (H
• (S,M ))

is a morphism of Lie algebras.

Proof. Let α , β ∈ L and call γ = [α , β]. Let α•, β• and γ• be αe , βe and γ e -li�ings, respectively.
Observe that it not necessarily the case that γ• is the commutator of α• and β•. Let α ]

• , β ]• and
γ ]
• be the endomorphisms of homSe (P•,M ) de�ned as in Proposition 6.16 and consider the

endomorphism θ• of homSe (P•,M ) with

θi (ϕ) (p) = [γ ,ϕ (p)] − ϕ (αi ◦ βi (p) − βi ◦ αi (p)) ,

where i ≥ 0, ϕ ∈ homSe (Pi ,M ) and p ∈ Pi . As we have seen in the �rst part of Lemma 6.20,
the commutator [α•, β•] is a γ e -li�ing of γ and therefore Lemma 6.17 tells us that the diagram

homSe (P•,M ) homSe (P•,M )

homSe (P•,M ) homSe (P•,M )

γ ]
•

θ•

commutes up to homotopy. Now, the second part of Lemma 6.20 states that θi = α ]
i ◦β

]
i −β

]
i ◦α

]
i

and therefore θ• and γ ]
• induce the same endomorphism on cohomology, that is,

∇•γ = H ([α ]
• , β

]
• ]).

Finally, using the linearity of the functor H we can conclude that ∇•γ = [∇•α ,∇•β ].
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Comparing the two actions of L

6.22. In Lema 6.6 we constructed an U -module structure on H • (S,U ) using an U e -injective
resolution of U . As we have seen in Section 6.1, this is equivalent to having S- and L-module
structures on H • (S,U ) that satisfy the identities in (2.2). We will now show that this L-module
structure coincides with the one de�ned in Subsection 6.3, using an Se -projective resolution
of S .

�eorem. Suppose L is S-projective. �e L-module structure on H • (S,U ) de�ned in Lemma 6.6
using injectives is equal to the one de�ned in �eorem 6.18 using projectives.

Proof. To begin with, we �x an U e -injective resolution η : U → I •, an Se -projective resolution
ε : P• → S and α ∈ L. In Proposition 6.16, we constructed endomorphisms of complexes α ]

•

of homSe (P•,U ) and of homSe (P•, I
j ) for each j ≥ 0 —we denote them the same way— which

induce the map ∇α on their cohomologies H • (S,U ) and H • (S, I j ). We claim that the map

η∗ : homSe (P•,U ) 3 ϕ 7−→ η ◦ ϕ ∈ homSe (P•, I
•)

satis�es

η∗ (α
]
i (ϕ)) = α

]
i (η∗ (ϕ)) (6.5)

for each i ≥ 0 and ϕ ∈ homSe (Pi ,U ). Indeed, we have

η∗ (α
]
i (ϕ)) (p) = η(α

]
i (ϕ)) (p) = η([α ,ϕ (p)]) − η (ϕ (αi (p)))

and this is equal to α ]
i (η∗ (ϕ)) because η is a morphism of U -bimodules.

Let, on the other hand,

ε∗ : homSe (S, I
•) 3 φ 7−→ φ ◦ ε ∈ homSe (P•, I

•).

For each α ∈ L and φ ∈ homSe (S, I
•) we have

ε∗ (α · φ) = α ]
0 (ε (φ)) (6.6)

because, given p ∈ P0,

ε∗ (α · φ) (p) = α · φ (ε (p)) = [α ,φ (ε (p))] − φ (α (ε (p)))

and, since α ◦ ε = ε ◦ α0, this is α ]
0 (ε
∗ (φ)) (p).

As the morphisms of complexes ε∗ and η∗ are quasi-isomorphisms, the fact that they are
equivariant with respect to the actions of α —as shown by (6.5) and (6.6)— allows us to conclude
that the two actions of L on H • (S,U ) coincide.
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6.23. We end this section showing how the results above work in a minimal example.

Example. We take S = k[x], we �x a nonzero h ∈ S and we consider the Lie algebra L which, as
an S-submodule of Der S , is freely generated by y = h d

dx . �e enveloping algebra U of the pair
(S,L) is isomorphic to the algebra Ah with presentation

k〈x ,y〉

(yx − xy − h)

which we will identify with U . �is algebra has been thoroughly studied by G. Benkart, S.
Lopes and M. Ondrus in the series of articles that start with [BLO15a]; we observe that se�ing
h = 1 we obtain the Weyl algebra that already appeared in Example 2.15. �e augmented
Koszul complex

0 Se Se S,
δ1 ε

with δ1 (s |t ) = sx |t − s |xt and ε (s |t ) = st , is an Se -projective resolution of S and therefore
the Hochschild cohomology H • (S,U ) is the cohomology of the complex U

δ
−→ U with di�er-

ential δ (u) = [x ,u]. A�er a small calculation we see that H 0 (S,U ) = ker δ = k[x] and that
H 1 (S,U ) = coker δ = A/hA. As A/hA is the quotient of the free noncommutative algebra in x

and y by the relations xy − yx = h, and h = 0, we may identify H 1 (S,U ) with k[x ]
(h) [y].

At this point we make use of our description of the action of U on H • (S,U ) as in �eo-
rem 6.18. It is enough to determine the action of y. We use Example 6.19 to see that y acts on
H 0 (S,U ) = S in the obvious way. To describe its action on H 1 (S,U ) we need a li�ing y•: we
obtain one de�ningy0 (s |t ) = hs

′ |1+1|ht ′ andy1 (s |t ) = hs
′ |1+1|ht ′+s∆(h)t , where ∆ : S → Se

is the unique derivation of S such that ∆(x ) = 1|1. Since the diagram

Se Se S

Se Se S

δ1 ε

δ1

y1

ε

y0 y

commutes and y0 and y1 are ye -operators, the action of y on H 1 (S,U ) can be obtained as
in (6.2). We now compute H • (L|S,H i (S,U )). Using the complex in Proposition 6.1 to compute
Lie–Rinehart cohomology of (S,L), we see that for each i ∈ Z this is the cohomology of the
complex

H i (S,U ) H i (S,U ).
∇iy

For i = 0, this amounts to the cohomology of S
y
−→ S ; the kernel of this map is k and its image, hS .

Consider now the case i = 1 and recall that we have identi�edH 1 (S,U ) with k[x ]
(h) [y]; if f ∈ k[x],

let us write f̄ its class in this quotient. Given u ∈ H 1 (S,U ), there are f0, . . . , fr ∈ k[x] such
that u = ∑r

i=0 f̄iy
i and

∇1
y (u) =

r∑
i=0

h′ fiy
i .
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�is expression is explicit enough to compute the kernel and cokernel of∇1
y , and this calculation,

along with the help of Corollary 6.8, gives us the following description of the Hochschild
cohomology of Ah :

HH i (Ah ) �




k if i = 0;

S/(h) ⊕
⊕

i≥0
S

gcd (h,h′)
yi if i = 1;⊕

i≥0
S

(h,h′)
yi if i = 2;

0 otherwise.

�is result had already been obtained by M. Valle in [Val17] and, partially, in [BLO15b]. With
our approach, nevertheless, we have isolated the most complicated steps to di�erent calculations
and, as a consequence of that, this computation is signi�cantly shorter.

6.4 The differential of the second page

In this section we make a straightforward adaptation of the ideas in the article [SÁ07] by
M. Suárez-Álvarez to give a description of the di�erential of the second page of our spectral
sequence. �is is the reason why we chose to state �eorem 6.7 in a more general se�ing than
that of Corollary 6.8: we need the extra freedom with respect to the �rst argument in order to
use the argument of [SÁ07].

Cohomological operators

6.24. Let us �x an algebra U . Until 6.29, U can be any associative algebra and form there on
we will specialize to the situation in which U is the enveloping algebra of a Lie–Rinehart pair.

Let p and q be integer numbers. We de�ne the bifunctor COpp,q of a pair of U -modules M
and N by

COpp,q (N ,M ) = [Ext
p
U (−,N ),Ext

q
U (−,M )],

with the brackets denoting the class of natural transformations between the two functors.
Given d ≥ 0, a cohomological operator of degree d from N to M is a sequence O =

(
Op

)
p≥0

of natural transformations Op ∈ COpp,p+d (N ,M ). We denote by COpd (N ,M ) the class of
cohomological operators of degree d from N to M .

6.25. Let d ≥ 0 and M and N be two U -modules. A cohomological operator O of degree d

from N to M is stable if for each short exact sequence 0→ T ′ → T → T ′′ → 0 of U -modules
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the diagram

Ext
p
U (T ′,N ) Ext

p+1
U (T ′′,N )

Ext
p+d
U (T ′,M ) Ext

p+1+d
U (T ′′,M )

∂

Op Op

∂

commutes for each p ≥ 0. �e class of such stable cohomological operators is denoted by
sCOpd (N ,M ).
6.26. Let d ≥ 0 and let M and N be two U -modules. We can represent a class ζ ∈ ExtdA (N ,M )

by a d-extension of N by M , that is, an exact sequence ofU -modules of length d + 1 of the form

ζ : 0→ M → · · · → N → 0.

If now p ≥ 0 and ε ∈ Ext
p
U (T ,N ), there is a well-de�ned class ζ ◦ε in Ext

p+d
U (T ,M ) represented

by the (p + d )-extension that results from the splicing of extensions representing ζ and ε . In
this way we can de�ne a natural morphism

Y : ExtdU (N ,M ) ∈ COpd (N ,M )

by

Y (ζ )p : τ ∈ Ext
p
U (Q,N ) 7→ (−1)pdζ ◦ τ ∈ Ext

p+d
U (Q,M )

for each p ≥ 0 and each U -module Q . We claim that Y takes values in sCOpd (N ,M ). Indeed,
let ζ be a class in ExtdU (N ,M ) and let 0 → T ′ → T → T ′′ → 0 be an exact sequence of
U -modules and σ the corresponding class in Ext1

U (T ′′,T ′). We know from [Mac67, III.9.1] that
for each p ≥ 0 the connecting homomorphism ∂ : Ext

p
U (T ′,M ) → Ext

p+1
U (T ′′,M ) is given by

τ 7→ (−1)pτ ◦ σ , so the commutativity of the diagram

Ext
p
U (T ′,N ) Ext

p+1
U (T ′′,N )

Ext
p+d
U (T ′,M ) Ext

p+1+d
U (T ′′,M )

∂

Y (ζ )p Y (ζ )p+1

∂

is just an instance of the associativity of the Yoneda product of extensions.

6.27. �eorem. �e map Y de�ned above is an isomorphism of graded bifunctors

Y : Ext•U (−,−) → sCOp• (−,−).

Proof. It is rather clearly a monomorphism, for Y (ζ ) (1) = ζ for any class ζ of extensions of
U -modules. Let now N and M be two U -modules and let O ∈ sCOpdU (N ,M ). We consider the
class ζ = O (1) ∈ ExtdU (N ,M ) and the operator

Õ = Y (ζ ) − O ∈ sCOpd (N ,M ).
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We claim that Õ = 0, so that Y is surjective. First, we show that O0 = 0: let Q be a U -module
and let f : Q → N ∈ Ext0

U (Q,N ). If Q = N and f = 1N then Õ (1N ) = 0 immediatly. As
Ext0

U ( f ,N ) (1N ) = f , the fact that Ô is a natural transformation in its �rst variable implies that

Õ ( f ) = Ext0
U ( f ,M ) (Õ (1N )) = 0.

Proceeding by induction, let us suppose that Õp = 0 for a given p ≥ 0, let Q be a U -module
and choose a short exact sequence of U -modules 0 → Q ′ → P → Q → 0 with P projective.
As Ext

p+1
U (P ,−) = 0, the stability of O implies that there is a commutative diagram

Ext
p
U (Q ′,N ) Ext

p+1
U (Q,N ) 0

Ext
p+d
U (Q ′,M ) Ext

p+1+d
U (Q,M ) 0

∂

Õp Õp+1

∂

and, since we are assuming Õp = 0, we see that Ôp+1 restricted to Q is zero.

6.28. �e following result, which will be useful next subsection, can be found mutatis mutandis
in [SÁ07, 2.2.1], up to a di�erent choice of �ltration. We include the proof for completeness.

Lemma. Let

0 1X
•,•

2X
•,•

3X
•,• 0j k

be a short exact sequence of double complexes and denote, for each 1 ≤ i ≤ 3, by iZ
• the total

complex of iX •,•. Let us assume that the �ltrations de�ned by

Fp iZ
q =

⊕
r+s=q
r ≥p

X r,s

induce a sequence of cohomologically graded spectral sequences

0 1E
•,•
1 2E

•,•
1 3E

•,•
1 0j1 k1

which is also exact. If ∂ : 3E
p,q
2 → 1E

p+1,q
2 is the connecting homomorphism corresponding to the

di�erentials in this last sequence then the square

3E
p,q
2 1E

p+1,q
2

3E
p+2,q−1
2 1E

p+3,q−1
2

∂

d2 d2

∂

anti-commutes.
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Proof. If γ is an element of some iX
p,q such that dv (x ) = 0, we will denote by [γ ] the class of

x in iE
p,q
1 .

To begin with, let us �x p and q and α ∈ 3E
p,q
2 . Let a ∈ 3X

p,q be such that dV (a) = 0 and
dH [a] = 0 ∈ 3E

p
1 ; let b ∈ 3X

p+1,q−1 be such that dV (b) = dH (a), so that the class of dH (b) in
the second page is d2α . Since k1 is surjective, there exists c ∈ 2X

p,q such that dV (c ) = 0 and
k1[c] = [a] or, in other words, there exists t ∈ 3X

p,q−1 such that dV (t ) = a − k0 (c ). Now, as

k0dH (c ) = dHk0 (c ) = dH (a − dV (t )) = dV (b + dH (t ))

we see that the class of dH (c ) belongs to the kernel of k1 and therefore there exists x ∈ 1X
p+1,q

such that dv (x ) = 0 and j1[x] = [dH (c )]. We observe that ∂[a] = [x].
Let s ∈ 2X

p+1,q−1 be such that j0 (x ) = dH (c ) + dV (s ); since

j0 (dH (x )) = dH (j0 (x )) = dHdV (s ) = dV (−dH (s ))

we have that j1[dH (x )] = 0 and, as j1 is a monomorphism, there exists r ∈ 1X
p+2,q−1 with

dv (r ) = dH (x ). �is tells us that the class of [dH (r )] in 1E
p+3,q−1
2 is equal to d2∂α .

Let now z = j0r + dH (s ) ∈ 2X
p+2,q−1. We have

dVk0 (s ) = k0j0 (x ) − k0dH (c ) = −dHk0 (c ) = −dH (a) + dHdV (t ),

so dH (a) = −dV (k0 (s ) − dH (t )). On the other hand, using that k0j0 = 0,

k0 (z) = k0 (dH (s )) = dH (k0 (s )) = dH (k0 (s ) − dH (t ))

and therefore the class of [k0 (z)] in 3E
p+2,q−1
2 is −d2α . Finally, we observe that

j0dH (r ) = dH j0 (r ) = dH (z)

and this, along with the fact that dVk0 (z) = 0, as yet another small calculation shows, allows
us to conclude that d2∂α = −∂d2α .

The differentials

6.29. Using �eorem 6.27 we can give a description of the di�erential in the second page of
the spectral sequence of �eorem 6.7.

Let (S,L) be a Lie–Rinehart pair with enveloping algebra U and let M be a U e -module. Let
M → I • be an U e -injective resolution of M and let

0 3T 2T 1T 0j k

be a short exact sequence of U -modules. Using the Horseshoe Lemma from [Wei94, Lemma
2.2.8] we can take, for 1 ≤ i ≤ 3, U -projective resolutions iP

• → iT and morphisms j∗ and k∗
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such that the diagram

0 3T 2T 1T 0

0 3P
•

2P
•

1P
• 0

j k

j∗ k∗

commutes and the rows are exact. Let us recall from 6.5 the functor G on U e -modules and
consider, for i ∈ ~3�, the double complexes

iX
•,• = homU (iP

•,G (I •)).

As seen in the proof of 6.7,G (Iq ) is anU -injective module for each q and therefore the sequence

0 1X
•,•

2X
•,•

3X
•,• 0j∗ k∗ (6.7)

is exact. Fix now i ∈ ~3� and denote the total complex of iX
• by iZ

•. �e �ltration in iZ
•

given by

Fp iZ
q =

⊕
r+s=q
r ≥p

iX
r,s

determines a spectral sequence iE• whose di�erential on iE0 is induced by the one on I •. As
the sequence 0→ 3P → 2P → 1P → 0 splits, applying the functor homU (−,G (I •)) we see that
so does

0 1E
p,q
0 2E

p,q
0 3E

p,q
0 0j∗ k∗

and thus taking cohomology we get another exact sequence

0 1E
p,q
1 2E

p,q
1 3E

p,q
1 0.j∗ k∗

Fix p ≥ 0 and i ∈ ~3�. Since each iP
p is U -projective, the cohomology of homU (iP

p ,G (I •)) is
precisely

iE
p,q
1 = homU (iP

p ,Hq (S,M )).

�e di�erentials in iE1 are induced by those of iP•, so that we have

iE
p,q
2 = Ext

p
U (iT ,H

q (S,M )) (6.8)

and we thus see that our exact sequence (6.7) is in the situation of Lemma 6.28. As a consequence
of this, the square

3E
p,q
2 1E

p+1,q
2

3E
p+2,q−1
2 1E

p+3,q−1
2

∂

d2 d2

∂
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is anti-commutative. �is diagram, using identi�cation (6.8), is isomorphic to

Ext
p
U (1T ,H

q (S,M )) Ext
p+1
U (3T ,H

q (S,M ))

Ext
p+2
U (1T ,H

q−1 (S,M )) Ext
p+3
U (3T ,H

q−1 (S,M ))

∂

d2 d2

∂

(6.9)

6.30. �e following theorem is the result we are a�er in this section.

�eorem. For each q ≥ 0 there exists ζq (M ) ∈ Ext2
U (Hq (S,M ),Hq−1 (S,M )) such that the

di�erential of the second page in the spectral sequence of Corollary 6.8

d
p,q
2 : Hp (L|S,Hq (S,M )) → Hp+2 (L|S,Hq−1 (S,M ))

is given by d
p,q
2 (ξ ) = (−1)pζq (M ) ◦ ξ .

Proof. We have seen in (6.9) that for each q ≥ 0 the cohomological operator O = (Op ) of degree
2 from Hq (S,M ) to Hq−1 (S,M ) such that

Op = (−1)pdp,q2 : Ext
p
U (−,Hq (S,M )) → Ext

p+2
U (−,Hq−1 (S,M ))

is stable, so that �eorem 6.27 gives us the desired class ζq (M ).

6.31. If M is a U e -module, one may conjecture that the 2-extension

0 MS = H 0 (S,M ) M Der(S,M ) H 1 (S,M ) 0.

represents the class ζ1 (M ) ∈ Ext2
U (H 1 (S,M ),H 0 (S,M )) in �eorem 6.30.

6.5 Central line arrangements

In this section we use the machinery developed in this chapter to tackle the problem of
computing the Hochschild cohomology of the algebra A = Diff (A) of di�erential operators
tangent to a central arrangement of r + 2 lines A of Chapter 3. For r ≥ 3, the Hochschild
cohomology of U was computed in Chapter 3 from an U e -projective resolution of U a�er
lengthy calculations. For r = 1 and r = 2 those calculations are even more tedious and rather
inconvenient. With the method developed in this chapter we recover our previous results and,
what is more, we are able to obtain HH • (U ) as a vector space for every r ≥ 1. We will study
the case in which r = 1 in detail: for r = 2, the calculations follow the same lines.

�e key fact that makes our spectral sequence useful is that, as we have seen in Section 2.3,
the algebra of coordinate functions on the vector space together with the algebra of derivations
DerA form a Lie–Rinehart pair and its universal enveloping algebraU is isomorphic to A —we
will take this isomorphism as an identi�cation.
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6.32. We use the notation from 3.1. Let r ≥ 1 and A be a central line arrangement in V = k2

de�ned by the polynomial xF ∈ S , where F is a square-free homogeneous polynomial of degree
r + 1 not divisible by x , and write F = xF̄ + yr+1. Let us call S = k[x ,y] and L = DerA. �e
S-module DerA admits the basis given by the two derivations E = x∂x + y∂y and D = F∂y
and the enveloping algebra A of the Lie–Rinehart pair (S,L) admits the presentation in 2.8. We
put T = k[E] and, ifψ ∈ T , we write byψ ′ = τ1 (ψ ) and ψ̇ = τr (ψ ), where τt is the linear map
T → T such that τt (En ) = En − (E + t )n for every n ∈ N0.

6.5.1 The cohomology H •(L|S,M )

6.33. Let M be a Z-graded le� U -module such that the action of E on homogeneous elements
of M satis�es E (m) = |m |m. We can compute H • (L|S,M ) as the cohomology of the complex
homS (Λ

•
SL,M ) with Chevalley-Eilenberg di�erentials. �is, in turn, is isomorphic to the

complex

M M ⊗k homk (kD ⊕ kE, k) M ⊗k homk (kD ∧ E, k)
d0 d1

with di�erentials

d0 (m) = DmD̂ ⊕ EmÊ;
d1 (nD̂ +mÊ) = (Dm − En + rn)D̂ ∧ Ê.

�e following observations describe the cohomology of this complex.
• If n ∈ M is homogeneous then d1 (nD̂) = (r − |n |)nD̂ ∧ Ê. �is means that Imd1 contains

all homogeneous components Mi D̂∧ Ê with i , r . On the other hand, d1 (mÊ) = DmD̂∧ Ê.
As D is homogeneous of degree r , we see that

H 2 (L|S,M ) = cokerd1 = coker(D : M0 → Mr ).

• If m ∈ M is homogeneous then the component of d0 (m) in Ê is |m |m, and therefore
kerd1 ⊂ M0. In fact,

H 0 (L|S,M ) = kerd0 = ker(D : M0 → Mr ).

• A 1-cocycle is, up to adding coboundaries of elements of nonzero degree, cohomologous
to one of the form ω = nD̂ +mÊ with n ∈ M and m ∈ M0. What is more, using now
coboundaries of degree zero we can assume that n is not in the image of D : M0 → Mr .
As D (m) ∈ Mr and

d1 (ω) = Dm + (−En + rn) ∈ Mr ⊕
⊕
i,r

Mi ,

we must have Dm = 0 and also n ∈ Mr . We conclude in this way that

H 1 (L|S,M ) = coker (D : M0 → Mr ) D̂ ⊕ ker (D : M0 → Mr ) Ê.

We notice that the cohomology H • (L|S,M ) depends only on the map M0 → Mr given by
multiplication by D.
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6.34. Let W be the k-vector space with basis {
x ,y

}. It is well-known that the complex
P• = Se ⊗ Λ•W —which we sometimes identify with S ⊗W • ⊗ S— with Koszul di�erentials
k• : P• → P•−1 such that for s, t ∈ S and w ∈W

k1 (s |w |t ) = sw |t − s |wt ,

k2 (s |x ∧ y |t ) = sx |y |t − s |y |xt − sy |x |t + s |x |yt

is a resolution of S by free Se -modules. Applying homSe (−,U ) and using standard identi�cations
we obtain the complex

U U ⊗ hom(W , k) � Ux̂ ⊕ U ŷ U ⊗ homk (kx ∧ y, k)
δ 0 δ 1

(6.10)

with di�erentials

δ 0 (u) = [x ,u]x̂ + [y,u]ŷ
δ 1 (ax̂ + bŷ) = ([x ,b] − [y,a]) x̂ ∧ ŷ,

where {x̂ , ŷ} is the dual basis of {x ,y} and x̂ ∧ ŷ is the linear morphism kx ∧ y → k that sends
x ∧ y to one. �e cohomology of the complex (6.10) is H • (S,U ).
6.35. We now describe the U -module structure on H • (S,U ) following Subsection 6.3. In order
to do that we �x the Koszul resolution we described in 6.34 and recall from Example 6.19 that
if α ∈ L and we regard H 0 (S,U ) as a submodule of U then ∇0

α (u) = α (u).
We �rst deal with the action of E; let Ee be the induced derivation on Se and let, for p ≥ 0,

Ep be linear endomorphism of Se ⊗ ΛpW such that

Ep (s |z |t ) = ( |s | + |z | + |t |)s |z |t

for homogeneous s , t ∈ S and z ∈ ΛpW . It is immediate to see that the sequence (Ep ) is an
Ee -li�ing of E : S → S ; with this at hand we obtain that the endomorphism E]

1 , de�ned by
equation (6.2) in Section 6.3, is given by

E]
1 (ax̂ + bŷ) = ( |a | − 1)ax̂ + ( |b | − 1)bŷ

whenever a,b ∈ U are homogeneous, and that E]
2 is given by

E]
2 (ux̂ ∧ ŷ) = ( |u | − 2)ux̂ ∧ ŷ.

for homogeneous u ∈ U .

We now study the action of D: it is enough to give a De -li�ing (Dp ) of D : S → S . Recall,
again from Example 6.19, that we may take D0 equal to De , the derivation of Se induced by D.
�e unique De -operator D1 of Se ⊗W such that D1 (1|x |1) = 0 and

D1 (1|y |1) = ∇(F )
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satis�es D0 ◦ k1 = k1 ◦ D1, for their evaluation in 1|x |1 is zero, and ∇(F ) was de�ned precisely
so that k1 (∇(F )) = y |1 − 1|y.

We de�ne the remaining De -operator, that is, the endomorphism D2 of Se ⊗ ΛW , by
D2 (1|x ∧ y |1) = x ∧ ∇(F ). It is not di�cult to see that k2 ◦ D2 = D1 ◦ k2 by computing directly
on both sides.
6.36. �e action of E induces a Z-grading on the complex (6.10) such that |x̂ | = |ŷ | = −1
and |x̂ ∧ ŷ | = −2, and, as the di�erentials preserve this grading, H • (S,U ) inherits a Z-graded
structure. In view of the description of the action of E that we gave in 6.35, the U -modules
Hp (S,U ) satisfy the hypothesis in 6.33. As a consequence of this, to get H • (L|S,H • (S,U )) we
need only to compute the homogeneous components of degree 0 and r of H • (S,U ) and then to
describe the map given by the action of D.
6.37. Our plan is not di�cult to execute for H 0 (S,U ) and H 2 (S,U ), but for of H 1 (S,U ) the
calculations are more involved. In particular, the cases in which r ≤ 2 and r ≥ 3 are di�erent:
we reserve a section for each of those situations. We take on the easy part here.

• It is proven in Lemma 4.4 that H 0 (S,U ), the kernel of δ 0, is precisely S . �e homogeneous
component of S of degree zero is k and the action of D is zero.

• Let us denote by S≥1 the space of polynomials with no constant term. We claim that
S≥1D

kT is contained in the image of δ 1 for every k ≥ 0. Indeed, if f ,д ∈ S and ψ ∈ T
then

δ 1 (дφx̂ + fψŷ) = (x fψ ′ − yдφ ′)x̂ ∧ ŷ,

so that our claim is true if k = 0. Assume now that k > 0 and that for every j < k the
inclusion S≥1D

jT ⊂ Imδ 1 holds. Given f ∈ S andψ ∈ T , we have that

δ 1 ( f Dkψŷ) = x f Dkψ ′x̂ ∧ ŷ

and
δ 1 ( f Dkψ x̂ ) = (−f [y,Dk ]ψ − f Dkyψ ′)x̂ ∧ ŷ = (−f [y,Dk ](ψ −ψ ′) − f yDkψ ′)x̂ ∧ ŷ

≡ −f yDkψ ′x̂ ∧ ŷ mod Imδ 1,

which proves the claim. We easily see, on the other hand, that the intersection of k[D]T
with Imδ 1 is trivial, so that

H 2 (S,U ) � k[D]Tx̂ ∧ ŷ. (6.11)

6.5.2 The case r ≥ 3

We assume that r ≥ 3, so that we are in the situation of Section 3.2. Following 6.36, for each
i ∈ {0, 1, 2} we compute the homogeneous components of degree 0 and r of H i (S,U ) and then
the action of D.
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6.38. According to our calculation of H 2 (S,U ) in (6.11), the only non-zero homogeneous
components of H 2 (S,U ) have degrees −2 + tr , for t ∈ N0. For the component of degree zero to
be non-trivial we need that −2 + tr = 0, which never happens if r ≥ 3. On the other hand, for
the component of degree r to be zero we need that −2 + tr = r , which, again, cannot happen
if r ≥ 3. We conclude in this way that the components of H 2 (S,U ) in degree zero and in
degree r are both trivial and therefore that H • (L|S,H 2 (S,U )) = 0.
6.39. Let us now compute the homogeneous component of H 1 (S,U ) of degree 0. Let ω be a
1-cocycle of degree zero in the complex (6.10) of 6.34 and write it in the form ω = ax̂ + bŷ for
a and b in U of degree one, so that they belong to xT ⊕ yT . Up to adding coboundaries we
can assume that the component of a in xT is zero, so that there exist α , β and γ in T such that
a = yα and b = xβ + yγ .

�e condition δ 1 (ω) = 0, which amounts to [x ,b] = [y,a], implies that α , β and γ are
scalars. Moreover, if ω were a coboundary, there should be a ψ ∈ T such that xψ ′ = αy and
yψ ′ = βx + γy, leaving only the possibility that α = β = γ = 0. We conclude from these
calculations that the component of degree 0 of H 1 (S,U ) is isomorphic to kyx̂ ⊕ kxŷ ⊕ kyŷ.
6.40. Suppose now that ω is a 1-cocycle of degree r in the complex (6.10) of 6.34 and write
ω = ax̂ + bŷ, with both a and b homogeneous of degree r + 1. Up to coboundaries, we can
assume that there is no monomial in a divisible by x . We write

ω =
(
yr+1ψ1 + yDψ2

)
x̂ + *.

,

∑
i+j=r+1

x iy jϕi j + xDϕ1 + yDϕ2
+/
-
ŷ,

with theψ ’s and ϕ’s in T . �e coboundary δ 1 (ω) belongs to Ur+2x̂ ∧ ŷ = (Sr+2T ⊕ S2DT )x̂ ∧ ŷ

and its component in S2DT is x2Dϕ ′1 + xyDϕ
′
2 − y

2Dψ ′2 = 0, so thatψ2, ϕ1 and ϕ2 are in k. As
we now have

δ 1 (ω) = *.
,

∑
i+j=r+1

x i+1y jϕ ′i j − y
r+2ψ ′1 +ψ2yF

+/
-
x̂ ∧ ŷ

and F = yr+1 + xF̄ , since δ 1 (ω) = 0 we must haveψ ′1 = ψ2 and∑
i+j=r+1

x i+1y jϕ ′i j = −ψ2yxF̄ .

�ese equalities imply thatψ1 = −Eψ2+µ for some µ ∈ k and that ∑i+j=r+1 x
iy jϕi j = ψ2yF̄E+ f ,

with f ∈ Sr+1. �is means that

ω = ψ2η + µx̂ + f ŷ + hDŷ, (6.12)

where η = (yD − yr+1E)x̂ + yF̄Eŷ and h ∈ S1.
Let us now determine when it is possible that ω be a coboundary. Suppose now that there

exists u ∈ Ur such that δ 0 (u) = ω; write u = ∑
x iy jρi j + Dρ with ρ’s in T and the sum taken
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q

2 0 0 0

1 0 r + 2 r + 2

0 1 r + 2 r + 1

0 1 2 p

Figure 6.1. Dimensions of the second page of the spectral sequence for r ≥ 3.

over all i, j such that i + j = r . We equal

δ 0 (u) =
(∑

x i+1y jρ ′i j + xDρ
′
)
x̂ +

(∑
x iy j+1ρ ′i j + yDρ

′ + F (ρ ′ − ρ)
)
ŷ

to ω: looking at the component x̂ we deduce that all ρ’s must be zero — that leaves us only
with δ 0 (u) = −Fρŷ.

We thus see that the only cocycles ω of the form (6.12) that are coboundaries are the scalar
multiples of Fŷ. We therefore have that

H 1 (S,U )r � kη ⊕ kx̂ ⊕
Sr+1
F

ŷ ⊕ S2Dŷ.

6.41. We now describe the map ∇1
D : H 1 (S,U )0 → H 1 (S,U )r . Let α , β and γ be scalars and

consider the cocycle of degree zero ξ = αyx̂ + (βx + γy)ŷ. Using the formula for the De -li�ing
of D : S → S that we found in 6.35, we see that ∇1

D (ξ ) (x ) = αF and that

∇1
D (ξ ) (y) = γF − (αyFx + βxFy + γyFy ) = γxFx − αyFx − βxFy ,

thanks to Euler’s identity. It follows from this that the map ∇1
D : H 1 (S,U )0 → H 1 (S,U )r is

injective and has cokernel

coker
(
∇1
D : (H 1 (S,U ))0 → (H 1 (S,U ))r

)
� kη ⊕

Sr+1
〈xFx ,yFx ,xFy〉

ŷ ⊕ S1Dŷ.

6.42. Collecting the information we have obtained so far about the dimensions of each vector
space appearing in the second page of our spectral sequence we see that it must degenerate,
for there is no possible non-zero arrow —see Figure 6.1. We conclude in this way that there is
an isomorphism of vector spaces

HH i (DiffA) �




k, if i = 0;
Sr D̂ ⊕ kÊ, if i = 1;(
kη ⊕

Sr+1
〈xFx ,yFx ,xFy〉

ŷ ⊕ S1Dŷ

)
D̂ ⊕ Sr D̂ ∧ Ê, if i = 2;(

kη ⊕
Sr+1

〈xFx ,yFx ,xFy〉
ŷ ⊕ S1Dŷ

)
D̂ ∧ Ê, if i = 3;

0, otherwise,

(6.13)
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where, we recall, η = (yD−yr+1E)x̂+yF̄Eŷ. �e dimensions in each cohomological degree agree
with those found in Section 3.2, where the calculation was performed using the resolution P of
U constructed in 3.5. Moreover, there seems to be a correspondence between each cohomology
class in (6.13) and one in Proposition 3.15: without this identi�cation, we would not know
how to relate this description of HH • (U ) with the cohomology of the Hochschild complex, so
it could be di�cult to describe the Gerstenhaber algebra structure on HH • (U ), and neither
would it be clear how to relate HH 2 (U ) with the deformations of U : both of these issues are
well addressed when the cohomology is computed as in Section 3.2.

6.5.3 The case r = 1

We may assume, without losing any generality, that the de�ning polynomial of our arrangement
is Q = xF with F = y (tx + y), for some t ∈ k. We adopt the strategy of 6.36 to compute
H • (L|S,H • (S,U )), which is the second page of our spectral sequence of Corollary 6.8. �is
case was excluded in our computations of Chapter 3.

The second page

6.43. We see from equation (6.11) that the homogeneous components of degree 0 and 1 of
H 2 (S,U ) are D2Tx̂ ∧ ŷ and D3Tx̂ ∧ ŷ, respectively. Let us compute the kernel and the cokernel
of ∇2

D : H 2 (S,U )0 → H 2 (S,U )1 using the description we obtain in 6.35. We have

D]
2 (D

2φx̂ ∧ ŷ) =
(
[D,D2φ] − D2φx̂ ∧ ŷ (D2 (1|x ∧ y |1))

)
and, as in the second term there never appears a higher power of D than D2,

D]
2 (D

2φx̂ ∧ ŷ) ≡ D3φ̇x̂ ∧ ŷ mod Imδ 1
1 .

We thus see that the kernel of ∇2
D : H 2 (S,U )0 → H 2 (S,U )1 is kDx̂ ∧ ŷ and its cokernel is 0.

6.44. We now compute the component of degree zero of H 1 (S,U ). �e homogeneous compo-
nent of degree zero of the complex (6.11) in 6.34 is

U0 U1x̂ ⊕ U1ŷ U2x̂ ∧ ŷ
δ 0

0 δ 1
0

with U0 = T , U1 = S1T ⊕ DT ,

U2 = S2T ⊕ S1DT ⊕ D2T (6.14)

and di�erentials

δ 0
0 : ϕ 7→ xϕ ′x̂ + yϕ ′ŷ

δ 1
0 : (xφ1 + yφ2 + Dφ3)x̂ 7→

(
−xyφ ′1 − y

2φ ′2 − yDφ
′
3 −Q (φ ′3 − φ3)

)
x̂ ∧ ŷ,

(xψ1 + yψ2 + Dψ3)ŷ 7→ (x2ψ ′1 + xyψ
′
2 + xDψ

′
3 )x̂ ∧ ŷ,
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where all Greek le�ers denote elements of T .
Let a,b ∈ U1 and let ω = ax̂ + bŷ be a 1-cocycle. Up to adding a coboundary we may

suppose that the component of a in xT is zero: we may therefore write

a = yφ2 + Dφ3, b = xψ1 + yψ2 + Dψ3,

with Greek le�ers in T . �e coboundary δ 1
0 (ω) belongs to U2x̂ ∧ ŷ, which decomposes as

in (6.14). �e vanishing of the component in D2T does not give any information, that of the
one in S1DT tells us that φ ′3 = ψ ′3 = 0 and, �nally, that of S2T that

x2ψ ′1 + xyψ
′
2 = y

2φ ′2 − Fφ
′
3. (6.15)

Let us put λ B φ3. Looking at the component on y2T of Equation (6.15) and keeping in mind
that F = y2 + txy we see that φ ′2 = λ and, using this, that xψ ′1 + yψ ′2 = −λty. In this way we
obtain that

φ2 = −λE + µ, xψ1 + yψ2 = λtyE + f ,

for certain µ ∈ k and f1 ∈ S1. We conclude that

H 1 (S,U )0 � kη0 ⊕ kyx̂ ⊕ (S1 ⊕ kD)ŷ (6.16)

with η0 = (−yE + D)x̂ + tyEŷ.
6.45. �e homogeneous component of degree 1 of the complex (6.11) in 6.34 is

U1 U2x̂ ⊕ U2ŷ U3x̂ ∧ ŷ
δ 1

0 δ 1
1

where U3 = S3T ⊕ S2DT ⊕ S1D
2T ⊕ D3T and the di�erentials are such that

δ 0
1 (xϕ1 + yϕ2 + Dρ)

= (x2ϕ ′1 + xyϕ
′
2 + xDρ

′)x̂ + (xyϕ ′1 + y
2ϕ ′2 + yDρ

′ + F (ρ ′ − ρ)ŷ,

δ 1
1
((∑

x iy jφi j + xDφ1 + yDφ2 + D
2φ

)
x̂
)

= −
∑

x iy j+1φ ′i j − xyDφ
′
1 − xF (φ

′
1 − φ1) − y

2Dφ ′2 − yF (φ
′
2 − φ2)

− yD2φ ′ − 2FD (φ ′2 − φ2) − FFy (φ
′ − φ),

δ 1
1
((∑

x iy jψi j + xDψ1 + yDψ2 + D
2ψ

)
ŷ
)

=
∑

x i+1y jψ ′i j + x
2Dψ ′1 + xyDψ

′
2 + xD

2ψ ′,

In all the sums that appear here the indices i and j are such that i + j = 2 and we have omi�ed
the factor x̂ ∧ ŷ. Again, all Greek le�ers lie in T .

Let us write, once again, ω = ax̂ + bŷ, this time with a and b inU2. Up to coboundaries, we
write, with the same conventions as before,

a = y2φ02 + yDφ2 + D
2φ, b =

∑
x iy jψi j + xDψ1 + yDψ2 + D

2ψ .
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Let us examine the condition δ 1
1 (ω) = 0 component by component according to our description

of U2 above.
• In D3T there is no condition at all.
• In S1D

2T we have xD2ψ ′ − yD2φ ′ = 0, so thatψ and φ are scalars.
• In S2DT the condition reads

x2Dψ ′1 + xyDψ
′
2 = y

2Dφ ′2 + 2FD (φ ′ − φ). (6.17)

Writing F = y2+txy and looking at the terms that are iny2T we �nd 0 = φ ′2−2φ, and then
φ2 = −2φE + λ for some λ ∈ k. What remains of (6.17) implies that xψ ′1 + yψ ′2 = −2tyφ
and therefore there exists h ∈ S1 such that

xDψ1 + yDψ2 = 2φtyDE + hD.

• Finally, we look at S3T : we have∑
x i+1y jψ ′i j = y

3φ ′02 + yF (φ
′
2 − φ2) + FFy (φ

′ − φ).

In particular, using that Fy = 2y + tx and looking at the terms in y3T , we �nd that
0 = φ ′02 + (φ ′2 − φ2) + 2(φ ′ − φ), or, rearranging, φ ′02 = 2φE + λ. “Integrating”, we see
there exists a µ ∈ k such that

φ02 = φ (E − E
2) − λE + µ .

Now, as FFy = 2y3 + 3txy2 + t2x2y, we must have∑
x iy jψ ′i j = txy (φ ′2 − φ2) − (3ty2 + t2xy)φ,

and, integrating yet another time, we get ∑x iy jψi j = f2E
2+ f1E+ f0, for some polynomials

f1 and f2 in S2 that depend only and linearly on φ and λ.
We conclude in this way that there exist a cocycle ζ such that every 1-cocyle of degree 1 is

cohomologous to one of the form

ω = φζ + λη + f ŷ + hDŷ +ψD2ŷ + µy2x̂ (6.18)

with η = (−y2E + yD)x̂ + ty2Eŷ, φ, λ,ψ and µ in k and h and f in S1.
It is easy to see from the expression we have for δ 0

1 that such a cocycle is a coboundary if
and only if it is a scalar multiple of Fŷ. �e upshot of all this is that

H 1 (S,U )1 � 〈ζ ,η〉 ⊕ ky
2x̂ ⊕

(
S2/(F ) ⊕ S1D ⊕ kD

2
)
ŷ.
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6.46. We now study the action of D on the �rst cohomology group. We will give explicit
formulas for the evaluation of ∇1

D : H 1 (S,U )0 → H 1 (S,U )1 and, at the same time, compute its
cokernel. Suppose that ω is a representative of a class in H 1 (S,U ) chosen as in (6.18).

• As D]
1 (Dŷ) = −Dŷ (∇(F ))ŷ = −FyD + S2 , we see that up to adding to ω an element in

the image of ∇1
D we may suppose that h = h0x , for some h0 ∈ k.

• Let α , β and γ in k and de�ne ϕ = αyx̂ + (βx + γy)ŷ. Since ϕ (∇(F )) is equal to
γxFx − αyFx − βxFy , we have

D]
1 (ϕ) = ([D,αy] − ϕ (D1 (1|x |1))) x̂ + ([D, βx + γy] − ϕ (D1 (1|y |1))) ŷ

= αFx̂ + (γyFy + αyFx + βxFy )ŷ.

In view of this, it is easy to see that we may choose α , β and γ in such a way that
ω +D]

1 (ϕ), which is a cocycle of the form (6.18), has µ = 0 and f = 0, since {yFx ,xFy , F }
spans S2.

• Let us see that the 1-cocycle η belongs to the image of ∇1
D . Consider the 1-cocycle

η0 = (−yE + D)x̂ + tyEŷ. Using that D1 (1|y |1) = ∇(F ) = t |x |y + y |y |1 + 1|y |y + tx |y |1,
we �nd

D]
1 (η0) (1|x |1) = [D,−yE + D] = −FE + yD,

and
D]

1 (η0) (1|y |1|) = [D, tyE] − η0 (∇(F ))

= tFE − tyD − t (−yE + D)y − (tx + y)tyE − tyEy

= ty2E + t2xyE − tyD + ty2E + ty2 − tyD − t (y2 + txy)

− t2xyE − ty2E − ty2E − ty2

= −2tyD + ty2 + t (y2 + txy),

which belongs to S2 + kyD. We already know that the elements of (S2 + kyD) ŷ are
coboundaries: it follows that D]

1 (η0) ≡ (−FE + yD)x̂ modulo coboundaries. Now, the
di�erence betweenD]

1 (η0) and η is cohomologous to txyEx̂+ty2Eŷ, which is in turn equal
to δ 0

1 (−tyE). As a consequence of this, we have that ∇1
D (η0) is equal to η in cohomology.

We conclude from the preceding calculation that coker
(
∇1
D : H 1 (S,U )0 → H 1 (S,U )1

)
is ge-

nerated by the classes of ζ , xDŷ, and D2ŷ. As these classes are linearly independent, the
dimension of this cokernel is 3. Finally, we can use the dimension theorem to see that
∇1
D : H 1 (S,U )0 → H 1 (S,U )1 is a monomorphism.

6.47. We have already made all the computations required in 6.36; the results are displayed
in Figure 6.2 on the next page. As opposed to what happens when r ≥ 3, the di�erential in
the second page could be non-zero, since neither the domain nor the codomain of the map
d0,2

2 : E0,2
2 → E2,1

2 are. As dimE0,2
2 = 1, the di�erential d0,2

2 is or zero or a monomorphism. If it
is zero, the sequence degenerates and using Corollary 6.8 we obtain —among other things—
that dimHH 3 (U ) = 4; if not, we have dimHH 3 (U ) = 3. It follows from this observation that to
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q

2 kD2x̂ ∧ ŷ k(D2x̂ ∧ ŷ)Ê 0
1 0 〈η,xDŷ,D2ŷ〉D̂ 〈η,xDŷ,D2ŷ〉D̂ ∧ Ê

0 k kÊ ⊕ S1D̂ S1D̂ ∧ Ê

0 1 2 p

Figure 6.2. �e second page for r = 1.

see whether the sequence degenerates or not it is enough to compute HH 3 (U ). We will now
do this using our complex of Chapter 3: we will �nd that dimHH 3 (U ) = 4, so that Figure 6.2
actually describes the Hochschild cohomology of U .

The third Hochschild cohomology group for r = 1

As we saw in Section 3.2, the cohomology of the complex of 3.9 is HH • (U ). We will use this
complex again to compute HH 3 (U ): let us take a generic 3-cocycle

ω = ax̂ŷD̂ + bx̂ŷÊ + cx̂D̂Ê + dŷD̂Ê

with a ∈ A3 and b, c and d in A2, where, we recall, we have Ak =
∑

i+j=k SiD
jT for k ≥ 0.

6.48. We use the image of the second di�erential to simplify ω.
• We may suppose that a = 0: indeed, we have

d2 (A2x̂D̂) = [y,A2]x̂ŷD̂ = yA2x̂ŷD̂,

d2 (A2ŷD̂) = [x ,A2]x̂ŷD̂ = xA2x̂ŷD̂

and the only coe�cient of d2 (D2ψ x̂ŷ) is in x̂ŷD̂ and it is congruent to D3ψ̇ modulo
SD≤2T .

• We may suppose that b ∈ D2T . �is follows from the facts that the components in x̂ŷÊ

of d2 (A1x̂ Ê) and of d2 (A1ŷÊ) are [y,A1] and [x ,A1] and that their components in x̂ŷD̂

are zero.
• We may suppose that the scalar components of c in y2 and in yD are zero. �e �rst

assumption follows from the equality d2 (−yx̂ Ê) = Fx̂D̂Ê + FFxŷD̂Ê and the second one
from

d2 (η0 ∧ E) = (FE − yD)x̂D̂Ê + A2 ŷD̂Ê,

where η0 is the cocycle found in (6.16) and η0 ∧ E is formally obtained from it. Moreover,
as d2 (aD̂Ê) = [x ,a]x̂D̂Ê + [y,a]ŷD̂Ê, we may as well assume that c has no monomials
from xA.
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• We may assume that d has zero scalar component in yD, for

d2 (DŷÊ) = (FyD + S2 )ŷD̂Ê,

and, �nally, we may suppose that d has no monomials that involve only x and y, since

d2 (xŷÊ) = xFyŷD̂Ê, d2 (yŷÊ) = (yFy − F )ŷD̂Ê,

d2 (DD̂Ê) = −FŷD̂Ê.

6.49. Taking all these assumptions into account, we can write

b = D2ρ,

c = y2φ2 + yDφ1 + D
2φ,

d =
∑
i+j=2

x iy jψi j + xDψ1 + yDψ2 + D
2ψ ,

with all Greek le�ers inT . We examine the equationd3 (ω) = 0 looking at each of its components
in S3−iD

iT , for 0 ≤ i ≤ 3. �e equation we have to solve is

[x ,d] = [y, c] + ∇D
2ρ

y (F ). (6.19)

• Looking at the components in D3T , we immediately obtain that D3ρ̇ = 0 and hence that
ρ ∈ k.

• �e component in S1D
2T of equation (6.19) is xD2ψ ′ = yD2φ ′+ρ (2y+tx )D2, from which

we deduce thatψ ′ = ρtx and that 0 = φ ′ + 2ρ. We may thus write

φ = 2ρE + φ0, ψ = −ρtxE +ψ0,

with φ0 andψ0 in k.
• Using the information we have obtained thus far, we see that the component of the

equation in S2DT is

x2Dψ ′1 + xyDψ
′
2 = y

2Dφ ′1 + 2FD (φ ′ − φ) + 2ρFD. (6.20)

Let us write S2DT = x2DT ⊕ xyDT ⊕ y2DT . We look at equation (6.20) in y2DT : it reads
0 = φ ′1 + 2(φ ′ − φ) + 2ρ and from this we may write φ ′ in terms of ρ and φ0. Integrating
and recalling that φ has its scalar component in yD equal to zero, we see that

φ1 = 2ρ (E − E2) − 2(ρ − φ0)E.

Next, we quickly look at x2DT to getψ ′1 = 0 and therefore thatψ1 ∈ k. Finally, we look
at xyD2. �e equation there readsψ ′2 = 2t (φ ′ − φ) + 2tρ and, again, as d has zero scalar
component in yD, this determines uniquely thatψ2 = −tψ1.
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• �e only remaining component of our equation is the one in S3T ,∑
i+j=2

x i+1j jψ ′i j = y
3φ ′2 + yF (φ

′
1 − φ1) + FFy (φ

′ − φ) + ρFFy . (6.21)

Let us take {xkyl : k + l = 3} as a basis of S3T as a T -right module: the component in y3

of our equation is

φ ′2 = (φ ′1 − φ1) + 2(φ − φ ′) − 2ρ .

As the scalar component of φ2 is zero, this equation determines φ2. Using this, the
equation (6.21) gives us an expression for ∑

x iy jψ ′i j in terms of the already known
parameters and, integrating, we obtain the same for theψi j ’s.

6.50. We have already seen at this point that dimHH 3 (A) ≤ 4. A computation very similar to
the one in 3.13 and which we omit shows that actually the equality holds.

Proposition. �e spectral sequence for r = 1 degenerates at the second page and therefore

HH i (DiffA) �




k, if i = 0;

kÊ ⊕ S1D̂ if i = 1;

S1D̂ ∧ Ê ⊕ 〈η,xDŷ,D2ŷ〉D̂ ⊕ kD2x̂ ∧ ŷ, if i = 2;

〈η,xDŷ,D2ŷ〉D̂ ∧ Ê ⊕ k(D2x̂ ∧ ŷ)Ê if i = 3;

0, otherwise.

Proof. As dimHH 3 (U ) = 4, our argument from 6.47 implies that the spectral sequence degen-
erates at E2. �e isomorphisms in the statement are a consequence of the convergence and the
information in Figure 6.2.

6.5.4 Resemblance and dissemblance

We end this chapter with a comparison between the cases in which r ≥ 3 and that in which r is 1
or 2. In both situations, to compute the second page of the spectral sequence E• of Corollary 6.8
we used the Koszul resolution P• of S , which is an Se -projective resolution of length 2, and
computed the cohomology of homSe (P•, S ) to obtain H • (S,U ). We then used the complex
of Proposition 6.1, which also has lenght 2, to obtain, for each 0 ≤ q ≤ 2, the Lie–Rinehart
cohomology of the pair (S,L) with values on Hq (S,U ). Since each of the complexes we used
has lenght 2, the second page has Ep,q2 = 0 for every p,q ≥ 3.

It is at this point that the case r ≥ 3 is di�erent to the case r = 1, 2. Let us consider the �rst
case, depicted in Figure 6.3, when r ≥ 3. We have

E
p,q
2 = 0 if p ≥ 3 and q ≥ 2,

and, moreover, E0,1
2 = 0. As the di�erential on the second page has bidegree (2,−1), the spectral

sequence degenerates at E2, thus immediately giving us a description of HH • (U ). A problem
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q

2 0 0 0
1 0 r + 2 r + 2
0 1 r + 2 r + 1

0 1 2 p

Figure 6.3. Dimensions of E2
for r ≥ 3

q

2 1 1 0
1 0 r + 2 r + 2
0 1 r + 2 r + 1

0 1 2 p

Figure 6.4. Dimensions of E2
for r = 1, 2

with this is that it is not obvious how to compute the Gerstenhaber algebra structure onHH • (U ):
in Chapter 3 we obtained explicit cocycles and this allowed us to compute cup products and
Gerstenhaber brackets. Here, we still do not know the relation between our spectral sequence
and the multiplicative structure of HH • (U ). Another consequence of the lack of explicitness of
this procedure is that it is di�cult to describe the formal deformations of U as in Chapter 5
even though we do know HH 2 (U ).

Let us now consider the case in which r is equal to 1 or 2. �e dimensions of the components
of the second page of the spectral sequence are tabulated in Figure 6.4. As opposed to the �rst
case, it is not evident that the spectral sequence degenerates at its second page: the di�erential
d0,2

2 : E0,2
2 → E2,1

2 could be non-zero. Computing HH 3 (U ) from the U e -projective resolution of
U described in 3.5 we were able to check that, in fact, d0,2

2 is zero, thus allowing us to obtain
the dimensions of HH • (U ) as a graded vector space. �e end result is that the Hilbert series of
HH • (U ) is

hHH • (U ) (t ) =



1 + (r + 2)t + (2r + 4)t2 + (r + 3)t3, if r = 1, 2;
1 + (r + 2)t + (2r + 3)t2 + (r + 2)t3, if r ≥ 3.

�is shows that the case in which r is 1 or 2 is genuinely di�erent to that in which r ≥ 3.

6.6 Resumen

En el Capı́tulo 2 vimos que siA es un arreglo de hiperplanos libre, el par (S,DerA) determinado
por el álgebra de polinomios S y el álgebra de Lie DerA es un par de Lie–Rinehart y su álgebra
envolvente es isomorfa a Diff (A). En este capı́tulo desarrollamos una herramienta que permite
abordar el problema, más general, de determinar la cohomologı́a de Hochschild del álgebra
envolvente U = U (S,L) de un par de Lie–Rinehart (S,L).

Precisamente, siguiendo las ideas de �. Lambre y P. Le Meur en [LLM18], construimos
una sucesión espectral que reduce el problema del cálculo de la cohomologı́a de Hochschild
del álgebra conmutativa S a valores en U y de la cohomologı́a de Lie–Rinehart del par (S,L).
Explı́citamente, obtenemos el siguiente resultado en el Corolario 6.8.
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Teorema. Para cada U -bimódulo M hay una sucesión espectral E• en el primer cuadante que
converge a HH • (U ,M ) tal que

E
p,q
2 � Hp (L|S,Hq (S,M )).

Para poder utilizar esta sucesión espectral en el cálculo de la cohomologı́a de Hochschild del
álgebra Diff (A) asociada a un arregloA es necesario contar con una descripción práctica de la
estructura de U -módulo en la cohomologı́a de Hochschild de S a valores en U : nos ocupamos
exitosamente de este problema en la Sección 6.3, siguiendo [SÁ17].

A continuación, dedicamos la Sección 6.4 a dar una descripción de los diferenciales de la
página E2. Para hacer esto, basándonos en [SÁ07], estudiamos primero los llamados operadores
cohomológicos estables y vemos que nuestra diferencial se corresponde con uno de ellos. El
resultado de esta sección es el Teorema 6.30.

Teorema. Para cada q ≥ 0 existe ζq (M ) ∈ Ext2
U (Hq (S,M ),Hq−1 (S,M )) tal que la diferencial de

la segunda página de la sucesión espectral del Corolario 6.8

d
p,q
2 : Hp (L|S,Hq (S,M )) → Hp+2 (L|S,Hq−1 (S,M ))

está dada por dp,q2 (ξ ) = (−1)pζq (M ) ◦ ξ .

Para terminar la tesis, nos ocupamos en la Sección 6.5 de mostrar que nuestra sucesión
espectral hace posible determinar completamente HH • (U ) y mostramos cómo este método
se aplica al caso especial del cálculo de la cohomologı́a del álgebra Diff (A) asociada a un
arreglo de rectas. Primero recuperamos nuestros resultados de la cohomologı́a de Hochschild
en tanto espacio vectorial graduado para arreglos con al menos cinco rectas y, a continuación,
extendemos estos resultados a arreglos con 3 o 4 rectas, que habı́an sido excluidos anteriormente.
Este resultado aparece en el texto como la Proposición 6.50 para el caso de 3 rectas. Observamos
los casos en que tenemos más o menos de cinco rectas son genuinamente diferentes: si l denota
la cantidad de rectas del arreglo, la serie de Hilbert de HH • (Diff (A)) es

hHH • (U ) (t ) =



1 + lt + 2lt2 + (l + 1)t3, si l = 3, 4;
1 + lt + (2l − 1)t2 + lt3, si l ≥ 5.
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